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Abstract. We present a design approach that uses machine learning to enhance
architect’s design experience. Nowadays, architects and engineers use software for
parametric design to generate, simulate, and evaluate multiple design instances.
In this paper, we propose a conditional autoencoder that reverses the parametric
modelling process and instead allows architects to define the desired properties
in their designs and obtain multiple predictions of designs that fulfil them. The
results found by the encoder can oftentimes go beyond what the user expected
and thus augment human’s understanding of the design task and stimulate design
exploration. Our tool also allows the architect to under-define the desired proper-
ties to give additional flexibility to finding interesting solutions. We specifically
illustrate this tool for architectural design of a multi-storey structure that has been
built in 2022 in Zug, Switzerland.

1 Introduction

1.1 Motivation

Design tasks in architecture, engineering, and construction often entail many parame-
ters, multiple constraints, and contradicting objectives. In a traditional design process,
the architects rely on experience to craft a handful of candidate solutions or can use
parametric modelling tools to easily create many variations of the design. However, to
find designs that fulfil predefined performance requirements, the user needs to find the
right combination of the parameters, which can be difficult and time-consuming.

We aim to invert the design paradigm by using machine learning, so that the user
can specify the required attributes and in return be presented with different designs
that fulfil them (Fig. 1, bottom). The purpose of our approach is not optimization but
design exploration. Since the mapping from the geometric design parameters to the
desired performance attributes is not injective, theremay exist many designs with similar
performance. This way, we expect the machine learning tool to augment the early design
process, and enhance the architect’s experience through a fast and intuitive exploration
of the solution space.
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Fig. 1. In the parametric design process (top), the designer first chooses input parameters, creates
a design instance, and simulates it (e.g. structure, solar gains) to evaluate its performance. Our
proposed paradigm inverts this process (bottom).

Fig. 2. The Semiramis project: a) setout and geometry constructed from design parameters W,
b) analysis to obtain performance attributes X, c) the final design visualized in context and scale.

1.2 Case Study: Semiramis

Although the presented approach is generalizable to any design, to demonstrate this idea
we apply it in a real architectural project. Our case study is a multi-storey structure of
stacked plant platforms (an urban vertical garden project called Semiramis (Gramazio
Kohler Research 2022), see Fig. 2c), that has been installed in 2022 in Zug, Switzer-
land. The particular design problem we address is to determine the outline curves of
these platforms so that the total planting area and exposure to sun and rainfall satisfy
requirements defined by the client and the landscape architect.

The five bowl-shaped platforms are placed at fixed heights and supported by columns
on a triangular grid of 11 points. To design the platforms, we parametrize their outline
shapes using a signed distance function that draws a smooth blend around the support
points of each platform given the specified radii (see Fig. 2a). Each platform is supported
by 3 to 5 columns in one of the ten hand-picked base shapes depicted in Fig. 3. All the
possible positions, rotations and reflections of these base shapes within the given grid
result in 115 constellations, i.e. subsets of the grid points that define support points for
a platform. In summary, the design parameters are, for each platform: the choice of
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a constellation and the corresponding radii. The performance attributes are: the area
of each platform, the combined sun occlusion and the combined rain occlusion for all
platforms.

Fig. 3. Ten base constellation schemes. By including different positions and orientations of them
within the 11-point grid, there are overall 115 possible constellations to choose from for each
platform.

1.3 Proposed Approach

We set up a simple parametric design+analysis (DA) model that creates and analyses
design instances from given input parameters. To generate designs that fulfill certain
properties, we propose to use a conditional autoencoder (AE) (Sohn et al. 2015). This
AE model is trained using a dataset consisting of tuples of design parameters and the
associated performance attributes, obtained using the DA model. During training, in
the latent space the performance measures are regressed together with the estimated
latent variables to be able to propose multiple designs. Once the model is trained, the
encoder emulates the parametric model, and the decoder maps from requested perfor-
mance attributes to suitable designs, i.e. sets of design parameters. This tool enables
the architect to explore different equally performing solutions to select their preferred
design.When under-specifying the performancemeasures, the decoder can exploremore
freely the potential solutions.

