®

Check for
updates

UCLID5: Multi-modal Formal Modeling,
Verification, and Synthesis

Elizabeth Polgreen’ 2@, Kevin Cheang!®™), Pranav Gaddamadugu®,
Adwait Godbole'®, Kevin Laeufer'®, Shaokai Lin'@®, Yatin A. Manerkar?,
Federico Mora! @, and Sanjit A. Seshia'
(o7.\V) CAV

Artifact ! UC Berkeley, Berkeley, USA Artifact
Evaluation elizabeth.polgreen®ed.ac.uk Evaluation
x 2 University of Edinburgh, Edinburgh, UK A
3 University of Michigan, Ann Arbor, USA

Abstract. UCLID5 is a tool for the multi-modal formal modeling, ver-
ification, and synthesis of systems. It enables one to tackle verification
problems for heterogeneous systems such as combinations of hardware
and software, or those that have multiple, varied specifications, or sys-
tems that require hybrid modes of modeling. A novel aspect of UCLID5
is an emphasis on the use of syntax-guided and inductive synthesis to
automate steps in modeling and verification. This tool paper presents
new developments in the UCLIDS5 tool including new language features,
integration with new techniques for syntax-guided synthesis and satisfia-
bility solving, support for hyperproperties and combinations of axiomatic
and operational modeling, demonstrations on new problem classes, and
a robust implementation.

1 Overview

Tools for formal modeling and verification are typically specialized for particu-
lar domains and for particular methods. For instance, software verification tools
like Boogie [4] focuses on modeling sequential software and Floyd-Hoare style
reasoning, while hardware verifiers like ABC [5] are specialized for sequential
circuits and SAT-based equivalence and model checking. Specialization makes
sense when the problems fit well within a homogeneous problem domain with
specific verification needs. However, there is an emerging class of problems, such
as in security and cyber-physical systems (CPS), where the systems under verifi-
cation are heterogeneous, or the types of specifications to be verified are varied,
or there is not a single type of model that is effective for verification. An example
of such a problem is the verification of trusted computing platforms [37] that
involve hardware and software components working in tandem, and where the
properties to be checked include invariants, refinement checks, and hyperprop-
erties. There is a need for automated formal methods and tools to handle this
class of problems.

UCLIDS5 is a system for multi-modal formal modeling, verification, and syn-
thesis that addresses the above need. UCLID5 is multi-modal in three impor-
tant ways. First, it permits different modes of modeling, using axiomatic and

© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 538-551, 2022.
https://doi.org/10.1007/978-3-031-13185-1_27

https://doi.org/10.1109/5.771073
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_27&domain=pdf
http://orcid.org/0000-0001-9032-7661
http://orcid.org/0000-0001-7704-304X
http://orcid.org/0000-0003-0942-7070
http://orcid.org/0000-0001-6885-5572
http://orcid.org/0000-0002-0725-9213
http://orcid.org/0000-0001-6190-8707
https://doi.org/10.1007/978-3-031-13185-1_27

UCLID5 539

operational semantics, or as combinations of concurrent transition systems and
procedural code. This enables modeling systems with multiple characteristics.
Second, it offers a varied suite of specification modes, including first-order for-
mulas in a combination of logical theories, temporal logic, inline assertions, pre-
and post-conditions, system invariants, and hyperproperties. Third, it supports
the first two capabilities with a varied suite of verification techniques, including
Floyd-Hoare style proofs, k-induction and bounded model checking (BMC), veri-
fying hyperproperties, or using syntax-guided and inductive synthesis to provide
more automation in tedious steps of verification, or to automate the modeling
process (as proposed in [34]).

The UCLID5 framework was first proposed in 2018 [35], itself a major evo-
lution of the much older UCLID system [6], one of the first satisfiability modulo
theories (SMT) based modeling and verification tools. Since that publication [35],
which laid out the vision for the tool and described a preliminary implementa-
tion, the utility of the tool has been demonstrated on several problem classes
(e.g., [7,8,25]), such as for verifying security across the hardware-software inter-
face. The syntax has been extended and state-of-the-art methods for syntax-
guided synthesis (SyGuS) have also been integrated into the tool [28], including
new capabilities for satisfiability and synthesis modulo oracles [32]. This tool
paper presents an overview of the latest version of UCLID5, highlighting novel
multi-modal aspects of the tool, as well as the new features supported since
2018 [35]. The paper is structured as follows: in Sect. 2 we give an overview of
the UCLIDS5 tool; in Sect. 3 we detail different multi-modal aspects of the tool,
as well as high-lighting new features; and in Sect. 4 we present a case study using
UCLID5 to verify a Trusted Abstract Platform. We cover related work in Sect. 5.
The new features we highlight are:

