
A Digital, Networked, Adaptive Toolset
to Capture and Distribute Organisational

Knowledge Speckle CI

Felix Deiters1(B), Giovanni Betti2, and Christoph Gengnagel1

1 Department of Structural Design and Technology (KET), Berlin University of the Arts (UdK),
Hardenbergstr. 33, 10623 Berlin, Germany
felixdeiters@udk-berlin.de

2 Center for the Built Environment, University of California, Berkeley, CA, USA

Abstract. This work explores the potential of networked, composable tools as
a means to capture and distribute organisational knowledge. To solve a design
problem, teams will draw from a collective body of formalised, implicit, and tacit
knowledge and synthesise it into a proposal. We argue that tooling can play a part
inmeeting new challenges for the discipline aswell as broader trends in knowledge
work.

Drawing from the concepts of Version Control and Continuous Integration,
a widely adopted collaboration strategy in software development making heavy
use of automation, this work proposes an automation platform for AEC workflows
as a demonstrator of such a networked tool. The prototype is implemented using
Speckle, a data platform for AEC.As a case study, three automation workflows are
implemented and their potential to improve planning accuracy and capture and
disseminate intra- and inter-organisational knowledge is reflected on. We argue
this will ultimately require a renegotiation of the relationship between planners
and their tools and we speculate about a culture of toolmaking as a means to
capture and evolve organisational knowledge.

Keywords: Organisational knowledge · Continuous integration · Automation ·
Collaboration · Toolmaking

1 Introduction

Architecture, and the built environment in general, share the paradoxical quality of
being both accelerator and key to many of the overlapping and mutually reinforcing
crises unfolding around us. In order to unlock its potential to store carbon rather than
emit greenhouse gases, preserve biodiversity rather than devour habitats, and foster
community rather than divide and displace vulnerable demographics, planners need to
radically transform the way we design, build, operate, and recycle our built environment.
Materialising this new sustainable, robust, and resilient architecture calls for new levels
of precision while facilitating deliberate experimentation, the integration of unfamiliar

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Gengnagel et al. (Eds.): DMS 2022, Towards Radical Regeneration, pp. 36–45, 2023.
https://doi.org/10.1007/978-3-031-13249-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13249-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-13249-0_4


A Digital, Networked, Adaptive Toolset to Capture and Distribute 37

and rapidly evolving areas of knowledge as well as the rediscovery and cultivation of
old ones, and the navigation of unprecedented complexity in order to arrive at something
simple (Fowles 2021).

This collective learning process is interacting with and accelerating broader trends
that affect not only the architecture, engineering, and construction industry, “AEC”, but
knowledge work in general: 1. The drive to increase efficiencies, 2. The emergence of
new actors and business models, 3. The move away from bespoke services, and, finally,
4. The decomposition and 5. Routinisation of professional work (Susskind Susskind
2015).

This reorganisation of work, combined with the demand to rapidly create and inte-
grate new knowledge calls for a new generation of highly specialised, networked tools
that can be composed in vertically integrated (Fano and Davis 2020), fluid workflows. A
design process that emphasises as result not only the built artefact but also the production
of knowledge of how to improve future iterations of itself can leverage tool making as
a means to store this knowledge.

To designmeans to integrate a plethora of factors, often contradictory, into a coherent
whole. Design problems are wicked problems. They can not be solved linearly, but only
iteratively (Stefanescu 2020). Consequently, design solutions, or partial solutions to a
subset of the problem, are usually approximate solutions. This requires the implementa-
tion of analytics to continuously assess when a proposed solution nears and eventually
passes a minimum threshold to be considered acceptable. To solve a design problem,
teams will draw from a collective body of formalised, implicit, and tacit knowledge and
synthesise it into a proposal. Because design and planning is a highly functionally differ-
entiated discipline, individual learnings run the risk of remaining siloed, especially since
collaborators are spread across organisations.Note that the termorganisation can apply at
various scales here: Firms can be understood to be made up of sufficiently differentiated
sub-organisations, joint ventures in turn also form organisations themselves.

Tools, especially digital tools, encapsulate knowledge and make it accessible to a
broader user base (Witt 2010). Tools have thus the potential to capture and distribute
organisational knowledge. But tools also encroach on the agency of their user. This
happens explicitly, for example when vendors of tools intentionally limit their inter-
operability, as well as implicitly through nudges (Thaler and Sunstein 2008). That’s
why these new tools need to possess certain characteristics: They need to be scrutable,
hackable, and composable (Witt 2010).

