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Preface

It was our privilege to serve as the program chairs for CAV 2022, the 34th
International Conference on Computer-Aided Verification. CAV 2022 was held during
August 7–10, 2022. CAV-affiliated workshops were held on July 31 to August 1
and August 11 to August 12. This year, CAV was held as part of the Federated
Logic Conference (FLoC) and was collocated with many other conferences in
software/hardware verification and logic for computer science. Due to the easing of
COVID-19 travel restrictions, CAV 2022 and the rest of the FLoCwere in-person events.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAVat the cutting edgeof formalmethods research, and this year’s program is a reflection
of this commitment.

CAV 2022 received a high number of submissions (209). We accepted nine tool
papers, two case studies, and 40 regular papers, which amounts to an acceptance rate
of roughly 24%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as smart contracts, concurrency, machine learning,
probabilistic techniques, and industrially deployed systems. The program featured a
keynote talk by Ziyad Hanna (Cadence Design Systems and University of Oxford), a
plenary talk by Aarti Gupta (Princeton University), and invited talks by Arie Gurfinkel
(University of Waterloo) and Neha Rungta (Amazon Web Services). Furthermore, we
continued the tradition of Logic Lounge, a series of discussions on computer science
topics targeting a general audience. In addition to all talks at CAV, the attendees got
access to talks at other conferences held as part of FLoC.

In addition to the main conference, CAV 2022 hosted the following workshops:
Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), On the Not So
Unusual Effectiveness of Logic, Formal Methods Education Online, Democratizing
Software Verification (DSV), Verification of Probabilistic Programs (VeriProP),
Program Equivalence and Relational Reasoning (PERR), Parallel and Distributed
Automated Reasoning, Numerical Software Verification (NSV-XV), Formal Reasoning
in Distributed Algorithms (FRIDA), Formal Methods for Blockchains (FMBC),
Synthesis (Synt), and Workshop on Open Problems in Learning and Verification of
Neural Networks (WOLVERINE).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee (PC) for CAV 2022 consisted of 86 members – a
committee of this size ensures that each member has a reasonable number of papers to
review in the allotted time. In all, the committee members wrote over 800 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2022 PC for their outstanding efforts in evaluating
the submissions and making sure that each paper got a fair chance. Like recent years in
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CAV, wemade the artifact evaluation mandatory for tool paper submissions and optional
but encouraged for the rest of the accepted papers. The Artifact Evaluation Committee
consisted of 79 reviewers who put in significant effort to evaluate each artifact. The goal
of this process was to provide constructive feedback to tool developers and help make
the research published in CAV more reproducible. The Artifact Evaluation Committee
was generally quite impressed by the quality of the artifacts. Among the accepted regular
papers, 77% of the authors submitted an artifact, and 58% of these artifacts passed the
evaluation.We are very grateful to the Artifact Evaluation Committee for their hard work
and dedication in evaluating the submitted artifacts.

CAV 2022 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2022 a success. First, we would like to thank Maria A Schett and Daniel Dietsch for
chairing theArtifact Evaluation Committee andHari GovindVK for putting together the
proceedings.We also thankGrigory Fedyukovich for chairing theworkshop organization
and Shachar Itzhaky formanaging publicity.Wewould like to thank the FLoCorganizing
committee for organizing the Logic Lounge,Mentoringworkshop, and arranging student
volunteers. We also thank Hana Chockler for handling sponsorship for all conferences
in FLoC. We would also like to thank FLoC chair Alexandra Silva and co-chairs Orna
Grumberg and Eran Yahav for the support provided. Last but not least, we would like
to thank members of the CAV Steering Committee (Aarti Gupta, Daniel Kroening,
Kenneth McMillan, and Orna Grumberg) for helping us with several important aspects
of organizing CAV 2022.

We hope that you will find the proceedings of CAV 2022 scientifically interesting
and thought-provoking!

June 2022 Sharon Shoham
Yakir Vizel
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Abstract. Amazon Web Services (AWS) is a cloud computing services
provider that has made significant investments in applying formal meth-
ods to proving correctness of its internal systems and providing assurance
of correctness to their end-users. In this paper, we focus on how we built
abstractions and eliminated specifications to scale a verification engine
for AWS access policies, Zelkova, to be usable by all AWS users. We
present milestones from our journey from a thousand SMT invocations
daily to an unprecedented billion SMT calls in a span of five years. In
this paper, we talk about how the cloud is enabling application of formal
methods, key insights into what made this scale of a billion SMT queries
daily possible, and present some open scientific challenges for the formal
methods community.

Keywords: Cloud Computing · Formal Verification · SMT Solving

1 Introduction

Amazon Web Services (AWS) has made significant investments in developing and
applying formal tools and techniques to prove the correctness of critical internal
systems and provide services to AWS users to prove correctness of their own sys-
tems [24]. We use and apply a varied set of automated reasoning techniques at
AWS. For example, we use (i) bounded model checking [35] to verify memory safety
properties of boot code running in AWS data centers and of real-time operating
system used in IoT devices [22,25,26], (ii) proof assistants such as EasyCrypt [12]
and domain-specific languages such as Cryptol [38] to verify cryptographic pro-
tocols [3,4,23], (iii) HOL-Lite [33] to verify the BigNum implementation [2], (iv)
P [28] to test key storage components in Amazon S3 [18], and (v) Dafny [37] to
verify key authorization and crypto libraries [1]. Automated reasoning capabili-
ties for external AWS users leverage (i) data-flow analysis [17] to prove correct
usage of cloud APIs [29,40], (ii) monotonic SAT theories [14] to check properties
of network configurations [5,13], and (iii) theories for strings and automaton in
SMT solvers [16,39,46] to provide security for access controls [6,19].

This paper describes key milestones in our journey of generating billion SMT
queries a day in the context of AWS Identity and Access Management (IAM).
IAM is a system for controlling access to resources such as applications, data,
and workload in AWS. Resource owners can configure access by writing policies
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-13185-1_1
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that describe when to allow and deny user requests that access the resource.
These configurations are expressed in the IAM policy language. For example,
Amazon Simple Storage Service (S3) is an object storage service that offers data
durability, availability, security, and performance. S3 is used widely to store and
protect data for a range of applications. A bucket is a fundamental container in S3
where users can upload unlimited amounts of data in the form of objects. Amazon
S3 supports fine-grained access control to the data based on the needs of the user.
Ensuring that only intended users have access to their resource is important
for the security of the resource. While the policy language allows for compact
specifications of expressive policies, reasoning about the interaction between the
semantics of different policy statements can be challenging to manually evaluate,
especially in large policies with multiple operators and conditions.

To help AWS users secure their resources, we built Zelkova, a policy anal-
ysis tool designed to reason about the semantics of AWS access control policies.
Zelkova translates policies and properties into Satisfiability Modulo Theories
(SMT) formulas and uses SMT solvers to prove a variety of security properties
such as “Does the policy grant broad public access?” [6]. The SMT encoding uses
the theory of strings, regular expressions, bit vectors, and integer comparisons.
The use of the wildcards ∗ (any number of characters) and ? (exactly one char-
acter) in the string constraints makes the decision problem PSPACE-complete.
Zelkova uses a portfolio solver, where it invokes multiple solvers in the backend
and uses the results from the solver that returns first, in a winner takes all strat-
egy. This allows us to leverage the diversity among solvers and quickly solve
queries—a couple hundred milliseconds to tens of seconds. A sample of AWS
services that integrate Zelkova includes Amazon S3 (object storage), AWS
Config (change-based resource auditor), Amazon Macie (security service), AWS
Trusted Advisor (compliance to AWS best practices), and Amazon GuardDuty
(intelligent threat detection). Zelkova drives preventative control features such
as Amazon S3 Block Public Access and visibility into who outside an account
has access to its resources [19].

Zelkova is an automated reasoning tool developed by formal methods
experts and requires some degree of expertise in formal methods to use it. We
cannot expect all AWS users to be experts in formal methods, have the time to
be trained in the use of formal methods tools, or even be experts in the cloud
domain. In this paper, we present the three pillars of our solution that enable
Zelkova to be used by all AWS users. Using a combination of techniques such
as eliminating specifications, domain-specific abstractions, and advances in SMT
solvers we make the power of Zelkova available to all AWS users.

2 Eliminate Writing Specifications

End users will not write a specification

Zelkova follows a traditional verification approach where it takes as input a
policy and a specification, and produces a yes or no answer. We have devel-
opers and cloud administrators who author policies to govern access to cloud
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Fig. 1. An example AWS policy Fig. 2. Stratified abstraction search tree

resources. We have someone else, a security engineer, who writes a specification
of what is considered acceptable. The automated reasoning engine Zelkova
does the verification and returns a yes or no answer. This approach is effective
for a limited number of use cases, but it is hard to scale to all AWS users. The
bottleneck to scaling the verification effort is the human effort required to specify
what is acceptable behavior. The SLAM work had similar a observation about
specifications; for use of Static Driver Verifier, they needed to provide the tool
as well as the specification [7]. A person has to put in a lot of work upfront to
define acceptable behavior and only at the end of the process, they get back an
answer—a boolean. It’s a single bit of information for all the work they’ve put
in. They have no information about whether they had the right specification or
whether they wrote the specification correctly.

To scale our approach to all AWS users, we had to fundamentally rethink
our approach and completely remove the bottleneck of having people write a
specification. To achieve that, we flipped the rules of the game and made the
automated reasoning engine responsible for specification. We had the machine
put in the upfront cost. Now it takes as input a policy and returns a detailed
set of findings (declarative statements about what is true of the system). These
findings are presented to a user, the security engineer, who reviews these findings
and makes decisions about whether these findings represent valid risks in the
system that should be fixed or are acceptable behaviors of the system. Users are
now taking the output of the machine and saying “yes” or “no”.

2.1 Generating Possible Specifications (Findings)

To remove the bottleneck of specification, we changed the question from is this
policy correct? to who has access?. The response to the former is a boolean while
the response to the latter is a set of findings. AWS access control policies specify
who has access to a given resource, via a set of Allow and Deny statements that
grant and prohibit access, respectively. Figure 1 shows a simplified policy specify-
ing access to an AWS resource. This policy specifies conditions on the cloud-based
network (known as a VPC) for which the request originated and on the organi-
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zational Amazon customer (referred to by an Org ID) who made the request. The
first statement allows access to any request whose SrcVpc is either vpc-a or vpc-b.
The second statement allows access to any request whose OrgId is o-2. However,
the third statement denies access from vpc-b unless the OrgId is o-1.

For each request, access is granted only if: (a) some Allow statement matches
the request, and (b) none of the Deny statements match the request. Conse-
quently, it can be quite tricky to determine what accesses are allowed by a given
policy. First, individual statements can use regular expressions, negation, and
conditionals. Second, to know the effect of an allow statement, one must con-
sider all possible deny statements that can overlap with it, i.e., can refer to
the same request as the allow. Thus, policy verification is not compositional, in
that we cannot determine if a policy is “correct” simply by locally checking that
each statement is “correct.” Instead, we require a global verification mechanism,
that simultaneously considers all the statements and their subtle interactions,
to determine if a policy grants only the intended access.

For the example policy sketch shown in Fig. 1, access can be summarized
through a set of three findings, which say that access is granted to a request iff:

– Its SrcVpc is vpc-a, or,
– Its OrgId is o-2, or,
– Its SrcVpc is vpc-b and its OrgId is o-1.

The findings are sound as no other requests are granted access. The findings are
mostly precise; most of the requests match the conditions that are granted access.
The finding “OrgId is o-2” also includes some requests that are not allowed, e.g.,
when SrcVpc is vpc-b. To help understandability of the findings, we sacrifice this
precision. Precise findings would need to include negation, and that would add
complexity for the users to make decisions. Finally, the findings compactly summa-
rize the policy in three positive statements declaring who has access. In principle,
the notion of compact findings is similar to abstract counterexamples or minimiz-
ing counterexamples [21,30,32]. Since the findings are produced by the machine
and already verified to be true, we have a person deciding if they should be true.
The human is making a judgment call and expressing intent.

We use stratified predicate abstraction for computing the findings. Enumer-
ating all possible requests is computationally intractable, and even if it were
not, the resulting set of findings is far too large and hence useless. We tackle the
problem of summarizing the super-astronomical request-space by using predicate
abstraction. Specifically, we make a syntactic pass over the policy to extract the
set of constants that are used to constrain access, and we use those constants
to generate a family of predicates whose conjunctions compactly describe parti-
tions of the space of all requests. For example, from the policy in Fig. 1 we would
extract the following predicates

pa
.= SrcVpc = vpc-a, pb

.= SrcVpc = vpc-b, p�
.= SrcVpc = �,

q1
.= OrgId = o-1, q2

.= OrgId = o-2, q�
.= OrgId = �.

The first row has three predicates describing the possible value of the SrcVpc of the
request: that it equals vpc-a or vpc-b or some value other than vpc-a and vpc-b.
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pa∧q1 pa∧q2 pa∧q

pb∧q1 pb∧q2 pb∧q

p ∧q1 p ∧q2 p ∧q

Fig. 3. Cubes generated by the predicates pa, pb, p�, q1, q2, q� generated from the policy
in Fig. 1 and the result of querying Zelkova to check if the the requests corresponding
to each cube are granted access by the policy.

Similarly, the second row has three predicates describing the value of the OrgId of
the request: that it equals o-1 or o-2 or some value other than o-1 and o-2.

We can compute findings by enumerating all the cubes generated by the
above predicates and querying Zelkova to determine if the policy allows access
to the requests described by the cube. The enumeration of cubes is common in
SAT solvers and other predicate abstraction based approaches [8,15,36]. The
set of all the cubes are shown in Fig. 3. The chief difficulty with enumerating
all the cubes greedily is that we end up eagerly splitting-cases on the values of
fields when that may not be required. For example, in Fig. 3, we split cases on
the possible value of OrgId even though it is irrelevant when SrcVpc is vpc-a.
This observation points the way to a new algorithm where we lazily generate the
cubes as follows. Our algorithm maintains a worklist of minimally refined cubes.
At each step, we (1) ask Zelkova if the cube allows an access that is not covered
by any of its refinements; (2) if so, we add it to the set of findings; and (3) if
not, we refine the cube “point-wise” along the values of each field individually
and add the results to the worklist. The above process is illustrated in Fig. 2.

The specifications or findings generated by the machine are presented in the
context of the access control domain. The developers do not have to learn a
new means to specify correctness, think about what they want to be correct
of the system, or check the completeness of their specifications. This is a very
important lesson that we need to apply across many other applications for formal
methods to be successful at scale. The challenge here is the specifics depend on
the domain.

3 Domain-Specific Abstractions

It’s all about the end user

Zelkova was developed by formal methods subject matter experts who learnt
domain of AWS access control policies. Once we had the analysis engine, we faced
the same challenges all other formal methods tool developers had before us. How
do we make it accessible to all users? One hard earned lesson was “eliminating
the need for specifications” as discussed in the previous section. But that was
only part of the answer. There was a lot more to do. Many more questions to
answer—How do we get users to use it? How do we present the results to the
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Fig. 4. Interface that presents Access Analyzer findings to users.

users? How do the results stay updated? The answer was to design and build
domain-specific abstractions. Do one thing and do it really well.

We created a higher level service on top of Zelkova called IAM Access
Analyzer. We provide a one-click way to enable Access Analyzer for an AWS
account or AWS Organization. An account in AWS is a fundamental construct
that serves as a container for the user’s resources, workloads, and data. Users
can create policies to grant access to resources in their account to other users.
In Access Analyzer, we use the account as a zone of trust. This abstraction lets
us say that access to resources by users within their zone of trust is considered
safe. But access to resources outside their zone of trust is potentially unsafe.

Once a user enables Access Analyzer, we use stratified predicate abstraction
to analyze the policies and generate findings showing which users outside the zone
of trust have access to resources. We had to shift from a mode where Zelkova
can answer “any access query” to Zelkova can enumerate “who has access to
what”. This brings to attention the permissions that could lead to unintended
access of data. While this idea seems simple in hindsight, it took us a couple of
years to figure out the right abstraction for the domain. It can be used by all
AWS users. They did not need to be experts in the area of formal methods or
even have deep understanding of how access control in the cloud worked.

Each finding includes details about the resource, the external entity with
access to it, and the permissions granted so that the user can take appropri-
ate action. We present example findings in Fig. 4. Note these findings are not
presented as SMT-lib formulas but rather in the domain that the user expects—
AWS access control constructs. These map to the findings presented in the pre-
vious section for Fig. 1. Users can view the details included in the finding to
determine whether the access is intentional or a potential risk that the user
should resolve.

Most automated reasoning tools are run as a one-off: prove something, and
then move on to the next challenge. In the cloud environment this was not
the case. Doing the analysis once was not sufficient in our domain. We had
to design a means to continuously monitor the environment and changes to
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access control policies within the zone of trust and update the findings based
on that. To that end, Access Analyzer analyzes these policies if a user adds a
new policy, or changes an existing policy, and either generates new findings, or
removes findings, or updates the existing findings. Access Analyzer also analyzes
all policies periodically, to ensure that in a rare case, if a change event to the
policy is missed by the system, it is still able to keep the findings updated. The
ease of enablement, just-in-time analysis on updates, and periodic analysis across
all policies are the key factors in getting us to a billion queries daily.

4 SMT Solving at Cloud Scale

Every query matters

The use of SMT solving in AWS features and services means that millions of
users are relying on the correctness and timeliness of the underlying solvers for
the security of their cloud infrastructure. The challenges around correctness and
timeliness in solver queries have been well studied in the automated reasoning
community, but they have been treated as independent features. Today, we are
generating a billion SMT queries every day to support various use cases across
a wide variety of AWS services. We have discovered an intricate dependency
between correctness and timeliness that manifests at this scale.

4.1 Monotonicity in Runtimes Across Solver Versions

Zelkova uses a portfolio solver to discharge its queries. When given a query,
Zelkova invokes multiple solvers in the backend and uses the results from the
solver that returns first, in a winner takes all strategy [6]. The portfolio app-
roach allows us to leverage the diversity amongst solvers. One of our goals is
to leverage the latest advancements in the SMT solver community. SMT solver
researchers and developers are fixing issues, making improvements to existing
features, adding new theories, adding features such as generation of proofs, and
making other performance improvements. Before deploying a new version of the
solver within the production environment, we perform extensive offline testing
and benchmarking to gain confidence in the correctness of the answers, perfor-
mance of the queries, and ensure there are no regressions.

While striving for correctness and timeliness, one of the challenges we face
is that new solver versions are not monotonically better in their performance
than their previous version. A solution that works well in the cloud setting is a
massive portfolio, sometimes even containing older versions of the same solver.
This presents two issues. One, when we discover a bug in an older version of
the solver, we need to patch this old version. This creates an operational bur-
den of maintaining many different versions of the different solvers. Two, when
the number of solvers increases, we need to ensure that each solver provides a
correct result. Checking the correctness of queries that result in SAT is straight-
forward, but SMT solvers need to provide proof for the UNSAT queries. The
proof generation and checking needs to be timely as well.
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Fig. 5. Comparing the runtime for solving SMT queries generated by Zelkova by
CVC4 and the different cvc5 versions (a) CVC4 vs. cvc5 version 0.0.4, (b) CVC4 vs.
cvc5 version 0.0.7. Comparing the runtimes of winner take all in the portfolio solver
of Zelkova with: (c) a portfolio solver consisting of Z3 sequence string solver, Z3
automata solver, and cvc5 version 0.0.4 (d) a portfolio solver consisting of Z3 sequence
string solver, Z3 automata solver, and cvc5 version 0.0.7. Evaluating the performance
of the latest cvc5 version 1.0.0 with its older versions (e) cvc5 version 0.0.4 and (f) cvc5
version 0.0.7
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In the Zelkova portfolio solver [6], we use CVC4, and our original goal was to
replace CVC4 with the then latest version of cvc5 (version 0.0.4)1. We wanted
to leverage the proof checking capabilities of cvc5 to ensure the correctness of
UNSAT queries [11]. To check the timeliness requirements, we ran experiments
across our benchmarks, comparing the results of CVC4 to those of cvc5 (version
0.0.4). The results across a representative set of queries are shown in Fig. 5(a).
In the graph we have approximately 15,000 SMT queries that are generated by
Zelkova; we select a distribution of queries that are solved between 1 s and 30 s,
after which the solver process is killed and a timeout is reported. Some queries
that are not solved by CVC4 within the time bound of 30 s are now being solved
by cvc5 (version 0.0.4), as seen by the points in the graph along the y-axis on
the extreme right. However, cvc5 (version 0.0.4) times out on some queries that
are solved by CVC4, as seen by the points on the top of the graph.

The results presented in Fig. 5(b) are not surprising given that the problem
space is computationally hard, and there is an inherent randomness in search
heuristics within SMT solvers. In an evaluation of cvc5, the authors discuss
examples where CVC4 outperforms cvc5 [10]. But this poses a challenge for us
when we are using the result of these solvers in security controls and services that
millions of users rely on. The changes did not meet the timeliness requirement
of continuing to solve the queries within 30 s. When a query times out, to be
sound, the analysis marks the bucket as public. The impact of a query timing
out, that was previously being solved, will lead to the user not being able to
access the resource. This is unexpected for the user because there was no change
in their configuration.

For example, consider the security checks in the Amazon S3 Block Public
Access that block requests based on the results of the analysis. In this context,
suppose that there was a bucket marked as “not public” based on the results
of a query, and now that same query times out; the bucket will be marked as
“public”. This will lock down access to the bucket and the intended users will
not be able to access it. Even a single regression that leads to loss of access for
the user is not an acceptable change. As another example, these security checks
are also used by IoT devices. In the case of a smart lock, a time out in the query
that was previously being solved could lead to a loss of access to the user’s home.
The criticality of these use cases combined with the end user expectation is a
key challenge in our domain.

We debugged and fixed the issue in cvc5 that was causing certain queries
to time out. But even with this fix, CVC4 was 2x faster than cvc5 for many
easier problems that took 1 s to solve originally. This slowdown was significant
for us because Zelkova is called in the request path of security controls such as
Amazon S3 Block Public Access. When a user attempts to attach a new access
control policy or update an existing one, a synchronous call is made to Zelkova
and the corresponding portfolio solvers to determine if the access control policy

1 Note that while this section talks in detail about the CVC solver, the observations are
common across all solvers. We select the results of the CVC solver as a representative
because it is a mature solver with an active community.
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being attached grants unrestricted public access or not. The bulk of the analysis
time is spent in the SMT solvers, so doubling the analysis time for queries can
lead to a degraded user experience. Where and how the analysis results are used
plays an important role in how we track changes to the timeliness of the solver
queries.

Our solution was to add a new solver to the portfolio rather then replace an
existing solver. We added cvc5 (version 0.0.7) to the existing portfolio of solvers
consisting of CVC4, Z3 with the sequence string solver, and a custom Z3-based
automata solver. When we started the evaluation of cvc5, we did not plan to add
a new version of the CVC solver to the portfolio. We had expected to the latest
version of cvc5 to be comparable in timeliness to CVC4. We worked closely with
the CVC developers and cvc5 was better on many queries, but it did not meet
our timeliness requirements on all queries. This led to our decision to add cvc5
(version 0.0.7) to the Zelkova portfolio solver.

The results of comparing the portfolio solvers of two Z3 solvers, CVC4 and
cvc5 (version 0.0.4) with a winner take all and portfolio solver without cvc5 (ver-
sion 0.0.4) is shown in Fig. 5(c). The same configuration now with cvc5 (version
0.0.7) is shown in Fig. 5(d). The results show that the portfolio solving approach
that Zelkova takes in the cloud is an effective one.

The cycle now repeats with cvc5 (version 1.0.0), and the same question comes
up again. The question we are evaluating yet again is, “do we upgrade the
existing cvc5 version with the latest or add yet another version of CVC to the
portfolio solver”. Some early experiments show that there is no clear answer
yet. The results so far comparing the different version of cvc5 shown in Fig. 5(e)
and (f) indicate that the latest version of cvc5 is not monotically better in
performance than either of its previous versions. We do want to leverage the
better proof generating capabilities of cvc5 (version 1.0.0) in order to gain more
assurance in the correctness of the UNSAT queries.

4.2 Stability of the Solvers

We have spent quite a bit of time defining and implementing the encoding of the
AWS access control policies into SMT. We update the encoding as we expand
to more use cases or when we support new features in AWS. This is a slow and
careful process that requires expertise in understanding AWS and how SMT
solvers work. There is a lot of trial and error to figure out what encoding is
correct and performant.

To illustrate the importance of the encoding, we present an experiment on
solver runtimes with different ordering of clauses for our encoding (Fig. 6). For
the same set of problem instances used in Fig. 5, we now use the standard SMT
competition shuffler2 to reorder assertions, terms, and rename variables to study
the effect of ordering clauses for our default encoding. In Fig. 6, each point on
the x axis corresponds to a single problem instance. For the problem instance,
we run it in its original form (default encoding) which is the “base time”, and

2 https://github.com/SMT-COMP/scrambler.

https://github.com/SMT-COMP/scrambler
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Fig. 6. Variance in runtimes after shuffling terms in the problem instances.
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five shuffled versions. This gives us a total of six versions of the problem; we
record the min, max, and mean times. So for each problem instance, x we have:

1. (x, base time): time on the original problem;
2. (x, min time): minimal time on the original and 5 shuffled problems;
3. (x, max time): maximal time on the original and 5 shuffled problems; and
4. (x, mean time): mean time on the original and 5 shuffled problems.

The instances are sorted by ‘base time’ so the line looks smooth in base time, and
the other points look more scattered. The comparison between CVC4 in Fig. 6(a)
and Fig. 6(b) cvc5 shows that cvc5 can solve more problems with the default
encoding shown by the smooth base line. However, when we shuffle the asser-
tions, terms and other constructs in the problem instance, the performance of
cvc5 varies more dramatically compared to that of CVC4. The points for the
maximal time are spread wider across the graph and there are now several time-
outs in Fig. 6(b).

4.3 Concluding Remarks

Based on our experience from generating a billion SMT queries a day, we pro-
pose some general areas of research for the community. We believe these are
key to enabling the use of solvers to evaluate security controls, and to enable
applications in emerging technologies such as quantum computing, blockchains,
and bio-engineering.

Monotonicity and Stability in Runtimes. One of the main challenges we
encountered is the lack of monotonicity and stability in runtimes within a given
solver version and across different versions. Providing this stability is a funda-
mentally hard problem due to the inherent randomness in SMT solver heuristics,
search strategies, and configuration flags. One approach would be to incorporate
the algorithm portfolio approach [31,34,42] within mainstream SMT solvers. A
way enable algorithm portfolio is to leverage serverless and cloud computing
environment, and develop parallel SMT solving and distributed search strate-
gies. At AWS, this is an area that we are investing in as well. There has been
some work in parallel and distributed SMT solving [41,45] but we need more.
Another aspect of research would be to develop specialized solvers that focus on
a specific class of problems. The SMT-comp could devise categories that allow
room for specific types of problem instances as an incentive for developing these
solvers.

Reduce the Barrier to Entry. Generating a billion SMT queries day is a
result of the exceptional work and innovation of the entire SMT community
over the past 20 years. A question we are thinking about is how to replicate
the success described here for other domains in Amazon and elsewhere. There
is a natural tendency in the formal methods community to target tools for the
expert user. This limits their broader use and applicability. If we can find ways
to lower the barrier to adoption, we can gain greater traction and improve the
security, correctness, availability, and robustness of more systems.
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More Abstractions. SMT solvers are powerful engines. One potential research
direction for the broader community is to provide one or more higher level lan-
guages that allows people to specify their problems. We could create different
languages based on the domain and take into account the expectations of devel-
opers. This would make interacting with a solver a more black-box exercise. The
success we have had with SMT in Amazon, can be recreated in other domains
if we provide developers the ability to easily encode their problems in a higher
level language and use SMT solvers to solve them. It will more easily scale by not
requiring a formal methods expert as an intermediary. Developing new abstrac-
tions or intermediate representations could be one approach to unlock billions
of other SMT queries.

Proof Generation. All SMT solvers should be generating proofs to help the
end-user gain confidence in the results. There has been some initial work in this
area [9,20,27,43,44],but SMT has a long way to catch up with SAT solvers,
and for good reason. The proof production is important for us gain greater
confidence in the correctness of our answers, though it creates a tension with the
timeliness. We need the proof production to be performant and the tools that
check the generated proofs to be correct themselves. Continued push on different
testing approaches, including fuzzing and property-based testing of SMT solvers,
should continue with the same rigor and enthusiasm. Using these fuzz testing
and mutation testing based techniques in the development workflow of SMT
solvers is something that should become mainstream.

We are working to provide a set of benchmarks that can be leveraged by
SMT developers to help further their work, are funding research grants in these
areas, and are willing to evaluate new solvers.
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Abstract. Many problems in program verification, Model Checking,
and type inference are naturally expressed as satisfiability of a verifica-
tion condition expressed in a fragment of First-Order Logic called Con-
strained Horn Clauses (CHC). This transforms program analysis and
verification tasks to the realm of first order satisfiability and into the
realm of SMT solvers. In this paper, we give a brief overview of how
CHCs capture verification problems for sequential imperative programs,
and discuss CHC solving algorithm underlying the Spacer engine of
SMT-solver Z3.

1 Introduction

First Order Logic (FOL) is a powerful formalism that naturally captures many
interesting decision (and optimization) problems. In recent years, there has been
a tremendous progress in automated logic reasoning tools, such as Boolean SAT-
isfiability Solvers (SAT) and Satisfiability Modulo Theory (SMT) solvers. This
enabled the use of logic and logic satisfiabilty solvers as a universal solution to
many problems in Computer Science, in general, and in Program Analysis, in
particular. Most new program analysis techniques formalize the desired analysis
task in a fragment of FOL, and delegate the analysis to a SAT or an SMT solver.
Examples include deductive verification tools such as Dafny [30] and Why3 [13],
symbolic execution engines such as KLEE [7], Bounded Model Checking engines
such as CBMC [10] and SMACK [9], and many others.

In this paper, we focus on a fragment of FOL called Constrained Horn
Clauses (CHC). CHCs arise in many applications of automated verification.
They naturally capture such problems as discovery and verification of induc-
tive invariants [4,18]; Model Checking of safety properties of finite- and
infinite-state systems [2,23]; safety verification of push-down systems (and their
extensions) [4,28]; modular verification of distributed and parameterized sys-
tems [17,19,33]; and type inference [35,36], and many others.

Using CHC, developers of program analysis tools can separate the process of
developing a proof methodology (also known as generation of Verification Con-
dition (VC)) from the algorithmic details of deciding whether the VC is correct.
Such a flexible design simplifies supporting multiple proof methodologies, mul-
tiple languages, and multiple verification tasks with a single framework. Today,
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 19–29, 2022.
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there are multiple effective program verification tools based on the CHC method-
ology, including a C/C++ verification framework SeaHorn [18], a Java verifica-
tion framework JayHorn [25], and an Android information flow verification tool
HornDroid [8], a Rust verification framework RustHorn [31], Solidity veri-
fication tools SmartACE [37] and Solidity Compiler Model Checker [1]. Many
more approaches utilize CHC as part of a more general verification solution.

The idea of reducing program verification (and model checking) to FOL sat-
isfiability is well researched. A great example is the use of Constraint Logic Pro-
gramming (CLP) [24] in program verification, or the use of Datalog for pointer
analysis [34]. What is unique is the application of SMT-solvers in the decision
procedure and lifting of techniques that have been developed in Model Check-
ing and Program Verification communities to the uniform setting of satisfiabilty
of CHC formulas. In the rest of this paper, we show how verification prob-
lems can be represented in CHCs (Sect. 2), and describe key algorithms behind
Spacer [27], a CHC engine of the SMT solver Z3 [32] that is used to solve them
(Sect. 3).

2 Logic of Constrained Horn Clauses

In this section, we give a brief overview of Constrained Horn Clauses (CHC). We
illustrate an application of CHC to verification of a simple imperative program
with a loop.

The logic of Constrained Horn Clauses is a fragment of FOL. We assume
that the reader is familiar with the basic concepts of FOL, including signatures,
theories, and models. For the purpose of this presentation, let Σ be some fixed
FOL signature and A be an FOL theory over Σ. For example, Σ is a signature
for arithmetic, including constants 0, and 1, and a binary function · + ·, and A
the theory of Presburger arithmetic. A Constrained Horn Clause (CHC) is an
FOL sentence of the form:

∀V · (ϕ ∧ p1(X1) ∧ · · · ∧ pk(Xk) =⇒ h(X)) (1)

where V is the set of all free variables in the body of the sentence, {pi}ki=1

and h are uninterpreted predicate symbols (in the signature), {Xi}ki=1 and X
are first-order terms, and p(X) stands for application of predicate p to a list of
terms X.

A CHC in Eq. (1) can be equivalently written as the following clause:

(¬ϕ ∨ ¬p1(X1) ∨ · · · ∨ ¬pn(Xn) ∨ h(X)) (2)

where all free variables are implicitly universally quantified. Note that in this
case only h appears positively, which explains why these are called Horn clauses.
We write CHC(A) to denote the set of all sentences in FOL modulo theory A
that can be written as a set of Constrained Horn Clauses. A sentence Φ is in
CHC(A) if it can be written as a conjunction of clauses of the form of Eq. (1).
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Fig. 1. A program and its verification conditions in CHC.

A CHC(A) sentence Φ is satisfiable if there exists a model M of A extended
with interpretation for all of the uninterpreted predicates in Φ such that M sat-
isfies Φ, written M |= Φ. In practice, we are often interested not in an arbitrary
model, but a model that can be described concisely in some target fragment of
FOL. We call such models solutions. Given an FOL fragment F , an F-solution
to a CHC(A) formula Φ is a model M such that M |= Φ and interpretation of
every uninterpreted predicate in M is definable in F . Most commonly, F is taken
to be either a quantifier free or universally quantified fragment of arithmetic A,
often further extended with arrays.

Example 1. To illustrate the definitions above consider a C program of a simple
counter shown in Fig. 1. The goal is to verify that the assertion at the end of the
program holds on every execution. To verify the assertion using the principle
of inductive invariants, we need to show that there exists a formula Inv(x)
over program variable x such that (a) it is true before the loop, stable at every
iteration of the loop, and guarantees the assertion when the loop terminates.
Since we are interested in partial correctness, we are not concerned with the case
when the loop does not terminate. This principle is naturally encoded as three
Constrained Horn Clauses, shown in the in Fig. 1. The uninterpreted predicate
Inv represents the inductive invariant. The program is correct, hence the CHCs
are satisfiable. The satisfying model extends the theory of arithmetic with the
following definitions of Inv :

InvM = {z | z ≤ 5} (3)

The CHCs also have a solution in the quantifier free theory of Linear Integer
Arithmetic. In particular, Inv can be defined as follows:

Inv = λz · z ≤ 5 (4)

where the notation function with argument x and body ϕ.
The CHCs in this example can be expressed as an SMT-LIB script, shown

in Fig. 2, and solved by Spacer engine of Z3. Note that the script uses some
Z3-specific extensions, including logic HORN and several option that disable pre-
processing (which is not necessary for such a simple example).

��

Example 2. Figure 3 shows a similar program, however, with a function inc that
abstracts away the increment operation. The corresponding CHCs are also shown
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Fig. 2. CHCs from Fig. 1 in SMT-LIB format.

Fig. 3. A program with a function and its verification conditions in CHC.

in Fig. 3. There are two unknowns, Inv that represents the desired inductive
invariant, and Inc that represents the summary (i.e., pre- and post-conditions,
or an over-approximation) of the function inc. Since the program still satisfies
the assertion, the CHCs are satisfiable, and have

InvM = {z | z ≤ 5} = λz · z ≤ 5 (5)

IncM = {(z, r) | r = z + 1} = λz, r · r ≤ z + 1 (6)

The corresponding SMT-LIB script is shown in Fig. 4. ��
Example 3. In this last example, consider a set of CHCs shown in Fig. 5. They
are similar to CHCs in Fig. 1, with one exception. These CHCs are unsatisfiable.
There is no interpretation of Inv to satisfy them. This is witnessed by a refutation
– a resolution proof – shown in Fig. 6. The corresponding SMT-LIB script in
shown in Fig. 7. ��

3 Solving CHC Modulo Theories

The logic of CHC can be seen as a convenient modelling language. That is, it does
not restrict or impose a preference on a decision procedure used to solve the prob-
lem. In fact, a variety of solvers and techniques are widely available, including
Spacer [28] (that is available as part of Z3), FreqHorn [12], and ELDARICA [22].
There is also an annual competition, CHC-COMP1, to evaluate state-of-the-art
solvers. In the rest of this section, we give a brief overview of the algorithm
underlying Spacer.
1 https://chc-comp.github.io/.

https://chc-comp.github.io/
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Fig. 4. CHCs from Fig. 3 in SMT-LIB format.

Fig. 5. An example of unsatisfiable CHCs.

Spacer is an extension and generalization of SAT-based Model Checking
algorithms to CHC modulo SMT-supported theories. On propositional transition
systems, Spacer behaves similarly to IC3 [6] and PDR [11], and can be seen as
an adaptation of these algorithms. For other first-order theories, Spacer extends
Generalized PDR of Hoder and Bjørner [21].

Given a CHC system Φ, Spacer works by iteratively looking for a bounded
derivation of false from Φ. It explores Φ in a top-down (or backwards) direction.
Each time Spacer fails to find a derivation of a fixed bound N , the reasons for
failure are analyzed to derive consequences of Φ that explain why a derivation
of false must have at least N + 1 steps. This process is repeated until either (a)
false is derived and Φ is shown to be unsatisfiable, (b) the consequences form a
solution to Φ, thus, showing that Φ satisfiable, or (c) the process continues indefi-
nitely, but continuously ruling out impossibility of longer and longer refutations.
Thus, even though the problem is in general undecidable, Spacer always makes
progress trying to show that Φ is unsatisfiable or that there is no short proof of
unsatisiability.

Spacer is a procedure for solving linear and non-linear CHCs. For conve-
nience of the presentation, we restrict ourselves to a special case of non-linear
CHCs that consists of the following three clauses:

Init(X) ⇒ P (X) (7)
P (X) ⇒ Bad(X) (8)

P (X) ∧ P (Xo) ∧ Tr(X,Xo,X ′) ⇒ P (X ′) (9)
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Fig. 6. Refutation proof for CHCs in Fig. 5.

Fig. 7. CHCs from Fig. 5 in SMT-LIB format.

where, X is a set of free variables, X ′ = {x′ | x ∈ X} and Xo = {xo | x ∈ X}
are auxiliary free variables, Init , Bad , and Tr are FOL formulas over the free
variables (as indicated), and P is an uninterpreted predicate. Recall that all
free variables in each clause are implicitly universally quantified. Thus, the only
unknown to solve for is the uninterpreted predicate P . We call these three clauses
a safety problem, and write 〈Init(X),Tr(X,Xo,X ′),Bad(X)〉 as a shorthand to
represent them. It is not hard to show that satisfiability of arbitrary CHCs is
reducible to a safety problem. Thus, this simplification does not lose generality. In
practice, Spacer directly supports more complex CHCs with multiple unknown
uninterpreted predicates.

Before presenting the algorithm, we need to introduce two concepts from
logic: Craig Interpolation and Model Based Projection.

Craig Interpolation. Given two formulas A[�x, �z] and B[�y, �z] such that A ∧ B
is unsatisfiable, a Craig interpolant I[�z] = Itp(A[�x, �z], B[�y, �z]), is a formula
I[�z] such that A[�x, �z] ⇒ I[�z] and I[�z] ⇒ ¬B[�y, �z]. We further require that the
interpolant is a clause. Intuitively, the interpolant I captures the consequences
of A that are inconsistent with B. If A is a conjunction of literals, the interpolant
can be seen as a semantic variant of an UNSAT core.

Model Based Projection. Let ϕ be a formula, U ⊆ Vars(ϕ) a subset of variables
of ϕ, and P a model of ϕ. Then, ψ = Mbp(U,P, ϕ) is a model based projection
if (a) ψ is a monomial, (b) Vars(ψ) ⊆ Vars(ϕ) \ U , (c) P |= ψ, (d) ψ ⇒
∃V · ϕ. Intuitively, an MBP is an under-approximation of existential quantifier
elimination, where the choice of the under-approximation is guided by the model.
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Input: A safety problem 〈Init(X),Tr(X, Xo, X′),Bad(X)〉.
Output: Unreachable or Reachable
Data: A cex queue Q , where a cex c ∈ Q is a pair 〈m, i〉, m is a cube over

state variables, and i ∈ N. A level N . A set of reachable states Reach.

A trace F0, F1, . . .
Notation: F(A, B) = Init(X′) ∨ (A(X) ∧ B(Xo) ∧ Tr), and F(A) = F(A, A)
Initially: Q = ∅, N = 0, F0 = Init , ∀i > 0 · Fi = ∅, Reach = Init
Require: Init → ¬Bad
repeat

Unreachable If there is an i < N s.t. Fi ⊆ Fi+1 return Unreachable.

Reachable If Reach ∧ Bad is satisfiable, return Reachable.

Unfold If FN → ¬Bad , then set N ← N + 1 and Q ← ∅.
Candidate If for some m, m → FN ∧ Bad , then add 〈m, N〉 to Q .

Successor If there is 〈m, i + 1〉 ∈ Q and a model M s.t. M |= ψ, where
ψ = F(∨Reach) ∧ m′. Then, add s to Reach, where s′ ∈ Mbp({X, Xo}, ψ).

MustPredecessor If there is 〈m, i + 1〉 ∈ Q , and a model M s.t. M |= ψ, where
ψ = F(Fi, ∨Reach) ∧ m′. Then, add s to Q , where s ∈ Mbp({Xo, X′}, ψ).

MayPredecessor If there is 〈m, i + 1〉 ∈ Q and a model M s.t. M |= ψ, where
ψ = F(Fi) ∧ m′. Then, add s to Q , where so ∈ Mbp({X, X′}, ψ).

NewLemma If there is an 〈m, i + 1〉∈Q , s.t. F(Fi) ∧ m′ is unsatisfiable. Then, add
ϕ = Itp(F(Fi), m

′) to Fj , for all 0 ≤ j ≤ i + 1.

ReQueue If 〈m, i〉 ∈ Q , 0 < i < N and F(Fi−1) ∧ m′ is unsatisfiable, then add
〈m, i + 1〉 to Q .

Push For 0 ≤ i < N and a clause (ϕ ∨ ψ) ∈ Fi, if ϕ ∈ Fi+1, F(ϕ ∧ Fi) → ϕ′, then
add ϕ to Fj , for all j ≤ i + 1.

until ∞;

Algorithm 1: Rule-based description of Spacer.

We present Spacer [27] as a set of rules shown in Algorithm 1. While the
algorithm is sound under any order on application of the rules, it is easy to see
that only some orders lead to progress. Since solving CHCs even over LIA is unde-
cidable, we are only concerned with soundness and progress, and do not discuss
termination. The algorithm is based on the core principles of IC3 [5], however,
it differs significantly in the details. The rules Unreachable and Reachable
detect termination, either by discovering an inductive solution, or by discovering
existence of a refutation, respectively. Unfold increases the exploration depth,
and Candidate constructs a new proof obligation based on the current depth
and the set Bad of bad states. Successor computes additional reachable states,
that is, an under-approximation of the model of the implicit predicate P . Note
that it used Model Based Projection to under-approximate forward predicate
transformer. The rules MustPredecessor and MayPredecessor compute a
new proof obligation that precedes an existing one. MustPredecessor does
the computation based on existing reachable states, while MayPredecessor
makes a guess based on existing over-approximation of P . In this case, MBP is
used again, but now to under-approximate a backward predicate transformer.
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The rule NewLemma computes a new over-approximation, called a lemma, of
what is derivable about P in i + 1 by blocking a proof obligation. This is very
similar to the corresponding step in IC3. Note, however, that interpolation is
used to generalize the learned lemma beyond the literals of the proof obligation.
ReQueue allows pushing blocked proof obligations to higher level, and Push
allows pushing and inductively generalizing lemmas.

Spacer was introduced in [27]. Extension for convex linear arithmetic (i.e.,
discovering convex and co-convex solutions) is described in [3]. Support for
quantifier free solutions for CHC over the combined theories of arrays and
arithmetic is described in [26]. Extension for quantified solutions, which are
necessary for establishing interesting properties when arrays are involved is
described in [20]. More recently, the interpolation for lemma-generalization has
been replaced by more global guidance [14]. This made Spacer competitive with
other data-driven approaches that infer new lemmas based on numerical values
of blocked counterexamples. Machine Learning-based inductive generalization
has been suggested in [29]. The solver has also been extended to support Alge-
braic Data Types and Recursive Functions [16]. Work on improving support for
bit-vectors [15] and experimenting with support for uninterpreted functions is
ongoing.
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23. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating
timed systems. In: Bjørner, N.S., Fioravanti, F., Rybalchenko, A., Senni, V. (eds.)
Proceedings First Workshop on Horn Clauses for Verification and Synthesis, HCVS
2014, Vienna, Austria, 17 July 2014. EPTCS, vol. 169, pp. 39–52 (2014). https://
doi.org/10.4204/EPTCS.169.6

24. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: POPL, pp. 111–119
(1987)
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Abstract. Morgan and McIver’s weakest pre-expectation framework is
one of the most well-established methods for deductive verification of
probabilistic programs. Roughly, the idea is to generalize binary state
assertions to real-valued expectations, which can measure expected val-
ues of probabilistic program quantities. While loop-free programs can
be analyzed by mechanically transforming expectations, verifying loops
usually requires finding an invariant expectation, a difficult task.

We propose a new view of invariant expectation synthesis as a regres-
sion problem: given an input state, predict the average value of the
post-expectation in the output distribution. Guided by this perspective,
we develop the first data-driven invariant synthesis method for proba-
bilistic programs. Unlike prior work on probabilistic invariant inference,
our approach can learn piecewise continuous invariants without relying
on template expectations. We also develop a data-driven approach to
learn sub-invariants from data, which can be used to upper- or lower-
bound expected values. We implement our approaches and demonstrate
their effectiveness on a variety of benchmarks from the probabilistic pro-
gramming literature.

Keywords: Probabilistic programs · Data-driven invariant learning ·
Weakest pre-expectations

1 Introduction

Probabilistic programs—standard imperative programs augmented with a sam-
pling command—are a common way to express randomized computations. While
the mathematical semantics of such programs is fairly well-understood [25], ver-
ification methods remain an active area of research. Existing automated tech-
niques are either limited to specific properties (e.g., [3,9,35,37]), or target simpler
computational models [4,15,28].
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Reasoning About Expectations. One of the earliest methods for reasoning
about probabilistic programs is through expectations. Originally proposed by
Kozen [26], expectations generalize standard, binary assertions to quantitative,
real-valued functions on program states. Morgan and McIver further developed
this idea into a powerful framework for reasoning about probabilistic imperative
programs, called the weakest pre-expectation calculus [30,33].

Concretely, Morgan and McIver defined an operator called the weakest pre-
expectation (wpe), which takes an expectation E and a program P and produces
an expectation E′ such that E′(σ) is the expected value of E in the output
distribution �P �σ. In this way, the wpe operator can be viewed as a generalization
of Dijkstra’s weakest pre-conditions calculus [16] to probabilistic programs. For
verification purposes, the wpe operator has two key strengths. First, it enables
reasoning about probabilities and expected values. Second, when P is a loop-free
program, it is possible to transform wpe(P,E) into a form that does not mention
the program P via simple, mechanical manipulations, essentially analyzing the
effect of the program on the expectation through syntactically transforming E.

However, there is a caveat: the wpe of a loop is defined as a least fixed
point, and it is generally difficult to simplify this quantity into a more tractable
form. Fortunately, the wpe operator satisfies a loop rule that simplifies reasoning
about loops: if we can find an expectation I satisfying an invariant condition,
then we can easily bound the wpe of a loop. Checking the invariant condition
involves analyzing just the body of the loop, rather than the entire loop. Thus,
finding invariants is a primary bottleneck towards automated reasoning about
probabilistic programs.

Discovering Invariants. Two recent works have considered how to automatically
infer invariant expectations for probabilistic loops. The first is Prinsys [21].
Using a template with one hole, Prinsys produces a first-order logical formula
describing possible substitutions satisfying the invariant condition. While effec-
tive for their benchmark programs, the method’s reliance on templates is limit-
ing; furthermore, the user must manually solve a system of logical formulas to
find the invariant.

The second work, by Chen et al. [14], focuses on inferring polynomial invari-
ants. By restricting to this class, their method can avoid templates and can apply
the Lagrange interpolation theorem to find a polynomial invariant. However,
many invariants are not polynomials: for instance, an invariant may combine
two polynomials piecewise by branching on a Boolean condition.

Our Approach: Invariant Learning. We take a different approach inspired by
data-driven invariant learning [17,19]. In these methods, the program is exe-
cuted with a variety of inputs to produce a set of execution traces. This data
is viewed as a training set, and a machine learning algorithm is used to find a
classifier describing the invariant. Data-driven techniques reduce the reliance on
templates, and can treat the program as a black box—the precise implementa-
tion of the program need not be known, as long as the learner can execute the
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program to gather input and output data. But to extend the data-driven method
to the probabilistic setting, there are a few key challenges:

– Quantitative invariants. While the logic of expectations resembles the logic
of standard assertions, an important difference is that expectations are quan-
titative: they map program states to real numbers, not a binary yes/no. While
standard invariant learning is a classification task (i.e., predicting a binary
label given a program state), our probabilistic invariant learning is closer to
a regression task (i.e., predicting a number given a program state).

– Stochastic data. Standard invariant learning assumes the program behaves
like a function: a given input state always leads to the same output state. In
contrast, a probabilistic program takes an input state to a distribution over
outputs. Since we are only able to observe a single draw from the output
distribution each time we run the program, execution traces in our setting
are inherently noisy. Accordingly, we cannot hope to learn an invariant that
fits the observed data perfectly, even if the program has an invariant—our
learner must be robust to noisy training data.

– Complex learning objective. To fit a probabilistic invariant to data, the
logical constraints defining an invariant must be converted into a regression
problem with a loss function suitable for standard machine learning algo-
rithms and models. While typical regression problems relate the unknown
quantity to be learned to known data, the conditions defining invariants are
somehow self-referential: they describe how an unknown invariant must be
related to itself. This feature makes casting invariant learning as machine
learning a difficult task.

Outline. After covering preliminaries (Sect. 2), we present our contributions.

– A general method called Exist for learning invariants for probabilistic pro-
grams (Sect. 3). Exist executes the program multiple times on a set of input
states, and then uses machine learning algorithms to learn models encod-
ing possible invariants. A CEGIS-like loop is used to iteratively expand the
dataset after encountering incorrect candidate invariants.

– Concrete instantiations of Exist tailored for handling two problems: learning
exact invariants (Sect. 4), and learning sub-invariants (Sect. 5). Our method
for exact invariants learns a model tree [34], a generalization of binary decision
trees to regression. The constraints for sub-invariants are more difficult to
encode as a regression problem, and our method learns a neural model tree [41]
with a custom loss function. While the models differ, both algorithms leverage
off-the-shelf learning algorithms.

– An implementation of Exist and a thorough evaluation on a large set of
benchmarks (Sect. 6). Our tool can learn invariants and sub-invariants for
examples considered in prior work and new, more difficult versions that are
beyond the reach of prior work.

We discuss related work in Sect. 7.
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2 Preliminaries

Probabilistic Programs. We will consider programs written in pWhile, a basic
probabilistic imperative language with the following grammar:

P := skip | x ← e | x $← d | P ; P | if e then P else P | while e : P,

where e is a boolean or numerical expression. All commands P map memories to
distributions over memories [25], and the semantics is entirely standard and can
be found in the extended version. We write �P �σ for the output distribution of
program P from initial state σ. Since we will be interested in running programs
on concrete inputs, we will assume throughout that all loops are almost surely
terminating ; this property can often be established by other methods (e.g., [12,
13,31]).

Weakest Pre-expectation Calculus. Morgan and McIver’s weakest pre-expectation
calculus reasons about probabilistic programs by manipulating expectations.

Definition 1. Denote the set of program states by Σ. Define the set of expec-
tations, E, to be {E | E : Σ → R

∞
≥0}. Define E1 ≤ E2 iff ∀σ ∈ Σ : E1(σ) ≤

E2(σ). The set E is a complete lattice.

While expectations are technically mathematical functions from Σ to the non-
negative extended reals, for formal reasoning it is convenient to work with a
more restricted syntax of expectations (see, e.g., [8]). We will often view numeric
expressions as expectations. Boolean expressions b can also be converted to
expectations; we let [b] be the expectation that maps states where b holds to
1, and other states to 0. As an example of our notation, [flip = 0] · (x+1), x+1
are two expectations, and we have [flip = 0] · (x + 1) ≤ x + 1.

Fig. 1. Morgan and McIver’s weakest pre-expectation operator

Now, we are ready to introduce Morgan and McIver’s weakest pre-expectation
transformer wpe. In a nutshell, this operator takes a program P and an expecta-
tion E to another expectation E′, sometimes called the pre-expectation. Formally,
wpe is defined in Fig. 1. The case for loops involves the least fixed-point (lfp) of
Φwpe

E := λX.([e] · wpe(P,X) + [¬e] · E), the characteristic function of the loop

https://arxiv.org/abs/2106.05421
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with respect to wpe [23]. The characteristic function is monotone on the complete
lattice E , so the least fixed-point exists by the Kleene fixed-point theorem.

The key property of the wpe transformer is that for any program P ,
wpe(P,E)(σ) is the expected value of E over the output distribution �P �σ.

Theorem 1 (See, e.g., [23]). For any program P and expectation E ∈ E,
wpe(P,E) = λσ.

∑
σ′∈Σ E(σ′) · �P �σ(σ′)

Intuitively, the weakest pre-expectation calculus provides a syntactic way to
compute the expected value of an expression E after running a program P ,
except when the program is a loop. For a loop, the least fixed point definition
of wpe(while e : P,E) is hard to compute.

3 Algorithm Overview

In this section, we introduce the two related problems we aim to solve, and
a meta-algorithm to tackle both of them. We will see how to instantiate the
meta-algorithm’s subroutines in Sect. 4 and Sect. 5.

Problem Statement. Analogous to when analyzing the weakest pre-conditions of
a loop, knowing a loop invariant or sub-invariant expectation enables one to eas-
ily bound the loop’s weakest pre-expectations, but a (sub)invariant expectation
can be difficult to find. Thus, we aim to develop an algorithm to automatically
synthesize invariants and sub-invariants of probabilistic loops. More specifically,
our algorithm tackles the following two problems:

1. Finding exact invariants: Given a loop while G : P and an expectation
postE as input, we want to find an expectation I such that

I = Φwpe
postE(I) := [G] · wpe(P, I) + [¬G] · postE. (1)

Such an expectation I is an exact invariant of the loop with respect
to postE. Since wpe(while G : P, postE) is a fixed point of Φwpe

postE,
wpe(while G : P, postE) has to be an exact invariant of the loop. Furthermore,
when while G : P is almost surely terminating and postE is upper-bounded,
the existence of an exact invariant I implies I = wpe(while e : P,E). (We
defer the proof to the extended version.)

2. Finding sub-invariants: Given a loop while G : P and expectations
preE, postE, we aim to learn an expectation I such that

I ≤ Φwpe
postE(I) := [G] · wpe(P, I) + [¬G] · postE (2)

preE ≤ I. (3)

The first inequality says that I is a sub-invariant: on states that satisfy G,
the value of I lower bounds the expected value of itself after running one
loop iteration from initial state, and on states that violate G, the value of I
lower bounds the value of postE. Any sub-invariant lower-bounds the weakest
pre-expectation of the loop, i.e., I ≤ wpe(while G : P,E) [22]. Together with
the second inequality preE ≤ I, the existence of a sub-invariant I ensures that
preE lower-bounds the weakest pre-expectation.

https://arxiv.org/abs/2106.05421
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Note that an exact invariant is a sub-invariant, so one indirect way to solve the
second problem is to solve the first problem, and then check preE ≤ I. However,
we aim to find a more direct approach to solve the second problem because often
exact invariants can be complicated and hard to find, while sub-invariants can
be simpler and easier to find.

Fig. 2. Algorithm Exist

Methods. We solve both problems with one algorithm, Exist (short for EXpec-
tation Invariant SynThesis). Our data-driven method resembles Counterexam-
ple Guided Inductive Synthesis (CEGIS), but differs in two ways. First, can-
didates are synthesized by fitting a machine learning model to data consisted
of program traces starting from random input states. Our target programs are
also probabilistic, introducing a second source of randomness to program traces.
Second, our approach seeks high-quality counterexamples—violating the target
constraints as much as possible—in order to improve synthesis. For synthesizing
invariants and sub-invariants, such counterexamples can be generated by using
a computer algebra system to solve an optimization problem.

We present the pseudocode in Fig. 2. Exist takes a probabilistic program geo,
a post-expectation or a pair of pre/post-expectation pexp, and hyper-parameters
Nruns and Nstates . Exist starts by generating a list of features feat , which are
numerical expressions formed by program variables used in geo. Next, Exist
samples Nstates initialization states and runs geo from each of those states for
Nruns trials, and records the value of feat on program traces as data. Then, Exist
enters a CEGIS loop. In each iteration of the loop, first the learner learnInv trains
models to minimize their violation of the required inequalities (e.g., Eqs. (2)
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and (3) for learning sub-invariants) on data. Next, extractInv translates learned
models into a set candidates of expectations. For each candidate inv, the veri-
fier verifyInv looks for program states that maximize inv’s violation of required
inequalities. If it cannot find any program state where inv violates the inequal-
ities, the verifier returns inv as a valid invariant or sub-invariant. Otherwise, it
produces a set cex of counter-example program states, which are added to the
set of initial states. Finally, before entering the next iteration, the algorithm aug-
ments states with a new batch of N ′

states initial states, generates trace data from
running geo on each of these states for Nruns trials, and augments the dataset
data. This data augmentation ensures that the synthesis algorithm collects more
and more initial states, some randomly generated (sampleStates) and some from
prior counterexamples (cex ), guiding the learner towards better candidates. Like
other CEGIS-based tools, our method is sound but not complete, i.e., if the algo-
rithm returns an expectation then it is guaranteed to be an exact invariant or
sub-invariant, but the algorithm might never return an answer; in practice, we
set a timeout.

4 Learning Exact Invariants

In this section, we detail how we instantiate Exist’s subroutines to learn an
exact invariant I satisfying I = Φwpe

postE(I), given a loop geo and an expectation
pexp = postE.

At a high level, we first sample a set of program states states using
sampleStates. From each program state s ∈ states, sampleTraces executes geo
and estimates wpe(geo, postE)(s). Next, learnInv trains regression models M to
predict the estimated wpe(geo, postE)(s) given the value of features evaluated on
s. Then, extractInv translates the learned models M to an expectation I. In an
ideal scenario, this I would be equal to wpe(geo, postE), which is also always an
exact invariant. But since I is learned from stochastic data, it may be noisy. So,
we use verifyInv to check whether I satisfies the invariant condition I = Φwpe

postE(I).
The reader may wonder why we took this complicated approach, first estimat-

ing the weakest pre-expectation of the loop, and then computing the invariant:
If we are able to learn an expression for wpe(geo, postE) directly, then why are
we interested in the invariant I? The answer is that with an invariant I, we can
also verify that our computed value of wpe(prog, postE) is correct by checking
the invariant condition and applying the loop rule. Since our learning process is
inherently noisy, this verification step is crucial and motivates why we want to
find an invariant.
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Fig. 3. Running example: program and model tree

A Running Example. We will illustrate our approach using Fig. 3. The simple
program geo repeatedly loops: whenever x becomes non-zero we exit the loop;
otherwise we increase n by 1 and draw x from a biased coin-flip distribution (x
gets 1 with probability p, and 0 otherwise). We aim to learn wpe(geo, n), which
is [x �= 0] · n + [x = 0] · (n + 1

p ).

Our Regression Model. Before getting into how Exist collects data and trains
models, we introduce the class of regression models it uses – model trees, a
generalization of decision trees to regression tasks [34]. Model trees are naturally
suited to expressing piecewise functions of inputs, and are straightforward to
train. While our method can in theory generalize to other regression models, our
implementation focuses on model trees.

More formally, a model tree T ∈ T over features F is a full binary tree where
each internal node is labeled with a predicate φ over variables from F , and each
leaf is labeled with a real-valued model M ∈ M : R

F → R. Given a feature
vector in x ∈ R

F , a model tree T over F produces a numerical output T (x) ∈ R

as follows:

– If T is of the form Leaf(M), then T (x) := M(x).
– If T is of the form Node(φ, TL, TR), then T (x) := TR(x) if the predicate φ

evaluates to true on x, and T (x) := TL(x) otherwise.

Throughout this paper, we consider model trees of the following form as our
regression model. First, node predicates φ are of the form f �� c, where f ∈ F
is a feature, �� ∈ {<,≤,=, >,≥} is a comparison, and c is a numeric constant.
Second, leaf models on a model tree are either all linear models or all products
of constant powers of features, which we call multiplication models. For example,
assuming n, 1

p are both features, Fig. 3b and c are two model trees with linear leaf
models, and Fig. 3b expresses the weakest pre-expectation wpe(geo, n). Formally,
the leaf model M on a feature vector f is either

Ml(f) =
|F|∑

i=1

αi · fi or Mm(f) =
|F|∏

i=1

fαi
i

with constants {αi}i. Note that multiplication models can also be viewed as
linear models on logarithmic values of features because log Mm(f) =

∑|F|
i=1 αi ·
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log(fi). While it is also straightforward to adapt our method to other leaf models,
we focus on linear models and multiplication models because of their simplicity
and expressiveness. Linear models and multiplication models also complement
each other in their expressiveness: encoding expressions like x + y uses simpler
features with linear models (it suffices if F 	 x, y, as opposed to needing F 	 x+y
if using multiplicative models), while encoding p

1−p uses simpler features with
multiplicative models (it suffices if F 	 p, 1 − p, as opposed to needing F 	 p

1−p

if using linear models).

4.1 Generate Features (getFeatures)

Given a program, the algorithm first generates a set of features F that model
trees can use to express unknown invariants of the given loop. For example, for
geo, I = [x �= 0] · n + [x = 0] · (n + 1

p ) is an invariant, and to have a model
tree (with linear/multiplication leaf models) express I, we want F to include
both n and 1

p , or n + 1
p as one feature. F should include the program variables

at a minimum, but it is often useful to have more complex features too. While
generating more features increases the expressivity of the models, and richness
of the invariants, there is a cost: the more features in F , the more data is needed
to train a model.

Starting from the program variables, getFeatures generates two lists of fea-
tures, Fl for linear leaf models and Fm for multiplication leaf models. Intuitively,
linear models are more expressive if the feature set F includes some products of
terms, e.g., n · p−1, and multiplication models are more expressive if F includes
some sums of terms, e.g., n + 1.

4.2 Sample Initial States (sampleStates)

Recall that Exist aims to learn an expectation I that is equal to the weakest
pre-expectation wpe(while G : P, postE). A natural idea for sampleTraces is to
run the program from all possible initializations multiple times, and record the
average value of postE from each initialization. This would give a map close to
wpe(while G : P, postE) if we run enough trials so that the empirical mean is
approximately the actual mean. However, this strategy is clearly impractical—
many of the programs we consider have infinitely many possible initial states
(e.g., programs with integer variables). Thus, sampleStates needs to choose a
manageable number of initial states for sampleTraces to use.

In principle, a good choice of initializations should exercise as many parts
of the program as possible. For instance, for geo in Fig. 3, if we only try initial
states satisfying x �= 0, then it is impossible to learn the term [x = 0] · (n + 1

p )
in wpe(geo, n) from data. However, covering the control flow graph may not be
enough. Ideally, to learn how the expected value of postE depends on the initial
state, we also want data from multiple initial states along each path.

While it is unclear how to choose initializations to ensure optimal coverage,
our implementation uses a simpler strategy: sampleStates generates Nstates states
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in total, each by sampling the value of every program variable uniformly at
random from a space. We assume program variables are typed as booleans,
integers, probabilities, or floating point numbers and sample variables of some
type from the corresponding space. For boolean variables, the sampling space is
simply {0, 1}; for probability variables, the space includes reals in some interval
bounded away from 0 and 1, because probabilities too close to 0 or 1 tend to
increase the variance of programs (e.g., making some loops iterate for a very long
time); for floating point number and integer variables, the spaces are respectively
reals and integers in some bounded range. This strategy, while simple, is already
very effective in nearly all of our benchmarks (see Sect. 6), though other strategies
are certainly possible (e.g., performing a grid search of initial states from some
space).

4.3 Sample Training Data (sampleTraces)

We gather training data by running the given program geo on the set of initializa-
tions generated by sampleStates. From each program state s ∈ states, the subrou-
tine sampleTraces runs geo for Nruns times to get output states {s1, . . . , sNruns

}
and produces the following training example:

(si, vi) =

(

si,
1

Nruns

Nruns∑

i=1

postE(si)

)

.

Above, the value vi is the empirical mean of postE in the output state of running
geo from initial state si; as Nruns grows large, this average value approaches the
true expected value wpe(geo, postE)(s).

4.4 Learning a Model Tree (learnInv)

Now that we have the training set data = {(s1, v1), . . . , (sK , vK)} (where K =
Nstates), we want to fit a model tree T to the data. We aim to apply off-the-
shelf tools that can learn model trees with customizable leaf models and loss.
For each data entry, vi approximates wpe(geo, postE)(si), so a natural idea is to
train a model tree T that takes the value of features on si as input and predicts
vi. To achieve that, we want to define the loss to measure the error between
predicted values T (Fl(si)) (or T (Fm(si))) and the target value vi. Without loss
of generality, we can assume our invariant I is of the form

I = postE + [G] · I ′ (4)

because I being an invariant means

I = [¬G] · postE + [G] · wpe(P, I) = postE + [G] · (wpe(P, I) − postE).

In many cases, the expectation I ′ = wpe(P, I) − postE is simpler than I: for
example, the weakest pre-expectation of geo can be expressed as n+[x = 0] ·( 1p );
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while I is represented by a tree that splits on the predicate [x = 0] and needs
both n, 1

p as features, the expectation I ′ = 1
p is represented by a single leaf model

tree that only needs p as a feature.
Aiming to learn weakest pre-expectations I in the form of Eq. (4), Exist

trains model trees T to fit I ′. More precisely, learnInv trains a model tree Tl with
linear leaf models over features Fl by minimizing the loss

errl(Tl, data) =

(
K∑

i=1

(postE(si) + G(si) · Tl(Fl(si)) − vi)
2

)1/2

, (5)

where postE(si) and G(si) represents the value of expectation postE and G eval-
uated on the state si. This loss measures the sum error between the prediction
postE(si) + G(si) · Tl(Fl(si)) and target vi. Note that when the guard G is
false on an initial state si, the example contributes zero to the loss because
postE(si) + G(si) · Tl(Fl(si)) = postE(si) = vi; thus, we only need to generate
and collect trace data for initial states where the guard G is true.

Analogously, learnInv trains a model tree Tm with multiplication leaf models
over features Fm to minimize the loss errm(Tm, data), which is the same as
errl(Tl, data) except Tl(Fl(si)) is replaced by Tm(Fm(si)) for each i.

4.5 Extracting Expectations from Models (extractInv)

Given the learned model trees Tl and Tm, we extract expectations that approx-
imate wpe(geo, postE) in three steps:

1. Round Tl, Tm with different precisions. Since we obtain the model trees
Tl and Tm by learning and the training data is stochastic, the coefficients of
features in Tl and Tm may be slightly off. We apply several rounding schemes
to generate a list of rounded model trees.

2. Translate into expectations. Since we learn model trees, this step is
straightforward: for example, n + 1

p can be seen as a model tree (with only
a leaf) mapping the values of features n, 1

p to a number, or an expectation
mapping program states where n, p are program variables to a number. We
translate each model tree obtained from the previous step to an expectation.

3. Form the candidate invariant. Since we train the model trees to fit I ′ so
that postE+[G] ·I ′ approximates wpe(while G : P, postE), we construct each
candidate invariant inv ∈ invs by replacing I ′ in the pattern postE + [G] · I ′

by an expectation obtained in the second step.

4.6 Verify Extracted Expectations (verifyInv)

Recall that geo is a loop while G : P , and given a set of candidate invariants
invs, we want to check if any inv ∈ invs is a loop invariant, i.e., if inv satisfies

inv = [¬G] · postE + [G] · wpe(P, inv). (6)
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Since the learned model might not predict the expected value for every data
point exactly, we must verify whether inv satisfies this equality using verifyInv.
If not, verifyInv looks for counterexamples that maximize the violation in order
to drive the learning process forward in the next iteration. Formally, for every
inv ∈ invs, verifyInv queries computer algebra systems to find a set of program
states S such that S includes states maximizing the absolute difference of two
sides in Eq. (6):

S 	 argmaxs|inv(s) − ([¬G] · postE + [G] · wp(P, inv)) (s)|.

If there are no program state where the absolute difference is non-zero, verify-
Inv returns inv as a true invariant. Otherwise, the maximizing states in S are
added to the list of counterexamples cex; if no candidate in invs is verified,
verifyInv returns False and the accumulated list of counterexamples cex. The
next iteration of the CEGIS loop will sample program traces starting from these
counterexample initial states, hopefully leading to a learned model with less
error.

5 Learning Sub-invariants

Next, we instantiate Exist for our second problem: learning sub-invariants.
Given a program geo = while G : P and a pair of pre- and post- expectations
(preE, postE), we want to find a expectation I such that preE ≤ I, and

I ≤ Φwpe
postE(I) := [¬G] · postE + [G] · wpe(P, I)

Intuitively, Φwpe
postE(I) computes the expected value of the expectation I after one

iteration of the loop. We want to train a model M such that M translates to an
expectation I whose expected value decrease each iteration, and preE ≤ I.

The high-level plan is the same as for learning exact invariants: we train
a model to minimize a loss defined to capture the sub-invariant requirements.
We generate features F and sample initializations states as before. Then, from
each s ∈ states, we repeatedly run just the loop body P and record the set of
output states in data; this departs from our method for exact invariants, which
repeatedly runs the entire loop to completion. Given this trace data, for any
program state s ∈ states and expectation I, we can compute the empirical mean
of I’s value after running the loop body P on state s. Thus, we can approximate
wpe(P, I)(s) for s ∈ states and use this estimate to approximate Φwpe

postE(I)(s).
We then define a loss to sum up the violation of I ≤ Φwpe

postE(I) and preE ≤ I on
state s ∈ states, estimated based on the collected data.

The main challenge for our approach is that existing model tree learning algo-
rithms do not support our loss function. Roughly speaking, model tree learners
typically assume a node’s two child subtrees can be learned separately; this is
the case when optimizing on the loss we used for exact invariants, but this is not
the case for the loss for sub-invariants.
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To solve this challenge, we first broaden the class of models to neural net-
works. To produce sub-invariants that can be verified, we still want to learn
simple classes of models, such as piecewise functions of numerical expressions.
Accordingly, we work with a class of neural architectures that can be translated
into model trees, neural model trees, adapted from neural decision trees devel-
oped by Yang et al. [41]. We defer the technical details of neural model trees to
the extended version, but for now, we can treat them as differentiable approxi-
mations of standard model trees; since they are differentiable they can be learned
with gradient descent, which can support the sub-invariant loss function.

Outline. We will discuss changes in sampleTraces, learnInv and verifyInv for learn-
ing sub-invariants but omit descriptions of getFeatures, sampleStates, extractInv
because Exist generates features, samples initial states and extracts expecta-
tions in the same way as in Sect. 4. To simplify the exposition, we will assume
getFeatures generates the same set of features F = Fl = Fm for model trees with
linear models and model trees with multiplication models.

5.1 Sample Training Data (sampleTraces)

Unlike when sampling data for learning exact invariants, here, sampleTraces runs
only one iteration of the given program geo = while G : P , that is, just P , instead
of running the whole loop. Intuitively, this difference in data collection is because
we aim to directly handle the sub-invariant condition, which encodes a single
iteration of the loop. For exact invariants, our approach proceeded indirectly by
learning the expected value of postE after running the loop to termination.

From any initialization si ∈ states such that G holds on si, sampleTraces
runs the loop body P for Nruns trials, each time restarting from si, and records
the set of output states reached. If executing P from si leads to output states
{si1, . . . , siNruns

}, then sampleTraces produces the training example:

(si, Si) = (si, {si1, . . . , siNruns
}) ,

For initialization si ∈ states such that G is false on si, sampleTraces simply
produces (si, Si) = (si, ∅) since the loop body is not executed.

5.2 Learning a Neural Model Tree (learnInv)

Given the dataset data = {(s1, S1), . . . , (sK , SK)} (with K = Nstates), we want
to learn an expectation I such that preE ≤ I and I ≤ Φwpe

postE(I). By case analysis
on the guard G, the requirement I ≤ Φwpe

postE(I) can be split into two constraints:

[G] · I ≤ [G] · wpe(P, I) and [¬G] · I ≤ [¬G] · postE.

If I = postE + [G] · I ′, then the second requirement reduces to [¬G] · postE ≤
[¬G] · postE and is always satisfied. So to simplify the loss and training process,
we again aim to learn an expectation I of the form of postE + [G] · I ′. Thus, we
want to train a model tree T such that T translates into an expectation I ′, and

https://arxiv.org/abs/2106.05421
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preE ≤ postE + [G] · I ′ (7)

[G] · (postE + [G] · I ′) ≤ [G] · wpe(P, postE + [G] · I ′) (8)

Then, we define the loss of model tree T on data to be

err(T, data) := err1(T, data) + err2(T, data),

where err1(T, data) captures Eq. (7) and err2(T, data) captures Eq. (8).
Defining err1 is relatively simple: we sum up the one-sided difference between

preE(s) and postE(s) + G(s) · T (F(s)) across s ∈ states, where T is the model
tree getting trained and F(s) is the feature vector F evaluated on s. That is,

err1(T, data) :=
K∑

i=1

max (0, preE(si) − postE(si) − G(si) · T (F(si))) . (9)

Above, preE(si), postE(si), and G(si) are the value of expectations preE, postE,
and G evaluated on program state si.

The term err2 is more involved. Similar to err1, we aim to sum up the one-
sided difference between two sides of Eq. (8) across state s ∈ states. On program
state s that does not satisfy G, both sides are 0; for s that satisfies G, we want
to evaluate wpe(P, postE + [G] · I ′) on s, but we do not have exact access to
wpe(P, postE+[G] · I ′) and need to approximate its value on s based on sampled
program traces. Recall that wpe(P, I)(s) is the expected value of I after running
program P from s, and our dataset contains training examples (si, Si) where
Si is a set of states reached after running P on an initial state si satisfying G.
Thus, we can approximate [G] · wpe(P, postE + G · I ′)(si) by

G(si) · 1
|Si|

·
∑

s∈Si

(postE(s) + G(s) · I ′(s)) .

To avoid division by zero when si does not satisfy G and Si is empty, we evaluate
the expression in a short-circuit manner such that when G(si) = 0, the whole
expression is immediately evaluated to zero.

Therefore, we define

err2(T, data) =
K∑

i=1

max
(

0, G(si) · postE(si) + G(si) · T (F(si))

− G(si) · 1
|Si|

·
∑

s∈Si

(
postE(s) + G(s) · T (F(s))

)
)

.

Standard model tree learning algorithms do not support this kind of loss func-
tion, and since our overall loss err(T, data) is the sum of err1(T, data) and
err2(T, data), we cannot use standard model tree learning algorithm to opti-
mize err(T, data) either. Fortunately, gradient descent does support this loss
function. While gradient descent cannot directly learn model trees, we can use
gradient descent to train a neural model tree T to minimize err(T, data). The
learned neural networks can be converted to model trees, and then converted to
expectations as before. (See discussion in the extended version.)

https://arxiv.org/abs/2106.05421
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5.3 Verify Extracted Expectations (verifyInv)

The verifier verifyInv is very similar to the one in Sect. 4 except here it solves a
different optimization problem. For each candidate inv in the given list invs, it
looks for a set S of program states such that S includes

argmaxspreE(s) − inv(s) and argmaxsG(s) · I(s) − [G] · wpe(P, I)(s).

As in our approach for exact invariant learning, the verifier aims to find coun-
terexample states s that violate at least one of these constraints by as large
of a margin as possible; these high-quality counterexamples guide data col-
lection in the following iteration of the CEGIS loop. Concretely, the verifier
accepts inv if it cannot find any program state s where preE(s) − inv(s) or
G(s) ·I(s)− [G] ·wpe(P, I)(s) is positive. Otherwise, it adds all states s ∈ S with
strictly positive margin to the set of counterexamples cex.

6 Evaluations

We implemented our prototype in Python, using sklearn and tensorflow to fit
model trees and neural model trees, and Wolfram Alpha to verify and perform
counterexample generation. We have evaluated our tool on a set of 18 bench-
marks drawn from different sources in prior work [14,21,24]. Our experiments
were designed to address the following research questions:

R1. Can Exist synthesize exact invariants for a variety of programs?
R2. Can Exist synthesize sub-invariants for a variety of programs?

We summarize our findings as follows:

– Exist successfully synthesized and verified exact invariants for 14/18 bench-
marks within a timeout of 300 s. Our tool was able to generate these 14
invariants in reasonable time, taking between 1 to 237 s. The sampling phase
dominates the time in most cases. We also compare Exist with a tool from
prior literature, Mora [7]. We found that Mora can only handle a restrictive
set of programs and cannot handle many of our benchmarks. We also discuss
how our work compares with a few others in (Sect. 7).

– To evaluate sub-invariant learning, we created multiple problem instances
for each benchmark by supplying different pre-expectations. On a total of 34
such problem instances, Exist was able to infer correct invariants in 27 cases,
taking between 7 to 102 s.

We present in the extended version the tables of complete experimental results.
Because the training data we collect are inherently stochastic, the results pro-
duced by our tool are not deterministic.1 As expected, sometimes different trials
on the same benchmarks generate different sub-invariants; while the exact invari-
ant for each benchmark is unique, Exist may also generate semantically equiv-
alent but syntactically different expectations in different trials (e.g. it happens
for BiasDir).
1 The code and data sampled in the trial that produced the tables in this paper can

be found at https://github.com/JialuJialu/Exist.

https://arxiv.org/abs/2106.05421
https://github.com/JialuJialu/Exist


48 J. Bao et al.

Table 1. Exact Invariants generated by Exist

Name postE Learned Invariant ST LT VT TT

Bin1 n x + [n < M ] · (M · p − n · p) 25.67 12.03 0.22 37.91

Fair count (count + [c1 + c2 == 0]· (p1 + p2)/(p1 + p2 − p1 · p2)) 5.78 1.62 0.30 7.69

Gambler z z + [x > 0 and y > x]· x · (y − x) 112.02 3.52 9.97 125.51

Geo0 z z + [flip == 0] · (1 − p1)/p1 12.01 0.85 2.65 15.51

Sum0 x x + [n > 0] · (0.5 · p · n2 + 0.5 · p · n) 102.12 34.61 26.74 163.48

Table 2. Sub-invariants generated by Exist

Name postE preE Learned Sub-invariant ST LT VT TT

Gambler z x · (y − x) z + [x > 0 and y > x] · x · (y − x) 7.31 28.87 8.29 44.46

Geo0 z [flip == 0] · (1 − p1)) z + [flip == 0]· (1 − p1) 8.70 26.13 0.19 35.02

LinExp z
z + [n > 0] · 2 [n > 0] · (n + 1) 53.72 30.01 0.35 84.98

z + [n > 0] · 2 · n z + [n > 0] · 2 · n 29.18 28.61 0.68 58.48

RevBin z
z + [x > 0] · x z + [x > 0] · x/p 18.17 71.15 2.17 91.55

z z 15.62 18.74 0.06 34.42

Implementation Details. For input parameters to Exist, we use Nruns = 500
and Nstates = 500. Besides input parameters listed in Fig. 2, we allow the user to
supply a list of features as an optional input. In feature generation, getFeatures
enumerates expressions made up by program variables and user-supplied features
according to a grammar. Also, when incorporating counterexamples cex, we
make 30 copies of each counterexample to give them more weights in the training.
All experiments were conducted on a MacBook Pro 2020 with M1 chip running
macOS Monterey Version 12.1.

6.1 R1: Evaluation of the Exact Invariant Method

Efficacy of Invariant Inference. Exist was able to infer provably correct invari-
ants in 14/18 benchmarks. Out of 14 successful benchmarks, only 2 of them
need user-supplied features (n · p for Bin2 and Sum0). Table 1 shows the post-
expectation (postE), the inferred invariant (Learned Invariant), sampling time
(ST), learning time (LT), verification time (VT) and the total time (TT) for a
few benchmarks. For generating exact invariants, the running time of Exist is
dominated by the sampling time. However, this phase can be parallelized easily.

Failure Analysis. Exist failed to generate invariants for 4/18 benchmarks. For
two of them, Exist was able to generate expectations that are very close to
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an invariant (DepRV and LinExp); for the third failing benchmarks (Duel), the
ground truth invariant is very complicated. For LinExp, while a correct invariant
is z + [n > 0] · 2.625 · n, Exist generates expectations like z + [n > 0] · (2.63 ·
n − 0.02) as candidates. For DepRV, a correct invariant is x · y + [n > 0] · (0.25 ·
n2 + 0.5 · n · x + 0.5 · n · y − 0.25 · n), and in our experiment Exist generates
0.25 · n2 + 0.5 · n · x + 0.5 · n · y − 0.27 · n − 0.01 · x + 0.12. In both cases, the
ground truth invariants use coefficients with several digits, and since learning
from data is inherently stochastic, Exist cannot generate them consistently. In
our experiments, we observe that our CEGIS loop does guide the learner to
move closer to the correct invariant in general, but sometimes progress obtained
in multiple iterations can be offset by noise in one iteration. For GeoAr, we
observe the verifier incorrectly accepted the complicated candidate invariants
generated by the learner because Wolfram Alpha was not able to find valid
counterexamples for our queries.

Comparison with Previous Work. There are few existing tools that can auto-
matically compute expected values after probabilistic loops. We experimented
with one such tool, called Mora [7]. (See high-level comparison in Sect. 7.) We
managed to encode our benchmarks Geo0, Bin0, Bin2, Geo1, GeoAr, and Mart in
their syntax. Among them, Mora fails to infer an invariant for Geo1, GeoAr, and
Mart. We also tried to encode our benchmarks Fair, Gambler, Bin1, and RevBin
but found Mora’s syntax was too restrictive to encode them.

6.2 R2: Evaluation of the Sub-invariant Method

Efficacy of Invariant Inference. Exist is able to synthesize sub-invariants for
27/34 benchmarks. As before, Table 2 reports the results for a few benchmarks.
Two out of 27 successful benchmarks use user-supplied features – Gambler with
pre-expectation x · (y −x) uses (y −x), and Sum0 with pre-expectation x+ [x >
0] · (p ·n/2) uses p ·n. Contrary to the case for exact invariants, the learning time
dominates. This is not surprising: the sampling time is shorter because we only
run one iteration of the loop, but the learning time is longer as we are optimizing
a more complicated loss function.