1. Fully integrated support for synthesis across all verification modes

2. Support for modeling with external oracles, via satisfiability and synthesis
modulo oracles [32]

3. New language features to support combining axiomatic and operational mod-

eling

Direct support for hyperproperties

Front-end translations from Chisel/FIRRTL to UCLID5, and from RISC-V

binaries to UCLIDS5, referenced in Sect. 6.

6. New case studies: covering models for distributed CPS in Lingua Franca [23],
and encodings of phb specifications and verification of a Trusted Abstract
Platform described in Sects. 3.2 and 4 and in the corresponding artifact [31].

2 Overview of UCLID5

o

In verification mode, UCLID5 reduces the question of whether a model satisfies
a given specification to a set of constraints that can be solved by an off-the-
shelf SMT solver. In synthesis mode, UCLID5 reduces the problem of finding
an interpretation for an uninterpreted function such that the specification is
satisfied into a SyGuS problem that can be solved by an off-the-shelf SyGuS
solver. In order to do so, UCLID5 performs the following main tasks, as shown
in Fig. 1:

540 E. Polgreen et al.

Front End: UCLID5 takes models written in the UCLID5 language as input.
The command-line front-end allows user configuration, including specifying the
external SMT-solver/SyGuS-solver to be used, as well as enabling certain utilities
such as automatically converting uninterpreted functions to arrays. The parser
builds an abstract syntax tree from the model.

AST Passes: UCLID5 performs a number of transformations and checks on the
abstract syntax tree, including type-checking and inlining of procedures. This
intermediate representation supports limited control flow such as if-statements
and switch-cases, but loops are not permitted in procedural code and are removed
via unrolling (bounded for-loops) or replacement with user-provided invariants
(while loops). However, unbounded control flow can be handled by representation
as transition systems (where each module consists of a transition system with
an initial and a next block, each represented as a separate AST).

Symbolic Simulator: The symbolic simulator performs a simulation of the tran-
sition system in the model, according to the verification command provided, and
produces a set of assertions. For instance, if bounded model checking is used,
UCLID5 will symbolically execute the main module a bounded number of times.
UCLID5 encodes the violation of each independent verification condition as a
separate assertion tree.

Synth-Lib Interface: UCLID5 supports both synthesis and verification. The
Synth-Lib interface constructs either a verification or a synthesis problem from
the assertions generated by the symbolic simulator. The verification problems
are passed to the SMT-LIB interface, which converts each assertion in UCLID5’s
intermediate representation to an assertion in SMT-LIB. Similarly, the synthesis
problems are passed to the SyGuS-IF interface, which converts each assertion
to an assertion in SyGuS-IF. The verification and synthesis problems are then
passed to the appropriate provided external solver and the result is reported
back to the user.

AST assert
Front-end |AST . Symbolic | tree [Synth-Lib Result +
transformation 5 A
parser Simulator interface c-example
passes
synth synth

IR IR
SMT-LIB SyGuS-IF
interface interface
model Q query model Q

SMT solver SyGusS solver

query

Fig. 1. Architecture of UCLID5

UCLID5 541

Basic UCLID5 Models. A simple UCLID5 model that computes the
Fibonacci sequence is shown in Fig.2. UCLID5 models are contained within
modules which comprise of 3 parts: a system model represented using combina-
tions of sequential, concurrent, operational and axiomatic modeling, as described
in Sects. 3.2; a system specification described in Sect. 3.1; and a proof script that
specifies the verification tasks UCLID5 should perform to prove that the system
satisfies its specification, using a variety of supported verification and synthesis
techniques described in Sect. 3.1.

3 Multi-modal Language Features

3.1 Multi-modal Verification and Synthesis

Specification. UCLID5 supports a variety of different types of specifications.
The standard properties supported include inline assertions and assumptions in
sequential code, pre-conditions and post-conditions for procedures, and global
axioms and invariants (both as propositional predicates, and temporal invariants
in Linear Temporal Logic (LTL)).

