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Abstract. We study discrete probabilistic programs with potentially
unbounded looping behaviors over an infinite state space. We present,
to the best of our knowledge, the first decidability result for the prob-
lem of determining whether such a program generates exactly a specified
distribution over its outputs (provided the program terminates almost-
surely). The class of distributions that can be specified in our formalism
consists of standard distributions (geometric, uniform, etc.) and finite
convolutions thereof. Our method relies on representing these (possibly
infinite-support) distributions as probability generating functions which
admit effective arithmetic operations. We have automated our techniques
in a tool called Prodigy, which supports automatic invariance checking,
compositional reasoning of nested loops, and efficient queries to the out-
put distribution, as demonstrated by experiments.
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1 Introduction

Probabilistic programs [26,43,48] augment deterministic programs with stochas-
tic behaviors, e.g., random sampling, probabilistic choice, and conditioning (via
posterior observations). Probabilistic programs have undergone a recent surge
of interest due to prominent applications in a wide range of domains: they
steer autonomous robots and self-driving cars [20,54], are key to describe secu-
rity [6] and quantum [61] mechanisms, intrinsically code up randomized algo-
rithms for solving NP-hard or even deterministically unsolvable problems (in,
e.g., distributed computing [2,53]), and are rapidly encroaching on AI as well
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as approximate computing [13]. See [5] for recent advancements in probabilistic
programming.

The crux of probabilistic programming, à la Hicks’ interpretation [30], is to
treat normal-looking programs as if they were probability distributions. A random-
number generator, for instance, is a probabilistic program that produces a uni-
form distribution across numbers from a range of interest. Such a lift from deter-
ministic program states to possibly infinite-support distributions (over states)
renders the verification problem of probabilistic programs notoriously hard [39].
In particular, reasoning about probabilistic loops often amounts to computing
quantitative fixed-points which are highly intractable in practice. As a conse-
quence, existing techniques are mostly concerned with approximations, i.e., they
strive for verifying or obtaining upper and/or lower bounds on various quantities
like assertion-violation probabilities [59], preexpectations [9,28], moments [58],
expected runtimes [40], and concentrations [15,16], which reveal only partial
information about the probability distribution carried by the program.

In this paper, we address the problem of how to determine whether a (possibly
infinite-state) probabilistic program yields exactly the desired (possibly infinite-
support) distribution under all possible inputs. We highlight two scenarios where
encoding the exact distribution – other than (bounds on) the above-mentioned
quantities – is of particular interest: (I) In many safety- and/or security-critical
domains, e.g., cryptography, a slightly perturbed distribution (while many of its
probabilistic quantities remain unchanged) may lead to significant attack vul-
nerabilities or even complete compromise of the cryptographic system, see, e.g.,
Bleichenbacher’s biased-nonces attack [29, Sect. 5.10] against the probabilistic
Digital Signature Algorithm. Therefore, the system designer has to impose a
complete specification of the anticipated distribution produced by the proba-
bilistic component. (II) In the context of quantitative verification, the user may
be interested in multiple properties (of different types, e.g., the aforementioned
quantities) of the output distribution carried by a probabilistic program. In
absence of the exact distribution, multiple analysis techniques – tailored to dif-
ferent types of properties – have to be applied in order to answer all queries from
the user. We further motivate our problem using a concrete example as follows.

Example 1 (Photorealistic Rendering [37]). Monte Carlo integration algorithms
form a well-known class of probabilistic programs which approximate complex
integral expressions by sampling [27]. One of its particular use-cases is the pho-
torealistic rendering of virtual scenes by a technique called Monte Carlo path
tracing (MCPT) [37].

MCPT works as follows: For every pixel of the output image, it shoots n
sample rays into the scene and models the light transport behavior to approx-
imate the incoming light at that particular point. Starting from a certain pixel
position, MCPT randomly chooses a direction, traces it until a scene object is
hit, and then proceeds by either (i) terminating the tracing and evaluating the
overall ray, or (ii) continuing the tracing by computing a new direction. In the
physical world, the light ray may be reflected arbitrarily often and thus stop-
ping the tracing after a certain amount of bounces would introduce a bias in the
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Fig. 1. Monte Carlo path tracing in a scene with constant reflectivity 1/2.

integral estimation. As a remedy, the decision when to stop the tracing is made
in a Russian roulette manner by flipping a coin1 at each intersection point [1].

The program in Fig. 1 is an implementation of a simplified MCPT path gen-
erator. The cumulative length of all n rays is stored in the (random) variable c,
which is directly proportional to MCPT’s expected runtime. The implementation
is designed in a way that c induces a distribution as the sum of n independent and
identically distributed (i.i.d.) geometric random variables such that the resulting
integral estimation is unbiased. In our framework, we view such an exact output
distribution of c as a specification and verify – fully automatically – that the
implementation in Fig. 1 with nested loops indeed satisfies this specification. �

Approach. Given a probabilistic loop L = while (ϕ) {P} with guard ϕ and
loop-free body P , we aim to determine whether L agrees with a specification S:

L = while (ϕ) {P} ?∼ S , (�)

namely, whether L yields – upon termination – exactly the same distribution
as encoded by S under all possible program inputs. This problem is non-trivial:
(C1) L may induce an infinite state space and infinite-support distributions, thus
making techniques like probabilistic bounded model checking [34] insufficient for
verifying the property by means of unfolding the loop L. (C2) There is, to the
best of our knowledge, a lack of non-trivial characterizations of L and S such
that problem (�) admits a decidability result. (C3) To decide problem (�) – even
for a loop-free program L – one has to account for infinitely or even uncountably
many inputs such that L yields the same distribution as encoded by S when
being deployed in all possible contexts.