One interesting thing that we found when gathering benchmarks is that
for many loops, pre-expectations used by prior work or natural choices of pre-
expectations are themselves sub-invariants. Thus, for some instances, the sub-
invariants generated by Exist is the same as the pre-expectation preE given to
it as input. However, Exist is not checking whether the given preE is a sub-
invariant: the learner in Exist does not know about preE besides the value of
preE evaluated on program states. Also, we also designed benchmarks where
pre-expectations are not sub-invariants (BiasDir with preE = [x �= y] · x, DepRV
with preE = x · y + [n > 0] · 1/4 · n2, Gambler with preE = x · (y − x), Geo0 with
preE = [flip == 0] · (1 − p1)), and Exist is able to generate sub-invariants for
3/4 such benchmarks.
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Failure Analysis. On program instances where Exist fails to generate a sub-
invariant, we observe two common causes. First, gradient descent seems to get
stuck in local minima because the learner returns suboptimal models with rel-
atively low loss. The loss we are training on is very complicated and likely to
be highly non-convex, so this is not surprising. Second, we observed inconsistent
behavior due to noise in data collection and learning. For instance, for GeoAr
with preE = x+[z �= 0] ·y · (1−p)/p, Exist could sometimes find a sub-invariant
with supplied feature (1 − p), but we could not achieve this result consistently.

Comparison with Learning Exact Invariants. The performance of Exist on
learning sub-invariants is less sensitive to the complexity of the ground truth
invariants. For example, Exist is not able to generate an exact invariant for
LinExp as its exact invariant is complicated, but Exist is able to generate
sub-invariants for LinExp. However, we also observe that when learning sub-
invariants, Exist returns complicated expectations with high loss more often.

7 Related Work

Invariant Generation for Probabilistic Programs. There has been a steady line of
work on probabilistic invariant generation over the last few years. The Prinsys
system [21] employs a template-based approach to guide the search for proba-
bilistic invariants. Prinsys is able encode invariants with guard expressions, but
the system doesn’t produce invariants directly—instead, Prinsys produces log-
ical formulas encoding the invariant conditions, which must be solved manually.

Chen et al. [14] proposed a counterexample-guided approach to find polyno-
mial invariants, by applying Lagrange interpolation. Unlike Prinsys, this app-
roach doesn’t need templates; however, invariants involving guard expressions—
common in our examples—cannot be found, since they are not polynomials.
Additionally, Chen et al. [14] uses a weaker notion of invariant, which only
needs to be correct on certain initial states; our tool generates invariants that
are correct on all initial states. Feng et al. [18] improves on Chen et al. [14] by
using Stengle’s Positivstellensatz to encode invariants constraints as a semidef-
inite programming problem. Their method can find polynomial sub-invariants
that are correct on all initial states. However, their approach cannot synthesize
piecewise linear invariants, and their implementation has additional limitations
and could not be run on our benchmarks.

There is also a line of work on abstract interpretation for analyzing probabilis-
tic programs; Chakarov and Sankaranarayanan [11] search for linear expectation
invariants using a “pre-expectation closed cone domain”, while recent work by
Wang et al. [40] employs a sophisticated algebraic program analysis approach.

Another line of work applies martingales to derive insights of probabilistic
programs. Chakarov and Sankaranarayanan [10] showed several applications of
martingales in program analysis, and Barthe et al. [5] gave a procedure to gen-
erate candidate martingales for a probabilistic program; however, this tool gives
no control over which expected value is analyzed—the user can only guess initial
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expressions and the tool generates valid bounds, which may not be interesting.
Our tool allows the user to pick which expected value they want to bound.

Another line of work for automated reasoning uses moment-based analysis.
Bartocci et al. [6,7] develop the Mora tool, which can find the moments of vari-
ables as functions of the iteration for loops that run forever by using ideas from
computational algebraic geometry and dynamical systems. This method is highly
efficient and is guaranteed to compute moments exactly. However, there are two
limitations. First, the moments can give useful insights about the distribution
of variables’ values after each iteration, but they are fundamentally different
from our notion of invariants which allow us to compute the expected value of
any given expression after termination of a loop. Second, there are important
restrictions on the probabilistic programs. For instance, conditional statements
are not allowed and the use of symbolic inputs is limited. As a result, most of
our benchmarks cannot be handled by Mora.

In a similar vein, Kura et al. [27,39] bound higher central moments for run-
ning time and other monotonically increasing quantities. Like our work, these
works consider probabilistic loops that terminate. However, unlike our work,
they are limited to programs with constant size increments.

Data-Driven Invariant Synthesis. We are not aware of other data-driven meth-
ods for learning probabilistic invariants, but a recent work Abate et al. [1] proves
probabilistic termination by learning ranking supermartingales from trace data.
Our method for learning sub-invariants (Sect. 5) can be seen as a natural gener-
alization of their approach. However, there are also important differences. First,
we are able to learn general sub-invariants, not just ranking supermatingales for
proving termination. Second, our approach aims to learn model trees, which lead
to simpler and more interpretable sub-invariants. In contrast, Abate, et al. [1]
learn ranking functions encoded as two-layer neural networks.

Data-driven inference of invariants for deterministic programs has drawn a
lot of attention, starting from Daikon [17]. ICE learning with decision trees [20]
modifies the decision tree learning algorithm to capture implication counterex-
amples to handle inductiveness. Hanoi [32] uses counterexample-based induc-
tive synthesis (CEGIS) [38] to build a data-driven invariant inference engine
that alternates between weakening and strengthening candidates for synthesis.
Recent work uses neural networks to learn invariants [36]. These systems per-
form classification, while our work uses regression. Data from fuzzing has been
used for almost correct inductive invariants [29] for programs with closed-box
operations.

Probabilistic Reasoning with Pre-expectations. Following Morgan and McIver,
there are now pre-expectation calculi for domain-specific properties, like
expected runtime [23] and probabilistic sensitivity [2]. All of these systems define
the pre-expectation for loops as a least fixed-point, and practical reasoning about
loops requires finding an invariant of some kind.
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Abstract. We consider the quantitative problem of obtaining lower-
bounds on the probability of termination of a given non-deterministic
probabilistic program. Specifically, given a non-termination threshold
p ∈ [0, 1], we aim for certificates proving that the program terminates
with probability at least 1−p. The basic idea of our approach is to find a
terminating stochastic invariant, i.e. a subset SI of program states such
that (i) the probability of the program ever leaving SI is no more than
p, and (ii) almost-surely, the program either leaves SI or terminates.

While stochastic invariants are already well-known, we provide the
first proof that the idea above is not only sound, but also complete for
quantitative termination analysis. We then introduce a novel sound and
complete characterization of stochastic invariants that enables template-
based approaches for easy synthesis of quantitative termination certifi-
cates, especially in affine or polynomial forms. Finally, by combining this
idea with the existing martingale-based methods that are relatively com-
plete for qualitative termination analysis, we obtain the first automated,
sound, and relatively complete algorithm for quantitative termination
analysis. Notably, our completeness guarantees for quantitative termina-
tion analysis are as strong as the best-known methods for the qualitative
variant.

Our prototype implementation demonstrates the effectiveness of our
approach on various probabilistic programs. We also demonstrate that
our algorithm certifies lower bounds on termination probability for prob-
abilistic programs that are beyond the reach of previous methods.

1 Introduction

Probabilistic Programs. Probabilistic programs extend classical imperative
programs with randomization. They provide an expressive framework for specify-
ing probabilistic models and have been used in machine learning [22,39], network
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analysis [20], robotics [41] and security [4]. Recent years have seen the develop-
ment of many probabilistic programming languages such as Church [23] and
Pyro [6], and their formal analysis is an active topic of research. Probabilistic
programs are often extended with non-determinism to allow for either unknown
user inputs and interactions with environment or abstraction of parts that are
too complex for formal analysis [31].

Termination. Termination has attracted the most attention in the literature on
formal analysis of probabilistic programs. In non-probabilistic programs, it is a
purely qualitative property. In probabilistic programs, it has various extensions:

1. Qualitative: The almost-sure (a.s.) termination problem asks if the program
terminates with probability 1, whereas the finite termination problems asks
if the expected number of steps until termination is finite.

2. Quantitative: The quantitative probabilistic termination problem asks for a
tight lower bound on the termination probability. More specifically, given a
constant p ∈ [0, 1], it asks whether the program will terminate with probabil-
ity at least 1 − p over all possible resolutions of non-determinism.

Previous Qualitative Works. There are many approaches to prove a.s. termi-
nation based on weakest pre-expectation calculus [27,31,37], abstract interpre-
tation [34], type systems [5] and martingales [7,9,11,14,25,26,32,35]. This work
is closest in spirit to martingale-based approaches. The central concept in these
approaches is that of a ranking supermartingale (RSM) [7], which is a probabilis-
tic extension of ranking functions. RSMs are a sound and complete proof rule
for finite termination [21], which is a stricter notion than a.s. termination. The
work of [32] proposed a variant of RSMs that can prove a.s. termination even
for programs whose expected runtime is infinite, and lexicographic RSMs were
studied in [1,13]. A main advantage of martingale-based approaches is that they
can be fully automated for programs with affine/polynomial arithmetic [9,11].

Previous Quantitative Works. Quantitative analyses of probabilistic pro-
grams are often more challenging. There are only a few works that study
the quantitative termination problem: [5,14,40]. The works [14,40] propose
martingale-based proof rules for computing lower-bounds on termination proba-
bility, while [5] considers functional probabilistic programs and proposes a type
system that allows incrementally searching for type derivations to accumulate a
lower-bound on termination probability. See Sect. 8 for a detailed comparison.

Lack of Completeness. While [5,14,40] all propose sound methods to com-
pute lower-bounds on termination probability, none of them are theoretically
complete nor do their algorithms provide relative completeness guarantees. This
naturally leaves open whether one can define a complete certificate for proving
termination with probability at least 1− p ∈ [0, 1], i.e. a certificate that a prob-
abilistic program admits if and only if it terminates with probability at least
1 − p, which allows for automated synthesis. Ideally, such a certificate should
also be synthesized automatically by an algorithm with relative completeness
guarantees, i.e. an algorithm which is guaranteed to compute such a certificate
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for a sufficiently general subclass of programs. Note, since the problem of decid-
ing whether a probabilistic program terminates with probability at least 1− p is
undecidable, one cannot hope for a general complete algorithm so the best one
can hope for is relative completeness.

Our Approach. We present the first method for the probabilistic termination
problem that is complete. Our approach builds on that of [14] and uses stochastic
invariants in combination with a.s. reachability certificates in order to compute
lower-bounds on the termination probability. A stochastic invariant [14] is a
tuple (SI , p) consisting of a set SI of program states and an upper-bound p on
the probability of a random program run ever leaving SI . If one computes a
stochastic invariant (SI , p) with the additional property that a random program
run would, with probability 1, either terminate or leave SI , then since SI is
left with probability at most p the program must terminate with probability at
least 1− p. Hence, the combination of stochastic invariants and a.s. reachability
certificates provides a sound approach to the probabilistic termination problem.

While this idea was originally proposed in [14], our method for computing
stochastic invariants is fundamentally different and leads to completeness. In [14],
a stochastic invariant is computed indirectly by computing the set SI together
with a repulsing supermartingale (RepSM), which can then be used to compute
a probability threshold p for which (SI , p) is a stochastic invariant. It was shown
in [40, Section 3] that RepSMs are incomplete for computing stochastic invari-
ants. Moreover, even if a RepSM exists, the resulting probability bound need not
be tight and the method of [14] does not allow optimizing the computed bound
or guiding computation towards a bound that exceeds some specified probability
threshold.

In this work, we propose a novel and orthogonal approach that computes
the stochastic invariant and the a.s. termination certificate at the same time
and is provably complete for certifying a specified lower bound on termina-
tion probability. First, we show that stochastic invariants can be characterized
through the novel notion of stochastic invariant indicators (SI-indicators). The
characterization is both sound and complete. Furthermore, it allows fully auto-
mated computation of stochastic invariants for programs using affine or poly-
nomial arithmetic via a template-based approach that reduces quantitative ter-
mination analysis to constraint solving. Second, we prove that stochastic invari-
ants together with an a.s. reachability certificate, when synthesized in tandem,
are not only sound for probabilistic termination, but also complete. Finally, we
present the first relatively complete algorithm for probabilistic termination. Our
algorithm considers polynomial probabilistic programs and simultaneously com-
putes a stochastic invariant and an a.s. reachability certificate in the form of an
RSM using a template-based approach. Our algorithmic approach is relatively
complete.

While we focus on the probabilistic termination problem in which the goal is
to verify a given lower bound 1− p on the termination probability, we note that
our method may be straightforwardly adapted to compute a lower bound on the
termination probability. In particular, we may perform a binary-search on p and
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search for the smallest value of p for which 1 − p can be verified to be a lower
bound on the termination probability.
Contributions. Our specific contributions in this work are as follows:

1. We present a sound and complete characterization of stochastic invariants
through the novel notion of stochastic invariant indicators (Sect. 4).

2. We prove that stochastic invariants together with an a.s. reachability certifi-
cate are sound and complete for proving that a probabilistic program termi-
nates with at least a given probability threshold (Sect. 5).

3. We present a relatively complete algorithm for computing SI-indicators, and
hence stochastic invariants over programs with affine or polynomial arith-
metic. By combining it with the existing relatively complete algorithms for
RSM computation, we obtain the first algorithm for probabilistic termination
that provides completeness guarantees (Sect. 6).

4. We implement a prototype of our approach and demonstrate its effectiveness
over various benchmarks (Sect. 7). We also show that our approach can handle
programs that were beyond the reach of previous methods.

2 Overview

Before presenting general theorems and algorithms, we first illustrate our method
on the probabilistic program in Fig. 1. The program models a 1-dimensional
discrete-time random walk over the real line that starts at x = 0 and terminates
once a point with x < 0 is reached. In every time step, x is incremented by a
random value sampled according to the uniform distribution Uniform([−1, 0.5]).
However, if the stochastic process is in a point with x ≥ 100, then the value
of x might also be incremented by a random value independently sampled from
Uniform([−1, 2]). The choice on whether the second increment happens is non-
deterministic. By a standard random walk argument, the program does not ter-
minate almost-surely.

Outline of Our Method. Let p = 0.01. To prove this program terminates
with probability at least 1 − p = 0.99, our method computes the following two
objects:

1. Stochastic invariant. A stochastic invariant is a tuple (SI , p) s.t. SI is a set of
program states that a random program run leaves with probability at most
p.

2. Termination proof for the stochastic invariant. A ranking supermartingale
(RSM) [7] is computed in order to prove that the program will, with proba-
bility 1, either terminate or leave the set SI . Since SI is left with probability
at most p, the program must terminate with probability at least 1 − p.
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Fig. 1. Our running example.

Synthesizing SI. To find a stochastic invariant, our method computes a state
function f which assigns a non-negative real value to each reachable program
state. We call this function a stochastic invariant indicator (SI-indicator), and it
serves the following two purposes: First, exactly those states which are assigned
a value strictly less than 1 are considered a part of the stochastic invariant SI .
Second, the value assigned to each state is an upper-bound on the probability
of leaving SI if the program starts from that state. Finally, by requiring that
the value of the SI-indicator at the initial state of the program is at most p, we
ensure a random program run leaves the stochastic invariant with probability at
most p.

In Sect. 4, we will define SI-indicators in terms of conditions that ensure the
properties above and facilitate automated computation. We also show that SI-
indicators serve as a sound and complete characterization of stochastic invari-
ants, which is one of the core contributions of this work. The significance of
completeness of the characterization is that, in order to search for a stochas-
tic invariant with a given probability threshold p, one may equivalently search
for an SI-indicator with the same probability threshold whose computation can
be automated. As we will discuss in Sect. 8, previous approaches to the synthe-
sis of stochastic invariants were neither complete nor provided tight probability
bounds. For Fig. 1, we have the following set SI which will be left with proba-
bility at most p = 0.01 :

SI (�) =

{
(x < 99) if � ∈ {�init , �1, �2, �3, �out}
false otherwise.

(1)

An SI-indicator for this stochastic invariant is:

f(�, x, r1, r2) =

⎧⎪⎪⎨
⎪⎪⎩

x+1
100 if � ∈ {�init , �1, �3, �out} and x < 99
x+1+r1

100 if � = �2 and x < 99
1 otherwise.

(2)

It is easy to check that (SI , 0.01) is a stochastic invariant and that for every
state s = (�, x, r1, r2), the value f(s) is an upper-bound on the probability of
eventually leaving SI if program execution starts at s. Also, s ∈ SI ⇔ f(s) < 1.
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Synthesizing a Termination Proof. To prove that a probabilistic program
terminates with probability at least 1 − p, our method searches for a stochastic
invariant (SI , p) for which, additionally, a random program run with probability
1 either leaves SI or terminates. This idea is formalized in Theorem2, which
shows that stochastic invariants provide a sound and complete certificate for
proving that a given probabilistic program terminates with probability at least
1 − p. In order to impose this additional condition, our method simultaneously
computes an RSM for the set of states ¬SI ∪ Stateterm , where Stateterm is the
set of all terminal states. RSMs are a classical certificate for proving almost-sure
termination or reachability in probabilistic programs. A state function η is said
to be an RSM for ¬SI ∪ Stateterm if it satisfies the following two conditions:

– Non-negativity. η(�, x, r1, r2) ≥ 0 for any reachable state (�, x, r1, r2) ∈ SI ;
– ε-decrease in expectation. There exists ε > 0 such that, for any reachable

non-terminal state (�, x, r1, r2) ∈ SI , the value of η decreases in expectation
by at least ε after a one-step execution of the program from (�, x, r1, r2).

The existence of an RSM for ¬SI ∪Stateterm implies that the program will, with
probability 1, either terminate or leave SI . As (SI , p) is a stochastic invariant,
we can readily conclude that the program terminates with probability at least
1 − p = 0.99. An example RSM with ε = 0.05 for our example above is:

η(�, x, r1, r2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1.1 if � = �init

x + 1.05 if � = �1

x + 1.2 + r1 if � = �2

x + 1.15 if � = �3

x + 1 if � = �out

100 otherwise.

(3)

Simultaneous Synthesis. Our method employs a template-based approach
and synthesizes the SI and the RSM simultaneously. We assume that our method
is provided with an affine/polynomial invariant I which over-approximates the
set of all reachable states in the program, which is necessary since the defining
conditions of SI-indicators and RSMs are required to hold at all reachable pro-
gram states. Note that invariant generation is an orthogonal and well-studied
problem and can be automated using [10]. For both the SI-indicator and the
RSM, our method first fixes a symbolic template affine/polynomial expression
for each location in the program. Then, all the defining conditions of SI-indicators
and RSMs are encoded as a system of constraints over the symbolic template
variables, where reachability of program states is encoded using the invariant I,
and the synthesis proceeds by solving this system of constraints. We describe
our algorithm in Sect. 6, and show that it is relatively complete with respect to
the provided invariant I and the probability threshold 1−p. On the other hand,
we note that our algorithm can also be adapted to compute lower bounds on the
termination probability by combining it with a binary search on p.
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Completeness vs Relative Completeness. Our characterization of stochas-
tic invariants using indicator functions is complete. So is our reduction from
quantitative termination analysis to the problem of synthesizing an SI-indicator
function and a certificate for almost-sure reachability. These are our core theoret-
ical contributions in this work. Nevertheless, as mentioned above, RSMs are com-
plete only for finite termination, not a.s. termination. Moreover, template-based
approaches lead to completeness guarantees only for solutions that match the
template, e.g. polynomial termination certificates of a bounded degree. There-
fore, our end-to-end approach is only relatively complete. These losses of com-
pleteness are due to Rice’s undecidability theorem and inevitable even in qual-
itative termination analysis. In this work, we successfully provide approaches
for quantitative termination analysis that are as complete as the best known
methods for the qualitative case.

3 Preliminaries

We consider imperative arithmetic probabilistic programs with non-determinism.
Our programs allow standard programming constructs such as conditional
branching, while-loops and variable assignments. They also allow two proba-
bilistic constructs – probabilistic branching which is indicated in the syntax by
a command ‘if prob(p) then . . . ’ with p ∈ [0, 1] a real constant, and sampling
instructions of the form x := d where d is a probability distribution. Sampling
instructions may contain both discrete (e.g. Bernoulli, geometric or Poisson) and
continuous (e.g. uniform, normal or exponential) distributions. We also allow
constructs for (demonic) non-determinism. We have non-deterministic branch-
ing which is indicated in the syntax by ‘if � then . . .’, and non-deterministic
assignments represented by an instruction of the form x := ndet([a, b]), where
a, b ∈ R ∪ {±∞} and [a, b] is a (possibly unbounded) real interval from which
the new variable value is chosen non-deterministically. We also allow one or
both sides of the interval to be open. The complete syntax of our programs is
presented in [12, Appendix A].

Notation. We use boldface symbols to denote vectors. For a vector x of dimen-
sion n and 1 ≤ i ≤ n, x[i] denotes the i-th component of x. We write x[i ← a]
to denote an n-dimensional vector y with y[i] = a and y[j] = x[j] for j 	= i.

Program Variables. Variables in our programs are real-valued. Given a finite
set of variables V , a variable valuation of V is a vector x ∈ R

|V |.

Probabilistic Control-Flow Graphs (pCFGs). We model our programs via
probabilistic control-flow graphs (pCFGs) [11,14]. A probabilistic control-flow
graph (pCFG) is a tuple C = (L, V, �init ,xinit , 
→, G,Pr ,Up), where:

– L is a finite set of locations, partitioned into locations of conditional branching
LC , probabilistic branching LP , non-det branching LN and assignment LA.

– V = {x1, . . . , x|V |} is a finite set of program variables;
– �init is the initial program location;
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– xinit ∈ R
|V | is the initial variable valuation;

– 
→⊆ L × L is a finite set of transitions. For each transition τ = (�, �′), we say
that � is its source location and �′ its target location;

– G is a map assigning to each transition τ = (�, �′) ∈ 
→ with � ∈ LC a guard
G(τ), which is a logical formula over V specifying whether τ can be executed;

– Pr is a map assigning to each transition τ = (�, �′) ∈ 
→ with � ∈ LP a
probability Pr(τ) ∈ [0, 1]. We require

∑
τ=(�,_) Pr(τ) = 1 for each � ∈ LP ;

– Up is a map assigning to each transition τ = (�, �′) ∈ 
→ with � ∈ LA an
update Up(τ) = (j, u) where j ∈ {1, . . . , |V |} is a target variable index and u
is an update element which can be:

• the bottom element u = ⊥, denoting no update;
• a Borel-measurable expression u : R|V | → R, denoting a deterministic

variable assignment;
• a probability distribution u = d, denoting that the new variable value is

sampled according to d;
• an interval u = [a, b] ⊆ R ∪ {±∞}, denoting a non-deterministic update.

We also allow one or both sides of the interval to be open.

We assume the existence of the special terminal location denoted by �out . We
also require that each location has at least one outgoing transition, and that each
� ∈ LA has a unique outgoing transition. For each location � ∈ LC , we assume
that the disjunction of guards of all transitions outgoing from � is equivalent to
true, i.e.

∨
τ=(l,_) G(τ) ≡ true. Translation of probabilistic programs to pCFGs

that model them is standard, so we omit the details and refer the reader to [11].
The pCFG for the program in Fig. 1 is provided in [12, Appendix B].

States, Paths and Runs. A state in a pCFG C is a tuple (�,x), where � is a
location in C and x ∈ R

|V | is a variable valuation of V . We say that a transition
τ = (�, �′) is enabled at a state (�,x) if � 	∈ LC or if � ∈ LC and x |= G(τ). We say
that a state (�′,x′) is a successor of (�,x), if there exists an enabled transition
τ = (�, �′) in C such that (�′,x′) can be reached from (�,x) by executing τ , i.e.
we can obtain x′ by applying the updates of τ to x, if any. A finite path in C
is a sequence (�0,x0), (�1,x1), . . . , (�k,xk) of states with (�0,x0) = (�init ,xinit)
and with (�i+1,xi+1) being a successor of (�i,xi) for each 0 ≤ i ≤ k − 1. A state
(�,x) is reachable in C if there exists a finite path in C that ends in (�,x). A
run (or execution) in C is an infinite sequence of states where each finite prefix
is a finite path. We use StateC , FpathC , RunC , ReachC to denote the set of all
states, finite paths, runs and reachable states in C, respectively. Finally, we use
Stateterm to denote the set {(�out ,x) | x ∈ R

|V |} of terminal states.

Schedulers. The behavior of a pCFG may be captured by defining a probabil-
ity space over the set of all runs in the pCFG. For this to be done, however, we
need to resolve non-determinism and this is achieved via the standard notion
of a scheduler. A scheduler in a pCFG C is a map σ which to each finite path
ρ ∈ FpathC assigns a probability distribution σ(ρ) over successor states of the
last state in ρ. Since we deal with programs operating over real-valued vari-
ables, the set FpathC may be uncountable. To that end, we impose an additional
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measurability assumption on schedulers, in order to ensure that the semantics
of probabilistc programs with non-determinism is defined in a mathematically
sound way. The restriction to measurable schedulers is standard. Hence, we omit
the formal definition.

Semantics of pCFGs. A pCFG C with a scheduler σ define a stochastic pro-
cess taking values in the set of states of C, whose trajectories correspond to
runs in C. The process starts in the initial state (�init ,xinit) and inductively
extends the run, where the next state along the run is chosen either determin-
istically or is sampled from the probability distribution defined by the current
location along the run and by the scheduler σ. These are the classical opera-
tional semantics of Markov decision processes (MDPs), see e.g. [1,27]. A pCFG
C and a scheduler σ together determine a probability space (RunC ,FC ,Pσ) over
the set of all runs in C. For details, see [12, Appendix C]. We denote by E

σ the
expectation operator on (RunC ,FC ,Pσ). We may analogously define a probabil-
ity space (RunC(�,x),FC(�,x),Pσ

C(�,x)) over the set of all runs in C that start in
some specified state (�,x).

Probabilistic Termination Problem. We now define the termination problem
for probabilistic programs considered in this work. A state (�,x) in a pCFG
C is said to be a terminal state if � = �out . A run ρ ∈ RunC is said to be
terminating if it reaches some terminal state in C. We use Term ⊆ RunC to
denote the set of all terminating runs in RunC . The termination probability of
a pCFG C is defined as infσ P

σ[Term], i.e. the smallest probability of the set
of terminating runs in C with respect to any scheduler in C (for the proof that
Term is measurable, see [40]). We say that C terminates almost-surely (a.s.) if its
termination probability is 1. In this work, we consider the Lower Bound on the
Probability of Termination (LBPT) problem that, given p ∈ [0, 1], asks whether
1 − p is a lower bound for the termination probability of the given probabilistic
program, i.e. whether infσ P

σ[Term] ≥ 1 − p.

4 A Sound and Complete Characterization of SIs

In this section, we recall the notion of stochastic invariants and present our
characterization of stochastic invariants through stochastic indicator functions.
We fix a pCFG C = (L, V, �init ,xinit , 
→, G,Pr ,Up). A predicate function in C is a
map F that to every location � ∈ L assigns a logical formula F (�) over program
variables. It naturally induces a set of states, which we require to be Borel-
measurable for the semantics to be well-defined. By a slight abuse of notation,
we identify a predicate function F with this set of states. Furthermore, we use
¬F to denote the negation of a predicate function, i.e. (¬F )(�) = ¬F (�). An
invariant in C is a predicate function I which additionally over-approximates
the set of reachable states in C, i.e. for every (�,x) ∈ ReachC we have x |= I(�).
Stochastic invariants can be viewed as a probabilistic extension of invariants,
which a random program run leaves only with a certain probability. See Sect. 2
for an example.
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Definition 1 (Stochastic invariant [14]). Let SI a predicate function in C
and p ∈ [0, 1] a probability. The tuple (SI , p) is a stochastic invariant (SI) if the
probability of a run in C leaving the set of states defined by SI is at most p under
any scheduler. Formally, we require that

supσ P
σ
[
ρ ∈ RunC | ρ reaches some (�,x) with x 	|= SI (�)

]
≤ p.

Key Challenge. If we find a stochastic invariant (SI , p) for which termination
happens almost-surely on runs that do not leave SI , we can immediately conclude
that the program terminates with probability at least 1−p (this idea is formalized
in Sect. 5). The key challenge in designing an efficient termination analysis based
on this idea is the computation of appropriate stochastic invariants. We present
a sound and complete characterization of stochastic invariants which allows for
their effective automated synthesis through template-based methods.

We characterize stochastic invariants through the novel notion of stochastic
invariant indicators (SI-indicators). An SI-indicator is a function that to each
state assigns an upper-bound on the probability of violating the stochastic invari-
ant if we start the program in that state. Since the definition of an SI-indicator
imposes conditions on its value at reachable states and since computing the
exact set of reachable states is in general infeasible, we define SI-indicators with
respect to a supporting invariant with the later automation in mind. In order
to understand the ideas of this section, one may assume for simplicity that the
invariant exactly equals the set of reachable states. A state-function in C is a
function f that to each location � ∈ L assigns a Borel-measurable real-valued
function over program variables f(�) : R|V | → R. We use f(�,x) and f(�)(x)
interchangeably.

Definition 2 (Stochastic invariant indicator). A tuple (fSI , p) comprising
a state function fSI and probability p ∈ [0, 1] is a stochastic invariant indicator
(SI-indicator) with respect to an invariant I, if it satisfies the following conditions:

(C1) Non-negativity. For every location � ∈ L, we have x |= I(�) ⇒
fSI (�,x) ≥ 0.

(C2) Non-increasing expected value. For every location � ∈ L, we have:
(C1

2) If � ∈ LC , then for any transition τ = (�, �′) we have x |= I(�) ∧ G(τ) ⇒
fSI (�,x) ≥ fSI (�′,x).

(C2
2) If � ∈ LP , then x |= I(�) ⇒ fSI (�,x) ≥ ∑

τ=(�,�′)∈ �→ Pr(τ) · fSI (�′,x).
(C3

2) If � ∈ LN , then x |= I(�) ⇒ fSI (�,x) ≥ maxτ=(�,�′)∈ �→ fSI (�′,x).
(C4

2) If � ∈ LA with τ = (�, �′) the unique outgoing transition from �, then:
– If Up(τ) = (j,⊥), x |= I(�) ⇒ f(�,x) ≥ f(�′,x).
– If Up(τ) = (j, u) with u : R|V | → R an expression, we have x |=

I(�) ⇒ f(�,x) ≥ f(�′,x[xj ← u(xi)]).
– If Up(τ) = (j, u) with u = d a distribution, we have x |= I(�) ⇒

f(�,x) ≥ EX∼d[f(�′,x[xj ← X])].
– If Up(τ) = (j, u) with u = [a, b] an interval, we have x |= I(�) ⇒

f(�,x) ≥ supX∈[a,b]{f(�′,x[xj ← X])}.
(C3) Initial condition. We have f(�init ,xinit) ≤ p.
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Intuition. (C1) imposes that f is nonnegative at any state contained in the
invariant I. Next, for any state in I, (C2) imposes that the value of f does
not increase in expectation upon a one-step execution of the pCFG under any
scheduler. Finally, the condition (C3) imposes that the initial value of f in C is
at most p. Together, the indicator thus intuitively over-approximates the proba-
bility of violating SI . An example of an SI-indicator for our running example in
Fig. 1 is given in (2). The following theorem formalizes the above intuition and
is our main result of this section. In essence, we prove that (SI , p) is a stochastic
invariant in C iff there exists an SI-indicator (fSI , p) such that SI contains all
states at which fSI is strictly smaller than 1. This implies that, for every stochas-
tic invariant (SI , p), there exists an SI-indicator such that (SI ′, p) defined via
SI ′(�) = (x |= I(�) ∧ fSI (�,x) < 1) is a stochastic invariant that is at least as
tight as (SI , p).

Theorem 1 (Soundness and Completeness of SI-indicators). Let C be
a pCFG, I an invariant in C and p ∈ [0, 1]. For any SI-indicator (fSI , p) with
respect to I, the predicate map SI defined as SI (�) = (x |= I(�) ∧ fSI (�,x) <
1) yields a stochastic invariant (SI , p) in C. Conversely, for every stochastic
invariant (SI , p) in C, there exist an invariant ISI and a state function fSI such
that (fSI , p) is an SI-indicator with respect to ISI and for each � ∈ L we have
SI (�) ⊇ (x |= ISI (�) ∧ fSI (�,x) < 1).

Proof Sketch. Since the proof is technically involved, we present the main
ideas here and defer the details to [12, Appendix E]. First, suppose that I is
an invariant in C and that (fSI , p) is an SI-indicator with respect to I, and
let SI (�) = (x |= I(�) ∧ fSI (�,x) < 1) for each � ∈ L. We need to show that
(SI , p) is a stochastic invariant in C. Let supσ P

σ
(�,x)[Reach(¬SI )] be a state

function that maps each state (�,x) to the probability of reaching ¬SI from
(�,x). We consider a lattice of non-negative semi-analytic state-functions (L,�)
with the partial order defined via f � f ′ if f(�,x) ≤ f ′(�,x) holds for each
state (�,x) in I. See [12, Appendix D] for a review of lattice theory. It follows
from a result in [40] that the probability of reaching ¬SI can be characterized
as the least fixed point of the next-time operator X¬SI : L → L. Away from ¬SI ,
the operator X¬SI simulates a one-step execution of C and maps f ∈ L to its
maximal expected value upon one-step execution of C where the maximum is
taken over all schedulers, and at states contained in ¬SI the operator X¬SI is
equal to 1. It was also shown in [40] that, if a state function f ∈ L is a pre-fixed
point of X¬SI , then it satisfies supσ P

σ
(�,x)[Reach(¬SI )] ≤ f(�,x) for each (�,x) in

I. Now, by checking the defining properties of pre-fixed points and recalling that
fSI satisfies Non-negativity condition (C1) and Non-increasing expected value
condition (C2) in Definition 2, we can show that fSI is contained in the lattice L
and is a pre-fixed point of X¬SI . It follows that supσ P

σ
(�init ,xinit )

[Reach(¬SI )] ≤
fSI (�init ,xinit). On the other hand, by initial condition (C3) in Definition 2 we
know that fSI (�init ,xinit) ≤ p. Hence, we have supσ P

σ
(�init ,xinit )

[Reach(¬SI )] ≤ p

so (SI , p) is a stochastic invariant.
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Conversely, suppose that (SI , p) is a stochastic invariant in C. We show in
[12, Appendix E] that, if we define ISI to be the trivial true invariant and
define fSI (�,x) = supσ P

σ
(�,x)[Reach(¬SI )], then (fSI , p) forms an SI-indicator

with respect to ISI . The claim follows by again using the fact that fSI is the
least fixed point of the operator X¬SI , from which we can conclude that (fSI , p)
satisfies conditions (C1) and (C2) in Definition 2. On the other hand, the fact
that (SI , p) is a stochastic invariant and our choice of fSI imply that (fSI , p)
satisfies the initial condition (C3) in Definition 2. Hence, (fSI , p) forms an SI-
indicator with respect to ISI . Furthermore, SI (�) ⊇ (x |= ISI (�)∧ fSI (�,x) < 1)
follows since 1 > fSI (�,x) = supσ P

σ
(�,x)[Reach(¬SI )] implies that (�,x) cannot

be contained in ¬SI so x |= SI (�). This concludes the proof. ��
Based on the theorem above, in order to compute a stochastic invariant in

C for a given probability threshold p, it suffices to synthesize a state function
fSI that together with p satisfies all the defining conditions in Definition 2 with
respect to some supporting invariant I, and then consider a predicate function
SI defined via SI (�) = (x |= I(�) ∧ fSI (�,x) < 1) for each � ∈ L. This will be
the guiding principle of our algorithmic approach in Sect. 6.

Intuition on Characterization. Stochastic invariants can essentially be
thought of as quantitative safety specifications in probabilistic programs – (SI , p)
is a stochastic invariant if and only if a random probabilistic program run leaves
SI with probability at most p. However, what makes their computation hard
is that they do not consider probabilities of staying within a specified safe set.
Rather, the computation of stochastic invariants requires computing both the
safe set and the certificate that it is left with at most the given probability.
Nevertheless, in order to reason about them, we may consider SI as an implic-
itly defined safe set. Hence, if we impose conditions on a state function fSI to
be an upper bound on the reachability probability for the target set of states
(x |= I(�)∧fSI (�,x) < 1), and in addition impose that fSI (�init ,xinit) ≤ p, then
these together will entail that p is an upper bound on the probability of ever
leaving SI when starting in the initial state. This is the intuitive idea behind our
construction of SI-indicators, as well as our soundness and completeness proof.
In the proof, we show that conditions (C1) and (C2) in Definition 2 indeed entail
the necessary conditions to be an upper bound on the reachability probability
of the set (x |= I(�) ∧ fSI (�,x) < 1).

5 Stochastic Invariants for LBPT

In the previous section, we paved the way for automated synthesis of stochas-
tic invariants by providing a sound and complete characterization in terms of
SI-indicators. We now show how stochastic invariants in combination with any
a.s. termination certificate for probabilistic programs can be used to compute
lower-bounds on the probability of termination. Theorem 2 below states a gen-
eral result about termination probabilities that is agnostic to the termination
certificate, and shows that stochastic invaraints provide a sound and complete
approach to quantitative termination analysis.
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Theorem 2 (Soundness and Completeness of SIs for Quantitative Ter-
mination). Let C = (L, V, �init ,xinit , 
→, G,Pr ,Up) be a pCFG and (SI , p) a
stochastic invariant in C. Suppose that, with respect to every scheduler, a run in
C almost-surely either terminates or reaches a state in ¬SI , i.e.

infσ P
σ
[
Term ∪ Reach(¬SI )

]
= 1. (4)

Then C terminates with probability at least 1 − p. Conversely, if C terminates
with probability at least 1 − p, then there exists a stochastic invariant (SI , p)
in C such that, with respect to every scheduler, a run in C almost-surely either
terminates or reaches a state in ¬SI .

Proof Sketch. The first part (soundness) follows directly from the definition of
SI and (4). The completeness proof is conceptually and technically involved and
presented in [12, Appendix H]. In short, the central idea is to construct, for every
n greater than a specific threshold n0, a stochastic invariant (SI n, p + 1

n ) such
that a run almost-surely either terminates or exists SI n. Then, we show that
∩∞

n=n0
SI n is our desired SI . To construct each SI n, we consider the infimum

termination probability at every state (�,x) and call it r(�,x). The infimum is
taken over all schedulers. We then let SI n be the set of states (�,x) for whom
r(�,x) is greater than a specific threshold α. Intuitively, our stochastic invariant
is the set of program states from which the probability of termination is at least
α, no matter how the non-determinism is resolved. Let us call these states likely-
terminating. The intuition is that a random run of the program will terminate
or eventually leave the likely-terminating states with high probability. ��
Quantitative to Qualitative Termination. Theorem 2 provides us with a
recipe for computing lower bounds on the probability of termination once we
are able to compute stochastic invariants: if (SI , p) is a stochastic invariant in
a pCFG C, it suffices to prove that the set of states Stateterm ∪ ¬SI is reached
almost-surely with respect to any scheduler in C, i.e. the program terminates or
violates SI. Note that this is simply a qualitative a.s. termination problem, except
that the set of terminal states is now augmented with ¬SI . Then, since (SI , p)
is a stochastic invariant, it would follow that a terminal state is reached with
probability at least 1−p. Moreover, the theorem shows that this approach is both
sound and complete. In other words, proving quantitative termination, i.e. that
we reach Stateterm with probability at least 1 − p is now reduced to (i) finding
a stochastic invariant (SI , p) and (ii) proving that the program C′ obtained by
adding ¬SI to the set of terminal states of C is a.s. terminating. Note that, to
preserve completeness, (i) and (ii) should be achieved in tandem, i.e. an approach
that first synthesizes and fixes SI and then tries to prove a.s. termination for
¬SI is not complete.

Ranking Supermartingales. While our reduction above is agnostic to the type
of proof/certificate that is used to establish a.s. termination, in this work we use
Ranking Supermartingales (RSMs) [7], which are a standard and classical cer-
tificate for proving a.s. termination and reachability. Let C = (L, V, �init ,xinit , 
→
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, G,Pr ,Up) be a pCFG and I an invariant in C. Note that as in Definition 2,
the main purpose of the invariant is to allow for automated synthesis and one
can again simply assume it to equal the set of reachable states. An ε-RSM for a
subset T of states is a state function that is non-negative in each state in I, and
whose expected value decreases by at least ε > 0 upon a one-step execution of C
in any state that is not contained in the target set T . Thus, intuitively, a program
run has an expected tendency to approach the target set T where the distance
to T is given by the value of the RSM which is required to be non-negative in
all states in I. The ε-ranked expected value condition is formally captured via
the next-time operator X (See [12, Appendix E]). An example of an RSM for
our running example in Fig. 1 and the target set of states ¬SI ∪ Stateterm with
SI the stochastic invariant in Eq. (1) is given in Eq. (3).

Definition 3 (Ranking supermartingales). Let T be a predicate function
defining a set of target states in C, and let ε > 0. A state function η is said to
be an ε-ranking supermartingale (ε-RSM) for T with respect to the invariant I
if it satisfies the following conditions:

1. Non-negativity. For each location � ∈ L and x ∈ I(�), we have η(�,x) ≥ 0.
2. ε-ranked expected value. For each location � ∈ L and x |= I(�) ∩ ¬T (�), we

have η(�,x) ≥ X(η)(�,x) + ε.

Note that the second condition can be expanded according to location types in
the exact same manner as in condition C2 of Definition 2. The only difference is
that in Definition 2, the expected value had to be non-increasing, whereas here
it has to decrease by ε. It is well-known that the two conditions above entail
that T is reached with probability 1 with respect to any scheduler [7,11].

Theorem 3. (Proof in [12, Appendix I]). Let C be a pCFG, I an invariant
in C and T a predicate function defining a target set of states. If there exist
ε > 0 and an ε-RSM for T with respect to I, then T is a.s. reached under any
scheduler, i.e.

infσ P
σ
(�init ,xinit )

[
Reach(T )

]
= 1.

The following theorem is an immediate corollary of Theorems 2 and 3.

Theorem 4. Let C be a pCFG and I be an invariant in C. Suppose that there
exist a stochastic invariant (SI , p), an ε > 0 and an ε-RSM η for Stateterm ∪¬SI
with respect to I. Then C terminates with probability at least 1 − p.

Therefore, in order to prove that C terminates with probability at least 1 − p,
it suffices to find (i) a stochastic invariant (SI , p) in C, and (ii) an ε-RSM η
for Stateterm ∪ ¬SI with respect to I and some ε > 0. Note that these two
tasks are interdependent. We cannot simply choose any stochastic invariant. For
instance, the trivial predicate function defined via SI = true always yields a
valid stochastic invariant for any p ∈ [0, 1], but it does not help termination
analysis. Instead, we need to compute a stochastic invariant and an RSM for it
simultaneously.
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Power of Completeness. We end this section by showing that our approach
certifies a tight lower-bound on termination probability for a program that was
proven in [40] not to admit any of the previously-existing certificates for lower
bounds on termination probability. This shows that our completeness pays off
in practice and our approach is able to handle programs that were beyond the
reach of previous methods. Consider the program in Fig. 2 annotated by an
invariant I. We show that our approach certifies that this program terminates
with probability at least 0.5. Indeed, consider a stochastic invariant (SI , 0.5)
with SI (�) = true if � 	= �3, and SI (�3) = false, and a state function defined via
η(�init , x) = − log(x) + log(2) + 3, η(�1, x) = − log(x) + log(2) + 2, η(�2, x) = 1
and η(�3, x) = η(�out , x) = 0 for each x. Then one can easily check by inspection
that (SI , 0.5) is a stochastic invariant and that η is a (log(2) − 1)-RSM for
Stateterm ∪ ¬SI with respect to I. Therefore, it follows by Theorem 4 that the
program in Fig. 2 terminates with probability at least 0.5.

6 Automated Template-Based Synthesis Algorithm

We now provide template-based relatively complete algorithms for simultaneous
and automated synthesis of SI-indicators and RSMs, in order to solve the quanti-
tative termination problem over pCFGs with affine/polynomial arithmetic. Our
approach builds upon the ideas of [2,9] for qualitative and non-probabilistic
cases.

Fig. 2. A program that was shown in [40] not to admit a repulsing supermartingale [14]
or a gamma-scaled supermartingale [40], but for which our method can certify the tight
lower-bound of 0.5 on the probability of termination.

Input and Assumptions. The input to our algorithms consists of a pCFG C
together with a probability p ∈ [0, 1], an invariant I,� and technical variables δ
and M , which specify polynomial template sizes used by the algorithm and which
will be discussed later. In this section, we limit our focus to affine/polynomial
pCFGs, i.e. we assume that all guards G(τ) in C and all invariants I(�) are
conjunctions of affine/polynomial inequalities over program variables. Similarly,
we assume that every update function u : R|V | → R used in deterministic variable
assignments is an affine/polynomial expression in R[V ].
� We assume an invariant is given as part of the input. Invariant generation is an

orthogonal and well-studied problem and can be automated using [10,16].
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Output. The goal of our algorithms is to synthesize a tuple (f, η, ε) where f is
an SI-indicator function, η is a corresponding RSM, and ε > 0, such that:

– At every location � of C, both f(�) and η(�) are affine/polynomial expressions
of fixed degree δ over the program variables V .

– Having SI (�) := {x | f(�,x) < 1}, the pair (SI , p) is a valid stochastic
invariant and η is an ε-RSM for Stateterm ∪ ¬SI with respect to I.

As shown in Sects. 4 and 5, such a tuple w = (f, η, ε) serves as a certificate that
the probabilistic program modeled by C terminates with probability at least
1 − p. We call w a quantitative termination certificate.

Overview. Our algorithm is a standard template-based approach similar
to [2,9]. We encode the requirements of Definitions 2 and 3 as entailments
between affine/polynomial inequalities with unknown coefficients and then apply
the classical Farkas’ Lemma [17] or Putinar’s Positivstellensatz [38] to reduce the
synthesis problem to Quadratic Programming (QP). Finally, we solve the result-
ing QP using a numerical optimizer or an SMT-solver. Our approach consists of
the four steps below. Step 3 follows [2] exactly. Hence, we refer to [2] for more
details on this step.

Step 1. Setting Up Templates. The algorithm sets up symbolic templates
with unknown coefficients for f, η and ε.

– First, for each location � of C, the algorithm sets up a template for f(�) which
is a polynomial consisting of all possible monomials of degree at most δ over
program variables, each appearing with an unknown coefficient. For example,
consider the program in Fig. 1 of Sect. 2. This program has three variables:
x, r1 and r2. If δ = 1, i.e. if the goal is to find an affine SI-indicator, at every
location �i of the program, the algorithm sets f(�i, x, r1, r2) := ĉi,0 + ĉi,1 ·
x + ĉi,2 · r1 + ĉi,3 · r2. Similarly, if the desired degree is δ = 2, the algorithm
symbolically computes:f(�i, x, r1, r2) := ĉi,0 + ĉi,1 · x + ĉi,2 · r1 + ĉi,3 · r2 +
ĉi,4 · x2 + ĉi,5 · x · r1 + ĉi,6 · x · r2 + ĉi,7 · r21 + ĉi,8 · r1 · r2 + ĉi,9 · r22. Note that
every monomial of degree at most 2 appears in this expression. The goal is
to synthesize suitable real values for each unknown coefficient ĉi,j such that
f becomes an SI-indicator. Throughout this section, we use the .̂ notation
to denote an unknown coefficient whose value will be synthesized by our
algorithm.

– The algorithm creates an unknown variable ε̂ whose final value will serve as
ε.

– Finally, at each location � of C, the algorithm sets up a template for η(�) in
the exact same manner as the template for f(�). The goal is to synthesize
values for ε̂ and the ĉ variables in this template such that η becomes a valid
ε̂-RSM for Stateterm ∪ ¬SI with respect to I.

Step 2. Generating Entailment Constraints. In this step, the algorithm
symbolically computes the requirements of Definition 2, i.e. C1–C3, and their
analogues in Definition 3 using the templates generated in the previous step.
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Note that all of these requirements are entailments between affine/polynomial
inequalities over program variables whose coefficients are unknown. In other
words, they are of the form ∀x A(x) ⇒ b(x) where A is a set of affine/polyno-
mial inequalities over program variables whose coefficients contain the unknown
variables ĉ and ε̂ generated in the previous step and b is a single such inequality.
For example, for the program of Fig. 1, the algorithm symbolically computes
condition C1 at line �1 as follows: ∀x I(�1,x) ⇒ f(�1,x) ≥ 0. Assuming that
the given invariant is I(�1,x) := (x ≤ 1) and an affine (degree 1) template was
generated in the previous step, the algorithm expands this to:

∀x 1 − x ≥ 0 ⇒ ĉ1,0 + ĉ1,1 · x + ĉ1,2 · r1 + ĉ1,3 · r2 ≥ 0. (5)

The algorithm generates similar entailment constraints for every location and
every requirement in Definitions 2 and 3.

Step 3. Quantifier Elimination. At the end of the previous step, we have a
system of constraints of the form

∧
i

(∀x Ai(x) ⇒ bi(x)
)
. In this step, the algo-

rithm sets off to eliminate the universal quantification over x in every constraint.
First, consider the affine case. If Ai is a set of linear inequalities over program
variables and bi is one such linear inequality, then the algorithm attempts to
write bi as a linear combination with non-negative coefficients of the inequal-
ities in Ai and the trivial inequality 1 ≥ 0. For example, it rewrites (5) as
λ̂1 · (1 − x) + λ̂2 = ĉ1,0 + ĉ1,1 · x + ĉ1,2 · r1 + ĉ1,3 · r2 where λ̂i’s are new non-
negative unknown variables for which we need to synthesize non-negative real
values. This inequality should hold for all valuations of program variables. Thus,
we can equate the corresponding coefficients on both sides and obtain this equiv-
alent system:

λ̂1 + λ̂2 = ĉ1,0 (the constant factor)
−λ̂1 = ĉ1,1 (coefficient of x)

0 = ĉ1,2 = ĉ1,3 (coefficients of r1 and r2)
(6)

This transformation is clearly sound, but it is also complete due to the well-
known Farkas’ lemma [17]. Now consider the polynomial case. Again, we write
bi as a combination of the polynomials in Ai. The only difference is that instead
of having non-negative real coefficients, we use sum-of-square polynomials as our
multiplicands. For example, suppose our constraint is

∀x g1(x) ≥ 0 ∧ g2(x) ≥ 0 ⇒ g3(x) > 0,

where the gi’s are polynomials with unknown coefficients. The algorithm writes

g3(x) = h0(x) + h1(x) · g1(x) + h2(x) · g2(x), (7)

where each hi is a sum-of-square polynomial of degree at most M. The algorithm
sets up a template of degree M for each hi and adds well-known quadratic
constraints that enforce it to be a sum of squares. See [2, Page 22] for details.
It then expands (7) and equates the corresponding coefficients of the LHS and
RHS as in the linear case. The soundness of this transformation is trivial since



72 K. Chatterjee et al.

each hi is a sum-of-squares and hence always non-negative. Completeness follows
from Putinar’s Positivstellensatz [38]. Since the arguments for completeness of
this method are exactly the same as the method in [2], we refer the reader
to [2] for more details and an extension to entailments between strict polynomial
inequalities.

Step 4. Quadratic Programming. All of our constraints are converted to
Quadratic Programming (QP) over template variables, e.g. see (6). Our algo-
rithm passes this QP instance to an SMT solver or a numerical optimizer. If
a solution is found, it plugs in the values obtained for the ĉ and ε̂ variables
back into the template of Step 1 and outputs the resulting termination witness
(f, η, ε).

We end this section by noting that our algorithm is sound and relatively
complete for synthesizing affine/polynomial quantitative termination certificates.

Theorem 5 (Soundness and Completeness in the Affine Case). Given
an affine pCFG C, an affine invariant I, and a non-termination upper-bound p ∈
[0, 1], if C admits a quantitative termination certificate w = (f, η, ε) in which both
f and η are affine expressions at every location, then w corresponds to a solution
of the QP instance solved in Step 4 of the algorithm above. Conversely, every
such solution, when plugged back into the template of Step 1, leads to an affine
quantitative termination certificate showing that C terminates with probability at
least 1 − p over every scheduler.

Theorem 6 (Soundness and Relative Completeness in the Polynomial
Case). Given a polynomial pCFG C, a polynomial invariant I which is a compact
subset of R|V | at every location �, and a non-termination upper-bound p ∈ [0, 1],
if C admits a quantitative termination certificate w = (f, η, ε) in which both f
and η are polynomial expressions of degree at most δ at every location, then there
exists an M ∈ N, for which w corresponds to a solution of the QP instance solved
in Step 4 of the algorithm above. Conversely, every such solution, when plugged
back into the template of Step 1, leads to a polynomial quantitative termination
certificate of degree at most δ showing that C terminates with probability at least
1 − p over every scheduler.

Proof. Step 2 encodes the conditions of an SI-indicator (Definition 2) and RSM
(Definition 3). Theorem 4 shows that an SI-indicator together with an RSM is a
valid quantitative termination certificate. The transformation in Step 3 is sound
and complete as argued in [2, Theorems 4 and 10]��. The affine version relies on
Farkas’ lemma [17] and is complete with no additional constraints. The polyno-
mial version is based on Putinar’s Positivstellensatz [38] and is only complete
for large enough M , i.e. a high-enough degree for sum-of-square multiplicands.
This is why we call our algorithm relatively complete. In practice, small values
of M are enough to synthesize w and we use M = 2 in all of our experiments. ��

�� We need a more involved transformation for strict inequalities. See [2, Theorem 8].
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7 Experimental Results

Implementation. We implemented a prototype of our approach in Python and
used SymPy [33] for symbolic computations and the MathSAT5 SMT Solver [15]
for solving the final QP instances. We also applied basic optimizations, e.g. check-
ing the validity of each entailment and thus removing tautological constraints.

Machine and Parameters. All results were obtained on an Intel Core i9-
10885H machine (8 cores, 2.4GHz, 16MB Cache) with 32GB of RAM running
Ubuntu 20.04. We always synthesized quadratic termination certificates and set
δ = M = 2.

Benchmarks. We generated a variety of random walks with complicated behav-
ior, including nested combinations of probabilistic and non-deterministic branch-
ing and loops. We also took a number of benchmarks from [14]. Due to space
limitations, in Table 1 we only present experimental results on a subset of our
benchmark set, together with short descriptions of these benchmarks. Complete
evaluation as well as details on all benchmarks are provided in [12, Appendix J].

Results and Discussion. Our experimental results are summarized in Table 1,
with complete results provided in [12, Appendix J]. In every case, our approach
was able to synthesize a certificate that the program terminates with probability
at least 1−p under any scheduler. Moreover, our runtimes are consistently small
and less than 6 s per benchmark. Our approach was able to handle programs
that are beyond the reach of previous methods, including those with unbounded
differences and unbounded non-deterministic assignments to which approaches
such as [14] and [40] are not applicable, as was demonstrated in [40]. This adds
experimental confirmation to our theoretical power-of-completeness result at the
end of Sect. 5, which showed the wider applicability of our method. Finally, it
is noteworthy that the termination probability lower-bounds reported in Table 1
are not tight. There are two reasons for this. First, while our theoretical approach
is sound and complete, our algorithm can only synthesize affine/polynomial cer-
tificates for quantitative termination, and the best polynomial certificate of a
certain degree might not be tight. Second, we rely on an SMT-solver to solve
our QP instances. The QP instances often become harder as we decrease p,
leading to the solver’s failure even though the constraints are satisfiable.

8 Related Works

Supermartingale-Based Approaches. In addition to qualitative and quanti-
tative termination analyses, supermartingales were also used for the formal anal-
ysis of other properties in probabilistic programs, such as, liveness and safety
properties [3,8,14,42], cost analysis of probabilistic programs [36,43]. While all
these works demonstrate the effectiveness of supermartingale-based techniques,
below we present a more detailed comparison with other works that consider
automated computation of lower bounds on termination probability.
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Table 1. Summary of our experimental results on a subset of our benchmark set. See
[12, Appendix J] for benchmark details and for the results on all benchmarks.

Benchmark Short explanation p LBPT
1 − p

Runtime
(s)

Figure 1 Our running example 0.01 0.99 2.38

Figure 7 Nested probabilistic and non-deterministic branches leading
to infinite loop with maximum probability 0.25

0.25 0.75 1.40

Figure 9 An a.s. terminating biased random walk with uniformly
distributed steps

0 1 0.73

Figure 10 A random walk that starts at x = 10 and takes a step of
Uniform(−2, 1) each time. Terminates if x < 0 and loops

forever as soon as x ≥ 100.

0.12 0.88 1.10

Figure 11 A 2-D random walk starting at (50, 50). In each iteration, x

is incremented, while y is increased by Uniform(−1, 1).

Terminates when x > 100. Loops when y ≤ 0.

0.07 0.93 3.52

Figure 14 A 3-D random walk. In each iteration, each of x, y, z are
incremented with a higher probability than decremented.

Terminates when x + y + z < 0.

0.999 0.001 3.22

Figure 15 An example with both probabilistic and non-deterministic
assignments

0.51 0.49 2.73

Figure 16 A variant of Fig. 15 with unbounded non-determinism in an
assignment

0.51 0.49 2.70

Figure 17 A probabilistic branch between an a.s. terminating loop and
a loop with small termination probability

0.4 0.6 5.17

Figure 18 A skewed random walk with two barriers, only one of which
leads to program termination

0.51 0.49 5.26

Figure 19 Taken from [14] and conceptually similar to Fig. 5 0.24 0.76 0.94

Figure 22 A more complicated and non-a.s.-terminating random walk
taken from [14]

0.1 0.9 1.15

Figure 23 A 2-D variant of Fig. 22, also from [14] 0.08 0.92 4.01

Comparison to [14]. The work of [14] introduces stochastic invariants and
demonstrates their effectiveness for computing lower bounds on termination
probability. However, their approach to computing stochastic invariants is based
on repulsing supermartingales (RepSMs), and is orthogonal to ours. RepSMs
were shown to be incomplete for computing stochastic invariants [40, Section 3].
Also, a RepSM is required to have bounded differences, i.e. the absolute difference
of its value is any two successor states needs to be bounded from above by some
positive constant. Given that the algorithmic approach of [14] computes linear
RepSMs, this implies that the applicability of RepSMs is compromised in prac-
tice as well, and is mostly suited to programs in which the quantity that behaves
like a RepSM depends only on variables with bounded increments and sampling
instructions defined by distributions of bounded support. Our approach does not
impose such a restriction, and is the first to provide completeness guarantees.

Comparison to [40]. The work of [40] introduces γ-scaled submartingales and
proves their effectiveness for computing lower bounds on termination probability.
Intuitively, for γ ∈ (0, 1), a state function f is a γ-scaled submartingale if it is a
bounded nonnegative function whose value in each non-terminal state decreases
in expected value at least by a factor of γ upon a one-step execution of the
pCFG. One may think of the second condition as a multiplicative decrease in
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expected value. However, this condition is too strict and γ-scaled submartingales
are not complete for lower bounds on termination probability [40, Example 6.6].

Comparison to [5]. The work of [5] proposes a type system for functional
probabilistic programs that allows incrementally searching for type derivations
and accumulating a lower bound on termination probability. In the limit, it finds
arbitrarily tight lower bounds on termination probability, however it does not
provide any completeness or precision guarantees in finite time.

Other Approaches. Logical calculi for reasoning about properties of probabilis-
tic programs (including termination) were studied in [18,19,29] and extended to
programs with non-determinism in [27,28,31,37]. These works consider proof
systems for probabilistic programs based on the weakest pre-expectation cal-
culus. The expressiveness of this calculus allows reasoning about very complex
programs, but the proofs typically require human input. In contrast, we aim for a
fully automated approach for probabilistic programs with polynomial arithmetic.
Connections between martingales and the weakest pre-expectation calculus were
studied in [24]. A sound approach for proving almost-sure termination based on
abstract interpretation is presented in [34].

Cores in MDPs. Cores are a conceptually equivalent notion to stochastic
invariants introduced in [30] for finite MDPs. [30] presents a sampling-based
algorithm for their computation.

9 Conclusion

We study the quantitative probabilistic termination problem in probabilistic pro-
grams with non-determinism and propose the first relatively complete algorithm
for proving termination with at least a given threshold probability. Our approach
is based on a sound and complete characterization of stochastic invariants via
the novel notion of stochastic invariant indicators, which allows for an effective
and relatively complete algorithm for their computation. We then show that
stochastic invariants are sound and complete certificates for proving that a pro-
gram terminates with at least a given threshold probability. Hence, by combining
our relatively complete algorithm for stochastic invariant computation with the
existing relatively complete algorithm for computing ranking supermartingales,
we present the first relatively complete algorithm for probabilistic termination.
We have implemented a prototype of our algorithm and demonstrate its effec-
tiveness on a number of probabilistic programs collected from the literature.
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Abstract. We study discrete probabilistic programs with potentially
unbounded looping behaviors over an infinite state space. We present,
to the best of our knowledge, the first decidability result for the prob-
lem of determining whether such a program generates exactly a specified
distribution over its outputs (provided the program terminates almost-
surely). The class of distributions that can be specified in our formalism
consists of standard distributions (geometric, uniform, etc.) and finite
convolutions thereof. Our method relies on representing these (possibly
infinite-support) distributions as probability generating functions which
admit effective arithmetic operations. We have automated our techniques
in a tool called Prodigy, which supports automatic invariance checking,
compositional reasoning of nested loops, and efficient queries to the out-
put distribution, as demonstrated by experiments.

Keywords: Probabilistic programs · Quantitative verification ·
Program equivalence · Denotational semantics · Generating functions

1 Introduction

Probabilistic programs [26,43,48] augment deterministic programs with stochas-
tic behaviors, e.g., random sampling, probabilistic choice, and conditioning (via
posterior observations). Probabilistic programs have undergone a recent surge
of interest due to prominent applications in a wide range of domains: they
steer autonomous robots and self-driving cars [20,54], are key to describe secu-
rity [6] and quantum [61] mechanisms, intrinsically code up randomized algo-
rithms for solving NP-hard or even deterministically unsolvable problems (in,
e.g., distributed computing [2,53]), and are rapidly encroaching on AI as well

This research was funded by the ERC Advanced Project FRAPPANT under grant No.
787914, by the EU’s Horizon 2020 research and innovation programme under the Marie
Sk�lodowska-Curie grant No. 101008233, and by the DFG RTG 2236 UnRAVeL.

c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 79–101, 2022.
https://doi.org/10.1007/978-3-031-13185-1_5

https://doi.org/10.5281/zenodo.6511363
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_5&domain=pdf
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0002-3812-0572
http://orcid.org/0000-0003-1084-6408
https://doi.org/10.1007/978-3-031-13185-1_5


80 M. Chen et al.

as approximate computing [13]. See [5] for recent advancements in probabilistic
programming.

The crux of probabilistic programming, à la Hicks’ interpretation [30], is to
treat normal-looking programs as if they were probability distributions. A random-
number generator, for instance, is a probabilistic program that produces a uni-
form distribution across numbers from a range of interest. Such a lift from deter-
ministic program states to possibly infinite-support distributions (over states)
renders the verification problem of probabilistic programs notoriously hard [39].
In particular, reasoning about probabilistic loops often amounts to computing
quantitative fixed-points which are highly intractable in practice. As a conse-
quence, existing techniques are mostly concerned with approximations, i.e., they
strive for verifying or obtaining upper and/or lower bounds on various quantities
like assertion-violation probabilities [59], preexpectations [9,28], moments [58],
expected runtimes [40], and concentrations [15,16], which reveal only partial
information about the probability distribution carried by the program.

In this paper, we address the problem of how to determine whether a (possibly
infinite-state) probabilistic program yields exactly the desired (possibly infinite-
support) distribution under all possible inputs. We highlight two scenarios where
encoding the exact distribution – other than (bounds on) the above-mentioned
quantities – is of particular interest: (I) In many safety- and/or security-critical
domains, e.g., cryptography, a slightly perturbed distribution (while many of its
probabilistic quantities remain unchanged) may lead to significant attack vul-
nerabilities or even complete compromise of the cryptographic system, see, e.g.,
Bleichenbacher’s biased-nonces attack [29, Sect. 5.10] against the probabilistic
Digital Signature Algorithm. Therefore, the system designer has to impose a
complete specification of the anticipated distribution produced by the proba-
bilistic component. (II) In the context of quantitative verification, the user may
be interested in multiple properties (of different types, e.g., the aforementioned
quantities) of the output distribution carried by a probabilistic program. In
absence of the exact distribution, multiple analysis techniques – tailored to dif-
ferent types of properties – have to be applied in order to answer all queries from
the user. We further motivate our problem using a concrete example as follows.

Example 1 (Photorealistic Rendering [37]). Monte Carlo integration algorithms
form a well-known class of probabilistic programs which approximate complex
integral expressions by sampling [27]. One of its particular use-cases is the pho-
torealistic rendering of virtual scenes by a technique called Monte Carlo path
tracing (MCPT) [37].

MCPT works as follows: For every pixel of the output image, it shoots n
sample rays into the scene and models the light transport behavior to approx-
imate the incoming light at that particular point. Starting from a certain pixel
position, MCPT randomly chooses a direction, traces it until a scene object is
hit, and then proceeds by either (i) terminating the tracing and evaluating the
overall ray, or (ii) continuing the tracing by computing a new direction. In the
physical world, the light ray may be reflected arbitrarily often and thus stop-
ping the tracing after a certain amount of bounces would introduce a bias in the
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Fig. 1. Monte Carlo path tracing in a scene with constant reflectivity 1/2.

integral estimation. As a remedy, the decision when to stop the tracing is made
in a Russian roulette manner by flipping a coin1 at each intersection point [1].

The program in Fig. 1 is an implementation of a simplified MCPT path gen-
erator. The cumulative length of all n rays is stored in the (random) variable c,
which is directly proportional to MCPT’s expected runtime. The implementation
is designed in a way that c induces a distribution as the sum of n independent and
identically distributed (i.i.d.) geometric random variables such that the resulting
integral estimation is unbiased. In our framework, we view such an exact output
distribution of c as a specification and verify – fully automatically – that the
implementation in Fig. 1 with nested loops indeed satisfies this specification. �

Approach. Given a probabilistic loop L = while (ϕ) {P} with guard ϕ and
loop-free body P , we aim to determine whether L agrees with a specification S:

L = while (ϕ) {P} ?∼ S , (�)

namely, whether L yields – upon termination – exactly the same distribution
as encoded by S under all possible program inputs. This problem is non-trivial:
(C1) L may induce an infinite state space and infinite-support distributions, thus
making techniques like probabilistic bounded model checking [34] insufficient for
verifying the property by means of unfolding the loop L. (C2) There is, to the
best of our knowledge, a lack of non-trivial characterizations of L and S such
that problem (�) admits a decidability result. (C3) To decide problem (�) – even
for a loop-free program L – one has to account for infinitely or even uncountably
many inputs such that L yields the same distribution as encoded by S when
being deployed in all possible contexts.

We address challenge (C1) by exploiting the forward denotational seman-
tics of probabilistic programs based on probability generating function (PGF)
representations of (sub-)distributions [42], which benefits crucially from closed-
form (i.e., finite) PGF representations of possibly infinite-support distributions.
A probabilistic program L hence acts as a transformer �L�(·) that transforms
an input PGF g into an output PGF �L�(g) (as an instantiation of Kozen’s

1 The bias of the coin depends on the material’s reflectivity : a reflecting material such
as a mirror requires more light bounces than an absorptive one, e.g., a black surface.
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transformer semantics [43]). In particular, we interpret the specification S as
a loop-free probabilistic program I. Such an identification of specifications with
programs has two important advantages: (i) we only need a single language to
encode programs as well as specifications, and (ii) it enables compositional rea-
soning in a straightforward manner, in particular, the treatment of nested loops.
The problem of checking L ∼ S then boils down to checking whether L and I
transform every possible input PGF into the same output PGF:

∀g ∈ PGF : �while (ϕ) {P}
︸ ︷︷ ︸

L

�(g) ?= �I�(g) . (†)

As I is loop free, problem (†) can be reduced to checking the equivalence of two
loop-free probabilistic programs (cf. Lemma 2):

∀g ∈ PGF : �if (ϕ) {P � I} else {skip}�(g) ?= �I�(g) . (‡)

Now challenge (C3) applies since the universal quantification in problem (‡)
requires to determine the equivalence against infinitely many – possibly infinite-
support – distributions over program states. We facilitate such an equivalence
checking by developing a second-order PGF (SOP) semantics for probabilistic
programs, which naturally extends the PGF semantics while allowing to reason
about infinitely many PGF transformations simultaneously (see Lemma3).

Finally, to obtain a decidability result (cf. challenge (C2)), we develop the
rectangular discrete probabilistic programming language (ReDiP) – a variant of
pGCL [46] with syntactic restrictions to rectangular guards – featuring various
nice properties, e.g., they inherently support i.i.d. sampling, and in particular,
they preserve closed-form PGF when acting as PGF transformers. We show
that problem (‡) is decidable for ReDiP programs P and I if all the distribution
statements therein have rational closed-form PGF (cf. Lemma 4). As a conse-
quence, problem (†) and thereby problem (�) of checking L ∼ S are decidable if
L terminates almost-surely on all possible inputs g (cf. Theorem 4).

Demonstration. We have automated our techniques in a tool called Prodigy. As
an example, Prodigy was able to verify, fully automatically in 25 milliseconds,
that the implementation of the MCPT path generator with nested loops (in
Fig. 1) is indeed equivalent to the loop-free program

c += iid(geometric(1/2), n) � n := 0

which encodes the specification that, upon termination, c is distributed as the
sum of n i.i.d. geometric random variables. With such an output distribution,
multiple queries can be efficiently answered by applying standard PGF opera-
tions. For example, the expected value and variance of the runtime are E [c] = n
and Var [c] = 2n, respectively (assuming c = 0 initially).
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Contributions. The main contributions of this paper are:

– The probabilistic programming language ReDiP and its forward denotational
semantics as PGF transformers. We show that loop-free ReDiP programs pre-
serve closed-form PGF.

– The notion of SOP that enables reasoning about infinitely many PGF trans-
formations simultaneously. We show that the problem of determining whether
an infinite-state ReDiP loop generates – upon termination – exactly a specified
distribution is decidable.

– The software tool Prodigy which supports automatic invariance checking
on the source-code level; it allows reasoning about nested ReDiP loops in
a compositional manner, and supports efficient queries on various quanti-
ties including assertion-violation probabilities, expected values, (high-order)
moments, precise tail probabilities, as well as concentration bounds.

Organization. We introduce generating functions in Sect. 2 and define the ReDiP
language in Sect. 3. Section 4 presents the PGF semantics. Section 5 establishes
our decidability result in reasoning about ReDiP loops, with case studies in
Sect. 6. After discussing related work in Sect. 7, we conclude the paper in Sect. 8.
Further details, e.g., proofs and additional examples, can be found in the full
version [18].

2 Generating Functions

“A generating function is a clothesline on which we hang up a sequence
of numbers for display.” — H. S. Wilf, Generatingfunctionology [60]

The method of generating functions (GF) is a vital tool in many areas of math-
ematics. This includes in particular enumerative combinatorics [22,60] and –
most relevant for this paper – probability theory [35]. In the latter, the sequences
“hanging on the clotheslines” happen to describe probability distributions over
the non-negative integers N, e.g., 1/2, 1/4, 1/8, . . . (aka, the geometric distribution).

The most common way to relate an (infinite) sequence of numbers to a gen-
erating function relies on the familiar Taylor series expansion: Given a sequence,
for example 1/2, 1/4, 1/8, . . ., find a function x �→ f(x) whose Taylor series around
x = 0 uses the numbers in the sequence as coefficients. In our example,

1
2 − x

=
1
2

+
1
4
x +

1
8
x2 +

1
16

x3 +
1
32

x4 + . . . , (1)

for all |x| < 2, hence the “clothesline” used for hanging up 1/2, 1/4, 1/8, . . . is the
function 1/(2 − x). Note that the GF is a – from a purely syntactical point of
view – finite object while the sequence it represents is infinite. A key strength
of this technique is that many meaningful operations on infinite series can be
performed by manipulating an encoding GF (see Table 1 for an overview and
examples). In other words, GF provide an interface to perform operations on
and extract information from infinite sequences in an effective manner.
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2.1 The Ring of Formal Power Series

Towards our goal of encoding distributions over program states (valuations of
finitely many integer variables) as generating functions, we need to consider
multivariate GF, i.e., GF with more than one variable. Such functions repre-
sent multidimensional sequences, or arrays. Since multidimensional Taylor series
quickly become unhandy, we will follow a more algebraic approach that is also
advocated in [60]: We treat sequences and arrays as elements from an algebraic
structure: the ring of Formal Power Series (FPS). Recall that a (commutative)
ring (A,+, ·, 0, 1) consists of a non-empty carrier set A, associative and com-
mutative binary operations “+” (addition) and “·” (multiplication) such that
multiplication distributes over addition, and neutral elements 0 and 1 w.r.t.
addition and multiplication, respectively. Further, every a ∈ A has an additive
inverse −a ∈ A. Multiplicative inverses a−1 = 1/a need not always exist. Let
k ∈ N = {0, 1, . . .} be fixed in the remainder.

Table 1. GF cheat sheet. f, g and X, Y are arbitrary GF and indeterminates, resp.

Operation Effect (Running) example

f−1 = 1/f Multiplicative inverse of f
(if it exists)

1
1−XY

= 1 + XY + X2Y 2 + . . .

because (1 − XY )(1 + XY + X2Y 2 + . . .) = 1

fX Shift in dimension X X
1−XY

= X + X2Y + X3Y 2 + . . .

f [X/0] Drop terms containing X 1
1−0Y = 1

f [X/1] Projectiona on Y 1
1−1Y = 1 + Y + Y 2 + . . .

fg Discrete convolution
(or Cauchy product)

1
(1−XY )2 = 1 + 2XY + 3X2Y 2 + . . .

∂Xf Formal derivative in X ∂X
1

1−XY
= Y

(1−XY )2 = Y + 2XY 2 + 3X2Y 3 + . . .

f + g Coefficient-wise sum 1
1−XY

+ 1
(1−XY )2 = 2−XY

(1−XY )2 =

2+3XY +4X2Y 2+ . . .

af Coefficient-wise scaling 7
(1−XY )2 = 7 + 14XY + 21X2Y 2 + . . .

a Projections are not always well-defined, e.g., 1
1−X+Y

[X/1] = 1
Y

is ill-defined because Y is
not invertible. However, in all situations where we use projection it will be well-defined; in
particular, projection is well-defined for PGF.

Definition 1 (The Ring of FPS). A k-dimensional FPS is a k-dim. array
f : Nk → R. We denote FPS as formal sums as follows: Let X=(X1, . . . , Xk) be
an ordered vector of symbols, called indeterminates. The FPS f is written as

f =
∑

σ∈Nk
f(σ)Xσ

where Xσ is the monomial Xσ1
1 Xσ2

2 · · · Xσk

k . The ring of FPS is denoted R[[X]]
where the operations are defined as follows: For all f, g ∈ R[[X]] and σ ∈ N

k,
(f + g)(σ) = f(σ) + g(σ), and (f · g)(σ) =

∑

σ1+σ2=σ f(σ1)g(σ2).

The multiplication f · g is the usual Cauchy product of power series (aka
discrete convolution); it is well defined because for all σ ∈ N

k there are just
finitely many σ1 + σ2 = σ in N

k. We write fg instead of f · g.
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The formal sum notation is standard in the literature and often useful because
the arithmetic FPS operations are very similar to how one would do calculations
with “real” sums. We stress that the indeterminates X are merely labels for
the k dimensions of f and do not have any other particular meaning. In the
context of this paper, however, it is natural to identify the indeterminates with
the program variables (e.g. indeterminate X refers to variable x, see Sect. 3).

Equation (1) can be interpreted as follows in the ring of FPS: The “sequences”
2 − 1X + 0X2 + . . . and 1/2 + 1/4X + 1/8X2 + . . . are (multiplicative) inverse
elements to each other in R[[X]], i.e., their product is 1. More generally, we say
that an FPS f is rational if f = gh−1 = g/h where g and h are polynomials,
i.e., they have at most finitely many non-zero coefficients; and we call such a
representation a rational closed form.

A more extensive introduction to FPS can be found in [18, Appx. D].

2.2 Probability Generating Functions

We are especially interested in GF that describe probability distributions.

Definition 2 (PGF). A k-dimensional FPS g is a probability generating func-
tion (PGF) if (i) for all σ ∈ N

k we have g(σ) ≥ 0, and (ii)
∑

σ∈Nk g(σ) ≤ 1.

For example, (1) is the PGF of a 1/2-geometric distribution. The PGF of other
standard distributions are given in Table 3 further below. Note that Definition 2
also includes sub-PGF where the sum in (ii) is strictly less than 1.

3 ReDiP: A Probabilistic Programming Language

This section presents our Rectangular Discrete Probabilistic Programming Lan-
guage, or ReDiP for short. The word “rectangular” refers to a restriction we
impose on the guards of conditionals and loops, see Sect. 3.2. ReDiP is a variant
of pGCL [46] with some extra syntax but also some syntactic restrictions.

3.1 Program States and Variables

Every ReDiP-program P operates on a finite set of N-valued program variables
Vars(P ) = {x1, . . . , xk}. We do not consider negative or non-integer variables. A
program state of P is thus a mapping σ : Vars(P ) → N. As explained in Sect. 1,
the key idea is to represent distributions over such program states as PGF.
Consequently, we identify a single program state σ with the monomial Xσ =
X

σ(x1)
1 · · · Xσ(xk)

k where X1, . . . , Xk are indeterminates representing the program
variables x1, . . . , xk. We will stick to this notation: throughout the whole paper,
we typeset program variables as x and the corresponding FPS indeterminate as
X. The initial program state on which a given ReDiP-program is supposed to
operate must always be stated explicitly.
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3.2 Syntax of ReDiP

The syntax of ReDiP is defined inductively, see the leftmost column of Table 2.
Here, x and y are program variables, n ∈ N is a constant, D is a distribution expres-
sion (see Table 3), and P1, P2 are ReDiP-programs. The general idea of ReDiP is to
provide a minimal core language to keep the theory simple. Many other common
language constructs such as linear arithmetic updates x := 2y + 3 are expressible
in this core language. See [18, Appx. A] for a complete specification.

Table 2. Syntax and semantics of ReDiP. g is the input PGF.

ReDiP-program P Semantics �P �(g) – see Sect. 4.2 Description

x := n g[X/1]Xn Assign const. n ∈ N to var. x

x−− (g − g[X/0])X−1 + g[X/0] Decr. x (“monus” semantics)

x += iid(D, y) g[Y /Y �D�[T/X]] Incr. x by the sum of y i.i.d.
samples from D – see
Sect. 3.3

if (x < n) {P1}
else {P2}

�P1�(gx<n) + �P2� (g − gx<n), where
gx<n =

∑n−1
i=0

1
i! (∂

i
Xg)[X/0]Xi

Conditional branching

P1� P2 �P2�(�P1�(g)) Sequential composition

while (x < n) {P1} [
lfp Ψx<n,P1

]
(g), where

Ψx<n,P1 (ψ) =
λf. (f−fx<n)+ψ(�P1�(fx<n))

Loop defined as fixed point

Table 3. A non-exhaustive list of common discrete distributions with rational PGF.
The parameters p, n, and λ are a probability, a natural, and a non-negative real number,
respectively. T is a reserved placeholder indeterminate.

D �D� Description

dirac(n) Tn Point mass

bernoulli(p) 1 − p + pT Bernoulli distribution (coin flip)

unif(n) (1 − Tn) / n(1 − T ) Discrete uniform distribution on {0, . . . , n−1}
geometric(p) (1 − p) / (1 − pT ) Geometric distribution (no. trials until first success)

binomial(p, n) (1 − p + pT )n Binomial distribution (successes of n yes-no experiments)

nbinomial(p, n) (1 − p)n / (1 − pT )n Negative binomial distribution

The word “rectangular” in ReDiP emphasizes that our if-guards can only
identify axis-aligned hyper-rectangles2 in N

k, but no more general polyhedra.
These rectangular guards x < n have the fundamental property that they pre-
serve rational PGF. On the other hand, allowing more general guards like x < y
breaks this property (see [21] and our comments in [18, Appx. B].

The most intricate feature of ReDiP is the – potentially unbounded – loop
while (x < n) {P}. A program that does not contain loops is called loop-free.
2 More precisely, we can simulate statements like if (R) {...} else {...}, where R is

a finite Boolean combination of rectangular guards, through appropriate nesting of
if () ; note that such an R is indeed a finite union of axis-aligned rectangles in N

k.
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3.3 The Statement x += iid(D, y)

The novel iid statement is the heart of the loop-free fragment of ReDiP – it
subsumes both x := D (“assign a D-distributed sample to x”) and the standard
assignment x := y. We include the assign-increment (+=) version of iid in the
core fragment of ReDiP for technical reasons; the assignment x := iid(D, y) can
be recovered from that as syntactic sugar by simply setting x := 0 beforehand.

Intuitively, the meaning of x += iid(D, y) is as follows. The right-hand side
iid(D, y) can be seen as a function that takes the current value v of variable
y, then draws v i.i.d. samples from distribution D, computes the sum of all
these samples and finally increments x by the so-obtained value. For example,
to perform x := y, we may just write x := iid(dirac(1), y) as this will draw
y times the number 1, then sum up these y many 1’s to obtain the result y
and assign it to x. Similarly, to assign a random sample from a, say, uniform
distribution to x, we can execute y := 1 � x := iid(unif(n), y).

But iid is not only useful for defining standard operations. In fact, taking
sums of i.i.d. samples is common in probability theory. The binomial distribution
with parameters p ∈ (0, 1) and n ∈ N, for example, is the defined as the sum of
n i.i.d. Bernoulli-p-distributed samples and thus

x := binomial(p, y) is equivalent to x := iid(bernoulli(p), y)

for all constants p ∈ (0, 1). Similarly, the negative (p, n)-binomial distribution
is the sum of n i.i.d. geometric-p-distributed samples. Overall, iid renders the
loop-free fragment of ReDiP strictly more expressive than it would be if we had
included only x := D and x := y instead. As a consequence, since we use loop-
free programs as a specification language (see Sect. 5), iid enables us to write
more expressive program specifications while retaining decidability.