The latest version of UCLID5 further provides direct support for hyperinvari-
ants and hyperaxioms (for k-safety). This new support for direct hyperproperties
comprises of two new language constructs: hyperaxiom and hyperinvariant. The
former places an assumption on the behavior of the module, if n instances of the
module were instantiated, and the latter is an invariant over n instances of the
module, which is verified via the usual verification methods. A variable x from
the n*" instance of the module is reasoned about in the predicate using z.n, and
the number of modules instantiated is determined by the maximum n in both the
invariant and the axiom. For example, hyperinvariant [2] det xy: y.1==y.2
asserts that a 2-safety hyperproperty holds.

Verification. To verify these specifications, we implement multiple classic tech-
niques. As a result, once a model is written in UCLID5, the user can deploy a
combination of verification techniques, depending on the properties targeted.
UCLID5 supports a range of verification techniques including: Bounded Model
Checking (for LTL, hyperinvariants and assertion-based properties); induction
and k-induction for assertion-based invariants and hyperinvariants; and verifica-
tion of pre-and post-conditions on procedures and hyperinvariants.

As an exemplar of the utility of multi-modal verification, consider the hyper-
property based models verified by Sahai et al. [33]. These models use both pro-
cedure verification and induction to verify k-trace properties.

Synthesis. The latest version of UCLID5 integrates program synthesis fully
across all the verification modes previously described. Specifically, users are able
to declare and use synthesis functions anywhere in their models, and UCLID5
will seek to automatically synthesize function bodies for these functions such
that the user-selected verification task will pass. In this section, we give an illus-
trative example of synthesis in UCLID5, we provide the necessary background
on program synthesis, and then we formulate the existing verification techniques
inside of UCLIDS5 for synthesis.

542 E. Polgreen et al.

module main {

// Part 1: System Description.

var a, b : integer;
init {
¢ a, b=0, 1;
8 next {
) a’, b’ =b, a+ b;
10 }

12 // Part 2: System Specification.
13 invariant a_le b: a <= b;

15 // Part 3: (NEW) Synthesis Integration
16 synthesis function

17 h(x : integer, y : integer): boolean;
18 invariant hole: h(a, b);

20 // Part 4: Proof Script.
21 control {

22 induction;

23 check;

24 print__results;

Fig. 2. UCLID5 Fibonacci model. Part 3 shows the new synthesis syntax, and
how to find an auxiliary invariant.

Consider the UCLID5 model in Fig. 2. The user wants to prove by induction
that the invariant a_le_b at line 13 always holds. Unfortunately, the proof fails
because the invariant is not inductive. Without synthesis, the user would need to
manually strengthen the invariant until it became inductive. However, the user
can ask UCLID5 to automatically do this for them. Figure2 demonstrates this
on lines 16, 17 and 18. Specifically, the user specifies a function to synthesize
called h at lines 16 and 17, and then uses h at line 18 to strengthen the existing
set of invariants. Given this input, UCLID5, using e.g. ¢vC5 [3] as a syntax-
guided synthesis engine, will automatically generate the function h(x, y) = x
>= 0, which completes the inductive proof.

In this example, the function to synthesize represents an inductive invariant.
However, functions to synthesize are treated exactly like any interpreted function
in UCLID5: the user could have called h anywhere in the code. Furthermore, this
example uses induction and a global invariant, however, the user could also have
used a linear temporal logic (LTL) specification and bounded model checking
(BMC). In this sense, our integration is fully flexible and generic. Furthermore,
the integration scheme allows us to enable synthesis for any verification proce-
dure in UCLID5, by simply letting users declare and use functions to synthesize
and relying on existing SyGuS-IF solvers to carry out the automated reasoning.

3.2 Multi-modal Modeling

Combining Concurrent and Sequential Modeling. A unique feature of
the UCLID5 modeling language is the ability to easily combine sequential and
concurrent modeling. This allows a user to easily express models representing

UCLID5 543

sequential programs, including standard control flow, procedure calls, sequential
updates, etc., in a sequential model, and to combine these components within
a system designed for concurrent modeling based on transition systems. The
sequential program modeling is inspired by systems such as Boogie [4] and allows
the user to port Boogie models to UCLID5. The concurrent modeling is done by
defining transition systems with a set of initial states and a transition relation.
Within UCLID5, each module is a transition system. A main module can be
defined that triggers when each child module is stepped. For an example of
this combination of sequential and concurrent modeling, we refer the reader
to the CPU example presented in the original UCLID5 paper [35], which uses
concurrent modules to instantiate multiple CPU modules, modeled as transition
systems, with sequential code to model the code that executes instructions, and
to the case study in Sect. 4.