2 Methodology

To demonstrate the potential of networked adaptive tools as a means of capturing and
distributing organisational knowledge, a prototype automation platform is developed
and tested following a trigger-action paradigm. As a case study, three automation work-
flows are implemented and their potential to improve planning accuracy and capture and
disseminate organisational knowledge is reflected on.



38 F. Deiters et al.

2.1 Concepts

Speckle. The prototype is implemented using Speckle, a data platform for AEC that
enables sending and receiving data between a variety of authoring applications. Speckle
achieves this by providing plugins, “Connectors”, that translate application specific
model data to a common, highlymalleable data format (Stefanescu 2020). Each update to
a set of data is sent to a Speckle server, along with metadata such as the author, authoring
application, and a message describing the change. This allows collaborators to under-
stand the evolution of a digital model over time. Speckle organises data in streams,
branches, and commits. A stream can hold one or more branches, with each branch
being defined by a series of updates to the data, called “commits”.

Version Control. These features closely mirror those of Version Control Systems used
in software development. Version Control Systems allow multiple collaborators to make
and track changes to a joint codebase, which will usually be hosted on a private server
or popular platforms such as Github.com or Gitlab.com.

Continuous Integration. To minimise the risk and impact of merge conflicts, when
conflicting changes are introduced at the same time, updates should be incremental and
frequent. Modern software development practices leverage automation to facilitate the
Continuous Integration of changes. For example, an automation will check whether new
code adheres to formatting standards before allowing it to bemerged, or it will run a suite
of integration tests to ensure no functionality was accidentally broken with the update.

Continuous Integration is often used alongside Continuous Delivery or Continuous
Deployment which means to continuously compile code into a piece of software, and to
distribute, and / or deploy it automatically. There is substantial overlap between the two
practices which is why one will frequently find both simply referred to as CI/CD.

A CI system will allow to define a set of automations and allow those to be triggered
at specific events, such as when new code is to be integrated. Automations will be
composed of individual actions that are executed sequentially or concurrently (Fig. 1).
The terminology differs between CI platforms, we will use the terms “workflow” and
“action” from here on. CI platforms will provide a set of actions, but also allow the
development of new ones. These can be made available to others, effectively sharing the
knowledge encapsulated in them.

Workflows and triggers will usually be declared by adding configuration files to the
code repository. The fact that workflows can be composed from existing actions and
declared in a simple text file makes it very easy to incrementally adopt CI/CD practices
and it is common for programmers to use them even in small personal projects.

2.2 Speckle CI

We argue that the simplicity of the trigger-action paradigm, together with its incremental
adaptability make a CI-inspired automation platform an ideal candidate to demonstrate
the potential of networked tools in AEC. Built on top of Speckle, being “polyglot” and
itself incrementally adoptable, it constitutes, in our view, a sort of “Goldilocks path”
towards a future of networked, composable tools.



A Digital, Networked, Adaptive Toolset to Capture and Distribute 39

Fig. 1. Continuous Integration systems allow to define automations by composing actions into
workflows, which are then triggered by specific events.

While Speckle CI draws inspiration from establishedCI platforms, key aspects were
adapted toAEC workflows and practitioners. Based on the theory that the adoption of the
automation of higher-level design tasks is often hindered by a lacking user experience
(Heumann and Davis 2019), a particular emphasis was put on making the user interface
as easy to use as possible. For example, the creation of workflows is done entirely via the
user interface as opposed to configuration files in other solutions.While those can encode
very sophisticated workflows, they might be difficult to use for practitioners unfamiliar
with scripting or programming. After weighing the familiarity of visual scripting editors
such asGrasshopper orDynamo, a user interface paradigm inspired by the iOS Shortcuts
app was selected for its simplicity (Fig. 2).

Upon login, a user will be presented with a list of the workflows they have previously
set up (Fig. 3). Workflows will be sorted by the time they were last triggered and will be
displayed along additional information such as whether the last run failed or succeeded,
and the option to edit a workflow or create a new one.

Workflows are created or updated in the workflow editor. To keep the mental model
as lean as possible, Speckle CI matches Speckle’s ontology with a stream as the top
hierarchy. That’s why each workflow is assigned to exactly one stream, while a stream
can have multiple workflows configured for it.

The editor is organised in three sections: Triggers, conditions, and the actions to be
performed. After specifying a name and Speckle stream, users are presented with the
choice to chose specific triggers on that stream, such as when a new commit is created or
deleted, and conditions that will restrict a workflow from being triggered unless they are
met. For example, a user could set a workflow for Stream A to be triggered when a new



40 F. Deiters et al.

Fig. 2. Configuration of a workflow in the CircleCI platform. (left) compared to the simpler
interface of the Shortcuts app on iOS (right) © Circle Internet Services, Inc; Apple Inc.