4 Interpreting ReDiP with PGF

In this section, we explain the PGF-based semantics of our language which is
given in the second column of Table 2. The overall idea is to view a ReDiP-
program P as a distribution transformer [44,46]. This means that the input to
P is a distribution over initial program states (inputting a deterministic state
is just the special case of a Dirac distribution), and the output is a distribution
over final program states. With this interpretation, if one regards distributions
as generalized program states [33], a probabilistic program is actually determinis-
tic: The same input distribution always yields the same output distribution. The
goal of our PGF-based semantics is to construct an interpreter that executes a
ReDiP-program statement-by-statement in forward direction, transforming one
generalized program state into the next. We stress that these generalized pro-
gram states, or distributions, can be infinite-support in general. For example,
the program x := geometric(0.5) outputs a geometric distribution – which has
infinite support – on x.
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4.1 A Domain for Distribution Transformation

We now define a domain, i.e., an ordered structure, where our program’s in- and
output distributions live. Following the general idea of this paper, we encode
them as PGF. Let Vars be a fixed finite set of program variables x1, . . . , xk and
let X = (X1, . . . , Xk) be corresponding formal indeterminates. We let PGF =
{g ∈ R[[X]] | g is a PGF} denote the set of all PGF. Recall that this also includes
sub-PGF (Definition 2). Further, we equip PGF with the pointwise order, i.e., we
let g 	 f iff g(σ) ≤ f(σ) for all σ ∈ N

k. It is clear that (PGF,	) is a partial order
that is moreover ω-complete, i.e., there exists a least element 0 and all ascending
chains Γ = {g0 	 g1 	 . . .} in PGF have a least upper bound supΓ ∈ PGF. The
maxima in (PGF,	) are precisely the PGF which are not a sub-PGF.

4.2 From Programs to PGF Transformers

Next we explain how distribution transformation works using (P)GF (cf.
Table 1). This is in contrast to the PGF semantics from [42] which operates
on infinite sums in a non-constructive fashion.

Definition 3 (The PGF Transformer �P �). Let P be a ReDiP-program. The
PGF transformer �P � : PGF → PGF is defined inductively on the structure of P
through the second column in Table 2.

We show in Theorem 2 below that �P � is well-defined. For now, we go over
the statements in the language ReDiP and explain the semantics.

Sequential Composition. The semantics of P1�P2 is straightforward and intuitive:
First execute P1 on g and then P2 on �P1�(g), i.e., �P1� P2�(g) = �P2�(�P1�(g)).
The fact that our semantics transformer moves forwards through the program –
as program interpreters usually do – is due to this definition.

Conditional Branching. To translate if (x < n) {P1} else {P2}, we follow the
standard procedure which partitions the input distribution according to x <
n and x ≥ n, processes the two parts independently and finally recombines
the results [44]. We realize the partitioning using the (formal) Taylor series
expansion. This is feasible because we only allow rectangular guards of the form
x < n, where n is a constant. Thus, for a given input PGF g, the filtered PGF
gx<n is obtained through expanding g in its first n terms. The else -part is
obviously gx≥n = g−gx<n. We then evaluate �P1�(gx<n)+�P2�(gx≥n) recursively.
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Assigning a Constant. Technically, our semantics realizes an assignment x := n
in two steps: It first sets x to 0 and then increments it by n. The former is
achieved by substituting X for 1 which corresponds to computing the marginal
distribution in all variables except X. For example,

�� 0.5XY 2 + 0.5X2Y 3 �� g

x := 5 P

�� (0.5Y 2 + 0.5Y 3)X5 �� �P �(g)

�� 0.5X5Y 2 + 0.5X5Y 3 �� 〈 reform. of prev. line 〉

where the rightmost four lines explain this annotation style [42]. Note that
0.5Y 2 + 0.5Y 3 is indeed the marginal of the input distribution in Y .

Decrementing a Variable. Since our program variables cannot take negative val-
ues, we define x−− as max(x−1, 0), i.e., x monus (modified minus) 1. Technically,
we realize this through if (x < 1) {skip} else {x−−}, i.e., we apply the decre-
ment only to the portion of the input distribution where x ≥ 1. The decrement
itself can then be carried out through “multiplication by X−1”. Note that X−1

is not an element of R[[X]] because X has no inverse. Instead, the operation
gX−1 is an alias for shift←(g) which shifts g “to the left” in dimension X. To
implement the semantics on top of existing computer algebra software, it is very
handy to perform the multiplication by X−1 instead. This is justified because
for PGF g with g[X/0] = 0, shift←(g) and gX−1 are equal.

The iid Statement. The semantics of x += iid(D, y) relies on the fact that

T1 ∼ �D� . . . Tn ∼ �D� implies
∑n

i=1
Ti ∼ �D�n , (2)

where X ∼ g means that r.v. X is distributed according to PGF g (see, e.g., [55,
p. 450]). The iid statement generalizes this observation further: If n is not a
constant but a random (program) variable y with PGF h(Y ), then we perform
the substitution h[Y/�D�] (i.e., replace Y by �D� in h) to obtain the PGF of the
sum of y-many i.i.d. samples from D. We slightly modify this substitution to
g[Y/Y �D�[T/X]] in order to (i) not alter y, and (ii) account for the increment
to x. For example,

�� 0.2 + 0.3Y + 0.5Y 2

x += iid(bernoulli(0.5), y)

�� 0.2 + 0.3Y (0.5 + 0.5X) + 0.5Y 2(0.5 + 0.5X)2

�� 0.2 + 0.15Y + 0.125Y 2 + 0.15XY + 0.25XY 2 + 0.125X2Y 2 .

The while-Loop. The fixed point semantics of the while loop is standard [42,44]
and reflects the intuitive unrolling rule, namely that while (ϕ){P} is equivalent
to if (ϕ) {P � while (ϕ) {P}} else {skip}. Indeed, the fixed point formula in
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Table 2 can be derived using the semantics of if discussed above. We revisit this
fixed point characterization in Sect. 5.1.

Properties of �P �. Our PGF semantics has the property that all programs –
except while loops – are able to operate on the input PGF in (rational) closed
form, i.e., they never have to expand the input as an infinite series (which is of
course impossible in practice). More formally:

Theorem 1 (Closed-Form Preservation). Let P be a loop-free ReDiP pro-
gram, and let g = h/f ∈ PGF be in rational closed form. Then we can compute a
rational closed form of �P �(g) ∈ PGF by applying the transformations in Table 2.

The proof is by induction over the structure of P noticing that all the nec-
essary operations (substitution, differentiation, etc.) preserve rational closed
forms, see [18, Appx. D]. A slight extension of our syntax, e.g., admitting
non-rectangular guards, renders that closed forms are not preserved, see [18,
Appx. B]. Moreover, �P � has the following healthiness [46] properties:

Theorem 2 (Properties of �P �). The PGF transformer �P � is

– a well-defined function PGF → PGF ,
– continuous, i.e., �P �(supΓ ) = sup�P �(Γ ) for all chains Γ ⊆ PGF ,
– linear, i.e., �P �(

∑

σ∈Nk g(σ)Xσ) =
∑

σ∈Nk g(σ)�P �(Xσ) for all g ∈ PGF .

4.3 Probabilistic Termination

Due to the presence of possibly unbounded while-loops, a ReDiP-program does
not necessarily halt, or may do so only with a certain probability. Our semantics
naturally captures the termination probability.

Definition 4 (AST). A ReDiP-program P is called almost-surely terminating
(AST) for PGF g if �P �(g)[X/1] = g[X/1], i.e., if it does not leak probability
mass. P is called universally AST (UAST) if it is AST for all g ∈ PGF.

Note that all loop-free ReDiP-programs are UAST. In this paper, (U)AST
only plays a minor role. Nonetheless, the proof rule below yields a stronger
result (cf. Lemma 2) if the program is UAST. There exist various of techniques
and tools for proving (U)AST [17,47,50].

5 Reasoning About Loops

We now focus on loopy programs L = while (ϕ) {P}. Recall from Table 2 that
�L� : PGF → PGF is defined as the least fixed point of a higher order functional

Ψϕ,P : (PGF → PGF) → (PGF → PGF).

Following [42], we show that Ψϕ,P is sufficiently well-behaved to allow reasoning
about loops by fixed point induction.
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5.1 Fixed Point Induction

To apply fixed point induction, we need to lift our domain PGF from Sect. 4.1 by
one order to (PGF → PGF), the domain of PGF transformers. This is because the
functional Ψϕ,P operates on PGF transformers and can thus be seen as a second-
order function (this point of view regards PGF as first-order objects). Recall that
in contrast to this, the function �P � is first-order – it is just a PGF transformer.
The order on (PGF → PGF) is obtained by lifting the order 	 on PGF pointwise
(we denote it with the same symbol 	). This implies that (PGF → PGF) is
also an ω-complete partial order. We can then show that Ψϕ,P (see Table 2) is
a continuous function. With these properties, we obtain the following induction
rule for upper bounds on �L�, cf. [42, Theorem 6]:

Lemma 1 (Fixed Point Induction for Loops). Let L = while (ϕ) {P} be
a ReDiP-loop. Further, let ψ : PGF → PGF be a PGF transformer. Then

Ψϕ,P (ψ) 	 ψ implies �L� 	 ψ .

The goal of the rest of the paper is to apply the rule from Lemma 1 in practice.
To this end, we must somehow specify an invariant such as ψ by finite means.
Since ψ is of type (PGF → PGF), we consider ψ as a program I – more specifically,
a ReDiP-program – and identify ψ = �I�. Further, by definition

Ψϕ,P (�I�) = �if (ϕ) {P � I} else {skip}�,

and thus the term Ψϕ,P (�I�) is also a PGF-transformer expressible as a ReDiP-
program. These observations and Lemma 1 imply the following:

Lemma 2. Let L = while (ϕ) {P} and I be ReDiP-programs. Then

�if (ϕ) {P � I} else {skip}� 	 �I� implies �L� 	 �I�. (3)

Further, if L is UAST (Definition 4), then

�if (ϕ) {P � I} else {skip}� = �I� iff �L� = �I� (4)

Lemma 2 effectively reduces checking whether ψ given as a ReDiP-program I
is an invariant of L to checking equivalence of if (ϕ) {P � I} else {skip} and
I provided L is UAST. If I is loop-free, then the latter two programs are both
loop-free and we are left with the task of proving whether they yield the same
output distribution for all inputs. We now present a solution to this problem.

5.2 Deciding Equivalence of Loop-free Programs

Even in the absence of loops, deciding if two given ReDiP-programs are equivalent
is non-trivial as it requires reasoning about infinitely many – possibly infinite-
support – distributions on program variables. In this section, we first show that
�P1� = �P2� is decidable for loop-free ReDiP programs P1 and P2, and then use
this result together with Lemma 2 to obtain the main result of this paper.
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SOP: Second-Order PGF. Our goal is to check if �P1�(g) = �P2�(g) for all
g ∈ PGF. To tackle this, we encode whole sets of PGF into a single object –
an FPS we call second-order PGF (SOP). To define SOP, we need a slightly
more flexible view on FPS. Recall from Definition 1 that a k-dim. FPS is an
array f : Nk → R. Such an f can be viewed equivalently as an l-dim. array with
(k−l)-dim. arrays as entries. In the formal sum notation, this is reflected by
partitioning X = (Y,Z) and viewing f as an FPS in Y with coefficients that are
FPS in the other indeterminates Z. For example,

(1 − Y )−1(1 − Z)−1 = 1 + Y + Z + Y 2 + Y Z + Z2 + . . .

= (1 − Z)−1 + (1 − Z)−1Y + (1 − Z)−1Y 2 + . . .

where in the lower line the coefficients (1−Z)−1 are considered elements in R[[Z]].

Definition 5 (SOP). Let U and X be disjoint sets of indeterminates. A formal
power series f ∈ R[[U,X]] is a second-order PGF (SOP) if

f =
∑

τ∈N|U| f(τ)Uτ (with f(τ) ∈ R[[X]]) implies ∀τ : f(τ) ∈ PGF.

That is, an SOP is simply an FPS whose coefficients are PGF – instead of
generating a sequence of probabilities as PGF do, it generates a sequence of
distributions. An (important) example SOP is

fdirac = (1 − XU)−1 = 1 + XU + X2U2 + . . . ∈ R[[U,X]], (5)

i.e., for all i ≥ 0, fdirac(i) = Xi = �dirac(i)�. As a second example consider
fbinom = fdirac [X/0.5 + 0.5X]; it is clear that fbinom(i) = (0.5 + 0.5X)i =
�binomial(0.5, i)� for all i ≥ 0. Note that if U = ∅, then SOP and PGF coincide.
For fixed X and U, we denote the set of all second-order PGF with SOP.

SOP Semantics of ReDiP. The appeal of SOP is that, syntactically, they are
still formal power series, and some can be represented in closed form just like
PGF. Moreover, we can readily extend our PGF transformer �P � to an SOP
transformer �P � : SOP → SOP. A key insight of this paper is that – without any
changes to the rules in Table 2 – applying �P � to an SOP is the same as applying
�P � simultaneously to all the PGF it subsumes:

Theorem 3. Let P be a ReDiP-program. The transformer �P � : SOP → SOP is
well-defined. Further, if f =

∑

τ∈N|U| f(τ)Uτ is an SOP, then

�P �(f) =
∑

τ∈N|U|�P �(f(τ))Uτ .

An SOP Transformation for Proving Equivalence. We now show how to
exploit Theorem 3 for equivalence checking. Let P1 and P2 be (loop-free) ReDiP-
programs; we are interested in proving whether �P1� = �P2�. By linearity it
holds that �P1� = �P2� iff �P1�(Xσ) = �P2�(Xσ) for all σ ∈ N

k, i.e., to check
equivalence it suffices to consider all (infinitely many) point-mass PGF as inputs.
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Lemma 3 (SOP-Characterisation of Equivalence). Let P1 and P2 be
ReDiP-programs with Vars(Pi) ⊆ {x1, . . . , xk} for i ∈ {1, 2}. Further, consider a
vector U = (U1, . . . , Uk) of meta indeterminates, and let gX be the SOP

gX = (1 − X1U1)−1(1 − X2U2)−1 · · · (1 − XkUk)−1 ∈ R[[U,X]] .

Then �P1� = �P2� if and only if �P1�(gX) = �P2�(gX).

The proof of Lemma 3 (see [18, Appx. F.5]) relies on Theorem3 and the fact
that the rational SOP gX generates all (multivariate) point-mass PGF; in fact
it holds that gX =

∑

σ∈Nk XσUσ, i.e., gX generalizes fdirac from (5). It follows:

Lemma 4. �P1� = �P2� is decidable for loop-free ReDiP-programs P1, P2.

Our main theorem follows immediately from Lemmas 2 and 4:

Theorem 4. Let L = while (ϕ) {P} be UAST with loop-free body P and I be a
loop-free ReDiP-program. It is decidable whether �L� = �I�.

Example 2. In Fig. 2 we prove that the two UAST programs L and I

while (n > 0) {
{ n := n − 1 } [1/2] { c := c + 1 }}

c += iid(geometric(1/2), n) �

n := 0

Fig. 2. Program equivalence follows from the equality of the resulting SOP (Lemma 3).

are equivalent (i.e., �L� = �I�) by showing that �if (n > 0) {P � I}� = �I�
as suggested by Lemma 2. The latter is achieved as in Lemma 3: We run both
programs on the input SOP gN,C = (1 − NU)−1(1 − CV )−1, where U, V are
meta indeterminates corresponding to N and C, respectively, and check if the
results are equal. Note that I is the loop-free specification from Example 1; thus
by transitivity, the loop L is equivalent to the loop in Fig. 1. �
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6 Case Studies

We have implemented our techniques in Python as a prototype called Prodigy3:
PRObability DIstributions via GeneratingfunctionologY. By interfacing with dif-
ferent computer algebra systems (CAS), e.g., Sympy [49] and GiNaC [10,57] – as
backends for symbolic computation of PGF and SOP semantics – Prodigy
decides whether a given probabilistic loop agrees with an (invariant) specifica-
tion encoded as a loop-free ReDiP program. Furthermore, it supports efficient
queries on various quantities associated with the output distribution.

In what follows, we demonstrate in particular the applicability of our tech-
niques to programs featuring stochastic dependency, parametrization, and nested
loops. The examples are all presented in the same way: the iterative program
on the left side and its corresponding specification on the right. The presented
programs are all UAST, given the parameters are instantiated from a suitable
value domain.4 For each example, we report the time for performing the equiva-
lence check on a 2,4 GHz Intel i5 Quad-Core processor with 16GB RAM running
macOS Monterey 12.0.1. Additional examples can be found in [18, Appx. E].

Fig. 3. Generating complementary binomial distributions (for n, m) by coin flips.
binomial(1/2, c) is an alias for iid(bernoulli(1/2), c).

Fig. 4. A program modeling two dueling cowboys with parametric hit probabilities.

Example 3 (Complementary Binomial Distributions). We show that the pro-
gram in Fig. 3 generates a joint distribution on n, m such that both n and m
are binomially distributed with support c and are complementary in the sense
that n + m = c holds certainly (if n = m = 0 initially, otherwise the variables

3 � https://github.com/LKlinke/Prodigy.
4 Parameters of Example 4 have to be instantiated with a probability value in (0, 1).

https://github.com/LKlinke/Prodigy
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are incremented by the corresponding amounts). Prodigy automatically checks
that the loop agrees with the specification in 18.3 ms. The resulting distribution
can then be analyzed for any given input PGF g by computing �I�(g), where
I is the loop-free program. For example, for input g = C10, the distribution
as computed by Prodigy has the factorized closed form (M+N

2 )10. The CAS
backends exploit such factorized forms to perform algebraic manipulations more
efficiently compared to fully expanded forms. For instance, we can evaluate the
queries E [m3+2mn+n2] = 235, or Pr(m > 7∧n < 3) = 7/128, almost instantly.

�

Example 4 (Dueling Cowboys [46]). The program in Fig. 4 models a duel of
two cowboys with parametric hit probabilities a and b. Variable t indicates the
cowboy who is currently taking his shot, and c monitors the state of the duel
(c = 1: duel is still running, c = 0: duel is over). Prodigy automatically verifies
the specification in 11.97 ms. We defer related problems – e.g., synthesizing
parameter values to meet a parameter-free specification – to future work. �

Fig. 5. Nested loops with invariants for the inner and outer loop.

Example 5 (Nested Loops). The inner loop of the program in Fig. 5 modifies x
which influences the termination behavior of the outer loop. Intuitively, the pro-
gram models a random walk on N: In every step, the value of the current position
x changes by some random δ ∈ {−1, 0, 1, 2, . . .} such that δ + 1 is geometrically
distributed. The example demonstrates how our technique enables compositional
reasoning. We first provide a loop-free specification for the inner loop, prove its
correctness, and then simply replace the inner loop by its specification, yielding
a program without nested loops. This feature is a key benefit of reusing the
loop-free fragment of ReDiP as a specification language. Moreover, existing tech-
niques that cannot handle nested loops can profit from it; in fact, we can prove
the overall program to be UAST using the rule of [47]. Interestingly, the outer
loop has infinite expected runtime (for any input distribution where the proba-
bility that x > 0 is positive). We can prove this by querying the expected value of
the program variable c in the resulting output distribution. The automatically
computed result is ∞, which indeed proves that the expected runtime of this
program is not finite. This example furthermore shows that our technique can
be generalized beyond rational functions since the PGF of the catalan(p) dis-
tribution is (1 − √

1 − 4p(1−p)T ) / 2p, i.e., algebraic but not rational. We leave
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a formal generalization of the decidability result from Theorem 4 to algebraic
functions for future work. Prodigy verifies this example in 29.17ms. �

Scalability Issue. It is not difficult to construct programs where Prodigy poorly
scales: its performance depends highly on the number of consecutive probabilistic
branches and the size of the constant n in guards (requiring n-th order PGF
derivation, cf. Table 2).

7 Related Work

This section surveys research efforts that are highly related to our approach in
terms of semantics, inference, and equivalence checking of probabilistic programs.

Forward Semantics of Probabilistic Programs. Kozen established in his seminal
work [43] a generic way of giving forward, denotational semantics to probabilis-
tic programs as distribution transformers. Klinkenberg et al. [42] instantiated
Kozen’s semantics as PGF transformers. We refine the PGF semantics substan-
tially such that it enjoys the following crucial properties: (i) our PGF transform-
ers (when restricted to loop-free ReDiP programs) preserve closed-form PGF and
thus are effectively constructable. In contrast, the existing PGF semantics in [42]
operates on infinite sums in a non-constructive fashion; (ii) our PGF semantics
naturally extends to SOP, which serves as the key to reason about the exact
behavior of unbounded loops (under possibly uncountably many inputs) in a
fully automatic manner. The PGF semantics in [42], however, supports only
(over-)approximations of looping behaviors and can hardly be automated; and
(iii) our PGF semantics is capable of interpreting program constructs like i.i.d.
sampling that is of particular interest in practice.

Backward Semantics of Probabilistic Programs. Many verification systems for
probabilistic programs make use of backward, denotational semantics – most
pertinently, the weakest preexpectation (WP) calculi [38,46] as a quantitative
extension of Dijkstra’s weakest preconditions [19]. The WP of a probabilistic
program C w.r.t. a postexpectation g, denoted by wp�C�(g)(·), maps every ini-
tial program state σ to the expected value of g evaluated in final states reached
after executing C on σ. In contrast to Dijkstra’s predicate transformer semantics
which admits also strongest postconditions, the counterpart of “strongest post-
expectations” does unfortunately not exist [36, Chap. 7], thereby not amenable
to forward reasoning. We remark, in particular, that checking program equiva-
lence via WP is difficult, if not impossible, since it amounts to reasoning about
uncountably many postexpectations g. We refer interested readers to [5, Chaps.
1–4] for more recent advancements in formal semantics of probabilistic programs.

Probabilistic Inference. There are a handful of probabilistic systems that employ
an alternative forward semantics based on probability density function (PDF)
representations of distributions, e.g., (λ)PSI [24,25], AQUA [32], Hakaru [14,52],
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and the density compiler in [11,12]. These systems are dedicated to probabilis-
tic inference for programs encoding continuous distributions (or joint discrete-
continuous distributions). Reasoning about the underlying PDF representations,
however, amounts to resolving complex integral expressions in order to answer
inference queries, thus confining these techniques either to (semi-)numerical
methods [11,12,14,32,52] or exact methods yet limited to bounded looping
behaviors [24,25]. Apart from these inference systems, a recently developed lan-
guage called Dice [31] featuring exact inference for discrete probabilistic pro-
grams is also confined to statically bounded loops. The tool Mora [7,8] supports
exact inference for various types of Bayesian networks, but relies on a restricted
form of intermediate representation known as prob-solvable loops, whose behav-
iors can be expressed by a system of C-finite recurrences admitting closed-form
solutions.

Equivalence of Probabilistic Programs. Murawski and Ouaknine [51] showed an
Exptime decidability result for checking the equivalence of probabilistic pro-
grams over finite data types by recasting the problem in terms of probabilistic
finite automata [23,41,56]. Their techniques have been automated in the equiva-
lence checker APEX [45]. Barthe et al. [4] proved a 2-Exptime decidability result
for checking equivalence of straight-line probabilistic programs (with determinis-
tic inputs and no loops nor recursion) interpreted over all possible extensions of
a finite field. Barthe et al. [3] developed a relational Hoare logic for probabilistic
programs, which has been extensively used for, amongst others, proving program
equivalence with applications in provable security and side-channel analysis.

The decidability result established in this paper is orthogonal to the afore-
mentioned results: (i) our decidability for checking L ∼ S applies to discrete
probabilistic programs L with unbounded looping behaviors over a possibly infi-
nite state space; the specification S – though, admitting no loops – encodes a
possibly infinite-support distribution; yet as a compromise, (ii) our decidability
result is confined to ReDiP programs that necessarily terminate almost-surely on
all inputs, and involve only distributions with rational closed-form PGF.

8 Conclusion and Future Work

We showed the decidability of – and have presented a fully-automated technique
to verifying – whether a (possibly unbounded) probabilistic loop is equivalent
to a loop-free specification program. Future directions include determining the
complexity of our decision problem; amending the method to continuous distri-
butions using, e.g., characteristic functions; extending the notion of probabilistic
equivalence to probabilistic refinements; exploring PGF-based counterexample-
guided synthesis of quantitative loop invariants (see [18, Appx. F.6] for generat-
ing counterexamples); and tackling Bayesian inference.

Acknowledgments. The authors thank Philipp Schröer for providing support for his
tool Probably (� https://github.com/Philipp15b/Probably) which forms the basis
of our implementation.

https://github.com/Philipp15b/Probably
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7. Bartocci, E., Kovács, L., Stankovič, M.: Analysis of Bayesian networks via prob-
solvable loops. In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC 2020. LNCS,
vol. 12545, pp. 221–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64276-1 12
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17. Chatterjee, K., Fu, H., Novotný, P.: Termination analysis of probabilistic programs
with martingales, pp. 221–258. In: Barthe et al. [5] (2020)

18. Chen, M., Katoen, J., Klinkenberg, L., Winkler, T.: Does a program yield the
right distribution? Verifying probabilistic programs via generating functions. CoRR
abs/2205.01449 (2022)

https://doi.org/10.1007/978-3-030-64276-1_12
https://doi.org/10.1007/978-3-030-64276-1_12
https://doi.org/10.1007/978-3-030-45190-5_28
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1007/978-3-319-28228-2_9
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1


Does a Program Yield the Right Distribution? 99

19. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

20. Evans, O., Stuhlmüller, A., Salvatier, J., Filan, D.: Modeling agents with proba-
bilistic programs. http://agentmodels.org (2017). Accessed 17 Jan 2022

21. Flajolet, P., Pelletier, M., Soria, M.: On Buffon machines and numbers. In: SODA,
pp. 172–183. SIAM (2011)

22. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

23. Forejt, V., Jancar, P., Kiefer, S., Worrell, J.: Language equivalence of probabilistic
pushdown automata. Inf. Comput. 237, 1–11 (2014)

24. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic
programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 4

25. Gehr, T., Steffen, S., Vechev, M.T.: λPSI: exact inference for higher-order proba-
bilistic programs. In: PLDI, pp. 883–897. ACM (2020)

26. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE, pp. 167–181. ACM (2014)

27. Hammersley, J.: Monte Carlo Methods. Springer Science & Business Media (2013)
28. Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.: Aiming low is harder: induction

for lower bounds in probabilistic program verification. Proc. ACM Program. Lang.
4(POPL), 37:1–37:28 (2020)

29. Heninger, N.: RSA, DH and DSA in the wild. In: Bos, J., Stam, M. (eds.) Computa-
tional Cryptography: Algorithmic Aspects of Cryptology, pp. 140–181. Cambridge
University Press, Cambridge (2021)

30. Hicks, M.: What is probabilistic programming? In: The Programming Languages
Enthusiast (2014). http://www.pl-enthusiast.net/2014/09/08. Accessed 09 Dec
2021

31. Holtzen, S., den Broeck, G.V., Millstein, T.D.: Scaling exact inference for discrete
probabilistic programs. Proc. ACM Program. Lang. 4(OOPSLA), 140:1–140:31
(2020)

32. Huang, Z., Dutta, S., Misailovic, S.: AQUA: automated quantized inference for
probabilistic programs. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol.
12971, pp. 229–246. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 16

33. Jacobs, B., Zanasi, F.: The logical essentials of Bayesian reasoning, pp. 295–331.
In: Barthe et al. [5] (2020)

34. Jansen, N., Dehnert, C., Kaminski, B.L., Katoen, J.-P., Westhofen, L.: Bounded
model checking for probabilistic programs. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 68–85. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46520-3 5

35. Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions. Wiley, Hobo-
ken (1993)

36. Jones, C.: Probabilistic non-determinism. Ph.D. thesis, University of Edinburgh,
UK (1990)

37. Kajiya, J.T.: The rendering equation. In: SIGGRAPH, pp. 143–150. ACM (1986)
38. Kaminski, B.L.: Advanced weakest precondition calculi for probabilistic programs.

Ph.D. thesis, RWTH Aachen University, Germany (2019)
39. Kaminski, B.L., Katoen, J.-P., Matheja, C.: On the hardness of analyzing prob-

abilistic programs. Acta Informatica 56(3), 255–285 (2018). https://doi.org/10.
1007/s00236-018-0321-1

http://agentmodels.org
https://doi.org/10.1007/978-3-319-41528-4_4
http://www.pl-enthusiast.net/2014/09/08
https://doi.org/10.1007/978-3-030-88885-5_16
https://doi.org/10.1007/978-3-030-88885-5_16
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/s00236-018-0321-1


100 M. Chen et al.

40. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68
(2018)

41. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Language equiv-
alence for probabilistic automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 526–540. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 42

42. Klinkenberg, L., Batz, K., Kaminski, B.L., Katoen, J.-P., Moerman, J., Winkler,
T.: Generating functions for probabilistic programs. In: Fernández, M. (ed.) LOP-
STR 2020. LNCS, vol. 12561, pp. 231–248. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-68446-4 12

43. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

44. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
45. Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: on automated verification

of probabilistic programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 13

46. McIver, A., Morgan, C.: Abstraction, Refinement and Proof For Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005). https://doi.
org/10.1007/b138392

47. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. PACMPL 2(POPL), 33:1–33:28 (2018)

48. van de Meent, J., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic
programming. CoRR abs/1809.10756 (2018)

49. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
e103 (2017)

50. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: The probabilistic ter-
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LNCS, vol. 13047, pp. 667–675. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 36

51. Murawski, A.S., Ouaknine, J.: On probabilistic program equivalence and refine-
ment. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp.
156–170. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452 15

52. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic infer-
ence by program transformation in Hakaru (system description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3 5

53. Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 45–67 (1993)
54. Shamsi, S.M., Farina, G.P., Gaboardi, M., Napp, N.: Probabilistic programming

languages for modeling autonomous systems. In: MFI, pp. 32–39. IEEE (2020)
55. Tijms, H.C.: A First Course in Stochastic Models. Wiley, Hoboken (2003)
56. Tzeng, W.: A polynomial-time algorithm for the equivalence of probabilistic

automata. SIAM J. Comput. 21(2), 216–227 (1992)
57. Vollinga, J.: GiNaC-symbolic Computation with C++. Nucl. Instrum. Methods

Phys. Res. 559(1), 282–284 (2006)
58. Wang, D., Hoffmann, J., Reps, T.W.: Central moment analysis for cost accumula-

tors in probabilistic programs. In: PLDI, pp. 559–573. ACM (2021)
59. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis

of assertion violations in probabilistic programs. In: PLDI, pp. 1171–1186. ACM
(2021)

https://doi.org/10.1007/978-3-642-22110-1_42
https://doi.org/10.1007/978-3-642-22110-1_42
https://doi.org/10.1007/978-3-030-68446-4_12
https://doi.org/10.1007/978-3-030-68446-4_12
https://doi.org/10.1007/978-3-540-78800-3_13
https://doi.org/10.1007/978-3-540-78800-3_13
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/11539452_15
https://doi.org/10.1007/978-3-319-29604-3_5


Does a Program Yield the Right Distribution? 101

60. Wilf, H.S.: Generating Functionology. CRC Press, Boca Raton (2005)
61. Ying, M.: Floyd-Hoare logic for quantum programs. ACM Trans. Program. Lang.

Syst. 33(6), 19:1–19:49 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Abstraction-Refinement for Hierarchical
Probabilistic Models

Sebastian Junges1(B) and Matthijs T. J. Spaan2

1 Radboud University, Nijmegen, The Netherlands
sjunges@cs.ru.nl

2 Delft University of Technology, Delft, The Netherlands

Abstract. Markov decision processes are a ubiquitous formalism for
modelling systems with non-deterministic and probabilistic behavior.
Verification of these models is subject to the famous state space explosion
problem. We alleviate this problem by exploiting a hierarchical structure
with repetitive parts. This structure not only occurs naturally in robotics,
but also in probabilistic programs describing, e.g., network protocols.
Such programs often repeatedly call a subroutine with similar behavior.
In this paper, we focus on a local case, in which the subroutines have
a limited effect on the overall system state. The key ideas to accelerate
analysis of such programs are (1) to treat the behavior of the subroutine
as uncertain and only remove this uncertainty by a detailed analysis if
needed, and (2) to abstract similar subroutines into a parametric tem-
plate, and then analyse this template. These two ideas are embedded into
an abstraction-refinement loop that analyses hierarchical MDPs. A pro-
totypical implementation shows the efficacy of the approach.

1 Introduction

Markov Decision Processes (MDPs) are the model for sequential decision making
under probabilistic uncertainty, and as such are central in modelling of random-
ized algorithms, distributed systems with lossy channels, or as the underlying
formalism in reinforcement learning. A key question in the verification of MDPs
is: What is the maximal probability that some error state is reached? In this ques-
tion, one accounts for the probabilistic nature as well as the inherit (potentially
adversarial) nondeterminism of the system. Various state-of-the-art probabilis-
tic model checkers, such as Storm [20], Prism [27] and Modest [17] implement
a variety of methods that automatically compute such maximal probabilities.
Most widespread are variations of value-iteration that iteratively apply a tran-
sition function to converge towards the requested probability.

Hierarchical Structure. Despite various successes, the state space explosion
remains a significant challenge to the model-based analysis of MDPs. To over-
come this challenge, some approaches exploit symmetries or the parallel composi-
tion of a system. Other approaches exploit that typically not all paths through a
system are equally likely and thus aim to find the essential or critical subsystem.
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p = 0.5; time = 0; N=3;

repeat N times {

time += passToken(p);

if flip (0.5) {p = 0.8p}

else {p = 1.25p}

}; return time

(a) Repeated invocation of passToken(p)

passToken(p):

t = 1;

while (not flip(p)) {t++};

t++;

while (not flip(p)) {t++};

return t

(b) passToken(p): Pass succeed twice.

Fig. 1. Simplified example for sending a token over an unreliable channel.

While we exploit related ideas—a detailed comparison is given in the related
work, cf. Sect. 7—our approach is fundamentally different and instead exploits a
hierarchical decomposition natural in many system models. This decomposition
is captured naturally by probabilistic programs (over discrete bounded variables)
with non-nested subroutines, where some subroutines are called repeatedly with
similar arguments. Figure 1 shows an example in which we demonstrate our app-
roach in Sect. 2. More generally, we are interested in systems with an overall task
that is achieved by a suitable combination of a limited number of sub-tasks. Such
a setting occurs naturally, e.g. (i) in robotics, when multiple rooms in a floor
need to be inspected, or (ii) in routing, when multiple packets need to be routed
sequentially. The underlying problem structure is also exploited in hierarchical
planning [5,19,30], where the goal is to find a good but not necessarily optimal
policy (and induced value). We combine insights from hierarchical planning with
an abstraction-refinement perspective and then construct an anytime algorithm
with strict guarantees on the result.

Local Model-Based Analysis. An adequate operational model for the model-based
analysis of hierarchical systems is given by a hierarchical MDP, where the state
space of a hierarchical MDP can be partitioned into subMDPs. Abstractly, one
can represent a hierarchical MDP by the collection of subMDPs and a macro-
level MDP [19] where the probabilities of outgoing transitions at a state are
described by a corresponding subMDP, cf. Sect. 3.2. In this paper, we focus on
a hierarchical MDPs where the policies that are optimal in (only) a subMDP
are optimal (partial) policies in the hierarchical MDP. More intuitively, we can
solve the subMDPs individually, i.e., the solution (w.r.t. the fixed measure) for
the subMDP is part of the globally optimal solution. While this assumption is
restrictive, it is satisfied in various interesting settings. The assumption allows
us to analyse subMDPs out-of-context, i.e., we can first analyse the subMDPs
and then construct the correct macro-MDP, i.e., extract transition probabilities
and rewards from the subMDP analysis. This approach already improves the
maximal memory consumption and allows for additional speed-ups if the same
subMDP occurs multiple times.

Epistemic Uncertainty During Computation. The key insight to accelerate the
outlined approach further is to avoid analysing all subMDPs precisely, while still
providing sound guarantees on the obtained results. Therefore, consider that even
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before analysing the subMDPs we can analyse an uncertain variant of the macro-
level MDP where we do not yet know the associated transition probabilities and
rewards but instead only know intervals. We may then do two things: First,
we can identify the subMDPs which are most critical, i.e., where replacing the
interval by a concrete value yields most benefits. Second, and more importantly,
we can analyse a set of subMDPs and refine the associated uncertainties, i.e.,
tighten the associated intervals. To support the analysis of sets of subMDPs,
we observe that often, these subMDPs are slight variations. In this paper, we
represent them as parameterised instances of a particular templates that we
define using parametric MDPs (pMDPs). The resulting intervals can be used to
create an (interval-valued version of the) macro-level MDP. Analysing this gives
bounds on the expected reward in the hierarchical MDP, and the bounds can be
refined by analysing the subMDPs more precisely.

Contributions. In a nutshell, we explicitly allow for uncertainty during the solv-
ing process to speed up the analysis of hierarchical MDPs. Concretely, we con-
tribute a scalable approach to solve hierarchical MDPs with many different sub-
MDPs, in particular when these subMDPs are similar, but not the same. The
approach resembles an abstraction-refinement loop where we abstract the hier-
archical MDP in two layers and then refine the analysis of the lower layer to
get a refined representation of the complete MDP. In every step, we can pro-
vide absolute error bounds. Our approach interprets the different subMDPs as a
form of uncertainty. The efficient analysis originates from progress made in the
analysis of uncertain (or parametric) MDPs, and brings that progress to a novel
setting. The empirical evaluation with a prototype called level-up shows the
efficacy of the approach.

2 Overview

We clarify the approach and its applicability with a motivating example
that drastically abstracts a token passing process where the channel quality
varies [12].

Setting. Consider the protocol in Fig. 1a which sends a token N times via a
channel. That channel successfully transmits packets with probability p, where
p varies over time. The subroutine takes t amount of time, depending on p.
Specifically, in the model, we alternate between accumulating the required time
and updating the channel quality for N token transmissions and then return the
accumulated time. We aim to compute the expected return value. For the sub-
routine, we assume that sending a token is repeated until an acknowledgement
is received, which is abstractly modelled in Fig. 1b and corresponds to the small
Markov chain in Fig. 2a. First, the file must successfully be sent (s0 → s1), then
we start sending acknowledgements. The process terminates (s1 → s2) once an
acknowledgement is received. The complete protocol from Fig. 1 including the
subroutine is reflected by the large Markov chain in Fig. 2b that repeats the
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small Markov chain (with different probabilities). This model may be analysed
with standard tools, but for large N (and larger subroutines), the state space
explosion must be alleviated.

s0 s1 s2

1−p 1−p

(a) MC for passToken(p)

M0 p = 1/2

M1 p = 2/5

M2 p = 5/8
M5 p = 25/32

1/2 1/2

3/5 3/5

3/8 3/8

1/2 1/2

17/25 17/25

7/32 7/32

1/2

1/2

1/2

(b) Hierarchical MDP, rewards of 1 at states with loops

Fig. 2. Ingredients for hierarchical MDPs with the Example from Fig. 1. Annotations
reflect subMDPs within the macro-MDPs in Fig. 3.

Macro-MDPs and Enumeration. We thus suggest to abstract the hierarchical
model into the macro-level MDP in Fig. 3a. Here, every state corresponds to
an invocation of the subprocess. The reward at the states corresponds to the
expected reward for the complete subprocess. Thus, naively, one may construct
the macro-MDP, analyse all (reachable) subMDPs independently and annotate
the macro-MDP states with the appropriate rewards, and finally analyse the
macro-MDP to obtain a result of ≈12.3. This approach avoids representing the
complete hMDP in the memory, but it is still restricted to analysing systems
with a limited number of subMDPs.

Our Approach. We improve scalability by constructing a parameterized macro-
MDP. Reconsider the rewards for Fig. 3a. The values can be computed via the
graph in Fig. 3d, where we pick for each value for p (x-axis) and compute the
corresponding expected reward E (y-axis) obtained by analysing the subMDP in
Fig. 2a. Intuitively, in our abstraction, we annotate the rewards with lower- and
upper bounds rather than exact values. Therefore, we compute bounds on the
rewards by selecting an interval for the values p ∈ [8/25, 25/32], as shown in Fig. 3e.
Conceptually, this means that we analyse a set of subMDPs at once, namely all
subMDPs with p ∈ [8/25, 25/32]. Annotating the corresponding expected rewards,
in this case [64/25, 25/4], then yields the macro-MDP in Fig. 3b. Analysis of this
MDP yields that overall expected time is in [7.68, 18.75]. We refine these bounds
by analysing subsets of the subMDPs. We may split the values for p into two
sets [8/25, 2/5] and [1/2, 25/32]. Then, we obtain two corresponding intervals on the
expected time in the subMDP as shown in Fig. 3f. Model checking the associated
macro-MDP, in Fig. 3c, bounds to expected time by [10.12, 14.25]. Technically,
we realize this reasoning using parameter lifting [33].
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Fig. 3. Visualising the computation of expected rewards for the hMDP from Fig. 2b
using a macro-MDP and interval-based abstractions.

Supported Extensions. For conciseness, this example is necessarily simple. Our
approach allows nondeterminism, i.e., action-choices, in the macro-MDP and in
the subMDPs. The subMDPs may have multiple outgoing transitions, but this
must be combined with a restricted type of nondeterminism in the subMDP: If
multiple outgoing transitions are present, the macro-MDP has transition prob-
abilities that depend on the subMDPs. We present a useful extension for reach-
ability probabilities, see the discussion at the bottom of Sect. 3.3.

More Examples. Key ingredient to models where the approach excels are a repet-
itive task whose characteristics depend on some global state. Two variations are
the expected energy consumption of a robot with slowly degrading components
that, e.g., can be improved by maintenance or for job scheduling with periodi-
cally changing distribution of tasks (e.g., day vs. night).

3 Formal Problem Statement

We formalize MDPs and hierarchical MDPs (hMDPs) to pose the problem state-
ment, then identify a subclass of hMDPs which we call local-policy hMDPs and
restrict our problem on computing optimal expected rewards in local-policy
hMDPs. Furthermore, we introduce parametric MDPs as they are key to the
abstraction-refinement procedure later in the paper.



Abstraction-Refinement for Hierarchical Probabilistic Models 107

3.1 Background

Definition 1 (Parametric MDP). A parametric MDP (pMDP) is a tuple
M = 〈SM, AM, ιM, �x, PM, rM, TM〉 where SM is a finite set of states, AM is
a finite set of actions, ιM ∈ SS is the initial state, �x = 〈x0, . . . xn〉 is a vector
of parameters, PM : SM × AM × SM → Q[�x] are the transition probabilities,
rM : S → Q[�x] the state rewards, and TM is a set of target states.

We drop the subscripts whenever possible. MDPs are parametric if �x �= 〈〉 and
parameter-free otherwise. We omit parameters for parameter-free MDPs. We
recap some standard notions on pMDPs (and MDPs):

For a (parameter) valuation u ∈ R
�x, the instantiation M[u] globally substi-

tutes PM(s, a, s′) with PM(s, a, s′)(u) and rM(s) with rM(s)(u). An assignment
u is well-defined, if M(u) constitutes an MDP, i.e., if

∑
s′ PM(s, α, s′)(u) ∈ {0, 1}

and rM(s)(u) ≥ 0 for each s ∈ S, α ∈ A. We denote the set of all well-
defined assignments with UM. The set Act(s) denotes the enabled actions at
state s, Act(s) = {α |

∑
s′ PM(s, α, s′) �= 0 }. If |Act(s)| = 1 for every s ∈ S,

then the (parametric) MDP is a (parametric) Markov chain (MC). A path π

is an (in)finite sequence of states s0
α0−→ s1 . . ., with si ∈ S, αi ∈ Act(si),

P (si, αi, si+1) �= 0. For finite π, last(π) denotes the last state of π. We use
[s → ♦T ] to denote the set of (finite) paths T only at the end. The reward r(π)
along a finite path π is the sum of the state rewards r(π) :=

∑
r(si).

Specifications. We consider indefinite horizon expected reward, i.e., the expected
accumulated reward until reaching the target states. We refer to [3,32] for a
formal treatment and only introduce notation. Therefore, the unique probability
measure Pr for a set of paths in a parameter-free Markov chain M reaching state
T can be defined using the usual cylinder set construction. We define PrM(s →
♦T ) as the probability to reach a state in T ,

∫
π∈[s→♦T ]

Pr(π)dπ. We then define
the expected reward until hitting T , ERM(s → ♦T ) =

∫
π∈[s→♦T ]

Pr(π) · r(π)dπ.
In both definitions, if s is the initial state, we simply write . . . (♦T ). For technical
conciseness, we make the standard assumption that target states are reached
with probability 1, which ensures that the integral exists and is finite. (Arbitrary)
reachability probabilities can be nevertheless be modelled using rewards.

Policies. In pMDPs, we resolve nondeterminism with policies. In this paper, it
suffices to consider memoryless policies σ : S → A. The set of such policies is
denoted Σ(M). We omit M if it is clear from the context. It is helpful to also
consider partial policies σ̂ : S � A. For an pMDP M and a (partial) policy
σ̂, the induced dynamics are described by the induced pMDP M[σ̂], defined as
〈SM, AM, ιM, �x, P, rM, TM〉, where the transition probabilities are given as

P (s, α, s′) =

{
PM(s, α, s′) if σ̂(s) = α,

0 otherwise.

If σ is total (not partial), then M is a MC. We define the maximal expected
reward ERmax

M (♦T ) = maxσ∈Σ ERM[σ](♦T ), and say that a policy σ is optimal,
if ERmax

M (♦T ) = ERM[σ](♦T ).
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Regions and Parametric Model Checking. A set of valuations described by is
called a (rectangular) region, if R = {u | u− ≤ u ≤ u+} for adequate bounds
u−, u+ ∈ R

�x and using pointwise inequalities, i.e., R is a Cartesian product of
intervals of parameter values. We denote this region also with [[u−, u+]]. For
regions, we may compute a lower bound on minu∈R ERmax

M[u](♦T ) and an upper
bound on maxu∈R ERmax

M[u](♦T ) via parameter lifting [33,36].

3.2 Hierarchical MDPs

We concentrate on solving hierarchical MDPs (hMDPs). We assume that hMDPs
are parameter-free and that their topology has some additional known structure.

Definition 2 (Hierarchical MDPs). A MDP M with a partitioning of its
states SM =

⋃
Si is a hierarchical MDP, if for all i,

– there exists a unique si
ι ∈ Si such that si

ι = ιM or predM(si
ι) �⊆ Si, and

– for all s ∈ Si \ {si
ι}, it holds that si

ι �= ιM and predM(s) ⊆ Si.

The state sι is called the entry state, which we denote entryi. States with
succM(s) ∩ Si = ∅ are called exit-states. The set succ(i) := succM(Si) \ Si

are the successor states of the partition i. Let Y = maxi |succ(i)|. By adding
auxiliary states, we can assume that |succ(i)| = Y for all i. We call partitions
with |Si| = 1 trivial. We use I := {i | |Si| > 1} to denote the indices of the non-
trivial partitions. We remark that every MDP can be considered as an hMDP
with only trivial partitions.

Problem: Given a (hierarchical) MDP M with target states T and η ∈
[0, 1], compute bounds lb, ub with lb ≤ ERmax

M (♦T ) ≤ ub and η · ub ≤ lb.

The naive solution to this problem is to ignore the hierarchical structure and
solve the MDP monolithically. In this paper, we contribute methods that actively
exploit the structure of the hierarchical MDPs with |I|  1. We will make an
additional assumption on the structure of the hierarchical MDP.

3.3 Optimal Local Subpolicies and Beyond

Intuitively, we want to ensure that the optimal policy within the partitions can
be computed locally, i.e., on partition without taking into account the complete
MDP. Therefore, each partition within the MDP can be considered as an indi-
vidual MDP. In particular, each Si induces a subMDP as follows:

Definition 3 (subMDP). Given a hierarchical MDP M and partition Si, the
corresponding subMDP is an MDP Mi := 〈Si := Si ∪ succM(Si) ∪ {⊥}, AM ∪
{α⊥}, ι := entryi, Pi, ri, Gi〉 with Pi defined by

Pi(s, α, s′) :=

⎧
⎪⎨

⎪⎩

PM(s, α, s′) if s ∈ Si and α ∈ AM,

1 else if s �∈ Si, α = α⊥, and s′ = ⊥
0 otherwise.
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ri is defined as ri(s) = rM(s) if s ∈ Si, ri(s) = 0 otherwise, and Gi := {⊥i}.

Thus, for every partition of the hierarchical MDP, the corresponding subMDP
contains additionally the successor states, and a unique bottom state that is a
target state and simplifies our construction later.

Likewise, we can (de)compose memoryless policies for the hierarchical MDP
as a union of policies on the individual subMDPs. We do this only for nontriv-
ial partitions. Let σi : Si �→ A denote memoryless policies for Mi and σ′

i the
restriction of σi to Si, then (

⊔
I
σi) : S � A is the unique partial policy such

that
( ⊔

I

σi

)
(s) := σ′

i(s) if s ∈ Si, i ∈ I and
( ⊔

I

σi

)
(s) := ⊥ otherwise.

Intuitively, we want that the union of locally optimal policies, a partial policy,
can be completed to a total policy that is optimal.

Definition 4 (Optimal local subpolicies). Given a hierarchical MDP M
with target states T and optimal policies σi ∈ Σ(Mi) for all i ∈ I. The hier-
archical MDP has optimal local subpolicies, if for σ̂ =

⊔
I
σi it holds that

ERmax
M[σ̂] = ERmax

M .

That is, if we collect (locally) optimal policies σi and apply them to M, we
obtain the MDP M[(

⊔
I
σi)]. In that MDP, we can pick an optimal policy, and

together with (
⊔

I
σi) this constitutes an optimal and total policy for M.

Assumption: The hierarchical MDP has optimal local subpolicies.

Roughly, the idea now becomes that rather than solving one large MDP with S
states, we solve |I| MDPs with S/|I| states and one MDP with I states (assuming
equally-sized and only nontrivial partitions).

The assumption is restrictive, but not unreasonable: A subroutine may not
have any nondeterminism, or a finished task will have no influence on any future
task. The following proposition, while obvious, formalizes that:

Proposition 1 (Sufficient criterion). Let M be a hierarchical MDP. The
MDP has optimal local subpolicies, if for each i ∈ I either

– there is a single successor for the partition, i.e., |succM(Si) \ Si| = 1, or
– there are no choices, i.e., |Act(s)| = 1 for all s ∈ Si,

Beyond Optimal Local Subpolicies. The efficiency of our approach is partly
due to the assumption in Definition 4. We observe that adapting this definition
allows for a spectrum of specific yet useful cases. In particular, say that our
system describes a protocol in which we must optimize the probability to satisfy
N tasks all may fail – the subMDPs will have two successor states. Often, it is
then easy to see (and model) that a locally optimal policy will aim to satisfy
each task and that thus, the locally optimal policy optimizes the probability to
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reach the corresponding successor state. Then, by adopting the target states in
Definition 3 to be the successor state where the task is successful, the notion
of an optimal policy—and thus of an optimal local subpolicy—changes. These
changes are minimal and everything that follows below is easily adapted to this
setting as demonstrated by the prototypical implementation.

4 Solving hMDPs with Abstraction-Refinement

In this section, we consider hMDPs with optimal local subpolicies. We step-wise
develop a sketch of an anytime algorithm that provides lower and upper bounds
on the expected reward in this hMDP. In Sect. 4.1, we introduce an alternative
representation of our problem that formalizes the idea of individually comput-
ing subMDPs. We then formalize the ideas that allow to construct an anytime
algorithm in Sect. 4.2. In Sect. 4.3, we introduce the abstract requirements for
analysing sets of subMDPs into the algorithm, and finally, in Sect. 4.4 we intro-
duce a method that realises this using pMDPs.

4.1 The Macro-MDP Formulation

We adapt macro-MDPs [5] which summarize the subMDPs by single states.

Definition 5 (Macro-MDP). Let M be a hMDP with n non-trivial Si par-
titions and SM partitioned as SM =

⋃
Si ∪ S′. The macro-MDP is defined as

μ(M) := 〈S′ ∪ {entryi | 1 ≤ i ≤ n}, AM, ιM, ∅, P, r, TM〉 with P and r given by

P (s, α, s′) =

{
PrMi[σi](♦{s′}) if s ∈ Si,

PM(s, α, s′) otherwise,
r(s) =

{
ERmax

Mi
(♦{⊥}) if s ∈ Si,

rM(s) otherwise.

where Mi is the corresponding subMDP (see Definition 3) and σi is an arbitrary
but fixed optimal policy, i.e., a policy such that ERMi[σi](♦Gi) = ERmax

Mi
(♦Gi).

Intuitively, we replace the transitions within Si by a ‘big-step semantics’ that
aggregates the transitions within Si by single transitions such that the proba-
bility to reach any successor matches the probability to do so within Si under
a specific –optimal– policy. Likewise, the expected reward matches the expected
reward collected in Si

1.

Remark 1. To define a unique macro-MDP, we can take the lexicographically
smallest policy σi among the optimal policies. Furthermore, we observe that for
the cases covered by Proposition 1, it is not necessary to compute σi at all:
Either there is a single successor—implying PrMi[σi](♦{s′}) = 1 for any σi—or
|Σ(Mi)| = 1.

The following theorem formalises that, given the assumptions, taking the big-
step semantics is adequate when optimizing for an expected reward.
1 Due to the additive nature of expected rewards, we can annotate the state with the

expected reward even though it may differ over the different paths to an exit of Si.
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Theorem 1. Let M be a hMDP with optimal local subpolicies and let μ(M) be
the corresponding macro-MDP. Then: ERmax

μ(M)(♦T ) = ERmax
M (♦T ).

The important ingredient are the optimal local subpolicies that ensure that
we aggregate behavior within the partitions by behavior that agrees with a
(globally) optimal policy. We give a proof in the appendix2.

Naive Algorithm. Algorithmically, we first compute ERmax
Mi

(♦Ti) and the asso-
ciated policy σi, then compute the reachability probabilities on the induced
Markov chain. We collect these results in a vector resi, which is helpful to con-
struct the macro-MDP. To clarify further constructions in this paper, we make
resi explicit. Recall that |succM(Si)| = Y for all i.

Definition 6 (Results for subMDP). Let Mi be a subMDP for the parti-
tion Si of a hMDP M. Let succM(Si) be ordered. We define resi ∈ R

Y +1 s.t.

resi(j) := PrMi[σi](♦{succM(Si)j}) for 0 ≤ j < Y and resi(Y ) := ERmax
Mi

(♦Gi),

where σi is an arbitrary but fixed policy such that ERMi[σi](♦Gi) = ERmax
Mi

(♦Gi).

This allows us to reformulate the macro-MDP, in particular, the following two
identities do hold:

P (s, α, s′)=

⎧
⎪⎨

⎪⎩

resi(j) if s ∈ Si and
s′ = succM(Si)j

PM(s, α, s′) otherwise,
r(s)=

{
resi(Y ) if s ∈ Si,

rM(s) otherwise.

(1)

The identities trivialize that constructing the macro-MDP can be done by pre-
computing the necessary result-vectors.

Enumeration baseline: With macro-MDPs, we reduce the computation
of ERmax

M (♦T ) to (1) analysing all subMDPs Mi and (2) analysing μ(M).

This rather naive algorithm already limits memory and may exploit similari-
ties between subMDPs during the analysis, e.g., based on the structure discussed
in Sect. 4.4. It performs well if the number |I| of subMDPs is sufficiently small.
We are interested in considering methods that allow for larger I or larger sub-
MDPs. In particular, we want to avoid analysing all subMDPs, all individually.

4.2 The Uncertain Macro-MDP Formulation

Uncertainty Before Computation. We start introducing a method that allows
providing bounds on the expected rewards after individually analysing a subset
of the subMDPs. Before computing the individual probabilities in Mi, we are
uncertain about the probabilities and rewards in the MDP μ(M). Under this

2 See: https://doi.org/10.48550/arXiv.2206.02653.

https://doi.org/10.48550/arXiv.2206.02653
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uncertainty, we may not be able to compute ERmax
μ(M)(♦T ) precisely. However, we

may solve the problem statement by bounding the expected reward. Thus, the
goal is to compute values lb, ub s.t.

lb ≤ ERmax
M (♦T ) = ERmax

μ(M)(♦T ) ≤ ub. (2)

Uncertain Macro-MDPs. We capture the a-priori uncertainty about the sub-
MDP results in an uncertain macro-MDP, a particularly shaped parametric
MDP.

Definition 7 (Uncertain macro-MDP). Let M be a hMDP with n non-
trivial Si partitions and SM partitioned as SM =

⋃
Si ∪ S′. The uncertain

macro-MDP is defined as ν(M) := 〈S′ ∪ {entryi | 1 ≤ i ≤ n}, AM, ιM, �x,
P, r, TM〉 with parameters �x := {pi,j , qi | 1 ≤ i ≤ n, 1 ≤ j ≤ Y } where Y =
|succM(Si)|. P and r given by

P (s, α, s′) :=

⎧
⎪⎨

⎪⎩

pi,j if s ∈ Si and
s′ = succM(Si)j ,

PM(s, α, s′) otherwise,
r(s) :=

{
qi if s ∈ Si,

rM(s) otherwise.

Remark 2. Whenever Mi and Mi′ are isomorphic, we may reduce the parame-
ters and replace each occurrence of pi′,j with pi,j and each occurrence of qi′ with
qi.

The uncertain macro-MDP can be instantiated to coincide with the macro-MDP
by setting the parameters accordingly.

Theorem 2. Let M be a hMDP, μ(M) the associated unique macro-MDP, and
ν(M) the associated uncertain macro-MDP with parameters pi,j and qi. Let u∗

be a parameter valuation with u∗(pi,j) = resi(j) and u∗(qi) = resi(Y ) for all i, j.
Then:

ν(M)[u∗] = μ(M)

Proof sketch. The construction of the uncertain macro-MDP and the macro-
MDP only differs in the assignment of probabilities. We set u here as in the
characterisation in (1) and thus the equality follows. ��

Computing Bounds. Assume for now that we can derive some (trivial) sound
bounds on the results vector for any subMDP Mi

3.

Definition 8 (Sound bounds on results). For Mi, the vectors lbresi and
ubresi are sound bounds if the following pointwise inequality holds

lbresi ≤ resi ≤ ubresi. (3)

3 We discuss our approach in Sect. 4.4, alternatively, one may use bounds from, e.g.,
[4].
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These bounds on properties in the subMDP correspond to bounds on the param-
eters of the uncertain macro-level MDP ν(M). Let us formalize this idea.

Definition 9 (Suitable parameter region). Given u∗ from Theorem 2. The
bounds u−, u+ are suitable if u− ≤ u∗ ≤ u+. For suitable u−, u+, the region
[[u−, u+]] is called suitable.

Using this notion, sound bounds lbresi and ubresi thus yield suitable bounds
u−(x), u+(x) for all x ∈

⋃
j pi,j ∪ {qi}. Combined, the sound bounds for every i

yields a suitable region. Formally:

init. loop

analyse uncertain macro-MDP

[lb, ub], σ

analyse individual subMDP

hMDP
M

ν(M)

{Mi}

region

i

resi

Fig. 4. Analysing hMDPs via uncertain macro-MDPs via individual refinement.

Lemma 1. Given sound bounds lbresi, ubresi for each i, there exists a trivial
mapping Reg s.t. Reg(lbres1, . . . lbresn, ubres1, . . . ubresn) is a suitable region.

With the suitable region we can apply verification on the parametric MDP.

Lemma 2. Let R be a suitable region. Then:

min
u∈R

ERmax
ν(M)[u](♦T ) ≤ ERmax

M (♦T ) ≤ max
u∈R

ERmax
ν(M)[u](♦T ).

Proof sketch. We observe that the inequalities follow from the fact that u∗ ∈ R
with u∗ as in Theorem 2. By that theorem, ERmax

ν(M)[u∗](♦T ) = ERmax
μ(M)(♦T ). The

statement then follows from Theorem 1. ��
From the bounds that we can compute using a suitable region, we then set lb
and ub for Eq. (2):

lb ≤ min
u∈R

ERmax
ν(M)[u](♦T ) ≤ ERmax

M (♦T ) ≤ max
u∈R

ERmax
ν(M)[u](♦T ) ≤ ub. (4)

Computationally, we may use parameter lifting [33] to find these values.

Refinement Loop. The complete anytime algorithm is summarized in Fig. 4. We
start with an hMDP M and extract the uncertain macro-MDP ν(M) and the
subMDPs {Mi}4. Furthermore we compute (trivial) sound bounds on lbresi ≤
resi ≤ ubresi. This leads to a suitable region [[u−, u+]] = Reg(lbres1, ubres1, . . .).
Then, we may at any time compute the bounds lb, ub on the expected reward
4 For efficiency, one must implement extraction without first computing an explicit

representation of M.
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in the hMDP M by analysing ν(M) on the region [[u−, u+]]. To tighten these
bounds, we must first refine the suitable region. Therefore, we analyse individual
subMDPs Mi and compute resi and thus u∗(x) for x ∈ ∪jpi,j ∪ qi. This refines
the suitable bounds such that u−(x) = u∗(x) = u+(x) for x ∈ ∪jpi,j ∪qi. We call
this refinement individual refinement. The new region is suitable and Theorem 2
ensures correctness of the refinement. As we only have finitely many subMDPs,
we obtain lb = ub after finitely many steps.

Anytime version of the enumeration baseline. Individually refine any
subset of subMDPs, then analyse the uncertain macro-MDP ν(M).

4.3 Set-Based SubMDP Analysis

Next, we aim to provide an alternative refinement procedure that analyses a set
of subMDPs at once, i.e., that refines the suitable bounds for a set of parameters
at once. We denote the set of goal states for all subMDPs as G5.

Adequate Abstractions. We aim to compute sound bounds on the results for a
set of subMDPs such that the bounds are sound for every individual subMDP
in this set. We generalize Definition 8 as follows: The (lower and upper) bounds
lbresI , ubresI are sound, if they are sound (lower and upper) bounds for every
resi, i ∈ I.

Lemma 3. Let lbresI satisfy the following inequations using 0 ≤ j < Y :

lbresI(Y ) ≤ min
i

ERmax
Mi

(♦G) and lbresI(j) ≤ min
i

min
σ

PrMi[σ](♦G). (5)

Then, lbresI is a sound lower bound.

Proof sketch. We must show lbresI ≤ resi for each i ∈ I. By definition for each
1 ≤ j ≤ Y , lbresI(j) ≤ mini′∈I resi′(j) and trivially mini′∈I resi′(j) ≤ resi(j). ��

We omit the analogous statement for ubres6. In Sect. 4.4, we discuss a partic-
ular approach to obtain these bounds, i.e., the right hand sides of the equations
in Eq. 5. Here, we update the algorithm sketch to handle this alternative refine-
ment.

Remark 3. We cannot compute the optimal policy σi for the subMDP Mi in
this setting. Thus, we must compute probability bounds for all policies, which
may make these bounds weak. Some optimizations are possible as some actions
can in fact be excluded. More importantly, however, is that for cases within
Proposition 1 the policy σi is irrelevant.

5 Formally, we label the goal states and use G to refer to denote those states.
6 where min becomes max and inequalities flip.
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Updated Algorithm. We update the loop from Fig. 4: Rather than refining using a
single i, we refine using a set I. Instead of resi, we use Lemma 3 to compute sound
bounds lbresI , ubresI and call this set-based refinement. We may set lbresi = lbresI
for each i ∈ I. Then, we can compute a new suitable region via Lemma 1. With
the suitable region, we can still utilise Eq. (4) to compute an approximation
[lb, ub]. However, for completeness we must ensure that if |I| = 1, the upper and
lower bounds coincide, i.e., lbres{i} = ubres{i} for every i. That can be ensured
by using individual subMDP refinement when |I| = 1.

Idea: We may improve the anytime algorithm by iteratively considering
sets of subMDPs and extract sound bounds.

We now first discuss the set-based analysis of multiple subMDPs Mi. We clarify
the realization of the loop box in Sect. 5.

init. loop

analyse uncertain macro-MDP

[lb, ub], σ

analyse set of subMDPs

hMDP
M

ν(M)

T

region

I

bounds

Fig. 5. Analysing hMDPs with set-based refinement on templated subMDPs.

4.4 Templates for Set-Based subMDP Analysis

We present an instance of set-based subMDP analysis where the subMDPs can
be described as instantiations of a parametric MDPs.

Parametric Templates. We observe that the subMDPs are often similar, e.g.,
they define sending a file over a channel, exploring a room, in different conditions.
We capture this similarity as follows: Let {T1, . . . Tm} define a set of parametric
MDPs, where we call each pMDP a template. In particular, for a hierarchical
MDP M with partitioning S1, . . .Sn and corresponding subMDPs M1, . . . ,Mn

a subMDP Mi is an instantiation of template Tj and parameter instantiation v7,
if Mi = Tj [v]. For a concise description, this paper considers hMDPs over a single
template T and, for any I ⊆ I, we denote VI := {v1, . . . , vn} the finite (multi)set
of parameter instantiations for the pMDP T such that T [vi] = Mi.

Abstractions from Templates. In terms of the templates, Lemma 3 requires us to
bound the expected rewards ERmax

T [v](♦G) for all v ∈ VI . We realize this by defin-
ing the smallest region toRegion(VI) ⊇ VI . For this region, we obtain expected
rewards by computing the minimum maximal reward in toRegion(VI). That is:

lbresI(Y ) := min
v∈toRegion(VI)

ERmax
T [v](♦G) ≤ min

i
ERmax

Mi
(♦G).

7 We use v instead of u to avoid confusion with the instantiations for pMDP ν(M).
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We handle the probabilities equally while taking into account the quantification
over the policies. Following Lemma 3, these bounds are sound. Upper bounds
are handled analogously. Computationally, we again use parameter lifting [33]
to find these bounds. We can easily refine: Whenever we split I (or equally, VI),
we can compute (potentially) smaller regions toRegion(VI).

In Fig. 5, we depict our method. In contrast to Fig. 4, we pass the template
T rather than the individual subMDPs. Furthermore, we now compute initial
sound bounds via the analysis of the template (i.e., of VI) and must pass the
mapping from I to VI to clarify the shape of the subMDPs.

Abstraction-Refinement on the subMDPs provides increasingly tight
suitable regions for the uncertain macro-MDP from the anytime baseline.

Algorithm 1. Algorithm for Abstraction-Refinement Procedure
1: Construct macro-MDP ν(M), class-MDP T , and VI from high-level description.
2: Q ← {〈I = I, bounds = [0, ∞), weightedvals = I → {1}〉}
3: lb ← 0; ub ← ∞; #iter = 0; Res ← ∅
4: while η · ub > lb do
5: R ← Q.pop() � Use priority
6: if R.I = {i} then
7: Res[i] ← check one(T [vi]) � Computes resi
8: else
9: R.bounds ← check set(T , toRegion(VR.I)) � Computes lbresR.I , ubresR.I

10: Q ← Q ∪ split(R) � Split R.I, keep bounds and weights
11: end if
12: if #iter mod k = 1 or Q is empty then
13: R′ ← Reg(extract(Q, Res)) � Compute suitable region via Lem 1
14: lb, ub ← check set(ν(M), R′)
15: end if
16: end while

5 Implementing the Abstraction-Refinement Loop

Algorithm 1 outlines a basic implementation of the idea sketched in Fig. 5. We
detail this implementation and then discuss an essential improvement.

We construct ν(M), T , and (the implicit) mapping V : I → VI to map sub-
MDPs to instantiations of T from a suitable high-level representation. We ini-
tialize a priority queue with triples that represent sets of template instantiations:
I such that VI := {vi := V (i) | i ∈ I} contains all valuations v such that T [v] is
a subMDP of M. We initially store bounds reflecting lbresI and ubresI as well
as weights for the computation of the priority (see below). Initially, we assume
that lb = 0 and ub = ∞, we count the number of iterations in #iter. Res is
map for storing result vectors. The algorithm now refines lb and ub until the gap
between lb and ub is sufficiently small.



Abstraction-Refinement for Hierarchical Probabilistic Models 117

The main loop now iteratively refines lb, ub by first refining lbresI and
ubresI , by splitting I and model checking T w.r.t. subsequently smaller regions
toRegion(VI) (l. 5-11): Therefore, we take a set R from the queue. If R.I = {i} is a
singleton, we compute lbresR.I = resi = ubresR.I and store this result. Otherwise,
we apply model checking to the pMDP T w.r.t. the region representation of R.I.
We then split R.I, by splitting I into (here) two subsets. For splitting I, we use
the geometric interpretation of toRegion(VI) as a subset of R

|�y|, where we then
split along one of the axis into two equally large subsets. Every k (we use k = 8)
iterations, we analyse the macro-MDP (l. 12-15). From Q and Res we extract the
proper bounds lbresi, ubresi from Res[i] if possible and from Q using R.bounds
for R such that i ∈ R.I otherwise. Then via Reg(lbres1, ubres1, . . .) from Lemma 1
we compute a suitable region R′. We analyse the uncertain macro-MDP to obtain
lb and ub in accordance with Eq. (4).

Finally, we discuss the priority function: If we a-priori naively assume that
each subMDP contributes an equal amount to the overal minimal expected
reward in the hMDP (weights are all one) then the following priority function:
|R.bounds|·

∑
v∈I R.weights(v) computes priorities that correlate with how much

computing resi for all i ∈ I would reduce the gap between lb and ub.

Termination and Correctness Argument. Algorithm 1 terminates. We split in
such way that maxI∈Q |I| monotonically decreases. Thus, eventually Q is empty
and Res contains results for all subMDPs. Then, R′ is a point region and checking
ν(M) with this point region ensures that lb = ub. Correctness follows as R′ is
always suitable, see Eq. (4).

Computing Expected Visits. Based on our empirical evaluation we added one
crucial improvement: While the algorithm above assumed that all subMDPs (or
states in the macro-MDP) are equally important, that assumption is generally
inadequate. Roughly, only states reached by the optimal policy contribute at all
(provided the bounds are tight enough that we can identify these states). The
reachable states are weighted by the expected number of visits of these states.
We compute an approximation of this expected number of visit by computing
the currently optimizing policy (a by-product of l. 13) and compute the center
of R′; this results in a MC for which we can compute the number of expected
visits by a standard equation system [32]. Additionally, we update the weights
for the regions in the queue based on these new results. We remark that this
also makes the priority function more useful.

Interleaving Individual Refinement. Furthermore, for a subMDPs for which the
expected number of visits is large8 are individually analysed (and the points are
removed from the region in the queue). This optimization reduces the need to
split the corresponding regions until we obtain tight bounds.

8 In our implementation, we define this as subMDPs where the expected number of
visits is in the top 1 + 1/16 · #iter percent, but not more than 150 at a time.
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6 Experiments

Implementation. We implemented level-up9, a prototype on top of the python
bindings for Storm [20]. level-up analyses hierarchical MDPs by taking two
MDPs, each provided as probabilistic program descriptions in the PRISM for-
mat: One MDP that encodes the (uncertain) macro-MDP and one that describes
the parametric template for the subMDPs. The parameter instance of the sub-
MDP can be deduced as a function of the high-level variable assignment of
the macro-MDP states. For technical reasons, the prototype currently provides
support for subMDPs with one or two successor states – arguably the setting
in which we expect our prototype to perform best. For subMDPs with a single
successor state, the uncertain macro-MDP may be represented as an (parameter-
free) MDP with interval-valued rewards. For two successors, we include support
of the extension of Sect. 3.3 where the successor aims to optimize reaching a
fixed successor state.

Table 1. Benchmark statistics, runtimes of the approaches, and details for Algorithm 1.

Name Inst |SM| |I| |Sμ(M)| |Aμ(M)| |ST | |AT | tinit tenum t50 t90 t95 iter. indrf.
um
%

sr
%

ir
%

corr 11,10,50 107 624 255576 541704 15000 65006 < 1 16 3 9 13 17 14 2 67 2

corr 11,8,100 108 624 254376 539040 60000 260006 < 1 100 10 45 45 9 16 2 80 4

corr 11,8,200 108 624 254376 539040 240000 1040006 2 689 51 313 568 17 30 0 92 4

corr 13,11,50 107 768 1024344 2172432 15000 65006 3 21 8 18 25 17 17 5 36 1

corr1 17,14,75 108 1056 34200 83160 33750 146256 < 1 90 4 21 38 17 43 0 84 8

corr1 18,15,75 108 1128 39576 96768 33750 146256 < 1 98 4 38 38 17 45 0 84 8

corr1 25,20,75 108 1632 89136 224160 33750 146256 < 1 168 5 44 67 25 102 1 80 14

mail 10 109 173857 793971 1088152 2801 3601 4 552 8 21 48 57 658 29 2 4

mail 12 109 236802 1446551 2023504 2801 3601 8 738 16 43 130 97 703 42 1 2

netw 30,50 108 9801 437823 437823 4026 4026 1 23 8 33 46 217 150 60 1 1

netw 30,80 108 9801 437823 437823 10041 10041 1 62 8 34 48 217 150 59 3 3

netw 50,80 108 9801 1025883 1025883 10041 10041 2 62 16 94 112 225 150 62 1 1

sdn 5,12,4,4 108 23375 128386 128386 13506 16855 < 1 62 2 20 112 289 305 2 17 11

sdn 5,8,4,4 108 23375 128386 128386 2802 3455 < 1 98 1 5 15 281 305 13 17 8

sdn 6,8,4,4 109 126337 408227 408227 2802 3455 2 519 5 46 394 3057 305 27 7 0

Setup. We investigate the scalability and the quality of the approximation over
time. Therefore, we run our prototype on an MacBook 2020 M1 with an 8 GB
RAM limit. We compare the enumerative baseline from Sect. 4.1 with Algo-
rithm 1. Both exploit the hierarchical nature of the MDP. We qualitatively com-
pare to standard model checking on the flat MDP, see below. We use a collection
of benchmarks reflecting networks, job schedulers and robots.

Results. We consider instances that we summarize in Table 1. In particular, we
give the benchmark name and instance for reference, the approximate number
of states in the hierarchical MDP (computed from the macro-MDP and the

9 The source code and executables, the benchmarks, logfiles and utilities are all avail-
able in an archived Docker container: https://doi.org/10.5281/zenodo.6524787.

https://doi.org/10.5281/zenodo.6524787
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subMDPs), the number of nontrivial partitions, and the number of states and
actions in the (uncertain) macro-MDP and subMDPs, respectively. Then, we
give the time to setup the data structures from the high-level representation tinit
in seconds. We highlight that a flat representation of all our benchmarks has at
least 107, often more, states. As a reference, we present the performance of the
enumerative baseline from Sect. 4.1. The performance of this approach is positive
as it enables the verification of huge MDPs. A TO indicates >1200 s. To scale
to either larger subMDPs or more subMDPs, we use the abstraction-refinement
loop. To reflect the anytime nature, we list three run times for terminating when
η · ub ≤ lb with η ∈ {0.5, 0.9, 0.95} respectively. The largest time faster than
the enumerative baseline is highlighted (further to the right is better for the
abstraction-refinement). For η = 0.95, we give details: The number of itera-
tions (iter), the number of individual refinements based on the improvement
from Sect. 5, and the fraction of time spent on model checking the uncertain
macro-MDPs %um, the set-refinements %sr, and the individual refinements %ir,
respectively.

Discussion. Before we discuss details of the results, let us clarify that exploiting
the hierarchical structure is essential. MDPs with ≈108 states are at the limit
of what fits in around 8GB of memory10. Symbolic methods based on MTBDDs
easily scale beyond these sizes, but—noting that the subMDPs are all slightly
different—the models we consider lack the necessary symmetry that make MTB-
DDs compact. Thus, support for hierarchical MDPs is a necessary step forward.

Regarding the abstraction-refinement: While a larger study may be necessary,
we can start with two standard observations: The abstraction-refinement loop
is significantly faster on η ≤ 0.9. As η → 1, coarse abstractions are insufficient.
Furthermore, the efficiency of the abstraction-refinement heavily depends on the
particular structure. That being said, the approach outperforms the enumerative
approach, especially for η = 0.9, and up to more than an order of magnitude. This
happens even if I is rather small, or if, e.g., T is small. We furthermore observe
that for large I, the bookkeeping in python becomes a bottleneck. We think these
observations are promising: we left many options for further optimizations and
tweaking towards particular examples on the table. However, for models where
most time is spent on model checking the macro-level MDP, the approach is less
suitable. We furthermore conjecture that tailored algorithms may exploit some
of these dimensions, e.g., when there is the macro-MDP or the subMDPs are
indeed MCs or perhaps acyclic, depending on the number of parameters and
their influence [36], or based on the relative weight of the uncertain rewards
compared to rewards in the macro-MDP.

7 Related Work

In the model-free reinforcement learning (RL) setting, hierarchical models are
popular. An excellent, recent survey is given in [29]. Our work generalizes the
10 Assuming 128 byte per state, i.e., 8 doubles and 16 (32-bit) ints, as used in Storm.
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solution techniques on hierarchical MDPs that assume that these subMDPs are
the same. In RL, this assumption is treated liberally, and the methods provide
only weak error bounds. In contrast, our model-based approach provides error-
bounds in every step, and the error disappears in finitely many steps.

Hierarchical abstractions are used to analyse large MDPs in [5]. There, the
goal is to find a policy that almost optimizes the reward. Rather than preim-
posing a hierarchy, the algorithm aims to find a hierarchy and define the goal
states of the subMDP such that the model admits local policies. Instead, our
solution can find the optimal policy and in particular gives strict error bounds at
the cost of requiring a high-level model that induces the hierarchy. An symbolic
approach for continuous MDP, where the transition probabilities are the result
of an associated LP, has recently been discussed in [24]. An hierarchical SCC-
decomposition [1] aims to accelerate the process of solving a (given, monolithic)
Markov chain. The computation of reward-bounded properties [18] generalizes
topological value iteration and their notion of episodes mildly resembles an hier-
archical approach but no uncertainty is assumed or used in the approach. The
probabilistic model checker PAT [35] analyses a hierarchical probabilistic timed
automaton given as a process algebra. The hierarchy is not exploited in the
solving process.

While symbolic approaches, often on decision diagrams, exploit the transition
system by compressing the data structures, abstractions aim to yield smaller
systems that may assess an approximation for the sought-for values. Abstraction-
refinement without an imposed hierarchy is explored in [16,21,25]: Refinement
amounts to considering a better approximation of the state space. In contrast,
we impose the hierarchy, the abstraction amounts to an imprecise analysis of
this fixed state space and we refine by analysing the state space more precisely
(by means of analysing subMDPs at a greater level of detail). Contract-based
abstractions (in probabilistic systems) are used to decompose the analysis of
systems given by parallel running subsystems [14,28,38]. Partial exploration and
bounded model checking approaches focus on the most critical paths, i.e., the
paths where most of the probability mass lies [7,23,26], but these approaches do
generally not exploit the hierarchical and repetitive structure. The observation
that many parts of the system are not critical allows us to weigh the potential
benefit of refining the intervals in various parts of the macro-MDP.

Parametric MDPs are commonly used to model and analyse the effects
of uncertainty in the precise transitions [15,23,31]. The methods presented
in [13,22] exploit a repetitive structure in parametric MCs to accelerate the
construction of closed form solutions and are not applicable to MDPs. Para-
metric models have been used to support the design of systems [2,8] or their
adaption [6,9], to find policies for partially observable systems [11], to analyse
Bayesian networks [34], and to speed up the analysis of, e.g., software product
lines [10,37]. On top of technical differences, none of these approaches uses a
hierarchical decomposition of an MDP or uses the results of the analysis in the
analysis of a larger MDP.
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8 Conclusion

This paper presents a first verification approach that exploits a specific hierar-
chical structure natural in many models to accelerate analysing the underlying
MDP. An essential ingredient is to separate the two levels in the hierarchy. Then,
when analysing the (toplevel) macro-MDP, we may consider subMDPs that have
not yet been analysed as epistemic uncertainty. Analysis techniques for uncer-
tain (more precise: parametric) MDPs then enable an online approximation loop
that incrementally removes uncertainty in a targeted fashion by analysing more
and more subMDPs (more) precisely. Three clear directions for future work are
to (i) consider an approach where one lifts the restrictions to locally-optimal
policies, (ii) investigate the applicability to a richer set of temporal properties
and (iii) to allow automatic detection of partitions in, e.g., the Prism language.
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In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

5. Barry, J.L., Kaelbling, L.P., Lozano-Pérez, T.: DetH*: approximate hierarchical
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38. Xu, D.N., Gössler, G., Girault, A.: Probabilistic contracts for component-based
design. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp.
325–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-
4 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-030-86772-0_20
https://doi.org/10.1007/978-3-642-31424-7_53
https://doi.org/10.1007/978-3-642-31424-7_53
https://doi.org/10.1007/978-3-030-72016-2_10
https://doi.org/10.1007/978-3-030-72016-2_10
https://doi.org/10.1007/s10009-019-00535-1
https://doi.org/10.1007/s10009-019-00535-1
https://doi.org/10.1007/978-3-642-15643-4_24
https://doi.org/10.1007/978-3-642-15643-4_24
http://creativecommons.org/licenses/by/4.0/


Formal Methods for Neural Networks



Shared Certificates for Neural
Network Verification

Marc Fischer1(B) , Christian Sprecher2,
Dimitar Iliev Dimitrov1 , Gagandeep Singh3 , and Martin Vechev1
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Abstract. Existing neural network verifiers compute a proof that each
input is handled correctly under a given perturbation by propagating
a symbolic abstraction of reachable values at each layer. This process
is repeated from scratch independently for each input (e.g., image) and
perturbation (e.g., rotation), leading to an expensive overall proof effort
when handling an entire dataset. In this work, we introduce a new
method for reducing this verification cost without losing precision based
on a key insight that abstractions obtained at intermediate layers for
different inputs and perturbations can overlap or contain each other.
Leveraging our insight, we introduce the general concept of shared certifi-
cates, enabling proof effort reuse across multiple inputs to reduce overall
verification costs. We perform an extensive experimental evaluation to
demonstrate the effectiveness of shared certificates in reducing the ver-
ification cost on a range of datasets and attack specifications on image
classifiers including the popular patch and geometric perturbations. We
release our implementation at https://github.com/eth-sri/proof-sharing.

Keywords: Neural Network Verification · Local Verification ·
Adversarial Robustness

1 Introduction

The success of neural networks across a wide range of application domains [21,30]
has led to their widespread application and study. Despite this success, neural
networks remain vulnerable to adversarial attacks [8,23] which raises concerns
over their trustworthiness in safety-critical settings such as autonomous driving
and medical devices. To overcome this barrier, formal verification of neural net-
works has been proposed as a key technology in the literature [39]. As a result,
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recent years have witnessed a growing interest in verifying critical safety proper-
ties of neural networks (e.g., fairness, robustness) [14,17,18,31,32,40,42] speci-
fied using pre and post conditions over network inputs and outputs respectively.
Conceptually, existing verifiers propagate sets of inputs in the precondition cap-
tured in symbolic form (e.g., convex sets) through the network, an expensive
process that produces over-approximations of all possible values at intermediate
layers. The final abstraction of the output can then be used to check postcondi-
tions. The key technical challenge all existing verifiers aim to address is speeding
up and scaling the certification process, i.e., faster and more efficient propagation
of symbolic shapes while reducing the overapproximation error.