Reasoning with External Oracles. New in the latest version, UCLID5 sup-
ports the modeling with oracle function symbols [32] in both verification and
synthesis. Namely, a user can include “oracle functions” in any UCLID5 model,
where an oracle function is a function without a provided implementation, but
which is associated to a user-provided external binary that can be queried by
the solver. We note that oracle functions (and functions in general) can only be
first-order within the UCLID5 modeling language, i.e., functions cannot receive
functions as arguments.

This support is useful in cases where some components of the system are
difficult or impossible to model, but could be compiled into a binary that the
solver can query; or where the model of the system would be challenging for an
SMT solver to reason about (for instance, highly non-linear arithmetic), and it
may be better to outsource that reasoning to an external binary.

UCLID5 supports oracle function symbols in verification by interfacing with a
solver that supports Satisfiability Modulo Theories and Oracles (SMTO) [32], and
in synthesis by interfacing with a solver that supports Synthesis Modulo Oracles
(SyMO) [32].

Oracle function symbols are declared like functions, with the keyword oracle,
and an annotation pointing to the binary implementation. For instance oracle
function [isprime] Prime (x: integer): boolean would indicate to the
solver that the binary isprime takes an integer as input and returns a boolean.
This is translated into the corresponding syntax in SMTO or SyMO, as detailed
in [30].

An exemplar of such reasoning in a synthesis file is available in the arti-
fact [31], where we use UCLID5 to synthesize a safe and stabilizing controller
for a Linear Time Invariant system, similar to Abate et al. [1].

Combining Operational and Axiomatic Modeling. UCLID5 can model
a system being verified using an operational (transition system-based) app-
roach, as Fig. 2 shows. However, UCLID5 also supports modeling a system in an
axiomatic manner, whereby the system is specified as a set of properties over
traces. Any execution satisfying the properties is allowed by the system, and

544 E. Polgreen et al.

any execution violating the properties is disallowed. Axiomatic modeling can
provide order-of-magnitude performance improvements over operational models
in certain cases [2], and is often well suited to systems with large amounts of
non-determinism. We provide an example of fully axiomatic modeling in the
artifact [31].

However, uniquely, UCLID5 allows users to specify multi-modal systems
using a combination of operational and axiomatic modeling. In such models,
some constraints on the execution are enforced by the initial state and transi-
tion relation (operational modeling), while others are enforced through axiomatic
invariants (axiomatic modeling). This allows the user to choose the mode of mod-
eling most appropriate to each constraint. For example, the ILA-MCM work [39]
combined operational ILA (Instruction Level Abstraction) models to describe
the functional behavior of processing elements with memory consistency model
(MCM) orderings that are more naturally specified axiomatically [2]. (MCM
orderings constrain shared-memory communication and synchronization between
multiple processing elements.) The combined model, used for System-on-Chip
verification, worked by sharing variables (called “facets”) between both the mod-
els. UCLID5 makes it much easier to perform such a combination.

Figure 3 depicts parts of a UCLID5 model of microarchitectural execution
that uses both operational and axiomatic modeling (similar to that from the
ILA-MCM work), based on the uspec specifications of COATCheck [24]. In this
model, the steps of instruction execution are driven by the init and next blocks,
i.e., the operational component of the model. Multiple instructions can step at
any time (curTime denotes the current time in the execution), but they can only
take one step per timestep. Meanwhile, axioms such as the fifoFetch axiom
enforce ordering between the execution of multiple instructions. The fifoFetch
axiom specifically enforces that instructions in program order on the same core
must be fetched in program order. (Enforcing this order is tricky using opera-
tional modeling alone). The transition rules and axioms operate over the same
data structures, ensuring that executions of the final model abide by both sets
of constraints.

uspec models routinely function by grounding quantifiers over a finite
set of instructions. Thus, to fully support puspec axiomatic modeling, we
introduce two new language features —mnamely, groups and finite quanti-
fiers. A group is a set of objects of a single type. A group can have any
number of elements, but it must be finite, and the group is immutable
once created. For instance, the group testInstrs in Fig.3 consists of four
instructions. Finite quantifiers, meanwhile, are used to quantify over group
elements.