We address challenge (C1) by exploiting the forward denotational seman-
tics of probabilistic programs based on probability generating function (PGF)
representations of (sub-)distributions [42], which benefits crucially from closed-
form (i.e., finite) PGF representations of possibly infinite-support distributions.
A probabilistic program L hence acts as a transformer �L�(·) that transforms
an input PGF g into an output PGF �L�(g) (as an instantiation of Kozen’s

1 The bias of the coin depends on the material’s reflectivity : a reflecting material such
as a mirror requires more light bounces than an absorptive one, e.g., a black surface.
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transformer semantics [43]). In particular, we interpret the specification S as
a loop-free probabilistic program I. Such an identification of specifications with
programs has two important advantages: (i) we only need a single language to
encode programs as well as specifications, and (ii) it enables compositional rea-
soning in a straightforward manner, in particular, the treatment of nested loops.
The problem of checking L ∼ S then boils down to checking whether L and I
transform every possible input PGF into the same output PGF:

∀g ∈ PGF : �while (ϕ) {P}
︸ ︷︷ ︸

L

�(g) ?= �I�(g) . (†)

As I is loop free, problem (†) can be reduced to checking the equivalence of two
loop-free probabilistic programs (cf. Lemma 2):

∀g ∈ PGF : �if (ϕ) {P � I} else {skip}�(g) ?= �I�(g) . (‡)

Now challenge (C3) applies since the universal quantification in problem (‡)
requires to determine the equivalence against infinitely many – possibly infinite-
support – distributions over program states. We facilitate such an equivalence
checking by developing a second-order PGF (SOP) semantics for probabilistic
programs, which naturally extends the PGF semantics while allowing to reason
about infinitely many PGF transformations simultaneously (see Lemma3).

Finally, to obtain a decidability result (cf. challenge (C2)), we develop the
rectangular discrete probabilistic programming language (ReDiP) – a variant of
pGCL [46] with syntactic restrictions to rectangular guards – featuring various
nice properties, e.g., they inherently support i.i.d. sampling, and in particular,
they preserve closed-form PGF when acting as PGF transformers. We show
that problem (‡) is decidable for ReDiP programs P and I if all the distribution
statements therein have rational closed-form PGF (cf. Lemma 4). As a conse-
quence, problem (†) and thereby problem (�) of checking L ∼ S are decidable if
L terminates almost-surely on all possible inputs g (cf. Theorem 4).

Demonstration. We have automated our techniques in a tool called Prodigy. As
an example, Prodigy was able to verify, fully automatically in 25 milliseconds,
that the implementation of the MCPT path generator with nested loops (in
Fig. 1) is indeed equivalent to the loop-free program

c += iid(geometric(1/2), n) � n := 0

which encodes the specification that, upon termination, c is distributed as the
sum of n i.i.d. geometric random variables. With such an output distribution,
multiple queries can be efficiently answered by applying standard PGF opera-
tions. For example, the expected value and variance of the runtime are E [c] = n
and Var [c] = 2n, respectively (assuming c = 0 initially).
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Contributions. The main contributions of this paper are:

– The probabilistic programming language ReDiP and its forward denotational
semantics as PGF transformers. We show that loop-free ReDiP programs pre-
serve closed-form PGF.

– The notion of SOP that enables reasoning about infinitely many PGF trans-
formations simultaneously. We show that the problem of determining whether
an infinite-state ReDiP loop generates – upon termination – exactly a specified
distribution is decidable.

– The software tool Prodigy which supports automatic invariance checking
on the source-code level; it allows reasoning about nested ReDiP loops in
a compositional manner, and supports efficient queries on various quanti-
ties including assertion-violation probabilities, expected values, (high-order)
moments, precise tail probabilities, as well as concentration bounds.

Organization. We introduce generating functions in Sect. 2 and define the ReDiP
language in Sect. 3. Section 4 presents the PGF semantics. Section 5 establishes
our decidability result in reasoning about ReDiP loops, with case studies in
Sect. 6. After discussing related work in Sect. 7, we conclude the paper in Sect. 8.
Further details, e.g., proofs and additional examples, can be found in the full
version [18].

2 Generating Functions

“A generating function is a clothesline on which we hang up a sequence
of numbers for display.” — H. S. Wilf, Generatingfunctionology [60]

The method of generating functions (GF) is a vital tool in many areas of math-
ematics. This includes in particular enumerative combinatorics [22,60] and –
most relevant for this paper – probability theory [35]. In the latter, the sequences
“hanging on the clotheslines” happen to describe probability distributions over
the non-negative integers N, e.g., 1/2, 1/4, 1/8, . . . (aka, the geometric distribution).

The most common way to relate an (infinite) sequence of numbers to a gen-
erating function relies on the familiar Taylor series expansion: Given a sequence,
for example 1/2, 1/4, 1/8, . . ., find a function x �→ f(x) whose Taylor series around
x = 0 uses the numbers in the sequence as coefficients. In our example,

1
2 − x

=
1
2

+
1
4
x +

1
8
x2 +

1
16

x3 +
1
32

x4 + . . . , (1)

for all |x| < 2, hence the “clothesline” used for hanging up 1/2, 1/4, 1/8, . . . is the
function 1/(2 − x). Note that the GF is a – from a purely syntactical point of
view – finite object while the sequence it represents is infinite. A key strength
of this technique is that many meaningful operations on infinite series can be
performed by manipulating an encoding GF (see Table 1 for an overview and
examples). In other words, GF provide an interface to perform operations on
and extract information from infinite sequences in an effective manner.
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2.1 The Ring of Formal Power Series

Towards our goal of encoding distributions over program states (valuations of
finitely many integer variables) as generating functions, we need to consider
multivariate GF, i.e., GF with more than one variable. Such functions repre-
sent multidimensional sequences, or arrays. Since multidimensional Taylor series
quickly become unhandy, we will follow a more algebraic approach that is also
advocated in [60]: We treat sequences and arrays as elements from an algebraic
structure: the ring of Formal Power Series (FPS). Recall that a (commutative)
ring (A,+, ·, 0, 1) consists of a non-empty carrier set A, associative and com-
mutative binary operations “+” (addition) and “·” (multiplication) such that
multiplication distributes over addition, and neutral elements 0 and 1 w.r.t.
addition and multiplication, respectively. Further, every a ∈ A has an additive
inverse −a ∈ A. Multiplicative inverses a−1 = 1/a need not always exist. Let
k ∈ N = {0, 1, . . .} be fixed in the remainder.