This Work: Accelerating Certification via Proof Sharing. In this work, we pro-
pose a new, complementary method for accelerating neural network verification
based on the key observation that instead of treating each certification attempt
in isolation as existing verifiers do, we can reuse proof effort among multiple such
attempts, thus obtaining significant overall speed-ups without losing precision.
Figure 1 illustrates both, standard verification and the concept of proof sharing.

In standard verification an input region I1(x) (orange square) is propagated
from left to right, obtaining intermediate shapes at each intermediate layer (here
the goal is to verify all points in the input region are classified as “cat” by
the neural network N). We observe that the abstraction obtained for a new
region I2(x) (e.g., blue shapes) can be contained inside existing abstractions
from I1(x), an effect we term proof subsumption. This effect can be observed
both between abstractions obtained from different specifications (e.g., �∞ and
adversarial patches) for the same data point and between proofs for the same
property but different, yet semantically similar inputs. Building on this observa-
tion, we introduce the notion of proof sharing via templates. Proof sharing works
in two steps: first, we leverage abstractions from existing proofs in order to create
templates, and second, we augment the verifier with these templates, stopping
the expensive propagation at an intermediate layer as soon as the newly gen-
erated abstraction is included inside an existing template. Key technical ingre-
dients to the effectiveness of our approach are fast template generation and
inclusion checking techniques. We experimentally demonstrate that proof shar-
ing can achieve significant speed-ups in challenging scenarios including proving
robustness to adversarial patches [10] and geometric perturbations [3] across
different neural network architectures.

Main Contributions. Our key contributions are:

– An introduction and formalization of the concept of proof sharing in neural
network verification: the idea that some proofs capture others (Sect. 3).

– A general framework leveraging the above concept, enabling proof effort reuse
via proof templates (Sect. 4).

– A thorough experimental evaluation involving verification of neural network
robustness against challenging adversarial patch and geometric perturbations,
demonstrating that our methods can achieve proof match rates of up 95% as
well as provide non-trivial end-to-end certification speed-ups (Sect. 5).
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Fig. 1. Visualization of neural network verification. The input regions I1(x), I2(x) are
propagated layer by layer through a neural network N . The high-dimensional convex
shapes are visualized in 2d. While initially I1(x) and I2(x) only slightly overlap, at
layer k, N1:k(I2(x)) is fully contained in N1:k(I1(x)). (Color figure online)

2 Background

Here we formally introduce the necessary background for proof sharing.

Neural Network. A neural network N is a function N : Rdin → R
dout , commonly

built from individual layers N = NL ◦ NL−1 ◦ · · · ◦ N1. Throughout this text, we
consider feed-forward neural networks, where each layer Ni(x) = max(Ax+b, 0)
consists of an affine transformation (Ax + b) as well as a rectified linear unit
(ReLU), that applies the max with 0 elementwise. A neural network, classifying
inputs into c classes, outputs dout := c scores, one for each class, and assigns the
class with the highest score as the predicted one. While, as is common in the
neural network verification literature, we use image classification as a proxy task,
many other applications work analogously. Our approach also naturally extends
to other types of neural networks, if verifiers exist for these architectures. We
discuss the challenges and limitations of such generalizations in Sect. 4.5. In the
following, for k < L, we let N1:k denote the application of the first k layers and
Nk+1:L denote the last L − k layers respectively.

(Local) Neural Network Verification. Given a set of inputs and a postcondition
ψ, the goal of neural network verification is to prove that ψ holds over the output
of the neural network corresponding to the given set of inputs. In this work, we
focus on local verification, proving that ψ holds for the network output for a
given region I(x) ⊆ R

din formed around the input x. Formally, we state this as:

Problem 1 (Local neural network verification). For a region I(x) ⊆ R
din , neural

network N , and postcondition ψ, verify that ∀z ∈ I(x). N(z) |= ψ. We write
I(x) |= ψ if ∀z ∈ I(x). N(z) |= ψ.

Here, we restrict ourselves to verifiers based on abstract interpretation [11,14]
as they achieve state-of-the-art precision and scalability [31,32]. Further, many
other popular verifiers [38,42] can be formulated using abstract interpretation.
These verifiers propagate I(x) symbolically through the network N layer-by-layer
using abstract transformers, which overapproximate the effect of applying the
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transformations defined in the different layers on symbolic shapes. The propaga-
tion yields an abstraction of the exact shape at each layer. The verifiers finally
check if the abstracted output implies ψ. This is showcased in Fig. 1, where the
input regions I1(x) and I2(x) are propagated layer-by-layer through N .

For a verifier V , we let V (I(x), N) denote the abstraction obtained after
the propagation of I(x) through the network N . We declutter notation by over-
loading N and writing N(I(x)) for the same if V is clear from context, i.e.,
V (I(x), N) = N(I(x)).

We consider robustness verification, where the goal is to prove that the net-
work classification does not change within an input region. A common input
region is the �∞-bounded additive noise, defined as Iε(x) := {z | ‖x−z‖∞ ≤ ε}.
Here, ε defines the size of the maximal perturbation to x. The postcondition ψ
denotes classification to the same class as x. Throughout this paper, we consider
different instantiations for I(x) but assume that ψ denotes classification invari-
ance (although other choices would work analogously). Due to this, we refer to
I(x) as input region and specification interchangeably. For example, in Fig. 1,
the goal is to verify that all points contained in N(I1(x)) are classified as “cat”.

3 Proof Sharing with Templates

Before introducing our framework for proof sharing, we further expand the moti-
vation example discussed in Fig. 1.

3.1 Motivation: Proof Subsumption

As stated earlier, we empirically observed that for many input regions Ii(x) and
Ij(x), the abstraction corresponding to one region at some intermediate layer k
contains that of another. Formally:

Definition 1 (Proof Subsumption). For specifications Ii(x), Ij(x), we say
that the proof of Ii(x) subsumes that of Ij(x) if at some layer k, N1:k(Ij(x)) ⊆
N1:k(Ii(x)), which we denote as Ij(x) ⊆N,k Ii(x).

18

21

Fig. 2. Example of an MNIST
image. I18,21

5×5 (x) signifies arbi-
trary change in the outlined area.

While not formally required, particularly
interesting are cases where proof subsump-
tion occurs despite Ii(x) 	⊆ Ij(x). This form
of proof subsumption is showcased in Fig. 1,
where I1(x) and I2(x) have only a small over-
lap, yet I2(x) ⊆N,k I1(x). For another exam-
ple, consider a neural network N trained as
a hand-written digit classifier for the MNIST
dataset [22] (example shown in Fig. 2) and the
following two specifications:

– �∞-bounded perturbations: all the pixels in an input image can arbitrarily be
changed independently by a small amount Iε(x) := {z | ‖x − z‖∞ ≤ ε},
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Table 1. Proof subsumption on a robust
MNIST classifier with 94 % accuracy. Verif. acc.
denotes the percentage of verifiable inputs from
the test set for �∞-perturbations (Iε).

ε
verif. acc.
for Iε [%]

Ii,j
2×2(x) ⊆N,k Iε(x) at layer k [%]

1 2 3 4 5

0.1 89.74 61.40 72.85 77.65 81.75 82.70

0.2 81.40 62.85 77.05 82.40 86.05 86.60

Fig. 3. The abstraction obtained
for Iε(x) (blue) contains that for
Ii,j
2×2(x) (orange) (projected to d =

2). (Color figure online)

– adversarial patches [10]. A p × p patch inside which the pixel intensity can
vary arbitrarily is placed on an image at coordinates (i, j), for which we write
Ii,j

p×p. We showcase a patch in Fig. 2 and formally define them in Sect. 4.3.

Clearly Ii,j
p×p(x) 	⊆ Iε(x) (unless ε = 1). In Table 1, we show that for a

classifier (5 layers with 100 neurons each) we indeed observe proof subsumption.
We report the accuracy, i.e., the rate of correct predictions on the unperturbed
test data, as well as the certified accuracy, i.e., the rate of samples x for which
the prediction is correct and I(x) |= ψ is verified, for Iε with ε = 0.1 and 0.2
over the whole test set. We also show the percentage of Ii,j

2×2(x) contained in
Iε(x) at layer k. To this end, we pick 1000 random x for which Iε(x) is verifiable
and sample 2 (i, j) pairs each. We utilize a Box domain verifier and a robustly
trained network [24]. Figure 3 shows a patch specification Ii,j

2×2(x) (in orange)
contained in the �∞ specification Iε (in blue) projected to 2 dimensions via PCA.

Reasons for Proof Subsumption. In Table 1, we observe that the rate of proof
subsumption increases with larger ε and k. These observations give an intuition
as to why we observe proof subsumption. First, as input regions pass through the
neural network, in each layer the abstractions become more imprecise. While this
fundamentally limits verification, it makes the subsumption of abstractions more
probable. This effect increases, when increasing ε for Iε. Second, and more funda-
mentally, while passing through the layers of a neural network, we observed that
semantically similar yet distinct image inputs, e.g., two similar-looking hand-
written digits, have activation vectors that grow closer in �2 norm as they pass
through the layers of the neural network [21,34]. This effect is a consequence of
the neural network distilling low-level information (e.g., individual pixel values)
into high-level concepts (e.g., the classes of digits). As specifications (and their
proofs) correspond to sets of concrete inputs, a similar effect may apply. We
conjecture that these two effects drive the observed proof subsumption.

3.2 Proof Sharing with Templates

Leveraging this insight, we introduce the idea of proof sharing via templates,
showcased in Fig. 4. We use an abstraction obtained from a robustness proof
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Fig. 4. Conceptualization of proof sharing with templates. In (a) we create a verifiable
template T (black-dashed border) from specification N1:k(I1(x)). When verifying new
specifications I2, . . . , I5, shown in (b), we can shortcut the verification of all but I5 by
subsuming them in T .

N1:k(I1(x)) at layer k to create a template T . After ensuring that T is ver-
ifiable, it can be used to shortcut the verification of other regions, e.g., of
I2(x), . . . , I5(x). Formally we decompose proof sharing into two sub-problems:
(i) the generation of proof templates and (ii) the matching of abstractions cor-
responding to other properties to these templates. For simplicity, here we only
consider templates at a single layer k of the neural network and we show an
extension to multiple layers in Sect. 4.3.

Our goal is to construct a template T at layer k that implies the postcondition
and captures abstractions at layer k obtained from propagating several Ii(x).
As it is challenging to find a single T that captures abstractions corresponding
to many input regions, yet remains verifiable, we allow a set of templates T . We
state this formally as:

Problem 2 (Template Generation). For a given neural network N , input x and
set of specifications I1, . . . , Ir, layer k and a postcondition ψ, find a set of tem-
plates T with |T | ≤ m such that:

arg max
T

r∑

i=1

[
∨

T∈T
N1:k(Ii(x)) ⊆ T

]
(1)

s.t. ∀ T ∈ T . Nk+1:L(T ) |= ψ.

Intuitively, Eq. (1) aims to find a set T of templates T at layer k, such that
the maximal amount (via the sum) of specifications I1, . . . , Ir is contained in
at least one template T (via the disjunction) while ensuring that the individual
T are still verifiable (via the constraint on the second line). As neural network
verification required by the constraints of Eq. (1), is NP-complete [17], comput-
ing an exact solution to Problem2 is computationally infeasible. Therefore, we
compute an approximate solution to Eq. (1). In general, Problem2 does not nec-
essarily require that the templates T are created from previous proofs. However,
building on proof subsumption, as discussed in Sect. 3.1, in Sect. 4 we will infer
the templates from previously obtained abstractions.
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To leverage proof sharing once the templates T are obtained, we need to be
able to match an abstraction S = N1:k(I(x)) verified using proof transfer to a
template in T :

Problem 3 (Template Matching). Given a set of templates T at layer k of a
neural network N , and a new input region I(x), determine whether there exists
a T ∈ T such that S ⊆ T , where S = N1:k(I(x)).

Together, Problems 2 and 3 outline a general framework for proof sharing,
permitting many instantiations. We note that Problems 2 and 3 present an inher-
ent precision vs. speed trade-off: Problem 3 can be solved most efficiently for
small values of m = |T | and simpler representations of T (allowing faster check-
ing of S ⊆ T ) at the cost of lower proof matching rates. Alternatively, Eq. (1)
can be maximized by large m and T represented by complex abstractions, thus
attaining high precision but expensive template generation and matching.

Beyond Proof Sharing on the Same Input. In this section, we focused on proof
sharing for different specifications of the same input x. However, we observed
that proof sharing is even possible between specifications defined on different
inputs x and x′. To facilitate the use of templates in this setting, Eq. (1) in
Problem 2 can be adapted to consider an input distribution.

4 Efficient Verification via Proof Sharing

We now consider an instantiation of proof sharing where we are given an input
x and properties I1, . . . , Ir to verify. Our general approach, based on Problems 2
and 3, is shown in Algorithm1. In this section, we first discuss Algorithm 1 in
general. We then describe the possible choices of abstract domains and their
implications on the algorithm, followed by a discussion on template generation
for two different specific problems. Finally, we conclude the section with a dis-
cussion on the conditions for effective proof sharing verification.

In Algorithm 1, we first create the set of templates T (Line 1, discussed
shortly) and subsequently verify I1, . . . , Ir using T . Here, we consider two,
potentially identical, verifiers VT and VS , where VT is used to create the tem-
plates T and VS is used to propagate input regions up to the template layer k.
For each Ii we propagate it up to layer k (Line 4) to obtain S = N1:k(Ii(x)) and
check if we can match it to a template Tj ∈ T (Line 6) using an inclusion check.
If a match is found, then we conclude that N(Ii(x)) |= ψ and set the verifica-
tion output vi to True. If this is not the case (Line 11) we verify N(Ii(x)) |= ψ
directly by checking VS(S,Nk+1:L) |= ψ. If the template generation fails, we
revert to verifying Ii by applying VS in the usual way (omitted in Algorithm1).

Soundness. As long as the templates T are sound, this procedure is sound, i.e.
Algorithm 1 only returns vi = True if ∀z ∈ Ii(x). N(z) |= ψ holds. Formally:

Theorem 1. Algorithm 1 is sound if ∀ T ∈ T , z ∈ T. Nk+1:L(z) |= ψ and VS is
sound.
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Algorithm 1: Neural Network Verifica-
tion Utilizing Proof Templates
Input: x, I1, . . . , Ir, k, ψ, verifiersVS , VT

Result: v1, . . . , vr indicating
vi := (N(Ii(x)) |= ψ)

1 T ←gen templates(x, N, k, ψ, VS , VT )
2 v1, . . . , vr ← False
3 for i ← 1 to r do
4 S ← VS(Ii(x), N1:k)
5 for Tj ∈ T do
6 if S ⊆ Tj then
7 vi ← True
8 break
9 end

10 end
11 if ¬vi then
12 vi ← (VS(S,Nk+1:L) |= ψ)
13 end
14 end
15 return v1, . . . , vr

This holds by the con-
struction of the algorithm:

Proof. For a given x and
Ii, Algorithm 1 only claims
vi = True if either the
check in (i) Line 6 or (ii)
Line 11 succeeds. Since VS is
sound, we know that ∀z ∈
Ii(x). N1:k(z) ∈ S. There-
fore in case (i) by our require-
ment on T as well as S ⊆
T it follows that ∀z ∈
Ii(x). N(z) |= ψ. In case (ii)
we execute Line 12 and the
same property holds due to
the soundness of VS .

Importantly, Theorem 1
shows that the generation
process of T does not affect
the overall soundness as long
as the set of templates T ful-
fills the condition in Theorem1. In particular, that means that when solving
Problem 2, it suffices to show the side condition (∀ T ∈ T . Nk+1:L(T ) |= ψ)
holds, while heuristically approximating the actual optimization criteria. We let
VT denote the verifier used to ensure this property in gen templates.

Precision. We say a verifier V1 is more precise than another verifier V2 on N if
out of a set of specifications it can verify some that V2 can not.

Theorem 2. If VS(VS(Ii(x), N1:k), Nk+1:L) = VS(Ii(x), N), then Algorithm 1
is at least as precise as VS.

Proof. Since, even if the inclusion check in Line 6 fails, due to Line 12 we out-
put vi = VS(VS(Ii(x), N1:k), Nk+1:L) |= ψ (Line 12), which by our requirement
equals vi = VS(Ii(x), N) |= ψ. Therefore we have at least the precision of VS .

The required property holds for any verifier VS for which the abstractions
of all network layers depends only on the abstractions from previous layers and
is fulfilled for all verifiers considered in this paper. For verifiers VS that do not
fulfill the required property, potential losses in precision can be remedied (at
the cost of runtime) by using VS(Ii(x), N1:L) in Line 12. Interestingly, it is even
possible to increase the precision of Algorithm 1 over VS by creating templates
T that are verified with a more precise verifier VT . However, in this discussion,
we restrict ourselves to speed gains. We believe that obtaining precision gains
requires instantiating our framework with a significantly different approach than
that taken for improving speed which is the main focus of our work. We leave
this as an interesting item for future work.
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Run-Time. Here, we aim to characterize the run-time of Algorithm 1 as well as
its speed-up over conventional verification. For an input x, (keeping the other
parameters fixed), the expected run time is

tPS = tT + r(tS + t⊆ + (1 − ρ)tψ) (2)

where tT is the expected time required to generate the templates at Line 1, r is
the number of specifications to be verified, tS is the expected time to compute
S (Line 4), t⊆ is the time to check S ⊆ T for T ∈ T until a match is found (Line
5 to Line 10), ρ ∈ [0, 1] is the rate of specifications where a template is found and
tψ is the time required to check ψ on the network output corresponding to S (Line
12). This time is minimized if the individual expected run times tT , tS , tψ are
minimal and ρ is large (i.e., close to 1). Unfortunately, computing the template
match rate ρ analytically is challenging and requires global reasoning over the
neural network for all valid inputs, which are not clearly defined. However, our
empirical analysis (in Sect. 5) shows that ρ is higher when templates are created
at later layers (as in Sect. 3.1).

To determine the speed-up compared to a baseline standard verifier, we make
the simplifying assumption that there is a single verifier V = VS = VT that has
expected run-time ν for each layer. Thus, the expected run-time for the con-
ventional verifier is tBL = rLν. We have tT = λmLν, tS = kν, tψ = (L − k)ν,
t⊆ = ηm and ultimately tPS = (m + r(1 − ρ))Lν + rρkν + rηm for constants
λ ∈ R>0, which indicates the overhead in generating one template over just
verifying it, and η ∈ R>0 which denotes the time required to perform an inclu-
sion check for one template. As this phrasing shows, Algorithm 1 has the same
asymptotic runtime as the base verifier V . Further, this formulation allows us to
write our expected speed-up as tBL

tP S
= r

λm+ηrm/Lμ+rρk/L+r(1−ρ) . This speed-up
is maximized when k is small compared to L, i.e., templates are placed early in
the neural network, the matching rate ρ is close to 1, and m,λ, η are small, i.e.,
generation and matching are fast. Unfortunately, these requirements are at odds
with each other: as we show in Sect. 5, higher m leads to higher matching rate
ρ and ρ is naturally higher for templates later in the neural network (higher k).
Thus high speed-ups require careful hyper-parameter choices.

To showcase how we can achieve good templates as well as fast matching,
we next discuss the choice of the abstract domain to be used in the propagation
and the representation of the templates. Then we discuss the template genera-
tion procedure and instantiate it for the verification of robustness to adversarial
patches and geometric perturbations.

4.1 Choice of Abstract Domain

To solve Problems 2 and 3 in a way that minimizes the expected runtime and
maximizes the overall precision, the choice of abstract domain is crucial. Here we
briefly review common choices of abstract domains for neural network verification
and how they are suited to our problem. Geometrically these domains can be
thought of as a convex abstraction of the set of vectors representing reachable



136 M. Fischer et al.

values at each layer of the neural network. We say that an abstraction a1 is more
precise than another abstraction a2, if and only if a1 ⊆ a2, i.e., all points in a1

occur in a2. Similarly, we say that a domain is more precise than another if it
can express all abstractions in the other domain.

The Box (or Interval) domain [14,16,24] abstracts sets in d dimensions as
B = {a + diag(d)e | e ∈ [−1, 1]d} with center a ∈ R

d and width d ∈ R
d
≥0. The

Zonotope domain [14,15,24,31,40] uses relaxations Z of the form

Z = {a + Ae | e ∈ [−1, 1]q}, (3)

parametrized with a ∈ R
d and A ∈ R

d×q.

Table 2. Feasibility of S ⊆ T
for Box B, Zonotope Z (with
order reduction) and DP Poly-
hedra P .

T

B Z α(Z) P

S

B ✓ ✗ ✓ (✓)

Z ✓ ✗ ✓ ✗

P ✓ ✗ ✓ (✓)

A third common choice are (restricted) con-
vex Polyhedra P [12,32,42]. Here, we consider P
to be in the DeepPoly (DP) domain [32,42]. Gen-
erally, Boxes are less precise, i.e. certify fewer
properties, than Zonotopes or Polyhedra.

For efficient proof sharing, we require a fast
inclusion check S ⊆ T , which is challenging
in our context due to the high dimensional-
ity d of the intermediate neural network lay-
ers. While we point the interested reader to [29]
for a detailed discussion, we summarize the key
results in Table 2. There, ✓ denotes feasibility,
i.e. low polynomial runtime (usually 2d compar-
isons, sometimes with an additional matrix multiplication), ✗ denotes infeasibil-
ity, e.g. exponential run time. If T is a Box all checks are simple as it suffices
to compute the outer bounding box of S and compare the 2d constraints. If
T is a DP Polyhedra these checks require a linear program (LP) to be solved.
While the size of this LP permits a low theoretical time complexity, in case S
is a Box or DP Polyhedra, in practice, we consider calling an LP solver too
expensive (denoted as (✓)). For Zonotopes these checks are generally infeasible,
as they require enumeration of the faces or corners, which is computationally
expensive for large d and P . While Zonotopes can be encoded as Polyhedra
(but not necessarily DP Polyhedra) and the same LP inclusion check as for P
could be used, the resulting LP would require exponentially many variables due
to the previously mentioned enumeration. However, by placing constraints on
the matrix A in Eq. (3) these inclusion checks can be performed efficiently. The
mapping of a Zonotope to such a restricted Zonotope is called order reduction
via outer-approximation [19,29].

In particular, for a Zonotope Z we consider the order reduction αBox to its
outer bounding box (where A is diagonal) and note that other choices of α are
possible (e.g. the reduction to affine transformations of a hyperbox).

For a general Zonotope Z its outer bounding box Z ′ = αBox(Z) can be
easily obtained. The center of Z ′ is a, the center of Z. The width d ∈ R

d
≥0 is

given as di =
∑q

j=1 |Ai,j |. Z ′ is represented as either a Box or a Zonotope (with
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A = diag(d)). To check S ⊆ Z ′ for a general Zontope S it suffices to check
αBox(S) ⊆ Z ′ which reduces to the simple inclusion check for boxes.

Based on the above discussion we will use the Zonotope domain to represent
all abstractions, and use verifiers VS = VT that propagate these zonotopes using
the state-of-the-art DeepZ transformers [31]. To permit efficient inclusion checks
we apply αBox on the resulting zonotopes to obtain the Box templates T , which
we treat as a special case of Zonotopes.

4.2 Template Generation

We now discuss instantiations for gen templates in Algorithm 1. Recall from
Sect. 3.1 the idea of proof subsumption, i.e. that abstractions for some specifi-
cation contain abstractions for other specifications. Building on this, we relax
the Problem 2 in order to create m templates Tj from intermediate abstractions
N1:k(Îi(x)) for some Î1, . . . , Îm. Note that Îj are not necessarily directly related
to the specifications I1, . . . , Ir that we want to verify. For a chosen layer k, input
x, number of templates m and verifiers VS and VT we optimize

arg max
Î1,...,Îm

r∑

i=1

⎡

⎣
m∨

j=1

VS(Ii(x), N1:k) ⊆ Tj

⎤

⎦

where Tj = αBox(VT (Îj(x), N1:k))
s.t. VT (Tj , Nk+1:L) |= ψ for j ∈ 1, . . . ,m.

(4)

As originally in Problem2 (Eq. (1)) we aim to find a set of templates such
that the intermediate shapes at layer k for most of the r specifications are covered
by at least one template T . In contrast to Eq. (1), we tie Tj to the specifications
Îj . This alone does not make the problem easier to tackle. However, next, we
will discuss how to generate application-specific parametric Îj and solve Eq. (4)
by optimizing over their parameters, allowing us to solve template generation
much more efficiently than in Eq. (1).

4.3 Robustness to Adversarial Patches

We now instantiate the above scheme in order to verify the robustness of image
classifiers against adversarial patches [10]. Consider an attacker that is allowed
to arbitrarily change any p×p patch of the image, as showcased earlier in Fig. 2.
For such a patch over pixel positions ([i, i+p−1]×[j, j+p−1]), the corresponding
perturbation is

Ii,j
p×p(x) := {z ∈ [0, 1]h×w | zπC

i,j
= xπC

i,j
}

with πi,j =
{

(k, l) | k∈i,...,i+p−1
l∈j,...,j+p−1

}

where h and w denote the height and width of the input x. Here πi,j denotes
the parts of the image affected by the patch, and πC

i,j its complement, i.e., the
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μ1

(a) �∞

μ1

μ2

(b) Center + Border

μ1 μ2

μ3 μ4

(c) 2x2 Grid

Fig. 5. Example splits μ for 10 × 10 pixels.

N1:k(Îi(x, εi))

Tk = αBox(N1:k(Îi(x, εi)))

βkTk

Fig. 6. Example Template. (Color
figure online)

unaffected part of the image. To prove robustness for an arbitrarily placed p × p
patch, however, one must consider the perturbation set Ip×p(x) := ∪i,jIi,j

p×p(x).
To prove robustness for Ip×p, existing approaches [10] separately verify

Ii,j
p×p(x) for all i ∈ {1, . . . , h − p + 1}, j ∈ {1, . . . , w − p + 1}. For example,

with p = 2 and a 28 × 28 MNIST image, this approach requires 729 individual
proofs. Because the different proofs for Ip×p share similarities, this is an ideal
candidate for proof sharing. We utilize Algorithm1 and check ∧ivi at the end to
speed up this process. For template generation, we solve Eq. (4) for m templates
with an input perturbation Îi per template.

We empirically found that (recall Table 1) setting Îi to an �∞ region Iεi

to work particularly well to capture a majority of patch perturbations Ii,j
p×p

at intermediate layers. Specifically, we found that setting εi to the maximally
verifiable value for this input to work particularly well.

To further increase the number of specifications contained in a set of tem-
plates T , we use m template perturbations of the form

Îi(x) := {z | ‖xμi
− zμi

‖∞ ≤ εi ∧ xμC
i

= zμC
i
},

where μi denotes a subset of pixels of the input image and μC
i its complement and

we maximize εi in a best-effort manner. In particular, we consider μ1, . . . , μm,
such that they partition the set of pixels in the image (e.g., in Fig. 5).

As noted earlier, this generation procedure needs to be fast, yet obtain T to
which many abstractions match in order to obtain speed-ups. Thus, we consider
small m, and fixed patterns μ1, . . . , μm. For each Îi, we aim to find the largest
εi which can still be verified in order to maximize the number of matches. Note
that for m = 1, this is equivalent to the �∞ input perturbation Iε with the
maximally verifiable ε for the given image.

Concretely, we can perform binary search over εi in order find a large εi,
still satisfying Nk+1:L(αBox(N1:k(Îi))) |= ψ. Verification with our chosen DeepZ
Zonotopes is not monotonous in εi due to the non-monotonic transformers used
for non-linearities (e.g., ReLU). This renders the application of binary search a
best-effort approximation. As we don’t require a formal maximum but rather
aim to solve a surrogate for Problem 2, this still works well in practice. Further
note that, applying αBox to templates introduces imprecision, i.e. VT might not
be able to prove properties over templates that it could without the application
of αBox. However, Theorem 2 (which only requires properties of VS) still applies.
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Algorithm 2: Online Template
Generation for Patches
Input: x, N, μ1, . . . , μm,K, ψ, VT

Result: T k for k ∈ K
1 T k ← {} for k ∈ K
2 for i ← 1 to m do
3 Îi(x, ε) := {z | ‖xμi

− zμi
‖ ≤ ε

4 ∧ xμC
i

= zμC
i
}

5 f(ε) := VT (Îi(x, ε), N) |= ψ
6 εi ← bin search(ε, f(ε))
7 for k ∈ K do
8 Tk ← αBox(VT (Îi(x, εi), N1:k))
9 g(βk) := VT (βTk, Nk+1:L) |= ψ

10 βk ← bin search(β, g(β))
11 T k ← T k ∪ {βkTk}
12 end
13 end
14 return T k for k ∈ K

Templates at Multiple Layers. We
can extend this approach to obtain
templates at multiple layers with-
out a large increase in computa-
tional cost. With templates at mul-
tiple layers, we first try to match
the propagated shape against the
earliest template layer and upon
failure propagate it further to the
next, where we again attempt
to match the template. In Algo-
rithm1, this means repeating the
block from Line 4 to Line 10 for
each template layer before going on
to the check on Line 11.

The full template generation
procedure is given in Algorithm2.
First, we perform a binary search
over εi (Line 6) to find the largest
εi, for which the specification is ver-
ifiable. Then for each layer k in the set of layers K at which we are creating
templates we create a box Tk from the Zonotope. As this Tk may not be ver-
ifiable, due to the imprecision added in αBox, we then perform another binary
search for the largest scaling factor βk (Line 10), which is applied to the matrix
A in Eq. (3). We denote this operation as βkTk. We show an example for a single
layer k in Fig. 6. The blue area outlines the Zonotope found via Line 6, which
is verifiable as it is fully on one side of the decision boundary (red, dashed).
After applying αBox (orange), however, is not (crosses the decision boundary).
By scaling it with βk the shape is verifiable again (green) and used as a template.

4.4 Geometric Robustness

Geometric robustness verification [3,13,28,32] aims to verify the robustness of
neural networks against geometric transformations such as image rotations or
translations. These transformations typically include an interpolation operation.
For example consider rotation Rγ of an image by γ ∈ Γ degrees for an interval Γ
(e.g., γ ∈ [−5, 5]), for which we consider the specification IΓ (x) := {Rγ(x) | γ ∈
Γ}. We note that, unlike �∞ and patch verification, the input regions for geo-
metric transformations are non-linear and have no closed-form solutions. Thus,
an overapproximation of the input region must be obtained [3]. For large Γ , the
approximate input region IΓ (x), can be too coarse resulting in imprecise veri-
fication. Hence, in order to assert ψ on IΓ , existing state-of-the-art approaches
[3], split Γ into r smaller ranges Γ1, . . . , Γr and then verify the resulting r spec-
ifications (IΓi

, ψ) for i ∈ 1, . . . , r. These smaller perturbations share similarities
facilitating proof sharing. We instantiate our approach similar to Sect. 4.3. A
key difference to Sect. 4.3 is that while x ∈ Ii,j

p×p(x) for all i, j in patches, here
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in general x 	∈ IΓi
(x) for most i. Therefore, the individual perturbations Ii(x)

do not overlap. To account for this, we consider m templates and split Γ into m
equally sized chunks (unrelated to the r splits) obtaining the angles γ1, . . . , γm

at the center of each chunk. For m templates we then consider the perturbations
Îi := Iεi

(Rγi
(x)), denoting the �∞ perturbation of size εi around the γi degree

rotated x. To find the template we employ a procedure analogous to Algorithm 2.

4.5 Requirements for Proof Sharing

Now, we discuss the requirements on the neural network N such that proof
sharing via templates works well. For simplicity, we discuss simple per-dimension
box bounds propagation for VS and VT . However, similar arguments can be made
for more complex relational abstractions such as Zonotopes or Polyhedra.

In order for an abstraction S to match to a template T , we need to show
interval inclusion for each dimension. For a particular dimension i this can occur
in two ways: (i) when both S and T are just a point in that dimension and
these points coincide, e.g., aS

i = aT
i , or (ii) when aS

i ± dS
i ⊆ aT

i ± dT
i . While

particularly in ReLU networks, the first case can occur after a ReLU layer sets
values to zero, we focus our analysis here on the second case as it is more com-
mon. In this case, the width of T in that dimension dT

i must be sufficient to
cover S. Ignoring case (i) and letting supp(T ) denote the dimensions in which
dT

i > 0, we can pose that supp(S) ⊆ supp(T ) as a necessary condition for inclu-
sion. While it is in general hard to argue about the magnitudes of these values,
this approach still provides an intuition. When starting from input specifications
supp(I) 	⊆ supp(Î), supp(S) ⊆ supp(T ) can only occur if during propagation
through the neural network N1:k the mass in supp(Î) can “spread out” suffi-
ciently to cover supp(S). In the fully connected neural networks that we discuss
here, the matrices of linear layers provide this possibility. However, in networks
that only read part of the input at a time such as recurrent neural networks,
or convolutional neural networks in which only locally neighboring inputs feed
into the respective output in the next layer, these connections do not necessarily
exist. This makes proof sharing hard until layers later in the neural network,
that regionally or globally pool information. As this increases the depth of the
layer k at which proof transfer can be applied, this also decreases the potential
speed-up of proof transfer. This could be alleviated by different ways of creating
templates, which we plan to investigate in the future.

5 Experimental Evaluation

We now experimentally evaluate the effectiveness of our algorithms from Sect. 4.

5.1 Experimental Setup

We consider the verification of robustness to adversarial patch attacks and geo-
metric transformations in Sect. 5.2 and Sect. 5.3, respectively. We define spec-
ifications on the first 100 test set images each from the MNIST [22] and the
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Table 3. Rate of Ii,j
2×2 matched to templates T for I2×2 patch verification for different

combinations of template layers k, 7 × 200 networks,using m = 1 template.

template at layer k 1 2 3 4 5 6 7 patch verif. [%]

MNIST 18.6 85.6 94.1 95.2 95.5 95.7 95.7 97.0

CIFAR 0.1 27.1 33.7 34.4 34.2 34.2 34.3 42.2

Table 4. Average verification time in seconds per image for I2×2 patches for different
combinations of template layers k, 7 × 200 networks,using m = 1 template.

Proof Sharing, template layer k

Baseline 1 2 3 4 1+3 2+3 2+4 2+3+4

MNIST 2.10 1.94 1.15 1.22 1.41 1.27 1.09 1.10 1.14

CIFAR 3.27 2.98 2.53 2.32 2.47 2.35 2.49 2.42 2.55

CIFAR-10 dataset [20] (“CIFAR”) as with repetitions and parameter variations
the overall runtime becomes high. We use DeepZ [31] as the baseline verifier as
well as for VS and VT [31]. Throughout this section, we evaluate proof sharing for
two networks on two common datasets: We use a seven layer neural network with
200 neurons per layer (“7× 200”) and a nine layer network with 500 neurons per
layer (“9× 500”) for both the MNIST[22] and CIFAR datasets [20], both uti-
lizing ReLU activations. These architectures are similar to the fully-connected
ones used in the ERAN and Mnistfc VNN-Comp categories [2].

For MNIST, we train 100 epochs, enumerating all patch locations for each
sample, and for CIFAR we train for 600 with 10 random patch locations, as out-
lined in [10] with interval training [16,24]. On MNIST the 7× 200 and the 9× 500
achieve a natural accuracy of 98.3% and 95.3% respectively. For CIFAR, these
values are 48.8% and 48.1% respectively. Our implementation utilizes PyTorch
[25] and is evaluated on Ubuntu 18.04 with an Intel Core i9-9900K CPU and 64
GB RAM. For all timing results, we provide the mean over three runs.

5.2 Robustness Against Adversarial Patches

For MNIST, containing 28 × 28 images, as outlined in Sect. 4.3, in order to
verify inputs to be robust against 2 × 2 patch perturbations, 729 individual
perturbations must be verified. Only if all are verified, the overall property can
be verified for a given image. Similarly, for CIFAR, containing 32 × 32 color
images, there are 961 individual perturbations (the patch is applied over all
color channels).

We now investigate the two main parameters of Algorithm 2: the masks
μ1, . . . , μm and the layers k ∈ K. We first study the impact of the layer k
used for creating the template. To this end, we consider the 7× 200 networks,
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Table 5. I2×2 patch verification with templates at the 2nd & 3rd layer of the 7 × 200
networks for different masks.

Method/Mask m patch matched [%] t [s]

Baseline - - 2.14

L-infinity 1 94.1 1.11

Center + Border 2 94.6 1.41

2 × 2 Grid 4 95.0 3.49

Table 6. I2×2 patch verification with templates generated on the second and third
layer using the �∞-mask. Verification times are given for the baseline tBL and for
applying proof sharing tPS in seconds per image.

Dataset Net verif. acc. [%] tBL tPS patch mat. [%] patch verif. [%]

MNIST 7 × 200 81.0 2.10 1.10 94.1 97.0

9 × 500 66.0 2.70 1.32 93.0 95.3

CIFAR 7 × 200 29.0 3.28 2.45 33.7 42.2

9 × 500 28.0 5.48 4.48 34.2 46.2

use m = 1 (covering the whole image; equivalent to Îε). Table 3 shows the cor-
responding template matching rates, and the overall percentage of individual
patches that can be verified “patches verif.”. (The overall percentage of images
for which I2×2 is true is reported as “verif.” in Table 6.) Table 4 shows the cor-
responding verification times (including the template generation). We observe
that many template matches can already be made at the second or third layer.
As creating templates simultaneously at the second and third layer works well
for both datasets, we utilize templates at these layers in further experiments.

Next, we investigate the impact of the pixel masks μ1, . . . , μm. To this end,
we consider three different settings, as showcased in Fig. 5 earlier: (i) the full
image (�∞-mask as before; m = 1), (ii) “center + border” (m = 2), where we
consider the 6 × 6 center pixel as one group and all others as another, and (iii)
the 2 × 2 grid (m = 4) where we split the image into equally sized quarters.

As we can see in Table 5, for higher m more patches can be matched to the
templates, indicating that our optimization procedure is a good approximation
to Problem 2, which only considers the number of templates matched. Yet, for
m > 1 the increase in matching rate p does not offset the additional time in
template generation and matching. Thus, m = 1 results in a better trade-off.
This result highlights the trade-offs discussed throughout Sect. 3 and Sect. 4.
Based on this investigation we now, in Table 6, evaluate all networks and datasets
using m = 1 and template generation at layers 2 and 3. In all cases, we obtain a
speed up between 1.2 to 2× over the baseline verifier. Going from 2 × 2 to 3 × 3
patches speed ups remain around 1.6 and 1.3 for the two datasets respectively.
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Table 7. Speed-ups achievable in the setting of Table 3. tBL the baseline.

speedup at layer k

Layer k 1 2 3 4

realized tBL/tPS 1.08 1.83 1.72 1.49

optimal tBL/(tT + rtS + rt⊆) 3.75 2.51 1.92 1.56

optimal, no ⊆ tBL/(tT + rtS) 4.02 2.68 2.01 1.62

optimal, no gen T ., no ⊆ tBL/rtS 4.57 2.90 2.13 1.69

Comparison with Theoretically Achievable Speed-Up. Finally, we want to deter-
mine the maximal possible speed-up with proof sharing and see how much of this
potential is realized by our method. To this end we investigate the same setting
and network as in Table 3. We let tBL and tPS denote the runtime of the base
verifier without and with proof sharing respectively. Similar to the discussion
in Sect. 4 we can break down tPS into tT (template generation time), tS (time
to propagate one input to layer k), t⊆ (time to perform template matching)
and tψ (time to verify S if no match). Table 7 shows different ratios of these
quantities. For all, we assume a perfect matching rate at layer k and calculate
the achievable speed-up for patch verification on MNIST. Comparing the opti-
mal and realized results, we see that at layers 3 and 4 our template generation
algorithm, despite only approximately solving Problem2 achieves near-optimal
speed-up. By removing the time for template matching and template generation
we can see that, at deeper layers, speeding up t⊆ and tT only yield diminishing
returns.

5.3 Robustness Against Geometric Perturbations

For the verification of geometric perturbations, we take 100 images from the
MNIST dataset and the 7× 200 neural network from Sect. 5.2. In Table 8, we
consider an input region with ±2° rotation, ±10% contrast and ±1% brightness
change, inspired by [3]. To verify this region, similar to existing approaches [3],
we choose to split the rotation into r regions, each yielding a Box specification
over the input. Here we use m = 1, a single template, with the largest verifiable
ε found via binary search. We observe that as we increase r, the verification
rate increases, but also the speed ups. Proof sharing enables significant speed-up
between 1.6 to 2.9×.

Finally, we investigate the impact of the number of templates m. To this end,
we consider a setting with a large parameter space: ±40° rotation generated input
region with r = 200. In Table 9, we evaluate this for m templates obtained from
the �∞ input perturbation around m equally spaced rotations, where we apply
binary search to find εi tailored for each template. Again we observe that m > 1
allows more templates matches. However, in this setting the relative increase is
much larger than for patches, thus making m = 3 faster than m = 1.
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Table 8. ±2° rotation, ±10% contrast and ±1% brightness change split into r per-
turbations on 100 MNIST images. Verification rate, rate of splits matched and verified
along with the run time of Zonotope tBL and proof sharing tPS .

r verif. [%] splits verif. [%] splits matched [%] tBL tPT

4 73.0 87.3 73.1 3.06 1.87

6 91.0 94.8 91.0 9.29 3.81

8 93.0 95.9 94.2 20.64 7.48

10 95.0 96.5 94.9 38.50 13.38

Table 9. ±40° rotation split into 200 perturbations evaluated on MNIST. The verifi-
cation rate is just 15 %, but 82.1 % of individual splits can be verified.

Method m splits matched [%] t [s]

Baseline - - 11.79

Proof Sharing 1 38.0 9.15

2 41.1 9.21

3 58.5 8.34

5.4 Discussion

We have shown that proof sharing can achieve speed-ups over conventional exe-
cution. While the speed-up analysis (see Sect. 4 and Table 7) put a ceiling on
what is achievable in particular settings, we are optimistic that proof sharing
can be an important tool for neural network robustness analysis. In particular,
as the size of certifiable neural networks continues to grow, the potential for
gains via proof sharing is equally growing. Further, the idea of proof effort reuse
can enable efficient verification of larger disjunctive specifications such as the
patch or geometric examples considered here. Besides the immediately useful
speed-ups, the concept of proof sharing is interesting in its own right and can
provide insights into the learning mechanisms of neural networks.

6 Related Work

Here, we briefly discuss conceptually related work:

Incremental Model Checking The field of model checking aims to show whether a
formalized model, e.g. of software or hardware, adheres to a specification. As neu-
ral network verification can also be cast as model checking, we review incremental
model checking techniques which utilize a similar idea to proof sharing: reuse
partial previous computations when checking new models or specifications. Proof
sharing has been applied for discovering and reusing lemmas when proving the-
orems for satisfiability [6], Linear Temporal Logic [7], and modal μ-calculus [33].
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Similarly, caching solvers [35] for Satisfiability Modulo Theories cache obtained
results or even the full models used to obtain the solution, with assignments for
all variables, allowing for faster verification of subsequent queries. For program
analysis tasks that deal with repeated similar inputs (e.g. individual commits
in a software project) can leverage partial results [41], constraints [36] precision
information [4,5] from previous runs.

Proof Sharing Between Networks. In neural network verification, some
approaches abstract the network to achieve speed-ups in verification. These sim-
plifications are constructed in a way that the proof can be adapted for the original
neural network [1,43]. Similarly, another family of approaches analyzes the dif-
ference between two closely related neural networks by utilizing their structural
similarity [26,27]. Such approaches can be used to reuse analysis results between
neural network modifications, e.g. fine-tuning [9,37].

In contrast to these works, we do not modify the neural network, but achieve
speed-ups rather by only considering the relaxations obtained in the proofs. [37]
additionally consider small changes to the input, however, these are much smaller
than the difference in specification we consider here.

7 Conclusion

We introduced the novel concept of proof sharing in the context of neural network
verification. We showed how to instantiate this concept, achieving speed-ups of
up to 2 to 3 x for patch verification and geometric verification. We believe that
the ideas introduced in this work can serve as a solid foundation for exploring
methods that effectively share proofs in neural network verification.

References
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Abstract. Linear approximations of nonlinear functions have a wide
range of applications such as rigorous global optimization and, recently,
verification problems involving neural networks. In the latter case, a lin-
ear approximation must be hand-crafted for the neural network’s activa-
tion functions. This hand-crafting is tedious, potentially error-prone, and
requires an expert to prove the soundness of the linear approximation.
Such a limitation is at odds with the rapidly advancing deep learning
field – current verification tools either lack the necessary linear approxi-
mation, or perform poorly on neural networks with state-of-the-art acti-
vation functions. In this work, we consider the problem of automatically
synthesizing sound linear approximations for a given neural network acti-
vation function. Our approach is example-guided : we develop a procedure
to generate examples, and then we leverage machine learning techniques
to learn a (static) function that outputs linear approximations. How-
ever, since the machine learning techniques we employ do not come with
formal guarantees, the resulting synthesized function may produce linear
approximations with violations. To remedy this, we bound the maximum
violation using rigorous global optimization techniques, and then adjust
the synthesized linear approximation accordingly to ensure soundness.
We evaluate our approach on several neural network verification tasks.
Our evaluation shows that the automatically synthesized linear approx-
imations greatly improve the accuracy (i.e., in terms of the number of
verification problems solved) compared to hand-crafted linear approxi-
mations in state-of-the-art neural network verification tools. An artifact
with our code and experimental scripts is available at: https://zenodo.
org/record/6525186#.Yp51L9LMIzM.

1 Introduction

Neural networks have become a popular model choice in machine learning due
to their performance across a wide variety of tasks ranging from image classifi-
cation, natural language processing, and control. However, they are also known
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to misclassify inputs in the presence of both small amounts of input noise and
seemingly insignificant perturbations to the inputs [37]. Indeed, many works
have shown they are vulnerable to a variety of seemingly benign input trans-
formations [1,9,17], which raises concerns about their deployment in safety-
critical systems. As a result, a large number of works have proposed verification
techniques to prove that a neural network is not vulnerable to these perturba-
tions [35,43,44], or in general satisfies some specification [15,18,27,28].

Crucial to the precision and scalability of these verification techniques are
linear approximations of the network’s activation functions.

In essence, given some arbitrary activation function σ(x), a linear approxi-
mation is a coefficient generator function G(l, u) → 〈al, bl, au, bu〉, where l, u ∈ R

are real values that correspond to the interval [l, u], and al, bl, au, bu ∈ R are real-
valued coefficients in the linear lower and upper bounds such that the following
condition holds:

∀x ∈ [l, u]. al · x + bl ≤ σ(x) ≤ au · x + bu (1)

Indeed, a key contribution in many seminal works on neural network verification
was a hand-crafted G(l, u) [2,7,19,33–35,42–45,47] and follow-up work built off
these hand-crafted approximations [36,38]. Furthermore, linear approximations
have applications beyond neural network verification, such as rigorous global
optimization and verification [21,40].

However, crafting G(l, u) is tedious, error-prone, and requires an expert.
Unfortunately, in the case of neural network activation functions, experts have
only crafted approximations for the most common functions, namely ReLU,
sigmoid, tanh, max-pooling, and those in vanilla LSTMs. As a result, existing
techniques cannot handle new and cutting-edge activation functions, such as
Swish [31], GELU [14], Mish [24], and LiSHT [32].

In this work, we consider the problem of automatically synthesizing the coef-
ficient generator function G(l, u), which can alternatively be viewed as four indi-
vidual functions Gal

(l, u), Gbl(l, u), Gau
(l, u), and Gbu(l, u), one for each coeffi-

cient. However, synthesizing the generator functions is a challenging task because
(1) the search space for each function is very large (in fact, technically infinite),
(2) the optimal generator functions are highly nonlinear for all activation func-
tions considered both in our work and prior work, and (3) to prove soundness of
the synthesized generator functions, we must show:

∀[l, u] ∈ IR, x ∈ [l, u] .

(Gal
(l, u) · x + Gbl(l, u)) ≤ σ(x) ≤ (Gau

(l, u) · x + Gbu(l, u))
(2)

where IR = {[l, u] | l, u ∈ R, l ≤ u} is the set of all real intervals. The above
equation has highly non-linear constraints, which cannot be directly handled by
standard verification tools, such as the Z3 [6] SMT solver.

To solve the problem, we propose a novel example-guided synthesis and veri-
fication approach, which is applicable to any differentiable, Lipschitz-continuous
activation function σ(x). (We note that activation functions are typically
required to be differentiable and Lipschitz-continuous in order to be trained
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Fig. 1. Overview of our method for synthesizing the coefficient generator function.

by gradient descent, thus our approach applies to any practical activation func-
tion). To tackle the potentially infinite search space of G(l, u), we first propose
two templates for G(l, u), which are inspired by the hand-crafted coefficient func-
tions of prior work. The “holes” in each template are filled by a machine learning
model, in our case a small neural network or linear regression model. Then, the
first step is to partition the input space of G(l, u), and then assign a single tem-
plate to each subset in the partition. The second step is to fill in the holes of each
template. Our approach leverages an example-generation procedure to produce
a large number of training examples of the form ((l, u), (al, bl, au, bu)), which can
then be used to train the machine learning component in the template. However,
a template instantiated with a trained model may still violate Eq. 2, specifically
the lower bound (resp. upper bound) may be above (resp. below) the activation
function over some interval [l, u]. To ensure soundness, the final step is to bound
the maximum violation of a particular template instance using a rigorous global
optimization technique based on interval analysis, which is implemented by the
tool IbexOpt [5]. We then use the computed maximum violation to adjust the
template to ensure Eq. 2 always holds.

The overall flow of our method is shown in Fig. 1. It takes as input the acti-
vation function σ(x), and the set of input intervals Ix ⊆ IR for which G(l, u)
will be valid. During design time, we follow the previously described approach,
which outputs a set of sound, instantiated templates which make up G(l, u).
Then the synthesized G(l, u) is integrated into an existing verification tool such
as AutoLiRPA [46] or DeepPoly [35]. These tools take as input a neural
network and a specification, and output the verification result (proved, coun-
terexample, or unknown). At application time (i.e., when attempting to verify
the input specification), when these tools need a linear approximation for σ(x)
over the interval [l, u], we lookup the appropriate template instance, and use it
to compute the linear approximation (al, bl, au, bu), and return it to the tool.

To the best of our knowledge, our method is the first to synthesize a lin-
ear approximation generator function G(l, u) for any given activation function
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σ(x). Our approach is fundamentally different from the ones used by state-
of-the-art neural network verification tools such as AutoLiRPA and Deep-
Poly, which require an expert to hand-craft the approximations. We note that,
while AutoLiRPA can handle activations that it does not explicitly support
by decomposing σ(x) into elementary operations for which it has (hand-crafted)
linear approximations, and then combining them, the resulting bounds are often
not tight. In contrast, our method synthesizes linear approximations for σ(x)
as a whole, and we show experimentally that our synthesized approximations
significantly outperform AutoLiRPA.

We have implemented our approach and evaluated it on popular neural
network verification problems (specifically, robustness verification problems in
the presence of input perturbations). Compared against state-of-the-art lin-
ear approximation based verification tools, our synthesized linear approxima-
tions can drastically outperform these existing tools in terms of the number of
problems verified on recently published activation functions such as Swish [31],
GELU [14], Mish [24], and LiSHT [32].

To summarize, we make the following contributions:

– We propose the first method for synthesizing the linear approximation gen-
erator function G(l, u) for any given activation function.

– We implement our method, use it to synthesize linear approximations for
several novel activation functions, and integrate these approximations into a
state-of-the-art neural network verification tool.

– We evaluate our method on a large number of neural network verification
problems, and show that our synthesized approximations significantly out-
perform the state-of-the-art tools.

2 Preliminaries

In this section, we discuss background knowledge necessary to understand our
work. Throughout the paper, we will use the following notations: for variables
or scalars we use lower case letters (e.g., x ∈ R), for vectors we use bold lower
case letters (e.g., x ∈ R

n) and for matrices we use bold upper case letters (e.g.,
W ∈ R

n×m). In addition, we use standard interval notation: we let [l, u] = {x ∈
R|l ≤ x ≤ u} be a real-valued interval, we denote the set of all real intervals
as IR = {[l, u]|l, u ∈ R, l ≤ u}, and finally we define the set of n-dimensional
intervals as IRn = {×n

i=1
[li, ui] | [li, ui] ∈ IR}, where×is the Cartesian product.

2.1 Neural Networks

We consider a neural network to be a function f : X ⊆ R
n → Y ⊆ R

m, which
has n inputs and m outputs. For ease of presentation, we focus the discussion
on feed-forward, fully-connected neural networks (although the bounds synthe-
sized by our method apply to all neural network architectures). For x ∈ X, such
networks compute f(x) by performing an alternating series of matrix multipli-
cations followed by the element-wise application of an activation function σ(x).
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Formally, an l-layer neural network with ki neurons in each layer (and letting
k0 = n, kl = m) has l weight matrices and bias vectors Wi ∈ R

ki−1×ki and
bi ∈ R

ki for i ∈ {1..l}. The input of the network is f0 = xT , and the output
of layer i is given by the function: fi = σ(fi−1 · Wi + bi) which can be applied
recursively until the output layer of the network is reached.

Initially, common choices for the activation function σ(x) were ReLU(x) =
max(0, x), sigmoid(x) = ex

ex+1 , and tanh(x) = ex−e−x

ex+e−x , however the field has
advanced rapidly in recent years and, as a result, automatically discovering
novel activations has become a research subfield of its own [31]. Many recently
proposed activations, such as Swish and GELU [14,31], have been shown to
outperform the common choices in important machine learning tasks.

2.2 Existing Neural Network Verification Techniques
and Limitations

We consider neural network verification problems of the following form: given
a neural network f : X → Y and an input set X ⊆ X, compute an over-
approximation Y such that {f(x) | x ∈ X} ⊆ Y ⊆ Y. The most scalable
approaches to neural network verification (where scale is measured by num-
ber of neurons in the network) use linear bounding techniques to compute Y ,
which require a linear approximation of the network’s activation function. This
is an extension of interval analysis [26] (e.g., intervals with linear lower/upper
bounds [35,46]) to compute Y , and thus X and Y are represented as elements
of IRn and IR

m, respectively.
We use Fig. 2 to illustrate a typical neural network verification problem. The

network has input neurons x1, x2, output neurons x7, x8 and a single hidden
layer. We assume the activation function is swish(x) = x · sigmoid(x), which is
shown by the blue line in Fig. 3. Our input space is X = [−1, 1] × [−1, 1] (i.e.,
x1, x2 ∈ [−1, 1]), and we want to prove x7 > x8, which can be accomplished by
first computing the bounds x7 ∈ [l7, u7], x8 ∈ [l8, u8], and then showing l7 > u8.
Following the prior work [35] and for simplicity, we split the affine transformation
and application of activation function in the hidden layer into two steps, and we
assume the neurons xi, where i ∈ {1..8}, are ordered such that i < j implies
that xi is in either the same layer as xj , or a layer prior to xj .

Linear bounding based neural network verification techniques work as follows.
For each neuron xi, they compute the concrete lower and upper bounds li and
ui, together with symbolic lower and upper bounds. The symbolic lower and
upper bounds are linear constraints

∑i−1
j=0 cl

j · xj + cl
i ≤ xi ≤ ∑i−1

j=0 cu
j · xj + cu

i ,
where each of cl

i, c
u
i is a constant. Both bounds are computed in a forward layer-

by-layer fashion, using the result of the previous layers to compute bounds for
the current layer.

We illustrate the computation in Fig. 2. In the beginning, we have x1 ∈ [−1, 1]
as the concrete bounds, and −1 ≤ x1 ≤ 1 as the symbolic bounds, and similarly
for x2. To obtain bounds for x3, x4, we multiply x1, x2 by the edge weights, which
for x3 gives the linear bounds −x1+x2 ≤ x3 ≤ −x1+x2. Then, to compute l3 and
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Fig. 2. An example of linear bounding for neural network verification.

u3, we minimize and maximize the linear lower and upper bounds, respectively,
over x1, x2 ∈ [−1, 1]. Doing so results in l3 = −2, u3 = 2. We obtain the same
result for x4.

However, we encounter a key challenge when attempting to bound x5, as
we need a linear approximation of σ(x3) over [l3, u3] when bounding x5, and
similarly for x6. Here, a linear approximation for x5 can be regarded as a set
of coefficients al, bl, au, bu such that the following soundness condition holds:
∀x3 ∈ [l3, u3] . al · x3 + bl ≤ σ(x3) ≤ au · x3 + bu. In addition, a sub goal for
the bounds is tightness, which typically means the volume between the bounds
and σ(x) is minimized. Crafting a function to generate these coefficients has
been the subject of many prior works. Many seminal papers on neural network
verification have focused on solving this problem alone. Broadly speaking, they
fall into the following categories.

Hand-Crafted Approximation Techniques. The first category of techniques use
hand-crafted functions for generating al, bl, au, bu. Hand-crafted functions are
generally fast because they are static, and tight because an expert designed
them. Unfortunately, current works in this category are not general – they only
considered the most common activation functions, and thus cannot currently
handle our motivating example or any recent, novel activation functions. For
these works to apply to our motivating example, an expert would need to hand-
craft an approximation for the activation function, which is both difficult and
error-prone.

Expensive Solver-Aided Techniques. The second category use expensive solvers
and optimization tools to compute sound and tight bounds in a general way, but
at the cost of runtime. Recent works include DiffRNN [25] and POPQORN [19].
The former uses (unsound) optimization to synthesize candidate coefficients and
then uses an SMT solver to verify soundness of the bounds. The latter uses
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constrained-gradient descent to compute coefficients. We note that, while these
works do not explicitly target an arbitrary activation function σ(x), their tech-
niques can be naturally extended. Their high runtime and computational cost
are undesirable and, in general, make them less scalable than the first category.

Fig. 3. Approximation of AutoLiRPA
(red) and our approach (green). (Color
figure online)

Decomposing Based Techniques. The
third category combine hand-crafted
approximations with a decomposing
based technique to obtain general-
ity and efficiency, but at the cost of
tightness. Interestingly, this is sim-
ilar to the approach used by non-
linear SMT solvers and optimizers
such as dReal [11] and Ibex [5].
To the best of our knowledge, only
one work AutoLiRPA [46] imple-
ments this approach for neural net-
work verification. Illustrating on our
example, AutoLiRPA does not have
a static linear approximation for
σ(x3) = x3 · sigmoid(x3), but it has
static approximations for sigmoid(x3) and x3·y. Thus we can bound sigmoid(x3)
over x3 ∈ [−2, 2], and then, letting y = sigmoid(x3), bound x3 · y. Doing so
results in the approximation shown as red lines in Fig. 3. While useful, they are
suboptimal because they do not minimize the area between the two bounding
lines. This suboptimality occurs due to the decomposing, i.e., the static approx-
imations used here were not designed for swish(x) as a whole, but designed for
the individual elementary operations.

Our Work: Synthesizing Static Approximations. Our work overcomes the limi-
tation of prior work by automatically synthesizing a static function specifically
for any given activation function σ(x) without decomposing. Since the synthesis
is automatic, and results in a bound generator function, we obtain general-
ity and efficiency, and since the synthesis targets σ(x) specifically, we usually
(demonstrated empirically) obtain tightness. In Fig. 3, for example, the bounds
computed by our method are represented by the green lines. The synthesized
bound generator function can then be integrated to state-of-the-art neural net-
work verification tools, including AutoLiRPA.

Wrapping Up the Example. For our running example, using AutoLiRPA’s lin-
ear approximation, we would add the linear bounds for x5 shown in Fig. 2. To
compute l5, u5, we would substitute the linear bounds for x3 into x5’s linear
bounds, resulting in linear bounds with only x1, x2 terms that can be mini-
mized/maximized for l5, l6 respectively. We do the same for x6, and then we
repeat the entire process until the output layer is reached.
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3 Problem Statement and Challenges

In this section, we formally define the synthesis problem and then explain the
technical challenges. During the discussion, we focus on synthesizing the gen-
erator functions for the upper bound, but in Sect. 3.1, we explain how we can
obtain the lower bound functions.

3.1 The Synthesis Problem

Given an activation function σ(x) and an input universe x ∈ [lx, ux], we define
the set of all intervals over x in this universe as Ix = { [l, u] | [l, u] ∈ IR, l, u ∈
[lx, ux]}. In our experiments, for instance, we use lx = −10 and ux = 10. Note
that if we encounter an [l, u] 	∈ Ix, we fall back to a decomposing-based technique.

Our goal is to synthesize a generator function G(l, u) → 〈au, bu〉, or equiva-
lently, two generator functions Gau

(l, u) and Gbu(l, u) such that ∀[l, u] ∈ Ix, x ∈
R, the condition x ∈ [l, u] =⇒ σ(x) ≤ Gau

(l, u) · x + Gbu(l, u) holds. This is the
same as requiring that the following condition does not hold (i.e., the formula
is unsatisfiable):

∃[l, u] ∈ Ix, x ∈ R . x ∈ [l, u] ∧ σ(x) > Gau
(l, u) · x + Gbu(l, u) (3)

The formula above expresses the search for a counterexample, i.e., an input
interval [l, u] such that Gau

(l, u) ·x+Gbu(l, u) is not a sound upper bound of σ(x)
over the interval [l, u]. Thus, if the above formula is unsatisfiable, the soundness
of the coefficient functions Gau

,Gbu is proved. We note that we can obtain the
lower bound generator functions Gal

(l, u),Gbl(l, u) by synthesizing upper bound
functions Gau

(l, u),Gbu(l, u) for −σ(x) (i.e. reflecting σ(x) across the x-axis), and
then letting Gal

= −Gau
(l, u),Gbl = −Gbu(l, u).

In addition to soundness, we want the bound to be tight, which in our context
has two complementary goals. For a given [l, u] ∈ Ix we should have (1) σ(z) =
Gau

(l, u) · z + Gbu(l, u) for at least one z ∈ [l, u] (i.e., the bound touches σ(x)
at some point z), and (2) the volume below Gau

(l, u) · x + Gbu(l, u) should be
minimized (which we note is equivalent to minimizing the volume between the
upper bound and σ(x) since σ(x) is fixed). We will illustrate the volume by the
shaded green region below the dashed bounding line in Fig. 6.

The first goal is intuitive: if the bound does not touch σ(x), then it can be
shifted downward by some constant. The second goal is a heuristic taken from
prior work that has been shown to yield a precise approximation of the neural
network’s output set.

3.2 Challenges and Our Solution

We face three challenges in searching for the generator functions Gau
and Gbu .

First, we must restrict the search space so that a candidate can be found in a
reasonable amount of time (i.e., the search is tractable). The second challenge,
which is at odds with the first, is that we must have a large enough search space
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Fig. 4. Illustration of the two-point form bound (upper dashed line) and tangent-line
form bound (lower dashed line).

such that it permits candidates that represent tight bounds. Finally, the third
challenge, which is at odds with the second, is that we must be able to formally
verify Gau

,Gbu to be sound. While more complex geneator functions (Gau
,Gbu)

will likely produce tighter bounds, they will be more difficult (if not impractical)
to verify.

We tackle these challenges by proposing two templates for Gau
,Gbu and then

developing an approach for selecting the appropriate template. We observe that
prior work has always expressed the linear bound for σ(x) over an interval x ∈
[l, u] as either the line connecting the points (l, σ(l)), (u, σ(u)), referred to as
the two-point form, or as the line tangent to σ(x) at a point t, referred to as
tangent-line form. We illustrate both forms in Fig. 4. Assuming that σ′(x) is the
derivative of σ(x), the two templates for Gau

and Gbu as follows:

Gau
(l, u) =

σ(u) − σ(l)
u − l

Gbu(l, u) = −Gau
(l, u) · l + σ(l) + ε

two-point
form template

(4)

Gau
(l, u) = σ′(g(l, u))

Gbu(l, u) = −Gau
(l, u) · g(l, u) + σ(g(l, u)) + ε

tangent-line
form template

(5)

In these templates, there are two holes to fill during synthesis: ε and g(l, u).
Here, ε is a real-valued constant upward (positive) shift that ensures soundness
of the linear bounds computed by both templates. We compute ε when we verify
the soundness of the template (discussed in Sect. 4.3). In addition to ε, for the
tangent-line template, we must synthesize a function g(l, u) = t, which takes the
interval [l, u] as input and returns the tangent point t as output.

These two templates, together, address the previously mentioned three chal-
lenges. For the first challenge, the two-point form actually does not have a search
space, and thus can be computed efficiently, and for the tangent-line form, we
only need to synthesize the function g(l, u). In Sect. 4.2, we will show empirically
that g(l, u) tends to be much easier to learn than a function that directly predicts
the coefficients au, bu. For the second challenge, if the two-point form is sound,
then it is also tight since the bound touches σ(x) by construction. Similarly, the
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tangent-line form touches σ(x) at t. For the third challenge, we will show empir-
ically that these templates can be verified to be sound in a reasonable amount
of time (on the order of an hour). prove the soundness of Gau

,Gbu for large
At a high level, our approach contains three steps. The first step is to partition

Ix into subsets, and then for each subset we assign a fixed template – either
the two-point form template or tangent-line form template. The advantage of
partitioning is two-fold. First, no single template is a good fit for the entire Ix,
and thus partitioning results in overall tighter bounds. And second, if the final
verified template for a particular subset has a large violation (which results in a
large upward shift and thus less tight bounds) the effect is localized to that subset
only. Once we have assigned a template to each subset of Ix, the second step is to
learn a g(l, u) for each subset that was assigned a tangent-line template. We use
an example-generation procedure to generate training examples, which are then
used to train a machine learning model. After learning each g(l, u), the third
step is to compute ε for all of the templates. We phrase the search for a sound
ε as a nonlinear global optimization problem, and then use the interval-based
solver IbexOpt [5] to bound ε.

4 Our Approach

In this section, we first present our method for partitioning Ix, the input interval
space, into disjoint subsets and then assigning a template to each subset. Then,
we present the method for synthesizing the bounds-generating function for a
subset in the partition of Ix (see Sect. 3.1). Next, we present the method for
making the bounds-generating functions sound. Finally, we present the method
for efficiently looking up the appropriate template at runtime.

4.1 Partitioning the Input Interval Space (Ix)

A key consideration when partitioning Ix is how to represent each disjoint subset
of input intervals. While we could use a highly expressive representation such as
polytope or even use non-linear constraints, for efficiency reasons, we represent
each subset (of input intervals) as a box. Since a subset uses either the two-point
form template or the tangent-line form template, the input interval space can
be divided into Ix = I2pt ∪ Itan. Each of I2pt and Itan is a set of boxes.

At a high-level, our approach first partitions Ix into uniformly sized disjoint
boxes, and then assigns each box to either I2pt or Itan. In Fig. 5, we illustrate
the partition computed for swish(x) = x · sigmoid(x). The x-axis and y-axis
represent the lower bound l and the upper bound u, respectively, and thus a
point (l, u) on this graph represents the interval [l, u], and a box on this graph
denotes the set of intervals represented by the points contained within it. We
give details on computing the partition below.
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Fig. 5. Partition of Ix for the Swish activation function, where the blue boxes belong
to Itan, and the green boxes belong to I2pt. (Color figure online)

Defining the Boxes. We first define a constant parameter cs, which is the width
and height of each box in the partition of Ix. In Fig. 5, cs = 1. The benefits of
using a smaller cs value is two-fold. First, it allows us to more accurately choose
the proper template (two-point or tangent) for a given interval [l, u]. Second, as
mentioned previously, the negative impact of a template with a large violation
(i.e., large ε) is localized to a smaller set of input intervals.

Assuming that (ux − lx) can be divided by cs, then we have (ux−lx
cs

)2 disjoint
boxes in the partition of Ix, which we represent by Ii,j where i, j ∈ {1..ux−lx

cs
}.

Ii,j represents the box whose lower-left corner is located at (lx + i · cs, lx + j · cs),
or alternatively we have Ii,j = {[l, u] | l ∈ [lx + i · cs, lx + i · cs + cs], u ∈
[lx + j · cs, lx + j · cs + cs]}.

To determine which boxes Ii,j belong to the subset I2pt, we uniformly sample
intervals [l, u] ∈ Ii,j . Then, for each sampled interval [l, u], we compute the two-
point form for [l, u], and attempt to search for a counter-example to the equation
σ(x) ≤ Gau

(l, u)x + Gbu(l, u) by sampling x ∈ [l, u]. If a counter-example is not
found for more than half of the sampled [l, u] ∈ Ii,j , we add the box Ii,j to I2pt,
otherwise we add the box to Itan.

We note that more sophisticated (probably more expensive) strategies for
assigning templates exist. We use this strategy simply because it is efficient. We
also note that some boxes in the partition may contain invalid intervals (i.e., we
have [l, u] ∈ Ii,j where u < l). These invalid intervals are filtered out during the
final verification step described in Sect. 4.3, and thus do not affect the soundness
of our algorithm.

4.2 Learning the Function g(l, u)

In this step, for each box Ii,j ∈ Itan, we want to learn a function g(l, u) = t that
returns the tangent point for any given interval [l, u] ∈ Ii,j , where t will be used
to compute the tangent-line form upper bound as defined in Eq. 5. This process
is done for all boxes in Itan, resulting in a separate g(l, u) for each box Ii,j . A
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sub-goal when learning g(l, u) is to maximize the tightness of the resulting upper
bound, which in our case means minimizing the volume below the tangent line.

We leverage machine learning techniques (specifically linear regression or a
small neural network with ReLU activation) to learn g(l, u), which means we need
a procedure to generate training examples. The examples must have the form
((l, u), t). To generate the training examples, we (uniformly) sample [l, u] ∈ Ii,j ,
and for each sampled [l, u], we attempt to find a tangent point t whose tangent
line represents a tight upper bound of σ(x). Then, given the training examples,
we use standard machine learning techniques to learn g(l, u).

The crux of our approach is generating the training examples. To generate a
single example for a fixed [l, u], we follows two steps: (1) generate upper bound
coefficients au, bu, and then (2) find a tangent point t whose tangent line is close
to au, bu. In the following paragraphs, we describe the process for a fixed [l, u],
and then discuss the machine learning procedure.

Fig. 6. Illustration of the sampling and lin-
ear programming procedure for computing
an upper bound. Shaded green region illus-
trates the volume below the upper bound.
(Color figure online)

Generating Example Coefficients
au, bu . Given a fixed [l, u], we aim
to generate upper bound coefficients
au, bu. A good generation procedure
has three criteria: (1) the coefficients
should be tight for the input inter-
val [l, u], (2) the coefficients should be
sound, and (3) the generation should
be fast. The first two criteria are
intuitive: good training examples will
result in a good learned model. The
third is to ensure that we can gener-
ate a large number of examples in a
reasonable amount of time. Unfortu-
nately, the second and third criteria
are at odds, because proving sound-
ness is inherently expensive. To ensure
a reasonable runtime, we relax the
second criteria to probably sound. Thus our final goal is to minimize volume
below au, bu such that σ(x) ≤ au · x + bu probably holds for x ∈ [l, u].

Our approach is inspired by a prior work [2,33], which formulates the goal
of a non-linear optimization problem as a linear program that can be solved
efficiently. Our approach samples points (si, σ(si)) on the activation function for
si ∈ [l, u], which are used to to convert the nonlinear constraint σ(x) ≤ au ·x+bu

into a linear one, and then uses volume as the objective (which is linear). For a
set S of sample points si ∈ [l, u], the linear program we solve is:

minimize : volume below au · x + bu

subj. to :
∧

si∈S

σ(si) ≤ au · si + bu
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Fig. 7. Plots of the training examples, smoothed with linear interpolation. On the left:
a plot of ((l, u), (t)), and on the right: a plot of ((l, u), (au)).

We illustrate this in Fig. 6. Solving the above problem results in au, bu, and the
prior work [2,33] proved that the solution (theoretically) approaches the optimal
and sound au, bu as the number of samples goes to infinity. We use Gurobi [13]
to solve the linear program.

Converting au, bu to a Tangent Line. To use the generated au, bu in the
tangent-line form template, we must find a point t whose tangent line is close to
au, bu. That is, we require that the following condition (almost) holds:

(σ′(t) = au) ∧ (−σ′(t) · t + σ(t) = bu)

To solve the above problem, we use local optimization techniques (specifically
a modified Powell’s method [29] implemented in SciPy [41], but most common
techniques would work) to find a solution to σ′(t) = au.

We then check that the right side of the above formula almost holds (specif-
ically, we check (|(σ′(t) · t + σ(t)) − bu| ≤ 0.01). If the local optimization does
not converge (i.e., it does not find a t such that σ′(t) = au), or the check on bu

fails, we throw away the example and do not use it in training.
One may ask the question: could we simply train a model to directly predict

the coefficients au and bu, instead of predicting a tangent point and then con-
verting it to the tangent line? The answer is yes, however this approach has two
caveats. The first caveat is that we will lose the inherent tightness that we gain
with the tangent-line form – we no longer have a guarantee that the computed
linear bound will touch σ(x) at any point. The second caveat is that the rela-
tionship between l, u and t tends to be close to linear, and thus easier to learn,
whereas the relationship between l, u and au, or between l, u and bu, is highly
nonlinear. We illustrate these relationships as plots in Fig. 7. The left graph plots
the generated training examples ((l, u), t), converted to a smooth function using
linear interpolation. We can see most regions are linear, as shown by the flat
sections. The right plot shows ((l, u), au), where we can see the center region is
highly nonlinear.
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Training on the Examples. Using the procedure presented so far, we sample
[l, u] uniformly from Ii,j and generate the corresponding t for each of them. This
results in a training dataset of r examples Dtrain = {((li, ui), ti) | i ∈ {1..r}}.
We then choose between one of two models – a linear regression model or a
2-layer, 50-hidden-neuron, ReLU network – to become the final function g(l, u).
To decide, we train both model types, and choose the one with the lowest error,
where error is measured as the mean absolute error. We give details below.

A linear regression model is a function g(l, u) = c1 · l + c2 · u + c3, where
ci ∈ R are coefficients learned by minimizing the squared error, which formally
is: ∑

((li,ui),ti)∈Dtrain

(g(li, ui) − ti)2 (6)

Finding the coefficients ci that minimize the above constraint has a closed-form
solution, thus convergence is guaranteed and optimal, which is desirable.

However, sometimes the relationship between (l, u) and t is nonlinear, and
thus using a linear regression model may result in a poor-performing g(l, u), even
though the solution is optimal. To capture more complex relationships, we also
consider a 2-layer ReLU network where W0 ∈ R

2×50, W1 ∈ R
50×1, b0 ∈ R

50,
b1 ∈ R, and we have g(l, u) = ReLU(〈l, u〉T · W0 + b0) · W1 + b1. The weights
and biases are initialized randomly, and then we minimize the squared error
(Eq. 6) using gradient descent. While convergence to the optimal weights is not
guaranteed in theory, we find in practice it usually converges.

We choose these two models because they can capture a diverse set of g(l, u)
functions. While we could use other prediction models, such as polynomial regres-
sion, generally, a neural network will be equally (if not more) expressive. How-
ever, we believe exploring other model types or architectures of neural networks
would be an interesting direction to explore.

4.3 Ensuring Soundness of the Linear Approximations

For a given Ii,j , we must ensure that its corresponding coefficient generator
functions Gau

(l, u) and Gbu(l, u) are sound, or in other words, that the following
condition does not hold:

∃[l, u] ∈ Ii,j , x ∈ [l, u] . σ(x) > Gau
(l, u) · x + Gbu(l, u)

We ensure the above condition does not hold (the formula is unsatisfiable) by
bounding the maximum violation on the clause σ(x) > Gau

(l, u) · x + Gbu(l, u),
which we formally define as Δ(l, u, x) = σ(x) − (Gau

(l, u) · x + Gbu(l, u)). Δ
is positive when the previous clause holds. Thus, if we can compute an upper
bound Δu, we can set the ε term in Gbu(l, u) to Δu to ensure the clause does
not hold, thus making the coefficient generator functions sound.

To compute Δu, we solve (i.e., bound) the following optimization problem:

for : l, u, x ∈ [li,j , ui,j ]
maximize : Δ(l, u, x)

subj. to : l < u ∧ l ≤ x ∧ x ≤ u
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where li,j , ui,j are the minimum lower bound and maximum upper bound, respec-
tively, for any interval in Ii,j . The above problem can be solved using the general
framework of interval analysis [26] and branch-and-prune algorithms [4].

Letting Δsearch = {(l, u, x)|l, u, x ∈ [li,j , ui,j ]} be the domain over which
we want to bound Δ, we can bound Δ over Δsearch using interval analysis. In
addition, we can improve the bound in two ways: branching (i.e., partitioning
Δsearch and bounding Δ on each subset separately) and pruning (i.e., removing
from Δsearch values that violate the constraints l < u ∧ l ≤ x ∧ x ≤ u). The
tool IbexOpt [5] implements such an algorithm, and we use it solve the above
optimization problem.

One practical consideration when solving the above optimization problem
is the presence of division by zero error. In the two-point template, we have
Gau

(l, u) = σ(u)−σ(l)
u−l . While we have the constraint l < u, from an interval

analysis perspective, Gau
(l, u) goes to infinity as u − l goes to 0, and indeed, if

we gave the above problem to IbexOpt, it would report that Δ is unbounded.
To account for this, we enforce a minimum interval width of 0.01 by changing
l < u to 0.01 < u − l.

4.4 Efficient Lookup of the Linear Bounds

Due to partitioning Ix, we must have a procedure for looking up the appropriate
template instance for a given [l, u] at the application time. Formally, we need to
find the box Ii,j , which we denote [ll, ul] × [lu, uu], such that l ∈ [ll, ul] and u ∈
[lu, uu], and retrieve the corresponding template. Lookup can actually present
a significant runtime overhead if not done with care. One approach is to use a
data structure similar to an interval tree or a quadtree [10], the latter of which
has O(log(n)) complexity. While the quadtree would be the most efficient for an
arbitrary partition of Ix into boxes, we can in fact obtain O(1) lookup for our
partition strategy.

We first note that each box, Ii,j , can be uniquely identified by ll and uu.
The point (ll, uu) corresponds to the top-left corner of a box in Fig. 5. Thus we
build a lookup dictionary keyed by (ll, uu) for each box that maps to the cor-
responding linear bound template. To perform lookup, we exploit the structure
of the partition: specifically, each box in the partition is aligned to a multiple
of cs. Thus, to lookup Ii,j for a given [l, u], we view (l, u) as a point on the
graph of Fig. 5, and the lookup corresponds to moving left-ward and upward
from the point (l, u) to the nearest upper-left corner of a box. More formally, we
perform lookup by rounding l down to the nearest multiple of cs, and u upward
to the nearest multiple of cs. The top-left corner can then be used to lookup the
appropriate template.

5 Evaluation

We have implemented our approach as a software tool that synthesizes a linear
bound generator function G(l, u) for any given activation function σ(x) in the
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input universe x ∈ [lx, ux]. The output is a function that takes as input [l, u]
and returns coefficients al, bl, au, bu as output. For all experiments, we use lx =
−10, ux = 10, cs = 0.25, and a minimum interval width of 0.01. If we encounter
an [l, u] 	⊆ [lx, ux], we fall back to the interval bound propagation of dReal [11].
After the generator function is synthesized, we integrate it into AutoLiRPA,
a state-of-the-art neural network verification tool, which allows us to analyze
neural networks with σ(x) as activation functions.

5.1 Benchmarks

Neural Networks and Datasets. Our benchmarks are eight deep neural
networks trained on the following two datasets.

MNIST. MNIST [22] is a set of images of hand-written digits each of which are
labeled with the corresponding written digit. The images are 28× 28 grayscale
images with one of ten written digits. We use a convolutional network archi-
tecture with 1568, 784, and 256 neurons in its first, second, and third layer,
respectively. We train a model for each of the activation functions described
below.

CIFAR. CIFAR [20] is a set of images depicting one of 10 objects (a dog, a truck,
etc.), which are hand labeled with the corresponding object. The images are
32× 32 pixel RGB images. We use a convolutional architecture with 2048, 2048,
1024, and 256 neurons in the first, second, third, and fourth layers, respectively.
We train a model for each of the activation functions described below.

Activation Functions. Our neural networks use one of the activation func-
tions shown Fig. 8 and defined in Table 1. They are Swish [14,31], GELU [14],
Mish [24], LiSHT [32], and AtanSq [31]. The first two are used in language mod-
els such as GPT [30], and have been shown to achieve the best performance for
some image classification tasks [31]. The third and fourth two are variants of
the first two, which are shown to have desirable theoretical properties. The last
was discovered using automatic search techniques [31], and found to perform
on par with the state-of-the-art. We chose these activations because they are
representative of recent developments in deep learning research.

Robustness Verification. We evaluate our approach on robustness verification
problems. Given a neural network f : X ⊆ R

n → Y ⊆ R
m and an input x ∈ X,

we verify robustness by proving that making a small p-bounded perturbation
(p ∈ R) to x does not change the classification. Letting x[i] ∈ R be the ith

element in x, we represent the set of all perturbations as X ∈ IR
n, where X =×n

i=1
[x[i] − p,x[i] + p]. We then compute Y ∈ IR

m where Y =×m

i=1
[li, ui], and,

assuming the target class of x is j, where j ∈ {1..m}, we prove robustness by
checking (lj > ui) for all i 	= j and i ∈ {1..m}.
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Table 1. Definitions of activation functions
used in our experiments.

Name Definition

Swish x · sigmoid(x)

GELU 0.5x(1 + tanh [
√

2/π(x + 0.044715x3)])

Mish x · tanh [ln(1 + ex)]

LiSHT x · tanh (x)

AtanSq (tan−1(x))2 − x
Fig. 8. Activation functions used
in our experiments.

For each network, we take 100 random test images, and following prior
work [12], we filter out misclassified images. We then take the remaining images,
and create a robustness verification problem for each one. Again following prior
work, we use p = 8/255 for MNIST networks and p = 1/255 for CIFAR networks.

5.2 Experimental Results

Our experiments were designed to answer the following question: How do our
synthesized linear approximations compare with other state-of-the-art, hand-
crafted linear approximation techniques on novel activation functions? To the
best of our knowledge, AutoLiRPA [46] is the only neural network verification
tool capable of handling the activation functions we considered here using static,
hand-crafted approximations. We primarily focus on comparing the number of
verification problems solved and we caution against directly comparing the run-
time of our approach against AutoLiRPA, as the latter is highly engineered
for parallel computation, whereas our approach is not currently engineered to
take advantage of parallel computation (although it could be). We conducted all
experiments on an 8-core 2.7 GHz processor with 32 GB of RAM.