Fig. 3. The main view of the web app lists all configured workflows at a glance. Icons
communicate the success or failure of the most recent run of a workflow.



A Digital, Networked, Adaptive Toolset to Capture and Distribute 41

Fig. 4. Flow to create a new workflow. Actions are selected from the Actions Store and may offer
additional settings.

commit is created, updated, or deleted, but only when the commit is made to Branch B
and authored by Application C.

A prominent button opens the Actions Store, where the user can pick the individual
actions to compose the workflow from (Fig. 4). Actions will appear in the editor as
a sequence of blocks that may offer additional inputs and configuration options. For
example, the action to commit data to Speckle allows the user to specify a branch.

2.3 Case Studies

Three workflows were implemented to explore the potential of this approach.

1. Carbon Calculator
2. Setback Checker
3. Bin Layout Tool



42 F. Deiters et al.

They were selected because, in the authors’ view, they are representative of the
kind of design challenges that could benefit from such an approach, as well as because
they demonstrate the platform’s capabilities to generate numerical (carbon accounting
reports), spatial and geometric (setback checker), or hybrid (bin layout tool) results.

Each workflow’s setup, triggering, and results were documented in videos, to serve
as a reference for future user testing.

Carbon Calculator. Quantifying and optimising the environmental impact of the built
environment constitutes a relatively new area of expertise for planners. A project’s envi-
ronmental impact should be considered from the earliest design stages (Apellániz 2021).
To test this workflow, a minimal carbon calculator action was developed. Being a proto-
type, it applies the rather simplistic approach of matching a model’s specified materials
to their embodied carbon and returning the tally. While this provides only a heuristic and
does not eliminate the need for more accurate modelling by domain experts, continuous,
immediate feedback about how design changes impact the performance of a proposed
building can help instil an intuitive understanding of how measures relate to outcomes
and encourages precise modelling practices from the get-go.

Setback Checker. A big part of the morphology of the built environment is formed by
building codes. To translate the rules encoded in law into software means to capture the
knowledge necessary to adhere to them. Code compliance becomes thus to an extent
automatically testable.While certainly not every part of the building code can be captured
and tested in this way, we speculate that this can help prevent planning mistakes, direct
planners’ attention to critical areas, and thus increase planning precision. A simple,
visual example of such an “algorithmic” legislation are the setback rules specified in
Berlin’s building code. We developed an action that, given a plot’s perimeter, a building
volume, and adjacent streets and buildings, will return whether or not it violates envelope
restrictions (Fig. 5).

Fig. 5. The setback checker action tests whether a given volume violates envelope restrictions.

Bin Layout Tool. Planning involvesmanymundane, tedious, and time-consuming tasks
that nevertheless require practitioners to draw from their experience. Organisations will
usually develop informal best practices and conventions, and these can often be encoded



A Digital, Networked, Adaptive Toolset to Capture and Distribute 43

(Heumann andDavis 2019). One such example is the configuration of bins for residential
buildings, because it combines hard rules, such as the required number of bins per unit,
with soft, empirical rules, such as their preferred layout. As a third case study, such a tool
was made available as an action in Speckle CI. Provided with an area and the number of
residential units, the action will return whether the required number of bins will fit, and,
if so, a generated layout.

3 Results

The case studies show that the abstractions and paradigms of Continuous Integration
lend themselves well to AEC workflows, although further validation through user testing
and the application in a real-world test-case are still to be carried out. The three case
studies are, in the authors’ view, representative of a whole range of domains where the
application of cloud-based automation can improve planning precision.

To apply the practice of Continuous Integration to AEC, some aspects of the imple-
mentation need to be adapted. The model of a workflow was simplified and all function-
ality was made available via a graphical user interface. We found that the simplicity of
the interface paradigm did not hinder the implementation of our case studies.

While the development of new actions requires some programming expertise and
an understanding of Speckle’s data model, the abstraction of composing actions into
workflows allows for the creation and adaptation of automations by non-expert users.

Because Speckle CI is a web app rather than desktop software, initial setup is easy as
no installation is required. This makes Speckle CI more approachable compared to other
tools such asGrasshopper that are sometimes used to achieve similar goals. Leveraging
Speckle’s authenticationmechanisms lowers the barrier further because users can simply
start to use Speckle CI with their existing Speckle accounts.

Since Speckle CI is a web application, collaboration is also facilitated. Running
automations locally on each staff member’s computer would require their execution
environment to be configured identically. This synchronisation is tedious and error prone.
With Speckle CI, workflows are instead executed on a web server, a kind of “cloud” that
contains the authoritative configuration and delivers reproducible results.