Table 1. GF cheat sheet. f, g and X, Y are arbitrary GF and indeterminates, resp.

Operation Effect (Running) example

f−1 = 1/f Multiplicative inverse of f
(if it exists)

1
1−XY

= 1 + XY + X2Y 2 + . . .

because (1 − XY )(1 + XY + X2Y 2 + . . .) = 1

fX Shift in dimension X X
1−XY

= X + X2Y + X3Y 2 + . . .

f [X/0] Drop terms containing X 1
1−0Y

= 1

f [X/1] Projectiona on Y 1
1−1Y

= 1 + Y + Y 2 + . . .

fg Discrete convolution
(or Cauchy product)

1
(1−XY )2

= 1 + 2XY + 3X2Y 2 + . . .

∂Xf Formal derivative in X ∂X
1

1−XY
= Y

(1−XY )2
= Y + 2XY 2 + 3X2Y 3 + . . .

f + g Coefficient-wise sum 1
1−XY

+ 1
(1−XY )2

= 2−XY
(1−XY )2

=

2+3XY +4X2Y 2+ . . .

af Coefficient-wise scaling 7
(1−XY )2

= 7 + 14XY + 21X2Y 2 + . . .

a Projections are not always well-defined, e.g., 1
1−X+Y

[X/1] = 1
Y

is ill-defined because Y is
not invertible. However, in all situations where we use projection it will be well-defined; in
particular, projection is well-defined for PGF.

Definition 1 (The Ring of FPS). A k-dimensional FPS is a k-dim. array
f : Nk → R. We denote FPS as formal sums as follows: Let X=(X1, . . . , Xk) be
an ordered vector of symbols, called indeterminates. The FPS f is written as

f =
∑

σ∈Nk
f(σ)Xσ

where Xσ is the monomial Xσ1
1 Xσ2

2 · · · Xσk

k . The ring of FPS is denoted R[[X]]
where the operations are defined as follows: For all f, g ∈ R[[X]] and σ ∈ N

k,
(f + g)(σ) = f(σ) + g(σ), and (f · g)(σ) =

∑

σ1+σ2=σ f(σ1)g(σ2).

The multiplication f · g is the usual Cauchy product of power series (aka
discrete convolution); it is well defined because for all σ ∈ N

k there are just
finitely many σ1 + σ2 = σ in N

k. We write fg instead of f · g.
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The formal sum notation is standard in the literature and often useful because
the arithmetic FPS operations are very similar to how one would do calculations
with “real” sums. We stress that the indeterminates X are merely labels for
the k dimensions of f and do not have any other particular meaning. In the
context of this paper, however, it is natural to identify the indeterminates with
the program variables (e.g. indeterminate X refers to variable x, see Sect. 3).

Equation (1) can be interpreted as follows in the ring of FPS: The “sequences”
2 − 1X + 0X2 + . . . and 1/2 + 1/4X + 1/8X2 + . . . are (multiplicative) inverse
elements to each other in R[[X]], i.e., their product is 1. More generally, we say
that an FPS f is rational if f = gh−1 = g/h where g and h are polynomials,
i.e., they have at most finitely many non-zero coefficients; and we call such a
representation a rational closed form.

A more extensive introduction to FPS can be found in [18, Appx. D].

2.2 Probability Generating Functions

We are especially interested in GF that describe probability distributions.

Definition 2 (PGF). A k-dimensional FPS g is a probability generating func-
tion (PGF) if (i) for all σ ∈ N

k we have g(σ) ≥ 0, and (ii)
∑

σ∈Nk g(σ) ≤ 1.

For example, (1) is the PGF of a 1/2-geometric distribution. The PGF of other
standard distributions are given in Table 3 further below. Note that Definition 2
also includes sub-PGF where the sum in (ii) is strictly less than 1.

3 ReDiP: A Probabilistic Programming Language

This section presents our Rectangular Discrete Probabilistic Programming Lan-
guage, or ReDiP for short. The word “rectangular” refers to a restriction we
impose on the guards of conditionals and loops, see Sect. 3.2. ReDiP is a variant
of pGCL [46] with some extra syntax but also some syntactic restrictions.

3.1 Program States and Variables

Every ReDiP-program P operates on a finite set of N-valued program variables
Vars(P ) = {x1, . . . , xk}. We do not consider negative or non-integer variables. A
program state of P is thus a mapping σ : Vars(P ) → N. As explained in Sect. 1,
the key idea is to represent distributions over such program states as PGF.
Consequently, we identify a single program state σ with the monomial Xσ =
X

σ(x1)
1 · · · Xσ(xk)

k where X1, . . . , Xk are indeterminates representing the program
variables x1, . . . , xk. We will stick to this notation: throughout the whole paper,
we typeset program variables as x and the corresponding FPS indeterminate as
X. The initial program state on which a given ReDiP-program is supposed to
operate must always be stated explicitly.
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3.2 Syntax of ReDiP

The syntax of ReDiP is defined inductively, see the leftmost column of Table 2.
Here, x and y are program variables, n ∈ N is a constant, D is a distribution expres-
sion (see Table 3), and P1, P2 are ReDiP-programs. The general idea of ReDiP is to
provide a minimal core language to keep the theory simple. Many other common
language constructs such as linear arithmetic updates x := 2y + 3 are expressible
in this core language. See [18, Appx. A] for a complete specification.

Table 2. Syntax and semantics of ReDiP. g is the input PGF.