We present results on robustness verification problems in Table 2. The first
column shows the dataset and architecture. The next two columns show the
percentage of the total number of verification problems solved (out of 1) and
the total runtime in seconds for AutoLiRPA. The next two columns show the
same statistics for our approach. The final column compares the output set
sizes of AutoLiRPA and our approach. We first define |Y | as the volume of
the (hyper)box Y . Then letting Yauto and Yours be the output set computed
by AutoLiRPA and our approach, respectively, |Yours|

|Yauto| measures the reduction
in output set size. In general, |Yours| < |Yauto| indicates our approach is better
because it implies that our approach has more accurately approximated the true
output set, and thus |Yours|

|Yauto| < 1 indicates our approach is more accurate.
We point out three trends in the results. First, our automatically synthe-

sized linear approximations always result in more verification problems solved.
This is because our approach synthesizes a linear approximation specifically for
σ(x), which results in tighter bounds. Second, AutoLiRPA takes longer on
more complex activations such as GELU and Mish, which have more elementary
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Table 2. Comparison of the verification results of our approach and AutoLiRPA.

Network Architecture AutoLiPRA [46] Our Approach
|Yours|
|Yauto|

% certified time (s) % certified time (s)

MNIST 4-Layer CNN with Swish 0.34 15 0.74 195 0.59

4-Layer CNN with Gelu 0.01 359 0.70 289 0.22

4-Layer CNN with Mish 0.00 50 0.28 236 0.29

4-Layer CNN with LiSHT 0.00 15 0.11 289 0.32

4-Layer CNN with AtanSq1 - - 0.16 233 -

CIFAR 5-Layer CNN with Swish 0.03 69 0.35 300 0.42

5-Layer CNN with Gelu 0.00 1,217 0.29 419 0.21

5-Layer CNN with Mish 0.00 202 0.29 363 0.17

5-Layer CNN with LiSHT 0.00 68 0.00 303 0.09

5-Layer CNN with AtanSq1 - - 0.22 347 -
1AutoLiRPA does not have an approximation for tan−1.

operations than Swish and LiSHT. This occurs because AutoLiRPA has more
linear approximations to compute (it must compute one for every elementary
operation before composing the results together). On the other hand, our app-
roach computes the linear approximation in one step, and thus does not have
the additional overhead for the more complex activation functions. Third, our
approach always computes a much smaller output set, in the range of 2-10X
smaller, which again is a reflection of the tighter linear bounds.

Synthesis Results. We also report some key metrics about the synthesis pro-
cedure. Results are shown in Table 3. The first three columns show the total
CPU time for the three steps in our synthesis procedure. We note that all three
steps can be heavily parallelized, thus the wall clock time is roughly 1/8 the
reported times on our 8-core machine. The final column shows the percentage
of boxes in the partition that were assigned a two-point template (we can take
the complement to get the percentage of tangent-line templates).

6 Related Work

Most closely related to our work are those that leverage interval-bounding tech-
niques to conduct neural network verification. Seminal works in this area can
either be thought of as explicit linear bounding, or linear bounding with some
type of restriction (usually for efficiency). Among the explicit linear bounding
techniques are the ones used in DeepPoly [35], AutoLiRPA [46], Neu-
rify [42], and similar tools [2,7,19,33,34,44,45,47]. On the other hand, tech-
niques using Zonotopes [12,23] and symbolic intervals [43] can be thought of
as restricted linear bounding. Such approaches have an advantage in scalabil-
ity, although they may sacrifice completeness and accuracy. In addition, recent
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Table 3. Statistics of the synthesis step in our method.

Activation σ(x) Partition
Time (s)

Learning
Time (s)

Verification
Time (s)

|I2pt|
|Ix|

Swish 81 1,762 20,815 0.45

GELU 104 2,113 45,504 0.57

Mish 96 2,052 38,156 0.45

LiSHT 83 1,650 61,910 0.46

AtanSq 85 1,701 18,251 0.38

work leverages semi-definite approximations [15], which allow for more expres-
sive, nonlinear lower and upper bounds. In addition, linear approximations are
used in nonlinear programming and optimization [5,40]. However, to the best
of our knowledge, none of these prior works attempt to automate the process of
crafting the bound generator function G(l, u).

Less closely related are neural network verification approaches based on solv-
ing systems of linear constraints [3,8,16,18,38]. Such approaches typically only
apply to networks with piece-wise-linear activations such as ReLU and max
pooling, for which there is little need to automate any part of the verification
algorithm’s design (at least with respect to the activation functions). They do
not handle novel activation functions such as the ones concerned in our work.
These approaches have the advantage of being complete, although they tend to
be less scalable than interval analysis based approaches.

Finally, we note that there are many works built off the initial linear approx-
imation approaches, thus highlighting the importance of designing tight and
sound linear approximations in general [36,39,42].

7 Conclusions

We have presented the first method for statically synthesizing a function that
can generate tight and sound linear approximations for neural network activa-
tion functions. Our approach is example-guided, in that we first generate example
linear approximations, and then use these approximations to train a prediction
model for linear approximations at run time. We leverage nonlinear global opti-
mization techniques to ensure the soundness of the synthesized approximations.
Our evaluation on popular neural network verification tasks shows that our app-
roach significantly outperforms state-of-the-art verification tools.
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Abstract. Neural networks have achieved state-of-the-art performance in solv-
ing many problems, including many applications in safety/security-critical sys-
tems. Researchers also discovered multiple security issues associated with neu-
ral networks. One of them is backdoor attacks, i.e., a neural network may be
embedded with a backdoor such that a target output is almost always generated
in the presence of a trigger. Existing defense approaches mostly focus on detect-
ing whether a neural network is ‘backdoored’ based on heuristics, e.g., activation
patterns. To the best of our knowledge, the only line of work which certifies
the absence of backdoor is based on randomized smoothing, which is known to
significantly reduce neural network performance. In this work, we propose an
approach to verify whether a given neural network is free of backdoor with a cer-
tain level of success rate. Our approach integrates statistical sampling as well as
abstract interpretation. The experiment results show that our approach effectively
verifies the absence of backdoor or generates backdoor triggers.

1 Introduction

Neural networks gradually become an essential component in many real-life systems,
e.g., face recognition [25], medical diagnosis [16], as well as auto-driving car [3]. Many
of these systems are safety and security-critical. In other words, it is expected that the
neural networks used in these systems should not only operate correctly but also satisfy
security requirements, i.e., they must sustain attacks from malicious adversaries.

Researchers have identified multiple ways of attacking neural networks, including
adversarial attacks [33], backdoor attacks [12], and so on. Adversarial attacks apply a
small perturbation (e.g., modifying few pixels in an image input) to a given input (which
is often unrecognizable under human inspection) and cause the neural network to gen-
erate a wrong output. To mitigate adversarial attacks, many approaches have been pro-
posed, including robust training [7,22], run-time adversarial sample detection [39], and
robustness certification [10]. The most relevant to this work is robustness certification,
which aims to verify that a neural network satisfies local robustness, i.e., perturbation
within a region (e.g., an L∞ norm) around an input does not change the output. The
problem of local robustness certification has been extensively studied in recent years
and many methods and tools have been developed [10,14,15,29–32,40,41].

Backdoor attacks work by embedding a ‘backdoor’ in the neural network so that
the neural network works as expected with normal inputs and outputs a specific target
c© The Author(s) 2022
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output in the presence of a backdoor trigger. For instance, given a ‘backdoored’ image
classification network, any image which contains the backdoor trigger will be (highly
likely) assigned a specific target label chosen by the adversary, regardless of the con-
tent of the image. The backdoor trigger can be embedded either through poisoning the
training set [12] or modifying a trained neural network directly [19]. It is easy to see
that backdoor attacks raise serious security concerns. For instance, the adversaries may
use a trigger-containing (a.k.a. ‘stamped’) image to fool a face recognition system and
pretend to be someone with high authority [6]. Similarly, a stamped image may be used
to trick an auto-driving system to misidentify street signs and act hazardously [12].

There are multiple active lines of research related to backdoor attacks, e.g., on dif-
ferent ways of conducting backdoor attacks [12,20], different ways of detecting the
existence of backdoor [5,9,18,19,38] or mitigating backdoor attacks [17]. Existing
approaches are however not capable of certifying the absence of backdoor. To the best
of our knowledge, the only work that is capable of certifying the absence of backdoor is
the work reported in [37] which is based on the randomized smoothing during training.
Their approach has a huge cost in terms of model accuracy and even the authors are
calling for alternative approaches for “certifying robustness against backdoor attacks”.

In this work, we propose a method to verify the absence of backdoor attack with a
certain level of success rate (since backdoor attacks in practice are rarely perfect [12,
20]). Given a neural network and a constraint on the backdoor trigger (e.g., its size),
our method is a combination of statistical sampling and deterministic neural network
verification techniques (based on abstract interpretation). If we fail to verify the absence
of backdoor (due to over-approximation), an optimization-based method is developed
to generate concrete backdoor triggers.

We conduct experiments on multiple neural networks trained to classify images
in the MNIST dataset. These networks are trained with different types of activation
functions, including ReLU, Sigmoid, and Tanh. We verify the absence of backdoor
with different settings. The experiment results show that we can verify most of the
benign neural networks. Furthermore, we can successfully generate backdoor triggers
for neural networks trained with backdoor attack. A slightly surprising result is that we
successfully generate backdoor triggers for some of the supposedly benign networks
with a reasonably high success rate.

The remaining of the paper is organized as follows. In Sect. 2, we define our prob-
lem. In Sect. 3, we present the details of our approach. We show the experiment results
in Sect. 4. Section 5 reviews related work and finally, Sect. 6 concludes.

2 Problem Definition

In the following, our discussion focuses on the image domain, in particular, on image
classification neural networks. It should be noted that our approach is not limited to the
image domain. In general, an image can be represented as a three-dimensional array
with shape (c, h, w) where c is the number of channels (i.e., 1 for grayscale images and
3 for color images); h is the height (i.e., the number of rows); and w is the width (i.e., the
number of columns) of the image. Each element in the array is a byte value (i.e., from
0 to 255) representing a feature of the image. When an image is used in a classification
task with a neural network, its feature values are typically normalized into floating-point
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Fig. 1. An example of image classification with neural network

numbers (e.g., dividing the original values by 255 to get normalized values from 0 to 1).
Moreover, the image is transformed into a vector with size m = c×h×w. In this work,
we use the three-dimensional form and the vector form of an image interchangeably.
The specific form which we use should be clear from the context.

Given a tuple (ci, hi, wi) representing an index in the three-dimensional form, it
is easy to compute the according index i in the vector form using the formula: i =
ci × h × w + hi × w + wi. Similarly, given an index i in the vector form, we compute
the tuple (ci, wi, hi) representing the index in the three-dimensional form as follows.

ci = i ÷ (h × w)
hi = (i − ci × h × w) ÷ w

wi = i − ci × h × w − hi × w

An image classification task is to label a given image with one of the pre-defined labels
automatically. Such tasks are often solved using neural networks. Figure 1 shows the
typical workflow of an image classification neural network. The task is to assign a label
(i.e., from 0 to 9) to a handwritten digit image. Each input is a grey-scale image with
1 × 28 × 28 = 784 features.

In this work, we focus on fully connected neural networks and convolutional neural
networks, which are composed of multiple layers of neurons. The layers include an
input layer, a set of hidden layers, and an output layer. The number of neurons in the
input layer equals the number of features in the input image. The number of neurons in
the output layer equals the number of labels in the classification problem. The number of
hidden layers as well as the number of neurons in these layers are flexible. For instance,
the network in Fig. 1 has three hidden layers, each of which contains 10 neurons.

The input layer simply applies an identity transformation on the vector of the input
image. Each hidden layer transforms its input vector (i.e., the output vector of the pre-
vious layer) and produces an output vector for the next layer. Each hidden layer applies
two different types of transformations, i.e., the first is an affine transformation and the
second is an activation function transformation. Formally, the two transformations of
a hidden layer can be defined as: �y = σ(A ∗ �x + B) where �x is the input vector, A
is the weight matrix, B is the bias vector of the affine transformation, ∗ is the matrix
multiplication, σ is the activation function, and �y is the output vector of the layer. The
most popular activation functions include ReLU, Sigmoid, and Tanh. The output layer
applies a final affine transformation to its input vector and produces the output vector
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Fig. 2. Some examples of original images and stamped images

of the network. A labelling function L(�y) = argmaxi �y is then applied on the output
vector to return the index of the label with the highest value in �y.

The weights and biases used in the affine transformations are parameters of the
neural network. In this work, we focus on pre-trained networks, i.e., the weights and
biases of the networks are already fixed. Formally, a neural network is a function
N : Rm → Rn = fk ◦ · · · fi · · · ◦ f0 where m is the number of input features; n
is the number of labels; each fi where 0 < i < k is a composition of the affine function
and the activation function of the i-th hidden layer; f0 is the identity transformation of
the input layer; and fk is the last affine transformation of the output layer.

Backdoor Attacks. In [12], Gu et al. show that neural networks are subject to backdoor
attacks. Intuitively, the idea is that an adversary may introduce a backdoor into the
network, for instance, by poisoning the training set. To do that, the adversary starts
with choosing a pattern, i.e., a backdoor trigger, and stamps the trigger on a set of
samples in the training set (e.g., 20%). Figure 2b shows some stamped images, which
are obtained by stamping a trigger to the original images in Fig. 2a. Note that the trigger
is a small white square at the top-left corner of the image. A pre-defined target label is
the ground truth label for the stamped images. The poisoned training set is then used
to train the neural network. The result is a backdoored network that performs normally
on clean images (i.e., images without the trigger) but likely assigns the target label
to any image which is stamped with the trigger. Besides poisoning the training set,
a backdoor can also be introduced by modifying the parameters of a trained neural
network directly [19].

Definition 1 (Backdoor trigger). Given a neural network for classifying images with
shape (c, h, w), a backdoor trigger is any image S with shape (cs, hs, ws) such that
cs = c, hs ≤ h, and ws ≤ w.

Formally, a backdoor trigger is any stamp that has the same number of channels. Obvi-
ously, replacing an input image entirely with a backdoor image with the same size is
hardly interesting in practice. Thus, we often limit the size of the trigger. Note that the
trigger can be stamped anywhere on the image. In this work, we assume the same trigger
is used to attack all images, i.e., the same stamp is stamped at the same position given
any input. In other words, we do not consider input-specific triggers, i.e., the triggers
that are different for different images. While some forms of input-specific triggers (e.g.,
adding a specific image filter or stamping the trigger at selective positions of a given
image [6,20]) can be supported by modeling the trigger as a function of the original
image, we do not regard general input-specific triggers to be within the scope of this
work. Given that adversarial attacks can be regarded as a (restricted) form of generating
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input-specific triggers, the problem of verifying the absence of input-specific backdoor
triggers subsumes the problem of verifying local robustness, and thus the problem is
expected to be much more complicated.

Given a trigger with shape (cs, hs, ws), let (hp, wp) be the position of the top-left
corner of the trigger s.t. hp + hs ≤ h and wp + ws ≤ w. Given an image I with shape
(c, h, w), a backdoor trigger S with shape (cs, hs, ws), and a trigger position (hp, wp),
a stamped image, denoted as Is, is defined as follows.

Is[ci, hi, wi] =

{
S[ci, hi − hp, wi − wp] if hp ≤ hi < hp + hs ∧ wp ≤ wi < wp + ws

I[ci, wi, hi] otherwise

Intuitively, in the stamped image, the pixels of the stamp replace those corresponding
pixels in the original image.

Given a backdoored network, an adversary can perform an attack by feeding an
image stamped with the backdoor trigger to the network and expecting the network to
classify the stamped image with the target label. Ideally, given any stamped image, an
attack on a backdoored network should result in the target label. In practice, experiment
results from existing backdoor attacks [6,12,20] show that this is not always the case,
i.e., some stamped images may not be classified with the target label. Thus, given a
neural network N , a backdoor trigger S, a target label ts, we say that S has a success
rate of θ if and only if there exists a position (hp, wp) such that the probability of having
L(N(Is)) = ts for any I in a chosen test set is θ.

We are now ready to define the problem. Given a neural network N , a probability of
θ and a trigger shape (cs, hs, ws), the problem of verifying the absence of a backdoor
attack with a success rate of θ against N is to show that there does not exist a backdoor
attack on N which has a success rate of at least θ.

3 Verifying Backdoor Absence

3.1 Overall Algorithm

The overall approach is shown in Algorithm 1. The inputs include the network N , the
required success rate θ, a parameter K representing the sampling size, the trigger shape
(cs, hs, ws), the target label ts, as well as multiple parameters for hypothesis testing
(i.e., a type I error α, a type II error β, and a half-width of the indifference region δ).
The idea is to apply hypothesis testing, i.e., the SPRT algorithm [1], with the following
two mutually exclusive hypotheses.

– H0: The probability of not having an attack on a set of K randomly selected images
is more than 1 − θK .

– H1: The probability of not having an attack on a set of K randomly selected images
is no more than 1 − θK .

In the algorithm, variable n and z record the number of times a set of K random
images is sampled and is shown to be free of a backdoor with a 100% success rate
respectively. Note that function verifyX returns SAFE only if there is no backdoor
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Algorithm 1: verifyPr(N, θ,K, (cs, hs, ws), ts, α, β, δ)
1 let n ← 0 be the number of times verifyX is called;
2 let z ← 0 be the number of times verifyX returns SAFE;
3 let p0 ← (1 − θK) + δ, p1 ← (1 − θk) − δ;
4 while true do
5 n ← n + 1;
6 randomly select a set of images X with size K;
7 if verifyX(N, X, (cs, hs, ws), ts) returns SAFE then
8 z ← z + 1;

9 else if verifyX(N, X, (cs, hs, ws), ts) returns UNSAFE then
10 if the generated trigger satisfies the success rate then
11 return UNSAFE;

12 if pz
1

pz
0

× (1−p1)
n−z

(1−p0)n−z ≤ β
1−α

then

13 return SAFE; // Accept H0

14 else if pz
1

pz
0

× (1−p1)
n−z

(1−p0)n−z ≥ 1−β
α

then

15 return UNKNOWN; // Accept H1

attack on a set of given images X with 100% success rate, i.e., L(N(Is)) = ts for all
I ∈ X . It may also return a concrete trigger which successfully attacks every image in
X . The details of algorithm verifyX is presented in Sect. 3.2.

The loop from lines 4 to 15 in Algorithm 1 keeps randomly selecting and verifying
a set of K images using algorithm verifyX until one of the two hypotheses is accepted
according to the criteria set by the parameters α and β based on the SPRT algorithm.
Furthermore, whenever a trigger is returned by algorithm verifyX at line 9, we check
whether the trigger reaches the required success rate on the test set, and return UNSAFE
if it does. Note that when H0 is accepted, we return SAFE, i.e., we successfully verify
the absence of a backdoor attack with a success rate of at least θ. When H1 is accepted,
we return UNKNOWN.

Apart from the success rate θ and parameters for hypothesis testing, Algorithm 1
has a particularly interesting parameter K, i.e., the number of images to draw at random
each time. On the one hand, if K is set to be small, such as 1, it is very likely algorithm
verifyX invoked at line 9 will return UNSAFE since it is often possible to attack a
small set of images as demonstrated by many adversarial attack methods [4,11,24],
i.e., changing a few pixels of an image changes the output of a neural network. As a
result, hypothesis H1 is accepted and nothing can be concluded. On the other hand, if
K is set to be large, such as 10000, due to the complexity of algorithm verifyX (see
Sect. 3.2), it is likely that it will timeout and thus return UNKNOWN, which leads to
inclusion as well. Furthermore, when K is large, 1 − θK will be close to 1 and, as a
result, many rounds are needed to accept H0 even if algorithm verifyX returns SAFE.
It is thus important to find an effective K value to balance the two aspects. We identify
the value of K empirically in Sect. 4 and aim to study the problem in the future.

Take as an example the network shown in Fig. 1 which is a feed-forward neural
network built with the ReLU activation function and three hidden layers. We aim to
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verify the absence of a backdoor attack with a success rate of 0.9. We take 10000 images
of the MNIST test set to evaluate the success rate of a trigger. We set the parameters in
Algorithm 1 as follows: K = 5 and α = β = δ = 0.01. For the target label 0, after 95
rounds, we have enough evidence to accept the hypothesis H0, which means we have
evidence that there is no backdoor attack on the network with the target label 0 and
a success rate of at least 0.9. We have similar results for other target labels, although
more rounds of tests are required for labels 2, 3, 5, and 8 (i.e., 98 rounds for label 8,
100 rounds for label 3, 117 rounds for label 5, and 188 rounds for label 2).

3.2 Verifying Backdoor Absence Against a Set of Images

Next, we present the details of algorithm verifyX . The inputs include the neural net-
work N , a set of images X with shape (c, h, w), a trigger shape (cs, hs, ws) and a
target label ts. The goal is to check whether exists a trigger which successfully attacks
every image in X . Algorithm verifyX may have three outcomes. One is SAFE, i.e.,
there is no trigger such that backdoor attack succeeds on all the images in X . Another
is UNSAFE, i.e., a trigger that can be used to successfully attack all images in X is
generated. The last one is UNKNOWN, i.e., we fail to establish either of the above
results.

In the following, we describe one concrete realization of the algorithm based on
abstract interpretation, as shown in Algorithm 2. At line 1, variable hasUnknown is
declared as a flag which is true if and only if we cannot conclude whether there is a
successful attack at a certain position. The loop from lines 2 to 15 tries every position
for the trigger one by one. Intuitively, variable φ is the constraint that must be satisfied
by a trigger to successfully attack every image in X . At line 3, we initialize φ to be
φpre, which is defined as follows: φpre ≡ ∧

j∈P (hp,wp)
lwj ≤ xj ≤ upj where j ∈

P (hp, wp) denotes that j is an index (of an image pixel) in the trigger, xj is a variable
denoting the value of the j-th pixel, lwj and upj are the (normalized) minimum (e.g.,
0) and maximum (e.g., 1) value of feature j in the image according to the input domain
specified by the network N . Intuitively, φpre requires that the pixels in the trigger must
be within its domain.

Given a position, the loop from lines 4 to 10 constructs one constraint φI for each
image I , which is the constraint that must be satisfied by the trigger to attack I . In
particular, at line 5, function attackCondition is called to construct the constraint.
We present the details of this function in Sect. 3.3. If φI is UNSAT (line 6), attacking
image I at position (hp, wp) is impossible and we set φ to be false and break the loop.
Otherwise, we conjunct φ with φI .

After collecting one constraint from each image, we solve φ using a constraint
solver. If it is not UNSAT (i.e., SAT or UNKNOWN), function opTrigger is called
to generate a trigger which is successful on all images in X (if possible). Note that
due to over-approximation, the model returned by the solver might be spurious. The
details of function opTrigger is presented in Sect. 3.4. If a trigger is successfully gen-
erated, we return UNSAFE (at line 13, together with the trigger); otherwise, we set
hasUnknown to be true and continue with the next trigger position. Note that we can
return UNKNOWN at line 15 without missing any opportunity for verifying the back-
door absence. We instead continue with the next trigger location hoping a trigger may
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Algorithm 2: verifyX (N ,X , (cs , hs ,ws), ts)
1 let hasUnknown ← false;
2 foreach trigger position (hp, wp) do
3 let φ ← φpre;
4 foreach image I ∈ X do
5 let φI ← attackCondition(N, I, φpre, (cs, hs, ws), (hp, wp), ts);
6 if φI is UNSAT then
7 φ ← false;
8 break;

9 else
10 φ ← φ ∧ φI ;

11 if solving φ results in SAT or UNKNOWN then
12 if opTrigger(N, X, φ, (cs, hs, ws), (hp, wp), ts) returns a trigger then
13 return UNSAFE;

14 else
15 hasUnknown ← true;

16 return hasUnknown ? UNKNOWN : SAFE;

be generated successfully. After analyzing all trigger positions (and not finding a suc-
cessful trigger), if hasUnknown is true, we return UNKNOWN or otherwise SAFE.

3.3 Abstract Interpretation

Function attackCondition returns a constraint that must be satisfied such that the trig-
ger with shape (cs, hs, ws) is successful on the image I at position (hp, wp). In this
work, for efficiency reasons, it is built based on abstract interpretation techniques [32].
Multiple abstract domains have been proposed to analyze neural networks, such as
interval [41], Zonotope [30], and DeepPoly [32]. In this work, we adopt the DeepPoly
abstract domain [32], which is shown to balance between precision and efficiency.

In the following, we assume each hidden layer in the network is expanded into two
separable layers, one for the affine transformation and the other for the activation func-
tion transformation. We use l to denote the number of layers in the expanded network,
ni to denote the number of neurons in layer i, and xI

i,j to denote the variable repre-
senting the j-th neuron in layer i for the image I . The constraint φI to be returned by
function attack(N, I, φpre, (cs, hs, ws), (hp, wp), ts) is a conjunction of three parts.

φI ≡ preI ∧ AI ∧ postI

where preI is the constraint on the input features according to the image I , i.e., preI ≡
φpre ∧

(∧
j∈P (hp,wp)

xI
0,j = xj

)
∧

(∧
j �∈P (hp,wp)

xI
0,j = I[j]

)
where j 	∈ P (hp, wp)

means that j is not an index (of a pixel) of the trigger; xI
0,j is the variable that represents

the input feature j (a.k.a. neuron j at the input layer) of the image I and I[j] is the
(normalized) pixel value in the image at index j. Intuitively, the constraint preI “erases”
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Fig. 3. An example of abstract interpretation

the pixels in the trigger, i.e., they can now take any value with their range, while the
remaining pixels must have those value from the image. postI represents the condition
for a successful attack. That is, the value of the target label (i.e., xI

l−1,ts
) must be greater

than the values of any other label, i.e., postI ≡ ∧
0≤j<nl−1∧j �=ts

xI
l−1,ts

> xI
l−1,j .

More interestingly, AI is a constraint that over-approximates the behavior of the
neural network N according to the DeepPoly abstract domain. That is, given the con-
straint on the input layer preI , a set of abstract transformers are applied to compute a
linear over-approximation of every neuron in the next layer, every neuron in the layer
after that, and so on until the output layer. The constraint computed on each neuron xI

i,j

is of the form geIi,j ≤ xI
i,j ≤ leIi,j ∧ lwI

i,j ≤ xI
i,j ≤ upIi,j where geIi,j and leIi,j are two

linear expressions constituted by variables representing neurons from the previous layer
(i.e., layer i − 1); and lwI

i,j and upIi,j are the concrete lower bound and upper bound of
the neuron. Note that the abstract transformers are different for the activation function
layer and affine layer. As the DeepPoly abstract transformers are not our contribution,
we skip the details and refer the reader to [32] for details on the abstract transformers,
including their soundness (i.e., they always over-approximate).

Example 1. Since it is too complicated to show the details of applying abstract inter-
pretation to the neural network shown in Fig. 1, we instead construct a simple example
as shown in Fig. 3 to illustrate how it works. There are two features in this artificial
image I , i.e., xI

0,1 has a constant value of 0.5 and xI
0,0 is the trigger whose value ranges

from 0 to 1. That is, preI ≡ 0 ≤ xI
0,0 ≤ 1 ∧ xI

0,1 = 0.5. After expanding the hidden
layers, the network has 6 layers, each of which has 2 neurons. Applying the DeepPoly
abstract transformers from the input layer all the way to the output layer, we obtain the
abstract states for the last layer. Further, assume that the target label is 0. The constraint
postI is thus as follows: postI ≡ xI

5,0 > xI
5,1. Solving the constraints returns SAT with

xI
0,0 = 0. Indeed, with the stamped image Is = [0, 0.5], the output vector is [1, 0]. We

thus identified a successful attack on the target label 0.

Optimization. Note that at line 6 of Algorithm 2, for each constraint φI , we perform a
quick check to see if the constraint is satisfiable or not. If φI is UNSAT, we can ignore
the remaining images and analyze the next trigger position, which allows us to speed up
the process. One naive approach is to call a solver on φI , which would incur significant
overhead since it could happen many times. To reduce the overhead, we propose a
simple procedure to quickly check whether φI is UNSAT based solely on its abstract
states at the output layer. That is, we check the satisfiability of the following constraint
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instead:
∧

0≤j<nl−1∧j �=ts
upIl−1,ts

> lwI
l−1,j . Recall that upIl−1,ts

is the concrete upper

bound of the neuron ts and lwI
l−1,j is the concrete lower bound of the neuron j at the

output layer. Thus, intuitively, we check whether the concrete upper bound of the target
label ts is larger than the concrete lower bound of every other label. If it is UNSAT,
it is impossible to have the target label as the result and thus the attack would fail on
the image I . We then only call the solver on φI if the above procedure does not return
UNSAT. Furthermore, the loop in Algorithm 2 can be parallelized straightforwardly,
i.e., by using a separate process to verify against a different trigger position. Whenever
a trigger is found by any of the processes, the whole algorithm is then interrupted.

3.4 Generating Backdoor Triggers

In the following, we present the details of function opTrigger, which intuitively aims
to generate a trigger S with shape (cs, hs, ws) at position (hp, wp) for attacking every
image I in X successfully. If the solver applied to solve φ at line 11 of Algorithm 2
returns a model that satisfies φ, we first check whether the model is indeed a trigger that
successfully attacks every image in X . Due to over-approximation of abstract interpre-
tation, the model might be a spurious trigger. If it is a real trigger, we return the model.
Otherwise, we employ an optimization-based approach to generate a trigger.

Given a network N , one image I , a target label ts, and a position (hp, wp), let Is
is the stamped image generated from I by stamping I with the trigger at the position
(hp, wp). We generate a backdoor trigger S by minimizing the following loss function.

loss(N, I, S, (hp, wp), ts) =
{
0 if ns > no

(no − ns + ε) otherwise

where ns = N(Is)[ts] is the output value of the target label; no = maxj �=ts N(Is)[j]
is the maximum value of any label other than the target label; and ε is a small constant
(e.g., 10−9). Note that the trigger S is the only variable in the loss function. Intuitively,
the loss function returns 0 if the attack on I by the trigger is successful. Otherwise, it
returns a quantitative measure on how far the attack is from being successful on attack-
ing I . Given a set of images X , the loss function is defined as the sum of the loss for
each image I in X: loss(N,X, S, (hp, wp), ts) =

∑
I∈X loss(N, I, S, (hp, wp), ts).

The following optimization problem is then solved to find an attack which successfully
attacks all images in X: argminS loss(N,X, S, (hp, wp), ts).

3.5 Correctness and Complexity

Lemma 1. Given a neural network N , a set of images X , a trigger shape (cs, hs, ws),
and a target label ts, Algorithm 2 (1) returns SAFE only if there is no backdoor attack
which is successful on all images in X with the provided trigger shape and target label;
and (2) returns UNSAFE only if there exists a backdoor attack which is successful on
all images in X with the provided trigger shape and target label.

Proof. By [32], function attackCondition always returns a constraint which is an
over-approximation of the constraint that must be satisfied such that the trigger is suc-
cessful on image I . Furthermore, Algorithm 2 returns SAFE only at line 16, i.e., only



Verifying Neural Networks Against Backdoor Attacks 181

if constraints that must be satisfied to attack all images in X at each certain position
are UNSAT. Thus, (1) is established. (2) is trivially established since we only return
UNSAFE when a trigger that is successful on every provided image is generated. 
�

The following establishes the soundness of our approach.

Theorem 1. Given a neural network N , a success rate θ, a target label ts, a trigger
shape (cs, hs, ws), a type I error α, a type II error β, and a half-width of the indifference
region δ, Algorithm 1 returns SAFE only if there is sufficient evidence (subject to type I
error α and type II error β) that there is no backdoor attack with a success rate at least
θ with the provided trigger shape and target label at the specified significance level.

Proof. If there is a backdoor attack with a success rate no less than θ, given a set of
randomly K selected images, the probability of having an attack is no less than θK

(since there is at least one backdoor attack with a success rate no less than θ and maybe
more). Thus, the probability of not having an attack is no more than 1 − θK . By the
correctness of the SPRT algorithm, Algorithm 1 returns SAFE only if there is sufficient
evidence that H0 is true, i.e., the probability of not having an attack on a set of K
randomly selected images is more than 1 − θK , implying it is sufficient evidence that
there is no backdoor attack with success rate no less than θ. The theorem holds. 
�

Furthermore, it is trivial to show that Algorithm 1 returns UNSAFE only if there
exists a backdoor attack which has a success rate at least θ with the provided trigger
shape and target label.

In the following, we briefly discuss the complexity of our approach. It is straightfor-
ward to see that Algorithm 2 always terminates if a timeout is imposed on solving the
constraints and the optimization problems. Since we can always set a tight time limit on
solving the constraints and the optimization problems, the complexity of the algorithm
is determined mainly by the complexity of function attackCondition, which in turn
is determined by the complexity of abstract interpretation. The complexity of applying
abstract interpretation with the DeepPoly abstract domain is O(l2 × n3

max) where l is
the number of layers, and nmax is the maximum number of neurons in any of the lay-
ers. Let K be the number of images in X . Note that the number of trigger positions
is O(h × w), i.e., the size of an image. The best case complexity of Algorithm 2 is
O(l2 × n3

max × h × w) and the worst case complexity is O(l2 × n3
max × K × h × w).

We remark that in practice, l typically ranges from 1 to 20; nmax is often advised to be
no more than the input size (e.g., from dozens to thousands usually); K ranges from a
few to hundreds; and h × w depends on the image resolution (e.g., from hundreds to
millions). Thus, in general, Algorithm 2 could be time-consuming in practice and we
anticipate further optimization in future work.

The complexity of Algorithm 1 is the complexity of Algorithm 2 times the complex-
ity of the SPRT algorithm. The complexity of the SPRT algorithm is in general hard to
quantify and we refer the readers to [1] for a detailed discussion.

3.6 Discussion

Our approaches are designed to verify the absence of input-agnostic (i.e., not input-
specific) backdoor attacks as presented in Sect. 2. In the following, we briefly review
other backdoor attacks and discuss how to extend our approach to support them.
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In [12], Gu et al. described a backdoor attack which, instead of forcing the network
to classify any stamped image with the target label, only alters the label if the original
image has a specific ground truth label ti (e.g., Bob with the trigger will activate the
backdoor and be classified as Alice the manager). Our verification approach can be
easily adapted to verify the absence of this attack by focusing on images with label ti
in Algorithm 1 and Algorithm 2.

Another attack proposed in [12] works by reducing the performance (e.g., accuracy)
of the neural network on the images with a specific ground truth label ti, i.e., given an
image with ground truth label ti, the network will classify the stamped image with some
label ts 	= ti. The attack can be similarly handled by focusing on images with ground
truth label ti, although due to the disjunction introduced by ts 	= ti, the constraints are
likely to be harder to solve. That is, we can focus on images with ground truth label ti
in Algorithm 2, and define an attack to be successful if L(N(Is)) 	= ti is satisfied.

In [19], Liu et al. proposed to use backdoor triggers with different shapes (i.e., not
just in the form of a square or a rectangle). If the user is aware of the shape of the back-
door trigger, a different trigger can be used as input for Algorithm 1 and Algorithm 2
and the algorithms would work to verify the absence of such backdoor. Alternatively,
the users can choose a square-shaped backdoor trigger that is larger enough to cover
the actual backdoor trigger, in which case our algorithms would remain to be sound,
although it might be inconclusive if the trigger is too big.

Multiple groups [2,20,28,35] proposed the idea of poisoning only those samples in
the training data which have the same ground truth label as the target label to improve
the stealthiness of the backdoor attack. This type of attack is designed to trick the human
inspection on the training data, and so does not affect our verification algorithms.

In this work, we consider a specific type of stamping, i.e., the backdoor trigger
replaces the part of the original clean image. Multiple groups [6,19] proposed the use
of the blending operation as a way of ‘stamping’, i.e., the features of the backdoor
trigger are blended with the features of the original images with some coefficients α.
This is a form of input-specific backdoor, the trigger is different for different images.
To handle such kind of backdoor attacks, one way is to modify the constraint preI
according to the blending operation (assuming that α is known). Since the blending
operation proposed in [6,19] is linear, we expect this would not introduce additional
complexity to our algorithms.

Input-specific triggers, in general, may pose a threat to our approach. First, some
input-specific triggers [19,20] cover the whole image, which is likely to make our app-
roach inclusive due to false alarms resulted from over-approximation. Second, it may
not be easy to model some of the input-specific triggers in our framework. For instance,
Liu et al. [20] recently proposed to use reflection to create stamped images that look nat-
ural. Modeling the ‘stamping’ operation for this kind of attack would require us to know
where the reflection is in the image, which is highly non-trivial. However, it should also
be noted that input-specific triggers are often not as effective as input-agnostic triggers,
e.g., the reflection-based attack reported in [20] are hard to reproduce. Furthermore, as
discussed in Sect. 2, backdoor attack with input-specific triggers is an attacking method
that is more powerful than adversarial attacks, and the problem of verifying the absence
of backdoor attack with input-specific triggers is not yet clearly defined.
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4 Implementation and Evaluation

We have implemented our approach as a self-contained analysis engine in the Socrates
framework [26]. We use Gurobi [13] to solve the constraints and use scipy [36] to solve
the optimization problems.

We collect a set of 51 neural networks. 45 of them are fully connected ones and
are trained on the MNIST training set (i.e., a standard dataset which contains black and
white images of digits). These networks have the number of hidden layers ranging from
3 to 5. For each network, the number of neurons in each of its hidden layers ranges from
10 to 50, i.e., 10, 20, 30, 40, or 50. To evaluate our approach on neural networks built
with different activation functions, each activation function (i.e., ReLU, Sigmoid, and
Tanh) is used in 15 of the neural networks. Among the remaining six networks, three
of them are bigger fully connected networks adopted from the benchmarks reported
in [32]. They are all built with the ReLU activation function. For convenience, we name
the networks in the form of f k n where f is the name of the activation function, k
is the number of hidden layers, and n is the number of neurons in each hidden layer.
The remaining three networks are convolutional networks (which are often used in face
recognition systems) adopted from [32]. Although they have the same structure, i.e.,
each of them has two convolutional hidden layers and one fully connected hidden layer,
they are trained differently. One is trained in the normal way; one is trained using Dif-
fAI [22], and the last one is trained using projected gradient descent [7]. These training
methods are developed to improve the robustness of neural networks against adversarial
attacks. Our aim is thus to evaluate whether they help to prevent backdoor attacks as
well. We name these networks conv, conv diffai, and conv pgd.

We verify the networks against the backdoor trigger with shape (1, 3, 3). All the net-
works are trained using clean data since we focus on verifying the absence of backdoor
attacks. They all have precision of at least 90%, except Sigmoid 4 10 and Sigmoid 5 10,
which have precision of 81% and 89% respectively. In the following, we answer multi-
ple research questions. All the experiments are conducted using a machine with 3.1Ghz
16-core CPU and 64GB RAM. All models and experiment details are at [27].

RQ1: Is our realization of verifyX effective? This question is meaningful as our app-
roach relies on Algorithm verifyX . To answer this question, for each network, we
select the first 100 images in the test set (i.e., a K of 100 for Algorithm 1, which is
more than sufficient) and then apply Algorithm verifyX with these images and each
of the labels, i.e., 0 to 9. In total, we have 510 verification tasks. For each network, we
run 10 processes in parallel, each of which verifies a separate target. The only exception
is the network ReLU 3 1024, due to its complexity, we only run five parallel processes
(since each process consumes a lot of resources). In each verification process, we filter
out those images which are classified wrongly by the network as well as the images
which are already classified as the target label.

Figure 4 shows the results. The x-axis show the groups of the networks, e.g., ReLU 3
means five fully connected networks using the ReLU activation function with three hid-
den layers; 3 Full and 3 Conv mean the three fully connected and the three convolutional
networks adapted from [32] respectively. The y-axis shows the number of (network,
target) pairs. Note that each group may contain a different number of pairs, i.e., the
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Fig. 4. The results of verifyX

maximum values for the small network groups are 50, and the maximum values for the
last two groups are 30. First, we successfully verify 455 out of 510 verification tasks
(i.e., 89%) of them, i.e., the neural network is safe with respect to the selected images.
It is encouraging to notice that the verified tasks include all models adopted from [32],
which are considerably larger (e.g., with 1024 neurons at each layer) and more complex
(i.e., convolutional networks). Second, some networks are not proved to be safe with
some target labels. It could be either there is indeed a backdoor trigger that we fail to
identify (through optimization), or we fail to verify due to the over-approximation intro-
duced by abstract interpretation. Lastly, with the same structure (i.e., the same number
of hidden layers and the same number of neurons in each hidden layer), the networks
using the ReLU and Sigmoid activation functions are more often verified to be safe than
those using the Tanh activation function. This is most likely due to the difference in the
precision of the abstract transformers for these functions.

RQ2: can we verify the absence of backdoor attacks with a certain level of success
rate? To answer this question, we evaluate our approach on six networks used in RQ1,
i.e., ReLU 3 10, ReLU 5 50, Sigmoid 3 10, Sigmoid 5 50, Tanh 3 10, and Tanh 5 50.
These networks are chosen to cover a wide range of the number of hidden layers and
the number of neurons in each layer, as well as different activation functions. Note
that due to the high complexity of Algorithm 1 (which potentially applies Algorithm 2
hundreds of times), running Algorithm 1 on all the networks evaluated in RQ1 requires
an overwhelming amount of resources. Furthermore, since there is no existing work on
backdoor verification, we do not have any baseline to compare with.

Recall that Algorithm 1 has two important parameters K and θ, both of which poten-
tially have a significant impact on the verification result. We thus run each network with
four different settings, in which the number of images K is set to be either 5 or 10, and
the success rate θ is either 0.8 or 0.9. In total, with 10 target labels, we have a total of
240 verification tasks for this experiment. Note that some preliminary experiments are
conducted before we select these two K values.
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Fig. 5. Verification results

We use all the 10000 images in the test set as the image population and randomly
choose K images in each round of test. When a trigger is generated, the success rate of
the trigger is validated on the images in the test set (after the above-mentioned filtering).
Like in RQ1, we run each network with 10 parallel processes, each of which verifies a
separate target. As the SPRT algorithm may take a very long time to terminate, we set a
timeout for each verification task, i.e., 2 h for those networks with three hidden layers,
and 10 h for those networks with five hidden layers.

The results are shown in Fig. 5. The x-axis shows the networks, the y-axis shows
the number of verified pairs of network and target label. We have multiple observations
based on the experiment results. First, a quick glance shows that with the same struc-
ture and hypothesis testing parameters, more networks built with the ReLU activation
function are verified than those built with the Sigmoid and Tanh functions. Second, we
notice that the best result is achieved with K = 5 and θ = 0.9. With these parameter
values, we can verify that three networks ReLU 3 10, ReLU 5 50, and Sigmoid 3 10
are safe with respect to all the target labels and the network Sigmoid 5 50 is safe with
respect to nine over 10 target labels. If we keep the same success rate as 0.9 and increase
the number of images K from 5 to 10, we can see that the number of verified cases in
the network Sigmoid 5 50 decreases. This is because when we increase the number of
images that must be attacked successfully together, the probability that we do not have
the attack increases, which means we need more rounds of test to confirm the hypoth-
esis H0 and so the verification process for the network Sigmoid 5 50 times out before
reaching the conclusion. We have a similar observation when we keep the number of
images K at 5 but decrease the success rate from 0.9 to 0.8. When the success rate
decreases, the probability of not having the attack increases, which requires more tests
to confirm the hypothesis H0. As a result, for all these four networks, there are multiple
verification tasks that time out before reaching the conclusion. However, we notice that
there is an exception when we keep the success rate as 0.8 and increase the number of
images from 5 to 10. While the number of verified cases for the network ReLU 5 50
decreases (which can be explained in the same way as above), the number of veri-
fied cases for the network Sigmoid 3 10 increases (and the results for the other two



186 L. H. Pham and J. Sun

Fig. 6. The running time of the experiments in RQ1 with benchmark networks

networks do not change). Our explanation is that when we increase the number of
images K to 10, it is easier for the Algorithm 2 to conclude that there is no attack,
and so the Algorithm 1 still collects enough evidence to conclude H0. On the other
hand, with the number of images is 5, Algorithm 2 may return a lot of UNKNOWN
(due to spurious triggers), and so the hypothesis testing in the Algorithm 1 goes back
and forth between the two hypotheses H0 and H1 and eventually times out.

A slightly surprising result is obtained for the network Tanh 3 10, i.e., our trigger
generation process generates two triggers for the target labels 2 and 5 when the success
rate is set to be 0.8. This is surprising as these networks are not generated with back-
door attack. This result can be potentially explained by the combination of the relatively
low success rate (i.e., 0.8) and the phenomenon known as universal adversarial pertur-
bations [23]. With the returned triggers, the users may want to investigate the network
further and potentially improve it with techniques such as robust training [7,22].

RQ3: Is our approach efficient time-wise? To answer this question, we collect the wall-
clock time to run the experiments in RQ1 and RQ2. For each network, we record the
average running time for 10 different target labels. The results for 45 small networks
are shown in Fig. 6. The x-axis shows the groups of 15 networks categorized based
on their activation functions and the y-axis shows the logarithmic scale of the running
time in the form of boxplots (where the box shows the result of 25 percentile to 75
percentile, the bottom and top lines are the minimum and maximum, and the orange
line is median). The execution time ranges from 14 s to less than 6 h for these networks.
Furthermore, we can see that there is not much difference between the running time
of the networks using the ReLU and Sigmoid activation functions. However, the run-
ning time of the networks using the Tanh function is one order of magnitude larger than
those of the ReLU and Sigmoid networks. The reason is that the Tanh networks have
many non-safe cases (as shown in Fig. 4) and, as a result, the verification process needs
to check more images at more trigger positions. The running time of those networks
adopted from [32] ranges from more than 5 min to less than 4 h, as shown in Table 1.
Finally, the running time for each network in RQ2 (i.e., the time required to verify the
networks against backdoor attacks) according to different settings is shown in Table 2.
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Table 1. The running time of the experiments in RQ1 with networks adapted from [32]

Network Time Network Time

ReLU 3 1024 237 m 24s conv 194 m 30 s

ReLU 5 100 5 m 38 s conv diffai 111 m 12 s

ReLU 8 200 48 m 34s conv pgd 190 m 19 s

Table 2. The running time of the experiments in RQ2

Network K = 5 K = 10 K = 5 K = 10

θ = 0.9 θ = 0.9 θ = 0.8 θ = 0.8

ReLU 3 10 31 m 31 s 46 m 39 s 55 m 44 s 68 m 54 s

ReLU 5 50 341 m 36 s 493 m 30 s 551 m 40 s 600 m 0 s

Sigmoid 3 10 46 m 43 s 59 m 28 s 92 m 34s 93 m 21 s

Sigmoid 5 50 476 m 38 s 588 m 25 s 600 m 0s 600 m 0 s

Tanh 3 10 114 m 2 s 105 m 18 s 50 m 58 s 26 m 4 s

Tanh 5 50 600 m 0s 600 m 0 s 600 m 0 s 600 m 0 s

RQ4: can our approach generate backdoor triggers? Being able to generate counterex-
amples is a part of a useful verification method. We conduct another experiment to
evaluate the effectiveness of our backdoor trigger generation approach. We train a new
set of 45 networks that have the same structure as those used for answering RQ1. The
difference is that this time each network is trained to contain backdoor through data
poisoning. In particular, for each network, we randomly extract 20% of the training
data, stamp a white square with shape (1, 3, 3) in one corner of the images, assign a
random target label, and then train the neural network from scratch with the poisoned
training data. While such an attack is shown to be effective [12], it is not guaranteed
to be always successful on a randomly selected set of images. Thus, we do the follow-
ing to make sure that there exists a trigger for a set of selected images. From 10000
images in the test set, we first filter out those images which are classified wrongly or
already classified with the target label. The remaining images are collected into a set
X0. Next, to make sure that the selected images have a high chance of being attacked
successfully, we apply another filter on X0. This time, we stamp each image in X0 with
a white square at the same trigger position as we poison the training data. We then keep
the image if its stamped version is classified by the network with the target label. The
remaining images after the second filter are collected into another set X . We apply our
approach, in particular, the backdoor trigger generation on X , if |X| ÷ |X0| ≥ 0.8, i.e.,
the backdoor attack has a success rate of 80%.

The results are shown in Fig. 7 in which the y-axis shows the number of networks.
The timeout is set to be 120 s. Among the 45 networks, we can see that a trigger is
successfully generated for 33 (i.e., 73%) of the networks. A close investigation of these
networks shows that the generated trigger is the exact white square that is used to stamp
the training data. There are 12 networks for which the trigger is not generated. We
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Fig. 7. The results of backdoor trigger generation

investigate these networks and see that they are either too biased (i.e., classifying every
image with the target label and thus |X0| = 0) or the attack on these networks does
not perform well (i.e., |X| ÷ |X0| < 0.8). In other words, the backdoor attack on
these networks failed and, as a result, the generation process does not even begin with
these networks. In a nutshell, we successfully generate the trigger for every successful
backdoor attack. Finally, note that the running time of the backdoor generation process
is reasonable (i.e., on average, 50 s to generate a backdoor trigger for one network) and
thus it does not affect the overall performance of our verification algorithm.

5 Related Work

The work which is closest to ours is [37] in which Wang et al. aim to certify neural
networks’ robustness against backdoor attack using randomized smoothing. However,
there are many noticeable differences between their approach and ours. First, while our
work focuses on verifying the absence of backdoor, their work aims to certify the robust-
ness of individual images based on the provided training data and learning algorithm
(which can be used to implicitly derive the network). Second, by using random noises
to estimate the networks’ behaviors, their approach can only obtain very loose results.
As shown in their experiments, they can only certify the robustness against backdoor
attack with triggers contains two pixels and on a “toy” network with only two layers
and two labels, after simplifying the input features by rounding them into 0 or 1. Com-
pare to their approach, our approach can apply to networks used to solve real image
classification problems as shown in our experiments.

Our work is closely related to a line of work on verifying neural networks. Existing
approaches mostly focus on local robustness property and can be roughly classified into
two categories: exact methods and approximation methods. The exact methods aim to
model the networks precisely and solve the verification problem using techniques such
as mixed-integer linear programming [34] or SMT solving [8,15]. On the one hand,
these approaches can guarantee sound and complete results in verifying neural net-
works. On the other hand, they often have limited scalability and thus are limited to
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small neural networks. Moreover, these approaches have difficulty in handling activa-
tion functions except the ReLU function.

In comparison, the approximation approaches over-approximate neural network
behavior to gain better scalability. AI2 [10] is the first work pursuing this direction using
the classic abstract interpretation technique. After that, more researchers try to explore
different abstract domains for better precision without sacrificing too much scalabil-
ity [29,30,32]. In general, the approximation approaches are more scalable than the
exact methods, and they are capable of handling activation functions such as Sigmoid
and Tanh. However, due to the over-approximation, these methods may fail to verify a
valid property.

We also notice that it is possible to incorporate abstraction refinement to the approx-
imation methods and gain better precision, for instance, by splitting an abstraction into
multiple parts to reduce the imprecision due to over-approximation. There are many
works [21,40,41] which fall into this category. We remark that our approach is orthog-
onal to the development of sophisticated verification techniques for neural networks.

Finally, our approach, especially the part on backdoor trigger generation, is related
to many approaches on generating adversarial samples for neural networks. Some repre-
sentative approaches in this category are FGSM [11], JSMA [24], and C&W [4] which
aim to generate adversarial samples to violate the local robustness property, and [42]
which aims to violate fairness property.

6 Conclusion

In this work, we propose the first approach to formally verify that a neural network is
safe from backdoor attacks. We address the problem on how to verify the absence of a
backdoor that reaches a certain level of success rate. Our approach is based on abstract
interpretation and we provide an implementation based on DeepPoly abstract domain.
The experiment results show the potential of our approach. In the future, we intend to
extend our approach with more abstract domains as well as improve the performance
to verify more real-life networks. Besides that, we also intend to apply our approach to
verify the networks designed for other tasks, such as sound or text classification.

Acknowledgements. This research is supported by the Ministry of Education, Singapore under
its Academic Research Fund Tier 3 (Award ID: MOET32020-0004). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not
reflect the views of the Ministry of Education, Singapore. This research is also partly supported
by the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study,
Grant No. SN-ZJU-SIAS-001.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Com-
put. Simul. (TOMACS) 28(1), 1–39 (2018)

2. Barni, M., Kallas, K., Tondi, B.: A new backdoor attack in CNNs by training set corruption
without label poisoning. In: ICIP 2019, pp. 101–105. IEEE (2019)



190 L. H. Pham and J. Sun

3. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: S&P 2017,
pp. 39–57. IEEE (2017)

5. Chen, B., et al.: Detecting backdoor attacks on deep neural networks by activation clustering.
arXiv preprint arXiv:1811.03728 (2018)

6. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

7. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR 2018, pp. 9185–
9193. IEEE (2018)

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

9. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence against
trojan attacks on deep neural networks. In: ACSAC 2019, pp. 113–125. ACM (2019)

10. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: Ai2:
Safety and robustness certification of neural networks with abstract interpretation. In: S&P
2018, pp. 3–18. IEEE (2018)

11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014)

12. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the machine learn-
ing model supply chain. arXiv preprint arXiv:1708.06733 (2017)

13. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://www.
gurobi.com

14. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety Verification of Deep Neural Net-
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Abstract. Deep Reinforcement Learning (DRL) has demonstrated its
strength in developing intelligent systems. These systems shall be for-
mally guaranteed to be trustworthy when applied to safety-critical
domains, which is typically achieved by formal verification performed
after training. This train-then-verify process has two limits: (i) trained
systems are difficult to formally verify due to their continuous and infinite
state space and inexplicable AI components (i.e., deep neural networks),
and (ii) the ex post facto detection of bugs increases both the time- and
money-wise cost of training and deployment. In this paper, we propose
a novel verification-in-the-loop training framework called Trainify for
developing safe DRL systems driven by counterexample-guided abstrac-
tion and refinement. Specifically, Trainify trains a DRL system on a
finite set of coarsely abstracted but efficiently verifiable state spaces.
When verification fails, we refine the abstraction based on returned coun-
terexamples and train again on the finer abstract states. The process is
iterated until all predefined properties are verified against the trained
system. We demonstrate the effectiveness of our framework on six clas-
sic control systems. The experimental results show that our framework
yields more reliable DRL systems with provable guarantees without sac-
rificing system performance such as cumulative reward and robustness
than conventional DRL approaches.

Keywords: Deep reinforcement learning · Model checking · CEGAR ·
ACTL

1 Introduction

Deep Reinforcement Learning (DRL) has shown its strength in developing intel-
ligent systems for complex control tasks such as autonomous driving [37,40].
Verifiable safety and robustness guarantees are crucial to these safety-critical
DRL systems before deploying [23,44]. A typical example is autonomous driv-
ing, which is arguably still a long way off due to safety concerns [21,39]. Recently,
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tremendous efforts have been made toward adapting existing and devising new
formal methods for DRL systems in order to provide provable safety guarantees
[18,25,45,46,51].

Formally verifying DRL systems is still a challenging problem. The challenge
arises from DRL systems’ three features. First, the state space of a DRL system
is usually continuous and infinite [28]. Second, the behavior of a DRL system
is non-linear and determined by high-order system dynamics [17]. Last but not
least, the controllers, typically deep neural networks (DNN), are almost inexpli-
cable because of their black-box development [20,52]. The three features make
it unattainable to verify DRL systems using conventional formal methods, i.e.,
modeling them as state transition systems and verifying temporal properties
using dedicated decision procedures [4]. Most existing approaches have to sim-
plify the problem by abstraction or over-approximation techniques and restrict
to specific properties such as safety or reachability [46].

Another common problem with most existing formal verification approaches
to DRL systems is that they are applied after the training is concluded. These
train-then-verify approaches have two limitations. First, verification results may
be inconclusive due to abstraction or overestimation. The non-linearity of both
system dynamics and deep neural networks makes it difficult to control the
overestimation in a reasonable range, resulting in false positives in verification
results [50]. Second, the ex post facto detection of bugs increases both the time-
and money-wise cost of training and deployment. No evidence shows that the
iterative training and verification help improve system reliability, as tuning the
parameters in neural networks may cause an unpredictable impact on the prop-
erties because of the inexplicability [24].

To address the challenges in training and verifying DRL systems, in this
paper we propose a novel verification-in-the-loop framework for training safe
and reliable DRL systems with verifiable guarantees. Provided that a set of
properties are predefined for a target DRL system to develop, our framework
trains the system and verifies it against the properties in every iteration. To
overcome the verification challenges in DRL systems, for the first time, we pro-
pose a novel approach in our framework to train the systems on a finite set of
abstract states, based on the observation that approximate abstractions can still
preserve near-optimal behavior [1]. These states are the abstractions of the actual
states. Training on the finite abstract states allows us to model the AI-embedded
systems as finite-state transition systems. We can leverage classic model check-
ing techniques to verify their more complicated temporal properties than safety
and reachability.

As system performance may be affected by the abstraction granularity,
we employ the idea of the counterexample-guided abstraction and refinement
(CEGAR) [8] in model checking along the training process. We start with a
coarsely abstracted but efficiently verifiable state space and train and verify
DRL systems on the abstract state space. Once verification fails, we refine the
abstract state space based on the returned counterexamples and retrain the sys-
tem on the finer-grained refined state space. The process is repeated until all the
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properties are verified successfully. We, therefore, call the training and verifica-
tion framework CEGAR-driven, by which we can reach an appropriate abstrac-
tion granularity that guarantees both system performance and verification scal-
ability.

Our verification-in-the-loop training framework has four advantages com-
pared with conventional DRL training and verification approaches. Firstly, our
approach produces correct-by-construction DRL systems that are verifiably safe
with respect to user-defined safety requirements. Secondly, more complicated
properties such as safety and liveness can be verified thanks to the dedicated
training approach on abstracted state space. Another advantage of the training
approach is that it is orthogonal to state-of-the-art DRL algorithms such as Deep
Q-Network (DQN) [34] and Deep Deterministic Policy Gradient (DDPG) [32].
Thirdly, our approach provides a flexible mechanism for fine-tuning an appro-
priate abstraction granularity to balance system performance and verification
scalability. Lastly, training on abstract states renders DRL systems to be more
robust against adversarial and environmental perturbations because small per-
turbation to an actual state may not alter the decision of the neural network on
the same abstract state.

We implement a prototype tool called Trainify (abbreviated for Train and
Verify, available at https://github.com/aptx4869tjx/RL verification). We per-
form extensive experiments on six classic control tasks in public benchmarks to
evaluate the effectiveness of our framework. For each task, we train two DRL
systems under the same settings in our approach and corresponding conven-
tional DRL algorithm, respectively. We compare the two systems in terms of the
properties that they shall satisfy and the performance in terms of cumulative
reward and robustness. Experimental results show that the systems trained in
our approach are more efficient to verify and more reliable than those trained in
conventional methods; moreover, their performance is competitive and higher.

In summary, this paper makes the following three major contributions:

1. A novel verification-in-the-loop training framework for developing verifiable
and reliable DRL systems with correct-by-construction guarantees.

2. A CEGAR-driven approach for fine-tuning abstraction granularity during
training to reach a balance between system performance and verification scal-
ability.

3. A resulting prototype tool called Trainify for training and verifying DRL
systems and a thorough evaluation of the proposed approach on public bench-
marks.

Paper Organization. Section 2 briefly introduces deep reinforcement learn-
ing. Section 3 presents the model-checking problem of DRL systems. Section 4
presents our training and verification framework. Section 5 shows six case stud-
ies and experimental results. Section 6 mentions some related work, and Sect. 7
concludes the paper.

https://github.com/aptx4869tjx/RL_verification
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2 Deep Reinforcement Learning (DRL)

DRL is a technique for learning optimal control policies using deep neural net-
works according to evaluative feedback [31]. An agent in a DRL system interacts
with the environment and records its state st at each time step t. It feeds st into
a deep neural network to compute an action at and transitions to the next state
st+1 according to at and the system dynamics. The system dynamics describe
the non-linear behavior of the agent over time. The agent receives a scalar reward
according to reward functions. Some algorithms estimate the distance between
the action determined by the network and the expected action in the same state.
Then, it updates the parameters in the network according to the estimated dis-
tance to maximize the cumulative reward.

Fig. 1. A DRL example of mountain car system.

A Running Example.
Figure 1 shows a classic
DRL task of learning a
control policy to drive a
car to the right hilltop.
The car is initially posi-
tioned on a track between
two mountains. The track
is one-dimensional, and
thus the car’s position is
represented as a real num-
ber. Velocity is another dimension in the car’s state and is represented as a real
number too. Thus, the car’s state is a pair (p, v) of position p and velocity v. An
action a is a real number representing the force imposed on the car. The action
is computed by a neural network on both p and v.

The sign of a means the direction of the force, i.e., positive for the right and
negative for the left, respectively. Given a state st = (pt, vt) and an action at at
time step t, the system transitions to the next step st+1 = (pt+1, vt+1) following
the given dynamics:

pt+1 = pt + vtΔt, (1)
vt+1 = vt + (at − mc × g × cos(3pt))Δt, (2)

where mc denotes the car’s mass, g denotes the gravity, and Δt is the unit
interval between two consecutive steps. In DRL, time is usually discretized to
facilitate implementation. The car is assumed to move in uniform motion during
a unit interval.

Reward Setting. The reward function R maps state st, action at and state
st+1 to a real number, which represents the rewarded value by applying at to
st to transition to st+1. The purpose of R is to guide the agent to achieve the
preset goals by making cumulative reward as great as possible. The definition of
R is based on prior knowledge or expert experience before training.

In the Mountain Car example, the controller receives the reward which is
defined as R(〈pt, vt〉, at, 〈pt+1, vt+1〉) = −1.0 at each time step when pt+1 < 0.45.
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The reward is a negative constant because the goal in this example is to force
the car to reach the right hilltop (p = 0.45) as quickly as possible. If the corre-
sponding cumulative reward value is larger than another when the car reaches
the destination, it means that the car takes fewer steps. A reward function can
be a more complex formula than a constant when the reward strategy is related
to states and actions.

Fig. 2. A simple neural network.

Training. The essence of DRL training is to
update parameters in neural networks so that
the networks can compute optimal actions
for input states. A deep neural network is a
directed graph comprised of an input layer,
multiple hidden layers, and an output layer,
as shown in Fig. 2. Each layer contains several
nodes called neurons. They are connected to
the neurons on the following layer. Each edge
has a weight. The values passed on the edge
are multiplied by the weight. A neuron on
hidden layers takes the sum of all the incoming values, adds a bias, and feeds
the result to its activation function σ. The output of σ is passed to the neurons on
the following layer. There are several commonly used activation functions, e.g.,
ReLU (σ(x) = max(x, 0)), Sigmoid (σ(x) = 1

1+e−x ) and Tanh (σ(x) = ex−e−x

ex+e−x ),
etc. In DRL, the inputs to a neural network are system states. The outputs are
(probably continuous) actions that shall be performed to the present state.

During training, agents continuously interact with the environment to obtain
trajectories. A trajectory is a 4-tuple, consisting of a state s, the action a on s,
the reward of executing a on s, and the successor state after the execution. A
predefined loss function uses the collected trajectories to estimate an action value
and compute the distance between the estimated value and the one computed by
the neural network for the same state. Guided by the distance, the parameters
in the network are updated using gradient descent algorithms [12]. The process
is repeated until the system reaches a predefined maximal iteration limit or a
preset cumulative reward threshold.

Algorithm 1: Training for the Mountain Car Task using DQN
1 for episode = 1, . . . , M do
2 Initialize s0 = (p0, v0)
3 for t = 0, . . . , T do
4 at ← N(pt, vt); /* To determine at based on st = (pt, vt) and N */
5 (st+1, −1.0) ← system(st, at); /* To execute at and transition to the next

state st+1 */
6 P ← L(N , 〈si, ai, −1.0, si+1〉, . . . , 〈sj , aj , −1.0, sj+1〉); /* To compute the

distance */
7 N ← update(N ,P); /* To update parameters in N based on P */
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There are several well-established training algorithms, such as Deep Q-
Network (DQN) [35] and Deep Deterministic Policy Gradient (DDPG) [32].
Algorithm 1 depicts a high-level process of training the mountain car using
DQN. We call the process of training the car to move from the initial position to
the destination an episode. For each episode, the initial state is firstly determined
(Line 2). Then, the controller determines the action to be adopted based on the
current state st and the neural network N (Line 4). After performing the action,
the controller receives a reward value (−1.0 in this case) and transitions to the
next state based on the system dynamics (Line 5). A loss is estimated by calling
the loss function L with partially sampled trajectories. The loss is represented
by P (Line 6) used to update the parameters of the network N (Line 7). We
omit the details of L, as it is not the emphasis of our paper.

The Target DRL Systems in this Work. The types of DRL systems are
diverse from different perspectives, such as the availability of system dynamics
[17] and the determinism of actions. In this work, we assume system dynamics is
prior knowledge for training, and the actions are deterministic. That is, a unique
action is determined to take on the present state, and its successor state is also
uniquely determined by system dynamics.

3 Model Checking of DRL Systems

3.1 The Model Checking Problem

A trained deterministic DRL system can be represented as a tuple M =
(S,A, f, π, S0, L), where S is the state space which is usually infinite, S0 ⊆ S
is the initial state space, A is a set of actions, f : S × A → S is the system
dynamics, π : S → A is a policy function, and L : S → 2AP is a state labeling
function. In this work, we use π to denote the policy that is implemented by the
trained deep neural network in the system.

The model M of a DRL system is essentially a Kripke structure [10], which is
a 4-tuple (S,R, S0, L). Given two arbitrary states s, s′ in S, there is a transition
from s to s′, denoted by (s, s′) ∈ R, if and only if there is an action a in A such
that a = π(s) and s′ = f(s, a). Given that a property is formalized by a formula
Φ in some logic, the model checking problem of the system is to decide whether
M satisfies Φ, denoted by M |= Φ.

In this work, we formulate properties in ACTL [4], a segment of CTL where
only universal path quantifiers are allowed and negation is restricted to atomic
propositions [14,15]. ACTL consists of state formula Φ and path formula ϕ in
the following syntax:

Φ ::= true | false | a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Aϕ,
ϕ ::= X Φ | Φ1 U Φ2 | Φ1 R Φ2.

The temporal operators fall into two main categories, i.e., quantifiers over
paths and path-specific quantifiers. In ACTL, only the universal path quantifier
A is considered. Path-specific quantifiers refer to X, U and R.
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– A ϕ: Path formula ϕ has to hold on all paths starting from the current state.
– X Φ: State formula Φ has to hold at the next state.
– Φ1 U Φ2: State formula Φ1 has to hold at least until state formula Φ2.
– Φ1 R Φ2: Formula Φ2 has to hold until and including a point where Φ1 first

becomes true. If Φ1 never becomes true, Φ2 must hold forever.

Using the above basic temporal operators, we can define another two important
path-specific quantifiers G (globally) and F (finally) with G Φ = false R Φ
and F Φ = true U Φ. Intuitively, G Φ means that Φ has to hold on the entire
subsequent path, and F Φ means that Φ eventually has to hold (somewhere on
the subsequent path).

We choose ACTL to formulate system properties or requirements in our
framework for two main reasons. Firstly, in our framework, we rely on refinement
to the abstract states where system properties are violated. Such states can
be obtained as counterexamples returned by model checkers when the system
properties defined in ACTL are verified not valid by model checking. Secondly,
the verification results of ACTL formulas can be preserved by property-based
abstraction [9,11]. Such preservation is vital to ensure the correctness of our
verification results because the abstraction is necessary for our framework to
guarantee the scalability of the verification algorithm.

3.2 Challenges in Model Checking DRL Systems

Unlike the model checking problems for finite-state systems, model checking
M |= Φ for DRL systems is particularly challenging. The challenge arises from
the three features of DRL systems, i.e., (i) the infinity and continuity of state
space S, (ii) the non-linearity of system dynamics f , and (iii) the inexplicability
of the policy π that is encoded as deep neural networks. Usually, the state space
of DRL systems is continuous and infinite, and behaviors are non-linear due to
high-order system dynamics. Even worse, the actions of states are determined
by inexplicable deep neural networks, which means that the transitions between
states cannot be defined as straightforwardly as those of traditional software
systems.

To build a model M for a DRL system, we have to compute the successor
of each state s by applying the neural network π on s to compute the action a
and then performing a to s according to the system’s dynamics f . Specifically,
the successor of s can be represented as f(s, π(s)). The non-linearity of both
f and π and the infinity of S makes the verification problem difficult. Most
existing approaches rely on the over-approximation of f and π to simplify the
problem [16,25,29,46]. However, over-approximation inevitably introduces over-
estimation and restricts to only safety properties and reachability analysis in
bounded steps.
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4 The CEGAR-Driven DRL Approach

4.1 The Framework

Figure 3 shows the overview of our framework. It consists of three parts, i.e.,
training, verification and refinement. In the training part, a DRL system is
trained on a finite set of abstract states. An actual state is first mapped to its
corresponding abstract state, then fed into the neural network to compute a cor-
responding action. The action is applied to the actual state to drive the system to
transition to the next state. The reward is accumulated according to a predefined
reward function, and the neural network is updated in the same way as conven-
tional DRL algorithms. In the verification part, we build a Kripke structure on
the finite abstract state space based on the trained neural network. Then, we
verify the desired properties that are predefined in ACTL formulas Φ. If all the
properties are verified valid, we stop training, and a DRL system is developed.
If some property is verified not valid, we move to the refinement part. When
verification fails, counterexamples are returned. They are the abstract states
where the property is violated. We refine these states by subdividing them into
fine-grained sub-states and substitute those bad states. We resume to train the
system on the refined abstract state space and repeat the whole process.

Fig. 3. The training, verification and refinement framework for developing DRL sys-
tems.
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The integration of training, verification and refinement seamlessly constitutes
a verification-in-the-loop DRL approach, driven by the counterexample-guided
abstraction and refinement. We start with a coarse abstraction. After every
training episode, we model check the system against all the predefined properties.
If all the properties are verified, we stop training and obtain a verified system.
Otherwise, counterexamples are returned. The abstract state space is refined for
further training. After several iterations, a DRL system is trained with all the
predefined properties rigorously verified.

4.2 Training on Abstract States

DRL is a process of learning optimal actions on all system states for specific
objectives. A trained model partitions the state space into a family of sets such
that the same action is taken in the states from a set [38]. Continuous state
spaces can be adaptively discretized into finite ones for learning without affect-
ing learning performance [41,42]. Motivated by this observation, we discretize
a continuous state space into a finite set of fragments. We call each fragment
an abstract state and train the DRL system by feeding abstract states into the
deep neural network for decision making.

Fig. 4. An example of encoding an abstract state space into an R-tree.

System State Abstraction. Given an n-dimension DRL system, a concrete
system state s is represented as a vector of n real numbers. Each number has a
physical meaning about the system, such as speed and position in the running
example. Let Li and Ui be the lower and upper bounds for the i-th dimension
value of S. Then, the state space S of the control system is Πn

i=1[Li, Ui].
Initially, we use interval boxes to discretize S. An interval box I is a vector

of n intervals, denoted by (I1, I2, . . . , In). Each interval Ii(1 ≤ i ≤ n) represents
all the system states, denoted by SIi

, where a state s belongs to SIi
if and only

if the i-th value in s is in Ii. An interval box I represents the intersection of all
the sets SIi

(i = 1, . . . , n).
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Let di ∈ R (0 < di ≤ Ui − Li) be the diameter by which we subdivide evenly
the interval [Li, Ui] in each dimension i into (Ui − Li)/di unit intervals, and
Ii = [Li, Ui]/di denote the set of all the unit intervals. Then, we obtain the
abstract state space S = I1 × . . . × In, which is an abstraction of the infinite
continuous state space S. We call the vector (d1, d2, . . . , dn) of the n diameters
abstraction granularity and denote it by δ.

Given a continuous state space S and its corresponding abstract state space
S, we call the mapping function from the states in S to the corresponding
abstract states in S a transformer A : S → S. The transformer can be encoded
as an R-tree, a tree-like data structure devised for efficiently indexing multi-
dimensional objects [22]. Figure 4 depicts an example of building an R-tree to
index an abstract state space of the continuous space [v0, v4] × [p0, p5]. A rect-
angle on a leaf node represents an abstract state, and the one on a non-leaf
node represents the minimum bounding rectangle enclosing all the rectangles
on its child nodes. There can be multiple rectangles on a single node. R-tree
supports intersection search, i.e., searching for the abstract states that intersect
with the interval we are querying. Given a concrete state, an R-tree can quickly
return its corresponding abstract state. Note that in Fig. 4, we assume state
space is discretized evenly for clarity. During training, the size of abstract states
becomes diverse after iterative refinement, and the R-tree should be updated
correspondingly.

The Training Algorithms. The algorithms for training on abstract states can
be achieved by extending existing DRL algorithms such as DQN and DDPG.
The extension can be easily achieved by adapting the neural networks and loss
functions in DRL systems so that they can admit abstract states as inputs.

Algorithm 2: Abstraction-Based DRL Training
1 for episode = 1, . . . , M do
2 A ← discretize(S, δ); /* To discretize S by abstraction granularity δ */
3 Initialize s0;
4 for t = 0, . . . , T do
5 st ← A(st) ; /* To get abstract state of st */
6 at ← N ′(st); /* To determine action at based on st and N ′ */
7 (st+1, rt) ← system(st, at) ; /* To execute at on st and transition to

st+1 with reward rt */
8 P = Loss(N ′, 〈si, ai, ri, si+1〉,. . . ,〈sj , aj , rj , sj+1〉); /* To get loss due to

at */
9 N ′ ← update(N ′,P); /* To update parameters in N ′ based on P */



Trainify 203

For neural networks, we only need to modify the input layer by doubling the
number of neurons on the input layer, denoted by N ′. Given an n-dimension
system, we declare 2n neurons. Each pair of neurons read the lower and upper
bounds of an interval in an abstract state, respectively. This dedicated structure
guarantees that a trained network can produce the same action for all the states
that correspond to the same abstract state.

Fig. 5. Adapting neural net-
works for abstract states.

Figure 5 shows an example of adapting the
network in the Mountain Car for training it on
abstract states. For traditional DRL algorithms,
two input neurons are needed in the neural net-
work to take p and v as inputs, respectively. To
train on abstract states, four input neurons are
needed to take the lower and upper bounds of
the position and velocity intervals in abstract
states. For instance, let the interval box (Ip, Iv)
be the abstract state of (p, v). Then, the lower
bounds Ip, Iv and the upper bounds Ip, Iv of p, v
are input to the four neurons, respectively. Apparently, this adaption guarantees
that the neural network always produces the same action on the states that are
transformed into the same abstract state.

We consider incorporating these two steps to extend Algorithm 1 as an illus-
trative example. Algorithm 2 depicts the main workflow where the differences
are highlighted. The main difference from the traditional training process lies
in line 6. Given a concrete state s = (s1, . . . , sn), A will return the abstract
state s = ([l1, u1], . . . , [ln, un]) such that li ≤ si ≤ ui with i = 1, . . . , n, which is
also the result fed into neural network. Although the dimension of input states
increases, the form of corresponding output actions does not change. Therefore,
the loss function can naturally adapt to changes in input states.

4.3 Model Checking Trained DRL Systems

A DRL system can be naturally verified using abstract model checking [26].
The actual states of the system are first abstracted in the same way used in
training, and then the transitions between abstract states are determined by the
corresponding action and dynamics. ACTL formulas are then model checked on
the abstract state transition system.

Building Kripke Structure. During the training phase, the actual state space
has already been abstracted into a finite set S of abstract states. Therefore, the
main task for abstract model checking is to build a Kripke structure by defining
the transition relation on S.
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Algorithm 3: Building Kripke Struc-
ture

Input: Initial state s0, state space S,
system dynamics f , neural
network N ′

Output: A Kripke Structure K
1 K = Initialize Kripke Structure()
2 Queue ← {s0}
3 while Queue is not empty do
4 Fetch s from Queue
5 for i = 1, . . . , n do
6 [li, ui] ← g(f(s,N ′(s)), i)

7 {s1, . . . , sm} :=
h([l1, u1], . . . , [ln, un],S)

8 for j = 1, . . . , m do
9 K .add edge(s → sj)

10 if sj is not traversed then
11 Push sj into Queue

12 return K

Algorithm 3 depicts the pro-
cess of building a Kripke struc-
ture K for a trained DRL sys-
tem. Firstly, K is initialized on
set S with R being empty. Start-
ing from an initial abstract state
s0, we compute its successors and
define the transitions from s0 to
them. We repeat the process until
all reachable states are traversed.

Given an abstract state s,
we compute its abstract succes-
sor states by applying the corre-
sponding action a and the dynam-
ics to s. Because the system is
trained on abstract states, all
the actual states in s have the
same action, i.e., a = N ′(s). Let
f∗(s, a) = {f(s, a)|s ∈ s} be the
set of all the successors of the
actual states in s. Due to the non-
linearity of f and the infinity of s,
we over-approximate the set f∗(s, a) = {f(s, a)|s ∈ s} as an interval box. As
shown in Fig. 6, the dashed box is an over-approximation of f∗(s, a). The over-
approximation may overlap one or more abstract states, e.g., s1, . . . , s4 in the
example. All the overlapped abstract states are successors of s. In Algorithm 3,
function g calculates the interval box and function h determines the overlapped
abstract states. Note that the shapes of abstract states may be different because
they are refined during training, which is to be detailed in Sect. 4.4.

Fig. 6. Transitions between abstract states

We use an interval to approximate
the i-th dimension’s values in all the
successor states. Then, all the succes-
sor states are approximated as a vec-
tor of n intervals. We can compute the
upper and lower bounds for each i by
solving the following two optimization
problems, respectively:

arg max
s∈s

vi · f(s,N ′(s))

arg min
s∈s

vi · f(s,N ′(s))

where, vi is a one-hot vector with the i-th element being 1. Because all the
states in s have the same action according to the network, N ′(s) in the above
optimization problems can be substituted for a constant, i.e., the action taken
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by the system on all the states in s. The substitution significantly simplifies the
optimization problems; no information of the networks is needed in the simplified
problems. The simplified problems can be efficiently solved using off-the-shelf
scientific computing tools such as SciPy [48].

We consider an example in the mountain car system. We assume that the
current abstract state s is ([0, 0.2], [0, 0.02]) and the adopted action is 0.001,
which says that the controller accelerates to the right for all states in s. Based
on the dynamics defined by Eq. 1, we can compute the upper bounds of both
position and velocity in the next step by solving the following two optimization
problems:

arg max
pt∈[0,0.2],vt∈[0,0.02]

pt + vt (pt+1)

arg max
pt∈[0,0.2],vt∈[0,0.02]

vt + 0.001 − 0.0025cos(3pt) (vt+1)

The lower bounds of pt+1 and vt+1 are calculated similarly. Then, we obtain an
abstract state s′ = ([0, 0.22], [−0.0035, 0.0165]), which is an overestimated set of
all the actual successors of the states in s. There is a transition from s to any
abstract state s′′ = ([p, p], [v, v]) in S, if s′ and s′′ overlap, i.e., (0<p < 0.22∨0<
p< 0.22) ∧ (−0.0035<v < 0.0165 ∨ −0.0035<v < 0.0165) is true. Note that the
transition from s to s′ includes all the transitions between the actual states in s
and s′, respectively. It may also include those that do not actually exist due to
the overestimation.

There are other approaches for over-approximating the set f∗(s, a), such as
template polyhedrons like rectangle and octagon [2]. Note that there is always
a trade-off between the tightness of the polyhedral and the efficiency of com-
puting it. For instance, an octagon can approximate the set more tightly than
a rectangle. However, it costs double effort to compute the borders. The tighter
an over-approximation is, the more accurate the set of computed successors is,
but the more time it costs to compute the approximation.

Property-Based Abstraction. For those high-dimensional DRL systems, the
abstract state space may be still too huge to model check directly when the
abstraction granularity becomes small after refinement. To improve the model
checking scalability, we further abstract the constructed Kripke structure based
on the ACTL formula Φ to be model checked using the abstraction approach in
the work [9].

Definition 1 (State Abstraction). Given an abstract state space S = I1 ×
. . . ,×In and an ACTL formula Φ, let DΦ be the set of dimensions that occur in
Φ and ̂S = Πd∈DΦ

Id. Function αΦ : S → ̂S is an abstract transformer such that
for every s ∈ S and ŝ ∈ ̂S, ŝ = αΦ(s) if and only if s[d] = ŝ[d] for all d ∈ DΦ.

Given a Kripke structure K = (S, R,S0, L) and an ACTL formula Φ, let
αΦ : S → ̂S be the abstract transformer, and ̂AP ⊆ AP be all the atomic
propositions in Φ. We can construct the following abstract Kripke structure
̂K = (̂S, ̂R, ̂S0, ̂L) based on αΦ, where:
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– ̂S = Πd∈DΦ
Id;

– ̂R = {(αΦ(s), αΦ(s′))|s, s′ ∈ S.(s, s′) ∈ R};
– ̂S0 = {αΦ(s) | s ∈ S0};
– ̂L : ̂S → 2̂AP such that ̂L(ŝ) = L(s) ∩ ̂AP where s ∈ S and ŝ = αΦ(s).

We call ̂K a simulation of K with respect to Φ. An important property of the
simulation is that the property represented by Φ is preserved by the abstract
model ̂K .

Theorem 1 (Soundness). Let ̂K be a simulation of K with respect to an
ACTL formula Φ, ̂K |= Φ implies K |= Φ.

The proof of Theorem 1 is straightforward. We omit the proof due to space
limit. According to the theorem, we can conclude that K |= Φ holds whenever
we find a simulation ̂K of K and model check that ̂K |= Φ holds.

Fig. 7. An example of refinements on abstract states where properties are violated.

4.4 Counterexample-Guided Refinement

If a formula Φ is verified not true, our algorithm returns corresponding coun-
terexamples. A counterexample is an abstract state where Φ is violated. We
refine the abstract state into finer ones and substitute them in the abstract state
space for further training.

A näıve refinement approach subdivides each dimension of states into two
intervals. Assuming that a property is violated on an abstract state s =
([l0, u0], . . . , [ln, un]), we can simply divide each dimension evenly into two inter-
vals ([li, (li +ui)/2], [(li +ui)/2, ui]), and obtain 2n finer abstract states. Appar-
ently, the refinement may lead to state space explosion, particularly for high-
dimensional systems.

In our approach, we only refine the states on the dimensions that are used to
define the properties being verified to avoid state explosion. Considering the moun-
tain car example, we assume that the formula is AF [p ≥ 0.45], saying that the car
will eventually reach the hilltop where p = 0.45. Suppose that the property fails
and counterexamples are returned. We assume s = ([0, 0.2], [0, 0.02]) is the state
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where the property is violated, as shown in Fig. 7 (a). We bisect the state into
two fine-grained sub-states, s1 = ([0, 0.1], [0, 0.02]) and s2 = ([0.1, 0.2], [0, 0.02]).
Then, we substitute the two fine-grained states for s on the R-tree for further train-
ing. Figure 7 (b) shows the new R-tree after the substitution.

