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Abstract. Compositional synthesis relies on the discovery of assump-
tions, i.e., restrictions on the behavior of the remainder of the system
that allow a component to realize its specification. In order to avoid los-
ing valid solutions, these assumptions should be necessary conditions for
realizability. However, because there are typically many different behav-
iors that realize the same specification, necessary behavioral restrictions
often do not exist. In this paper, we introduce a new class of assumptions
for compositional synthesis, which we call information flow assumptions.
Such assumptions capture an essential aspect of distributed computing,
because components often need to act upon information that is available
only in other components. The presence of a certain flow of information
is therefore often a necessary requirement, while the actual behavior
that establishes the information flow is unconstrained. In contrast to
behavioral assumptions, which are properties of individual computation
traces, information flow assumptions are hyperproperties, i.e., properties
of sets of traces. We present a method for the automatic derivation of
information-flow assumptions from a temporal logic specification of the
system. We then provide a technique for the automatic synthesis of com-
ponent implementations based on information flow assumptions. This
provides a new compositional approach to the synthesis of distributed
systems. We report on encouraging first experiments with the approach,
carried out with the BoSyHyper synthesis tool.

1 Introduction

In distributed synthesis, we are interested in the automatic translation of a formal
specification of a distributed system’s desired behavior into an implementation
that satisfies the specification [22]. What makes distributed synthesis far more
interesting than the standard synthesis of reactive systems, but also more chal-
lenging, is that the result consists of a set of implementations of subsystems,
each of which operates based only on partial knowledge of the global system
state. While algorithms for distributed synthesis have been studied since the
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1990s [10,18,22], their high complexity has resulted in applications of distributed
synthesis being, so far, very limited.

One of the most promising approaches to making distributed synthesis more
scalable is compositional synthesis [7,9,14,19,23]. The compositional synthesis of
a distributed system with two processes, p and q, avoids the construction of the
product of p and q and instead focuses on one process at a time. Typically, it is
impossible to realize one process without making certain assumptions about the
other process. Compositional synthesis therefore critically depends on finding
the assumption that p must make about q, and vice versa: once the assump-
tions are known, one can build each individual process, relying on the fact that
the assumption will be satisfied by the synthesized implementation of the other
process. Ideally, the assumptions should be both sufficient (i.e., the processes
are realizable under the assumptions) and necessary (i.e., any implementation
that satisfies the specification would also satisfy the assumptions). Without suffi-
ciency, the synthesis cannot find a compositional solution; without necessity, the
synthesis loses valid solutions. While sufficiency is obviously checked as part of
the synthesis process, it is often impossible to find necessary conditions, because
the specifications can be realized by many different behaviors. Any concrete
implementation would lead to a specific assumption; however, this implementa-
tion is only known once the synthesis is complete, and an assumption that is
satisfied by all implementations often does not exist.

In this paper, we propose a way out of this chicken-and-egg type of situation.
Previous work on generating assumptions for compositional synthesis has focused
on behavioral restrictions on the environment of a subsystem. We introduce
a new class of more abstract assumptions that, instead, focus on the flow of
information. Consider a system architecture (depicted in Fig. 1a) where two
processes a and b are linked by a communication channel c, such that a can
write to c and b can read from c. Suppose also that a reads a boolean input in
from the environment that is, however, not directly visible to b. We are interested
in a distributed implementation for a specification that demands that b should
eventually output the value of input in. Since b cannot observe in, its synthesis
must rely on the assumption that the value of in will be communicated over the
channel c by process a. Expressing this as a behavioral assumption is difficult,
because there are many different behaviors that accomplish this. Process a could,
for example, literally copy the value of in to c. It could also encode the value, for
example by writing to c the negation of the value of in. Alternatively, it could
delay the transmission of in by an arbitrary number of steps, and even use the
length of the delay to encode information about the value of in. Fixing any such
communication protocol, by a corresponding behavioral assumption on a, would
unnecessarily eliminate potential implementations of b. The minimal assumption
that subsystem a must satisfy is in fact an information-flow assumption, namely
that b will eventually be able to determine the value of in.

We present a method that derives necessary information flow assumptions
automatically. A fundamental difference between behavioral and information flow
assumptions is that behavioral assumptions are trace properties, i.e., properties
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of individual traces; by contrast, information flow assumptions are hyperproper-
ties, i.e., properties of sets of traces. In our example, the assumption that a will
eventually communicate the value of in to b is the hyperproperty that any two
traces that differ in the value of in must eventually also differ in c. The precise
difference between the two traces depends on the communication protocol chosen
in the implementation of a; however, any correct implementation of a must ensure
that some difference in b’s input (on channel c) in the two traces occurs, so that b
can then respond with a different output.

Once we have obtained information flow assumptions for all of the subsys-
tems, we proceed to synthesize each subsystem under the assumption generated
for its environment. It is important to note that, at this point, the implemen-
tation of the environment is not known yet; as a result, we only know what
information will be provided to process b, but not how. This also means that
we cannot yet construct an executable implementation of the process under
consideration; after all, this implementation would need to correctly decode the
information provided by its partner processes. Clearly, we cannot determine how
to decode the information before we know how the implementation of the sending
process encodes the information!

Our solution to this quandary is to synthesize a prototype of an implementa-
tion for the process that works with any implementation of the sender, as long
as the sender satisfies the information flow requirement. The prototype differs
from the actual implementation in that it has access to the original (unencoded)
information. Because of this information the prototype, which we call a hyper
implementation, can determine the correct output that satisfies the specification.
Later, in the actual implementation, the information is no longer available in its
original, unencoded form, but must instead be decoded from the communica-
tion received from the environment. However, the information flow assumption
guarantees that this is actually possible, and access to the original information
is, therefore, no longer necessary.