ReDiP-program P Semantics �P �(g) – see Sect. 4.2 Description

x := n g[X/1]Xn Assign const. n ∈ N to var. x

x−− (g − g[X/0])X−1 + g[X/0] Decr. x (“monus” semantics)

x += iid(D, y) g[Y /Y �D�[T/X]] Incr. x by the sum of y i.i.d.
samples from D – see
Sect. 3.3

if (x < n) {P1}
else {P2}

�P1�(gx<n) + �P2� (g − gx<n), where
gx<n =

∑n−1
i=0

1
i!

(∂i
Xg)[X/0]Xi

Conditional branching

P1� P2 �P2�(�P1�(g)) Sequential composition

while (x < n) {P1} [
lfp Ψx<n,P1

]
(g), where

Ψx<n,P1 (ψ) =
λf. (f−fx<n)+ψ(�P1�(fx<n))

Loop defined as fixed point

Table 3. A non-exhaustive list of common discrete distributions with rational PGF.
The parameters p, n, and λ are a probability, a natural, and a non-negative real number,
respectively. T is a reserved placeholder indeterminate.

D �D� Description

dirac(n) Tn Point mass

bernoulli(p) 1 − p + pT Bernoulli distribution (coin flip)

unif(n) (1 − Tn) / n(1 − T ) Discrete uniform distribution on {0, . . . , n−1}
geometric(p) (1 − p) / (1 − pT ) Geometric distribution (no. trials until first success)

binomial(p, n) (1 − p + pT )n Binomial distribution (successes of n yes-no experiments)

nbinomial(p, n) (1 − p)n / (1 − pT )n Negative binomial distribution

The word “rectangular” in ReDiP emphasizes that our if-guards can only
identify axis-aligned hyper-rectangles2 in N

k, but no more general polyhedra.
These rectangular guards x < n have the fundamental property that they pre-
serve rational PGF. On the other hand, allowing more general guards like x < y
breaks this property (see [21] and our comments in [18, Appx. B].

The most intricate feature of ReDiP is the – potentially unbounded – loop
while (x < n) {P}. A program that does not contain loops is called loop-free.
2 More precisely, we can simulate statements like if (R) {...} else {...}, where R is

a finite Boolean combination of rectangular guards, through appropriate nesting of
if () ; note that such an R is indeed a finite union of axis-aligned rectangles in N

k.
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3.3 The Statement x += iid(D, y)

The novel iid statement is the heart of the loop-free fragment of ReDiP – it
subsumes both x := D (“assign a D-distributed sample to x”) and the standard
assignment x := y. We include the assign-increment (+=) version of iid in the
core fragment of ReDiP for technical reasons; the assignment x := iid(D, y) can
be recovered from that as syntactic sugar by simply setting x := 0 beforehand.

Intuitively, the meaning of x += iid(D, y) is as follows. The right-hand side
iid(D, y) can be seen as a function that takes the current value v of variable
y, then draws v i.i.d. samples from distribution D, computes the sum of all
these samples and finally increments x by the so-obtained value. For example,
to perform x := y, we may just write x := iid(dirac(1), y) as this will draw
y times the number 1, then sum up these y many 1’s to obtain the result y
and assign it to x. Similarly, to assign a random sample from a, say, uniform
distribution to x, we can execute y := 1 � x := iid(unif(n), y).

But iid is not only useful for defining standard operations. In fact, taking
sums of i.i.d. samples is common in probability theory. The binomial distribution
with parameters p ∈ (0, 1) and n ∈ N, for example, is the defined as the sum of
n i.i.d. Bernoulli-p-distributed samples and thus

x := binomial(p, y) is equivalent to x := iid(bernoulli(p), y)

for all constants p ∈ (0, 1). Similarly, the negative (p, n)-binomial distribution
is the sum of n i.i.d. geometric-p-distributed samples. Overall, iid renders the
loop-free fragment of ReDiP strictly more expressive than it would be if we had
included only x := D and x := y instead. As a consequence, since we use loop-
free programs as a specification language (see Sect. 5), iid enables us to write
more expressive program specifications while retaining decidability.

4 Interpreting ReDiP with PGF

In this section, we explain the PGF-based semantics of our language which is
given in the second column of Table 2. The overall idea is to view a ReDiP-
program P as a distribution transformer [44,46]. This means that the input to
P is a distribution over initial program states (inputting a deterministic state
is just the special case of a Dirac distribution), and the output is a distribution
over final program states. With this interpretation, if one regards distributions
as generalized program states [33], a probabilistic program is actually determinis-
tic: The same input distribution always yields the same output distribution. The
goal of our PGF-based semantics is to construct an interpreter that executes a
ReDiP-program statement-by-statement in forward direction, transforming one
generalized program state into the next. We stress that these generalized pro-
gram states, or distributions, can be infinite-support in general. For example,
the program x := geometric(0.5) outputs a geometric distribution – which has
infinite support – on x.
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4.1 A Domain for Distribution Transformation

We now define a domain, i.e., an ordered structure, where our program’s in- and
output distributions live. Following the general idea of this paper, we encode
them as PGF. Let Vars be a fixed finite set of program variables x1, . . . , xk and
let X = (X1, . . . , Xk) be corresponding formal indeterminates. We let PGF =
{g ∈ R[[X]] | g is a PGF} denote the set of all PGF. Recall that this also includes
sub-PGF (Definition 2). Further, we equip PGF with the pointwise order, i.e., we
let g 	 f iff g(σ) ≤ f(σ) for all σ ∈ N

k. It is clear that (PGF,	) is a partial order
that is moreover ω-complete, i.e., there exists a least element 0 and all ascending
chains Γ = {g0 	 g1 	 . . .} in PGF have a least upper bound supΓ ∈ PGF. The
maxima in (PGF,	) are precisely the PGF which are not a sub-PGF.

4.2 From Programs to PGF Transformers

Next we explain how distribution transformation works using (P)GF (cf.
Table 1). This is in contrast to the PGF semantics from [42] which operates
on infinite sums in a non-constructive fashion.