2 Related Work

In architectural design and engineering, machine learning (ML) techniques are rapidly
gaining interest in two main applications: for generative design and for design optimiza-
tion. In the latter case,MLmethods promise to solvemany complex, black-box problems
(Costa and Nannicini 2018) where gradient information is unavailable or impractical to
obtain. Prominent examples employ evolutionary algorithms (Hornby et al. 2006), or
convolutional neural networks (Takahashi et al. 2019), (Banga et al. 2018). In generative
design, which we address in this paper, the role of ML methods is to help create many
variations of designs. Models based on GAN or autoencoder architectures show consid-
erable potential for this application, by encoding high-dimensional design variables in a
low-dimensional design space. Notable work in this field includes generation of 2D floor
plans (Hu et al. 2020; Chaillou 2020; Nauata et al. 2020), 3D shapes of family houses
(Steinfeld et al. 2019) and of other building typologies (Miguel et al. 2019), or design
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of automotive parts (Oh et al. 2019). Other works provide general methodologies that
allow encoding varied objects (Talton et al., 2012; Mo et al. 2019), using a hierarchy
of the constituent parts. A common challenge in these applications is the parametriza-
tion/representation of the design, which impacts the flexibility of the design process and
the quality of the solution (Brown and Mueller 2019).

Against this background, our method allows tailoring the trainable variables to the
specific design question, and generating new designswith the same quality as those in the
dataset. Hence, our approach can be applied to different design problems by adapting the
type and dimensions of input parameters and of performance attributes. And finally, the
user receives not one but multiple solutions that approximate the desired performance.

3 Methods

3.1 Implemented Solution

Wechoose a conditional autoencoder (AE) (Sohn et al. 2015) neural network architecture
because, by having as inputs the design parametersW, we can enforce some performance
attributes X in the hidden layer, and also the reconstruction at the output (Fig. 4a). After
training, the decoder allows to, given some desired performance attributes Xd, generate
new sets of design parameters Wd (Fig. 4b).

The design parameters Wj for each platform j are: the constellation defining the
support points, and a radius for each grid point (see 1.2). The constellations are encoded
as a C-dimensional one-hot vector WC

j (C = 115). The radii are represented in an R-

dimensional vectorWR
j (R= 11)with non-negative real values for supporting grid points

and otherwise zero. Thus, 630 variables as input W for P = 5 platforms:

W= [WC
1 , . . . ,WC

P ,WR
1 , . . . ,WR

P ]
In the latent space we have the following. X is a D = 7 dimensional vector com-

prising the performance attributes (the surface area of each platform, and the sun and
rain occlusions). Z, a DL-dimensional latent vector, encodes the input information, and
allows during the generation phase to explore different solutions given someperformance
attributes.

Fig. 4. In (a), a schematic of the architecture, with both Z and X in the latent space. In (b), the
use of the trained encoder and decoder for the generation of new designsWd.
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Further, W̃ and X̃ refer to the output during training of decoder and encoder respec-
tively, that may differ from the fed training tuples W and X. During generative design,
Xd are the performance attributes values requested for the new designs Wd.

3.2 Model Architecture and Training

The specific layers that comprise the neural network, dimensions used, and losses, are
depicted in Fig. 5. For each one-hot vector WC

j we use different softmax blocks, and a

sigmoid block for the output corresponding to the radiiWR. The losses on Z are regular-
ization terms to enforce zero-mean and unit-variance. Each loss is weighted differently
when computing the total loss.

Once the model is trained, all W in the training set are passed through the encoder.
Given that X̃ and Z in the hidden layer are approximately Gaussian, we model their joint
distribution as a multivariate Gaussian with zero-mean and covariance matrix �X̃Z, also
beneficial for sampling purposes.

Fig. 5. Architecture of the AE model and losses.
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3.3 Generative Design

To generate new designs, the designer specifies the desired performance attributes Xd,
or a subset Xd

sub (for a more flexible exploration of the solution space), and the number
Nd of requested solutions. Now, the model can provide precise designs because:

1. It can sample Z (or the non-specified performance attributes and Z), using the distri-
bution of X̃ and Z (Sect. 3.2). Sampling and evaluation can be run in parallel, hence
are computationally light processes, enabling the quick generation of any number of
designs (decoder in Fig. 4b).

2. The trained encoder acts as a surrogate model of the DA model and can be used to
quickly estimate the performance attributes X̃d for all generated designs (encoder in
Fig. 4b).

Hence, to further improve the performance of the generated designs, our strategy is
to internally generate 100x more solutions and then use the encoder to choose the best
Nd where X̃d is closest to Xd (or Xd

sub). More details in Fig. 6.