This example showcases UCLID5’s highly flexible multi-modal modeling
capability. Models can be purely operational, purely axiomatic, or a combination
of the two. Note that axiomatic modeling relies on the new language features
finite_forall and groups. For a further example of axiomatic and operational
multi-modal modeling, we refer the reader to the case study checking reachability
properties in reactive embedded systems described in the artifact [31].

UCLID5 545

module main {
var il, i2, i3, i4 : microop_t;

<set il-i4 to be the instructions of a test, like mp>

1

2 <type declarations>

3

A

5 group testInstrs : microop_t = {il, i2, i3, i4};

7 //Vars to decide which instrs to step and when.

8 var nextl, next2, next3, next4d : boolean;

9 var curTime : integer;

10

11 init {

12 il .Fetch.nExists = false; il.Execute.nExists = false;
13 <..>

15 //Axiom enforcing that instructions are fetched in order.
16 axiom fifoFetch

17 finite forall (i : microop_t) in testInstrs

18 finite forall (j : microop_t) in testInstrs

19 (ProgramOrder (i, j) && NodeExists(j.Fetch)) =—>

20 EdgeExists(i.Fetch, j.Fetch);

procedure stepInst(index : integer)
returns (instr_next : microop_t)

@ N R

//Steps instr@index, unless it has completed.
26 case

27 (index = 1) : {

28 instr__next = il;

29 if (linstr_next.Fetch.nExists) {

30 instr_next.Fetch.nExists = true;

1 instr_next.Fetch.nTime = curTime;
2 } else {

3 <...>

4 esac

36 next {

37 //Increment the current timestamp and

38 //nondeterministically step instructions.
39 curTime’ = curTime 4+ 1;

10 havoc nextl, next2, next3, next4d;

12 if (nextl) { ¢

13 if (next2) { call
14 if (next3) {

45 if (nextd) {

stepInst(1); }
stepInst(2); }
stepInst(3); }
stepInst(4); }

Fig. 3. UCLID5 model that incorporates both operational modeling (through
the init and next blocks) and axiomatic modeling (through the axiom keyword).

4 Case Study: TAP Model

The final case study we wish to describe verifies a model of a trusted execution
environment. Trusted execution environments [10,11,17,20] often provide a soft-
ware interface for users to execute enclaves, using hardware primitives to enforce
memory isolation. In contrast to software which requires reasoning about sequen-
tial code, hardware modeling uses a paradigm that permits concurrent updates
to a system. Moreover, verifying hyperproperties such as integrity requires rea-
soning about multiple instances of a system which most existing tools are not
well suited for. In this section, we present the UCLID5 port! of the Trusted

! https://github.com /uclid-org/trusted-abstract-platform/.

https://github.com/uclid-org/trusted-abstract-platform/

546 E. Polgreen et al.

Abstract Platform (TAP) which was originally? written in Boogie and intro-
duced by Subramanyan et al. [37] to model an abstract idealized trusted enclave
platform. We demonstrate how UCLID5’s multi-model support alleviates the
difficulties in modeling the TAP model in existing tools.

-

module tap {

2 // State variable declarations

var tap_ enclave__metadata_ valid: tap_enclave_metadata_ valid_t;

var tap_enclave_metadata_addr_map: tap_ enclave metadata_addr_map_t;

6 // Enclave operations

7 procedure launch(eid: tap_enclave id_t, ...) { ... }
8 S

9 init { ... } // initialize TAP

10 next { // step the system

11 case

12 (tap__current__mode = mode__untrusted) : {
13 call (...) = AdversarialStep (...);

14 }

15 (tap__current__mode == mode_enclave) : {

16 call (...) = EnclaveStep(...);

17 }

18 esac

19 }
20| }

1

22| module integrity proof {

2 // Create two instances of the TAP model

24 instance tap_1: tap(...);

25 instance tap_2: tap(...);

26 // Example invariant: Memory that is mapped are equal between the two traces
27 invariant equal _mem: (forall (pa : wap_addr t) ::

28 e_excl _map[pa] => (tap_1.mem[pa] = tap_2.mem[pa]));

30 init { ... } // initialize proof
31 next { // step the system
32 next (tap_1); next(tap_2);

34 control {

v = induction;
36 check;

32| }

Fig. 4. UCLID5 transition system-styled model of TAP and the integrity proof.