Definition 3 (The PGF Transformer �P �). Let P be a ReDiP-program. The
PGF transformer �P � : PGF → PGF is defined inductively on the structure of P
through the second column in Table 2.

We show in Theorem 2 below that �P � is well-defined. For now, we go over
the statements in the language ReDiP and explain the semantics.

Sequential Composition. The semantics of P1�P2 is straightforward and intuitive:
First execute P1 on g and then P2 on �P1�(g), i.e., �P1� P2�(g) = �P2�(�P1�(g)).
The fact that our semantics transformer moves forwards through the program –
as program interpreters usually do – is due to this definition.

Conditional Branching. To translate if (x < n) {P1} else {P2}, we follow the
standard procedure which partitions the input distribution according to x <
n and x ≥ n, processes the two parts independently and finally recombines
the results [44]. We realize the partitioning using the (formal) Taylor series
expansion. This is feasible because we only allow rectangular guards of the form
x < n, where n is a constant. Thus, for a given input PGF g, the filtered PGF
gx<n is obtained through expanding g in its first n terms. The else -part is
obviously gx≥n = g−gx<n. We then evaluate �P1�(gx<n)+�P2�(gx≥n) recursively.
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Assigning a Constant. Technically, our semantics realizes an assignment x := n
in two steps: It first sets x to 0 and then increments it by n. The former is
achieved by substituting X for 1 which corresponds to computing the marginal
distribution in all variables except X. For example,

�� 0.5XY 2 + 0.5X2Y 3 �� g

x := 5 P

�� (0.5Y 2 + 0.5Y 3)X5 �� �P �(g)

�� 0.5X5Y 2 + 0.5X5Y 3 �� 〈 reform. of prev. line 〉

where the rightmost four lines explain this annotation style [42]. Note that
0.5Y 2 + 0.5Y 3 is indeed the marginal of the input distribution in Y .

Decrementing a Variable. Since our program variables cannot take negative val-
ues, we define x−− as max(x−1, 0), i.e., x monus (modified minus) 1. Technically,
we realize this through if (x < 1) {skip} else {x−−}, i.e., we apply the decre-
ment only to the portion of the input distribution where x ≥ 1. The decrement
itself can then be carried out through “multiplication by X−1”. Note that X−1

is not an element of R[[X]] because X has no inverse. Instead, the operation
gX−1 is an alias for shift←(g) which shifts g “to the left” in dimension X. To
implement the semantics on top of existing computer algebra software, it is very
handy to perform the multiplication by X−1 instead. This is justified because
for PGF g with g[X/0] = 0, shift←(g) and gX−1 are equal.

The iid Statement. The semantics of x += iid(D, y) relies on the fact that

T1 ∼ �D� . . . Tn ∼ �D� implies
∑n

i=1
Ti ∼ �D�n , (2)

where X ∼ g means that r.v. X is distributed according to PGF g (see, e.g., [55,
p. 450]). The iid statement generalizes this observation further: If n is not a
constant but a random (program) variable y with PGF h(Y ), then we perform
the substitution h[Y/�D�] (i.e., replace Y by �D� in h) to obtain the PGF of the
sum of y-many i.i.d. samples from D. We slightly modify this substitution to
g[Y/Y �D�[T/X]] in order to (i) not alter y, and (ii) account for the increment
to x. For example,

�� 0.2 + 0.3Y + 0.5Y 2

x += iid(bernoulli(0.5), y)

�� 0.2 + 0.3Y (0.5 + 0.5X) + 0.5Y 2(0.5 + 0.5X)2

�� 0.2 + 0.15Y + 0.125Y 2 + 0.15XY + 0.25XY 2 + 0.125X2Y 2 .

The while-Loop. The fixed point semantics of the while loop is standard [42,44]
and reflects the intuitive unrolling rule, namely that while (ϕ){P} is equivalent
to if (ϕ) {P � while (ϕ) {P}} else {skip}. Indeed, the fixed point formula in
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Table 2 can be derived using the semantics of if discussed above. We revisit this
fixed point characterization in Sect. 5.1.

Properties of �P �. Our PGF semantics has the property that all programs –
except while loops – are able to operate on the input PGF in (rational) closed
form, i.e., they never have to expand the input as an infinite series (which is of
course impossible in practice). More formally:

Theorem 1 (Closed-Form Preservation). Let P be a loop-free ReDiP pro-
gram, and let g = h/f ∈ PGF be in rational closed form. Then we can compute a
rational closed form of �P �(g) ∈ PGF by applying the transformations in Table 2.

The proof is by induction over the structure of P noticing that all the nec-
essary operations (substitution, differentiation, etc.) preserve rational closed
forms, see [18, Appx. D]. A slight extension of our syntax, e.g., admitting
non-rectangular guards, renders that closed forms are not preserved, see [18,
Appx. B]. Moreover, �P � has the following healthiness [46] properties:

Theorem 2 (Properties of �P �). The PGF transformer �P � is

– a well-defined function PGF → PGF ,
– continuous, i.e., �P �(supΓ ) = sup�P �(Γ ) for all chains Γ ⊆ PGF ,
– linear, i.e., �P �(

∑

σ∈Nk g(σ)Xσ) =
∑

σ∈Nk g(σ)�P �(Xσ) for all g ∈ PGF .

4.3 Probabilistic Termination

Due to the presence of possibly unbounded while-loops, a ReDiP-program does
not necessarily halt, or may do so only with a certain probability. Our semantics
naturally captures the termination probability.

Definition 4 (AST). A ReDiP-program P is called almost-surely terminating
(AST) for PGF g if �P �(g)[X/1] = g[X/1], i.e., if it does not leak probability
mass. P is called universally AST (UAST) if it is AST for all g ∈ PGF.