In Sect. 2, we explain our approach in more detail, continuing the discussion
of the bit transmission example mentioned above. The paper then proceeds to
make the following contributions:

– We introduce the notion of necessary information flow assumptions (Sect. 4.1)
for distributed systems with two processes and present a method for the
automatic derivation of such assumptions from process specifications given in
linear-time temporal logic (LTL).

– We strengthen information flow assumptions to the notion of time-bounded
information flow assumptions (Sect. 4.2), which characterizes information that
must be received in finite time. We introduce the notion of uniform distin-
guishability and prove that uniform distinguishability guarantees the necessity
of the information flow assumption.

– We introduce the notion of hyper implementations (Sect. 5) and provide a
synthesis method for their automatic construction. We also explain how to
transform hyper implementations into actual process implementations.
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Fig. 1. The distributed system of the bit transmission protocol. The architecture is
given in (a), the hyper implementation of b in (b), the hyper implementation of a in(c),
and the resulting local implementation of b in (d).

– We present a more restricted practical approach (Sect. 6) that simplifies the
synthesis for cases where the information flow assumption refers to a finite
amount of information.

– Finally, we report on encouraging experimental results (Sect. 7).

2 The Bit Transmission Problem

We use the bit transmission example from the introduction to motivate our app-
roach. The example consists of two processes a and b that are combined into
the distributed architecture shown in Fig. 1a. Process a observes the (binary)
input of the environment through variable in and can communicate with the
second process b via a channel (modeled by the shared variable c). Process b
observes its own local input from a and has a local output out. We are inter-
ested in synthesizing an implementation for our distributed system consisting
of two strategies, one for each process, whose combined behavior satisfies the
specification. In this example, the specification for process b is to transmit the
initial value of in, an input of a, to b’s own output; this is expressed by the
linear-time temporal logic (LTL) formula ϕb = in ↔ out. The specification
does not restrict a’s behavior, and so ϕa = true. Since the value of out is con-
trolled by b, whereas in is determined by the environment and observed by a,
this specification forces b to react to an input that b neither observes nor con-
trols. To satisfy the goal, out must remain false forever if in is initially false,
while out must eventually become true at least once if in starts with value true.
Indeed, in order to set out to true, process b must know that in is initially
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true, which can only be satisfied via information flow from a to b. We can cap-
ture this information flow requirement as the following hyperproperty: For every
pair of traces that disagree on the initial value of in, process a must (eventu-
ally) behave differently on c. The requirement can be expressed in HyperLTL
by the formula Ψ = ∀π, π′.(inπ � inπ′) → (cπ � cπ′). The information flow
requirement does not restrict a to behave in a particular manner; the encoding
of the information about in on the channel c depends on a’s behavior. Under the
assumption that a will behave according to the information flow requirement Ψ ,
one can synthesize a solution of b that is correct for every implementation of a.
Given its generality, we call such a solution a hyper implementation. The hyper
implementation of process b is shown in Fig. 1b. Since the point in time when
the information is received by b is unknown during the local synthesis process,
an additional auxiliary boolean variable t is added to the specification of b. This
variable signals that the information has been transmitted and is later derived
by a’s implementation. Setting out to true is only allowed after t is observed by
process b. When the hyper implementation is composed with the actual imple-
mentation of a, as shown in Fig. 1c, both local specifications are satisfied. The
resulting local implementation of b, depicted in Fig. 1d, branches only on local
inputs and, together with a, satisfies the specification. While changing state b0
to b1, process b cannot distinguish in from ¬in. It has to wait for one time step,
i.e., the first difference in outputs of process a, to observe the difference in the
shared communication channel. The value of t is obtained from a’s implemen-
tation and set to true with the first difference in c, forbidding the edge from hb

0

to hb
3 in the local implementation of b.

3 Preliminaries

Architectures. For ease of exposition we focus in this paper on systems with two
processes. Let V be a set of variables. An architecture with two black-box processes
p and q is given as a tuple (Ip, Iq, Op, Oq, Ie), where Ip, Iq, Op, Oq, and Ie are all
subsets of V. Op and Oq are the output variables of p and q. Oe are the output
variables of the uncontrollable environment. The three sets Op, Oq and Oe form a
partition of V. Ip and Iq are the input variables of processes p and q, respectively.
For each black-box process, the inputs and outputs are disjoint, i.e., Ip∩Op = ∅ and
Iq ∩ Oq = ∅. The inputs Ip and Iq of the black-box processes are all either outputs
of the environment or outputs of the other black-box process, i.e., Ip ⊆ Oq ∪ Oe

and Iq ⊆ Op ∪ Oe. We assume that all variables are of boolean type. For a set
V ⊆ V, every subset V ′ ⊆ V defines a valuation of V , where the variables in V ′

have value true and the variables in V \ V ′ have value false.

Implementations. An implementation of an architecture (Ip, Iq, Op, Oq, Ie) is
a pair (sp, sq), consisting of a strategy for each of the two black-box pro-
cesses. A strategy for a black-box process p is a function sp : (2Ip)∗ → (2Op)
that maps finite sequences of valuations of p’s input variables (i.e., histories
of inputs) to a valuation of p’s output variables. The (synchronous) composi-
tion sp||sq of the two strategies is the function s : (2Oe)∗ → (2V) that maps
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finite sequences of valuations of the environment’s output variables to valua-
tions of all variables: we define s(ε) = sp(ε) ∪ sq(ε) and, for v ∈ (2Oe)∗, x ∈ 2Oe ,
s(v · x) = (sp(fp(v)) ∪ sq(fq(v)) ∪ x), where fp and fq map sequences of envi-
ronment outputs to sequences of process inputs with fp(ε) = ε, fp(v · x) =
fp(v)·((x ∪ sq(fq(v))) ∩ Ip) and fq(ε) = ε, fq(v·x) = fp(v)·((x ∪ sp(fp(v))) ∩ Iq).