Modeling the TAP and Proving Integrity. The UCLID5 model of TAP in
Fig. 4 demonstrates some of UCLID5’s key features: the enclave operations of the
TAP model (e.g. launch) are implemented as procedures, and a transition rela-
tion of the TAP is defined using a next block that either executes an untrusted
adversary operation or the trusted enclave, which in turn executes one of the
enclave operations atomically. Proving the integrity hyperproperty on the TAP
thus only requires two instantiations of the TAP model, specifying the integrity
invariants, and defining a next block which steps each of the TAP instances
as shown in the integrity_proof module. The integrity proof in UCLID5 uses
inductive model checking.

2 https://github.com/0Otch/TAP.

https://github.com/0tcb/TAP

UCLID5 547

Results and Statistics of .
the TAP Modules. Tablel Table 1. Boogie vs UCLID5 Model Results

shows the approximate size of

the TAP model in both Boo- Model /Proof Size V(?I‘if.
gie and UCLID5. #pr, #fn, #pr #fn #an#In Time (s)
#an, and #In refer to the Boogie

number of procedures, func- TAP 22 25 254 1840 51
tions, annotations, and lines Integrity 14 11 71 835 346
of code respectively. Annota- UCLID5

tions are the number of loop TAP 53 25 87 2765 49
invariants, assertions, assump- Integrity 2 0 54 293 30

tions, pre- and post-conditions
that were manually specified. The verification time includes compilation and
solving.

While the #In for the TAP model in UCLID5 is higher than that of the model
in Boogie due to stylistic differences, the crucial difference is in the integrity
proof. The original model in Boogie implements the TAP model and integrity
proof as procedures, where the transition of the TAP model is implemented
as a while loop. However, this lack of support for modeling transition systems
introduces duplicate state variables in a hyperproperty such as integrity, requires
context switching and additional procedures for the new variables, which makes
the model difficult to maintain and self composition unwieldy. In UCLID5, the
proof is no longer implemented as a procedure, but rather, we create instances of
the TAP model. We also note that the number of annotations is less in UCLID5
compared to Boogie for the TAP model and proof. Additionally, this model
lends itself for more direct verification of hyperproperties.

The verification results are run on a machine with 2.6GHz 6-Core Intel Core
i7 and 16GB of RAM running OSX. As shown on the right of Tablel, the
verification runtimes between the Boogie and UCLID5 models and proofs are
comparable.

5 Related Work

There are a multitude of verification and synthesis tools related to UCLID5.
In this brief review, we highlight prominent examples and contrast them with
UCLID5 along the key language features described in Sect. 3.

UCLID5 allows users to combine sequential and concurrent modeling (see
Sect. 3.2). Most existing tools primarily support either sequential, e.g. [4,21,38],
or concurrent computation modeling, e.g. [5,9,14,26,27]. Although users of these
systems can often overcome the tool’s modeling focus by manually including
support for different computation paradigms, for example, Dafny can be used
to model concurrent systems [22], this is not always straightforward, and lim-
ited support for different paradigms can manifest as limitations in downstream
applications. For example, the Serval [29] framework, based on Rosette, cannot
reason about concurrent code. UCLIDS5, to the best of our knowledge, is the only
verification tool natively supporting modeling with external oracles.

548 E. Polgreen et al.

UCLID5 supports different kinds of specifications and verification procedures
(see Sect.3.1). Most existing tools [5,9,21] do not support multi-modal verifi-
cation at all. Tools that do offer multi-modal verification do not offer the same
range of options as UCLID5. For example, [26] does not support linear temporal
logic, and [13,27] does not support hyperproperty verification.

Finally, UCLID5 supports a generic integration with program synthesis (see
Sect.3.1), and so related work includes a number of synthesis engines. The
SKETCH system [36] synthesizes expressions to fill holes in programs, and has
subsequently been applied to program repair [16,19]. UCLID5 is more flexi-
ble than this work, and allows users to declare unknown functions even in the
verification annotations, as well as supporting multiple verification algorithms
and types of properties. Rosette [38] provides support for synthesis and verifi-
cation, but, unlike UCLID5, the synthesis is limited to bounded specifications
of sequential programs and external synthesis engines are not supported. Syn-
thesis algorithms have been used to assist in verification tasks, such as safety
and termination of loops [12], and generating invariants [15,40], but none of this
work to-date integrates program synthesis fully into an existing verification tool.
Before the new synthesis integration, UCLID5 supported synthesis of inductive
invariants. The key insight of this work is to generalize the synthesis support,
and to unify all synthesis tasks by re-using the verification back-end.