Note that all loop-free ReDiP-programs are UAST. In this paper, (U)AST
only plays a minor role. Nonetheless, the proof rule below yields a stronger
result (cf. Lemma 2) if the program is UAST. There exist various of techniques
and tools for proving (U)AST [17,47,50].

5 Reasoning About Loops

We now focus on loopy programs L = while (ϕ) {P}. Recall from Table 2 that
�L� : PGF → PGF is defined as the least fixed point of a higher order functional

Ψϕ,P : (PGF → PGF) → (PGF → PGF).

Following [42], we show that Ψϕ,P is sufficiently well-behaved to allow reasoning
about loops by fixed point induction.
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5.1 Fixed Point Induction

To apply fixed point induction, we need to lift our domain PGF from Sect. 4.1 by
one order to (PGF → PGF), the domain of PGF transformers. This is because the
functional Ψϕ,P operates on PGF transformers and can thus be seen as a second-
order function (this point of view regards PGF as first-order objects). Recall that
in contrast to this, the function �P � is first-order – it is just a PGF transformer.
The order on (PGF → PGF) is obtained by lifting the order 	 on PGF pointwise
(we denote it with the same symbol 	). This implies that (PGF → PGF) is
also an ω-complete partial order. We can then show that Ψϕ,P (see Table 2) is
a continuous function. With these properties, we obtain the following induction
rule for upper bounds on �L�, cf. [42, Theorem 6]:

Lemma 1 (Fixed Point Induction for Loops). Let L = while (ϕ) {P} be
a ReDiP-loop. Further, let ψ : PGF → PGF be a PGF transformer. Then

Ψϕ,P (ψ) 	 ψ implies �L� 	 ψ .

The goal of the rest of the paper is to apply the rule from Lemma 1 in practice.
To this end, we must somehow specify an invariant such as ψ by finite means.
Since ψ is of type (PGF → PGF), we consider ψ as a program I – more specifically,
a ReDiP-program – and identify ψ = �I�. Further, by definition

Ψϕ,P (�I�) = �if (ϕ) {P � I} else {skip}�,

and thus the term Ψϕ,P (�I�) is also a PGF-transformer expressible as a ReDiP-
program. These observations and Lemma 1 imply the following:

Lemma 2. Let L = while (ϕ) {P} and I be ReDiP-programs. Then

�if (ϕ) {P � I} else {skip}� 	 �I� implies �L� 	 �I�. (3)

Further, if L is UAST (Definition 4), then

�if (ϕ) {P � I} else {skip}� = �I� iff �L� = �I� (4)

Lemma 2 effectively reduces checking whether ψ given as a ReDiP-program I
is an invariant of L to checking equivalence of if (ϕ) {P � I} else {skip} and
I provided L is UAST. If I is loop-free, then the latter two programs are both
loop-free and we are left with the task of proving whether they yield the same
output distribution for all inputs. We now present a solution to this problem.

5.2 Deciding Equivalence of Loop-free Programs

Even in the absence of loops, deciding if two given ReDiP-programs are equivalent
is non-trivial as it requires reasoning about infinitely many – possibly infinite-
support – distributions on program variables. In this section, we first show that
�P1� = �P2� is decidable for loop-free ReDiP programs P1 and P2, and then use
this result together with Lemma 2 to obtain the main result of this paper.
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SOP: Second-Order PGF. Our goal is to check if �P1�(g) = �P2�(g) for all
g ∈ PGF. To tackle this, we encode whole sets of PGF into a single object –
an FPS we call second-order PGF (SOP). To define SOP, we need a slightly
more flexible view on FPS. Recall from Definition 1 that a k-dim. FPS is an
array f : Nk → R. Such an f can be viewed equivalently as an l-dim. array with
(k−l)-dim. arrays as entries. In the formal sum notation, this is reflected by
partitioning X = (Y,Z) and viewing f as an FPS in Y with coefficients that are
FPS in the other indeterminates Z. For example,

(1 − Y )−1(1 − Z)−1 = 1 + Y + Z + Y 2 + Y Z + Z2 + . . .

= (1 − Z)−1 + (1 − Z)−1Y + (1 − Z)−1Y 2 + . . .

where in the lower line the coefficients (1−Z)−1 are considered elements in R[[Z]].

Definition 5 (SOP). Let U and X be disjoint sets of indeterminates. A formal
power series f ∈ R[[U,X]] is a second-order PGF (SOP) if

f =
∑

τ∈N|U| f(τ)Uτ (with f(τ) ∈ R[[X]]) implies ∀τ : f(τ) ∈ PGF.

That is, an SOP is simply an FPS whose coefficients are PGF – instead of
generating a sequence of probabilities as PGF do, it generates a sequence of
distributions. An (important) example SOP is

fdirac = (1 − XU)−1 = 1 + XU + X2U2 + . . . ∈ R[[U,X]], (5)

i.e., for all i ≥ 0, fdirac(i) = Xi = �dirac(i)�. As a second example consider
fbinom = fdirac [X/0.5 + 0.5X]; it is clear that fbinom(i) = (0.5 + 0.5X)i =
�binomial(0.5, i)� for all i ≥ 0. Note that if U = ∅, then SOP and PGF coincide.
For fixed X and U, we denote the set of all second-order PGF with SOP.

SOP Semantics of ReDiP. The appeal of SOP is that, syntactically, they are
still formal power series, and some can be represented in closed form just like
PGF. Moreover, we can readily extend our PGF transformer �P � to an SOP
transformer �P � : SOP → SOP. A key insight of this paper is that – without any
changes to the rules in Table 2 – applying �P � to an SOP is the same as applying
�P � simultaneously to all the PGF it subsumes:

Theorem 3. Let P be a ReDiP-program. The transformer �P � : SOP → SOP is
well-defined. Further, if f =

∑

τ∈N|U| f(τ)Uτ is an SOP, then

�P �(f) =
∑

τ∈N|U|�P �(f(τ))Uτ .