It is worth mentioning that counterexamples may be false positives. Abstract
states may include the actual states that are unreachable in the trained system
because of the approximation of system dynamics. Unfortunately, it is difficult
to check which states are actually unreachable because we need to know their
corresponding initial state to check the reachability of these bad states. How-
ever, the corresponding initial state is enclosed in an abstract state and cannot
be identified due to the abstraction. In our approach, we perform refinement
without checking whether the counterexamples are real or not. After refinement,
the abstract states become finer-grained. Counterexamples can be discarded by
training and verifying on these finer-grained abstract states. The price of such
extra refinements is that more iterations of training and verification are con-
ducted, but the benefit is that the performance of the trained systems is better.

5 Implementation and Evaluation

5.1 Implementation

We implement our framework into a prototype toolkit called Trainify in
Python. In the toolkit, we leverage the open-source library pyModelChecking [6]
as the back-end model checker and the scientific computing tool SciPy [48] as
an optimization solver.

5.2 Benchmarks and Experimental Settings

We evaluate the effectiveness of our approach on a wide range of classic con-
trol tasks from public benchmarks. For each control task, we train two DRL
systems using our approach and the corresponding conventional DRL approach,
respectively. We compare the two trained systems in terms of their reliability,
verifiability and system performance.

Benchmarks. We choose six classic control problems. Three of them are from
the DRL training platform Gym [5], including Mountain Car, Pendulum and
Cartpole. The other three, i.e., B1, B2 and Tora, are the problems that are
widely used for evaluation by state-of-the-art tools [19,25,27,28].

1. Mountain Car (MC). The running example in Sect. 2.
2. Pendulum (PD). A pendulum that can rotate around an endpoint is delin-

eated. Starting from a random position, the pendulum shall swing up and
stay upright.

3. CartPole (CP). A pole is attached by an un-actuated joint to a cart. The
goal of training is to learn a controller that prevents the pole from falling over
by applying a force of +1 or −1 to the cart.
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4. B1 and B2. Two classic nonlinear systems, where agents in both systems aim
to arrive at the destination region from the preset initial state space [19].

5. Tora. A cart is attached to a wall with a spring. It is free to move on a
frictionless surface. Inside the cart, there is an arm free to rotate about an
axis. The controller’s goal is to stabilize the system at the equilibrium state
where all the system variables are equal to 0.

Training Configurations and Evaluation Metrics. We adopt the same
system configurations and training parameters for each task, including neural
network architecture, system dynamics, time interval, DRL algorithms and the
number of training episodes.

We choose three metrics, including the satisfaction of predefined properties,
cumulative reward and robustness, to evaluate and compare the reliability, veri-
fiability and performance of the DRL systems trained in our approach and those
trained in the conventional DRL approach for the same task. The first metric
is about reliability and verifiability. The other two are about performance. The
cumulative reward is an important figure to evaluate a trained system’s perfor-
mance because maximizing the cumulative reward is the objective of learning.
Robustness is another essential criterion for DRL systems because the systems
are expected to be robust against perturbations from both the environment and
adversarial attacks. Note that we classify robustness into performance category
instead of reliability because we restrict the reliability of DRL systems to the
safety and functional requirements.

Experimental Settings. All experiments are conducted on a workstation run-
ning Ubuntu 18.04 with a 32-core AMD Ryzen Threadripper CPU @ 3.7 GHz
and 128 GB RAM.

5.3 Reliability and Verifiability Comparison

We first evaluate the reliability and verifiability of the DRL systems trained in
our approach and conventional approach, respectively. For each task, we prede-
fined system properties according to their safety and functional requirements.
The functional requirement is usually the objective of control tasks. For instance,
the controller’s objective to train in the mountain car example is to drive the car
to the hilltop. We define an atomic proposition p > 0.45 to indicate that the car
reaches the hilltop. Then, we can define an ACTL formula Φ1 = AF (p > 0.45)
to represent the liveness property. Safety requirements in DRL systems usually
specify important parameters of the systems that must always be kept in safe
ranges. For instance, a safety requirement in the mountain car example is that
the car’s velocity must be greater than 0.02 when the car moves to a position
around 0.2 within a 0.05 deviation. The property can be represented by the
ACTL formula Φ2 as defined in Table 1. The properties of other tasks are for-
malized similarly. The formulas and the types of properties are shown in the
table.
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Table 1. Expected properties and their definitions in ACTL of the selected control
tasks.

Task ID ACTL formula Type Meaning

MC

φ1 AF (p > 0.45) Liveness The car always reaches the target finally.

φ2 AG(|p − 0.2| < 0.05 → v > 0.02) Safety
The car’s speed should be greater than 0.02 at

the position 0.2 within a 0.05 deviation.

PD φ3 AG(|θ|≤ π
2 ) Safety

The pendulum’s angle θ must always be in the

preset range [− π
2 , π

2 ].

CP φ4 AGt≤n(|p|≤2.4 ∧ a≤|0.21|) Safety
The cart always stays in the safe region and the

pole cannot fall down in n time steps.

B1
φ5 AF (x1 ∈ [0, 0.2] ∧ x2 ∈ [0.05, 0.3]) Liveness The agent always reaches the target finally.

φ6 AG(|x1|≤1.5 ∧ |x2|≤1.5) Safety The agent always stays in the safe region.

B2

φ7 AF (target) Liveness The agent always reaches the target finally.

φ8
A((|x1|≤1.5 ∧ |x2|≤1.5) U target)

∨ AG(|x1|≤1.5 ∧ |x2|≤1.5)
Safety

The agent must stay in the safe region until it

reaches the target region.

Tora φ9 AGt≤n(|x1|≤1.5 ∧ |x3|≤1.5) Safety
The agent can stay in the preset state space

with n time steps.

Remarks. target is an atomic proposition i.e., x1 ∈ [−0.3, 0.1] ∧ x2 ∈ [−0.35, 0.5] in
B2.

We compare the reliability and verifiability of all the trained DRL systems
with respect to their predefined properties using both verification and simula-
tion. The DRL systems trained in our approach can be naturally verified in our
framework. For those trained in the conventional DRL approaches, our verifi-
cation approach is not applicable because we cannot construct abstract Kripke
structures for them. The main reason is that we cannot abstract the system
states such that there is a unique action on all the actual states represented by
the same abstract state. We therefore resort to the state-of-the-art reachability
analysis tool Verisig 2.0 [25] to verify them. We also simulate all the trained
systems in a fixed number of rounds and detect the occurrences of property vio-
lations. The purposes of the simulation are twofold: (i) to partially reflect the
reliability of systems; and (ii) to validate the verification results in a bounded
number of steps.

Table 2 shows the comparison results. We can observe that all the sys-
tems trained in our approach are successfully verified, and the correspond-
ing properties hold on them. No violations are detected by simulation. For
those systems trained in conventional DRL algorithms, only 8 out of 16 are
successfully verified by Verisig. There are two cases, where Verisig returns
Unknown when verifying φ7 for task B2. It means that the verification fails
because Verisig 2.0 cannot determine whether the destination region (defined by
x1 ∈ [−0.3, 0.1] ∧ x2 ∈ [−0.35, 0.5]) must always be reached when it computes a
larger region that overlaps the target . The extra part in the larger region may be
an overestimation caused by the over-approximation. By simulation, we detect
violations to φ7. The violations can be considered as counterexamples to the
property. The other properties such as φ2, φ3, φ4, and φ8 are not supported by
Verisig 2.0. Among these unverified properties, we detect there exist violations by
simulation for three of them. The violations indicate that the systems trained in
conventional DRL approaches may not satisfy expected properties, and existing
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Table 2. Comparison of the verification and simulation results between the DRL sys-
tems trained in our approach and conventional DRL algorithms, respectively.

Task Network Property By Trainify By conventional algorithms

A.F. Size T.T. V.R. V.T. Vio. T.T. V.R. V.T. Vio.

MC

Sigmoid 2 × 16
φ1 306 � 26.8 0 297 � 45.5 0

φ2 302 � 5.9 0 297 N/A – 0

Sigmoid 2 × 200
φ1 453 � 29.1 0 441 � 3709 0

φ2 462 � 7.1 0 441 N/A – 0

PD ReLU 3 × 128 φ3 771 � 1.2 0 501 N/A – 0

CP ReLU 3 × 64 φ4 135 � 3266 0 101 N/A – 12

B1

Tanh 2 × 20
φ5 52 � 89.0 0 31 � 4.6 0

φ6 43 � 5.3 0 31 � 4.6 0

Tanh 2 × 100
φ5 32 � 66 0 41 � 28.2 0

φ6 25 � 3.8 0 41 � 28.2 0

B2

Tanh 2 × 20
φ7 17 � 1.2 0 9 Unknown 4.8 27

φ8 9 � 1.3 0 9 N/A - 0

Tanh 2 × 100
φ7 9 � 1.3 0 11 Unknown 55.3 23

φ8 6 � 1.7 0 11 N/A – 0

Tora
Tanh 3 × 100 φ9 402 � 1132 0 217 � 1271 0

Tanh 3 × 200 φ9 495 � 1242 0 239 � 6829 0

Remarks. A.F.: activation function; T.T.: average training time per iter-
ation; V.R.: verification result; V.T.: average verification time per itera-
tion; Vio.: the number of violations in simulation; N/A: not applicable;
Unknown: verification fails. Time is recorded in seconds.

state-of-the-art verification tools cannot always verify them or find violations.
Our approach can guarantee that the trained systems satisfy the properties. The
simulation results show there are indeed no violations.

As for efficiency, on average, our approach costs slightly more time on the
training because it takes extra time to look up the corresponding abstract state
for an actual state at every training step. But the small-time overhead is worth-
while for the sake of being verifiable. Besides verifiability, another benefit from
this extra time cost is that the efficiency of verification in our approach is not
affected by the size and type of neural networks because we treat them as black-
box in the verification. On the contrary, the efficiency of verifying the systems
that are trained in conventional approaches is restricted by neural networks, as
the verification time cost by Verisig 2.0 shows.

Based on the above analysis, we conclude that the reliability of the DRL
systems developed in our approach are more trustworthy as their predefined
properties are provably satisfied by the systems. Besides, their verification is
more amenable and scalable than the systems trained in conventional DRL
approaches.

5.4 Performance Comparison

We compare the performance of the DRL systems trained in our approach
and the conventional approaches in terms of cumulative reward and robustness,
respectively.
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Fig. 8. Robustness comparison of the systems trained in our approach (blue) and in
conventional approaches (orange). The number in the parentheses is the base of σ. For
example, in Mountain Car, when the abscissa is equal to 50, σ = 50 × 0.0005 = 0.025.
(Color figure online)

Table 3. Comparison of accumulated reward.

Case Alg. Network Trainify Base

MC DQN
Sigmoid 2 × 16 −112 −116
Sigmoid 2 × 200 −110 −111

PD DDPG ReLU 3 × 128 −131 −133
CP DQN ReLU 3 × 64 500 500

B1 DDPG
Tanh 2 × 20 −120 −120
Tanh 2 × 100 −117 −118

B2 DDPG
Tanh 2 × 20 −29 −26
Tanh 2 × 100 −27 −24

Tora DDPG
Tanh 3 × 100 50 50
Tanh 3 × 200 50 50

Cumulative Reward. We
record the cumulative reward
by running each system for
100 episodes in the simula-
tion environment and calcu-
lating the averages. A larger
reward implies that a sys-
tem has a better performance.
Table 3 shows the cumulative
reward of the six DRL sys-
tems trained in our approach
and conventional approaches,
respectively. All the trained
systems can achieve almost optimal cumulative reward. Among the ten cases,
the systems trained in our approach have better performances in four cases,
equivalent in four cases, and lower in the rest two cases. Note that there is a
difference, which is due to floating point errors, but it is almost negligible. In this
sense, we say that the performance of the systems trained in the two different
approaches is comparable.

Another observation from the results is that a system with a bigger neural
network produces a larger reward. This characteristic is shared by both our
approach and the conventional approaches. Thus, we can increase the size of
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networks and even modify network architectures for better performance in our
approach. Such change will not cause the extra cost to the verification of the
systems because our approach is entirely black-box, using the network only to
output actions for the given abstract state.

Robustness. We demonstrate that the systems trained in our approach can
be more robust than those trained in conventional DRL algorithms when the
perturbation is set in a reasonable range. To examine the robustness, we add
Gaussian noise to the actual states of systems and check the cumulative reward
of the systems under different levels of perturbations. Given an actual state
s = (s1, . . . , sn), we add a noise X1, ...Xn to s and obtain a perturbed state
s′ = (s1 + X1, . . . , sn + Xn), where Xi ∼ N(μ, σ2) for 1 ≤ i ≤ n with μ = 0. We
start with σ = 0 and increase it gradually.

Figure 8 shows the trend of cumulative reward of the systems with the
increase of perturbations. For each system, we evaluate 200 different levels of
perturbations, and for each level of perturbation, we conduct 20 repetitions to
obtain the average and standard deviation of the reward, represented by the solid
lines and shadows in Fig. 8. The general trend is that the cumulative reward dete-
riorate for all the systems that are trained in either of the approaches. The result
is reasonable because the actions computed by neural networks are optimal to
non-perturbed states but may not be optimal to the perturbed ones, leading to
lower reward at some steps. However, we can observe that the decline ratio of
the systems trained in our approach (blue) is smaller than the one trained in
conventional approaches (orange). When σ = 0, the accumulated reward of the
two systems for the same task is almost the same. With the increase of σ, the
performance declines more slowly for the systems trained in our approach than
for those trained in the conventional approaches when σ is in a reasonably small
range. That is because a perturbed state may belong to the same abstract state
as its original state, and thus has the optimal action. In this sense, we say the
perturbation is absorbed by the abstract state and the neural networks become
less sensitive to perturbations. Our additional experiments on these examples
show that a larger abstraction granularity produces a more robust system.

6 Related Work

Our work has been inspired by several related works, which attempted to inte-
grate formal methods and DRL approaches. We classify them into the following
three categories.

Verification-in-the-Loop Training. Verification-in-the-loop training has
been proposed for developing reliable AI-powered systems. A pioneering work
is that Nilsson et al. proposed a correct-by-construction approach for develop-
ing Adaptive Cruise Control (ACC) by first formally defining safety properties
in Linear Temporal Logic (LTL) and then computing the safe domain where
the LTL specification can be enforced [36]. Wang et al. proposed a correct-
by-construction control learning framework by leveraging verification during
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training to formally guarantee that the learned controller satisfies the required
reach-avoid property [49]. Lin et al. proposed an approach for training robust
neural networks for general classification problems by fine-tuning the parameters
in the networks based on the verification result [33]. Our work is a sequel of these
previous works with new features of training on abstract states, counterexample-
guided abstraction and refinement, and supporting more complex properties.

Safe DRL via Formal Methods. Most of the existing approaches for for-
mal verification of DRL systems follow the train-then-verify style. Bacci and
Parker [3] proposed an approach to split an abstract domain into fine-grained
ones and compute their successor abstract states separately for probabilistic
model checking of DRL systems. The approach can reduce the overestimation
and meanwhile construct a transition system upon abstract states, which allows
us to verify more complex liveness and probabilistic properties than safety using
bounded model checking [29] and probabilistic model checking. A criteria of
subdividing an abstract domain is to ensure that all the states in the same sub-
domain have the same action. Identifying these sub-domains is computationally
expensive because it relies on iterative branching and bounding [3]. Further-
more, these approaches need to compute the output range of the neural net-
works on the abstract domains, and therefore are restricted to specific types and
scales of networks. Besides model checking, reachability analysis [13,16,25,46]
has been well studied to ensure the safety of DRL systems. The basic idea is
to over-approximate system dynamics and neural networks to compute over-
estimated safe regions and check whether they have interactions with unsafe
regions. However, large overestimation, limited scalability, and requirements on
specific network architectures are the common restrictions of these approaches.
Online verification [47] and runtime monitoring [18] in formal methods is another
lightweight but effective means to detect potential flaws timely during system
execution. Another direction is to synthesize safe shields [7,54] and barrier func-
tions [53] to prevent agents from adopting dangerous actions. A strong assump-
tion of these methods is that the valid safe states set is given in advance. How-
ever, computing valid safe states set may be computationally intensive, and it is
restricted to safety properties.

Abstraction and State Discretization in DRL. Abstraction in DRL has
gained more attention in recent years. Abel presented a theory of abstraction for
DRL in his dissertation and concluded that learning on abstraction can be more
efficient while preserving near-optimal behaviors [1]. Abel’s abstraction theory
is focused on the systems with finite state space for learning efficiency. Our work
demonstrates another advantage of learning on abstraction, i.e., formal reliability
guarantee to trained systems even with infinite state space.

The state-space abstraction approach in our framework is also inspired by
state space discretization, a technique for discretizing continuous state space, by
which a finer partition of the state-action space is maintained during training for
higher payoff estimates [41,42]. Our work shows that, after being integrated with
formal verification, state-space discretization is also useful in developing highly
reliable DRL systems without loss of performance. In addition, our CEGAR-
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driven approach provides a flexible mechanism for fine-tuning the granularity of
discretization to reach an appropriate balance between system performance and
the scale of state space for formal verification.

7 Discussion and Conclusion

We have presented a novel verification-in-the-loop framework for training and
verifying DRL systems, driven by counterexample-guided abstract and refine-
ment. The framework can be used to train reliable DRL systems with their
desired properties on safeties and functionalities formally verified, without com-
promising system performances. We have implemented a prototype Trainify
and evaluated it by training six classic control problems from public benchmarks.
The experimental results showed that the systems trained in our approach were
more reliable and verifiable than those trained in conventional DRL approaches,
while their performances are comparable or even better than the latter.

Our verification-in-the-loop training approach sheds light on a new search
direction for developing reliable and verifiable AI-empowered systems. It fol-
lows the idea of correctness-by-construction in traditional trustworthy software
system development and makes it possible to take system properties (or require-
ments) into account during the training process. It also reveals that (i) it is not
necessary to learn on actual data to build high-performance (e.g., high reward
and robust) DRL systems, and (ii) abstraction is an effective means to deal with
the challenges in verifying DRL systems and shall be introduced earlier during
training, rather than an ex post facto method in verification.

Our work would inspire more research in this direction. One important
research objective is to investigate appropriate abstractions for the DRL sys-
tems with high dimensions. In our current framework, we adopt the simplest
interval abstraction that suffices to the systems with low dimensions. It would
be interesting to investigate more sophisticated abstractions such as floating-
point polyhedra combined with intervals, designed mainly for neural networks
[43], to those high-dimensional DRL systems. Another direction is to extend our
framework to non-deterministic DRL systems. In the non-deterministic case, a
neural network returns both actions and their corresponding probabilities. We
can associate probabilities to state transitions and obtain a probabilistic model.
The model can be naturally verified using existing probabilistic model checkers
such as Prism [30]. Thus, we believe that our approach is also applicable to those
systems after a slight extension. It would be another piece of our future work.
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Abstract. Neural networks are very successful at detecting patterns in noisy
data, and have become the technology of choice in many fields. However, their
usefulness is hampered by their susceptibility to adversarial attacks. Recently,
many methods for measuring and improving a network’s robustness to adversar-
ial perturbations have been proposed, and this growing body of research has given
rise to numerous explicit or implicit notions of robustness. Connections between
these notions are often subtle, and a systematic comparison between them is miss-
ing in the literature. In this paper we begin addressing this gap, by setting up gen-
eral principles for the empirical analysis and evaluation of a network’s robustness
as a mathematical property—during the network’s training phase, its verification,
and after its deployment. We then apply these principles and conduct a case study
that showcases the practical benefits of our general approach.

Keywords: Neural Networks · Adversarial Training · Robustness · Verification

1 Introduction

Safety and security are critical for many complex systems that use deep neural networks
(DNNs). Unfortunately, due to the opacity of DNNs, these properties are difficult to
ensure. Perhaps the most famous instance of this problem is guaranteeing the robustness
of DNN-based systems against adversarial attacks [5,17]. Intuitively, a neural network
is ε-ball robust around a particular input if, when you move no more than ε away from
that input in the input space, the output does not change much; or, alternatively, the
classification decision that the network gives does not change. Even highly accurate
DNNs will often display only low robustness, and so measuring and improving the
adversarial robustness of DNNs has received significant attention by both the machine
learning and verification communities [7,8,15].

As a result, neural network verification often follows a continuous verification
cycle [9], which involves retraining neural networks with a given verification prop-
erty in mind, as Fig. 1 shows. More generally, such training can be regarded as a way to
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 219–231, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-13185-1_11


220 M. Casadio et al.

impose a formal specification on a DNN; and so, apart from improving its robustness,
it may also contribute to the network’s explainability, and facilitate its verification. Due
to the high level of interest in adversarial robustness, numerous approaches have been
proposed for performing such retraining in recent years, each with its own specific
details. However it is quite unclear what are the benefits that each approach offers, from
a verification point of view.

Fig. 1. Continuous Verification Cycle

The primary goal of this case-
study paper is to introduce a more
holistic methodology, which puts the
verification property in the centre of
the development cycle, and in turn
permits a principled analysis of how
this property influences both training
and verification practices. In particu-
lar, we analyse the verification properties that implicitly or explicitly arise from the
most prominent families of training techniques: data augmentation [14], adversarial
training [5,10], Lipschitz robustness training [1,12], and training with logical con-
straints [4,20]. We study the effect of each of these properties on verifying the DNN in
question.

In Sect. 2, we start with the forward direction of the continuous verification cycle,
and show how the above training methods give rise to logical properties of classifica-
tion robustness (CR), strong classification robustness (SCR), standard robustness (SR)
and Lipschitz robustness (LR). In Sect. 4, we trace the opposite direction of the cycle,
i.e. show how and when the verifier failure in proving these properties can be miti-
gated. However Sect. 3 first gives an auxiliary logical link for making this step. Given
a robustness property as a logical formula, we can use it not just in verification, but
also in attack or property accuracy measurements. We take property-driven attacks as
a valuable tool in our study, both in training and in evaluation. Section 4 makes the
underlying assumption that verification requires retraining: it shows that the verifier’s
success ranges only 0–1.5% for an accurate baseline network. We show how our logical
understanding of robustness properties empowers us in property-driven training and in
verification. We first give abstract arguments why certain properties are stronger than
others or incomparable; and then we use training, attacks and the verifier Marabou to
confirm them empirically. Sections 5 and 6 add other general considerations for setting
up the continuous verification loop and conclude the paper.

2 Existing Training Techniques and Definitions of Robustness

Data Augmentation is a straightforward method for improving robustness via train-
ing [14]. It is applicable to any transformation of the input (e.g. addition of noise, trans-
lation, rotation, scaling) that leaves the output label unchanged. To make the network
robust against such a transformation, one augments the dataset with instances sampled
via the transformation.

More formally, given a neural network N : Rn → R
m, the goal of data augmenta-

tion is to ensure classification robustness, which is defined as follows. Given a training
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dataset input-output pair (x̂,y) and a distance metric | · − · |, for all inputs x within
the ε-ball distance of x̂, we say that N is classification-robust if class y has the largest
score in output N(x).

Definition 1 (Classification robustness).

CR(ε, x̂) � ∀x : |x − x̂| ≤ ε ⇒ argmaxN(x) = y

In order to apply data augmentation, an engineer needs to specify: c1. the value of ε,
i.e. the admissible range of perturbations; c2. the distance metric, which is determined
according to the admissible geometric perturbations; and c3. the sampling method used
to produce the perturbed inputs (e.g., random sampling, adversarial attacks, generative
algorithm, prior knowledge of images).

Classification robustness is straightforward, but does not account for the possibil-
ity of having “uncertain” images in the dataset, for which a small perturbation ideally
should change the class. For datasets that contain a significant number of such images,
attempting this kind of training could lead to a significant reduction in accuracy.

Adversarial training is a current state-of the-art method to robustify a neural net-
work. Whereas standard training tries to minimise loss between the predicted value,
f(x̂), and the true value, y, for each entry (x̂,y) in the training dataset, adversarial
training minimises the loss with respect to the worst-case perturbation of each sam-
ple in the training dataset. It therefore replaces the standard training objective L(x̂,y)
with: max∀x:|x−x̂|≤ε L(x,y). Algorithmic solutions to the maximisation problem that
find the worst-case perturbation has been the subject of several papers. The earliest
suggestion was the Fast Gradient Sign Method (FGSM) algorithm introduced by [5]:

FGSM(x̂) = x̂+ ε · sign(∇xL(x,y))

However, modern adversarial training methods usual rely on some variant of the Pro-
jected Gradient Descent (PGD) algorithm [11] which iterates FGSM:

PGD0(x̂) = x̂; PGDt+1(x̂) = PGDt(FGSM(x̂))

It has been empirically observed that neural networks trained using this family
of methods exhibit greater robustness at the expense of an increased generalisation
error [10,18,21], which is frequently referred to as the accuracy-robustness trade-off
for neural networks (although this effect has been observed to disappear as the size of
the training dataset grows [13]).

In logical terms what is this procedure trying to train for? Let us assume that there’s
some maximum distance, δ, that it is acceptable for the output to be perturbed given
the size of perturbations in the input. This leads us to the following definition, where
|| · − · || is a suitable distance function over the output space:

Definition 2 (Standard robustness).

SR(ε, δ, x̂) � ∀x : |x − x̂| ≤ ε ⇒ ||f(x) − f(x̂)|| ≤ δ
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We note that, just as with data augmentation, choices c1–c3 are still there to be
made, although the sampling methods are usually given by special-purpose FGSM/PGD
heuristics based on computing the loss function gradients.

Training for Lipschitz Robustness. More recently, a third competing definition of
robustness has been proposed: Lipschitz robustness [2]. Inspired by the well-established
concept of Lipschitz continuity, Lipschitz robustness asserts that the distance between
the original output and the perturbed output is at most a constant L times the change in
the distance between the inputs.

Definition 3 (Lipschitz robustness).

LR(ε, L, x̂) � ∀x : |x − x̂| ≤ ε ⇒ ||f(x) − f(x̂)|| ≤ L|x − x̂|
As will be discussed in Sect. 4, this is a stronger requirement than standard robust-
ness. Techniques for training for Lipschitz robustness include formulating it as a semi-
definite programming optimisation problem [12] or including a projection step that
restricts the weight matrices to those with suitable Lipschitz constants [6].

Training with Logical Constraints. Logically, this discussion leads one to ask whether
a more general approach to constraint formulation may exist, and several attempts in
the literature addressed this research question [4,20], by proposing methods that can
translate a first-order logical formula C into a constraint loss function LC . The loss
function penalises the network when outputs do not satisfy a given Boolean constraint,
and universal quantification is handled by a choice of sampling method. Our standard
loss function L is substituted with:

L∗(x̂,y) = αL(x̂,y) + βLC(x̂,y) (1)

where weights α and β control the balance between the standard and constraint loss.
This method looks deceivingly as a generalisation of previous approaches. However,

even given suitable choices for c1–c3, classification robustness cannot be modelled via
a constraint loss in the DL2 [4] framework, as argmax is not differentiable. Instead,
[4] defines an alternative constraint, which we call strong classification robustness:

Definition 4 (Strong classification robustness).

SCR(ε, η, x̂) � ∀x : |x − x̂| ≤ ε ⇒ f(x) ≥ η

which looks only at the prediction of the true class and checks whether it is greater than
some value η (chosen to be 0.52 in their work).

We note that sometimes, the constraints (and therefore the derived loss functions)
refer to the true label y rather than the current output of the network f(x̂), e.g. ∀x :
|x − x̂| ≤ ε ⇒ |f(x) − y| ≤ δ. This leads to scenarios where a network that is robust
around x̂ but gives the wrong prediction, being penalised by LC which on paper is
designed to maximise robustness. Essentially LC is trying to maximise both accuracy
and constraint adherence concurrently. Instead, we argue that to preserve the intended
semantics of α and β it is important to instead compare against the current output of the
network. Of course, this does not work for SCR because deriving the most popular class
from the output f(x̂) requires the argmax operator—the very function that SCR seeks
to avoid using. This is another argument why (S)CR should be avoided if possible.
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3 Robustness in Evaluation, Attack and Verification

Given a particular definition of robustness, a natural question is how to quantify how
close a given network is to satisfying it. We argue that there are three different measures
that one should be interested in: 1. Does the constraint hold? This is a binary measure,
and the answer is either true or false. 2. If the constraint does not hold, how easy is it
for an attacker to find a violation? 3. If the constraint does not hold, how often does the
average user encounter a violation? Based on these measures, we define three concrete
metrics: constraint satisfaction, constraint security, and constraint accuracy.1

Let X be the training dataset, B(x̂, ε) � {x ∈ R
n | |x − x̂| ≤ ε} be the ε-ball

around x̂ and P be the right-hand side of the implication in each of the definitions
of robustness. Let Iφ be the standard indicator function which is 1 if constraint φ(x)
holds and 0 otherwise. The constraint satisfaction metric measures the proportion of
the (finite) training dataset for which the constraint holds.

Definition 5 (Constraint satisfaction).

CSat(X ) =
1

|X |
∑

x̂∈X
I∀x∈B(x̂,ε):P (x)

In contrast, constraint securitymeasures the proportion of inputs in the dataset such that
an attackA is unable to find an adversarial example for constraint P . In our experiments
we use the PGD attack for A, although in general any strong attack can be used.

Definition 6 (Constraint security).

CSec(X ) =
1

|X |
∑

x̂∈X
IP (A(x̂))

Finally, constraint accuracy estimates the probability of a random user coming
across a counter-example to the constraint, usually referred as 1 - success rate in the
robustness literature. Let S(x̂, n) be a set of n elements randomly uniformly sampled
from B(x̂, ε). Then constraint accuracy is defined as:

Definition 7 (Constraint accuracy).

CAcc(X ) =
1

|X |
∑

x̂∈X

⎛

⎝ 1
n

∑

x∈S(x̂,n)

IP (x)

⎞

⎠

Note that there is no relationship between constraint accuracy and constraint security:
an attacker may succeed in finding an adversarial example where random sampling
fails and vice-versa. Also note the role of sampling in this discussion and compare it
to the discussion of the choice c3 in Sect. 2. Firstly, sampling procedures affect both
training and evaluation of networks. But at the same time, their choice is orthogonal

1 Our naming scheme differs from [4] who use the term constraint accuracy to refer to what we
term constraint security. In our opinion, the term constraint accuracy is less appropriate here
than the name constraint security given the use of an adversarial attack.
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to choosing the verification constraint for which we optimise or evaluate. For example,
we measure constraint security with respect to the PGD attack, and this determines the
way we sample; but having made that choice still leaves us to decide which constraint,
SCR, SR, LR, or other we will be measuring as we sample. Constraint satisfaction is
different from constraint security and accuracy, in that it must evaluate constraints over
infinite domains rather than merely sampling from them.

Choosing an Evaluation Metric. It is important to note that for all three evaluation
metrics, one still has to make a choice for constraint P , namely SR, SCR or LR, as
defined in Sect. 2. As constraint security always uses PGD to find input perturbations,
the choice of SR, SCR and LR effectively amounts to us making a judgement of what
an adversarial perturbation consists of: is it a class change as defined by SCR, or is
it a violation of the more nuanced metrics defined by SR and LR? Therefore we will
evaluate constraint security on the SR/SCR/LR constraints using a PGD attack.

For large search spaces in n dimensions, random sampling deployed in constraint
accuracy fails to find the trickier adversarial examples, and usually has deceivingly
high performance: we found 100% and >98% constraint accuracy for SR and SCR,
respectively. We will therefore not discuss these experiments in detail.

4 Relative Comparison of Definitions of Robustness

We now compare the strength of the given definitions of robustness using the intro-
duced metrics. For empirical evaluation, we train networks on FASHION MNIST (or
just FASHION) [19] and a modified version of the GTSRB [16] datasets consisting,
respectively, by 28× 28 and 48× 48 images belonging to 10 classes. The networks
consist of two fully connected layers: the first one having 100 neurons and ReLU as
activation function, and the last one having 10 neurons on which we apply a clamp
function [−100, 100], because the traditional softmax function is not compatible with
constraint verification tools such as Marabou. Taking four different robustness proper-
ties for which we optimise while training (Baseline, LR, SR, SCR), gives us 8 different
networks to train, evaluate and attack. Generally, all trends we observed for the two data
sets were the same, and we put matching graphs in [3] whenever we report a result for
one of the data sets. Marabou [8] was used for evaluating constraint satisfaction.

4.1 Standard and Lipschitz Robustness

Lipschitz robustness is a strictly stronger constraint than standard robustness, in the
sense that when a network satisfies LR(ε, L) then it also satisfies SR(ε, εL). However,
the converse does not hold, as standard robustness does not relate the distances between
the inputs and the outputs. Consequently, there are SR(ε, δ) robust models that are not
LR(ε, L) robust for any L, as for any fixed L one can always make the distance |x− x̂|
arbitrarily small in order to violate the Lipschitz inequality.
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Table 1. Constraint satisfaction results for the Classification, Standard and Lipschitz constraints.
These values are calculated over the test set and represented as %.

FASHION net trained with: GTSRB net trained with:
Baseline SCR SR LR Baseline SCR SR LR

CR satisfaction 1.5 2.0 2.0 34.0 0.5 1.0 3.0 4.5

SR satisfaction 0.5 1.0 65.8 100.0 0.0 0.0 24.0 97.0

LR satisfaction 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 2. Experiments that show how the two networks
trained with LR and SR constraints perform when evalu-
ated against different definitions of robustness underlying
the attack; ε measures the attack strength.

Empirical Significance of the
Conclusions for Constraint
Security. Figure 2 shows an
empirical evaluation of this gen-
eral result. If we train two neu-
ral networks, one with the SR,
and the other with the LR con-
straint, then the latter always
has higher constraint security
against both SR and LR attacks
than the former. It also con-
firms that generally, stronger
constraints are harder to obtain:
whether a network is trained
with SR or LR constraints, it is
less robust against an LR attack
than against any other attack.

Empirical Significance of the
Conclusions for Constraint Sat-
isfaction. Table 1 shows that LR
is very difficult to guarantee as
a verification property, indeed
none of our networks satisfied
this constraint for any image in
the data set. At the same time,
networks trained with LR satisfy
the weaker property SR, for 100% and 97% of images – a huge improvement on the
negligible percentage of robust images for the baseline network! Therefore, knowing
a verification property or mode of attack, one can tailor the training accordingly, and
training with stronger constraint gives better results.

4.2 (Strong) Classification Robustness

Strong classification robustness is designed to over-approximate classification robust-
ness whilst providing a logical loss function with a meaningful gradient. We work under
the assumption that the last layer of the classification network is a softmax layer, and
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therefore the output forms a probability distribution. When η > 0.5 then any network
that satisfies SCR(ε, η) also satisfies CR(ε). For η ≤ 0.5 this relationship breaks down
as the true class may be assigned a probability greater than η but may still not be the
class with the highest probability. We therefore recommended that one only uses value
of η > 0.5 when using strong classification robustness (for example η = 0.52 in [4]).

Fig. 3. Experiments that show how adversarial train-
ing, training with data augmentation, and training
with constraint loss affect standard and classifica-
tion robustness of networks; ε measures the attack
strength.

Empirical Significance of the Con-
clusions for Constraint Security.
Because the CR constraint cannot be
used within a loss function, we use
data augmentation when training to
emulate its effect. First, we confirm
our assumptions about the relative
inefficiency of using data augmen-
tation compared to adversarial train-
ing or training with constraints, see
Fig. 3. Surprisingly, neural networks
trained with data augmentation give
worse results than even the baseline
network.

As previously discussed, random
uniform sampling struggles to find
adversarial inputs in large search-
ing spaces. It is logical to expect
that using random uniform sampling
when training will be less successful
than training with sampling that uses
FGSM or PGD as heuristics. Indeed,
Fig. 3 shows this effect for data aug-
mentation.

One may ask whether the trends
just described would be replicated
for more complex architectures of neural networks. In particular, data augmentation
is known to require larger networks. By replicating the results with a large, 18-layer
convolutional network from [4] (second graph of Fig. 3), we confirm that larger net-
works handle data augmentation better, and that data augmentation affords improved
robustness compared to the baseline. Nevertheless, data augmentation still lags behind
all other modes of constraint-driven training, and thus this major trend remains stable
across network architectures. The same figure also illustrates our point about the relative
strength of SCR compared to CR: a network trained with data augmentation (equivalent
to CR) is more prone to SCR attacks than a network trained with the SCR constraint.

Empirical Significance of the Conclusions for Constraint Satisfaction. Although
Table 1 confirms that training with a stronger property (SCR) does improve the con-
straint satisfaction of a weaker property (CR), the effect is an order of magnitude smaller
than what we observed for LR and SR. Indeed, the table suggests that training with the
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LR constraint gives better results for CR constraint satisfaction. This does not contra-
dict, but does not follow from our theoretical analysis.

4.3 Standard vs Classification Robustness

Given that LR is stronger than SR and SCR is stronger than CR, the obvious question
is whether there is a relationship between these two groups. In short, the answer to this
question is no. In particular, although the two sets of definitions agree on whether a
network is robust around images with high-confidence, they disagree over whether a
network is robust around images with low confidence. We illustrate this with an exam-
ple, comparing SR against CR. We note that a similar analysis holds for any pairing
from the two groups.

Fig. 4. Images from the MNIST
set

The key insight is that standard robustness bounds
the drop in confidence that a neural network can exhibit
after a perturbation, whereas classification robustness
does not. Figure 4a shows two hypothetical images from
the MNIST dataset. Our network predicts that Fig. 4a
has an 85% chance of being a 7. Now consider adding
a small perturbation to the image and consider two dif-
ferent scenarios. In the first scenario the output of the
network for class 7 decreases from 85% to 83% and
therefore the classification stays the same. In the second
scenario the output of the network for class 7 decreases from 85% to 45%, and results
in the classification changing from 7 to 9. When considering the two definitions, a small
change in the output leads to no change in the classification and a large change in the
output leads to a change in classification and so robustness and classification robustness
both agree with each other.

However, now consider Fig. 4b with relatively high uncertainty. In this case the
network is (correctly) less sure about the image, only narrowly deciding that it’s a 7.
Again consider adding a small perturbation. In the first scenario the prediction of the
network changes dramatically with the probability of it being a 7 increasing from 51%
to 91% but leaves the classification unchanged as 7. In the second scenario the output
of the network only changes very slightly, decreasing from 51% to 49% flipping the
classification from 7 to 9. Now, the definitions of SR and CR disagree. In the first
case, adding a small amount of noise has erroneously massively increased the network’s
confidence and therefore the SR definition correctly identifies that this is a problem. In
contrast CR has no problem with this massive increase in confidence as the chosen
output class remains unchanged. Thus, SR and CR agree on low-uncertainty examples,
but CR breaks down and gives what we argue are both false positives and false negatives
when considering examples with high-uncertainty.

Empirical Significance of the Conclusions for Constraint Security. Our empirical
study confirms these general conclusions. Figure 2 shows that depending on the prop-
erties of the dataset, SR may not guarantee SCR. The results in Fig. 5 tell us that using
the SCR constraint for training does not help to increase defences against SR attacks.
A similar picture, but in reverse, can be seen when we optimize for SR but attack with
SCR. Table 1 confirms these trends for constraint satisfaction.
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5 Other Properties of Robustness Definitions

Table 2. A comparison of the different types of robustness studied in this paper. Top half: general
properties. Bottom half: relation to existing machine-learning literature

Definition Standard
robustness

Lipschitz
robustness

Classification
robustness

Strong class.
robustness

Problem domain General General Classification Classification
Interpretability Medium Low High Medium
Globally desirable ✓ ✓ ✗ ✗

Has loss functions ✓ ✓ ✗ ✓

Adversarial training ✓ ✗ ✗ ✗

Data augmentation ✗ ✗ ✓ ✗

Logical-constraint training [4] ✓ ✓ ✗ ✓

Fig. 5. Experiments that show how different choices of a constraint
loss affect standard robustness of neural networks.

We finish with a sum-
mary of further inter-
esting properties of the
four robustness defini-
tions. Table 2 shows a
summary of all compari-
son measures considered
in the paper.

Dataset assumptions con-
cern the distribution of
the training data with
respect to the data man-
ifold of the true distribu-
tion of inputs, and influ-
ence evaluation of robustness. For SR and LR it is, at minimum, desirable for the net-
work to be robust over the entire data manifold. In the most domains the shape of the
manifold is unknown and therefore it is necessary to approximate it by taking the union
of the balls around the inputs in the training dataset. We are not particularly interested
about whether the network is robust in regions of the input space that lie off the data
manifold, but there is no problem if the network is robust in these regions. Therefore
these definitions make no assumptions about the distribution of the training dataset.

This is in contrast to CR and SCR. Rather than requiring that there is only a small
change in the output, they require that there is no change to the classification. This is
only a desirable constraint when the region being considered does not contain a decision
boundary. Consequently when one is training for some form of classification robustness,
one is implicitly making the assumption that the training data points lie away from any
decision boundaries within the manifold. In practice, most datasets for classification
problems assign a single label instead of an entire probability distribution to each input
point, and so this assumption is usually valid. However, for datasets that contain input
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points that may lie close to the decision boundaries, CR and SCR may result in a logi-
cally inconsistent specification.

Interpretability. One of the key selling points of training with logical constraints is
that, by ensuring that the network obeys understandable constraints, it improves the
explainability of the neural network. Each of the robustness constraints encode that
“small changes to the input only result in small changes to the output”, but the inter-
pretability of each definition is also important.

All of the definitions share the relatively interpretable ε parameter, which measures
how large a perturbation from the input is acceptable. Despite the other drawbacks
discussed so far, CR is inherently the most interpretable as it has no second parameter. In
contrast, SR and SCR require extra parameters, δ and η respectively, which measure the
allowable deviation in the output. Their addition makes these models less interpretable.

Finally we argue that, although LR is the most desirable constraint, it is also the
least interpretable. Its second parameter L measures the allowable change in the out-
put as a proportion of the allowable change in the input. It therefore requires one to
not only have an interpretation of distance for both the input and output spaces, but to
be able to relate them. In most domains, this relationship simply does not exist. Con-
sider the MNIST dataset, both the commonly used notion of pixel-wise distance used
in the input set, although crude, and the distance between the output distributions are
both interpretable. However, the relationship between them is not. For example, what
does allowing the distance between the output probability distributions being no more
than twice the distance between the images actually mean? This therefore highlights a
common trade-off between complexity of the constraint and its interpretability.

6 Conclusions

These case studies have demonstrated the importance of emancipating the study of
desirable properties of neural networks from a concrete training method, and study-
ing these properties in an abstract mathematical way. For example, we have discovered
that some robustness properties can be ordered by logical strength and some are incom-
parable. Where ordering is possible, training for a stronger property helps in verifying
a weaker property. Some of the stronger properties, such as Lipschitz robustness, are
not yet feasible for the modern DNN solvers, such as Marabou [8]. Moreover, we show
that the logical strength of the property may not guarantee other desirable properties,
such as interpretability. Some of these findings lead to very concrete recommendations,
e.g.: it is best to avoid CR and SCR as they may lead to inconsistencies; when using LR
and SR, one should use stronger property (LR) for training in order to be successful in
verifying a weaker one (SR). In other cases, the distinctions that we make do not give
direct prescriptions, but merely discuss the design choices and trade-offs.

This paper also shows that constraint security, a measure intermediate between con-
straint accuracy and constraint satisfaction, is a useful tool in the context of tuning the
continuous verification loop. It is more efficient to measure and can show more nuanced
trends than constraint satisfaction. It can be used to tune training parameters and build
hypotheses which we ultimately confirm with constraint satisfaction.
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We hope that this study will contribute towards establishing a solid methodology
for continuous verification, by setting up some common principles to unite verification
and machine learning approaches to DNN robustness.
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Abstract. We present LT-PDR, a lattice-theoretic generalization of
Bradley’s property directed reachability analysis (PDR) algorithm. LT-
PDR identifies the essence of PDR to be an ingenious combination of veri-
fication and refutation attempts based on the Knaster–Tarski and Kleene
theorems. We introduce four concrete instances of LT-PDR, derive their
implementation from a generic Haskell implementation of LT-PDR, and
experimentally evaluate them. We also present a categorical structural
theory that derives these instances.

Keywords: Property directed reachability analysis · Model checking ·
Lattice theory · Fixed point theory · Category theory

1 Introduction

Property directed reachability (PDR) (also called IC3 ) introduced in [9,13] is a
model checking algorithm for proving/disproving safety problems. It has been
successfully applied to software and hardware model checking, and later it has
been extended in several directions, including fbPDR [25,26] that uses both
forward and backward predicate transformers and PrIC3 [6] for the quantitative
safety problem for probabilistic systems. See [14] for a concise overview.

The original PDR assumes that systems are given by binary predicates repre-
senting transition relations. The PDR algorithm maintains data structures called
frames and proof obligations—these are collections of predicates over states—and
updates them. While this logic-based description immediately yields automated
tools using SAT/SMT solvers, it limits target systems to qualitative and nonde-
terministic ones. This limitation was first overcome by PrIC3 [6] whose target is
probabilistic systems. This suggests room for further generalization of PDR.
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In this paper, we propose the first lattice theory-based generalization of the
PDR algorithm; we call it LT-PDR. This makes the PDR algorithm apply to a
wider class of safety problems, including qualitative and quantitative. We also
derive a new concrete extension of PDR, namely one for Markov reward models.

We implemented the general algorithm LT-PDR in Haskell, in a way that
maintains the theoretical abstraction and clarity. Deriving concrete instances
for various types of systems is easy (for Kripke structures, probabilistic systems,
etc.). We conducted an experimental evaluation, which shows that these easily-
obtained instances have at least reasonable performance.

Preview of the Theoretical Contribution. We generalize the PDR algo-
rithm so that it operates over an arbitrary complete lattice L. This generaliza-
tion recasts the PDR algorithm to solve a general problem μF ≤? α of over-
approximating the least fixed point of an ω-continuous function F : L → L by a
safety property α. This lattice-theoretic generalization signifies the relationship
between the PDR algorithm and the theory of fixed points. This also allows us
to incorporate quantitative predicates suited for probabilistic verification.

More specifically, we reconstruct the original PDR algorithm as a combina-
tion of two constituent parts. They are called positive LT-PDR and negative
LT-PDR. Positive LT-PDR comes from a witness-based proof method by the
Knaster–Tarski fixed point theorem, and aims to verify μF ≤? α. In contrast,
negative LT-PDR comes from the Kleene fixed point theorem and aims to refute
μF ≤? α. The two algorithms build up witnesses in an iterative and nondeter-
ministic manner, where nondeterminism accommodates guesses and heuristics.
We identify the essence of PDR to be an ingenious combination of these two
algorithms, in which intermediate results on one side (positive or negative) give
informed guesses on the other side. This is how we formulate LT-PDR in Sect. 3.3.

We discuss several instances of our general theory of PDR. We discuss three
concrete settings: Kripke structures (where we obtain two instances of LT-PDR),
Markov decision processes (MDPs), and Markov reward models. The two in the
first setting essentially subsume many existing PDR algorithms, such as the
original PDR [9,13] and Reverse PDR [25,26], and the one for MDPs resembles
PrIC3 [6]. The last one (Markov reward models) is a new algorithm that fully
exploits the generality of our framework.

In fact, there is another dimension of theoretical generalization: the deriva-
tion of the above concrete instances follows a structural theory of state-based
dynamics and predicate transformers. We formulate the structural theory in the
language of category theory [3,23]—using especially coalgebras [17] and fibra-
tions [18]—following works such as [8,15,21,28]. The structural theory tells us
which safety problems arise under what conditions; it can therefore suggest that
certain safety problems are unlikely to be formulatable, too. The structural the-
ory is important because it builds a mathematical order in the PDR literature,
in which theoretical developments tend to be closely tied to implementation and
thus theoretical essences are often not very explicit. For example, the theory is
useful in classifying a plethora of PDR-like algorithms for Kripke structures (the
original, Reverse PDR, fbPDR, etc.). See Sect. 5.1.
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We present the above structural theory in Sect. 4 and briefly discuss its use in
the derivation of concrete instances in Sect. 5. We note, however, that this cate-
gorical theory is not needed for reading and using the other parts of the paper.

There are other works on generalization of PDR [16,24], but our identification
of the interplay of Knaster–Tarski and Kleene is new. They do not accommodate
probabilistic verification, either. See [22, Appendix A] for further discussions.

Preliminaries. Let (L,≤) be a poset. (L,≤)op denotes the opposite poset (L,≥
). Note that if (L,≤) is a complete lattice then so is (L,≤)op. An ω-chain (resp.
ωop-chain) in L is an N-indexed family of increasing (resp. decreasing) elements
in L. A monotone function F : L → L is ω-continuous (resp. ωop-continuous) if
F preserves existing suprema of ω-chains (resp. infima of ωop-chains).

2 Fixed-points in Complete Lattices

Let (L,≤) be a complete lattice and F : L → L be a monotone function. When
we analyze fixed points of F , pre/postfixed points play important roles.

Definition 2.1. A prefixed point of F is an element x ∈ L satisfying Fx ≤ x.
A postfixed point of F is an element x ∈ L satisfying x ≤ Fx. We write Pre(F )
and Post(F ) for the set of prefixed points and postfixed points of F , respectively.

The following results are central in fixed point theory. They allow us to
under/over-approximate the least/greatest fixed points.

Theorem 2.2. A monotone endofunction F on a complete lattice (L,≤) has
the least fixed point μF and the greatest fixed point νF . Moreover,

1. (Knaster–Tarski [30]) The set of fixed points forms a complete lattice. Fur-
thermore, μF =

∧{x ∈ L | Fx ≤ x} and νF =
∨{x ∈ L | x ≤ Fx}.

2. (Kleene, see e.g. [5]) If F is ω-continuous, μF =
∨

n∈N
Fn⊥. Dually, if F is

ωop-continuous, νF =
∧

n∈N
Fn�. �	

Theorem 2.2.2 is known to hold for arbitrary ω-cpos (complete lattices are
their special case). A generalization of Theorem 2.2.2 is the Cousot–Cousot char-
acterization [11], where F is assumed to be monotone (but not necessarily ω-
continuous) and we have μF = Fκ⊥ for a sufficiently large, possibly transfinite,
ordinal κ. In this paper, for the algorithmic study of PDR, we assume the ω-
continuity of F . Note that ω-continuous F on a complete lattice is necessarily
monotone.

We call the ω-chain ⊥ ≤ F⊥ ≤ · · · the initial chain of F and the ωop-chain
� ≥ F� ≥ · · · the final chain of F . These appear in Theorem 2.2.2.

Theorem 2.2.1 and 2.2.2 yield the following witness notions for proving and
disproving μF ≤ α, respectively.

Corollary 2.3. Let (L,≤) be a complete lattice and F : L → L be ω-continuous.

1. (KT) μF ≤ α if and only if there is x ∈ L such that Fx ≤ x ≤ α.
2. (Kleene) μF 
≤ α if and only if there is n ∈ N and x ∈ L such that x ≤ Fn⊥

and x 
≤ α. �	
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By Corollary 2.3.1, proving μF ≤ α is reduced to searching for x ∈ L such
that Fx ≤ x ≤ α. We call such x a KT (positive) witness. In contrast, by
Corollary 2.3.2, disproving μF ≤ α is reduced to searching for n ∈ N and x ∈ L
such that x ≤ Fn⊥ and x 
≤ α. We call such x a Kleene (negative) witness.

Notation 2.4. We shall use lowercase (Roman and Greek) letters for elements
of L (such as α, x ∈ L), and uppercase letters for (finite or infinite) sequences of
L (such as X ∈ L∗ or Lω). The i-th (or (i − j)-th when subscripts are started
from j) element of a sequence X is designated by a subscript: Xi ∈ L.

3 Lattice-Theoretic Reconstruction of PDR

Towards the LT-PDR algorithm, we first introduce two simpler algorithms, called
positive LT-PDR (Sect. 3.1) and negative LT-PDR (Sect. 3.2). The target prob-
lem of the LT-PDR algorithm is the following:

Definition 3.1 (the LFP-OA problem μF ≤? α). Let L be a complete lat-
tice, F : L → L be ω-continuous, and α ∈ L. The lfp over-approximation
(LFP-OA) problem asks if μF ≤ α holds; the problem is denoted by μF ≤? α.

Example 3.2. Consider a transition system, where S be the set of states, ι ⊆ S
be the set of initial states, δ : S → PS be the transition relation, and α ⊆ S be
the set of safe states. Then letting L := PS and F := ι∪⋃

s∈(−) δ(s), the lfp over-
approximation problem μF ≤? α is the problem whether all reachable states are
safe. It is equal to the problem studied by the conventional IC3/PDR [9,13].

Positive LT-PDR iteratively builds a KT witness in a bottom-up manner
that positively answers the LFP-OA problem, while negative LT-PDR iteratively
builds a Kleene witness for the same LFP-OA problem. We shall present these
two algorithms as clear reflections of two proof principles (Corollary 2.3), each
of which comes from the fundamental Knaster–Tarski and Kleene theorems.

The two algorithms build up witnesses in an iterative and nondeterministic
manner. The nondeterminism is there for accommodating guesses and heuristics.
We identify the essence of PDR to be an ingenious combination of these two
algorithms, in which intermediate results on one side (positive or negative) give
informed guesses on the other side. This way, each of the positive and negative
algorithms provides heuristics in resolving the nondeterminism in the execution
of the other. This is how we formulate the LT-PDR algorithm in Sect. 3.3.

The dual of LFP-OA problem is called the gfp-under-approximation problem
(GFP-UA): the GFP-UA problem for a complete lattice L, an ωop-continuous
function F : L → L and α ∈ L is whether the inequality α ≤ νF holds or
not, and is denoted by α ≤? νF . It is evident that the GFP-UA problem for
(L,F, α) is equivalent to the LFP-OA problem for (Lop, F, α). This suggests the
dual algorithm called LT-OpPDR for GFP-UA problem. See Remark 3.24 later.
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3.1 Positive LT-PDR: Sequential Positive Witnesses

We introduce the notion of KTω witness—a KT witness (Corollary 2.3) con-
structed in a sequential manner. Positive LT-PDR searches for a KTω witness
by growing its finitary approximations (called KT sequences).

Let L be a complete lattice. We regard each element x ∈ L as an abstract
presentation of a predicate on states. The inequality x ≤ y means that the
predicate x is stronger than the predicate y. We introduce the complete lattice
[n,L] of increasing chains of length n ∈ N, whose elements are (X0 ≤ · · · ≤ Xn−1)
in L equipped with the element-wise order. We similarly introduce the complete
lattice [ω,L] of ω-chains in L. We lift F : L → L to F# : [ω,L] → [ω,L] and
F#

n : [n,L] → [n,L] (for n ≥ 2) as follows. Note that the entries are shifted.

F#(X0 ≤ X1 ≤ · · · ) := (⊥ ≤ FX0 ≤ FX1 ≤ · · · )
F#

n (X0 ≤ · · · ≤ Xn−1) := (⊥ ≤ FX0 ≤ · · · ≤ FXn−2)
(1)

Definition 3.3 (KTω witness). Let L,F, α be as in Definition 3.1. Define
Δα := (α ≤ α ≤ · · · ). A KTω witness is X ∈ [ω,L] such that F#X ≤ X ≤ Δα.

Theorem 3.4. Let L,F, α be as in Definition 3.1. There exists a KT witness
(Corollary 2.3) if and only if there exists a KTωwitness. �	

Concretely, a KT witness x yields a KTω witness x ≤ x ≤ · · · ; a KTω witness
X yields a KT witness

∨
n∈ω Xn. A full proof (via Galois connections) is in [22].

The initial chain ⊥ ≤ F⊥ ≤ · · · is always a KTω witness for μF ≤ α. There
are other KTω witnesses whose growth is accelerated by some heuristic guesses—
an extreme example is x ≤ x ≤ · · · with a KT witness x. KTω witnesses embrace
the spectrum of such different sequential witnesses for μF ≤ α, those which mix
routine constructions (i.e. application of F ) and heuristic guesses.

Definition 3.5 (KT sequence). Let L,F, α be as in Definition 3.1. A KT
sequence for μF ≤? α is a finite chain (X0 ≤ · · · ≤ Xn−1), for n ≥ 2, satisfying

1. Xn−2 ≤ α; and
2. X is a prefixed point of F#

n , that is, FXi ≤ Xi+1 for each i ∈ [0, n − 2].

A KT sequence (X0 ≤ · · · ≤ Xn−1) is conclusive if Xj+1 ≤ Xj for some j.

KT sequences are finite by definition. Note that the upper bound α is imposed on
all Xi but Xn−1. This freedom in the choice of Xn−1 offers room for heuristics,
one that is exploited in the combination with negative LT-PDR (Sect. 3.3).

We take KT sequences as finite approximations of KTω witnesses. This view
shall be justified by the partial order () between KT sequences defined below.

Definition 3.6 (order  between KT sequences). We define a partial order
relation  on KT sequences as follows: (X0, . . . , Xn−1)  (X ′

0, . . . , X
′
m−1) if

n ≤ m and Xj ≥ X ′
j for each 0 ≤ j ≤ n − 1.

The order Xj ≥ X ′
j represents that X ′

j is a stronger predicate (on states)
than Xj . Therefore X  X ′ expresses that X ′ is a longer and stronger/more
determined chain than X. We obtain KTω witnesses as their ω-superma.
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Theorem 3.7. Let L,F, α be as in Definition 3.1. The set of KT sequences,
augmented with the set of KTω witnesses {X ∈ [ω,L] | F#X ≤ X ≤ Δα}
and ordered by the natural extension of , is an ω-cpo. In this ω-cpo, each
KTωwitness X is represented as the suprema of an ω-chain of KT sequences,
namely X =

∨
n≥2 X|n where X|n ∈ [n,L] is the length n prefix of X. �	

Proposition 3.8. Let L,F, α be as in Definition 3.1. There exists a KTω wit-
ness if and only if there exists a conclusive KT sequence.

Proof. (⇒): If there exists a KTω witness, μF ≤ α holds by Corollary 2.3 and
Theorem 3.4. Therefore, the “informed guess” (μF ≤ μF ) gives a conclusive
KT sequence. (⇐): When X is a conclusive KT sequence with Xj = Xj+1,
X0 ≤ · · · ≤ Xj = Xj+1 = · · · is a KTω witness. �	
The proposition above yields the following partial algorithm that aims to answer
positively to the LFP-OA problem. It searches for a conclusive KT sequence.

Definition 3.9 (positive LT-PDR). Let L,F, α be as in Definition 3.1. Pos-
itive LT-PDR is the algorithm shown in Algorithm 1, which says ‘True’ to the
LFP-OA problem μF ≤? α if successful.

The rules are designed by the following principles.
Valid is applied when the current X is conclusive.
Unfold extends X with �. In fact, we can use any element x satisfying

Xn−1 ≤ x and FXn−1 ≤ x in place of � (by the application of Induction with
x). The condition Xn−1 ≤ α is checked to ensure that the extended X satisfies
the condition in Definition 3.5.1.

Induction strengthens X, replacing the j-th element with its meet with x.
The first condition Xk 
≤ x ensures that this rule indeed strengthens X, and the
second condition F (Xk−1 ∧x) ≤ x ensures that the strengthened X satisfies the
condition in Definition 3.5.2, that is, F#

n X ≤ X (see the proof in [22]).

Theorem 3.10. Let L,F, α be as in Definition 3.1. Then positive LT-PDR is
sound, i.e. if it outputs ‘True’ then μF ≤ α holds.

Moreover, assume μF ≤ α is true. Then positive LT-PDR is weakly termi-
nating (meaning that suitable choices of x when applying Induction make the
algorithm terminate). �	

The last “optimistic termination” is realized by the informed guess μF as x
in Induction. To guarantee the termination of LT-PDR, it suffices to assume
that the complete lattice L is well-founded (no infinite decreasing chain exists in
L) and there is no strictly increasing ω-chain under α in L, although we cannot
hope for this assumption in every instance (Sect. 5.2, 5.3).

Lemma 3.11. Let L,F, α be as in Definition 3.1. If μF ≤ α, then for any KT
sequence X, at least one of the three rules in Algorithm 1 is enabled.

Moreover, for any KT sequence X, let X ′ be obtained by applying either
Unfold or Induction. Then X  X ′ and X 
= X ′. �	
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Input : An instance (μF ≤? α) of the LFP-OA problem in L
Output : ‘True’ with a conclusive KT sequence
Data: a KT sequence X = (X0 ≤ · · · ≤ Xn−1)
Initially: X := (⊥ ≤ F⊥)
repeat (do one of the following)

Valid If Xj+1 ≤ Xj for some j < n − 1, return ‘True’ with the conclusive
KT sequence X.

Unfold If Xn−1 ≤ α, let X := (X0 ≤ · · · ≤ Xn−1 ≤ �). �
Induction If some k ≥ 2 and x ∈ L satisfy Xk �≤ x and F (Xk−1 ∧ x) ≤ x,
let X := X[Xj := Xj ∧ x]2≤j≤k.

until any return value is obtained ;
Algorithm 1: positive LT-PDR

Input : An instance (μF ≤? α) of the LFP-OA problem in L
Output : ‘False’ with a conclusive Kleene sequence
Data: a Kleene sequence C = (C0, . . . , Cn−1)
Initially: C := ()
repeat (do one of the following)

Candidate Choose x ∈ L such that x �≤ α, and let C := (x).
Model If C0 = ⊥, return ‘False’ with the conclusive Kleene sequence C.
Decide If there exists x such that C0 ≤ Fx, then let C := (x, C0, . . . , Cn−1).

until any return value is obtained ;
Algorithm 2: negative LT-PDR

Input : An instance (μF ≤? α) of the LFP-OA problem in L
Output : ‘True’ with a conclusive KT sequence, or ‘False’ with a conclusive

Kleene sequence
Data: (X; C) where X is a KT sequence (X0 ≤ · · · ≤ Xn−1), and C is a Kleene

sequence (Ci, Ci+1, . . . , Cn−1) (C is empty if n = i).
Initially: (X; C) := (⊥ ≤ F⊥; () )
repeat (do one of the following)

Valid If Xj+1 ≤ Xj for some j < n − 1, return ‘True’ with the conclusive
KT sequence X.

Unfold If Xn−1 ≤ α, let (X; C) := (X0 ≤ · · · ≤ Xn−1 ≤ �; ()).
Induction If some k ≥ 2 and x ∈ L satisfy Xk �≤ x and F (Xk−1 ∧ x) ≤ x,
let (X; C) := (X[Xj := Xj ∧ x]2≤j≤k; C).

Candidate If C = () and Xn−1 �≤ α, choose x ∈ L such that x ≤ Xn−1 and
x �≤ α, and let (X; C) := (X; (x)).

Model If C1 is defined, return ‘False’ with the conclusive Kleene sequence
(⊥, C1, . . . , Cn−1).

Decide If Ci ≤ FXi−1, choose x ∈ L satisfying x ≤ Xi−1 and Ci ≤ Fx, and
let (X; C) := (X; (x, Ci, . . . , Cn−1)).

Conflict If Ci �≤ FXi−1, choose x ∈ L satisfying Ci �≤ x and
F (Xi−1 ∧ x) ≤ x, and let
(X; C) := (X[Xj := Xj ∧ x]2≤j≤i; (Ci+1, . . . , Cn−1)).

until any return value is obtained ;
Algorithm 3: LT-PDR
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Theorem 3.12. Let L,F, α be as in Definition 3.1. Assume that ≤ in L is
well-founded and μF ≤ α. Then, any non-terminating run of positive LT-PDR
converges to a KTω witness (meaning that it gives a KTω witness in ω-steps).
Moreover, if there is no strictly increasing ω-chain bounded by α in L, then
positive LT-PDR is strongly terminating. �	

3.2 Negative PDR: Sequential Negative Witnesses

We next introduce Kleene sequences as a lattice-theoretic counterpart of proof
obligations in the standard PDR. Kleene sequences represent a chain of sufficient
conditions to conclude that certain unsafe states are reachable.

Definition 3.13 (Kleene sequence). Let L,F, α be as in Definition 3.1.
A Kleene sequence for the LFP-OA problem μF ≤? α is a finite sequence
(C0, . . . , Cn−1), for n ≥ 0 (C is empty if n = 0), satisfying

1. Cj ≤ FCj−1 for each 1 ≤ j ≤ n − 1;
2. Cn−1 
≤ α.

A Kleene sequence (C0, . . . , Cn−1) is conclusive if C0 = ⊥. We may use i (0 ≤
i ≤ n) instead of 0 as the starting index of the Kleene sequence C.

When we have a Kleene sequence C = (C0, . . . , Cn−1), the chain of implications
(Cj ≤ F j⊥) =⇒ (Cj+1 ≤ F j+1⊥) hold for 0 ≤ j < n − 1. Therefore when C is
conclusive, Cn−1 is a Kleene witness (Corollary 2.3.2).

Proposition 3.14. Let L,F, α be as in Definition 3.1. There exists a Kleene
(negative) witness if and only if there exists a conclusive Kleene sequence.

Proof. (⇒): If there exists a Kleene witness x such that x ≤ Fn⊥ and x 
≤ α,
(⊥, F⊥, . . . , Fn⊥) is a conclusive Kleene sequence. (⇐): Assume there exists a
conclusive Kleene sequence C. Then Cn−1 satisfies Cn−1 ≤ Fn−1⊥ and Cn−1 
≤
α because of Cn−1 ≤ FCn−2 ≤ · · · ≤ Fn−1C0 = Fn−1⊥ and Definition 3.13.2. �	

This proposition suggests the following algorithm to negatively answer to the
LFP-OA problem. It searches for a conclusive Kleene sequence. The algorithm
updates a Kleene sequence until its first component becomes ⊥.

Definition 3.15 (negative LT-PDR). Let L,F, α be as in Definition 3.1.
Negative LT-PDR is the algorithm shown in Algorithm 2, which says ‘False’
to the LFP-OA problem μF ≤? α if successful.

The rules are designed by the following principles.
Candidate initializes C with only one element x. The element x has to be

chosen such that x 
≤ α to ensure Definition 3.13.2.
Model is applied when the current Kleene sequence C is conclusive.
Decide prepends x to C. The condition C0 ≤ Fx ensures Definition 3.13.1.

Theorem 3.16. Let L,F, α be as in Definition 3.1.

1. Negative LT-PDR is sound, i.e. if it outputs ‘False’ then μF 
≤ α.
2. Assume μF 
≤ α is true. Then negative LT-PDR is weakly terminating (mean-

ing that suitable choices of x when applying rules Candidate and Decide
make the algorithm terminate). �	
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3.3 LT-PDR: Integrating Positive and Negative

We have introduced two simple PDR algorithms, called positive LT-PDR
(Sect. 3.1) and negative LT-PDR (Sect. 3.2). They are so simple that they have
potential inefficiencies. Specifically, in positive LT-PDR, it is unclear that how
we choose x ∈ L in Induction, while in negative LT-PDR, it may easily diverge
because the rules Candidate and Decide may choose x ∈ L that would not
lead to a conclusive Kleene sequence. We resolve these inefficiencies by combin-
ing positive LT-PDR and negative LT-PDR. The combined PDR algorithm is
called LT-PDR, and it is a lattice-theoretic generalization of conventional PDR.

Note that negative LT-PDR is only weakly terminating. Even worse, it is
easy to make it diverge—after a choice of x in Candidate or Decide such that
x 
≤ μF , no continued execution of the algorithm can lead to a conclusive Kleene
sequence. For deciding μF ≤? α efficiently, therefore, it is crucial to detect such
useless Kleene sequences.

The core fact that underlies the efficiency of PDR is the following proposition,
which says that a KT sequence (in positive LT-PDR) can quickly tell that a
Kleene sequence (in negative LT-PDR) is useless. This fact is crucially used for
many rules in LT-PDR (Definition 3.20).

Proposition 3.17. Let C = (Ci, . . . , Cn−1) be a Kleene sequence (2 ≤ n, 0 <
i ≤ n − 1) and X = (X0 ≤ · · · ≤ Xn−1) be a KT sequence. Then

1. Ci 
≤ Xi implies that C cannot be extended to a conclusive one, that is, there
does not exist C0, . . . , Ci−1 such that (C0, . . . , Cn−1) is conclusive.

2. Ci 
≤ FXi−1 implies that C cannot be extended to a conclusive one.
3. There is no conclusive Kleene sequence with length n − 1. �	

The proof relies on the following lemmas.

Lemma 3.18. Any KT sequence (X0 ≤ · · · ≤ Xn−1) over-approximates the
initial sequence: F i⊥ ≤ Xi holds for any i such that 0 ≤ i ≤ n − 1. �	
Lemma 3.19. Let C = (Ci, . . . , Cn−1) be a Kleene sequence (0 < i ≤ n − 1)
and (X0 ≤ · · · ≤ Xn−1) be a KT sequence. The following satisfy 1 ⇔ 2 ⇒ 3.

1. The Kleene sequence C can be extended to a conclusive one.
2. Ci ≤ F i⊥.
3. Ci ≤ F jXi−j for each j with 0 ≤ j ≤ i. �	

Using the above lattice-theoretic properties, we combine positive and nega-
tive LT-PDRs into the following LT-PDR algorithm. It is also a lattice-theoretic
generalization of the original PDR algorithm. The combination exploits the
mutual relationship between KT sequences and Kleene sequences, exhibited as
Proposition 3.17, for narrowing down choices in positive and negative LT-PDRs.

Definition 3.20 (LT-PDR). Given a complete lattice L, an ω-continuous
function F : L → L, and an element α ∈ L, LT-PDR is the algorithm shown in
Algorithm 3 for the LFP-OA problem μF ≤? α.
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The rules are designed by the following principles.
(Valid, Unfold, and Induction): These rules are almost the same as in

positive LT-PDR. In Unfold, we reset the Kleene sequence because of Propo-
sition 3.17.3. Occurrences of Unfold punctuate an execution of the algorithm:
between two occurrences of Unfold, a main goal (towards a negative conclusion)
is to construct a conclusive Kleene sequence with the same length as the X.

(Candidate, Model, and Decide): These rules have many similarities to
those in negative LT-PDR. Differences are as follows: the Candidate and
Decide rules impose x ≤ Xi on the new element x in (x,Ci+1, . . . , Cn−1) because
Proposition 3.17.1 tells us that other choices are useless. In Model, we only need
to check whether C1 is defined instead of C0 = ⊥. Indeed, since C1 is added in
Candidate or Decide, C1 ≤ X1 = F⊥ always holds. Therefore, 2 ⇒ 1 in
Lemma 3.19 shows that (⊥, C1, . . . , Cn−1) is conclusive.

(Conflict): This new rule emerges from the combination of positive and neg-
ative LT-PDRs. This rule is applied when Ci 
≤ FXi−1, which confirms that the
current C cannot be extended to a conclusive one (Proposition 3.17.2). There-
fore, we eliminate Ci from C and strengthen X so that we cannot choose Ci

again, that is, so that Ci 
≤ (Xi ∧x). Let us explain how X is strengthened. The
element x has to be chosen so that Ci 
≤ x and F (Xi−1 ∧ x) ≤ x. The former
dis-inequality ensures the strengthened X satisfies Ci 
≤ (Xi ∧ x), and the latter
inequality implies F (Xi−1 ∧ x) ≤ x. One can see that Conflict is Induction
with additional condition Ci 
≤ x, which enhances so that the search space for x
is narrowed down using the Kleene sequence C.

Canonical choices of x ∈ L in Candidate, Decide, and Conflict are x :=
Xn−1, x := Xi−1, and x := FXi−1, respectively. However, there can be cleverer
choices; e.g. x := S \ (Ci \ FXi−1) in Conflict when L = PS.

Lemma 3.21. Each rule of LT-PDR, when applied to a pair of a KT and a
Kleene sequence, yields a pair of a KT and a Kleene sequence. �	
Theorem 3.22 (correctness). LT-PDR is sound, i.e. if it outputs ‘True’ then
μF ≤ α holds, and if it outputs ‘False’ then μF 
≤ α holds. �	

Many existing PDR algorithms ensure termination if the state space is finite.
A general principle behind is stated below. Note that it rarely applies to infinitary
or quantitative settings, where we would need some abstraction for termination.

Proposition 3.23 (termination). LT-PDR terminates regardless of the order
of the rule-applications if the following conditions are satisfied.

1. Valid and Model rules are immediately applied if applicable.
2. (L,≤) is well-founded.
3. Either of the following is satisfied: a) μF ≤ α and (L,≤) has no strictly

increasing ω-chain bounded by α, or b) μF 
≤ α. �	
Cond 1 is natural: it just requires LT-PDR to immediately conclude ‘True’ or
‘False’ if it can. Cond. 2–3 are always satisfied when L is finite.
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Table 1. Categorical modeling of state-based dynamics and predicate transformers

a transition system as a coalgebra [17] in the base category B of sets and functions

objects X, Y, . . . in B sets (in our examples where B = Set)

an arrow f : X → Y in B a function (in our examples where B = Set)

a functor G : B → B

a transition type(
G = P for Kripke structures (§5.1),
G = (D(−) + 1)Act for MDPs (§5.2), etc.

)

a coalgebra δ : S → GS in B [17] a transition system (Kripke structure, MDP, etc.)

a fibration p : E → B [18] that equips sets in B with predicates

the fiber category ES over S in B the lattice of predicates over a set S
the pullback functor l∗ : EY → EX

for l : X → Y in B

substitution P (y) 
→ P (l(x)) in
predicates P ∈ EY over Y

a lifting Ġ : E → E of G along p
logical interpretation of the transition type G
(specifies e.g. the may vs. must modalities)

the predicate transformer, whose fixed points are of our interest

the composite δ∗Ġ : ES → ES
the predicate transformer associated with

the transition system δ

Theorem 3.22 and Proposition 3.23 still hold if Induction rule is dropped.
However, the rule can accelerate the convergence of KT sequences and improve
efficiency.

Remark 3.24 (LT-OpPDR). The GFP-UA problem α ≤? νF is the dual of LFP-
OA, obtained by opposing the order ≤ in L. We can also dualize the LT-PDR
algorithm (Algorithm 3), obtaining what we call the LT-OpPDR algorithm for
GFP-UA. Moreover, we can express LT-OpPDR as LT-PDR if a suitable invo-
lution ¬ : L → Lop is present. See [22, Appendix B] for further details; see also
Proposition 4.3.

4 Structural Theory of PDR by Category Theory

Before we discuss concrete instances of LT-PDR in Sect. 5, we develop a struc-
tural theory of transition systems and predicate transformers as a basis of LT-
PDR. The theory is formulated in the language of category theory [3,17,18,23].
We use category theory because 1) categorical modeling of relevant notions is
well established in the community (see e.g. [2,8,17,18,27]), and 2) it gives us the
right level of abstraction that accommodates a variety of instances. In particular,
qualitative and quantitative settings are described in a uniform manner.

Our structural theory (Sect. 4) serves as a backend, not a frontend. That is,

– the theory in Sect. 4 is important in that it explains how the instances in
Sect. 5 arise and why others do not, but

– the instances in Sect. 5 are described in non-categorical terms, so readers
who skipped Sect. 4 will have no difficulties following Sect. 5 and using those
instances.
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4.1 Categorical Modeling of Dynamics and Predicate Transformers

Our interests are in instances of the LFP-OA problem μF ≤? α (Definition 3.1)
that appear in model checking. In this context, 1) the underlying lattice L is
that of predicates over a state space, and 2) the function F : L → L arises from
the dynamic/transition structure, specifically as a predicate transformer. The
categorical notions in Table 1 model these ideas (state-based dynamics, predicate
transformers). This modeling is well-established in the community.

Our introduction of Table 1 here is minimal, due to the limited space. See
[22, Appendix C] and the references therein for more details.

A category consists of objects and arrows between them. In Table 1, categories
occur twice: 1) a base category B where objects are typically sets and arrows are
typically functions; and 2) fiber categories ES , defined for each object S of B,
that are identified with the lattices of predicates. Specifically, objects P,Q, . . .
of ES are predicates over S, and an arrow P → Q represents logical implication.
A general fact behind the last is that every preorder is a category—see e.g. [3].

Transition Systems as Coalgebras. State-based transition systems are mod-
eled as coalgebras in the base category B [17]. We use a functor G : B → B to
represent a transition type. A G-coalgebra is an arrow δ : S → GS, where S is a
state space and δ describes the dynamics. For example, a Kripke structure can
be identified with a pair (S, δ) of a set S and a function δ : S → PS, where PS
denotes the powerset. The powerset construction P is known to be a functor
P : Set → Set; therefore Kripke structures are P-coalgebras. For other choices
of G, G-coalgebras become different types of transition systems, such as MDPs
(Sect. 5.2) and Markov Reward Models (Sect. 5.3).

Predicates Form a Fibration. Fibrations are powerful categorical constructs
that can model various indexed entities; see e.g. [18] for its general theory. Our
use of them is for organizing the lattices ES of predicates over a set S, indexed
by the choice of S. For example, ES = 2S—the lattice of subsets of S—for
modeling qualitative predicates. For quantitative reasoning (e.g. for MDPs), we
use ES = [0, 1]S , where [0, 1] is the unit interval. This way, qualitative and
quantitative reasonings are mathematically unified in the language of fibrations.

A fibration is a functor p : E → B with suitable properties; it can be thought
of as a collection (ES)S∈B of fiber categories ES—indexed by objects S of B—
suitably organized as a single category E. Notable in this organization is that
we obtain the pullback functor l∗ : EY → EX for each arrow l : X → Y in B. In
our examples, l∗ is a substitution along l in predicates—l∗ is the monotone map
that carries a predicate P (y) over Y to the predicate P (l(x)) over X.

In this paper, we restrict to a subclass of fibrations (called CLat∧-fibrations)
in which every fiber category ES is a complete lattice, and each pullback functor
preserves all meets. We therefore write P ≤ Q for arrows in ES ; this represents
logical implication, as announced above. Notice that each f∗ has a left adjoint
(lower adjoint in terms of Galois connection), which exists by Freyd’s adjoint
functor theorem. The left adjoint is denoted by f∗.
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E
Ġ ��

p
  

E

p
  

B
G �� B

We also consider a lifting Ġ : E → E of G along p; it is a
functor Ġ such that pĠ = Gp. See the diagram on the right. It
specifies the logical interpretation of the transition type G. For
example, for G = P (the powerset functor) from the above, two
choices of Ġ are for the may and must modalities. See e.g. [2,
15,20,21].

Categorical Predicate Transformer. The above constructs allow us to model
predicate transformers—F in our examples of the LFP-OA problem μF ≤? α—
in categorical terms. A predicate transformer along a coalgebra δ : S → GS with

respect to the lifting Ġ is simply the composite ES
Ġ−→ EGS

δ∗
−→ ES , where the

first Ġ is the restriction of Ġ : E → E to ES . Intuitively, 1) given a postcondition
P in ES , 2) it is first interpreted as the predicate ĠP over GS, and then 3) it is
pulled back along the dynamics δ to yield a precondition δ∗ĠP . Such (backward)
predicate transformers are fundamental in a variety of model checking problems.

4.2 Structural Theory of PDR from Transition Systems

We formulate a few general safety problems. We show how they are amenable
to the LT-PDR (Definition 3.20) and LT-OpPDR (Remark 3.24) algorithms.

Definition 4.1 (backward safety problem, BSP). Let p be a CLat∧-
fibration, δ : S → GS be a coalgebra in B, and Ġ : E → E be a lifting of G
along p such that ĠX : EX → EGX is ωop-continuous for each X ∈ B. The
backward safety problem for (ι ∈ ES , δ, α ∈ ES) in (p,G, Ġ) is the GFP-UA
problem for (ES , α ∧ δ∗Ġ, ι), that is,

ι ≤? νx. α ∧ δ∗Ġx. (2)

Here, ι represents the initial states and α represents the safe states. The predicate
transformer x �→ α ∧ δ∗Ġx in (2) is the standard one for modeling safety—
currently safe (α), and the next time x (δ∗Ġx). Its gfp is the safety property; (2)
asks if all initial states (ι) satisfy the safety property. Since the backward safety
problem is a GFP-UA problem, we can solve it by LT-OpPDR (Remark 3.24).

BSP as-is ��

involution ¬ ��

suitable adjoints

��

GFP-UA
LT-OpPDR

�� True/False

LFP-OA LT-PDR �� True/False

Additional assumptions allow
us to reduce the backward safety
problem to LFP-OA problems,
which are solvable by LT-PDR,
as shown on the right.

The first case requires the existence of the left adjoint to the predicate trans-
former δ∗ĠS : ES → ES . Then we can translate BSP to the following LFP-OA
problem. It directly asks whether all reachable states are safe.

Proposition 4.2 (forward safety problem, FSP). In the setting of Def-
inition 4.1, assume that each ĠX : EX → EGX preserves all meets. Then by
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letting ḢS : EGS → ES be the left adjoint of ĠS, the BSP (2) is equivalent to
the LFP-OA problem for (ES , ι ∨ ḢSδ∗, α):

μx. ι ∨ ḢSδ∗x ≤? α. (3)

This problem is called the forward safety problem for (ι, δ, α) in (p,G, Ġ). �	
The second case assumes that the complete lattice ES of predicates admits

an involution operator ¬ : ES → E
op
S (cf. [22, Appendix B]).

Proposition 4.3 (inverse backward safety problem, IBSP). In the set-
ting of Definition 4.1, assume further that there is a monotone function ¬ : ES →
E
op
S satisfying ¬ ◦ ¬ = id. Then the backward safety problem (2) is equivalent to

the LFP-OA problem for (ES , (¬α) ∨ (¬ ◦ δ∗Ġ ◦ ¬),¬ι), that is,

μx. (¬α) ∨ (¬ ◦ δ∗Ġ ◦ ¬x) ≤? ¬ι. (4)

We call (4) the inverse backward safety problem for (ι, δ, α) in (p,G, Ġ). Here
(¬α) ∨ (¬ ◦ δ∗Ġ ◦ ¬(−)) is the inverse backward predicate transformer. �	

When both additional assumptions are fulfilled (in Proposition 4.2 and 4.3),
we obtain two LT-PDR algorithms to solve BSP. One can even simultaneously
run these two algorithms—this is done in fbPDR [25,26]. See also Sect. 5.1.

5 Known and New PDR Algorithms as Instances

We present several concrete instances of our LT-PDR algorithms. The one for
Markov reward models is new (Sect. 5.3). We also sketch how those instances can
be systematically derived by the theory in Sect. 4; details are in [22, Appendix
D].

5.1 LT-PDRs for Kripke Structures: PDRF-Krand PDRIB-Kr

In most of the PDR literature, the target system is a Kripke structure that arises
from a program’s operational semantics. A Kripke structure consists of a set S
of states and a transition relation δ ⊆ S × S (here we ignore initial states and
atomic propositions). The basic problem formulation is as follows.