6 Software Project

The source code for UCLID5 is made publicly available under a BSD-license?.
UCLID5 is maintained by the UCLID5 team?, and we welcome patches from the
community. Additional front-ends are available for UCLID5, including transla-
tors from Firrtl [18]°, and RISC-V binaries® to UCLID5 models. An artifact
incuding the code for the case studies in this paper is available [31].

Acknowledgments. The UCLID5 project is grateful for the significant contributions
by Pramod Subramanyan, one of the original creators of the tool. This work was sup-
ported in part by NSF grant 1837132, the DARPA grant FA8750-20-C-0156 (LOGiCS),
by the Qualcomm Innovation Fellowship, and by Amazon and Intel.

References

1. Abate, A., et al.: Automated formal synthesis of provably safe digital controllers
for continuous plants. Acta Informatica 57(1-2), 223-244 (2020)

2. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data-mining for weak memory. ACM Trans. Programm. Lang. Syst.
(TOPLAS) 36, July 2014

3 https://github.com/uclid-org/uclid.

* https://github.com /uclid-org/uclid /blob/master/ CONTRIBUTORS.md.
5 https://github.com/uclid-org/chiselucl.

5 https://github.com /uclid-org/riscverifier.

https://github.com/uclid-org/uclid
https://github.com/uclid-org/uclid/blob/master/CONTRIBUTORS.md
https://github.com/uclid-org/chiselucl
https://github.com/uclid-org/riscverifier

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

UCLID5 549

Barbosa, H., et al.. CVCb5: a versatile and industrial-strength SMT solver. In:
TACAS (1), vol. 13243, pp. 415-442. Springer (2022)

Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364-387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17
Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24-40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5
Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78-92.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_7

Cheang, K., Rasmussen, C., Lee, D., Kohlbrenner, D., Asanovié¢, K., Seshia, S.A.:
Verifying RISC-V physical memory protection (2020)

Cheang, K., Rasmussen, C., Seshia, S.A., Subramanyan, P.: A formal approach to
secure speculation. In: Proceedings of the Computer Security Foundations Sympo-
sium (CSF), June 2019

Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of past LTL. In: Hu,
A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 245-259. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_18

Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch. 2016,
86 (2016)

Costan, V., Lebedev, 1., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: 25th USENIX Security Symposium (USENIX Security
16), pp. 857-874. USENIX Association, Austin, TX (2016)

David, C., Kroening, D., Lewis, M.: Using program synthesis for program analysis.
In: Davis, M., Fehnker, A., Mclver, A., Voronkov, A. (eds.) LPAR 2015. LNCS,
vol. 9450, pp. 483-498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48899-7_34

Dill, D.L.: The Murphi verification system. In: CAV (1996)

Dutertre, B., Jovanovié, D., Navas, J.A.: Verification of fault-tolerant protocols
with Sally. In: Dutle, A., Mufioz, C., Narkawicz, A. (eds.) NASA Formal Methods,
pp. 113-120. Springer, Cham (2018)

Fedyukovich, G., Bodik, R.: Accelerating syntax-guided invariant synthesis. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 251-269.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_14

Hua, J., Zhang, M., Wang, K., Khurshid, S.: Towards practical program repair
with on-demand candidate generation. In: ICSE, pp. 12-23. ACM (2018)

Intel: Intel trust domain extensions (2020). https://www.intel.com/content/www/
us/en/developer /articles/technical /intel-trust-domain-extensions.html
Izraelevitz, A., et al.: Reusability is FIRRTL ground: Hardware construction lan-
guages, compiler frameworks, and transformations. In: 2017 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp. 209-216, November
2017

Le, X.D., Chu, D., Lo, D., Goues, C.L., Visser, W.: S3: syntax- and semantic-
guided repair synthesis via programming by examples. In: ESEC/SIGSOFT FSE,
pp. 593-604. ACM (2017)

Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: EuroSys, pp. 38:1—
38:16. ACM (2020)

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/3-540-45657-0_7
https://doi.org/10.1007/978-3-540-30494-4_18
https://doi.org/10.1007/978-3-662-48899-7_34
https://doi.org/10.1007/978-3-662-48899-7_34
https://doi.org/10.1007/978-3-319-89960-2_14
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