An SOP Transformation for Proving Equivalence. We now show how to
exploit Theorem 3 for equivalence checking. Let P1 and P2 be (loop-free) ReDiP-
programs; we are interested in proving whether �P1� = �P2�. By linearity it
holds that �P1� = �P2� iff �P1�(Xσ) = �P2�(Xσ) for all σ ∈ N

k, i.e., to check
equivalence it suffices to consider all (infinitely many) point-mass PGF as inputs.
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Lemma 3 (SOP-Characterisation of Equivalence). Let P1 and P2 be
ReDiP-programs with Vars(Pi) ⊆ {x1, . . . , xk} for i ∈ {1, 2}. Further, consider a
vector U = (U1, . . . , Uk) of meta indeterminates, and let gX be the SOP

gX = (1 − X1U1)−1(1 − X2U2)−1 · · · (1 − XkUk)−1 ∈ R[[U,X]] .

Then �P1� = �P2� if and only if �P1�(gX) = �P2�(gX).

The proof of Lemma 3 (see [18, Appx. F.5]) relies on Theorem3 and the fact
that the rational SOP gX generates all (multivariate) point-mass PGF; in fact
it holds that gX =

∑

σ∈Nk XσUσ, i.e., gX generalizes fdirac from (5). It follows:

Lemma 4. �P1� = �P2� is decidable for loop-free ReDiP-programs P1, P2.

Our main theorem follows immediately from Lemmas 2 and 4:

Theorem 4. Let L = while (ϕ) {P} be UAST with loop-free body P and I be a
loop-free ReDiP-program. It is decidable whether �L� = �I�.

Example 2. In Fig. 2 we prove that the two UAST programs L and I

while (n > 0) {
{ n := n − 1 } [1/2] { c := c + 1 }}

c += iid(geometric(1/2), n) �

n := 0

Fig. 2. Program equivalence follows from the equality of the resulting SOP (Lemma 3).

are equivalent (i.e., �L� = �I�) by showing that �if (n > 0) {P � I}� = �I�
as suggested by Lemma 2. The latter is achieved as in Lemma 3: We run both
programs on the input SOP gN,C = (1 − NU)−1(1 − CV )−1, where U, V are
meta indeterminates corresponding to N and C, respectively, and check if the
results are equal. Note that I is the loop-free specification from Example 1; thus
by transitivity, the loop L is equivalent to the loop in Fig. 1. �
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6 Case Studies

We have implemented our techniques in Python as a prototype called Prodigy3:
PRObability DIstributions via GeneratingfunctionologY. By interfacing with dif-
ferent computer algebra systems (CAS), e.g., Sympy [49] and GiNaC [10,57] – as
backends for symbolic computation of PGF and SOP semantics – Prodigy
decides whether a given probabilistic loop agrees with an (invariant) specifica-
tion encoded as a loop-free ReDiP program. Furthermore, it supports efficient
queries on various quantities associated with the output distribution.

In what follows, we demonstrate in particular the applicability of our tech-
niques to programs featuring stochastic dependency, parametrization, and nested
loops. The examples are all presented in the same way: the iterative program
on the left side and its corresponding specification on the right. The presented
programs are all UAST, given the parameters are instantiated from a suitable
value domain.4 For each example, we report the time for performing the equiva-
lence check on a 2,4 GHz Intel i5 Quad-Core processor with 16GB RAM running
macOS Monterey 12.0.1. Additional examples can be found in [18, Appx. E].

Fig. 3. Generating complementary binomial distributions (for n, m) by coin flips.
binomial(1/2, c) is an alias for iid(bernoulli(1/2), c).

Fig. 4. A program modeling two dueling cowboys with parametric hit probabilities.

Example 3 (Complementary Binomial Distributions). We show that the pro-
gram in Fig. 3 generates a joint distribution on n, m such that both n and m
are binomially distributed with support c and are complementary in the sense
that n + m = c holds certainly (if n = m = 0 initially, otherwise the variables

3 � https://github.com/LKlinke/Prodigy.
4 Parameters of Example 4 have to be instantiated with a probability value in (0, 1).

https://github.com/LKlinke/Prodigy
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are incremented by the corresponding amounts). Prodigy automatically checks
that the loop agrees with the specification in 18.3 ms. The resulting distribution
can then be analyzed for any given input PGF g by computing �I�(g), where
I is the loop-free program. For example, for input g = C10, the distribution
as computed by Prodigy has the factorized closed form (M+N

2 )10. The CAS
backends exploit such factorized forms to perform algebraic manipulations more
efficiently compared to fully expanded forms. For instance, we can evaluate the
queries E [m3+2mn+n2] = 235, or Pr(m > 7∧n < 3) = 7/128, almost instantly.

�

Example 4 (Dueling Cowboys [46]). The program in Fig. 4 models a duel of
two cowboys with parametric hit probabilities a and b. Variable t indicates the
cowboy who is currently taking his shot, and c monitors the state of the duel
(c = 1: duel is still running, c = 0: duel is over). Prodigy automatically verifies
the specification in 11.97 ms. We defer related problems – e.g., synthesizing
parameter values to meet a parameter-free specification – to future work. �

Fig. 5. Nested loops with invariants for the inner and outer loop.

