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Abstract. This paper presents a strategy to help designers confronted with a mas-
sive flow of new technologies, exhaustive regulations, and design requirements.
It summarises the existing proposals for AI-driven design development strategies,
and lists frequent pitfalls like the focus on local optima or the lack of backpropa-
gation. It identifies the main source of bias in generative design as a lack of detail
and contextual complexity. The paper introduces an augmented AI process for
preparing real-world data and its meta information to be used in design processes
(BIM, GIS, external statistics including information such as rental price or spatial
cognition). This evidence-based approach for deriving verifiable fitness functions
presents a way to create holistic designs that reflect the complexity of today’s
built environment by using a posteriori and unbiased statistical models to sub-
stitute existing speculative categorisations. Hence, it allows avoiding naïve and
overfitted solutions, and it inverts the dominant paradigm of automated generation
and manual curation.

1 Old Wine in New Bottles: Design Development in the AI Era

Thomas Kuhn1 is frequently cited on the effects of a Human-in-the-loop (HIL) app-
roach to cover the complexity of true data-driven design creation (Carrier 2006). His
research highlights the importance of subjective elements in the comparative evaluation
of theories as well as its negative effects. According to him, the accumulation of failures
in processes with significant subjective contributions can be attributed to the lack of
empirical evidence and the resulting difficulty of clear decision-making in such matters.

This unparalleled level of complexity (Vrachliotis 2012, p. 163) comes with a high
degree of responsibility and unavoidable cognitive overload (Matthews et al. 2020),
while existing problem-solving strategies reveal themselves as inherently flawed: they
are mainly based on human experience which is gathered over time. This process is

1 According to Thomas Kuhn, competing paradigms are frequently incommensurable. That is,
they are competing and irreconcilable accounts of reality. Thus, our comprehension of sci-
ence can never rely wholly upon “objectivity” alone. Science must account for subjective
perspectives as well, since all objective conclusions are ultimately founded upon the subjective
conditioning/worldview of its researchers and participants.
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based on the assumption that environmental requirements are not changing too fast –
an assumption which obviously outlived its validity (Alexander 1978; Joedicke 1976;
Stiny and Mitchell 1978; Vitruv 2015). As a result, designs struggle with an increas-
ing imbalance between workload and creative freedom while still needing to adapt to
technological requirements rather than the other way around. This imbalance is further
nourished by the fact that the real estate sector is one of the least digital sectors in west-
ern economy (Kane et al. 2015). Therefore, coordination of projects always involves
considerable additional efforts in communication. So, how can one reduce the cognitive
overload for designers while empowering them with evidence-based knowledge to help
them design better?

1.1 Current AI-Driven Design Development Strategies

Currently, the dominant paradigm in computer-aided architectural design (CAAD) is to
improve the design space exploration of generative designs (Hester et al. 2018; Reisinger
et al. 2021). To reduce the cognitive load many researchers try to arrange the design
space in a two-dimensional grid. Unsupervised clustering or self-organising maps are
used frequently, as are the concepts of Pareto fronts. Because this process is complex
and difficult, ready-made “Volume Solvers” are increasingly popular. Dominant players
(like spacemaker, skyline, testfit, architechtures [sic!], proving ground, engrain, archistar,
sitesolve, metabuild, digital blue foam, etc.) provide Pareto fronts designers can pick
from. This comparative methodology is a common tool to iteratively improve competing
designs.