Specifications. Our specifications refer to traces over the set V of all variables.
In general, for a set V ⊆ V of variables, a trace over V is an infinite sequence
x0x1x2 . . . ∈ (2V)ω of valuations of V . A specification ϕ ⊆ (2V)ω is a set of
traces over V. Two traces of disjoint sets V, V ′ ⊂ V can be combined by forming
the union of their valuations at each position, i.e., x0x1x2 . . . � y0y1y2 . . . =
(x0 ∪ y0)(x1 ∪ y1)(x2 ∪ y2) . . .. Likewise, the projection of a trace onto a set
of variables V ′ ⊆ V is formed by intersecting the valuations with V ′ at each
position: x0x1x2 . . . ↓V ′= (x0 ∩ V ′)(x1 ∩ V ′)(x2 ∩ V ′) . . ..

For our specification language, we use propositional linear-time temporal
logic (LTL) [21], with the set V of variables as atomic propositions and the usual
temporal operators Next , Until U , Globally , and Eventually . System
specifications are given as a conjunction ϕp ∧ ϕq of two LTL formulas, where
ϕp refers only to variables in Op ∪ Oe, i.e., the formula relates the outputs of
process p to the outputs of the environment, and ϕq refers only to variables in
Oq ∪Oe. The two formulas represent the local specifications for the two black-box
processes. An implementation s = (sp, sq) defines a set of traces

Traces(sp, sq) = {x0x1 . . . ∈ (2O)ω | xk = s(i0i1 . . . ik−1) for all k ∈ N

for some ioi1i2 . . . ∈ (2Oe)ω}.

We say that an implementation satisfies the specification if the traces of the
implementation are contained in the specification, i.e., Traces(sp, sq) ⊆ ϕ.

The Synthesis Problem. Given an architecture and a specification ϕ, the synthe-
sis problem is to find an implementation s = (sp, sq) that satisfies ϕ. We say that
a specification ϕ is realizable in a given architecture if such an implementation
exists, and unrealizable if not.

Hyperproperties. We capture information-flow assumptions as hyperproperties.
A hyperproperty over V is a set H ⊆ 2(2

V)ω

of sets of traces over V [6]. An imple-
mentation (sp, sq) satisfies the hyperproperty H iff its traces are an element of H,
i.e., Traces(sp, sq) ∈ H. A convenient specification language for hyperproperties
is the temporal logic HyperLTL [5]. HyperLTL extends LTL with quantification
over trace variables. The syntax of HyperLTL is given by the following grammar
ϕ := ∀π. ϕ | ∃π. ϕ | ψ and ψ := vπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ where vπ ∈ V
is a variable and π ∈ T is a trace variable. Note that the output variables are
indexed by trace variables. The quantification over traces makes it possible to
express properties like “ψ must hold on all traces”, which is expressed by ∀π. ψ .
Dually, one can express that “there exists a trace on which ψ holds”, denoted
by ∃π. ψ . The temporal operators are defined as in LTL.
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In some cases, a hyperproperty can be expressed in terms of a binary rela-
tion on traces. A relation R ⊆ (2V)ω × (2V)ω of pairs of traces defines the
hyperproperty H, where a set T of traces is an element of H iff for all pairs
π, π′ ∈ T of traces in T it holds that (π, π′) ∈ R. We call a hyperproperty defined
in this way a 2-hyperproperty. In HyperLTL, 2-hyperproperties are expressed
as formulas with two universal quantifiers and no existential quantifiers. A 2-
hyperproperty can equivalently be represented as a set of infinite sequences
over the product alphabet Σ2: for a given 2-hyperproperty R ⊆ Σω × Σω,
let R′ = {(σ0, σ

′
0)(σ1, σ

′
1) . . . | (σ0σ1 . . . , σ′

0σ
′
1 . . .) ∈ R}. This representation is

convenient for the use of automata to recognize 2-hyperproperties.

4 Necessary Information Flow in Distributed Systems

In reactive synthesis it is natural that the synthesized process reacts to different
environment outputs. This is also the case for distributed synthesis, where some
outputs of the environment are not observable by a local process and the hidden
values must be communicated to the process. In the following we show when
such information flow is necessary.

4.1 Necessary Information Flow

Our analysis focuses on pairs of situations for which the specification dictates
a different reaction from a given black-box process p. Such pairs imply the
need for information flow that will enable p to distinguish the two situations:
if p cannot distinguish the two situations, it will behave in the same manner
in both. Consequently, the specification will be violated, no matter how p is
implemented, in at least one of the two situations. A process p needs to satisfy
a local specification ϕp, which relates its outputs Op to the outputs Oe of the
environment. (Recall that Oe may contain inputs to the other black-box process.)
We are therefore interested in pairs of traces over Oe for which ϕp does not admit
a common valuation of Op. We collect such pairs of traces in a distinguishability
relation, denoted by Δp:

Definition 1 (Distinguishability). Given a local specification ϕp for pro-
cess p, the distinguishability relation Δp is the set of pairs of traces over Oe

(environment outputs) such that no trace over Op satisfies ϕp in combination
with both traces in the pair. Formally:

Δp = {(πe, π
′
e) ∈(2Oe)ω × (2Oe)ω |

∀πp ∈ (2Op)ω. if πe � πp � ϕp then π′
e � πp � ϕp }

By definition of Δp, process p must distinguish πe from π′
e, because it cannot

respond to both in the same manner. In our running example, Δb consists of all
pairs of sequences of values of in that differ in the first value of in. Process b must
act differently in such situations: if in is initially true then b must eventually set
out to true, while if it starts as false, then b must keep out always set to false.
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In general, a black-box process p must satisfy its specification ϕp despite hav-
ing only partial access to Oe. The distinguishability relation therefore directly
defines an information flow requirement: In order to satisfy ϕp, enough infor-
mation about Oe must be communicated to p via its local inputs Ip to ensure
that p can distinguish any pair of traces in Δp. We formalize this information flow
assumption as the following 2-hyperproperty, which states that if the outputs of
the environment in the two traces must be distinguished, i.e., the projection on
Oe is in Δp, then there must be a difference in the local inputs Ip:

Definition 2 (Information flow assumption). The information flow
assumption ψp induced by Δp is the 2-hyperproperty defined by the relation

Rψp
= {(π, π′) ∈ (2V)ω × (2V)ω | (π↓Oe

, π′↓Oe
) ∈ Δp then π↓Ip

�= π′↓Ip
}

In our running example, the information flow assumption for process b
requires that on any two executions that disagree on the initial value of in, the
values communicated to b over the channel c must differ at some point. Observe
that the information flow assumption ψp specifies neither how the information
is to be encoded on c nor the point in time when the different communica-
tion occurs. However, ψp requires that the communication differs eventually if
the initial values of in are different. Moreover, notice that both Δp and ψp are
determined by p’s specification ϕp. The following theorem shows that the infor-
mation flow assumption ψp is a necessary condition, the proof can be found in
the full version of this paper [12].

Theorem 1. Every implementation that satisfies the local specification ϕp for p
also satisfies the information flow assumption ψp.

4.2 Time-Bounded Information Flow

We now introduce a strengthened version of the information flow assumption. As
shown in Theorem 1, the information flow assumption is a necessary condition
for the existence of an implementation that satisfies the specification. Often,
however, the information flow assumption is not strong enough to allow for the
separate synthesis of individual components in a compositional approach.

Consider again process b in our motivating example. The information flow
assumption guarantees that any pair of traces that differ in the initial value of
the global input in will differ at some point in the value of the channel c. This
assumption is not strong enough to allow process b to satisfy the specification
that b must eventually set out to true iff the initial value of in is true. Suppose
that in is true initially. Then b must at some point set out to true. Process b
can only do so when it knows that the initial value of in is true. The information
flow assumption is, however, too weak to guarantee that process b will eventually
obtain this knowledge. To see this, consider a hypothetical behavior of process
a that sets c forever to true, if in is true in the first position, and if in is false
then a keeps c true for n − 1 steps, where n > 0 is some fixed natural number,
before it sets c to false at the nth step. This behavior of process a satisfies the
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information flow assumption for any number n; however, without knowing n,
process b does not know how many steps it should wait for in to become false.
If, at any point in time t, the channel c has not yet been set to false, process
b can never rule out the possibility that the initial value of in is true; it might
simply be the case that t < n and, hence, the time when c will be set to false
still lies in the future of t! Hence, process b can never actually set out to true.

To address this, we present a finer version of the distinguishability relation
from Definition 1 that we call time-bounded distinguishability. Recall that by
Definition 1, a pair (πe, π

′
e) is in the distinguishability relation Δp if every output

sequence πp for p violates p’s specification ϕp when combined with at least one
of the input sequences πe or π′

e. Equivalently, if ϕp is satisfied by πp combined
with πe, then it is violated when πp is combined with π′

e. Observe that for p to
behave differently in two scenarios, a difference must occur at a finite time t.
Clearly, this will only happen if p’s input shows a difference in finite time. To
capture this, we say that a pair (πe, π

′
e) of environment output sequences is in the

time-bounded distinguishability relation if the violation with π′
e is guaranteed to

happen in finite time. In order to avoid this violation, process p must act in finite
time, before the violation occurs on π′

e. We say that a trace π finitely violates
an LTL formula ϕ, denoted by π �f ϕ, if there exists a finite prefix w of π such
that every (infinite) trace extending w violates ϕ.

Definition 3 (Time-bounded distinguishability). Given a local specifica-
tion ϕp for process p, the time-bounded distinguishability relation Λp is the set
of pairs (πe, π

′
e) ∈ (2Oe)ω × (2Oe)ω of traces of global inputs such that every

trace of local outputs πp ∈ Op either violates the specification ϕp when combined
with πe, or finitely violates p’s local specification ϕp when combined with π′

e:

Λp = {(πe, π
′
e) ∈ (2Oe)ω × (2Oe)ω |

∀πp ∈ (2Op)ω. if πe � πp � ϕp then π′
e � πp �f ϕp }

Note that, unlike the distinguishability relation Δp, the time-bounded distin-
guishability relation Λp is not symmetric: For (πe, π

′
e), the trace π′

e � πp has to
finitely violate ϕp, while the trace πe � πp only needs to violate ϕp in the infi-
nite evaluation. As a result, the corresponding time-bounded information flow
assumption will also be asymmetric: we require that on input πe, process p
eventually obtains the knowledge that the input is different from π′

e. For input
π′

e we do not impose such a requirement. The intuition behind this definition is
that on environment output π′

e, process p must definitely produce some output
that does not finitely violate ϕp. This output can safely be produced without
ever knowing that the input is π′

e. However, on input πe, it becomes necessary
for process p to eventually deviate from the output that would work for π′

e. In
order to safely do so, p needs to realize after some finite time that the input is
not π′

e. In our running example, πe would be an input in which in is initially
true, while π′

e will be one in which it starts out being false.
Suppose we have a function t : (2Oe)ω → N that identifies, for each environ-

ment output πe, the time t(πe) by which process p is guaranteed to know that
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the environment output is not π′
e. We define the information flow assumption

for this particular function t as a 2-hyperproperty. Since we do not know t in
advance, the time-bounded information flow assumption is the (infinite) union
of all 2-hyperproperties corresponding to the different possible functions t.