Example 5 (Nested Loops). The inner loop of the program in Fig. 5 modifies x
which influences the termination behavior of the outer loop. Intuitively, the pro-
gram models a random walk on N: In every step, the value of the current position
x changes by some random δ ∈ {−1, 0, 1, 2, . . .} such that δ + 1 is geometrically
distributed. The example demonstrates how our technique enables compositional
reasoning. We first provide a loop-free specification for the inner loop, prove its
correctness, and then simply replace the inner loop by its specification, yielding
a program without nested loops. This feature is a key benefit of reusing the
loop-free fragment of ReDiP as a specification language. Moreover, existing tech-
niques that cannot handle nested loops can profit from it; in fact, we can prove
the overall program to be UAST using the rule of [47]. Interestingly, the outer
loop has infinite expected runtime (for any input distribution where the proba-
bility that x > 0 is positive). We can prove this by querying the expected value of
the program variable c in the resulting output distribution. The automatically
computed result is ∞, which indeed proves that the expected runtime of this
program is not finite. This example furthermore shows that our technique can
be generalized beyond rational functions since the PGF of the catalan(p) dis-
tribution is (1 − √

1 − 4p(1−p)T ) / 2p, i.e., algebraic but not rational. We leave
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a formal generalization of the decidability result from Theorem 4 to algebraic
functions for future work. Prodigy verifies this example in 29.17ms. �

Scalability Issue. It is not difficult to construct programs where Prodigy poorly
scales: its performance depends highly on the number of consecutive probabilistic
branches and the size of the constant n in guards (requiring n-th order PGF
derivation, cf. Table 2).

7 Related Work

This section surveys research efforts that are highly related to our approach in
terms of semantics, inference, and equivalence checking of probabilistic programs.

Forward Semantics of Probabilistic Programs. Kozen established in his seminal
work [43] a generic way of giving forward, denotational semantics to probabilis-
tic programs as distribution transformers. Klinkenberg et al. [42] instantiated
Kozen’s semantics as PGF transformers. We refine the PGF semantics substan-
tially such that it enjoys the following crucial properties: (i) our PGF transform-
ers (when restricted to loop-free ReDiP programs) preserve closed-form PGF and
thus are effectively constructable. In contrast, the existing PGF semantics in [42]
operates on infinite sums in a non-constructive fashion; (ii) our PGF semantics
naturally extends to SOP, which serves as the key to reason about the exact
behavior of unbounded loops (under possibly uncountably many inputs) in a
fully automatic manner. The PGF semantics in [42], however, supports only
(over-)approximations of looping behaviors and can hardly be automated; and
(iii) our PGF semantics is capable of interpreting program constructs like i.i.d.
sampling that is of particular interest in practice.

Backward Semantics of Probabilistic Programs. Many verification systems for
probabilistic programs make use of backward, denotational semantics – most
pertinently, the weakest preexpectation (WP) calculi [38,46] as a quantitative
extension of Dijkstra’s weakest preconditions [19]. The WP of a probabilistic
program C w.r.t. a postexpectation g, denoted by wp�C�(g)(·), maps every ini-
tial program state σ to the expected value of g evaluated in final states reached
after executing C on σ. In contrast to Dijkstra’s predicate transformer semantics
which admits also strongest postconditions, the counterpart of “strongest post-
expectations” does unfortunately not exist [36, Chap. 7], thereby not amenable
to forward reasoning. We remark, in particular, that checking program equiva-
lence via WP is difficult, if not impossible, since it amounts to reasoning about
uncountably many postexpectations g. We refer interested readers to [5, Chaps.
1–4] for more recent advancements in formal semantics of probabilistic programs.

Probabilistic Inference. There are a handful of probabilistic systems that employ
an alternative forward semantics based on probability density function (PDF)
representations of distributions, e.g., (λ)PSI [24,25], AQUA [32], Hakaru [14,52],
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and the density compiler in [11,12]. These systems are dedicated to probabilis-
tic inference for programs encoding continuous distributions (or joint discrete-
continuous distributions). Reasoning about the underlying PDF representations,
however, amounts to resolving complex integral expressions in order to answer
inference queries, thus confining these techniques either to (semi-)numerical
methods [11,12,14,32,52] or exact methods yet limited to bounded looping
behaviors [24,25]. Apart from these inference systems, a recently developed lan-
guage called Dice [31] featuring exact inference for discrete probabilistic pro-
grams is also confined to statically bounded loops. The tool Mora [7,8] supports
exact inference for various types of Bayesian networks, but relies on a restricted
form of intermediate representation known as prob-solvable loops, whose behav-
iors can be expressed by a system of C-finite recurrences admitting closed-form
solutions.

Equivalence of Probabilistic Programs. Murawski and Ouaknine [51] showed an
Exptime decidability result for checking the equivalence of probabilistic pro-
grams over finite data types by recasting the problem in terms of probabilistic
finite automata [23,41,56]. Their techniques have been automated in the equiva-
lence checker APEX [45]. Barthe et al. [4] proved a 2-Exptime decidability result
for checking equivalence of straight-line probabilistic programs (with determinis-
tic inputs and no loops nor recursion) interpreted over all possible extensions of
a finite field. Barthe et al. [3] developed a relational Hoare logic for probabilistic
programs, which has been extensively used for, amongst others, proving program
equivalence with applications in provable security and side-channel analysis.

The decidability result established in this paper is orthogonal to the afore-
mentioned results: (i) our decidability for checking L ∼ S applies to discrete
probabilistic programs L with unbounded looping behaviors over a possibly infi-
nite state space; the specification S – though, admitting no loops – encodes a
possibly infinite-support distribution; yet as a compromise, (ii) our decidability
result is confined to ReDiP programs that necessarily terminate almost-surely on
all inputs, and involve only distributions with rational closed-form PGF.

8 Conclusion and Future Work

We showed the decidability of – and have presented a fully-automated technique
to verifying – whether a (possibly unbounded) probabilistic loop is equivalent
to a loop-free specification program. Future directions include determining the
complexity of our decision problem; amending the method to continuous distri-
butions using, e.g., characteristic functions; extending the notion of probabilistic
equivalence to probabilistic refinements; exploring PGF-based counterexample-
guided synthesis of quantitative loop invariants (see [18, Appx. F.6] for generat-
ing counterexamples); and tackling Bayesian inference.

Acknowledgments. The authors thank Philipp Schröer for providing support for his
tool Probably (� https://github.com/Philipp15b/Probably) which forms the basis
of our implementation.

https://github.com/Philipp15b/Probably
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