Fig. 1. Stochastic gradient descent (SDG). Image courtesy by Kleinberg et al. for an alternative
view: When does SGD escape local minima? ICML 2018/02/17.
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While architectural design is often represented as a linear optimisation process (Bre
et al. 2016), it is not. Architectural design is more related to a stochastic gradient descent
process [Fig. 1] in a hyper-dimensional solution space (De et al. 2020). Every design is a
sample in this solution space, and the level of detail is the amount of dimensions to probe
in this space. Of course both, the amount of samples and of dimensions, correlate with
the probability of finding the global optimum. The hypothesis is that algorithms can be
used to generate an abundance of geometric variants which are derived from gradually
changing the underlying numeric input parameters. While the number of versions gen-
erated this way indeed might be infinite, they do not cover the whole design space but
merely a subset which is reflecting the specified input-output mapping. So rather than
approaching a local or global optimum of the solution space by iterative re-design, as has
been done so far, now the generative design methods predefine a solution space which
can be searched instead. Such searches are mostly implemented as fitness functions for
multi-criteria optimisations (MCO) and reproduce the best set of input parameters for the
given parametric design. Often these results get falsely interpreted as global optima for
the given design task but given the limitations of the investigated solution space (which
can be read as bias) these claims are clearly exaggerated. If one only analyses a single
subsection of the solution space, albeit very thoroughly (which is exactly what is done
when using a simplified shape grammar approach), one will most likely not find a global
optimum. To mitigate the pitfalls of the local optima, domain experts have already come
up with their own “stochastic” process: the design competitions where topologically
very different setups can be compared.

Additionally, the synthesis-analysis loop of design is strongly affected by the analysis
toolswhere errors in the analysis are typically propagated into the design. And prominent
MCO strategies for building layouts (Sangani 2021) lack both scope of analysis and
scope of design space. The oversimplifications they are built upon introduce additional
bias and reduce the necessary design diversity even further. Most current MCO tools
used in design development are not leveraging true alternative concepts. Also, they strip
designers of both creative and interpretive influence. MCO are trojan horses claiming
to reduce the HIL issue just by adding new bias. This is caused by insufficient linking
of complex subjective parameters to the geometry of the design studies at the very
beginning. Current volume optimisers are merely overfitting without taking necessary
information into consideration. But designers should be able to comparatively evaluate
the alternative theories with as little bias as possible. Simply put, the machine should
rank or select, and the architect should design rather than the other way around. This
challenges current strategies, but it is much more in line with the historic developments
of other engineering disciplines.
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1.2 Issues with False Design Automation

This false understanding of better design development through automation causes many
issues:

a) Focus on the early stage. Currently, most effort is put on early-stage design and
analysis (e.g., spacemaker).

Fig. 2. Level of development in decisionmaking. This conceptual illustration highlights the effect
of comparing probability distributions of different standard deviations. This is due to the fact that
in low levels of detail the final performance for each simulation dimension can only be predicted
with low accuracy, while with higher levels of detail the accuracy of the performance prediction
with simulation increases. The overlapping areas are those, where it cannot be decided which of
the designs is finally going to perform “better”. This uncertainty area (the overlap) is smaller, the
higher the level of detail of the underlying model, which of course is limited according to the
MacLeamy Curve. Image courtesy by the author.

TheMacLeamyCurve [Fig. 3] tells us that changes applied soon cost lessmoney.
The lower the level of development (LOD) of a design, the cheaper it is to apply
changes. [Fig. 2].
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Fig. 3. MacLeamy Curve. Image courtesy by the author.

But low LOD also means there is no clear distinction between alternate designs.
On the contrary – selecting designs based on low LODs is prone to error because too
much can change [Fig. 2]. Any simulation based on these low granularities tends to
be misleading. Additionally, many simulations do not consider enough contextual
information like the built environment.

b) Lack of holistic analysis. The majority of simulations in architecture come with
interfaces to the frequently used design environments, middleware like Speckle
or plugin ecosystems. This way, simulating many physical or geometrical aspects
of designs becomes a commodity. And all these deterministic simulations share a
materialistic origin – their scope hardly contains social or psychological evaluations
(complex relationships between architecture and humans like rental prices or social
and environmental impacts). The disregard of such factors leads to paradoxic results:
even the most energy-efficient building is hardly sustainable, if it is vacant for years
because the local market needs were not met properly. This perfectly illustrates
Kuhn’s initiallymentioned critiquewhen subjective, difficult-to-measure parameters
are ignored (Carrier 2006). Clearly this drift towards materialistic simulations has
a reason: psychological or social implications are much harder to measure. At least
with a priori models (Halevy et al. 2009).
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Only data-intensive statistical modelling of contextual features has the potential
to reduce bias with a posteriori models to predict such psychological and social
effects. This mitigates the negative effects of incomplete evaluation scopes the
domain still struggles with. On the other hand, ignoring complex data results in
misleading optimisations. So the lack of a large data set for holistic modelling is
evident.

c) Feature weights in multi-dimensional space. Not all features are scaled and dis-
tributed equally. This can cause irregularities in analysis and design. To identify
strengths and weaknesses, it is required to normalise the parameters of a dataset.
Otherwise, features with outliers are overrepresented. Such a normalisation can only
be done if a sufficient amount of real-world data is provided for benchmarking.