Definition 4 (Time-bounded information flow assumption). Given the
time-bounded distinguishability relation Λp for process p, the time-bounded infor-
mation flow assumption χp for p is the (infinite) union over the 2-hyperproperties
induced by the following relations Rt, for all possible functions t : (2Oe)ω → N:

Rt = {(π, π′) ∈ (2V)ω × (2V)ω |
if (π↓Oe

, π′↓Oe
) ∈ Λp, then π[0...t(π↓Oe

)]↓Ip
�= π′[0...t(π↓Oe

)]↓Ip
}

Unlike the information flow assumption (cf. Theorem1), the time-bounded
information flow assumption is not in general a necessary assumption. Consider
a modification of our motivating example, where there is an additional environ-
ment output start, which is only visible to process a, not to process b. The
previous specification ϕb is modified so that if in is true initially, then out must
be true two steps after start becomes true for the first time; if in is false initially,
then out must become false after two positions have passed since the first time
start has become true. The specification ϕa ensures that the channel c is set to
true until start becomes true. Clearly, this is realizable: if in is false initially,
process a sets c to false once start becomes true, otherwise c stays true forever.
Process b starts by setting out to true. It then waits for c to become false, and,
if and when that happens, sets out to false. In this way, process b accomplishes
the correct reaction within two steps after start has occurred. However, the
function t required by the time-bounded information flow assumption does not
exist, because the time of the communication depends on the environment: the
prefix needed to distinguish an environment output πe, where in is true initially
from an environment output π′

e, where in is false initially, depends on the time
when start becomes true on π′

e.
We now characterize a set of situations in which the time-bounded informa-

tion flow requirement is still a necessary requirement. For this purpose we con-
sider time-bounded distinguishability relations where the safety violation occurs
after a bounded number of steps. We call such time-bounded distinguishability
relations uniform; the formal definition follows below.

Definition 5 (Uniform distinguishability). A time-bounded distinguishabil-
ity relation Λp is uniform if for every trace πe ∈ (2Oe)ω of global inputs, and
every trace πp ∈ (2Op)ω of local outputs of p, there exists a natural number n ∈ N
such that for all π′

e ∈ (2Oe)ω s.t. (πe, π
′
e) ∈ Λp if πe�πp � ϕp then π′

e�πp �n ϕp.

Theorem 2. Let Λp be a uniform time-bounded distinguishability relation
derived from process p’s local specification ϕp. Every computation tree that sat-
isfies ϕp also satisfies the time-bounded information flow assumption χp.

The proof of Theorem2 can be found in the full version of this paper [12].
The relations presented in this section as well as the uniformity check can be
represented by and verified with automata, also shown in [12].
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5 Compositional Synthesis

We now use the time-bounded information flow assumptions to split the dis-
tributed synthesis problem for an architecture (Ip, Iq, Op, Oq, Ie) into two sepa-
rate synthesis problems. The local implementations are then composed and form
a correct system, whose decomposition returns the solution for each process.

5.1 Constructing the Hyper Implementations

We begin with the synthesis of local processes. Let Λp and Λq be the time-
bounded distinguishability relations for p and q, and let χp and χq be the
resulting time-bounded information flow assumptions. In the individual syn-
thesis problems, we ensure that process p provides the information needed by
process q, i.e., that the implementation of p satisfies χq, and, similarly, that q
provides the information needed by p, i.e., q’s implementation satisfies χp.

We carry out the individual synthesis of a process implementation on trees
that branch according to the input of the process (including tp) and the envi-
ronment’s output. In such a tree, the synthesized process thus has access to full
information. We call this tree a hyper implementation, rather than an implemen-
tation, because the hyper implementation describes how the process will react to
certain information, without specifying how the process will receive information.
This detail is left open until we know the other process’ hyper implementation: at
that point, both hyper implementations can be turned into standard strategies,
which are trees that branch according to the process’ own inputs.

Definition 6 (Hyper implementation). Let p and q be processes and e be
the environment. A 2Oe∪Ip∪{tp}-branching 2Op∪{tq}-labeled tree hp is a hyper
implementation of p.

Since the hyper implementation has access to the full global information,
while the time-bounded information flow assumption only guarantees that the
relevant information arrives after some bounded time, the strategy has “too
much” information. We compensate for this by introducing a locality condition:
on two traces (πe, π

′
e) ∈ Λp in the distinguishability relation of process p, as long

as the input to the process from the external environment is identical, process
p’s output must be identical until tp happens (which signals that the bound for
the transmission of the information has been reached). For traces (πe, π

′
e) �∈ Λp

outside the distinguishability relation, process p’s output must be identical until
there is a difference in the input to process p or in the value of tp.

Definition 7 (Locality condition). Given the time-bounded distinguishabil-
ity relation Λp for process p, the locality condition ηp for p is the 2-hyperproperty
induced by the following relation R:

R = {(π, π′) ∈ (2Oe∪Ip∪{tp})ω × (2Oe∪Ip∪{tp})ω |
if (π↓Oe

, π′↓Oe
) ∈ Λp, then π[0...t]↓Op

= π′[0...t]↓Op
and

if (π↓Oe
, π′↓Oe

) �∈ Λp, then π[0...t′]↓Op
= π′[0...t′]↓Op

}
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where t is the smallest natural number such that tp ∈ π[0...t] or π[0...t] ↓Ip
�=

π′[t] ↓Ip
(and ∞ if no such t exists), and t′ is the smallest natural number such

that π[0...t′] ↓Ip
�= π′[0...t′] ↓Ip

or π[0...t′] ↓{tp} �= π′[0...t′] ↓{tp} (and ∞ if no
such t′ exists).