Fig. 6. Algorithm for prediction of new designs using the AE model
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4 Evaluation

To evaluate the AE model we use the following sets of performance attributes (as
observed in Fig. 4b): those requested by the user (Xd), and the ones predicted by the
encoder (X̃d) and calculated through the DA model (XDA) for some generated designs
Wd. For attribute i we then calculate the design error as εDi = ∣

∣XDA
i − Xd

i

∣
∣, and the

model error as εMod
i =

∣
∣
∣XDA

i − X̃d
i

∣
∣
∣.

4.1 Novelty of New Designs

To test the ability of the model to generate novel designs (never seen during training),
we request 50 000 designs for a given Xd, and select the best 100, i.e. with X̃d closest to
Xd. The values chosen for Xd are close to the mean of the distribution, which facilitates
finding precise designs also in the training set. Then, we select the best 100 samples
from the training set, i.e. closest to Xd.

In Fig. 7 we depict the histograms of the average error distributions. For the designs
generated through the AE model, we compute the design error (black) and the error
∣
∣
∣Xd

i − X̃d
i

∣
∣
∣ (blue). Both are more shifted to the left, i.e. towards smaller errors, compared

to the error for the designs drawn from the training set (red). This means the AE model
delivers designs closer to the request than when selecting from the training set, which
demonstrates the generation of novel, and more accurate, designs. This is exploited
further thanks to the model ability to generate more designs and return the N best ones.

Fig. 7. Errors’ distribution for generated designs and for samples from the training set.

4.2 Exploration of Design Space

By interrogating the AE model, the designer can understand the space of solutions: con-
straints, correlations, feasibility, etc. We illustrate this through seven different requests
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Xd of rain occlusion and total area (red dots in Fig. 8). For each, we randomly pick
three designs from the best 1% out of 1 000, and plot XDA (black diamonds) and the
corresponding design errors (black line).

The designs generated for requests B, C and E approximate accurately the intended
values, as they fall in an area where the model has observed more training samples.
Conversely, the large error for designs associated to G suggests that such request is
unachievable: low rain occlusion (scattered platforms) and large total area (big platforms
stacked vertically) are clearly contradictory requirements.

For requests A, D and F, in areas with few training samples (<5), the AE model
was still able to discover new feasible and accurate solutions. In Fig. 9 we present the
richness of proposed solutions by showing 10 exemplary designs for each request.

4.3 Assessment of Model Performance

The validation is performed by assessing howwell generated designsmatch the requested
performance attributes, for their full distribution. For each performance attribute, its
distribution is split into bins, and for each we request 1 000 designs.

This allows calculating XDA
i and εDi for each sample, leading to a mean design error

per bin. Figure 10 shows these errors when requesting only one performance attribute
(a, b) and two simultaneously (c, d).

Fig. 8. Design errors for rain occlusion and total area, points A–G, and the distribution of training
samples valuesX (grey heat map). Out of the best 1% designs provided for each request, we depict
3, randomly selected.

For the rain occlusion, the design error is smaller for performance values for which
the model observed more data (Fig. 10a). For the total area attribute (Fig. 10b), however,
the error increases as the attribute values grow – the errors per platform accumulate.
Nevertheless, both cases lead to accurate designs for the best 10% of the samples per
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bin:<2 pp for the rain occlusion and<5 m2 for total area, for almost all the distribution.
Studying multiple performance values allows to detect areas where the attributes’ corre-
lations lead to unfeasible requests, e.g. higher error in bottom-right corner in Fig. 10c–d.
Besides, it also helps discovering areas that intuitively seem unfeasible, but where the
AE model can still generate accurate designs (e.g. <5 pp for a high rain occlusion of
64% and much lower sun occlusion of 21.7%, as observed in Fig. 10c–d).

The trained encoder has an important role as surrogatemodel: to perform the selection
of the best designs, and to allow an agile and time-efficient exploration of the solution
space. In Fig. 10a–b we additionally plot the model error (red dashed-line). In both
cases its value is small (∼1 pp and 1 m2 respectively). This helps concluding that the

Fig. 9. Exemplary designs for seven different requests of rain occlusion and total area in
perspective and top view.
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encoder provides on average predictions X̃d similar to those calculated in the DAmodel,
verifying its validity for the selection the best designs.