It can thus be stated that the Pareto fronts generated by current generative design
tools are far from optimal, even misleading at worst. To mitigate this, focusing on
more details, a larger scope, and normalised scales is recommended. The method we
propose allows for improving these parameters at a novel level of cost-effectiveness.

2 Method

Two extremes of the application at hand can be illustrated: either one creates evidence-
based design processes which empower designers and strengthen the creativity of the
designers or one is reducing their roles to becomemere curators of deterministic solution
sets. The resulting hypothesis is that offering an HIL-friendly AI solution could help
designers to regain decision power. Also in the context of explainable and collaborative
processes AI augmentation shows potential for efficiency and transparency increase in
data homogenisation compared to black box ML projects. In these regards, the data
pipeline developed is able to support real estate decision makers with validated and
reliable benchmarks. Methodologically, these steps are the basis for better data in an
automated design development:

a) Homogenisation process via augmented AI process. The most important step is to
convert any plan from any file (including 2D raster and vector files) into structured
BIM data (IFC 4.0 LOD 200) with an economically efficient augmented AI process.
A HIL-strategy is commonly used in industrial applications to improve the accuracy
of object recognition when confidence levels of ML predictors are low. At its core,
this process is focusing on the validation of the geometrical informationwithmultiple
sources of truth, like provided room lists or governmental GIS data regarding the
building hull geometry. The resulting IFC files of the reconstructed Digital Twins
serve as a validated single source of truth (SOT) for the subsequent analysis. [Fig. 4].

Objects and areas of these IFC files are not only labelled and attributed accord-
ing to widespread standards, they are modelled with similar generative processes.
This homogeneous data structure is important to avoid geometric/semantic bias in
subsequent statistical analysis.
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Fig. 4. IFC file rendered in autodesk online viewer. Image courtesy by Archilyse.

b) Data enrichment.Once the validated digital twin of a building is created, it has to be
positioned within a GIS model of the environmental geometry. [Fig. 5]. This way,
semantically annotated geometry containing building hulls, topographic informa-
tion, and additional map layers of a 20 km x 20 km area is fused with the annotated
geometry of the digital twin located at its centroid. This contextual information of
the built environment is gathered from commercially available data sources, open
government data sources and open-source repositories. The resulting data has a high
level of detail regarding interior and exterior geometry. This is a prerequisite for
detailed spatial analysis – and mandatory if bias known from purely building-hull
driven models needs to be avoided.

c) Data densification. After generating a comprehensive semantically annotated geo-
metric representation of the digital twin and its environment, different simulations to
calculate spatial qualities are applied. [Fig. 6]. Using a hex-grid in a 25 cm resolution
to define the location of the observation points has shown a high number of benefits.
For every point the following simulations are calculated: semantic spherical view-
shed (how much of which label can be seen?), 3D Isovist, traffic noise (at different
times of the day), natural light (including atmospheric illumination and direct sun-
light every 2 h throughout the year), accessibility (multiple centrality metrics like
betweenness or closeness). In addition to these 50 simulations per observation point,
25 discrete features for every room are computed (like area type, net area, perimeter
length, largest inscribed rectangle, furnishability, etc.) and additional 68 features per
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Fig. 5. Screenshot showing the topography of Switzerland, using open-gov geo data. Image
courtesy of SwissTopo.

floor level (projected wall areas, number of doors, surface of bathroom walls, etc.).
For individual rooms it has proven to be useful to also aggregate the values of the
observation points into seven figure summaries (STD, Min., Mean, Max., P20, P50,
P80). Covering a multitude of simulations allows for reducing the bias in the data
set drastically.