We now use HyperLTL to formulate the locality condition for process b in
our running example. Based on the time-bounded distinguishability relation Λb,
which relates every trace with in = true in the first step to all traces on which
in = false holds there, we can write the locality condition:

∀π, π′.(inπ ∧ ¬inπ′) → ((tπ ∨ cπ � cπ′)R(outπ ↔ outπ′))
∧(¬(inπ ∧ ¬inπ′)) → (tπ � tπ′ ∨ cπ � cπ′)R(outπ ↔ outπ′))

The order in the formula is analogous to the order in Definition 7. For all pairs
of traces that are in the distinguishability relation, i.e., in is true on π and false
on π′, the outputs being equivalent on both traces can only be released by t on
trace π or by a difference in the local inputs (c). Moreover, if the traces are not
in the distinguishability relation, i.e., ¬(inπ ∧¬inπ′), then only a difference in t
or c can release out to be equivalent on both traces. With the locality condition
at hand, we define when a hyper implementation is locally correct:

Definition 8 (Local correctness of hyper implementations). Let p and
q be processes, let ϕp be the local specification of p, let ηp be its locality condition,
and let χq be the information flow assumption of q. The hyper implementation
hp of p is locally correct if it satisfies ϕp, ηp, and χq.

The specification ϕp is a trace property, while ηp and χq are hyperproperties.
Since all properties that need to be satisfied by the process are guarantees, it
is not necessary to assume explicit behaviour of process q to realize process p.
Local correctness relies on the guarantee that the other process satisfies the
current process’ own information flow assumption. Note that both the locality
condition and the information flow assumption for p build on the time-bounded
distinguishability relation of p.

5.2 Composition of Hyper Implementations

The hyper implementations of each of the processes are locally correct and satisfy
the information flow assumptions of the other process respectively. However, the
hyper implementations have full information of the inputs and are dependent
on the additional variables tp and tq. To construct practically executable local
implementations, we first compose the hyper implementations into one strategy.

Definition 9 (Composition of hyper implementations). Let p and q be
two processes with hyper implementations given as infinite 2Oe∪Ip∪{tp}-branching
2Op∪{tq}-labeled tree hp for process p, and an infinite 2Oe∪Iq∪{tq}-branching
2Op∪{tp}-labeled tree hq for process q.
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Fig. 2. The composition of the hyper implementations of a in Fig. 1c and b in Fig. 1d.
The states are labeled with the combination of states that can be reached for both
processes.

Given two hyper implementations hp and hq, we define the composition h =
hp||hq to be a 2Oe-branching 2Op∪Oq -labeled tree, where h(v) = (hp(fp(v)) ∪
hq(fq(v))) ∩ (Op ∪ Oq) and fp, fq are defined as follows:

fp(ε) = ε fp(v · x) = fp(v) · ((x ∩ Ip) ∪ (hq(fq(v)) ∩ (Ip ∪ {tp}))
fq(ε) = ε fq(v · x) = fq(v) · ((x ∩ Iq) ∪ (hp(fp(v)) ∩ (Iq ∪ {tq}))

If each hyper implementation satisfies the time-bounded information flow
assumption of the other process, then there exists a strategy for each process
(given as a tree that branches according to the local inputs of the process), such
that the combined behavior of the two strategies corresponds exactly to the
composition of the hyper implementations.

The composition of the hyper implementations of the bit transmission proto-
col is shown in Fig. 2. The initial state is the combination of both process’s initial
states with the corresponding outputs. We change the state after the value of in
is received. While process a directly reacts to in, process b cannot observe its
value, and the composition can either be in hb

0 or hb
1. Both states have the same

output. In the next step, process a communicates the value of in by setting c to
true or false, such that the loop states ha

1 , h
a
1 and ha

2 , h
b
3 are reached.

The local strategies of the processes are constructed from the composed hyper
implementations. As an auxiliary notion we introduce the knowledge set : the set
of finite traces in the composition that cannot be distinguished by a process.

Definition 10 (Knowledge set). Let p and q be two processes with composed
hyper implementations h = hp||hq. For a finite trace v ∈ (2Ip)∗ of inputs to p,
we define the knowledge set Kp(v) to be

Kp(v) � {w | w is a finite trace of (2Oe)∗ and fp(w) = v}.

Lemma 1. For all s v, v′ ∈ (2Ip)∗, if Kp(v) = Kp(v′) then h(v) ↓Op
= h(v′) ↓Op

.

The proof of Lemma 1 can be found in the full version of this paper [12]. The
local strategies from the composed hyper implementations are then defined as
follows:
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Definition 11 (Local strategies from hyper implementations). Let p
and q be two processes with time-bounded information flow assumptions χp and
χq, and h = hp||hq be the composition of their hyper implementations. For
j ∈ {p, q} the strategy sj, represented as a 2Ij -branching 2Oj -labeled tree for
process j, is defined as follows:

sj(ε) = ε sj(v) =
{

∅ if |Kj(v)| = 0
h(min(Kj(v))) ↓Oj

if |Kj(v)| > 0

where min(Kj(v)) is the smallest trace based on an arbitrary order over Kj(v).

The base case of the definition inserts a label for unreachable traces in the
composed hyper implementation. For example, the local inputs Ip\Oe are deter-
mined by sq, and not all input words in (2Iq )∗ are possible. Process p’s local
strategy sp can discard these input words. The second case of the definition
picks the smallest trace in the knowledge set and computes the outputs from h
that are local to a process. Intuitively, the outputs of h have to be the same for
every trace that a process considers possible in the composed hyper implemen-
tations. We therefore pick one of them, compute the output of the composed
hyper-strategy, and restrict the output to the local outputs of the process. The
following theorem states the correctness of the construction in Definition 11.

Theorem 3. Let p and q be two processes with time-bounded information flow
assumptions χp and χq, let h = hp||hq be the composition of their hyper imple-
mentations, and sp and sq be their local strategies. Then, for all v ∈ (2Oe)∗ it
holds that h(v) = sp(gp(v)) ∪ sq(gq(v)) where gp, gq are defined as follows:

gp(ε) = ε gp(v · x) = gp(v) · ((x ∩ Ip) ∪ (sq(gq(v)) ∩ Ip)
gq(ε) = ε gq(v · x) = gq(v) · ((x ∩ Iq) ∪ (sp(gp(v)) ∩ Iq)

The proof is inductive over the words v ∈ (2Oe)∗ and can be found in the full
version of this paper [12]. Combining all definitions and theorems of the previous
sections, we conclude with the following corollary.