5 Application in Architectural Design

5.1 Design Workflow

The overall designworkflowusing the proposed approach consists of the following steps:
1) set up the project- specific parametric design+analysis (DA) model, 2) generate the
dataset, 3) train theAEmodel, and finally 4) deploy the trainedmodel to explore similarly
performing design options, as explained in 3.3. The DA model can be used three-fold:
a) to create an instance of the design for input parametersW given explicitly by the user
(optional), b) to generate the dataset using input parametersW sampled randomly in step
2, and c) to construct and analyse design instances from design parametersWd predicted
by the AE model for the aforementioned design exploration in step 4 (see Fig. 11).

Fig. 10. In (a) and (b), average design and model errors. For a simultaneous request of rain and
sun occlusion, rain (c) and sun (d) design errors for the best 10% designs. The isocurves depict
the distribution in X of rain and sun occlusion.

5.2 Implementation

In the presented case study, the project-specific DA model was built using Grasshopper
(McNeel and Rutten, 2010) and GhPython. The dataset D = {W,X} consisting of 470
000 random designs was split into a training (90% of samples) and a validation set. The
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latter is used for hyperparameters’ tuning of the weighting terms and the learning rate
using GPyOpt (The GPyOpt authors 2016), process that took approximately 72 h on a
machine with a single GPU (Tesla P100). The AE model, implemented using PyTorch
(Paszke et al. 2019), is finally trained for 200 epochs with a batch size of 1024, using
Adam optimizer with default values. The script for the rollout of the trained model runs
as a server outside of the Rhino environment and communicates with the DA model in
Grasshopper over a http protocol1. The requests are processed quickly, e.g. returning
100 design within <5 s.

Fig. 11. The overall proposed workflow using the parametric design+analysis (DA) model and
the autoencoder (AE) model. The pawn symbol indicates user input.

5.3 Application in the Case Study

The implemented model was used by an architect, who was not involved in the devel-
opment of the presented tool, in an early design stage of the project. By interacting with
it, the initial target performance values from the project brief were revised, as well as
observed that sun occlusion is usually sufficiently satisfied and can be omitted in the
request. For the selection of the final design, the architect requested 100 solutions, from
which they discarded designs unsuitable according to further criteria not considered
in the DA model, and finally chose the winning design based on other values such as
aesthetics.

5.4 Observations

We observed that the solutions proposed by the autoencoder are very versatile, both
geometrically (as exemplified by a selection in Fig. 12), and in terms of strategies to
accomplish the requested performance, some of which the architect did not intuitively
anticipate. For example, the autoencoder “discovered” that a needed percentage of rain-
exposed areas can be achieved by having large platforms at the top and very small ones
at the bottom (Fig. 13). Another observation was that requesting a small total area with
low occlusions will result in small platforms spread far apart (compare designs A and F

1 Video demonstrating the design exploration process here.
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in Fig. 9). In both cases such solutions might be unfavourable, e.g. for structural reasons,
and to curb the first effect, the user can opt to explicitly request a small area for the top
platform. Overall, such findings help the designer understand the solution space and how
the performance values translate into geometries.

6 Discussion and Outlook

We observed that the AE model undoubtedly can present many versatile solutions, and
that this variety can give valuable insights that enhance the architect’s understanding of
the design task. Additionally, the analysis of the dataset can assist the architect in setting
up and revising the DA model, e.g. by revealing hidden correlations.

Fig. 12. Different geometries generated from design parameters produced by the AE model, all
for the same requested performance attributes.

large 
&

exposed

small 
&

occluded

requested
small size

(a) (b)

Fig. 13. Example of a strategy found by the AE model to easily achieve a large area exposed to
rain though a very large top platform (a). The user can counteract it by requesting explicitly a
small top platform (b). Both designs have the same total area and rain occlusion.
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Throughout the pipeline, from the way the DA model is implemented to the human
exploration and the AE methodology, there are biases. To understand them better, the
future work could conduct studies on the data diversity during generation, biases on
the encoding process, etc. Nonetheless, we propose a human-in-the-loop interactive
approach as we believe is the best way to tackle these biases. By exploring the solutions,
the designer can learn from them, tune the parameters accordingly, and finally understand
the implicit biases and adjust to them.

For a widespread adoption, the methodology should allow a seamless and intuitive
interaction. In our proof-of- concept, the trainedmodel returns up to 100 designs within a
few seconds, making it fairly interactive, and enabling a deep and exhaustive exploration
of possible solutions.

In futurework,we aim to generalize the tool to not only accept vectorial inputs, but all
type of data presentations (graphs, images, etc.). This will require using alternative deep
learning architectures, such as convolutional neural networks. Besides, other generative
models, based on GANs or variational AE, will be implemented and tested on similar
use cases.
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