550

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

E. Polgreen et al.

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348-370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
420

Leino, K.R.M.: Modeling concurrency in Dafny. In: Bowen, J.P., Liu, Z., Zhang,
Z. (eds.) SETSS 2017. LNCS, vol. 11174, pp. 115-142. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02928-9_4

Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a lingua franca for deter-
ministic concurrent systems. ACM Trans. Embed. Comput. Syst. 20(4), 36:1-36:27
2021

£ustig);, D., Sethi, G., Martonosi, M., Bhattacharjee, A.: Coatcheck: verifying mem-
ory ordering at the hardware-os interface. In: ASPLOS, pp. 233-247. ACM (2016)
Magyar, A., Biancolin, D., Koenig, J., Seshia, S.A., Bachrach, J., Asanovic, K.:
Golden Gate: Bridging the resource-efficiency gap between ASICs and FPGA
prototypes. In: Proceedings of the International Conference on Computer-Aided
Design (ICCAD), pp. 1-8, November 2019

Mann, M., et al.: Pono: a flexible and extensible SMT-based model checker. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 461-474. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_22

McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190-202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_12
Mora, F., Cheang, K., Polgreen, E., Seshia, S.A.: Synthesis in UCLID5. CoRR
abs/2007.06760 (2020)

Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling
symbolic evaluation for automated verification of systems code with serval. In:
SOSP, pp. 225-242. ACM (2019)

Padhi, S., Polgreen, E., Raghothaman, M., Reynolds, A., Udupa, A.: The SyGuS
Language Standard Version 2.1 (2014). https://sygus.org/assets/pdf/SyGuS-IF.
pdf

Polgreen, E., et al.: UCLID5 artifact. https://doi.org/10.5281/zenodo.6557711.
https://doi.org/10.5281/zenodo.6557711

Polgreen, E., Reynolds, A., Seshia, S.A.: Satisfiability and synthesis modulo oracles.
In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 263-284.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1_13

Sahai, S., Subramanyan, P., Sinha, R.: Verification of quantitative hyperproperties
using trace enumeration relations. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 201-224. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8_11

Seshia, S.A.: Combining induction, deduction, and structure for verification and
synthesis. Proc. IEEE 103(11), 2036-2051 (2015)

Seshia, S.A., Subramanyan, P.: UCLID5: integrating modeling, verification, syn-
thesis and learning. In: MEMOCODE, pp. 1-10. IEEE (2018)

Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4-13. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10672-9_3

Subramanyan, P., Sinha, R., Lebedev, I.A., Devadas, S., Seshia, S.A.: A formal
foundation for secure remote execution of enclaves. In: CCS, pp. 2435-2450. ACM
2017

'(forlal){, E., Bodik, R.: Growing solver-aided languages with rosette. In: Onward!,
pp. 135-152. ACM (2013)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-02928-9_4
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-3-030-53291-8_12
https://sygus.org/assets/pdf/SyGuS-IF.pdf
https://sygus.org/assets/pdf/SyGuS-IF.pdf
https://doi.org/10.5281/zenodo.6557711
https://doi.org/10.5281/zenodo.6557711
https://doi.org/10.1007/978-3-030-94583-1_13
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3

UCLID5 551

39. Zhang, H., Trippel, C., Manerkar, Y.A., Gupta, A., Martonosi, M., Malik, S.: ILA-
MCM: integrating memory consistency models with instruction-level abstractions
for heterogeneous system-on-chip verification. In: FMCAD, pp. 1-10 (2018)

40. Zhang, H., Yang, W., Fedyukovich, G., Gupta, A., Malik, S.: Synthesizing environ-
ment invariants for modular hardware verification. In: Beyer, D., Zufferey, D. (eds.)
VMCATI 2020. LNCS, vol. 11990, pp. 202—225. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-39322-9_10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-39322-9_10
https://doi.org/10.1007/978-3-030-39322-9_10
http://creativecommons.org/licenses/by/4.0/

	UCLID5: Multi-modal Formal Modeling, Verification, and Synthesis
	1 Overview
	2 Overview of UCLID5
	3 Multi-modal Language Features
	3.1 Multi-modal Verification and Synthesis
	3.2 Multi-modal Modeling

	4 Case Study: TAP Model
	5 Related Work
	6 Software Project
	References