Definition 5.1 (backward safety problem (BSP) for Kripke struc-
tures). The BSP for a Kripke structure (S, δ), a set ι ∈ 2S of initial states,
and a set α ∈ 2S of safe states, is the GFP-UA problem ι ≤? νx. α∧F ′x, where
F ′ : 2S → 2S is defined by F ′(A) := {s | ∀s′. ((s, s′) ∈ δ ⇒ s′ ∈ A)}.
It is clear that the GFP in Definition 5.1 represents the set of states from which
all reachable states are in α. Therefore the BSP is the usual safety problem.

The above BSP is easily seen to be equivalent to the following problems.

Proposition 5.2 (forward safety problem (FSP) for Kripke struc-
tures). The BSP in Definition 5.1 is equivalent to the LFP-OA problem μx. ι ∨
F ′′x ≤? α, where F ′′ : 2S → 2S is defined by F ′′(A) :=

⋃
s∈A{s′ | (s, s′) ∈ δ}. �	
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Proposition 5.3 (inverse backward safety problem (IBSP) for Kripke
structures). The BSP in Definition 5.1 is equivalent to the LFP-OA problem
μx.¬α ∨ ¬F ′(¬x) ≤? ¬ι, where ¬ : 2S → 2S is the complement function A �→
S \ A. �	

Instances of LT-PDR. The FSP and IBSP (Propositions 5.2–5.3), being LFP-
OA, are amenable to the LT-PDR algorithm (Definition 3.20). Thus we obtain
two instances of LT-PDR; we call them PDRF -Kr and PDRIB -Kr . PDRIB-Kr

is a step-by-step dual to the application of LT-OpPDR to the BSP (Defini-
tion 5.1)—see Remark 3.24.

We compare these two instances of LT-PDR with algorithms in the literature.
If we impose |Ci| = 1 on each element Ci of Kleene sequences, the PDRF-Kr

instance of LT-PDR coincides with the conventional IC3/PDR [9,13]. In con-
trast, PDRIB-Kr coincides with Reverse PDR in [25,26]. The parallel execution
of PDRF-Kr and PDRIB-Kr roughly corresponds to fbPDR [25,26].

Structural Derivation. The equivalent problems (Propositions 5.2–5.3) are
derived systematically from the categorical theory in Sect. 4.2. Indeed, using a
lifting Ṗ : 2S → 2PS such that A �→ {A′ | A′ ⊆ A} (the must modality �), F ′ in
Definition 5.1 coincides with δ∗Ṗ in (2). The above Ṗ preserves meets (cf. the
modal axiom �(ϕ ∧ ψ) ∼= �ϕ ∧ �ψ, see e.g. [7]); thus Proposition 4.2 derives
the FSP. Finally, ¬ in Proposition 5.3 allows the use of Proposition 4.3. More
details are in [22, Appendix D].

5.2 LT-PDR for MDPs: PDRIB-MDP

The only known PDR-like algorithm for quantitative verification is PrIC3 [6]
for Markov decision processes s(MDPs). Here we instantiate LT-PDR for MDPs
and compare it with PrIC3.

An MDP consists of a set S of states, a set Act of actions and a transition
function δ mapping s ∈ S and a ∈ Act to either ∗ (“the action a is unavailable
at s”) or a probability distribution δ(s)(a) over S.

Definition 5.4 (IBSP for MDPs). The inverse backward safety problem
(IBSP) for an MDP (S, δ), an initial state sι ∈ S, a real number λ ∈ [0, 1],
and a set α ⊆ S of safe states, is the LFP-OA problem μx. F ′(x) ≤? dι,λ.
Here dι,λ : S → [0, 1] is the predicate such that dι,λ(sι) = λ and dι,λ(s) = 1
otherwise. F ′ : [0, 1]S → [0, 1]S is defined by F ′(d)(s) = 1 if s 
∈ α, and
F ′(d)(s) = max{∑s′∈S d(s′) · δ(s)(a)(s′) | a ∈ Act, δ(s)(a) 
= ∗} if s ∈ α.

The function F ′ in Definition 5.4 is a Bellman operator for MDPs—it takes the
average of d over δ(s)(a) and takes the maximum over a. Therefore the lfp in
Definition 5.4 is the maximum reachability probability to S\α; the problem asks
if it is ≤ λ. In other words, it asks whether the safety probability—of staying
in α henceforth, under any choices of actions—is ≥ 1 − λ. This problem is the
same as in [6].
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Instance of PDR. The IBSP (Definition 5.4) is LFP-OA and thus amenable to
LT-PDR. We call this instance PDRIB -MDP ; See [22, Appendix E] for details.

PDRIB-MDP shares many essences with PrIC3 [6]. It uses the operator F ′

in Definition 5.4, which coincides with the one in [6, Def. 2]. PrIC3 maintains
frames; they coincide with KT sequences in PDRIB-MDP.

Our Kleene sequences correspond to obligations in PrIC3, modulo the follow-
ing difference. Kleene sequences aim at a negative witness (Sect. 3.2), but they
happen to help the positive proof efforts too (Sect. 3.3); obligations in PrIC3
are solely for accelerating the positive proof efforts. Thus, if PrIC3 cannot solve
these efforts, we need to check whether obligations yield a negative witness.

Structural Derivation. One can derive the IBSP (Definition 5.4) from the
categorical theory in Sect. 4.2. Specifically, we first formulate the BSP ¬dλ ≤?

νx. dα ∧ δ∗Ġx, where Ġ is a suitable lifting (of G for MDPs, Table 1) that com-
bines average and minimum, ¬ : [0, 1]S → [0, 1]S is defined by (¬d)(s) :=1−d(s),
and dα is such that dα(s) = 1 if s ∈ α and dα(s) = 0 otherwise. Using
¬ : [0, 1]S → [0, 1]S in the above as an involution, we apply Proposition 4.3
and obtain the IBSP (Definition 5.4).

Another benefit of the categorical theory is that it can tell us a forward
instance of LT-PDR (much like PDRF-Kr in Sect. 5.1) is unlikely for MDPs.
Indeed, we showed in Proposition 4.2 that Ġ′s preservation of meets is essential
(existence of a left adjoint is equivalent to meet preservation). We can easily
show that our Ġ for MDPs does not preserve meets. See [22, Appendix G].

5.3 LT-PDR for Markov Reward Models: PDRMRM

We present a PDR-like algorithm for Markov reward models (MRMs), which
seems to be new, as an instance of LT-PDR. An MRM consists of a set S of
states and a transition function δ that maps s ∈ S (the current state) and c ∈ N

(the reward) to a function δ(s)(c) : S → [0, 1]; the last represents the probability
distribution of next states.

We solve the following problem. We use [0,∞]-valued predicates—
representing accumulated rewards—where [0,∞] is the set of extended nonneg-
ative reals.

Definition 5.5 (SP for MRMs). The safety problem (SP) for an MRM (S, δ),
an initial state sι ∈ S, λ ∈ [0,∞], and a set α ⊆ S of safe states is μx. F ′(x) ≤?

dι,λ. Here dι,λ : S → [0,∞] maps sι to λ and others to ∞, and F ′ : [0,∞]S →
[0,∞]S is defined by F ′(d)(s) = 0 if s 
∈ α, and F ′(d)(s) =

∑
s′∈S,c∈N

(c+d(s′)) ·
δ(s)(c)(s′) if s ∈ α.

The function F ′ accumulates expected reward in α. Thus the problem asks
if the expected accumulated reward, starting from sι and until leaving α, is ≤ λ.

Instance of PDR. The SP (Definition 5.5) is LFP-OA thus amenable to LT-
PDR. We call this instance PDRMRM . It seems new. See [22, Appendix F] for
details.
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Structural Derivation. The function F ′ in Definition 5.5 can be expressed
categorically as F ′(x) = dα ∧ δ∗Ġ(x), where dα : S → [0,∞] carries s ∈ α to ∞
and s 
∈ α to 0, and Ġ is a suitable lifting that accumulates expected reward.
However, the SP (Definition 5.5) is not an instance of the three general safety
problems in Sect. 4.2. Consequently, we expect that other instances of LT-PDR
than PDRMRM (such as PDRF-Kr and PDRIB-Kr in Sect. 5.1) are hard for
MRMs.

6 Implementation and Evaluation

Implementation. LTPDR We implemented LT-PDR in Haskell. Exploiting
Haskell’s language features, it is succinct (∼50 lines) and almost a literal trans-
lation of Algorithm 3 to Haskell. Its main part is presented in [22, Appendix K].
In particular, using suitable type classes, the code is as abstract and generic as
Algorithm 3.

Specifically, our implementation is a Haskell module named LTPDR. It has
two interfaces, namely the type class CLat τ (the lattice of predicates) and the
type Heuristics τ (the definitions of Candidate, Decide, and Conflict). The
main function for LT-PDR is ltPDR :: CLat τ ⇒ Heuristics τ → (τ → τ) → τ →
IO (PDRAnswer τ) , where the second argument is for a monotone function F of
type τ → τ and the last is for the safety predicate α.

Obtaining concrete instances is easy by fixing τ and Heuristics τ . A simple
implementation of PDRF-Kr takes 15 lines; a more serious SAT-based one for
PDRF-Kr takes ∼130 lines; PDRIB-MDP and PDRMRM take ∼80 lines each.

Heuristics. We briefly discuss the heuristics, i.e. how to choose x ∈ L in
Candidate, Decide, and Conflict, used in our experiments. The heuristics of
PDRF-Kr is based on the conventional PDR [9]. The heuristics of PDRIB-MDP

is based on the idea of representing the smallest possible x greater than some
real number v ∈ [0, 1] (e.g. x taken in Candidate) as x = v+ε, where ε is a sym-
bolic variable. This implies that Unfold (or Valid, Model) is always applied
in finite steps, which further guarantees finite-step termination for invalid cases
and ω-step termination for valid cases (see [22, Appendix H] for more detail).
The heuristics of PDRMRM is similar to that of PDRIB-MDP.

Experiment Setting. We experimentally assessed the performance of instances
of LTPDR. The settings are as follows: 1.2 GHz Quad-Core Intel Core i7 with 10 GB
memory using Docker, for PDRIB-MDP; Apple M1 Chip with 16 GB memory
for the other. The different setting is because we needed Docker to run PrIC3 [6].

Experiments with PDRMRM. Table 2a shows the results. We observe that
PDRMRM answered correctly, and that the execution time is reasonable. Fur-
ther performance analysis (e.g. comparison with [19]) and improvement is future
work; the point here, nevertheless, is the fact that we obtained a reasonable
MRM model checker by adding ∼80 lines to the generic solver LTPDR.
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Experiments with PDRIB-MDP. Table 2c shows the results. Both PrIC3
and our PDRIB-MDP solve a linear programming (LP) problem in Decide.
PrIC3 uses Z3 for this; PDRIB-MDP uses GLPK. PrIC3 represents an MDP
symbolically, while PDRIB-MDP do so concretely. Symbolic representation in
PDRIB-MDP is possible—it is future work. PrIC3 can use four different inter-
polation generalization methods, leading to different performance (Table 2c).

We observe that PDRIB-MDP outperforms PrIC3 for some benchmarks
with smaller state spaces. We believe that the failure of PDRIB-MDP in many
instances can be attributed to our current choice of a generalization method (it is
the closest to the linear one for PrIC3). Table 2c suggests that use of polynomial
or hybrid can enhance the performance.

Experiments with PDRF-Kr. Table 2b shows the results. The benchmarks
are mostly from the HWMCC’15 competition [1], except for latch0.smv1 and
counter.smv (our own).

IC3ref vastly outperforms PDRF-Kr in many instances. This is hardly a
surprise—IC3ref was developed towards superior performance, while PDRF-Kr’s
emphasis is on its theoretical simplicity and genericity. We nevertheless see that
PDRF-Kr solves some benchmarks of substantial size, such as power2bit8.smv.
This demonstrates the practical potential of LT-PDR, especially in view of the
following improvement opportunities (we will pursue them as future work): 1)
use of well-developed SAT solvers (we currently use toysolver2 for its good
interface but we could use Z3); 2) allowing |Ci| > 1, a technique discussed in
Sect. 5.1 and implemented in IC3ref but not in PDRF-Kr; and 3) other small
improvements, e.g. in our CNF-based handling of propositional formulas.

Ablation Study. To assess the value of the key concept of PDR (namely the
positive-negative interplay between the Knaster–Tarski and Kleene theorems
(Sect. 3.3)), we compared PDRF-Kr with the instances of positive and nega-
tive LT-PDR (Sects. 3.1–3.2) for Kripke structures.

Table 2d shows the results. Note that the value of the positive-negative inter-
play is already theoretically established; see e.g. Proposition 3.17 (the interplay
detects executions that lead to nowhere). This value was also experimentally wit-
nessed: see power2bit8.smv and simpleTrans.smv, where the one-sided meth-
ods made wrong choices and timed out. One-sided methods can be efficient
when they get lucky (e.g. in counter.smv). LT-PDR may be slower because of
the overhead of running two sides, but that is a trade-off for the increased chance
of termination.

Discussion. We observe that all of the studied instances exhibited at least
reasonable performance. We note again that detailed performance analysis and
improvement is out of our current scope. Being able to derive these model check-
ers, with such a small effort as ∼100 lines of Haskell code each, demonstrates
the value of our abstract theory and its generic Haskell implementation LTPDR.

1 https://github.com/arminbiere/aiger.
2 https://github.com/msakai/toysolver.

https://github.com/arminbiere/aiger
https://github.com/msakai/toysolver
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Table 2. experimental results for our PDRF-Kr, PDRIB-MDP, and PDRMRM

(a) Results with PDRMRM. The MRM
is from [4, Example 10.72], whose ground
truth expected reward is 4

3 . The
benchmarks ask if the expected reward
(not known to the solver) is ≤ 1.5 or
≤ 1.3.

(b) Results with PDRF-Kr in comparison
with IC3ref, a reference implementation
of [9] (https://github.com/arbrad/
IC3ref). Both solvers answered correctly.
Timeout (TO) is 600 sec.

Benchmark Result Time

DieByCoin≤?1.5 True 6.01 ms

DieByCoin≤?1.3 False 43.1 µs

Benchmark |S| Result PDRF-Kr IC3ref

latch0.smv 23 True 317 µs 270µs

counter.smv 25 False 1.620 s 3.27 ms

power2bit8.smv 215 True 1.516 s 4.13 ms

ndista128.smv 217 True TO 73.1 ms

shift1add256.smv 221 True TO 174 ms

(c) Results with PDRIB-MDP(an excerpt of [22, Table 3]). Comparison is against PrIC3 [6] with
four different interpolation generalization methods (none, linear, polynomial, hybrid). The
benchmarks are from [6]. |S| is the number of states of the benchmark MDP. “GT pr.” is for the
ground truth probability, that is the reachability probability Prmax (sι |= �(S \ α)) computed
outside the solvers under experiments. The solvers were asked whether the GT pr. (which they do
not know) is ≤ λ or not; they all answered correctly. The last five columns show the average
execution time in seconds. – is for “did not finish,” for out of memory or timeout (600 sec.)

Benchmark |S| GT pr. λ PDRIB-MDP PrIC3

none lin. pol. hyb.

Grid 102 1.2E−3 0.3 0.31 1.31 19.34 – –

0.2 0.48 1.75 24.62 – –

Grid 103 4.4E−10 0.3 122.29 – – – –

0.2 136.46 – – – –

BRP 103 0.035

0.1 – – – – –

0.01 18.52 56.55 594.89 – 722.38

0.005 1.36 11.68 238.09 – –

ZeroConf 104 0.5

0.9 – – – 0.58 0.51

0.75 – – – 0.55 0.46

0.52 – – – 0.48 0.46

0.45 <0.1 <0.1 <0.1 <0.1 <0.1

Chain 103 0.394

0.9 – 72.37 – 0.91 0.70

0.4 – 80.83 – 0.93 –

0.35 177.12 115.98 – – –

0.3 88.27 66.89 557.68 – –

DoubleChain 103 0.215

0.9 – – – 1.83 1.99

0.3 – – – 1.88 1.96

0.216 – – – 139.76 –

0.15 7.46 – – – –

(d) Ablation experiments: LT-PDR (PDRF-Kr) vs. positive and negative LT-PDRs, implemented
for the FSP for Kripke structures. The benchmarks are as in Table 2b, except for a new micro
benchmark simpleTrans.smv. Timeout (TO) is 600 sec.

Benchmark Result LT-PDR positive negative

latch0.smv True 317 µs 1.68 ms TO

power2bit8.smv True 1.516 s TO TO

counter.smv False 1.620 s TO 2.88 µs

simpleTrans.smv False 295 µs TO TO

https://github.com/arbrad/IC3ref
https://github.com/arbrad/IC3ref
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7 Conclusions and Future Work

We have presented a lattice-theoretic generalization of the PDR algorithm called
LT-PDR. This involves the decomposition of the PDR algorithm into positive
and negative ones, which are tightly connected to the Knaster–Tarski and Kleene
fixed point theorems, respectively. We then combined it with the coalgebraic and
fibrational theory for modeling transition systems with predicates. We instanti-
ated it with several transition systems, deriving existing PDR algorithms as well
as a new one over Markov reward models. We leave instantiating our LT-PDR
and categorical safety problems to derive other PDR-like algorithms, such as
PDR for hybrid systems [29], for future work.

We will also work on the combination of our work and the theory of abstract
interpretation [10,12]. Our current framework axiomatizes what is needed of
heuristics, but it does not tell how to realize such heuristics (that differ a lot in
different concrete settings). We expect abstract interpretation to provide some
general recipes for realizing such heuristics.
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Abstract. Loop invariant generation, which automates the generation
of assertions that always hold at the entry of a while loop, has many
important applications in program analysis and formal verification. In
this work, we target an important category of while loops, namely affine
while loops, that are unnested while loops with affine loop guards and
variable updates. Such a class of loops widely exists in many programs
yet still lacks a general but efficient approach to invariant generation. We
propose a novel matrix-algebra approach to automatically synthesizing
affine inductive invariants in the form of an affine inequality. The main
novelty of our approach is that (i) the approach is general in the sense
that it theoretically addresses all the cases of affine invariant generation
over an affine while loop, and (ii) it can be efficiently automated through
matrix-algebra (such as eigenvalue, matrix inverse) methods.

The details of our approach are as follows. First, for the case where
the loop guard is a tautology (i.e., ‘true’), we show that the eigenvalues
and their eigenvectors of the matrices derived from the variable updates
of the loop body encompass all meaningful affine inductive invariants.
Second, for the more general case where the loop guard is a conjunction
of affine inequalities, our approach completely addresses the invariant-
generation problem by first establishing through matrix inverse the rela-
tionship between the invariants and a key parameter in the application
of Farkas’ lemma, then solving the feasible domain of the key parameter
from the inductive conditions, and finally illustrating that a finite num-
ber of values suffices for the key parameter w.r.t a tightness condition
for the invariants to be generated.

Experimental results show that compared with previous approaches,
our approach generates much more accurate affine inductive invariants
over affine while loops from existing and new benchmarks within a few
seconds, demonstrating the generality and efficiency of our approach.

1 Introduction

An invariant is a logical assertion at a certain program location that always holds
whenever the program executes across that location. Invariants are indispens-
able parts of program analysis and formal verification, and thus the generation of
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invariants has been key to the proof and analysis of crucial properties like reach-
ability [3,6,15], time complexity [9] and safety [2,32]. To ease program analysis
and formal verification, there has been a long thread of research on approaches
to automatic generation of invariants, including constraint solving [10,12,27],
recurrence analysis [17,24,29,31], abstract interpretation [13,14], logical infer-
ence [18,19,38], dynamic analysis [33,39], and machine learning [20,23,44]. To
guarantee that an assertion is indeed an invariant, the widely-adopted paradigm
is to generate an inductive invariant that holds for the first execution and
for every periodic execution to the particular program location [12,32]. In this
work, we consider an important subclass of invariants called numerical invariants
which are assertions over the numerical values taken by the program variables,
and are closely related to many common vulnerabilities like integer overflow,
buffer overflow, division by zero and array out-of-bound. More specifically, we
consider affine inductive invariants in the form of an affine inequality over pro-
gram variables, and focus on affine while loops that have affine loop guards (as
a conjunction of affine inequalities) and affine updates for the program variables
but do not have nested loops.

To automate the generation of affine inductive invariants, we adopt the
constraint-solving based approach with three steps. First, it establishes a tem-
plate with unknown parameters for the target invariants. Second, it collects
constraints derived from the inductive conditions. Finally, it solves the unknown
parameters to get the desired invariants. Prior work in this space [12,37] lever-
ages Farkas’ lemma to provide a sound and complete characterization for the
inductive conditions and then generates the affine inductive invariants either by
the complete approach of quantifier elimination [12] or through several heuris-
tics [37]. Specifically, the StInG invariant generator [40] implements the approach
in [37], and the InvGen invariant generator [22] integrates abstract interpreta-
tion as well as the approach in [37]. Furthermore, a recent effort [34] leverages
eigenvalues and eigenvectors for inferring a restricted class of invariants. Finally,
some recent work considers decidable logic fragments that directly verify prop-
erties of loops [4,11,28,30]. Compared with other approaches such as machine
learning and dynamic analysis, constraint solving has a theoretical guarantee on
the correctness and accuracy of the generated invariants, yet typically at the
cost of higher runtime complexity.

The novelty of our approach lies in that it completely addresses the con-
straints derived from Farkas’ lemma by matrix methods, thus ensuring both
generality and efficiency. In detail, this paper makes the following contributions
(due to the page limit, the current paper is abridged. The full version is available
at [25]):

– For affine while loops with tautological guard, we prove that the affine induc-
tive invariants are determined by the eigenvalues and eigenvectors of the
matrices that describe variable updates in the loop body.

– For affine while loops whose loop guard is a conjunction of affine inequali-
ties, we solve the affine inductive invariants by first deriving through matrix
inverse a formula with a key parameter in the application of Farkas’ lemma,
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then solving the feasible domain of the key parameter from the inductive con-
ditions, and finally showing that it suffices to choose a finite number of values
for the key parameter if one imposes a tightness condition on the invariants.

– We generalize our results to affine while loops with non-deterministic updates
and to bidirectional affine invariants. A continuity property on the invari-
ants w.r.t. the key parameter is also proved for tackling the numerical issue
arising from the computation of eigenvectors. Experimental results on exist-
ing benchmarks and new benchmarks arising from linear dynamical systems
demonstrate the generality and efficiency of our approach.

1.1 Related Work

Constraint Solving. There have been several prior approaches [12,37] using
constraint solving for invariant generation based on Farkas’ lemma. Compared
to the approach in [12] that uses quantifier elimination to solve the constraints
from Farkas’ lemma, our approach is more efficient since it only involves the
matrix computation. Compared with [37] that uses several heuristics, our app-
roach is more general and complete in addressing all the cases in affine invariant
generation. While the approach in [34] also uses eigenvectors, it is restricted to
the subclass of equality and convergent invariants. In contrast, our approach
targets at general affine inductive invariants over affine while loops. Other prior
work [4,11,28,30] considers to have a decidable logic for unnested affine while
loops with tautological guard but no conditional branches. Compared with them,
our approach handles general affine while loops and targets at invariant genera-
tion.

Abstract Interpretation. A long thread of research to infer inductive invari-
ants is using abstract interpretation [1,7,22,35] framework which constructs
sound approximations for program semantics. In a nutshell, it first establishes
an abstract domain for the specific form of properties to be generated, and then
performs fixed-point computation in the abstract domain. Abstract interpreta-
tion generates invariants whose precision depends on the abstract domain and
abstract operators, except for rare special cases [21,37].

Recurrence Analysis. Another closely-related technique is recurrence anal-
ysis [8,17,24,29,31]. The main idea is transforming the problem of invariant
generation into a recurrence relation problem and then solve the latter one. The
main limitation of recurrence analysis is that it requires the underlying recur-
rence relation to have a closed-form solution. This requirement, unfortunately,
does not hold for the general case of affine inductive invariants over affine while
loops.

Logical Inference. Invariants could also be obtained through logical inference,
such as abductive inference [16], Craig interpolation [18], ICE learning [19,43],
random search [38], etc. These approaches, however, cannot provide any theoret-
ical guarantee on the accuracy of the generated numerical invariants. In contrast,
our approach essentially addresses this issue.
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Dynamic Analysis. Dynamic analysis [33,39] has also been exploited to invari-
ant generation. The major process is first to collect the execution traces of a
particular program by running it multiple times, and then guess the invariants
based on these traces. As indicated in its process, dynamic analysis provides no
guarantee on the correctness or accuracy of the inferred invariants, yet still pays
the price of running the program at a large amount of time.

Machine Learning. There is a recent trend of applying machine learn-
ing [20,23,44] to solve the invariant-generation problem. Such approaches first
establish a (typically large) training set of data, then use training approaches
such as neural networks to generate invariants. Compared to our approach, those
approaches require a large training set, while still having no theoretical guaran-
tee on the correctness or accuracy. Specifically, such approaches cannot produce
specific numerical values (e.g., eigenvalues) that are required to handle some
examples in this work.

2 Preliminaries

In this section, we specify the class of affine while loops and define the affine-
invariant-generation problem over such loops. Throughout the paper, we use
V = {x1, ..., xn} to denote the set of program variables in an affine while loop;
we abuse the notation V so that it also represents the current values (before the
execution of the loop body) of the original variables in V , and use the primed
variables V ′ := {x′ | x ∈ V } for the next values (after the execution of the
loop body). Furthermore, we denote by x = [x1, ..., xn]T the vector variable that
represents the current values of the program variables, and by x′ = [x′

1, ..., x
′
n]T

the vector variable for the next values.
An affine while loop is a while loop without nested loops that has affine

updates in each assignment statement and possibly multiple conditional branches
in the loop body. To formally specify the syntax of it, we first define affine
inequalities and assertions, program states and satisfaction relation between
them as follows.

Affine Inequalities and Assertions. An affine inequality φ is an inequality
of the form cT · y + d ≤ 0 where c is a real vector, y is a vector of real-valued
variables and d is a real scalar. An affine assertion is a finite conjunction of affine
inequalities. An affine assertion is satisfiable if it is true under some assignment
of real values to its variables. Given an affine assertion ψ over vector variable
x, we denote by ψ′ the affine assertion obtained by substituting x in ψ with its
next-value variable x′.

Program States. A program state v is a real vector v = [v1, ..., vn]T such that
each vi is a concrete value for the variable xi (in the vector variable x). We say
that a program state v satisfies an affine inequality φ = cT ·x+d ≤ 0, written as
v |= φ, if it holds that cT ·v+d ≤ 0. Likewise, v satisfies an affine assertion ψ if
it satisfies every conjunctive affine inequality in ψ. Furthermore, given an affine
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assertion ψ with both x and x′, we say that two program states v,v′ satisfy ψ,
written as v,v′ |= ψ, if ψ is true when one substitutes x by v and x′ by v′.

We then illustrate the syntax of (unnested) affine while loops as follows.

Affine While Loops. We consider affine while loops that take the form:

initial condition θ : R · x + f ≤ 0
while G : P · x + q ≤ 0 do

case ψ1 : T1 · x − T′
1 · x′ + b1 ≤ 0 (τ1 ) ;

...
case ψk : Tk · x − T′

k · x′ + bk ≤ 0 (τk ) ;
end

(†)

where (i) θ is an affine assertion that specifies the initial condition for inputs and
is given by the real matrix R and vector f , (ii) G is an affine assertion serving
as the loop guard given by the real matrix P and vector q, and (iii) each ψj

is an affine assertion that represents a conditional branch, with the relationship
between the current-state vector x and the next-state vector x′ given by the
affine assertion τj := Tj · x − T′

j · x′ + bj ≤ 0 with transition matrices Tj ,T′
j

and vector bj . In this work, we always assume that the rows of R are linearly
independent (this condition means that every variable xi has one independent
initial condition attached to it, which holds in most situations such as a fixed
initial program state), such that RT is left invertible; we denote its left inverse
as (RT)−1

L .
The execution of an affine while loop is as follows. First, the loop starts with

an arbitrary initial program state v∗ that satisfies the initial condition θ. Then in
each loop iteration, the current program state v is checked against the loop guard
G. In the case that v |= G, the loop arbitrarily chooses a conditional branch ψj

satisfying v |= ψj , and sets the next program state v′ non-deterministically such
that v,v′ |= τj ; the next program state v′ is then set as the current program
state. Otherwise (i.e., v �|= G), the loop halts immediately.

Now we define affine inductive invariants over affine while loops. Informally,
an affine inductive invariant is an affine inequality satisfying the initiation and
consecution conditions which mean that the inequality holds at the start of
the loop (initiation) and is preserved under every iteration of the loop body
(consecution).

Affine Inductive Invariants. An affine inductive invariant for an affine while
loop (†) is an affine inequality Φ that satisfies the initiation and consecution
conditions as follows:

– (Initiation) θ implies Φ, i.e., v |= θ implies v |= Φ for all program states v;
– (Consecution) for all program states v,v′ and every ψj , τj (1 ≤ j ≤ k) in

(†), we have that (v |= G ∧ v |= Φ ∧ v,v′ |= τj) ⇒ v′ |= Φ′.

From the definition above, it can be observed that an affine inductive invariant is
an invariant, in the sense that every program state traversed (as a current state
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at the start or after every loop iteration) in some execution of the underlying
affine while loop will satisfy the affine inductive invariant.

From now on, we abbreviate affine while loops as affine loops and affine
inductive invariants as affine invariants.

Problem Statement. In this work, we study the problem of automatically gen-
erating affine invariants over affine loops. Our aim is to have a complete math-
ematical characterization on all such invariants and develop efficient algorithms
for generating these invariants.

3 Affine Invariants via Farkas’ Lemma

Affine invariant generation through Farkas’ lemma is originally proposed in [12,
37]. Farkas’ lemma is a fundamental result in the theory of linear inequalities that
leads to a complete characterization for the affine invariants. Since our approach
is based on Farkas’ lemma, we present a detailed account on the approaches
in [12,37], and point out the weakness of each of the approaches.

Theorem 1 (Farkas’ Lemma). Consider the following affine assertion S over
real-valued variables y1, . . . , yn:

S :

⎡
⎢⎣

a11y1 + ... + a1nyn + b1 ≤ 0
...

ak1y1 + ... + aknyn + bk ≤ 0

⎤
⎥⎦

when S is satisfiable, it entails a given affine inequality

φ : c1y1 + ... + cnyn + d ≤ 0

if and only if there exist non-negative real numbers λ0, . . . , λk such that (i)
cj =

∑k
i=1 λiaij for 1 ≤ j ≤ n and (ii) d = (

∑k
i=1 λibi) − λ0.

The application of Farkas’ lemma can be visualized by a table form as follows:

λ0

λ1

...
λk

−1 ≤ 0
a11y1 + ... + a1nyn +b1 ≤ 0

...
...

ak1y1 + ... + aknyn +bk ≤ 0

⎫
⎪⎬
⎪⎭

(S)

c1y1 + ... + cnyn +d ≤ 0 (φ)

(‡)

The intuition of the table form above is that one first multiplies the λi’s on the
left to their corresponding affine inequalities (in the same row) on the right, and
then sums these affine inequalities together to obtain the affine inequality at the
bottom. In this paper, we will call the table form as Farkas table.

Given an affine loop as (†), the approaches in [12,37] first establish a template
Φ : c1x1 + ... + cnxn + d ≤ 0 for an affine invariant where c1, . . . , cn, d are
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the unknown coefficients. Second, they establish constraints for the unknown
coefficients from the initiation and consecution conditions for an affine invariant,
as follows.

Initiation. By Farkas’ lemma, the initiation condition can be solved from the
Farkas table (‡) with S := θ and φ := Φ:

λI
0 − 1 ≤ 0

λ R · x + f ≤ 0 (θ)
cT · x + d ≤ 0 (Φ)

(#)

Here we rephrase the affine inequalities in θ and Φ with the condensed matrix
forms R · x + f ≤ 0 and cT · x + d ≤ 0; we also use λ = [λ1, . . . , λk]T to denote
the non-negative parameters in the leftmost column of (‡).
Consecution. The consecution condition can be solved by handling each condi-
tional branch (specified by τj , ψj in (†)) separately. By Farkas’ lemma, we treat
each conditional branch by the Farkas table (‡) with S := Φ∧G∧τj and φ := Φ′:

μ cT · x + d ≤ 0 (Φ)
λC
0 − 1 ≤ 0
ξ P · x + q ≤ 0 (G)
η Tj · x − T′

j · x′ + bj ≤ 0 (τj)
cT · x′ + d ≤ 0 (Φ′)

(∗)

Note that the Farkas table above contains quadratic constraints as we multiply
an unknown non-negative parameter μ to the unknown invariant cT · x + d ≤ 0
in the table. The Farkas tables for all conditional branches are grouped conjunc-
tively together to represent the whole consecution condition.

The weakness of the approaches presented in [12,37] lies at the treatment of
the quadratic constraints from the consecution condition. The approach in [12]
addresses the quadratic constraints by quantifier elimination that guarantees
the theoretical completeness but typically has high runtime complexity. The
approach in [37] solves the quadratic constraints by several heuristics that guess
possible values for the key parameter μ in (∗) which causes non-linearity, hence
losing completeness. Our approach considers to address parameter μ through
matrix-based methods (eigenvalues and eigenvectors, matrix inverse, etc.), which
is capable of efficiently generating affine invariants (as compared with quantifier
elimination in [12]) while still ensuring theoretical completeness (as compared
with the heuristics in [37]).

4 Single-Branch Affine Loops with Deterministic Updates

For the sake of simplicity, we first consider the affine invariant generation for a
simple class of affine loops where there are no conditional branches in the loop
body and the updates of the next-value vector x′ are deterministic.
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Formally, an affine loop with deterministic updates and a single branch takes
the following form:

initial condition θ : R · x + f ≤ 0
while G do x′ = T · x + b; end

For the loop above, we aim at non-trivial affine invariants, i.e., affine invariants
cT · x + d ≤ 0 with c �= 0. We summarize our results below.

1. When the loop guard is ‘true’, there are only finitely many independent non-
trivial invariants cT · x + d ≤ 0 where c is an eigenvector of the transpose of
the transition matrix T.

2. When the loop guard is not a tautology, there can be infinitely many more
non-trivial invariants cT · x + d ≤ 0 with c given by a direct formula in μ; in
this case we derive the feasible domain of μ and select finitely many optimal
ones (which we call tight choices) among them.

In Sect. 4.1, we first derive the constraints from the initiation (#) and conse-
cution (∗) conditions satisfied by the invariants. Then we solve these constraints
for the tautological loop guard case in Sect. 4.2 and the single-constraint loop
guard case in Sect. 4.3. Finally we generalize the results to the multi-constraint
loop guard case in Sect. 4.4.

4.1 Derived Constraints from the Farkas Tables

We first derive the constraints from the Farkas tables as follows:

Initiation. Recall the Farkas table (#) for initiation. We first compare the
coefficients of x above and below the horizontal line in (#), and obtain

λT · R = cT ⇒ RT · λ = c. (1)

Then by comparing the constant terms in (#), we have:

−λI
0 + λT · f = d ⇒ fT · λ − d = λI

0 ≥ 0. (2)

Note that RT has left inverse (RT)−1
L , thus constraint (1) is equivalent to λ =

(RT)−1
L · c. Plugging it into (2) yields

fT · (RT)−1
L · c − d = λI

0 ≥ 0. (3)

Consecution. The Farkas table (∗) for consecution in the case of single-branch
affine loops with deterministic updates is as follows:

μ cT · x + d ≤ 0 (Φ)
λC
0 − 1 ≤ 0
ξ P · x + q ≤ 0 (G)
η T · x − x′ + b = 0 (τ)

cT · x′ + d ≤ 0 (Φ′)



Affine Loop Invariant Generation via Matrix Algebra 265

Here the transition matrix T is a n × n square matrix, and b is a n-dimensional
vector. Since τ contains only equalities, the components η1, ..., ηn of the vector
parameter η do not have to be non-negative (while the components ξ1, ..., ξn of
ξ and μ must be non-negative). In this table, by comparing the coefficients of x′

above and below the horizontal line, we easily get −η = c. Then we substitute
η by −c and compare the coefficients of x above and below the horizontal line.
We get

μ · cT + ξT · P − cT · T = 0T ⇒ μ · c − TT · c + PT · ξ = 0. (4)

We also compare the constant terms and get

μ · d − λC
0 + ξT · q − cT · b = d ⇒ (μ − 1)d − bT · c + qT · ξ = λC

0 ≥ 0. (5)

The rest of this section is devoted to solving the invariants Φ : cT · x + d ≤ 0
which satisfy all constraints (1)–(5).

4.2 Loops with Tautological Guard

We first consider the simplest case where the loop guard is ‘true’:

initial condition θ : R · x + f ≤ 0
while true do x′ = T · x + b; end

(	)

In order for completely solving the non-linear constraints, we take three steps:

1. choose the correct μ, thus turn the non-linear constraints into linear ones;
2. use linear algebra method to solve out the vector c;
3. with μ and c known, find out the feasible domain of d and determine the

optimal value of it. Here ‘optimality’ is defined by the fact that all invariants
with other d’s in this domain are implied by the invariant with the ‘optimal’
d.

Step 1 and Step 2. We address the values of μ, c by eigenvalues and eigenvec-
tors in the following proposition:

Proposition 1. For any non-trivial invariant cT ·x+ d ≤ 0 of the loop (	), we
have that c must be an eigenvector of TT with a non-negative eigenvalue μ.

Proof. Since the loop guard is a tautology, we take the parameter ξ to be 0 in
(4):

μ · c − TT · c = 0.

It’s obvious that μ must be a non-negative eigenvalue of TT and c is the corre-
sponding eigenvector. 
�
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Example 1. (Fibonacci numbers). Consider the sequence {sn} defined by initial
condition s1 = s2 = 1 and recursive formula sn+2 = sn+1 + sn for n ≥ 1. If we
use variables (x1, x2) to represent (sn, sn+1), then the sequence can be written
as a loop:

initial condition θ : R · x + f =
[
1 0
0 1

]
·
[
x1

x2

]
+

[−1
−1

]
= 0

while true do
[
x′
1

x′
2

]
= T ·

[
x1

x2

]
+ b =

[
0 1
1 1

]
·
[
x1

x2

]
+ 0; end

The eigenvalues of matrix TT are 1−√
5

2 , 1+
√
5

2 ; only the second one is non-
negative. This eigenvalue μ = 1+

√
5

2 yields eigenvector c = [c1, 1+
√
5

2 c1]T, here
c1 is a free variable, which could be fixed in the final form of the invariant. 
�

Step 3. After solving μ and c, we illustrate the feasible domain of d and its
optimal value by the following proposition:

Proposition 2. For any μ and c given by Proposition 1, the feasible domain of
d is an interval determined by the two conditions below:

d ≤ fT · (RT)−1
L · c and (μ − 1)d ≥ bT · c.

If the above conditions have empty solution set, then no affine invariant is avail-
able from such μ and c; otherwise, the optimal value of d falls in one of the two
choices:

d = fT · (RT)−1
L · c or (μ − 1)d = bT · c.

Proof. Constraint (3) provides one condition for d:

fT · (RT)−1
L · c − d = λI

0 ≥ 0 ⇒ fT · (RT)−1
L · c ≥ d;

while constraint (5) with ξ = 0 provides the other condition:

(μ − 1)d − bT · c = λC
0 ≥ 0 ⇒ (μ − 1)d ≥ bT · c.

To obtain the strongest inequality cT · x + d ≤ 0, we need to take d to be either
minimal or maximal value, i.e., some boundary point of its interval; thus the
invariant with this d would imply all invariants with the same c and other d’s in
this interval. The boundary is achieved when one of the two conditions achieves
the equality. 
�
Example 2 (Fibonacci, Part 2). We continue with Example 1. Recall that μ =
1+

√
5

2 , c = [c1, 1+
√
5

2 c1]T; in this case, constraints (3) (5) (with ξ = 0) read
− 3+

√
5

2 c1 ≥ d and −1+
√
5

2 d ≥ 0, hence yield 0 ≤ d ≤ − 3+
√
5

2 c1. The free variable
c1 must be negative here, so we choose c1 = −2 and thus c = [−2,−1 − √

5]T

and 0 ≤ d ≤ 3+
√

5; there are two boundary values d = 0 and d = 3+
√

5, where
d = 3 +

√
5 leads to the strongest invariant:

μ = (1 +
√

5)/2 : −2x1 − (1 +
√

5)x2 + 3 +
√

5 ≤ 0. 
�
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4.3 Loops with Guard: Single-Constraint Case

Here we study the loops with non-tautological guard. First of all, the eigenvalue
method of Sect. 4.2 applies to this case as well; thus for the rest of Sect. 4, we
always assume that μ is not any eigenvalue of T (and c is not any eigenvector
of TT either) and aim for other invariants than the ones from the eigenvectors.

Let us start with the case that the loop guard consists of only one affine
inequality:

initial condition θ : R · x + f ≤ 0
while pT · x + q ≤ 0 do x′ = T · x + b; end

(	′)

where p is a n-dimensional real vector and q is a real number.
We again take three steps to compute the invariants; these steps are different

from the previous case:

1. we derive a formula to compute c in terms of μ; so for any non-negative real
value μ, we get a corresponding c;

2. however, not all μ’s would produce invariants that satisfy all constraints (1)–
(5). We will determine the feasible domain of μ that does so;

3. we will select finitely many μ’s from its feasible domain which provide tight
invariants; the meaning of tightness will be defined later. For every single μ,
we will also determine the feasible domain of d and optimal value of it.

Step 1. We first establish the relationship between μ and c through the con-
straints. The initiation is still (1) (2) (3), while the consecution (4) (5) becomes:

μ · c − TT · c + ξ · p = 0 (4′)

(μ − 1)d − bT · c + ξ · q = λC
0 ≥ 0 (5′)

where the matrix P in (4) degenerates to vector pT and the vectors q, ξ in (5)
both have just one component q, ξ here. Note that ξ is a non-negative parameter.

In contrast to Sect. 4.2, we assume that μ is not any eigenvalue of T, and
ξ �= 0. For such μ, we have a new formula to compute c:

Proposition 3. For any non-trivial invariant cT ·x+d ≤ 0 of the loop (	′), we
have that c is given by

c = ξ · (TT − μ · I)−1 · p with ξ ≥ 0 (6)

when μ is fixed, c’s with different ξ’s are proportional to each other and yield
equivalent invariants.

Proof. Since μ is not any eigenvalue of T, the matrix μ · I − TT is invertible;
thus (4′) is equivalent to

(μ · I − TT) · c = −ξ · p ⇒ c = ξ · (TT − μ · I)−1 · p. 
�



268 Y. Ji et al.

Example 3 (Fibonacci, Part 3). We add a loop guard x1 ≤ 10 to Example 1:

initial condition θ : R · x + f =
[
1 0
0 1

]
·
[
x1

x2

]
+

[−1
−1

]
= 0

while pT · x + q = [1, 0] ·
[
x1

x2

]
− 10 ≤ 0 do

[
x′
1

x′
2

]
= T ·

[
x1

x2

]
+ b =

[
0 1
1 1

]
·
[
x1

x2

]
+ 0; end

and search for more invariants. The formula (6) here reads
[
c1
c2

]
=

ξ

μ2 − μ − 1

[
1 − μ −1
−1 −μ

]
·
[
1
0

]
=

ξ

μ2 − μ − 1

[
1 − μ
−1

]
. 
�

Step 2. With formula (6) in hand, every non-negative value μ would give us a
vector c; the next step is to find such μ’s that (1) (2) (3) (5′) are all satisfied.
We call this set the feasible domain of μ.

Notice that (3) and (5′) are two inequalities both containing d. When the
value of μ changes, there is a possibility that (3) and (5′) conflict each other,
hence make no invariant available. So the feasible domain consists of such μ’s
that make the two inequalities compatible with each other:

Proposition 4. For the loop (	′), any feasible μ falls in [0, 1) ∪ (
K ∩ [1,+∞)

)
,

where K is the solution set to the following rational inequality of μ (which we
call ‘compatibility condition’):

bT · (TT − μ · I)−1 · p − q ≤ (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p. (7)

Proof. We multiply (μ − 1) on both sides of (3) and get

(μ − 1)fT · (RT)−1
L · c ≤ (μ − 1)d when 0 ≤ μ < 1 (3′)

(μ − 1)fT · (RT)−1
L · c ≥ (μ − 1)d when μ ≥ 1 (3′′)

compare them with (5′), we see: (3′) (5′) would not conflict each other because
they are both about (μ − 1)d being ‘larger’ than something. However, (3′′) (5′)
are two inequalities of opposite directions, they together must satisfy

bT · c − ξ · q ≤ (μ − 1)d ≤ (μ − 1)fT · (RT)−1
L · c

to be compatible. Substitute c by (6) in the above inequality and cancel out
ξ > 0, we obtain the desired inequality:

bT · (TT − μ · I)−1 · p − q ≤ (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p.

Every μ from [0, 1) and K∩[1,+∞) would lead to non-trivial invariant satisfying
all constraints (1) (2) (3) (4′) (5′). 
�
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Example 4 (Fibonacci, Part 4). Let us compute the feasible domain of μ for
Example 3. Inequality (5′) is (μ − 1)d ≥ 10ξ; inequality (3′′) is

(μ − 1)[−1,−1] ·
[
1 0
0 1

]
· c =

ξ(μ − 1)μ
μ2 − μ − 1

≥ (μ − 1)d (when μ ≥ 1).

We combine them to form the compatibility condition (7) as

10 ≤ (μ − 1)μ
μ2 − μ − 1

⇒ 0 ≤ − 9(μ − 5
3 )(μ + 2

3 )

(μ − 1−√
5

2 )(μ − 1+
√
5

2 )
(when μ ≥ 1).

The solution domain of it is (1+
√
5

2 , 5
3 ]. Thus by Proposition 4, the feasible domain

of μ is [0, 1) ∪ (1+
√
5

2 , 5
3 ]. 
�

Step 3. Proposition 4 provides us with a continuum of candidates for μ, thus
produces infinitely many legitimate invariants. We want to find a basis consisting
of finitely many invariants, such that all invariants are non-negative linear com-
binations of the basis; however, this idea does not work out, where the reason
is explained thoroughly in the full version of this paper [25, Appendix A.1 and
A.2]. Instead, we impose a weaker form of optimality called tightness coming
from the equality cases of constraints (3) (5′):

fT · (RT)−1
L · c − d = λI

0 = 0

(μ − 1)d − bT · c + ξ · q = λC
0 = 0

we call an invariant tight and the corresponding μ as tight choice when both
equalities are achieved:

– λI
0 = 0: The invariant is tight at the initial state, i.e., the invariant reaches

equality at the initial state;
– λC

0 = 0: The invariant stays as close to being tight as much at later iterations.

The non-tight choices could be kept as back-up for invariant generation. The
tight choices are characterized by the following proposition:

Proposition 5. For the loop (	′), the tight choices of μ consist of 0 and the
positive real roots of the following rational equation:

bT · (TT − μ · I)−1 · p − q = (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p. (8)

Note that these roots are also the boundary points of the intervals in K defined
in Proposition 4.

Proof. Recall Proposition 2, constraints (3) (5) form the two boundaries of the
domain of d, which can not be achieved simultaneously in the case of loops with
tautological guard. Nevertheless, in the case of loops with guard, we have an
extra freedom on μ which allows us to set λI

0 = λC
0 = 0:

fT · (RT)−1
L · c = d ∧ (μ − 1)d = bT · c − ξ · q

⇒ bT · (TT − μ · I)−1 · p − q = (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p.
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Equation (8) is just the case that (7) achieves the equality, hence is a rational
equation of μ with finite number of roots. These roots are also the boundary
points of K since K is the solution domain to (7). Besides the roots of (8),
μ = 0 is also a boundary point of the feasible domain; its corresponding invariant
reflects the feature of the loop guard itself. Thus we add it into the list of tight
choices. 
�

With μ determined and c fixed up to a scaling factor, the last thing remains
is to determine the optimal d. The strategy here is similar to Proposition 2:

Proposition 6. Suppose μ is from the feasible domain and c is given by Propo-
sition 3. Then the optimal value of d is determined by one of the two choices
below:

bT · c − ξ · q = (μ − 1)d or fT · (RT)−1
L · c = d.

The proof is omitted here and can be found in our full version [25].

Example 5 (Fibonacci, Part 5). Remember that
[
c1
c2

]
=

ξ

μ2 − μ − 1

[
1 − μ
−1

]
and the feasible domain of μ is [0, 1) ∪ (

1 +
√

5
2

,
5
3
].

We compute the tight choices of μ and tight invariants. The equation (8) here is

0 =
−9μ2 + 9μ + 10

μ2 − μ − 1
= − 9(μ − 5

3 )(μ + 2
3 )

(μ − 1−√
5

2 )(μ − 1+
√
5

2 )

which has only one positive root μ = 5
3 . By Proposition 5 and Proposition 6, We

get two invariants:

μ = 0 : − x1 + x2 − 10 ≤ 0;
μ = 5/3 : − 2x1 − 3x2 + 5 ≤ 0. 
�

4.4 Loops with Guard: Multi-constraint Case

After settling the single-constraint loop guard case, we consider the more general
loop guard which contains the conjunction of multiple affine constraints:

initial condition θ : R · x + f ≤ 0
while P · x + q ≤ 0 do x′ = T · x + b; end

(	′′)

where the loop guard P · x + q ≤ 0 contains m affine inequalities.
We can easily generalize the results of Sect. 4.3 to this case. First of all, we

generalize Proposition 3: one simply needs to modify the formula (6) into

c = (TT − μ · I)−1PT · ξ with ξ ≥ 0 (6′)

here ξ is a free non-negative m-dimensional vector parameter. With a fixed μ,
we take ξ to traverse all vectors in the standard basis {e1, ..., em} to get m
conjunctive invariants.

Next, we generalize Proposition 4 which describes the feasible domain of μ:
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Proposition 7. For the loop (	′′), the feasible domain of μ is [0, 1) ∪ (
K ∩

[1,+∞)
)
, where K is the solution set to the following generalized compatibility

condition:
bT · c − qT · ξ ≤ (μ − 1)d ≤ (μ − 1)fT · (RT)−1

L · c
substitute c by (6′) and take ξ to traverse all vectors in the standard basis (in
order for all constraints in the loop guard to be satisfied by the invariant), we
have the above condition completely decoded as m conjunctive inequalities:

u(μ) := bT · (TT − μ · I)−1PT − qT

≤ w(μ) := (μ − 1)fT · (RT)−1
L (TT − μ · I)−1PT (7′)

where u(μ),w(μ) are two m-dimensional vector functions in μ. The meaning of
(7′) is that the i-th component of u(μ) is no larger than the i-th component of
w(μ) for all 1 ≤ i ≤ m; when m = 1, it goes back to (7).

At last, we consider the tight choices of μ. The first idea comes up to mind
is to repeat Proposition 5: setting λI

0 = λC
0 = 0 for arbitary ξ such that the

generalized compatibility condition achieves equality, i.e., u(μ) = w(μ); however,
this is the conjunction of m rational equations and probably contains no solution.

Thus we use a different idea: recall that in the single-constraint case, the
tight choices are also the (positive) boundary points of K along with 0; so we
adopt this property as the definition in the multi-constraint case:

Definition 1. For the loop (	′′), the tight choices of μ consist of 0 and the
(positive) boundary points of the domain K defined in Proposition 7.

The generalized compatibility condition (7′) contains m inequalities; at each
(positive) boundary point of K, at least one inequality achieves equality and
all other inequalities are satisfied (equivalently, λI

0 = λC
0 = 0 is achieved for at

least one non-trivial evaluation of the free vector parameter ξ). This is indeed a
natural generalization of Proposition 5.

Example 6. We consider the loop:

initial condition θ : R · x + f =
[
1 0
0 1

]
·
[
x1

x2

]
+

[−1
−1

]
= 0

while P · x + q =
[
1 0
0 −1

]
·
[
x1

x2

]
+

[−10
−5

]
≤ 0 do

[
x′
1

x′
2

]
= T ·

[
x1

x2

]
+ b =

[
1 0
0 1

]
·
[
x1

x2

]
+

[
1

−1

]
; end

There is one eigenvalue μ = 1 with geometric multiplicity 2; we solve three
independent invariants from it:

x1 + x2 − 2 ≤ 0, x1 + x2 − 2 ≥ 0; −x1 + x2 ≤ 0.
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Next we find out the other invariants from tight μ’s. In this case (7′) read
11−10µ
1−µ ≤ 1 ∧ 6−5µ

1−µ ≤ −1 (when μ > 1). Then K = (1, 10
9 ] ∩ (1, 7

6 ] = (1, 10
9 ]

and the feasible domain of μ is [0, 1)∪ (1, 10
9 ]. The tight choices are 0, 10

9 (taking
ξ to be [1, 0]T, [0, 1]T respectively yields the two conjunctive invariants for each
μ):

μ = 0 : x1 − 10 ≤ 0 ∧ −x2 − 5 ≤ 0;
μ = 10/9 : − x1 + 1 ≤ 0 ∧ x2 − 1 ≤ 0. 
�

5 Generalizations

In this section, we extend our theory developed in Sect. 4 in two directions. For
one direction, we consider the invariants cT · x + d ≤ 0 for the affine loops in
the general form (†): we will derive the relationship of μ and c, as well as the
feasible domain and tight choices of μ. For the other direction, we stick to the
single-branch affine loops with deterministic updates and tautological guard (	),
yet generalize the invariants to bidirectional-inequality form d1 ≤ cT ·x ≤ d2; we
will apply eigenvalue method to this case for solving the invariants. At the end of
the section, we also give a brief discussion on some other possible generalizations.

5.1 Affine Loops with Non-deterministic Updates

In Sect. 4, we handled the loops with deterministic updates; here we generalize
the results to the non-deterministic case in the form of (†). We focus on the single-
branch loops here, because the multi-branch ones can be handled similarly by
taking the conjunction of all branches, as illustrated in the full version of this
paper [25, Appendix A.3].

initial condition θ : R · x + f ≤ 0
while P · x + q ≤ 0 do T · x − T′ · x′ + b ≤ 0; end

(†′)

For this general form, the initiation constraints are still (1) (2) (3), while the
consecution constraints from Farkas table (∗) are

μ · c + PT · ξ + TT · η = 0 (9)

−(T′)T · η = c (10)

(μ − 1)d + qT · ξ + bT · η = λC
0 ≥ 0 (11)

with ξ,η ≥ 0. The relationship of c and η is given by (10); plugging it into (9)
yield

(
TT − μ · (T′)T

) · η + PT · ξ = 0. (9′)

Hence for any non-trivial invariant cT · x + d ≤ 0 of this loop (†′), we have
c = −(T′)T · η, where η is characterized differently in the following three cases:
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1. T and T′ are square matrices and the loop guard is ‘true’. In this case, we take
ξ = 0 in (9′) and easily see that μ must be a root of det

(
TT − μ · (T′)T

)
= 0

and η is a kernel vector of the matrix TT − μ · (T′)T.
2. T and T′ are square matrices and the loop guard is non-tautological. In this

case, we set μ to be values other than the roots of det
(
TT − μ · (T′)T

)
= 0,

thus the inverse matrix
(
TT − μ · (T′)T

)−1 exists; we multiply it on (9′) and
get that η(μ) = −(

TT − μ · (T′)T
)−1

PT · ξ.
3. Neither T nor T′ is square matrix. In this case, we need to use Gaussian

elimination method (with parameters) to solve (9′). By linear algebra, the
solution η(μ) would contain ‘homogeneous term’ (which does not involve ξ
but possibly some free variables η = [η1, ..., ηl]T) and ‘non-homogeneous term’
(which contains ξ linearly). Thus η(μ) could be written in parametric vector
form as M(μ) · η + N(μ) · ξ, where M(μ),N(μ) are matrix functions only in
μ.

For Case 2 and Case 3, we have a continuum of candidates for μ. The feasible
domain of μ is given by

(
[0, 1) ∪ (

K̃ ∩ [1,+∞)
)) ∩ J , where K̃ is the solution

set to the following compatibility condition (obtained by combining constraints
(3′′) (11)):

bT · η(μ) + qT · ξ ≥ (μ − 1)fT · (RT)−1
L (T′)T · η(μ)

and J is the solution set to constraints η(μ) ≥ 0. Here both η and ξ as free
non-negative vector parameters are taken to traverse all standard basis vectors,
just in the same way as Proposition 7. The tight choices of μ consists of 0 and
the positive boundary points of K̃ ∩ J , in the same sense as Definition 1.

5.2 An Extension to Bidirectional Affine Invariants

Here we restrict ourselves to single-branch affine loops with deterministic updates
and tautological loop guard (	), but aim for the invariants of bidirectional-
inequality form d1 ≤ cT · x ≤ d2. This is actually the conjunction of two affine
inequalities: Φ1 : −cT · x + d1 ≤ 0 ∧ Φ2 : cT · x − d2 ≤ 0. We have the following
proposition:

Proposition 8. For any bidirectional invariant d1 ≤ cT ·x ≤ d2 of the loop (	),
we have that c must be an eigenvector of TT with a negative eigenvalue.

Proof. We can easily write down the initiation condition: θ |= (Φ1 ∧ Φ2) and the
corresponding constraints (with λ, λ̃ being two different vector parameters):

RT · λ = c, fT · λ + d2 = λI
0 ≥ 0; RT · λ̃ = −c, fT · λ̃ − d1 = λ̃I

0 ≥ 0.

However, there are two possible ways to propose the consecution condition:

(Φ1 ∧ τ |= Φ′
1 and Φ2 ∧ τ |= Φ′

2) or (Φ1 ∧ τ |= Φ′
2 and Φ2 ∧ τ |= Φ′

1)
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If we choose the first one, there will be nothing different from the things we did
in Sect. 4.2. Thus we choose the second one: making the two inequalities induct
each other. Hence the Farkas tables are

μ −cT · x + d1 ≤ 0 (Φ1)
λC
0 − 1 ≤ 0

−c T · x − x′ + b = 0 (τ)
cT · x′ − d2 ≤ 0 (Φ′

2)

μ̃ cT · x − d2 ≤ 0 (Φ2)
λ̃C
0 − 1 ≤ 0
c T · x − x′ + b = 0 (τ)

− cT · x′ + d1 ≤ 0 (Φ′
1)

We write out the constraints of consecution:

−μ · c = TT · c = −μ̃ · c (12)

μ · d1 + d2 − bT · c = λC
0 ≥ 0, − μ̃ · d2 − d1 + bT · c = λ̃C

0 ≥ 0

the proposition is verified by (12) since μ, μ̃ ≥ 0. 
�
Example 7 (Fibonacci, Part 6). Recall that in this example we have a negative
eigenvalue 1−√

5
2 . It yields the eigenvector c = [c1, 1−√

5
2 c1]T. The other con-

straints are computed as:

−(3 −
√

5)c1/2 + d2 = λI
0 ≥ 0, (3 −

√
5)c1/2 − d1 = λ̃I

0 ≥ 0.

−(1 −
√

5)d1/2 + d2 = λC
0 ≥ 0, (1 −

√
5)d2/2 − d1 = λ̃C

0 ≥ 0.

If we choose c1 = 2, λI
0 = 0 = λ̃C

0 (or c1 = −2, λ̃I
0 = 0 = λC

0 ), we get an invariant

μ = |(1 −
√

5)/2| : 2(2 −
√

5) ≤ 2x1 + (1 −
√

5)x2 ≤ 3 −
√

5

which reflects the ‘golden ratio’ property of the Fibonacci numbers. 
�
Remark 1. The generalizations for bidirectional affine invariants to the loops
with non-tautological guard or multiple branches are practicable but with some
restrictions. The main restriction lies at the point that we need to assume the
affine loop guard to also be bidirectional to make our approach for bidirectional
affine invariants work. The issue of multiple branches is not critical as the bidi-
rectional invariants can be derived in almost the same way as single-inequality
invariants (illustrated in full version [25, Appendix A.3]), with the only difference
at the adaption to bidirectional inequalities.

5.3 Other Possible Generalizations

Integer-valued Variables. One direction is to transfer some of the results for
affine loops over real-valued variables to those over integer-valued variables. Our
approach is based on Farkas’ lemma which is dedicated to real-valued variables,
thus can only provide a sound but not exact treatment for integer-valued vari-
ables. An exact treatment for integer-valued variables would require Presburger
arithmetics [16], rather than Farkas’ lemma.
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Strict-inequality Invariants. We handle the non-strict-inequality affine
invariants in this work. It’s natural to consider the affine invariants of the strict-
inequality form. For strict inequalities, we could utilize an extended version of
Farkas’ lemma in [6, Corollary 1], so that strict inequalities can be generated by
either relaxing the non-strict ones obtained from our method or restricting the μ
value to be positive. Since Motzkin transposition theorem is a standard theorem
for handling strict inequalities, we believe that Motzkin transposition theorem
can also achieve similar results, but may require more tedious manipulations.

6 Approximation of Eigenvectors through Continuity

In Sect. 4.2 and Sect. 5.2, we need to solve the characteristic polynomial of the
transition matrix to get eigenvalues; while general polynomials with degree ≥ 5
do not have algebraic solution formula due to Abel-Ruffini theorem. We can
develop a number sequence {λi} to approximate the eigenvalue λ through root-
finding algorithms; however, we cannot approximate the eigenvector of λ by
solving the kernel of TT−λi ·I since it has trivial kernel. In the case of dimensions
≥ 5, i.e., when an explicit formula for eigenvalues is unavailable, we introduce
an approximation method of the eigenvectors through a continuity property of
the invariants:

Continuity of Invariants w.r.t. μ. In Sect. 4, we have shown that for any
invariant cT · x + d ≤ 0 of single-branch affine loops with deterministic updates,
the relationship of c and μ is given in two ways:

c =

{
kernel vector of TT − μ · I when det(TT − μ · I) = 0
(TT − μ · I)−1 · z when det(TT − μ · I) �= 0

with z = PT · ξ. Thus c = c(μ) could be seemed as a vector function in μ
expressed differently at eigenvalues from other points. c(μ) is undoubtedly con-
tinuous at the points other than eigenvalues, while the following proposition
illustrates the continuity property of c(μ) at the eigenvalues:

Proposition 9. Suppose λ is a real eigenvalue of TT with eigenvector c(λ); and
{λi} is a sequence lying in the feasible domain of μ which converges to λ. If λ
has geometric multiplicity 1, then the sequence {c(λi)} converges to c(λ) as well;
otherwise, {c(λi)} converges to 0.

Due to the lack of space, the proof of Proposition 9 is omitted here and available
in our full version [25].

An Algorithmic Approach to Eigenvalue Method in Dimensions ≥ 5.
By Proposition 9, if λ has geometric multiplicity 1, we can compute c(λi) =
(TT − λi · I)−1 · z (in the case of tautological loop guard, we just replace z by
any non-zero n-dimensional real vector) to approximate the eigenvector c(λ).
On the other hand, in the case that λ has geometric multiplicity > 1, one can
adopt Least-squares approximation as presented in [5, Section 8.9]. Though the
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Least-squares approximation applies to the cases of eigenvalues with arbitrary
geometric multiplicity, our method is much easier to implement and has higher
efficiency.

7 Experimental Results

Experiment. We implement our automatic invariant-generation algorithm of
eigenvalues and tight choices in Python 3.8 and use Sage [42] for matrix manip-
ulation. All results are obtained on an Intel Core i7 (2.00 GHz) machine with
64 GB memory, running Ubuntu 18.04. Our benchmarks are affine loops chosen
from some benchmark in the StInG invariant generator [40], some linear dynam-
ical system in [30], some loop programs in [41] and some other linear dynamical
systems resulting from well-known linear recurrences such as Fibonacci numbers,
Tribonacci numbers, etc.

Complexity. The main bottleneck of our algorithm lies at exactly solving or
approximating real roots of univariate polynomials (for computing eigenvalues
and boundary points in our algorithmic approach). The rest includes Gaussian
elimination with a single parameter (the polynomial-time solvability of which is
guaranteed by [26]), matrix inverse and solving eigenvectors with fixed eigenval-
ues, which can easily be done in polynomial time. The exact solution for degrees
less than 5 can be done by directly applying the solution formulas. The approxi-
mation of real roots can be carried out through real root isolation and a further
divide-and-conquer (or Newton’s method) in each obtained interval, which can
be completed in polynomial time (see e.g. [36] for the polynomial-time solvability
of real root isolation). Thus, our approach runs in polynomial time and is much
more efficient than quantifier elimination in [12].

Results. The experimental results are presented in Table 1. In the table, the
column ‘Loop’ specifies the name of the benchmark, ‘Dim(ension)’ specifies the
number of program variables, ‘μ’ specifies the values through eigenvalues of the
transition matrices (which we marked with e) or boundary points of the intervals
in the feasible domain, ‘Invariants’ lists the generated affine invariants from our
approach. We compare our approach with the existing generators StInG [40]
and InvGen [22], where ‘=’, ‘>’, ‘�’ and ‘�=’ means the generated invariants are
identical, more accurate, can only be generated in this work, and incomparable,
respectively. Table 2 compares the amounts of runtime for our approach and
StInG and InvGen respectively, measured in seconds. Note that the runtime of
StInG and InvGen are obtained by executing their binary codes on our platform.

Analysis. StInG [40] implements constraint-solving method proposed in [12,37],
InvGen [22] integrates both constraint-solving method and abstract interpre-
tation, while our approach uses matrix algebra to refine and upgrade the
constraint-solving method. Based on the results in Table 1 and Table 2, we con-
clude that:
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Table 1. Experimental Results of Invariants

Loop Dim μ Invariants [40] [22]

Fibonacci numbers 2 |(1 − √
5)/2|e 2x1 + (1 − √

5)x2 − 3 +
√

5 ≤ 0 � �
−2x1 − (1 − √

5)x2 + 4 − 2
√

5 ≤ 0

(1 +
√

5)/2e −2x1 − (1 +
√

5)x2 + 3 +
√

5 ≤ 0

−2x1 − (1 +
√

5)x2 ≤ 0

See-Saw [40] 2 1e x1 − 2x2 ≤ 0 = >

−3x1 + x2 ≤ 0

Example 6.2 [30] 4 |1 − √
2|e w − y − (1 − √

2)x + (1 − √
2)z ≤ 0 > >

1 +
√

2e w − y − (1 +
√

2)x + (1 +
√

2)z ≤ 0

css2003 [41] 3 0, 1e i − L1 ≤ 0 = =

−i + 1 ≤ 0, i + k − 1 = 0

afnp2014 [41] 2 0, 1e, 1000/999 y − 999 ≤ 0 = >

−y ≤ 0, x − 999y − 1 ≤ 0

gsv2008 [41] 2 0, 1e, 8/7 x − y + 2 ≤ 0 > �=
−y ≤ 0, −x − 7y − 50 ≤ 0

cggmp2005 [41] 2 0, 1e, 4/3 i − j − 3 ≤ 0, −i + 1 ≤ 0, j − 10 ≤ 0 > >

i + 2j − 21 = 0, −i + j − 9 ≤ 0

Jacobsthal numbers 2 |−1|e, 2e 2x1 − x2 − 1 ≤ 0, −2x1 + x2 − 1 ≤ 0 � >

−x1 − x2 + 2 ≤ 0

Pell numbers 2 |1 − √
2|e x1 + (1 − √

2)x2 − 3 + 2
√

2 ≤ 0 � �
−x1 − (1 − √

2)x2 + 7 − 5
√

2 ≤ 0

1 +
√

2e −x1 − (1 +
√

2)x2 + 3 + 2
√

2 ≤ 0

−x1 − (1 +
√

2)x2 ≤ 0

Perrin numbers 3 Δ =
3
√ √

69+9
18 a =

3Δ+1/Δ
3 , b = 1/a + 1 � �

μ = 4
3 Δe x1 + bx2 + ax3 ≥ 2

3Δ
+ 2Δ + 3

Tribonacci numbers 3 Δ =
3√

3
√

33 + 19 a = 1
3 (Δ + 4

Δ
+ 1), b = 1/a + 1 � �

μ = (5Δ + 1)/3e x1 + bx2 + ax3 ≥ b + a
1 L stands for the variable LARGE INT in the original program [41]. Note that we modified the loop

programs in [41] as affine loops before execution.

Table 2. Experimental Results of Execution Time (s)

Loop StInG [40] InvGen [22] Our Approach

Fibonacci numbers 0.030 0.079 0.178
See-Saw [40] 0.024 0.104 0.104

Example 6.2 [30] 0.030 0.092 0.173
css2003 [41] 0.019 0.111 0.193

afnp2014 [41] 0.025 0.076 0.193
gsv2008 [41] 0.027 0.092 0.207

cggmp2005 [41] 0.026 0.111 0.184
Jacobsthal numbers 0.026 0.085 0.193

Pell numbers 0.023 0.102 0.219
Perrin numbers 0.031 0.129 0.250

Tribonacci numbers 0.029 0.115 0.262
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– For the benchmarks with rather simple transition matrices (identity or diag-
onal matrices), our approach covers or outnumbers the invariants generated
by StInG and InvGen.

– For the benchmarks with complicated transition matrices (which are the
matrices far away from diagonal ones), especially the ones with irrational
eigenvalues, our approach generates adequate accurate invariants while StInG
and InvGen generate nothing or only trivial invariants.

– For all benchmarks, the runtime of StInG and InvGen are faster but compa-
rable with our runtime, hence shows the efficiency of our approach.

Summarizing all above, the experimental results demonstrate the wider cover-
age for the μ value endowed from our approach, and show the generality and
efficiency of our approach.
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Abstract. We propose a data-driven algorithm for numerical invariant
synthesis and verification. The algorithm is based on the ICE-DT schema
for learning decision trees from samples of positive and negative states
and implications corresponding to program transitions. The main issue
we address is the discovery of relevant attributes to be used in the learn-
ing process of numerical invariants. We define a method for solving this
problem guided by the data sample. It is based on the construction of a
separator that covers positive states and excludes negative ones, consis-
tent with the implications. The separator is constructed using an abstract
domain representation of convex sets. The generalization mechanism of
the decision tree learning from the constraints of the separator allows the
inference of general invariants, accurate enough for proving the targeted
property. We implemented our algorithm and showed its efficiency.

Keywords: Invariant synthesis · Data-driven program verification

1 Introduction

Invariant synthesis for program safety verification is a highly challenging prob-
lem. Many approaches exist for tackling this problem, including abstract inter-
pretation, CEGAR-based symbolic reachability, property-directed reachability
(PDR), etc. [3,5,6,8,10,14,17,19]. While those approaches are applicable to large
classes of programs, they may have scalability limitations and fail to infer cer-
tain types of invariants, such as disjunctive invariants. Emerging data-driven
approaches, following the active learning paradigm with various machine learn-
ing techniques, have shown their ability to solve efficiently complex instances
of the invariant synthesis problem [12,15,16,20,26,30,31]. These approaches are
based on the iterative interaction between a learner inferring candidate invari-
ants from a data sample, i.e., a set of data classified either as positive examples,
known to be reachable from the initial states and that therefore must be included
in any solution, or negative examples, known to be predecessors of states violat-
ing the safety property and that therefore cannot be included in any solution,
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and a teacher checking the validity of the proposed solutions and providing coun-
terexamples as feedback in case of non-validity. One such data-driven approach
is ICE [15] which has shown promising results with its instantiation ICE-DT [16]
that uses decision trees for the learning component. ICE is a learning approach
tailored for invariant synthesis, where the feedback provided by the teacher can
be, in addition to positive and negative examples, implications of the form p → q
expressing the fact that if p is in a solution, then necessarily q should also be
included in the solution since there is a transition in the program from p to q.

The strength of data-driven approaches is the generalization mechanisms of
their learning components, allowing them to find relevant abstractions from a
number of examples without exploring the whole state space of the program. In
the case of ICE-DT, this is done by a sophisticated construction of decision trees
classifying correctly the known positive and negative examples at some point,
and taking into account the information provided by the implications. These
decision trees, where the tested attributes are predicates on the variables of the
program, are interpreted as formulas corresponding to candidate invariants.

However, to apply data-driven methods such as ICE-DT, one needs to have
a pool of attributes that are potentially relevant for the construction of the
invariant. This is actually a crucial issue. In ICE-DT, as well as in most data-
driven methods, finding the predicates involved in the invariant construction
is based on systematic enumeration of formulas according to some pre-defined
templates or grammars. For instance, in the case of numerical programs, the
considered patterns are some special types of linear constraints, and candidate
attributes are generated by enumerating all possible values for the coefficients
under some fixed bound. While such a brute-force enumeration can be effective
in many cases, it represents, in general, an obstacle for both scalability and
finding sufficiently accurate inductive invariants in complex cases.

In this paper, we provide an algorithmic method for efficient generation of
attributes for data-driven invariant synthesis for numerical programs manipulat-
ing integer variables. While enumerative approaches are purely syntactic and do
not take into account the data sample, our method is guided by it. We show that
this method, when integrated in the ICE-DT schema, leads to a new invariant
synthesis algorithm outperforming state-of-the-art methods and tools.

Our method for attributes discovery is based on, given an ICE data sample,
computing a separator of it as a union of convex sets i.e., (1) it covers all the
positive examples, (2) it does not contain any negative example, and (3) it is
consistent with the implications (for every p → q in the sample, if the separator
contains p, then it should also contain q). Then, the set of attributes generated is
the set of all constraints defining the separator. However, as for a given sample
there might be several possible separators, a question is which separators to
consider. Our approach is guided by two requirements: (1) we need to avoid big
pools of attributes in order to reduce the complexity of the invariant construction
process, and (2) we need to avoid having in the pool constraints that are (visibly)
unnecessary, e.g. separating positive examples in a region without any negative
ones. Therefore, we consider separators that satisfy the property that, whenever
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they contain two convex sets, it is impossible to take their convex union (smallest
convex set containing the union) without including a negative example.

To represent and manipulate algorithmically convex sets, we consider
abstract domains, e.g., intervals, octagons, and polyhedra, as they are defined in
the abstract interpretation framework and implemented in tools such as APRON
[18]. These domains correspond to particular classes of convex sets, defined by
specific types of linear constraints. In these domains, the union operation is
naturally over-approximated by the join operation that computes the best over-
approximation of the union in the considered class of convex sets. Then, con-
structing separators as explained above can be done by iterative application of
the join operation while it does not include negative examples.

Then, this method for generating candidate attributes can be integrated into
the ICE-DT schema: in each iteration of ICE loop, given a sample, the learner (1)
generates a set of candidate attributes from a separator of the sample, (2) builds
a decision tree from these attributes and proposes it as a candidate invariant
to the teacher. Then, the teacher (1) checks that the proposed solution is an
inductive invariant, and if it is not (2) provides a counterexample to the learner,
extending the sample that will be used in the next iteration.

Here a question might be asked: why do we need to construct a decision tree
from the constraints of the separator and do not propose directly the formula
defining the separator as a candidate invariant to the teacher. The answer is
that the decision tree construction is crucial for generalization. Indeed, given a
sample, the constructed separator might be too specialized to that sample and
does not provide a useful inductive invariant (except for some simple cases). For
instance, the constructed separator is a union of bounded convex sets (polytopes),
while invariants are very often unbounded convex sets (polyhedra). The effect
of using decision trees, in this case, is to select the relevant constraints and
discard the unnecessary bounds, leading very quickly to an unbounded solution
that is general enough to be an inductive invariant. Without this generalization
mechanisms, the ICE loop will not terminate in such (quite common) cases.

The integration of our method can be made tighter and more efficient by
making the process of building separators incremental along the ICE iterations:
at each step, after the extension of the sample by the teacher, instead of con-
structing a separator of the new sample from scratch, the parts of previously
computed separators not affected by the last extension of the sample are reused.

We have implemented our algorithm and carried out experiments on the
SyGuS-Comp’19 benchmarks. Our method solves significantly more cases than
the tools LoopInvGen [25,26], CVC4 [1,27], and Spacer [19], as well as our imple-
mentation of the original ICE-DT [16] algorithm (with template-based enumer-
ation of attributes), with very competitive time performances.

Related Work. Many learning-based approaches for the verification of numer-
ical programs have been developed recently. One of the earliest approaches is
Daikon [11]. Given a pool of formulas, it computes likely invariants from program
executions. Later approaches were developed for the synthesis of sound invari-
ants, for example [30] iteratively generates a set of reachable and bad states and
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classifies them with a combination of half-spaces computed using SVM. In [29],
the problem is reformulated as learning geometric concepts in machine learning.
The first instantiation of the ICE framework was based on a constraint solver
[15]. Later on, it was instantiated using the decision trees learning algorithm [16].
Both those instantiations require a fixed template for the invariants or the for-
mulas appearing in them. LoopInvGen enumerates predicates on-demand using
the approach introduced in [26]. This is extended to a mechanism with hybrid
enumeration of several domains or grammars [25]. Continuous logic networks
were also used to tackle the problem in CLN2INV [28]. Code2Inv [31], the first
approach to introduce general deep learning methods to program verification,
uses a graph neural network to capture the program structure and reinforcement
learning to guide the search heuristic of a particular domain.

The learning approach of ICE and ICE-DT has been generalized to solve
problems given as constrained horn clauses (CHC) in Horn-ICE [12] and HoICE
[4]. Outside the ICE framework, [33] proposed a learning approach for solving
CHC using decision trees and SVM for the synthesis of candidate predicates from
a set of reachable and bad states of the program. The limitation of the non-ICE-
based approach is that when the invariant is not inductive, the program has to
be rerun, forward and backward, to generate more reachable and bad states.

In more theoretical work, an abstract learning framework for synthesis,
introduced in [21], incorporates the principle of CEGIS (counterexample-guided
inductive synthesis). A study of overfitting in invariant synthesis was conducted
in [25]. ICE was compared with IC3/PDR in terms of complexity in [13]. A
generalization of ICE with relative inductiveness [32] can implement IC3/PDR
following the paradigm of active learning with a learner and a teacher.

Automatic invariant synthesis and verification has been addressed by many
other techniques based on exploring and computing various types of abstract
representations of reachable states (e.g., [3,5,6,8,10,14,17,19]). Notice that,
although we use abstract domains for representation and manipulation of convex
sets, our strategy for exploring the set of potential invariants is different from
the ones used typically in abstract interpretation analysis algorithms [8].

2 Safety Verification Using Learning of Invariants

This section presents the approach we use for solving the safety verification prob-
lem. It is built upon the ICE framework [15] and in particular its instantiation
with the learning of decision trees [16]. We first define the verification problem.

2.1 Linear Constraints and Safety Verification

Let X be a set of variables. Linear formulas over X are boolean combinations
of linear constraints of the form

∑n
i=1 aixi ≤ b where the xi’s are variables in

X, the ai’s are integer constants, and b ∈ Z ∪ {+∞}. We use linear formulas to
reason symbolically about programs with integer variables. Assume we have a
program with a set of variables V and let n = |V |. A state of the program is a
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vector of integers in Z
n. Primed versions of these variables are used to encode

the transition relation T of the program: for each v ∈ V , we consider a variable
v′ to represent the value of v after the transition. Let V ′ be the set of primed
variables, and consider linear formulas over V ∪ V ′ to define the relation T .

The safety verification problem consists in, given a set of safe states Good ,
deciding whether, starting from a set of initial states Init , all the reachable states
by iterative application of T are in Good . Dually, this is equivalent to decide if
starting from Init , it is possible to reach a state in Bad which is the set of unsafe
states (the complement of Good). Assuming that the sets Init and Good can be
defined using linear formulas, the safety verification problem amounts to find an
adequate inductive invariant I, such that the three following formulas are valid:

Init(V ) ⇒ I(V ) (1)
I (V ) ⇒ Good(V ) (2)

I(V ) ∧ T (V, V ′) ⇒ I(V ′) (3)

We are looking for inductive invariants which can be expressed as a linear
formula. In that case, the validity of the three formulas is decidable and can be
checked with a standard SMT solver.

2.2 The ICE Learning Framework

ICE [15] follows the active learning paradigm to learn adequate inductive invari-
ants of a given program and a given safety property. It consists of an iteratively
communicating learner and a teacher (see Algorithm 1).

Input : A transition system and a property: (Init, T,Good)
Output: An adequate invariant or error

1 initialize ICE-sample S = (S+, S−, S→);
2 while true do
3 J ← Learn(S);
4 (success, counterexample) ← is inductive(J);
5 if success then return J ;
6 else
7 S ← update(S, counterexample);
8 if contradictory(S) then return error;

Algorithm 1: The main loop of ICE.

In each iteration, in line 3, the learner, which does not know anything about
the program, synthesizes a candidate invariant (as a formula over the program
variables) from a sample S (containing information about program states) which
is enriched during the learning process. Contrary to other learning methods, the
sample S not only contains a set of positive states S+ which should satisfy the
invariant, and a set of negative states S− which should not satisfy the invariant,
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but it contains also a set of implications S→ of the form s → s′ meaning that
if s satisfies the invariant, then s′ should satisfy it as well (because there is a
transition from s to s′ in the transition relation of the program). Therefore, an
ICE-sample S is a triple (S+, S−, S→), where to account for the information
contained in implications, it is imposed additionally that

∀s → s′ ∈ S→ : if s ∈ S+, then s′ ∈ S+, and if s′ ∈ S−, then s ∈ S− (4)

The sample is initially empty (or containing some states whose status, positive or
negative, is known). It is assumed that a candidate invariant J proposed by the
learner is consistent with the sample, i.e. states in S+ satisfy the invariant J , the
states in S− falsify it, and for implications s → s′ ∈ S→ it is not the case that s
satisfies J but not s′. Given a candidate invariant J provided by the learner in
line 3, the teacher who knows the transition relation T , checks if J is an inductive
invariant in line 4; if yes, the process stops, an invariant has been found; otherwise
a counterexample is provided and used in line 7 to update the sample for the
next iteration. The teacher checks the three conditions an inductive invariant
must satisfy (see Sect. 2.1). If (1) is violated the counterexample is a state s
which should be in the invariant because it is in Init . Therefore s is added to
S+. If (2) is violated the counterexample is a state s which should not be in
the invariant because it is not in Good and s is added to S−. If (3) is violated
the counterexample is an implication s → s′ where if s is in the invariant, s′

should also be in it. Therefore s → s′ is added to S→. In all three cases, the
sample is updated to satisfy property 4. If this leads to a contradictory sample,
i.e. S+ ∩ S− �= ∅, the program is incorrect and an error is returned. Notice that
obviously, in general, the loop is not guaranteed to terminate.

2.3 ICE-DT: Invariant Learning Using Decision Trees

In [16], the ICE learning framework is instantiated with a learn method, which
extends classical decision tree learning algorithms with the handling of impli-
cations. In the context of invariant synthesis, decision trees are used to classify
points from a universe, which is the set of program states. They are binary trees
whose inner nodes are labeled by predicates from a set of attributes and whose
leaves are either + or −. Attributes are (atomic) formulas over the variables
of the program. They can be seen as boolean functions that the decision tree
learning algorithm will compose to construct a classifier of the given ICE sample.
In our case of numerical programs manipulating integer variables, attributes are
linear inequalities. Then, a decision tree can be seen naturally as a quantifier-free
formula over program variables.