Speckle’swide range of available connectors to other software make it incrementally
adoptable. Accordingly, existing workflows can be incrementally moved to Speckle CI.
This constitutes a key advantage, as the adoption of automation tools is often hindered
by their failure to integrate into existing design workflows (Heumann and Davis 2019).

4 Discussion and Next Steps

The method ultimately requires a renegotiation of the relationship between architects
and their tools. Firms will usually employ teams of computational design specialists to
solve specific problems for one-off projects many times over, even if these problems are
very similar in nature. A platform such as Speckle CI allows them to shift their roles
towards a new kind of toolmaker. It is positioned to herald a new culture of toolmaking
as a means of capturing and developing organisational knowledge.



44 F. Deiters et al.

Developing actions, composable blocks of functionality that can be integrated into
the design process by the members of other teams, allows their expertise to be more
effectively disseminated in the organisation, and, through the adoption of open source
methodologies, even throughout the discipline as a whole. Newly developed actions can
be immediately deployed to a whole range of projects. Their effort scales.

Because their work can be more effectively reused, they can now better justify
applying engineeringpractices to toolmaking (Davis 2013), applying lessons fromdesign
process iterations to improve functionality, thereby improving future iterations of the
design process.

Tool and process share a reciprocal relationship. Actions developed to address a
specific project need become available in future projects to be deployed and built upon.
Their inclusion in a firm’s toolkit will then represent part of its organisational design
expertise and thereforemake the application of this particular approach in future projects
more likely, shaping the organisation’s design culture.

The composition of actions into workflows can be regarded as a form of toolmaking,
too. Hereby, too, is knowledge encoded, although to a lesser extent than by the devel-
opment of new actions. A mechanism to share workflows between projects and users
should be assessed going forward, as this will make the knowledge captured in them
more easily accessible and also improve the user experience of the platform. Such a
shared workflow would be scrutable, and, more importantly, adaptable by other users.

Speckle CI should be regarded as a step towards a future of networked tools and as an
enabler of a new culture of toolmaking.While this work focussed on the appropriateness
and applicability of Continuous Integration to AEC workflows, we suggest that the
obvious next steps will be to perform user-testing, expand the set of actions, investigate
a solid sharing mechanism for workflows, and apply the findings of recent research to
build a more flexible and powerful backend to orchestrate the execution of workflows
(Wanderley Barbosa 2022).

References

Apellániz, D.: A holistic and parametric approach for life cycle assessment in the early design
stages. In: Symposium on Simulation for Architecture and Urban Design SimAUD (2021)

Davis, D.: Modelled on Software Engineering: Flexible Parametric Models in the Practice of
Architecture. RMIT University, Melbourne (2013)

Fano, D., Davis, D.: New Models of Building: The Business of Technology. In: Shelden, D. (ed.)
Architectural Design 90(2), pp. 32–39. John Wiley & Sons Inc, Hoboken, NJ (2020)

Fowles, E.: Make low-tech our mantra. In: RIBA journal: the journal of the Royal Institute of
British Architects, August 2021, pp. 36–40. RIBA, London (2021)

Heumann, A., Davis, D.: Humanizing architectural automation: a case study in office layouts. In:
Gengnagel, C., et al., (eds.) Proceedings of the Design Modelling Symposium, Berlin 2019.
Springer, Cham, Switzerland (2019)

Stefanescu, D.: Alternate Means of Digital Design Communication. UCL, London (2020)
Susskind, R., Susskind, D.: The Future of Professions. How TechnologyWill Transform theWork

of Human Experts. Oxford University Press, Oxford (2015)
Thaler, R.H., Sunstein, C.R.: Nudge. Improving Decisions About Health, Wealth, and Happiness.

Yale University Press, New Haven & London (2008)



A Digital, Networked, Adaptive Toolset to Capture and Distribute 45

Wanderley Barbosa, V.: Computational Design Workflows Orchestration Framework. DTU,
Kongens Lyngby (2022)

Witt, A.J.: A machine epistemology in architecture. Encapsulated knowledge and the instrumen-
tation of design. In: Sowa, A., et al., (eds.) Candide. Journal for Architectural Knowledge no.
03 (December), pp. 37–88. Hantje Cantz, Ostfildern (2010)


	A Digital, Networked, Adaptive Toolset to Capture and Distribute Organisational Knowledge Speckle CI
	1 Introduction
	2 Methodology
	2.1 Concepts
	2.2 Speckle CI
	2.3 Case Studies

	3 Results
	4 Discussion and Next Steps
	References