Corollary 1. Let (Ip, Iq, Op, Oq, Ie) be an architecture and ϕ = ϕp ∧ ϕq be a
specification. If the hyper-strategies hp and hq are locally correct, then the imple-
mentation (sp, sq) satisfies ϕ.

6 A More Practical Approach

A major disadvantage of the synthesis approach of the preceding sections is that
the hyper implementations are based on the full set of environment outputs; as a
result, hyper implementations branch according to inputs that are not actually
available; this, in turn, results in our introduction of the locality condition.

In this section, we develop a more practical approach, where the branching
is limited to the information that is actually available to a process: this includes
any environment output directly visible to the process and, additionally, the
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information the process is guaranteed to receive according to the information
flow assumption. As a result, the synthesis of the process is sound without need
for a locality condition. We develop this approach under two assumptions: First,
we assume that the time-bounded information flow assumption only depends on
environment outputs the sending process can actually see; second, we assume
that the time-bounded information flow assumption can be decomposed into a
finite set of classes in the following sense: For a trace π of environment outputs,
the information class [π]p describes that, on the trace π, the process p eventually
needs to become aware that the current trace is in the set [π]. The information
class is obtained by collecting all traces that are not related to π in the time-
bounded distinguishability relation.

Definition 12 (Information classes). Given a time-bounded distinguishabil-
ity relation Λp for process p, the information class [π]p of a trace π over Oe is
the following set of traces: [π]p = (2Oe)ω \ {π′ ∈ (2Oe)ω | (π, π′) ∈ Λp}

The next definition relativizes the specification of the processes for a par-
ticular information class, reflecting the fact that the process does not know the
actual environment output, but only its information class; hence, the process
output needs to be correct for all environment outputs in the information class.

Definition 13 (Relativized specification). For a process p with specification
ϕp and an information class c, the relativized specification ϕp,c is the following
trace property over (Ip ∩ Oe) ∪ Op:

ϕp,c = {πe � πp | πe ∈ (2Ip∩Oe)ω, πp ∈ (2Op)ω s.t. ∀π′
e ∈ c. π′

e � πp � ϕp}

The component specification, which is the basis for the synthesis of the pro-
cess, must take into account that the process does not know the information class
in advance; the behavior of the other process will only eventually reveal the infor-
mation class. Let IC be the set of information classes for process p. Assume that
this set is finite. We now replace the inputs of the process that come from the
other process with new auxiliary input channels IC as new inputs. In the hyper
implementation, receiving such an input reveals the information class to the pro-
cess. In the actual implementation, the information class will be revealed by the
actual outputs of the other process that are observable for p. The component
specification requires that the processes satisfy the relativized specification under
the assumption that the information class is eventually received. We encode this
assumption as a trace condition ψ, which requires that exactly one of the ele-
ments of IC eventually occurs.

Definition 14 (Component specification). For process p with specification
ϕp, the component specification 〈ϕp〉 over (Ip ∩ Oe) ∪ IC ∪ Op is defined as

〈ϕp〉 = {π ∈ (2(Ip∩Oe)∪IC∪Op)ω | if π � ψ then π �
∧

c∈IC

( c → ϕp,c}
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Fig. 3. The architecture used for our experiments in (a) where the number outputs,
inputs, and communication channels can vary. Figure 3b shows the implementation of
process b for its bit transmission component specification.

where ψ is the following trace property over (Ip ∩ Oe) ∪ IC ∪ Op:

ψ = {π ∈ (2(Ip∩Oe)∪IC∪Op)ω | ∃π′ ∈ (2Oe)ω. π ↓Ip∩Oe
= π′ ↓Ip∩Oe

and π � [π′] and exactly one element of IC occurs on π}

The component specification allows us to replace the locality condition (Def-
inition 7), which is a hyperproperty, with a trace property. Note, however, that
the process additionally needs to satisfy the information flow assumption of the
other process, which may in general depend on the full set Oe of environment
outputs. This would require us to synthesize the process on the full set Oe, and
to re-introduce the locality condition. In practice, however, the information flow
assumption of one process often only depends on the information of the other
process. In this case, it suffices to synthesize each process based only on the
locally visible environment outputs.

Figure 3b shows the implementation of b for its component specification 〈ϕb〉.
In contrast to its hyper implementation (cf. Fig. 1b), it does not branch according
to in and tp, but only variables in IC. The specification is encoded as the
following LTL formula:

〈ϕb〉 =
(

¬ic0 ∨ ¬ic1) ∧
(
(ic0 ∨ ic1)

)
→

(
( ic0 → out) ∧ ( ic1 → ¬out)

)

The left hand side of the implication represents the assumption ψ, while the right
hand side specifies the guarantee for each information class. The composition
and decomposition can be performed analogously to the hyper implementations,
where we map the value of ic to the values of the communication variables. We
construct the automata for component specifications in the full version of this
paper [12].
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7 Experiments

The focus of our experiments is on the performance of the compositional synthe-
sis approach compared to non-compositional synthesis methods for distributed
systems. While the time-bounded information flow assumptions and the com-
ponent specification can be computed automatically by automata construc-
tions, we have, for the purpose of these experiments, built them manually and
encoded them as formulas in HyperLTL or LTL, which were then entered to
the BoSy/BoSyHyper [11] synthesis tool1. Our experiments are based on the
following benchmarks:

– AC. Atomic commit. The atomic commitment protocol specifies that the
output of a local process is set to true iff the observable input and the unob-
servable inputs are true. We only consider one round of communication, the
initial input determines all values. The parameter shows how many input
variables each process receives, Par. = 1 for the running example.