Fig. 6. High-resolution heatmap. Image courtesy by Archilyse.
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d) Data normalisation (benchmarking). Having access to a large data set of built
apartments (more than 7 million m2), this information is used to normalise the
results of the simulations. This way, all the values aggregated per room have been
converted from raw values into percentiles. Resulting in values between 0 and 1,
indicating how many percent of the data set have lower or higher values regarding
the respective figure. This allows for intuitive outlier detection (everything smaller
than 0.1 or larger 0.9), interpretation of significant strengths and weaknesses and, of
course, identification of average values close to the expectation (median). [Fig. 7].

Fig. 7. The minimal skyview of all private outside areas of two competing designs (blue and
orange). On the left in steradian, and on the right as their respective percentile rank. Image
courtesy by Archilyse.

3 Interpolation/Application

The data generated can be used in two ways: Either directly as features for established
processes (like buildingmasses for cost estimation), or via supervised learning to enhance
statistical models. In both cases, the processes benefit from a standardised data input
and normalised feature vectors.

a) Estimation of costs. Applied to building cost estimations (CE), the provided data
can be used to increase speed and precision of the process. Building masses are
labelled and constructed in a homogeneous way, so comparing different architec-
tural designs is not impacted by the different drawing styles of the different architects.
Usually, BIM-based CE suffers from labelling mistakes caused by the complex UX
of off-the-shelf CAAD environments. Consequently, the costly and tedious process
of quality control for building mass extractions can be replaced by the presented
method. Additionally, the level of detail and feature aggregation (e.g., m2 of bath-
room surfaces for the cost of tilings) is a magnitude higher than the usually used
purely m3-based CE approaches.
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b) Estimation of revenue. State-of-the-art methods for automated valuation models
(AVM) are based on some flavour of hedonic regression. Traditionally, categorical
input related to certain architectural qualities is provided on a 5-point scale (low,
below average, average, above average, high). Both the number of features as well
as their resolution are limited to human perception. The presented method ensures
a holistic scope of highly accurate features regarding spatial qualities that are out-
performing both precision and accuracy of existing manual processes by far. This
drastically improved dataspace has reduced noise and higher density levels. AVMs
based on these provided features have shown a reduction in the respective prediction
error by more than 50%.

c) Estimation of sustainability. For questions related to sustainability, it is important
to have accurate buildingmasses and areas, but it is evenmore important to have data
about physical exposure of the individual areas. Calculating the grey energy needed
for a design is strongly correlated with the amount of materials used. And using
digital twins for thermal analysis is superior to a building-hull-only approach since
the internal arrangement is impacting the overall thermal behaviour. Additionally,
having information about solar exposure of the different rooms can provide further
insight on ways to optimise heating and artificial light. And the generated solar
profile of the rooms can be used for predictive heating control too. Furthermore,
vacancy rates are a waste of grey energy. So, reducing vacancy is improving the
energy footprint of buildings drastically. By using real-life energy consumption of
buildings and the digital twin strategy presented above, some stakeholders have even
been able to successfully deploy statistical models to derive the thermal resistance
coefficients of the different building materials – and hence the proper thermal model
of the building.

d) Analysis for judging competitions. For choosing from a set of competing
designs, especially in real-world scenarios with high investment risks, stakehold-
ers involved tend to hire a high number of experts for design quality assessment.
The provided features, including meta-models like cost and revenue estimations,
help to drastically reduce the communication overhead and to increase both speed
and accuracy of this process. Detailed comparative analysis is significantly more
objective when compared to its conventional counterpart. Reducing the bias in this
step is directly reducing the planning and decision-making risk involved otherwise.

e) Aggregating into fitness functions for better comparative analysis.When applied
in generative design loops, the generated benchmarks and simulation results provide
amuchmore accurate indication of architectural qualities for fitness functions.Multi-
criteria optimization (MCO) using the provided benchmarks and meta-models can
generate significantly improved design proposals.

4 Conclusion

A process for built and to-be-built architecture was presented that allows for drasti-
cally increased accuracy in related decision-making. A novel approach was presented
to include features previously subjectively decided upon. The dominant paradigm of
partial optimisation was challenged. The dominant paradigm of automated generation
and manual curation was inverted.
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