– EC. Eventual commit. The atomic commit benchmark extended to eventual
inputs - if all inputs (independently of each other) eventually become true,
then there needs to be information flow.

– SA. Send all. Every input of the sender is relevant for the receiver. If an
input is set to true, it will eventually be communicated to the receiver. The
parameter represents the number of input values and therefore the number
of information classes.

Table 1 shows the performance of the compositional synthesis approach. The
column architecture (Arch.) determines for each benchmark if the information
flow is directional (dir.) or bidirectional (bidir.). Column (Inflow send) indicates
the running time for the sending process; where applicable, column (Inflow rec.)
indicates the running time for the synthesis of the process that only receives
information. We compare the compositional approach to BoSyHyper, based
on a standard encoding of distributed synthesis in HyperLTL (Inc. BoSy), and
a specialized tool for distributed synthesis [2] (Distr. BoSy). All experiments
were performed on a MacBook Pro with a 2,8 GHz Intel Quad Core processor
and 16 GB of RAM. The timeout was 30 min.

Information flow guided synthesis outperforms the standard approaches,
especially for more complex components. For example, in the atomic commit-
ment benchmark, scaling in the number of inputs does not impact the synthesis
of the local processes, while Distr. BoSy eventually times out, and the running
time of Inc. BoSy increases faster than for the information flow synthesis. For
all approaches, the Send All benchmark is the hardest one to solve. Here, each
input that will eventually be set needs to be eventually sent, which leads to non-
trivial communication over the shared variables and an increased state space
to memorize the individual inputs. Nevertheless, the information flow guided
synthesis outperforms the other approaches and times out with parameter 3

1 The experiments are available at https://doi.org/10.6084/m9.figshare.19697359.

https://doi.org/10.6084/m9.figshare.19697359
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Table 1. The results of the experiments with execution times given in seconds. A cell
is highlighted if it was faster than the other approaches, where the sum of synthesis
times for both sender and receiver is taken as reference.

Bench. Arch. Par. Inflow send. Inflow rec. Distr.BoSy Inc. BoSy

AC dir 1 0.92 0.70 1.41 2.31

dir 2 0.36 1.28 2.86 2.30

dir 3 0.92 0.68 2.46 2.55

dir 4 0.92 0.79 720.60 3.41

dir 5 0.92 0.68 TO 9.27

bidir 1 1.45 - 0.96 9.27

bidir 2 2.49 - TO TO

bidir 3 79.18 - TO TO

bidir 4 TO - TO TO

EC dir 1 0.68 1.87 0.92 2.556

dir 2 0.94 1.85 0.96 3.90

dir 3 202.09 TO TO TO

dir 4 TO TO TO TO

bidir 1 3.77 - 4.63 147.46

bidir 2 TO - TO TO

SA dir 1 1.31 0.92 2.21 1.579

dir 2 1.78 0.92 27.47 TO

dir 3 TO 1.08 TO TO

because BoSyHyper cannot cope with the number of states needed. Synthesiz-
ing a receiver that does not satisfy an information flow assumption is close to
irrelevant for every benchmark run. Since these processes are synthesized with
local LTL specifications, scaling only in the number of local inputs or informa-
tion that will eventually be received is easily possible. Notably, these receivers
are compatible with any implementation of the sender, whereas the solutions of
the other approaches are only compatible for the same synthesis run.

8 Related Work

Compositional synthesis is often studied in the setting of complete informa-
tion, where all processes have access to all environment outputs [9,14,17,19].
In the following, we focus on compositional approaches for the synthesis of dis-
tributed systems, where the processes have incomplete information about the
environment outputs. Compositionality has been used to improve distributed
synthesis in various domains, including reactive controllers [1,16]. Closest to
our approach is assume-guarantee synthesis [3,4], which relies on behavioral
guarantees of the processs behaviour and assumptions about the behavior of
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the other processes. Recently, an extension of assume-guarantee synthesis for
distributed systems was proposed [20], where the assumptions are iteratively
refined. Using a weaker winning condition for synthesis, remorse-free dominance
[7] avoids the explicit construction of assumptions and guarantees, resulting in
implicit assumptions. A recent approach [13] uses behavioral guarantees in the
form of certificates to guide the synthesis process. Certificates specify partial
behaviour of each component and are iteratively synthesized. The fundamental
difference between all these approaches to the current work is that the assump-
tions are behavioral. To the best of our knowledge, this is the first synthesis
approach based on information-flow assumptions. While there is a rich body of
work on the verification of information-flow properties (cf. [8,15,24]), and the
synthesis from information-flow properties and other hyperproperties has also
been studied before (cf. [11]), the idea of utilizing hyperproperties as assump-
tions for compositional synthesis of distributed systems is new.

9 Conclusion

The approach introduced in this paper provides the foundation for a new class
of distributed synthesis algorithms, where the assumptions refer to the flow of
information and are represented as hyperproperties. In many situations, neces-
sary information flow assumptions exist even if there are no necessary behavioral
assumptions. There are at least two major directions for future work. The first
direction concerns the insight that compositional synthesis profits from the gener-
ality of hyperproperties; at the same time, synthesis from hyperproperties is much
more challenging than synthesis from trace properties. To address this issue, we
have presented the more practical method in Sect. 6, which replaces locality, a
hyperproperty, with the component specification, a trace property. However, this
method is limited to information flow assumptions that refer to a finite amount of
information. It is very common for the required amount of information to be infi-
nite in the sense that the same type of information must be transmitted again and
again. We conjecture that our method can be extended to such situations.

A second major direction is the extension to distributed systems with more
than two processes. The two-process case has the advantage that the assumptions
of one process must be guaranteed by the other. With more than two processes,
the localization of the assumptions becomes more difficult or even impossible, if
multiple processes have access to the required information.
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