The main idea of the ICE-DT learner (see Algorithm 2) is as follows. Ini-
tially, the learner fixes a set of attributes (possibly empty) which is kept in a
global variable and updated in successive executions of Learn(S). In line 2,
given a sample, the learner checks whether the current set of attributes is suf-
ficient to produce a decision tree corresponding to a formula consistent with
the sample. If the check is successful the sample S is changed to SAttr taking
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Input : An ICE sample S = (S+, S−, S→)
Output: A formula
Global : Attributes initialized with InitialAttributes

1 Proc Learn(S)
2 (success, SAttr) ← sufficient(Attributes, S);
3 while ¬success do
4 Attributes ← generateAttributes(Attributes, S);
5 (success, SAttr) ← sufficient(Attributes, S);

6 return tree to formula(Construct-Tree(SAttr, Attributes))

Algorithm 2: The ICE-DT learner Learn(S) procedure.

into account information gathered during the check (see below for the details of
sufficient(Attributes, S)). If the check fails new attributes are generated with
generateAttributes(Attributes, S) until success. Then, a decision tree is con-
structed in line 6 from the sample SAttr by Construct-Tree(SAttr, Attributes)
which we present below (Algorithm 3). It is transformed into a formula and
returned as a potential invariant. Notice that in the main ICE loop of Algo-
rithm 1 the teacher then checks if this invariant is inductive or not. If not, the
original sample S is updated and in the next iteration the learner checks if the
attributes are still sufficient for the updated sample. If not, the learner generates
new attributes and proceeds with constructing another decision tree and so on.

An important question is how to choose InitialAttributes and how to gener-
ate new attributes when needed. In [16], the set InitialAttributes is for example
the set of octagons over program variables with absolute values of constants
bounded by c ∈ N. If these attributes are not sufficient to classify the sample,
then new attributes are generated simply by increasing the bound c by 1. We use
a different method described in detail in Sect. 4. We now describe how a decision
tree can be constructed from an ICE sample and a set of attributes.

Decision Tree Learning Algorithms. The well-known standard decision tree
learning algorithms like ID3 [23] take as an input a sample containing points
marked as positive or negative of some universe and a fixed set Attributes.
They construct a decision tree by choosing as the root an attribute, splitting
the sample in two (one with all points satisfying the attribute and one with the
other points) and recursively constructing trees for the two subsamples. At each
step the attribute maximizing the information gain computed using the entropy
of subsamples is chosen. Intuitively this means that at each step, the attribute
which separates the “best” positive and negative points is chosen. In the context
of verification, exact classification is needed, and therefore, all points in a leaf
must be classified in a way consistent with the sample.

In [16] this idea is extended to handle also implications which is essential for
an ICE learner. The basic algorithm to construct a tree (given as Algorithm 3
below) gets as input an ICE sample S = (S+, S−, S→) and a set of Attributes
and produces a decision tree consistent with the sample, which means that each
point in S+ (resp. S−) is classified as positive (resp. negative) and for each
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implication (s, s′) ∈ S→ it is not the case that s is classified as positive and s′

as negative. The initial sample S is supposed to be consistent.

Input : An ICE sample S = (S+, S−, S→) and a set of Attributes.
Output: A tree

1 Proc Construct-Tree(S,Attributes)
2 Set G (partial mapping of end-points of impl. to {Positive,Negative}) to empty ;
3 Let Unclass be the set of all end-points of implications in S→;
4 Compute the implication closure of G w.r.t. S;

5 return DecisionTreeICE(〈S+, S−, Unclass〉, Attributes);

6 Proc DecisionTreeICE(Examples = 〈Pos,Neg, Unclass〉, Attributes)
7 Move all points of Unclass classified as Positive (resp. Negative) to Pos (resp. Neg);
8 if Neg = ∅ then
9 Mark all points of Unclass in G as Positive;

10 Compute the implication closure of G w.r.t. S;
11 return Leaf(+);

12 else if Pos = ∅ then
13 Mark all points of Unclass in G as Negative;
14 Compute the implication closure of G w.r.t. S;
15 return Leaf(−);

16 else
17 a ← choose(Attributes, Examples);
18 Divide Examples into two: Examplesa with all points satisfying a and

Examples¬a the others;
19 Tleft ← DecisionTreeICE(Examplesa, Attributes \ {a});
20 Tright ← DecisionTreeICE(Examples¬a, Attributes \ {a});
21 return Tree(a, Tleft, Tright);

Algorithm 3: The ICE-DT decision-tree learning procedures.

The learner is similar to the classical decision tree learning algorithms. How-
ever, it has to take care of implications. To this end, the learner also considers
the set of points appearing as end-points in the implications but not in S+ and
S−. These points are considered in the beginning as unclassified, and the learner
will either mark them Positive or Negative during the construction as follows:
if in the construction of the tree a subsample is reached containing only positive
(resp. negative) points and unclassified points (lines 8 and 12 resp.), all these
points are classified as positive (resp. negative). To make sure that implications
are still consistent, the implication closure with the newly classified points is
computed and stored in the global variable G, a (partial mapping) of end-points
in S→ to {Positive,Negative}. The implication closure of G w.r.t. S is defined
as: If G(s) = Positive or s ∈ S+ and (s, s′) ∈ S→ then also G(s′) = Positive.
If G(s′) = Negative or s′ ∈ S− and (s, s′) ∈ S→ then also G(s) = Negative.

The set Attributes is such that a consistent decision tree will always be
found, i.e. the set Attributes in line 17 is never empty (see below). An attribute
in a node is chosen with choose(Attributes,Examples) returning an attribute
a ∈ Attributes with the highest gain according to Examples. We do not give
the details of this function. In [16] several gain functions are defined extending
the classical gain function based on entropy with the treatment of implications.
We use the one which penalizes cutting implications (like ICE-DT-penalty).

Checking if the Set of Attributes is Sufficient. Here we show how the
function sufficient(Attributes, S) of Algorithm 2 is implemented in [16]. Two
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states s and s′ are considered equivalent (denoted by ≡Attributes), if they satisfy
the same attributes of Attributes. One has to make sure that two equivalent
states are never classified in different ways by the tree construction algorithm.
This is done by the following procedure: For any two states s, s′ with s ≡Attributes

s′ which appear in the sample (as positive or negative or end-points of the
implications) two implications s → s′ and s′ → s are added to S→ of S.

Then, the implication closure of the sample is computed starting from an
empty mapping G (all end-points are initially unclassified). If during the com-
putation of the implication closure one end-point is classified as both Positive
and Negative, then sufficient(Attributes, S) returns (false, S) else it returns
(true, SAttr) where SAttr is obtained from S = (S+, S−, S→) by adding to S+

the end-points of implications classified as Positive and to S− the end-points
classified as Negative.

In [16] it is shown that this guarantees in general that a tree consistent with
the sample will always be constructed regardless of the order in which attributes
are chosen. We illustrate now the ICE-DT learner on a simple example.

Example 1. Let S = (S+, S−, S→) be a sample (illustrated in Fig. 1) with two-
dimensional states (variables x and y): S+ = {(1, 1), (1, 4), (3, 1), (5, 1), (5, 4),
(6, 1), (6, 4)}, S− = {(4, 1), (4, 2), (4, 3), (4, 4)}, S→ = {(2, 2) → (2, 3), (0, 2) →
(4, 0)}. We suppose that Attributes = {x ≥ 1, x ≤ 3, y ≥ 1, y ≤ 4, x ≥ 5, x ≤ 6}
is given. In Sect. 4 we show how to obtain this set from the sample. The learner
first checks that the set Attributes is sufficient to construct a formula consistent
with S. The check succeeds and we have among others that (2, 2) and (2, 3) and
the surrounding positive states on the left are all equivalent w.r.t. ≡Attributes.
Therefore after adding implications (which we omit for clarity in the follow-
ing) and the computation of the implication closure both (2, 2) and (2, 3) are
added to S+. Then, the construction of the tree is started with Examples con-
taining 9 positive, 4 negative and 2 unclassified states. Depending on the gain
function an attribute is chosen. Here, it is x ≥ 5, since it separates all the pos-
itive states on the right from the rest and does not cut the implication. The
set Examples is split into the states satisfying x ≥ 5 and those which don’t:
Examplesx≥5 and Examplesx<5. Examplesx≥5 contains only positive states
{(5, 1), (5, 4), (6, 1), (6, 4)} and the branch is finished whereas Examplesx<5 con-
tains the remaining positive, negative and unclassified states and the construc-
tion continues. The attribute x ≤ 3 is chosen and Examplesx<5 split in two.
Examplesx<5∧x≤3 contains the positive states {(1, 1), (1, 4), (3, 1), (2, 2), (2, 3)}
and one unclassified state (0, 2). Therefore, the algorithm marks (0, 2) as positive
and as there is an implication (0, 2) → (4, 0), the state (4, 0) is marked positive
as well and a leaf node is returned. The other branch Examplesx<5∧x>3 now
contains negative states {(4, 1), (4, 2), (4, 3), (4, 4)} and a positive state (4, 0).
Therefore another attribute is needed. Finally, the algorithm returns a tree cor-
responding to the formula x ≥ 5 ∨ (x < 5 ∧ x ≤ 3) ∨ (x < 5 ∧ x > 3 ∧ y < 1).
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3 Linear Formulas as Abstract Objects

Algorithm 2 requires a set of attributes as input. In Sect. 4, we show how to
generate these attributes from the sample. For that purpose, we use numerical
abstract domains to represent and manipulate algorithmically sets of integer
vectors representing program states. We consider standard numerical domains
defined in [7,9,22] and implemented in tools such as APRON [18]: Intervals,
Octagons, and Polyhedra.

Given a set of n variables X and a linear formula ϕ over X, let [[ϕ]] ⊆ Z
n be

the set of all integer points satisfying the formula. Now, a subset of Zn is called

– an interval, iff it is equal to [[ϕ]] where ϕ is a conjunction of constraints of the
form α ≤ x ≤ β, where x ∈ X, α ∈ Z ∪ {−∞} and β ∈ Z ∪ {+∞}.

– an octagon, iff it is equal to [[ϕ]] where ϕ is a conjunction of constraints of the
form ± x ± y ≤ α where x, y ∈ X and α ∈ Z ∪ {+∞}.

– a polyhedra, iff it is equal to [[ϕ]] where ϕ is a conjunction of linear constraints
of the form

∑n
i=1 aixi ≤ b where X = {x1, . . . , xn} and for every i, ai ∈ Z,

and b ∈ Z ∪ {+∞}.

Now, we can define several abstract domains as complete lattices Atype
X =

〈Dtype
X ,�,�,�,⊥,�〉, where type is either int, oct or poly and Dint

X is the set of
intervals, Doct

X is the set of octagons and Dpoly
X the set of polyhedra.

The relation � is set inclusion. The binary operation � (resp. �) is the join
(resp. meet) operation that defines the smallest (resp. greatest) element in DX

that contains (resp. contained in) the union (resp. the intersection) of the two
composed elements. Finally ⊥ (resp. �) corresponds to the empty set (resp. Zn).

We suppose that we have a function Formtype(d) which given an element
d ⊆ Z

n of the lattice provides us a formula ϕ of the corresponding type such
that [[ϕ]] = d. There are many ways to describe the set d with a formula ϕ.
Therefore the function Formtype(d) depends on the particular implementation
of the abstract domains. We furthermore define Constr type(d) to be the set of
linear constraints of Formtype(d).

We drop the superscript type from all preceding definitions, when it is clear
from the context or when we define notions for all types.

All singleton subsets of Zn are elements of the lattices and for example, if
p = (x = 1, y = 2), then, for the domains of Intervals, Octagons, and Polyhedra
as implemented in APRON we have: Constr int({p}) = {x ≤ 1, x ≥ 1, y ≤ 2, y ≥
2}, Constroct({p}) = {x ≥ 1, x ≤ 1, y − x ≥ 1, x + y ≥ 3, y ≥ 2, y ≤ 2, x + y ≤
3, x − y ≥ −1} and Constrpoly({p}) = {x = 1, y = 2}.

Notice, that in APRON while equality constraints are used in the Polyhedra
domain, these constraints are not explicit in the Interval and Octagon domains.

An important fact about the three domains mentioned above is that, each
element of the lattice is the intersection of a convex subset of Qn with Z

n. To
be able to reason about integer points from nonconvex sets, we will use in the
next section sets of sets.
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Fig. 1. An ICE sample and its separators using different abstract domains.

4 Generating Attributes from Sample Separators

We define in this section algorithms for generating a set of attributes that can
be used for constructing decision trees representing candidate invariants. Given
an ICE sample, these algorithms are based on constructing separators of the two
sets of positive and negative states that are consistent with the implications in
the sample. These separators are sets of intervals, octagons or polyhedra. The
set of all constraints that define these sets are collected as a set of attributes.

4.1 Abstract Sample Separators

Let S = (S+, S−, S→) be an ICE sample, and let AX = 〈DX ,�,�,�,⊥,�〉 be an
abstract domain. Intuitively, a separator has sets containing all positive states,
not containing any negative state and is consistent with implications. Formally,
an AX -separator of S is a set S ∈ 2DX such that ∀p ∈ S+. ∃d ∈ S. p ∈ d and
∀p ∈ S−. ∀d ∈ S. p �∈ d and ∀p → q ∈ S→. ∀d ∈ S. (p ∈ d =⇒ (∃d′ ∈ S. q ∈ d′)).

Given a set of positive states S+, we define the basic separator Sbasic as
{{p} | p ∈ S+} where each state is alone in its set. Our method for generat-
ing attributes for the learning process is based on computing a special type of
separators called join-maximal. An AX -separator S is join-maximal if is not pos-
sible to take the join of two of its elements without including a negative state:
∀d1, d2 ∈ S. d1 �= d2 =⇒ (∃n ∈ S−. n ∈ d1 � d2).

Example 2. Let us consider again the ICE sample S given in Example 1. Figure 1
shows the borders of join-maximal AX -separators for S for different abstract
domains (Intervals int, Octagons oct, and Polyhedra poly).

Remark 1. An ICE sample may have multiple join-maximal separators as Fig. 2
shows for the polyhedra domain. The method presented in the next section
computes one of them non-deterministically.

4.2 Computing a Join-Maximal Abstract Separator

We present in this section a basic algorithm for computing a join-maximal AX -
separator for a given sample S. Computing such a separator can be done iter-
atively starting from Sbasic, and at each step, choosing two elements d1 and d2
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Fig. 2. Different join-maximal separators for a same sample.

in the current separator such that d1 � d2 does not contain a negative state in
S− (This can be checked using the meet operation �), and replacing d1 and d2
by d1 � d2. Then, if any element of the separator contains the source p of an
implication p → q, which means that p is considered now as a positive state,
then since q must also be considered as positive, the element {q} must be added
to the separator if q is not already in some element of the current separator.
When no new join operations (without including negative states) can be done,
the obtained set is necessarily a join-maximal AX -separator of S. This procedure
corresponds to Algorithm 4.

Input : An ICE sample S = (S+, S−, S→) and an abstract domain
AX = 〈DX ,�,,�,⊥,�〉.

Output: S a join-maximal AX -separator of S.
1 Proc constructSeparator(S,AX)

2 S ← Sbasic (* = {{s} | s ∈ S+} *) ;
3 while true do
4 if ∃a, b ∈ S. a �= b ∧ ∀n ∈ S−. n /∈ a  b then
5 S ← (S \ {a, b}) ∪ {a  b} ;

6 while ∃p → q ∈ S→. ∃d ∈ S. p ∈ d ∧ ∀d′ ∈ S. q /∈ d′ do
7 S ← S ∪ {{q}} ;

8 else break;

Algorithm 4: Computing a join-maximal AX -separator.

Notice that instead of starting with the basic separator Sbasic defined as above
one can start with any separator Sinit ⊇ Sbasic whose additional sets contain only
states which are known to be positive (for example the initial states).

Example 3. Consider again the sample S of Example 2. We show how the sepa-
rators of S in Fig. 1 are constructed using Algorithm 4. The algorithm starts from
the basic separator Sbasic where every positive state in S is alone (Fig. 3(a)). It
picks two elements in that separator, e.g. {d1} and {d2}. As their join does not
include negative states, {d1} and {d2} are replaced by j1 = {d1} � {d2} to get a
new separator (Fig. 3(b)). Then, depending on the considered domain, different
separators are obtained. For Intervals, the join of j1 and {d3} leads to the sep-
arator in Fig. 1(a). Notice that both ends of the implication (2, 2) → (2, 3) are
included in j1 � {d3}. In the case of Octagons, the join of j1 and {d3} is the set
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Fig. 3. The first iterations of Algorithm 4 on the sample S of Fig. 1

on the left of Fig. 1(b). Again, both ends of the implication (2, 2) → (2, 3) are
included in j1�{d3}. In the case of Polyhedra, j2 = j1�{d3} is the triangle shown
in Fig. 3(c). Since (2, 2) is included in j2 but not (2, 3), the element {(2, 3)} is
added to the separator, leading to the separator represented in Fig. 3(c). In the
next iteration, j2 is joined with {d8} leading to the separator shown in Fig. 3(d).
Finally, a similar iteration of join operations leads to the rectangle including the
four points, and this leads to the join-maximal separator of Fig. 1.

Remark 2. In the best case Algorithm 4 performs |S+| join and |S+|(|S−|+|S→|)
meet operations (all pairs of points can be joined and all left end-points of impli-
cations are not in the new joined convex sets). In the worst case, it performs
O

(
(|S+| + |S→|)2) join and O

(
(|S+| + |S→|)2(|S−| + |S→|)) meet operations

(at most |S−| + |S→| meets are needed to check if two sets can be joined and
implications might add new points to S+). The cost of meet and join depends on
the used abstract domain; it is polynomial for intervals and octagons, and expo-
nential for polyhedra, in the number of variables. Algorithm 4 is not designed
to compute a join-max separator with a minimal number of convex sets as this
would require a potentially exponential number of meet and join operations.

4.3 Integrating Separator Computation in ICE-DT

We use the computation of a join-maximal separator to provide an instance of the
function generateAttributes of ICE-DT in Algorithm 2. Given a sample S,
let S be the AX -separator of S computed by constructSeparator(S,AX)
defined by Algorithm 4. We consider the set InitialAttributes containing all
the predicates that constitute the specification (Init and Good) and those
that appear in the programs (as tests in the conditional statements and
while loops). Then, we define: generateAttributes(S) = InitialAttributes ∪⋃

d∈S
Constr(d)

Remark 3. Several convex sets of the separator S might generate the same con-
straint and the set of attributes generated in this way might contain attributes
which partition the state space in the same way (e.g. x ≤ 0 and x ≥ 1, equivalent
to x > 0 over the integers). We keep only one of them. The number of attributes
generated is at most linear in the number of positive states in the sample S.
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Fig. 4. Example program

Notice that our function generateAttributes(S), contrary to the one
used in the original ICE-DT (Algorithm2), does not expand a set of existing
attributes, and therefore it only need the sample S as argument. In fact, with
our method for computing attributes, the ICE-DT schema can be simplified:
the while loop in Algorithm2 can be replaced by one single initial test on the
condition of success. Indeed, each time the learner is called, it checks whether
the set of attributes computed for the previous sample is sufficient to build a
separator for the new sample. Only when it is not sufficient that the generation
of a separator is performed. Then, the call of the sufficient function afterward
is needed to extend the sample so that the construction of a decision tree can
be done (see explanation in Sect. 2.3), but it will necessarily succeed since in our
case the set of attributes defines by construction a separator of the sample.

Example 4. Consider the program in Fig. 4 whose set of variables is X = {j, k, t}.
We use Polyhedra. First, starting from an empty ICE-sample, regardless of the
attributes, the learner proposes true as an invariant and (5, 1, 0) is returned as
a negative counterexample. Then, it proposes false and (2, 0, 0) is returned as
a positive counterexample.

Now, Algorithm 4 is called to compute a separator for S = (S+ = {(2, 0, 0)},
S− = {(5, 1, 0)}, S→ = ∅). Here, we use initially a separator Sinit containing
the set of states satisfying the initial condition j = 2 ∧ k = 0 denoted by d1 in
addition to d0 where d0 = {(2, 0, 0)}. Since d0 ⊆ d1, the algorithm returns the
join-maximal separator S = {d1} with Constrpoly(d1) = {j = 2, k = 0}.

Using constraints from S as attributes, the learner constructs the candidate
invariant k = 0. Then, the teacher provides an implication counterexample
(0, 0, 1) → (2, 1, 1). Now, without computing another separator (as the one it
has is sufficient for the new sample), the learner proposes j = 2 ∧ k = 0 as
an invariant, and the implication counterexample (2, 0, 1) → (4, 1, 1) is returned
(and since (2, 0, 1) is an initial state, (4, 1, 1) is also considered positive).

Then, Algorithm 4 is called again to construct a separator for the sample S =
(S+ = {(2, 0, 0), (4, 1, 1)}, S− = {(5, 1, 0)}, S→ = {(0, 0, 1) → (2, 1, 1), (2, 0, 1) →
(4, 1, 1)}). Starting from a separator Sinit = {d0, d1, d2} with d2 = {(4, 1, 1)} it
returns the join-maximal separator

S = {d3} Constrpoly(d3) = {2k + 2 = j, j ≤ 4, j ≥ 2}

Based on this separator, the learner proposes 2k+2 = j, (2, 0, 0) → (6, 0, 0) is
given as a counterexample (and then, since (2, 0, 0) is in S+, (6, 0, 0) is considered
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positive). Then, from Sinit = {d0, d1, d2, d4} with d4 = {(6, 0, 0)} a new separator
S is constructed

S = {d5} Constrpoly(d5) = {j + 2k ≤ 6, k ≥ 0, j ≥ 2k + 2}

leading to a new candidate invariant: j + 2k ≤ 6 ∧ j ≥ 2k + 2. The teacher
returns at this point the negative state (0,−2, 0). The attributes of S are still
sufficient to construct a decision tree for the sample. Then, the learner proposes
j + 2k ≤ 6 ∧ k ≥ 0 ∧ j ≥ 2k + 2, and the teacher returns the counterexample
(3, 0, 1) → (5, 1, 1) (and since (5, 1, 1) is a negative state, (3, 0, 1) is considered
negative). The current sample S is now (S+ = {(2, 0, 0), (4, 1, 1), (6, 0, 0)}, S− =
{(5, 1, 0), (5, 1, 1), (3, 0, 1), (0,−2, 0)}, S→ = {(0, 0, 1) → (2, 1, 1), (2, 0, 1) →
(4, 1, 1), (2, 0, 0) → (6, 0, 0), (3, 0, 1) → (5, 1, 1)}).

Then, from Sinit = {d0, d1, d2, d4}, a join-maximal separator is constructed

S = {d3, d4} Constrpoly(d4) = {j = 6, t = 0, k = 0}

Some iterations later, using only the attributes of the last S, the learner generates
the inductive invariant (t = 0 ∧ 2 ≤ j ∧ k = 0) ∨ (t �= 0 ∧ 2 ≤ j ∧ 2k + 2 = j)

4.4 Computing Separators Incrementally

Algorithm 4 of Sect. 4.2 always starts from the initial separator, regardless of
what has been done in the previous iterations of the ICE learning process. Here,
we present an incremental approach to exploit the fact that adding a counterex-
ample to the sample may modify the separator only locally allowing parts of
separators computed in previous iterations to be reused. The basic idea is to
store the history of the separator computation along the ICE iterations, and
update it according to the new counterexamples discovered at each step.

The Algorithm. We use an abstract stack data structure to represent the
history of separators. Along the iterations of the ICE learning algorithm, an
increasing sequence of samples Si’s is considered (at each iteration it is enriched
by the new counterexample provided by the teacher). Then, at each step i, a
join-maximal separator Si of the sample Si is computed and stored in the stack.
Notice that at a given step i, separators of index j < i are not necessarily
separators of Si since they may not cover all positive points of Si. Therefore,
we introduce the following notion: a partial AX -separator of a sample S is a set
S ∈ 2DX such that ∀p ∈ S−.∀d ∈ S. p /∈ d.

Now, to compute the separator Si, we start from one of the partial separators
in the stack, the most recent one that is not affected by the last update of the
sample. When the sample at step i is extended with positive states, Si can
be computed directly from Si−1. However, when the sample is extended with
negative states, this might require reconsidering several previous steps since some
of the elements (convex sets) of their separators might contain states that are
(discovered now to be) negative. In that case, we must return to the step of
the greatest index j < i (i.e., the last step before i) such that Sj is a partial
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separator of Si (i.e., the new knowledge about the negative states does not
affect the computed separation at step j). By the fact that the sequence of
samples is increasing, it is indeed correct to consider the biggest j < i satisfying
the property above. Therefore, the separator Si is computed starting from Sj

augmented with all the positive states in S+
i \ S+

j .
This leads to Algorithm 5. We use in its description a stack P supplied with

the usual operations: P.head() returns the top element of the stack, P.pop()
removes and returns the top element of the stack, and P.push(e) inserts an
element e at the top position of the stack. A refined version of Algorithm5
is presented in the full paper [2] where the backtracking phase is made more
effective: We attach information to each join-created object in order to track its
join-predecessors (objects involved in its creation) in the stack.

Global : P = {∅} a stack of partial separators.

1 Proc constructSeparatorInc(Si = (S+
i , S−

i , S→
i ), AX)

// backtracking
2 while true do

3 if ∃n ∈ S−
i . ∃d ∈ P.head(). n ∈ d then

4 P.pop();
5 else break;

// expansion
6 S ← P.head();

7 add ← {p ∈ S+
i | ∀d ∈ S. p /∈ d} ∪ {q | ∃p → q ∈ S→

i . ∃d′ ∈ S. p ∈ d′ ∧ ∀d′′ ∈ S. q /∈ d′′};
8 while ∃s ∈ add do
9 add ← add \ {s};

10 if ∃d ∈ S. ∀n ∈ S−
i . n /∈ d  {s} then

11 let o = d  {s};
12 S ← (S \ {d}) ∪ {o};
13 for p → q ∈ S→

i s.t. p ∈ o ∧ ∀d′ ∈ S. q /∈ d′ do
14 add ← add ∪ {q}
15 else
16 S ← S ∪ {{s}};
17 for p → q ∈ S→

i s.t. p = s ∧ ∀d′ ∈ S. q /∈ d′ do
18 add ← add ∪ {q}
19 P.push(S);
20 return S;

Algorithm 5: Incremental computation of an AX -separator of a sample S.

Integration to ICE-DT. The function constructSeparatorInc can be
integrated to the ICE-DT algorithm just as the function constructSeparator
in Sect. 4.3, by using it to implement the function generateAttributes of the
learner. But this time, the learner is more efficient in computing the separator
from which the attributes are extracted.

Example 5. Consider again the program in Fig. 4 of Example 4. The two first
iterations are similar to the ones described in Example 4. Then, the obtained
sample is S = (S+ = {(2, 0, 0)}, S− = {(5, 1, 0)}, S→ = ∅). Starting from
the empty separator, Algorithm 5 computes the separator S1 = {d1} where
Constrpoly(d1) = {j = 2, k = 0}. Then, the learner proceeds as in the previous
example to get the sample S = (S+ = {(2, 0, 0), (4, 1, 1)}, S+ = {(5, 1, 0)}, S→ =
{(0, 0, 1) → (2, 1, 1), (2, 0, 1) → (4, 1, 1)}). To build a separator of S, Algorithm 5
starts from S1 and produces S2 = {d3} where d3 = d1 � {(4, 1, 1)}.
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Fig. 5. Benchmark results and comparison of NIS wrt. different abstract domains.

Similarly, when the counterexample (2, 0, 0) → (6, 0, 0) is obtained, the algo-
rithm starts directly from S2 to produce S3 = {d5} where d5 = d3 � {(6, 0, 0)}.

After two more iterations, the sample is the same as S′ in Example 4. At
this point, S3 cannot be used to construct a separator for S since d5 includes
the negative state (3, 0, 1). Then, the algorithm removes S3 from the stack. It
checks that S2 is a partial separator of S, which is indeed the case. Then, it
constructs a new separator S4 based on S2 by expanding it with the counterex-
amples received after the construction of S2 (the negative state (0,−2, 0) and
the implications (2, 0, 0) → (6, 0, 0) and (3, 0, 1) → (5, 1, 1)): S4 = {d3, d6} where
Constrpoly(d6) = {t = 0, k = 0, j = 6}. The rest of the execution proceeds as
with Algorithm 4. Here, the advantages of the incremental method are: (1) while
positive examples are added the separators are simply expanded, and (2) when
a negative example at step 4 is added, only one join operation has to be undone.

5 Experiments

We have implemented the prototype tool NIS (Numerical Invariant Synthesizer)
using our method for attribute synthesis with the ICE-DT schema. NIS written
in C++ is configurable with an abstract domain for the manipulation of abstract
objects. It uses Z3 [24] for SMT queries and APRON’s [18] abstract domains.

We compare our implementation with ICE-DT1, LoopInvGen, CVC4, and
Spacer2. LoopInvGen is a data-driven invariant inference tool based on a syn-
tactic enumeration of candidate predicates [25,26]. It is written in OCaml and
uses Z3 as an SMT solver. CVC4 uses an enumerative refutation-based app-
roach [1,27]. It is written in C++ and it includes an SMT solver. Spacer is a
PDR-based CHC solver [19], written in C++ and integrated in Z3.

1 The original ICE-DT tool [16] does not support programs in the SyGuS format. Here
we use our own implementation of ICE-DT. It shares with NIS all the components
(teacher, decision tree learning algorithm with implications) except that attribute
discovery is enumerative.

2 Spacer does not support programs in the SyGuS format; a wrapper is written in
C++ that converts a SyGuS program to a CHC problem and supplies it to Spacer
via the Z3 FixedPoint API.
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The evaluation was done on 164 linear integer arithmetic (LIA) programs3

from SyGuS-Comp’19. They have a number of variables ranging from 2 to 10.
The experiments were carried out using a timeout of 1800 s (30 min) for each
example. They were conducted on a machine with 4 CPUs Intel(R) Xeon(R)
2,13 GHz, 16 cores, and 128 Go RAM running Linux CentOS 7.9.

Figure 5 shows the number of safe and unsafe solved programs by each tool.
The instance of our approach using the Polyhedral abstract domain solves 154
programs out of 164, and the virtual best of our approach with the three abstract
domains Intervals, Octagons, and Polyhedra, solves 160 programs out of 164.
Two of the remaining examples require handling quantifiers, which cannot be
done with the current implementation. The two others have not been solved with
any of the four tools we considered.

These results show that globally our approach is powerful and is able to solve a
significant number of cases that are not solvable by other tools. Interestingly, using
different abstract domains leads to incomparable performances: although with
polyhedra more cases are solvable, there are some cases that are uniquely solv-
able with intervals or octagons. Also, while operations on intervals and octagons
have a lower complexity than on polyhedra, this is compensated with the fact that
polyhedra are more expressive. Indeed, their expressiveness allows in many cases
to find quickly invariants for which a less expressive domain requires much more
iterations to be learned. Figure 5 shows the number of programs that can be solved
using a particular abstract domain but not with another. Polyhedra are globally
superior, but the three domains are complementary.

Compared to the other tools, the bottleneck of ICE-DT and also of Loop-
InvGen is the number of predicates that are generated using enumeration. Our
approach avoids the explosion of the size of the attribute pool by guiding their
discovery with the data sample, and reducing the size (by replacing objects by
their join) of the computed separators from which constraints are extracted. Con-
cerning CVC4, it uses enumerative refutation techniques, which are also subject
to an explosion problem. Moreover, CVC4 does not allow to solve the cases of
unsafe programs. The performances of Spacer depend on the ability to general-
ize the set of predecessors computed using the model-based projection and the
interpolants used for separation from bad states in the context of IC3/PDR.
While this is done efficiently in general, there are cases where this process can
lead to fastidious computations while our technique can be much faster using a
small number of join operations of positive states.

The scatter plots shown in Fig. 6 compare the execution times of our app-
roach using Polyhedra abstract domain NIS(poly) with LoopInvGen, CVC4
and Spacer. (A timeout of 1800 s s is used for each example.) They show that
NIS(poly) is in general faster than both LoopInvGen and CVC4, and that it
has comparable performances in terms of execution time with Spacer. We have

3 Other programs from SyGuS-Comp’19 have not been taken into account in our
evaluations as they are boolean programs with integer variables for encoding nonde-
terminism or artificial programs augmented with useless variables and statements.
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Fig. 6. Runtime of NIS(poly) vs. LoopInvGen, CVC4, and Spacer, and NIS(oct) vs.
ICE-DT.

also compared the original ICE-DT, based on enumerative attribute generation
using octagonal templates (as in [16]) with NIS(oct). The comparison shows
that our tool is significantly faster (see the bottom right subfigure of Fig. 6).

6 Conclusion

We have defined an efficient method for generating relevant predicates for the
learning process of numerical invariants. The approach is guided by the data
sample built during the process and is based on constructing a separator of the
sample. The construction consists of an iterative application of join operations
in numerical abstract domains in order to cover positive states without including
negative ones. Our method is tightly integrated to the ICE-DT schema, leading
to an efficient data-driven invariant synthesis and verification algorithm.

Future work includes several directions. First, alternative methods for con-
structing separators should be investigated in order to reduce the size of the pool
of attributes along the learning process while increasing their potential relevance.
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Another issue to investigate is the control of the counterexamples provided by
the teacher since they play an important role in the learning process. In our
current implementation, their choice is totally dependent on the SMT solver
used for implementing the teacher. Finally, we intend to extend this approach to
other types of programs, in particular to programs with other data types, and
programs with more general control structures such as procedural programs.
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Abstract. Bounded Model Checking (BMC) is a popularly used strat-
egy for program verification and it has been explored extensively over
the past decade. Despite such a long history, BMC still faces scalability
challenges as programs continue to grow larger and more complex. One
approach that has proven to be effective in verifying large programs
is called Counterexample Guided Abstraction Refinement (CEGAR).
In this work, we propose a complementary approach to CEGAR for
bounded model checking of sequential programs: in contrast to CEGAR,
our algorithm gradually widens underapproximations of a program,
guided by the proofs of unsatisfiability. We implemented our ideas in
a tool called Legion. We compare the performance of Legion against
that of Corral, a state-of-the-art verifier from Microsoft, that utilizes
the CEGAR strategy. We conduct our experiments on 727 Windows and
Linux device driver benchmarks. We find that Legion is able to solve
12% more instances than Corral and that Legion exhibits a comple-
mentary behavior to that of Corral. Motivated by this, we also build
a portfolio verifier, Legion+, that attempts to draw the best of Legion
and Corral. Our portfolio, Legion+, solves 15% more benchmarks than
Corral with similar computational resource constraints (i.e. each ver-
ifier in the portfolio is run with a time budget that is half of the time
budget of Corral). Moreover, it is found to be 2.9× faster than Corral
on benchmarks that are solved by both Corral and Legion+.

Keywords: Verification · Bounded model checking ·
Underapproximation widening

1 Introduction

Bounded Model Checking (BMC) [11,20,26,33] is a popular option for program
verification, primarily due to its ability of side-stepping the necessity of synthe-
sizing complex invariants. BMC harnesses the power of modern SMT solvers to
verify a bounded set of behaviors of a program. The user, if interested, may
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re-attempt verification with larger bounds once the program is proven correct
with small bounds.

BMC operates by constructing a logical formula that symbolically captures
all states reachable by a program under a user-provided bound. A query, referred
to as the verification condition (VC), is constructed as a conjunction of the
program semantics and the negation of the property, which is also expressed as
a logical formula. If the verification condition is satisfiable, it implies that some
program execution violated the property of interest, thus the program is faulty.
If unsatisfiable, the program satisfies the property, i.e. the program is safe under
the chosen bound.

However, for large programs, BMC faces scalability challenges as the ver-
ification condition for the program tends to grow large, posing difficulties for
the SMT solver. Prior work has answered this challenge by using the popular
counterexample-guided abstraction refinement (CEGAR) strategy: start off with
the VC for an abstraction of the program, and incrementally refine the abstrac-
tion until the program is decided as safe or faulty. The Stratified Inlining (SI) [26]
algorithm is an instance of this strategy. SI starts off with an abstraction of
only the entry procedure of the program, and then incrementally inlines callees,
guided by counterexamples. Not surprisingly, the dynamic inlining strategy of
SI has been found to be significantly more scalable than algorithms that stat-
ically inline all procedures [25]. The SI algorithm is used in practice by the
Corral [24] verifier that powers Microsoft’s Static Driver Verifier (SDV) [4].

In this work, we propose a new algorithm that uses proofs of unsatisfiabil-
ity to widen underapproximate models of the program en route to verification
of sequential programs. Our algorithm starts off by constructing a partial ver-
ification condition for only the program entry procedure and blocks all paths
that invoke calls to procedures that have not yet been inlined. This constructs
an underapproximation of the original program (because paths are blocked). A
satisfiable result on an underapproximation will indicate the presence of a bug.
If the VC is unsatisfiable, we examine its proof of unsatisfiability in order to
guide the inlining of called procedures. The program can be declared safe when
the proof of unsatisfiability does not depend on any procedure call that has not
been inlined yet. We implemented our ideas in a tool called Legion.

Further, we found that our underapproximation widening algorithm and the
abstraction refinement strategy (used by Corral) demonstrate complementary
behaviors—many programs that Corral struggles on, yield to the underapprox-
imation based technique, and vice-versa. This observation motivated us to build
a portfolio verifier, Legion+, that runs both these techniques in parallel. We
found that the portfolio is more effective than any of the tools alone (with simi-
lar computational resources, i.e. each verifier in the portfolio is run with a time
budget that is half of the time budget of Corral). Both Legion and Legion+

are available open-source at the legion branch of the corral repository1.
Our experiments are conducted on 727 Windows and Linux device driver

benchmarks on which Corral struggles, i.e., Corral is unable to solve any of

1 https://github.com/boogie-org/corral.git (branch: legion).

https://github.com/boogie-org/corral.git
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these benchmarks in less than 200 s. We find that Legion is able to solve 12%
more instances than Corral with a time budget of 2 h per instance. Further,
the portfolio verifier, Legion+, given half the time budget of Corral, solves
15% more benchmarks than Corral, and it is found to be 2.9× faster than
Corral on benchmarks that are solved by both Corral and Legion+.

The primary contributions of this paper are as follows:

– We design a new algorithm, Underapproximation Widening guided Stratified
Inlining, that uses proof-based artifacts to widen underapproximate models
(in contrast to using counterexamples to refine overapproximate models).

– We implemented our ideas in a tool called Legion for bounded program
verification.

– We also design a portfolio verifier, Legion+, that includes both overapprox-
imation refinement and underapproximation widening to verify a program in
an attempt to reap the benefits of both worlds.

– We evaluate both Legion and Legion+ on a set of 727 programs from Win-
dows Device Drivers [31] from the SDV test-suite and Linux Device Drivers
from SVCOMP [7] benchmarks.

2 Background

This section presents background material that we use in the rest of the paper.
A logical formula consists of literals. A literal is either a variable or the

negation of a variable. A logical formula expressed in a Conjunctive Normal
Formal (CNF) is a conjunction of clauses where each clause is a disjunction
of literals. Given a logical formula, a satisfiability solver returns whether the
formula is satisfiable (SAT) or unsatisfiable (UNSAT). If a formula is SAT, the
solver provides a model in the form of a satisfying assignment of the variables. If
a formula is UNSAT, the solver returns an unsatisfiable core (unsat core), which
is a subset of clauses of the input formula whose conjunction is still UNSAT.

2.1 Language Model

We consider a programming language that represents a passified form of Boo-
gie programs [8]. A program consists of multiple procedures (Proc). We assume
an entry-point procedure called main where program execution starts. Each pro-
cedure can have any number of local variable declarations followed by a series
of basic blocks (BasicBlock). We assume that local variables are initially uncon-
strained. A basic block is labeled by a unique identifier and consists of mul-
tiple statements (Stmt) followed by a single control statement (ControlStmt).
A control statement is either a goto, which takes a sequence of basic block
labels and non-deterministically picks one to jump to, or a return that returns
control back to the caller. Returning from main terminates the program exe-
cution. A statement is either an assume command or a procedure call. The
statement (assume ϕ) allows a feasible execution only if ϕ is satisfiable.
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Fig. 1. A passified program

We leave the set of variable types (Type) and expressions (Expr) unspecified.
In practice, we can use any expression language that can be directly encoded
in SMT. Our implementation uses linear arithmetic, fixed-size bit-vectors, unin-
terpreted functions, and extensional arrays. This combination is sufficient to
realistically translate C programs into our language representation [21,24].

Note that the programs that we consider do not have global variables, return
parameters of procedures, or assignments. These restrictions are without loss of
generality [23]. Conversion of these additional feature into our language repre-
sentation is readily available in tools like Boogie. A passified program makes it
easy to describe the verification-condition generation process.

Given a program P, we consider the verification question of whether there
exists a terminating execution of P. To be precise, we are interested in finding
out whether there is any execution of main that reaches its return statement.
If no such execution exists, then P is considered verified, or Safe. Otherwise,
we say that P is Unsafe and return the execution trace with concrete variable
values along the trace. Note that we consider a bounded version of the verification
problem, i.e., we require that P does not contain any loops or recursive procedure
calls. All such loops and recursive calls must be unrolled to a pre-determined
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Fig. 2. Call graph of the program in Fig. 1.

Fig. 3. Partial VC of main()

depth before proceeding with verification, and thus, the verification problem now
becomes decidable (if the expression language of the program is decidable) [23].

2.2 VC Generation for a Procedure

Consider a procedure baz that does not contain any procedure calls. This section
outlines one way of verifying baz, i.e., finding out if it has a terminating exe-
cution. We use a process called Verification Condition (VC) generation on baz
to construct a logical formula Φ and feed it to an SMT solver. If Φ is UNSAT,
then the return statement in baz is unreachable and baz is Safe. Otherwise, we
extract the satisfiable model from the SMT solver, construct the execution trace
and return Unsafe along with the trace. We now outline the VC-generation
process.

Suppose that baz takes input arguments �x. For each basic block j in baz,
we define a boolean variable blkj that is termed as the control-flow variable.
Let stj denote the conjunction of all assume statements in basic block j. Let
successor(j) denote the targets of the goto statement in j, i.e., all the successor
basic blocks in baz, to which control may jump non-deterministically from j.
Let ij be a unique integer constant representing basic block j. We also define an
uninterpreted function flow : Z → Z that records the non-deterministic choice
of the successor basic block of j. Given the above, we construct a logical formula
ψj for each basic block j as follows:
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blkj ⇒ (stj ∧
∨

s∈successor(j)

(blks ∧ (is == flow(ij))))

If basic block j ends with a return statement instead of a goto, then ψj is:

blkj ⇒ stj

Assuming the first basic block of baz, where procedure execution begin, is
labeled s, the VC of baz is constructed as follows:

blks ∧
∧

l∈basicblocks(p)

ψl

In Fig. 3, we show the VC of main of the program in Fig. 1 as an example,
where we ignore the procedure calls in main (i.e., treat them as (assume true)).
We term such a VC (of a procedure where its calls are skipped) as the partial
VC (pVC) of the procedure.

2.3 Static Versus Dynamic Inlining

Given a program P with a starting procedure main, one simple way to verify P
would be to construct the VC of main by inlining all the procedure calls and
check the satisfiability of VC(main) with an SMT solver. However, employing
such a static inlining strategy can cause an exponential blowup in the size of the
VC. Hence, we instead make use of dynamic inlining algorithm, called Stratified
Inlining (SI) [26], that employs a Counterexample Guided Abstraction Refine-
ment (CEGAR) technique [14] to dynamically inline procedure VCs. It has been
shown that dynamic inlining scales better than static inlining [25]. Dynamic
inlining produces more compact VCs during abstraction refinement which leads
to significantly faster program verification.

2.4 Verification with Stratified Inlining

The working of SI is shown in Algorithm 1. For the sake of simplicity, let us
assume that each basic block in P may contain only a single procedure call.
Every program point, from which a procedure is called, is termed as a callsite.
For example, main in Fig. 1, has two callsites; foo and bar which are called from
basic blocks L1, L2 and L3 respectively. A static instance of a callsite is denoted
with a pair (l, c) where l denotes the basic block identifier from which a call
to the procedure c is made. A dynamic callsite is defined as a stack of static
callsites which represents the runtime stack during a program’s execution with
main being present at the bottom of the stack. For example, the dynamic callsite
corresponding to the call foo from L1 in main is given by [main, (L1, foo)]. The
call graph of the program in Fig. 1 is shown in Fig. 2.
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Algorithm 1: Stratified Inlining (SI) algorithm.
Input: program P with starting procedure main

Input: An SMT solver S
Output: Safe, or UnSafe(τ)

1 C ← {[main, s] | s ∈ callsites(main)}
2 S.Assert(pVC(main, [main]))
3 while true do
4 outcome ← OverRefStep(P, C, S)
5 if outcome == Safe ∨ outcome == UnSafe(τ) then
6 return outcome

7 else
8 let NoDecision( , C′) = outcome
9 C ← C′

The SI algorithm takes as input a program P with a starting procedure main
and an SMT solver S. Initially, we add the dynamic callsites in main to a list C
(Line 1) and then inline main, i.e., assert the pVC of main (Line 2). The callsites
in C are termed as open callsites because they have not yet been inlined. The
above steps construct an abstraction of P. The SI algorithm then iteratively
calls the OverRefStep routine on this abstraction (Line 4) to perform gradual
refinement until we can reach a decision about whether P is Safe or not. Each
invocation of OverRefStep can potentially inline more procedures by asserting
their partial VC to the solver S. Thus, the state of the solver, as well as the set
of open callsites C change across invocations of OverRefStep. We discuss the
Overapproximation Refinement Guided Stratified Inlining (OverRefSI ) strategy
used by the OverRefStep routine in Sect. 2.5.

2.5 Overapproximation Refinement Guided Stratified Inlining

The OverRefStep routine given in Algorithm 2 demonstrates the inner work-
ings of the OverRefSI strategy at each verification step. The OverRefSI strat-
egy [26] for verifying a program works by iteratively firing overapproximation
queries and gradually refining the abstraction of P. If the query returns UNSAT,
then we can conclude that P is safe with respect to the given property. Other-
wise, we extract all the open callsites that appear on the counterexample trace
and refine the abstraction of P by inlining these callsites. If the counterexample
trace contains no open callsites, then P is unsafe and we return the verdict
along with the counterexample trace.

The OverRefStep routine takes as input a program P, a set of open call-
sites C and an SMT solver S. The OverRefStep routine is called iteratively
in order to verify the safety of P. We demonstrate the working of OverRefSI to
verify the pVC of main of Fig. 1 in Table 1. At the beginning, the SI algorithm
asserts the pVC of main to S and adds [main, (L1, foo)] and [main, (L2, bar)] to
the list of open callsites C in step 0.
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Algorithm 2: OverRefStep(P, C, S)
Input: procedure P, set of callsites C, SMT solver S
Output: Safe, UnSafe(trace), NoDecision(τ , C)

1 // Overapproximate check
2 if S.Check() == UNSAT then
3 return Safe

4 else
5 τ ← opencallsites(S.Model())

6 if τ == ∅ then
7 return UnSafe(S.Model())

8 else
9 C′ ← ∅

10 forall c ∈ τ do
11 C′ ← Inline(P, c)

12 C ← (C − τ) ∪ C′

13 return NoDecision(τ , C)

Next, the SI algorithm calls OverRefStep with P, C and S as arguments.
OverRefStep fires an overapproximation query in Line 2. If the query is unsat-
isfiable, we return the safe verdict. If the query is satisfiable, we get the coun-
terexample trace and extract all the open callsites on the trace in τ (Line 5).
If τ is empty, i.e., the counterexample trace contains no open callsites, then
the trace is not spurious and we can return an unsafe verdict with the trace
(Line 7). Otherwise, we inline all the callsites in τ and add all the new callsites
that opened up due to the inlinings in C ′ (Line 11). Inlining a callsite c consists
of asserting the partial VC of the procedure that was invoked from c.

Subsequently, the inlined callsites are removed from the list of open callsites C
and new callsites that opened up due to the inlinings are added to C (Line 12).
For example, in step 1 of Table 1, OverRefStep fires an overapproximation
query that returns SAT with a counterexample trace that contains the callsite
of foo, i.e., [main, (L1,foo)]. This callsite is then inlined by asserting the pVC
of foo to the solver. This opens up the callsites of foo1 and foo2. Since we have
not been able to arrive at a decision regarding the safety of P at this step, a
verdict of NoDecision is returned along with the list of inlined callsites τ and
the new list of open callsites C (Line 13).

Next, the SI algorithm calls OverRefStep again and in step 2, it fires an
overapproximation query again, which returns SAT with the counterexample
trace containing the open callsite of foo1 that we inline by asserting the pVC
of foo1. The verification process continues in this way by inlining the open
callsites on the counterexample trace in every step, which gradually refines the
pVC of main. Finally, in step 7, the overapproximation query returns UNSAT
from which we can conclude that main is safe.
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Table 1. Execution of OverRefSI on the program of Fig. 1

Step Action Open callsites

0 Assert pVC(main) [main, (L1,foo)]

[main, (L2,bar)]

1 Overapprox check: SAT

Assert pVC(foo) [main, (L2,bar)]

[main, (L1, foo), (L6, foo1)]

[main, (L1,foo), (L7, foo2)]

2 Overapprox check: SAT

Assert pVC(foo1) [main, (L2,bar)]

[main, (L1,foo), (L7, foo2)]

3 Overapprox check: SAT

Assert pVC(foo2) [main, (L2,bar)]

4 Overapprox check: SAT

Assert pVC(bar) [main, (L2,bar), (L12, bar1)]

[main, (L2,bar), (L13, bar2)]

5 Overapprox check: SAT

Assert pVC(bar1) [main, (L2,bar), (L13, bar2)]

6 Overapprox check: SAT

Assert pVC(bar2)

7 Overapprox check: UNSAT

Return Safe

3 Overview

3.1 Underapproximation Widening

We propose a novel algorithm, Underapproximation Widening Guided Stratified
Inlining (UnderWidenSI ), that uses proofs of unsatisfiability to guide stratified
inlining. UnderWidenSI maintains an underapproximated model of the target
program and widens it until either the program is verified as safe or a bug is
found.

We illustrate the UnderWidenSI strategy in Figs. 4a to 4d. Assume that we
are trying to verify whether some required property holds on a program. The
space contained by the yellow ovals show the reachable program states while the
red ovals depict error states on which the required property does not hold. The
objective of a verification algorithm is to construct a model of the program that
is precise enough to show that the program can reach an error state or prove
that the error states are unreachable. Figures 4a to 4c show a safe program while
Fig. 4d depicts an unsafe program.

Consider Fig. 4a: the UnderWidenSI algorithm starts off with the partial
verification condition of the entry procedure and “blocks” executions though all
its open callsites.
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Fig. 4. How UnderWidenSI works

Definition (Blocked callsites). We use the term, blocking a callsite C, to
imply that all paths that reach C are deemed infeasible. That is, blocking a
callsite has the effect of replacing the callsite by (assume false).

Essentially, blocking callsites creates underapproximations of the set of feasi-
ble program paths. Such underapproximated VCs can be constructed by assert-
ing additional blocking clauses corresponding to the control-flow variables of the
open callsites. These blocks disallow reachability to certain program states. For
example, in Fig. 4a, we construct an underapproximated model of the program by
blocking the open callsites C1 and C2. The inner green oval depicts the program
states that are reachable in the underapproximated model, whereas the outer
gray regions demonstrate the states that are unreachable due to the blocks on
C1 and C2.

If the verification query on this model (conjunction of the underapproximated
model and the negation of the property) returns SAT, it implies that an error
state in indeed reachable. On the other hand, if the query returns UNSAT (as
shown in Fig. 4a), we need to widen the model to procure additional reachable
executions. We guide this widening operation by extracting the reason for this
unsatisfiability from a minimal unsat core2 of the query, that returns the set of
block clauses; the callsites corresponding to these blocking clauses constitutes

2 Although there may exist multiple minimal unsat cores, we found via some prelimi-
nary experiments that the choice of the unsat core does not have a significant impact
on the overall runtime of our algorithm (on an average).
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Fig. 5. How OverRefSI works

a reason of why the current underapproximate model is not able to reach any
of the error states. Hence, we widen the model by unblocking exactly these
callsites leading to a wider model (see Fig. 4b). The widening by inlining C2

causes a stratified inlining step, and hence may open up new callsites, say C3

and C4.
We proceed in the same manner by blocking these open callsites and repeat

the query. Finally, (in Fig. 4c) we construct an underapproximated model that
still does not intersect with the error states. However, in this case, the unsat core
does not contain any blocked clause, as none of the currently blocked callsites
would have allowed widening in the direction of the error states.

The unsat core provides a direction for widening towards the error states.
This also allows us to declare that the program is safe without requiring to
widen the model to encompass the set of all reachable program states—if the
verification query is UNSAT and the unsat core does not contain any blocked
clause, then this forms a sufficient condition to declare the program safe.

Figure 4d shows how our algorithm proceeds for a faulty program: it incre-
mentally widens the model in the direction of the error states till an error state
R is reached. At this point, the UnderWidenSI algorithm declares the program
as unsafe.

Let us now contrast the UnderWidenSI strategy with the OverRefSI strategy,
popularly known as counterexample-guided abstraction refinement (CEGAR),
which currently drives the SI algorithm in Corral. OverRefSI starts off with
an overapproximated model of the program: the pVC of the entry procedure
with all callsites replaced by non-deterministic updates to its set of modi-
fied variables. For example, in Fig. 5a, OverRefSI constructs an abstract pro-
gram/overapproximated model M1 of the program by overapproximating the
open callsites. If the resulting verification condition is SAT, it examines the gen-
erated counterexample to check if it spurious. If the counterexample is found to
be a true bug, it declares the program unsafe. If the counterexample is spurious,
the model is refined to eliminate this spurious counterexample. For example, in
Fig. 5a, we find that there exists an error state/counterexample P within M1,
where the property can be violated. Hence, OverRefSI refines M1 in Fig. 5a by
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inlining the overapproximated callsites through which P is reachable. The refine-
ment is done to rule out P as a counterexample, i.e., P becomes unreachable
after refinement. We observe in Fig. 5a, that after the first round of refinement,
P is no longer reachable in the overapproximated M2, however, we can still find
another counterexample Q. Hence, the abstraction M2 is refined again. The pro-
gram is declared safe when the model cannot reach any error state. Note that
the algorithm can prove the safety of the program without requiring to precisely
capture the exact set of reachable program state.

OverRefSI and UnderWidenSI are complementary: while OverRefSI main-
tains an overapproximated model and refines the model (shrinking the set of
reachable states), UnderWidenSI maintains an underapproximated model and
widens the model (expanding the set of reachable states) incrementally. In terms
of the algorithmic details, the OverRefSI algorithm in Corral uses the models
(the counterexamples) to drive refinements, whereas our UnderWidenSI algo-
rithm uses the proof (the unsat core) to guide the widenings.

4 Algorithms

4.1 Underapproximation Widening Guided Stratified Inlining
(UnderWidenSI )

The UnderWidenStep routine in Algorithm 3 demonstrates how the Under-
WidenSI strategy works in each verification step. It takes as input a procedure P,
a set of open callsites C and an SMT solver S. The UnderWidenStep routine
is called by the SI algorithm (instead of OverRefStep in Line 4) iteratively in
order to verify the safety of P.

In the beginning, we construct an underapproximated pVC of the input pro-
cedure P by blocking all calls through the open callsites in C (Line 4). Next, we
fire an underapproximation query (Line 5). If the query returns SAT, then we
return the verdict unsafe with the counterexample trace (Line 6). Otherwise,
we get the minimal unsatisfiable core uc and extract all the blocked callsites
which appear on uc in μ (Line 8).

If μ does not contain any blocked callsites, we deduce that P is safe. The
proof of the safety of P is captured by uc. Hence, we return the verdict that P
is safe. Otherwise, each of the callsites in μ are then inlined (Line 15) which
constructs a refinement of P. The inlined callsites are then removed from the
list of open callsites C and new callsites that opened up due to the inlinings are
added to C (Line 16).

When the algorithm is unable to arrive at a decision regarding the safety
of P, it returns a verdict of NoDecision along with the list of inlined callsites
μ and the new list of open callsites C (Line 13).

Example. We demonstrate the working of UnderWidenSI to verify the pVC
of main of Fig. 1 in Table 2. Initially, we assert the pVC of main and add
[main, (L1, foo)] and [main, (L2, bar)] to the list of open callsites in step 0.
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Algorithm 3: UnderWidenStep(P, C, S)
Input: procedure P, set of callsites C, SMT solver S
Output: Safe, UnSafe(trace), NoDecision(μ, C)

1 // Underapproximate check
2 S.Push()
3 forall c ∈ C do
4 S.Assert(¬ControlVariable(c))
5 if S.Check() == SAT then
6 return UnSafe(S.Model())
7 else
8 μ ← BlockedCallsites(S.UnsatCore())

9 S.Pop()
10 if μ == ∅ then
11 return Safe

12 else
13 C′ ← ∅
14 forall c ∈ μ do
15 C′ ← Inline(P, c)

16 C ← (C − μ) ∪ C′

17 return NoDecision(μ, C)

Replacing each of the open callsites with (assume false) statement, i.e., blocking
them, constructs an underapproximation of the program. If an SMT solver query
on this underapproximation returns SAT, then the program is surely unsafe as
the satisfiable model can only represent an execution trace that goes through
inlined callsites. In that case, we can return the verdict unsafe along with an
error trace constructed from the model. On the other hand, if the underapprox-
imation check returns UNSAT, then we cannot return a verdict on the safety of
the program immediately.

Following this, in step 1 (see Table 2), we push a new frame on the solver
and assert (¬blkL1∧¬blkL2) to block executions through the callsites of foo and
bar respectively to construct the underapproximated pVC of main. We query
the solver with these constraints. Figure 1 shows that if we block executions
through basic blocks L1 and L2, the program cannot terminate, i.e., the return
statement in L3 is not reachable. Hence, the solver returns UNSAT. The reason
for the unsatisfiability is blocking executions through both L1 and L2.

To widen the underapproximated model of the program so that we may
reach L3, we need to remove the block on at least one of them and inline the
respective callsite. The unsat core, in this case, contains the callsite of varbar
in basic block L2. Therefore, we pop the earlier solver frame containing blocked
clauses and assert (blkL2 =⇒ pVC(bar)) in the solver. Inlining bar, opens up
the callsites [main, (L2, bar), (L12, bar1)] and [main, (L2, bar), (L13, bar2)].

Next, in step 2, we again construct the underapproximated pVC of main
by blocking executions through the callsites of foo, bar1 and bar2. The solver
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Table 2. Execution of UnderWidenSI on the program of Fig. 1

Step Action Open callsites

0 Assert pVC(main) [main, (L1,foo)]

[main, (L2,bar)]

1 Underapprox check: UNSAT

Assert pVC(bar) [main, (L1,foo)],

[main, (L2,bar), (L12, bar1)]

[main, (L2,bar), (L13, bar2)]

2 Underapprox check: UNSAT

Assert pVC(foo) [main, (L1,foo), (L6, foo1)]

Assert pVC(bar1) [main, (L1,foo), (L7, foo2)]

Assert pVC(bar2)

3 Underapprox check: UNSAT

Assert pVC(foo1)

Assert pVC(foo2)

4 Underapprox check: UNSAT

Return Safe

query returns UNSAT with uc containing the callsites of foo, bar1 and bar2
which are inlined.

In step 3, the callsites of foo1 and foo2 are now open. Blocking both of
these callsites and making an underapproximation check returns UNSAT with
uc containing the callsites of foo1 and foo2. These callsites are now inlined.

In step 4, the underapproximation query returns UNSAT and uc contains
no blocked callsites. This points to the fact that uc contains only inlined call-
sites, i.e., starting from step 0 if we only inline the callsites in uc and leave the
remaining callsites overapproximated, we will still get an UNSAT. Therefore, uc
is the proof of the safety of the program and we return the verdict that the pVC
of main is safe.

Note that when the underapproximation query returns SAT, then the coun-
terexample trace is constructed on the underapproximated program, i.e., the
trace may contain only blocked and inlined callsites. The underapproximated
program represents a subset of the paths in the original program, therefore, any
counterexample trace present in the underapproximated program is sure to be
present in the original program as well. Therefore, if the underapproximated
program is unsafe, the original program is unsafe as well.

We have implemented the UnderWidenSI algorithm in Legion. We compare
the performance of the UnderWidenSI algorithm in Legion against that of
Corral which uses OverRefSI .

4.2 Portfolio Technique

The complementary behavior of the OverRefSI and the UnderWidenSI algo-
rithms motivate us to design a portfolio approach for verifying a program. The
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portfolio strategy incorporates both the OverRefSI algorithm used by Corral
and the UnderWidenSI algorithm implemented in Legion. We refer to the port-
folio verifier as Legion+. For each program, Legion+ runs both Corral and
Legion in parallel. Legion+ terminates verification as soon as one of the algo-
rithms finishes verification and reports the outcome. We discuss the performance
of Legion+ against that of Corral and Legion in Sect. 5.

5 Experimental Results

We have built a tool, Legion, that implements our UnderWidenSI algorithm.
To compare against OverRefSI , we use Corral [26], a state-of-the-art verifier
used at Microsoft [24]. We also build a portfolio solver, Legion+, that runs both
Corral and Legion in parallel. Whenever one of the tools finish verification,
Legion+ terminates the algorithms and reports the outcome.

We compare the performance of Corral against Legion and Legion+ on
a suite of Windows and Linux device driver benchmarks. The Windows device
driver benchmarks are obtained by running Static Driver Verifier (SDV) [4] on
real windows device drivers that exercise all features of the C language such as
arrays, heaps, pointers, loops, recursion etc. SDV compiles these drivers into a
suite of BOOGIE [8] programs, each of which is a device driver paired with prop-
erty (compilation is detailed in [24]). Note that, although the suite of Windows
device drivers compiled into BOOGIE programs are available as SDV bench-
marks [31], the actual C programs are internal to Microsoft.

Along with this, we also use a set of Linux device drivers that are available as
C programs as part of the SVCOMP benchmarks suite [7]. We used SMACK [36]
to compile the Linux device drivers into BOOGIE programs. Overall, we elect
to use a total of 727 hard programs, on which Corral took more than 200 s to
verify or times out, from the SDV and SVCOMP benchmarks to run our experi-
ments. We set the timeout for each verification task to 2 h for both Corral and
Legion. For all verification tasks, We use an unrolling length of 3 as advised in
the benchmarks [31] and used in other works [11].

As Legion+ uses twice the computational resources compared to Corral
and Legion, we halve its time budget to 1 h to make a fair comparison. We also
report the performance of Legion+ with a 2 h time budget (it can be seen as
the virtual best of Corral and Legion).

The experiments were performed on a machine with AMD EPYC 7452 pro-
cessor (48 cores) and 384 GB of RAM. Both Corral and Legion uses Z3 [15]
as the underlying SMT solver. We have used the default setting of a fixed ran-
dom seed for Z3 for all our experiments after verifying the fact that the choice
of random seed does not have any significant impact on our results.

5.1 Corral Versus Legion

Figure 6 depicts the number of solved instances within the time budget by Cor-
ral and Legion. In Fig. 6, a point (x, y) denotes the number of instances x,
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Fig. 6. Number of instances solved within time (in hours) for Corral vs Legion vs
Legion+.

Table 3. Total time taken by each verifier to solve instances

Verifier Solved instances Total time taken

Corral 262 109 h

Legion 351 112 h

Legion+ 369 71 h

each of which was solved within time y. As we can observe, Corral is able to
solve 262 out of 727 instances (36%) with a time budget of 2 h per instance,
whereas Legion solves 351 instances (48%) with the same time budget. Both of
them fail to solve 330 instances (45%). Out of the 397 instances (55%) that are
solved by either Corral or Legion, 46 instances (12%) are solved exclusively
by Corral, whereas 135 instances (34%) are solved exclusively by Legion.

The scatter plot of verification times across Legion and Corral is shown
in Fig. 7. The spread in the scatter plots demonstrate that these two tools com-
plement each other—the benchmarks on which Corral struggles are sometimes
handled well by Legion, and vice-versa. Picking the best of two verifiers solves a
total of 397 out of 727 instances (55%). This motivated the design of Legion+.

5.2 Performance of Legion+

As Legion+ utilizes parallelism, in order to make a fair comparison we halve
the time budget for Legion+ on each verification instance to 1 h. This means
that Legion+ runs both the tools Corral and Legion in parallel but with a
time budget of 1 h each.

Figure 6 shows that the portfolio verifier Legion+ solves 369 out of 727
instances (51%) with a 1 h time budget, whereas Corral solves only 262
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Fig. 7. Scatter plot of verification time of Corral vs Legion.

instances (36%) with a total time budget of 2 h. There are only 14 instances
that Corral solves but Legion+ is unable to solve. Similarly, there are only
17 instances that Legion solves but Legion+ is unable to solve.

With a 2 h timeout, Legion+ solves 397 instances in total (55%). This is
essentially the virtual best of Corral and Legion with a 2 h timeout.

Figure 8 shows the total time taken (in hours) by Corral, Legion and
Legion+ to verify the instances that were solved by all three of them (total 213
instances). Legion+ is 1.9× faster than Legion and 2.9× faster than Corral.

Across the benchmarks that each of the tools solve individually, Corral
takes 109 h to solve 262 benchmarks, Legion takes 112 h to solve 351 bench-
marks, whereas Legion+ solves 369 benchmarks within only 71 h (see Table 3).

Note that the benchmarks used in our study are those on which Corral
took greater than 200 s. On the rest of the benchmarks, clearly Legion+ will
perform at least as well as Corral. We chose to leave them out to ensure that
the experiments run in a reasonable time: there were roughly 14000 of these easy
cases. It allowed us to focus on benchmarks where speedup was important.

6 Related Work

The high-level idea of using proof-guided abstractions has been long known [3,
30]. Proofs of unsatisfiability have been used to derive abstractions for
unbounded model checking in the context of microprocessor verification [30].
Amla et al. have also demonstrated that counterexample based abstraction is
complementary to proof based abstraction and they can be combined in a judi-
cious manner to reap the benefits of both the techniques for hardware verifi-
cation tasks [3]. However, program verification has mostly been dominated by
counterexample-guided abstraction refinement (CEGAR) based strategies. Of
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Fig. 8. Cumulative time taken (in hours) to verify 213 instances that were solved by
all three verifiers.

the few proposals that use proof-guided underapproximation widening strategies,
most of them focus on verification of multi-threaded programs [18,35]. These
techniques perform underapproximation on the number of thread interleavings
allowed, while eagerly inlining all procedures. One technique [18] constrains the
number of interleavings to certain bounds, while the other [35] uses dynam-
ically inferred invariants for constructing (potential) underapproximations on
interleavings. Note that, these techniques are orthogonal to our approach. Eager
inlining is not feasible for our benchmarks, which is precisely the problem that we
address. Our proposal shows that proof-guided widening strategies can be effec-
tively employed for verifying large sequential programs. Proof of unsatisfiability
from underapproximated models have also been utilized to narrow down the
search space for overapproximation refinement in order to decide finite precision
bit vector arithmetic with arbitrary bit vector operations [9]. The underapproxi-
mation is done on the bit vector variables of a propositional logic formula where
some of the bit vector variables are encoded with fewer boolean variables than
their width.

Other than using proofs to guide widening heuristics, proof artifacts, like
interpolants, have been used to construct annotations [1,2,27–29] that can be
useful in constraining future search. Such techniques are orthogonal to underap-
proximation widening based techniques. However, they can be useful for Legion
and we plan to investigate them in the future.

Underapproximation widening has also been used in program synthe-
sis [37,39,40]. Instead of unleashing the search for the program on the whole
search space, such techniques search for the desired program in an underap-
proximated search space. While prior approaches [37] used a pre-defined widen-
ing sequence, later approaches [39,40] use proofs of unsatisfiability to guide
the widening sequence. Similar techniques have also been used in the synthe-
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sis of boolean functions [16,17]. Manthan [16,17] constructs an initial guess of
the boolean function by sampling the specification and constructing a decision-
tree classifier from the resulting data. It, then, uses a proof-guided technique to
“repair” the learnt model into a desired function.

There have also been applications of the maximal satisfiable set (MAXSAT)
on an unsatisfiable formula for program debugging. BugAssist [19] attempts to
infer the set of suspicious locations using a MAXSAT formulation over an failing
program trace and the specifications. Bavishi et al. [6] extend the formulation
to provide a ranking over the suspicious locations such that the locations higher
up in the rankings are less likely to cause regressions.

Another line of work is to use fuzzers to sample concrete instances and grad-
ually build approximations of program behavior for the purpose of deductive
verification [22] and symbolic execution [34]. However, such approaches use test
instances and do not apply a proof-guided strategy.

Legion is inspired by many of the above algorithms and, there is potential
of incorporating more of these ideas in Legion in the future.

7 Conclusion

Bounded model checking approaches for program verification predominantly
focuses on CEGAR based strategies. In this work, we propose a proof-guided
underapproximation widening strategy which behaves in a complementary man-
ner to the CEGAR technique. The complementary nature allows us to build a
portfolio strategy that takes advantage of both proof-guided underapproxima-
tion widening and CEGAR to deliver a significant speed up in verification time
over both.

Our current approach only looks at the predicates corresponding to the call-
sites to figure out which are most relevant to the proof of unsatisfiability of the
underapproximated model. In the future, we aim to extract additional informa-
tion from the unsat core which would allow us to explore more involved widen-
ing strategies. Furthermore, combining the underapproximation techniques that
work on the domain of thread interleavings to deal with a large space of sequen-
tial behaviors (via lots of procedures) and concurrent behaviors (via lots of inter-
leavings) would be another interesting direction to explore. We also believe that
underapproximation widening may yield improvement performance on our dis-
tributed bounded model checker, Hydra [11,12]. Another interesting direction
that we want to pursue is on combining bounded model checking algorithms
(both overapproximation refinement and underapproximation widening) with
dynamic analysis [5,13,38] and statistical testing [10,32] based approaches.
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Abstract. Formally verifying smart contracts is important due to their
immutable nature, usual open source licenses, and high financial incen-
tives for exploits. Since 2019 the Ethereum Foundation’s Solidity com-
piler ships with a model checker. The checker, called SolCMC, has two
different reasoning engines and tracks closely the development of the
Solidity language. We describe SolCMC’s architecture and use from the
perspective of developers of both smart contracts and tools for software
verification, and show how to analyze nontrivial properties of real life
contracts in a fully automated manner.

Keywords: Ethereum · Solidity · Symbolic model checking ·
Constrained Horn clauses · Satisfiability modulo theories

1 Introduction

The Ethereum Foundation’s compiler for Ethereum platform’s most used lan-
guage Solidity had almost 4 million downloads (3,957,195) over the last 60 days
(at the time of submission). Since 2019, this compiler ships with a robust, builtin,
easy-to-use, symbolic model checker SolCMC [16], formerly called SMTChecker.
SolCMC models a smart contract, that is, a program for the Ethereum platform,
and its properties as a system of constrained Horn clauses (CHCs) amenable
to IC3-style model checking [34]. Since its deployment, SolCMC has increas-
ingly served a dual purpose. On the one hand, smart contract programmers
have through it a very visible and easy access to formal verification techniques.
On the other hand, perhaps more subtly but no less importantly, the tool serves
as a sounding board for developers of Horn solvers. Currently the system inter-
faces with Spacer [31] and Eldarica [30], making the related techniques available
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to a large user base. We expect to integrate in SolCMC many other techniques
through a similar mechanism. For instance, the tool has a bounded model check-
ing engine for finding bugs by issuing SMT queries to solvers such as z3 [35] and
cvc5 [23].

Smart contracts running on the Ethereum platform hold and control billions
of dollars through their immutable logic, and therefore bugs can lead to massive
losses. There are many recent sophisticated tools that increase the security of
the Ethereum contract ecosystem by detecting smart contract bugs before they
are deployed. However, new and emerging applications from the diverse user
base are driving Solidity development at a fast pace and it is difficult to keep
tools synchronized with the language. We believe that in the long run, the best
way to ensure that a model checker for Solidity is sustainable is by integrating
it directly into the compiler distribution, or the main repository of the related
language tools, as we have done for SolCMC.

The direct integration of the model checker into the compiler has two main
advantages. Firstly, we can model precisely and robustly features that are some-
what specific to Solidity and its applications, such as modeling reentrancy call-
backs, and the handling of global storage. This makes the model checker capable
of synthesizing new contracts that serve as counterexamples for correctness, and
computing inductive invariants for the cases where properties hold. Secondly, the
short pipeline between the source code and the model allows the presentation
of both counterexamples and invariants as compiler warnings and annotations
using a vocabulary that is meaningful for the developer.

The goal of SolCMC is to verify properties of programs with minimal user
input. Our system supports writing properties as assert statements and can
in addition automatically check other structural properties such as popping
from an empty array and array accesses that are out of bounds, and the lack
of underflows, overflows, divisions by zero, and transfers with insufficient bal-
ance. Moreover, common Solidity vulnerabilities such as reentrancy mutability
and selfdestruct reachability can be verified using test harnesses that make the
assertion-based approach more expressive. Thus, the expressiveness of SolCMC
allows efficiently obtaining meaningful results for real life contracts in a way that
is in practice fully automated. To demonstrate this we analyze the Beacon Chain
Deposit Contract that is the base for Ethereum’s proof of stake consensus layer,
and the OpenZeppelin implementation of the ERC777 token standard.

An extended version of this tool paper including appendices showing detailed
experimental results and other analysis is available online in the accompanying
artifact, at https://doi.org/10.5281/zenodo.6512173.

Related Work. Proving correctness and finding bugs in smart contracts is use-
ful in different abstraction targets. The technical details of how smart contracts
are encoded by SolCMC are presented in [34]. In this tool paper the empha-
sis is on orthogonal topics: the usage of options, generation of counterexamples
in Solidity-like syntax, interfacing with different Horn solvers, and how con-
tract invariants can be obtained. We also demonstrate the tool’s capabilities

https://doi.org/10.5281/zenodo.6512173
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Fig. 1. The Solidity compiler stack with the integrated model checker (in green) (Color
figure online)

by analysing two important and complex contracts: the Deposit contract and
ERC777.

Most current tools either analyse the Solidity high level language, similar to
SolCMC, or work directly on Ethereum Virtual Machine (EVM) bytecode.

The tools Solc-verify [28] and Verisol [38] verify Solidity properties in an auto-
mated way allowing models with unbounded number of transactions by trans-
lating Solidity to Boogie [33]. This gives the tools an advantage in engineering
resources, but, compared to SolCMC’s direct encoding as CHCs, makes produc-
ing counterexamples to the user more difficult. Neither of the two tools produce
counterexamples or inductive invariants, and the most recent language versions
are not supported. SmartACE [39] relies on translation from Solidity to LLVM-
IR. This allows for employing multiple analysis tools, but unlike in SolCMC
where we use a direct encoding and tight solver integration, the tools are mostly
used as black boxes. EThor [37] also uses Horn clauses but it encodes EVM
bytecode, and focuses on specific properties such as reentrancy. The Certora [24]
tool relies on invariants to verify EVM bytecode. It is a commercial tool used for
smart contract audits and is not publicly available. The K framework [10] is an
assisted theorem prover that provides EVM semantics [29] to analyze EVM byte-
code. It is generally able to prove more statements than automated tools, but
requires considerable user interaction. HEVM [22] is an implementation of EVM
in Haskell that also has a symbolic executor for EVM bytecode. It can prove
functional properties but, unlike SolCMC, does not support inductive proper-
ties over multiple transactions and loops. HEVM and Echidna [4] also provide
fuzzing techniques that help determining whether a candidate assertion is a con-
tract invariant. Slither [14] is a powerful static analyzer that does not provide
formal guarantees but can detect many vulnerabilities and dangerous patterns.
Act [1] is a declarative specification language for smart contracts that supports
three backends: bytecode verification via HEVM, SMT theorems for contract
invariants, and a Coq backend that exports Coq definitions of contract state
transitions. Finally, the Scribble specification language [13] allows annotating
Solidity code and can generate runtime checks for given properties.
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Table 1. SolCMC verification targets

Arithmetic Structural

arithmetic underflow/overflow, division
by zero, insufficient transfer balance

assertions, popping empty array, out of
bounds index access

2 Solidity Model Checking

The high level overview of the compilation process is depicted in Fig. 1, with
the model checker module emphasized. When enabled, Solidity model checking
becomes another pass over the source code in the normal compilation process
that starts after parsing and Abstract Syntax Tree (AST) generation. If there
were no errors, the compiler produces the optimized bytecode together with any
warnings, such as counterexamples found by the model checker.

This paper concentrates on SolCMC’s unbounded model checker based on
CHCs. The tool also has a BMC engine that generates SMT queries and links
against cvc5 [23] and z3 [35].

2.1 The CHC Verification Engine

SolCMC encodes a smart contract as a system of constrained Horn clauses,
based on [34]. The checker supports loops, multi-transaction computation paths,
contract invariants, tracking contract balances throughout their lifetimes, and
precise multi-contract calls. If the analyzed contract calls external functions
unsafely, the model checker also synthesizes malicious external actors and rep-
resents them as reentrant calls.

The Horn queries are dispatched to a Horn solver. The encoding requires
the solver to support nonlinear Horn clauses and at least the SMT theories for
Linear Integer Arithmetic (LIA), Arrays, and the tuples subset of Algebraic
Datatypes (ADT). Furthermore, nonlinear integer arithmetic and bitwise opera-
tions, if present, are encoded in the respective theories NIA and BV. To the best
of our knowledge only Spacer [31] and Eldarica [30] satisfy those requirements.
SolCMC has a tight integration with Spacer via its C++ API, whereas Eldarica
is integrated using the compiler’s SMT callback [21], and is currently accessible
via solc-js [15], the JavaScript wrapper of the compiler’s WebAssembly binary.

The model checker generates verification targets automatically for the con-
ditions listed in Table 1. In particular a smart contract developer can combine
assertions with test harnesses (see, e.g., Sect. 4) to specify complex behavior.
The Solidity language has the statements require and assert, which SolCMC
uses to capture developer intent: Conditions inside require statements are con-
sidered assumptions, and assert statements should be true for every execution.
The model checker then treats every assert as a verification target and attempts
to either prove it by finding an invariant, or give a counterexample for its
correctness.
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2.2 Horn Encoding

SolCMC’s CHC encoding is based on the imperative encoding of [25], and is pre-
sented in detail in [34]. Horn logic is a popular formalism for expressing reacha-
bility problems. It is equivalent to the existential positive fix-point logic [26], and
provides a convenient syntax for the use of existentially quantified predicates
that in our encoding represent reachable states and effects of transactions. The
Solidity AST first gets transformed into a Control Flow Graph (CFG). CFG
nodes have corresponding CHC predicates, and edges are encoded as Horn rules
with constraints created from the Single Static Assignment (SSA) form of the
statements and expressions of the CFG block. Below we give an overview of the
encoding that highlights the critical parts.

The encoding consists of three types of predicates that represent reachable
states or possible transitions: function bodies (Bf ) and summaries (Sf ) represent
the effect of function calls to f ; interfaces (IC) represent the states a contract C
can reach after initialization and each transaction; and nondeterministic inter-
faces (NC) encode the effects the environment may have to a contract C. We
use the following variables in the encoding: e, an integer error flag. Each veri-
fication target has a positive unique error id; 0 is reserved for no errors. a, the
contract address. abi, a tuple of Solidity’s ABI functions. cr, a tuple of Solidity’s
cryptographic functions: keccak256, sha256, ripemd160, and ecrecover. Both
abi and cr are constant in the encoding. They are passed through the rules to
ensure consistency everywhere. tx, a tuple of the transaction data, e.g., message
sender, data, block number, etc. st, the blockchain state, a tuple containing the
balances and storage for every contract. Balances are represented by an array
mapping addresses to their balances. Each contract has a storage tuple that con-
tains the state variables of that contract. x, the program state, input, output
and local variables in the scope of that node. When necessary, we refer to the
state variables as s. For x and st we use primes to denote the effect of rules on
these variables.

Function bodies encode constructors, deployment procedures, and function sum-
maries. For example, the contract contract Acc { uint8 x = 0; function
acc(uint8 y) external { x += y; } } gets encoded into the rules

e = 0 ∧ st = st′ ∧ x = x′ ∧ y = y′ ∧ 0 ≤ y′ ≤ 255 ∧ 0 ≤ x′ ≤ 255
=⇒ Bacc(e, a,abi, cr, tx, st, x, y, st′, x′, y′)

stating that the function can always be called, its execution starts with no error,
the initial variables have the current values, and the program variables’ types
are constrained;

Bacc(e, a,abi, cr, tx, st, x, y, st′, x′, y′) ∧ (x′ + y′ > 255)
=⇒ Sacc(1, a,abi, cr, tx, st, x, y, st′, x′, y′)
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stating that an overflow in summation is an error, with label 1; and

Bacc(e, a,abi, cr, tx, st, x, y, st′, x′, y′) ∧ (x′′ = x′ + y) ∧ (x′′ ≤ 255)
=⇒ Sacc(e, a,abi, cr, tx, st, x, y, st′, x′′, y),

which exits the function with no error and updates the contract state variable x.

Interface Rules. The interface CFG node is an artificial node that represents
the idle state of a contract. This node is crucial to the encoding when mod-
elling transactions, querying error flags, committing state changes, generating
counterexamples, and translating inductive contract invariants. It is reachable
at the beginning and end of every transaction. Transactions may revert due to
invalid inputs or program logic, in which case all state changes are rolled back.
The interface node may contain state changes if the transaction did not revert.
Each contract C has a predicate IC, whose parameters are a, abi, cr, st and
the state variables s of the contract. The rules only change e, st and s, and for
better readability we use ellipsis (. . .) to denote the unchanged parameters. One
rule is added per contract linking the deployment procedure to the interface:
DC(. . .) =⇒ IC(. . .). For each external function f in the contract C, we add the
query rule and the update rule

IC(. . . , st, s, . . .) ∧ Sf(e, . . . , st, s, . . . , st′, s′, . . .) ∧ e > 0 =⇒ Errf(e)

IC(. . . , st, s, . . .) ∧ Sf(e, . . . , st, s, . . . , st′, s′, . . .) ∧ e = 0 =⇒ IC(. . . , st′, s′, . . .).

The Horn query given to the solver then asks whether Errf(e) is reachable, for
each error label e. In this modelling, if the property is safe, inductive invariants
chosen by the solver as an interpretation for the predicates IC represent the
invariants for contracts C.

Nondeterministic Interface Rules. The nondeterministic interface CFG node
is an artificial node that represents every possible behavior of the contract
from an external point of view, in an unbounded number of transactions. This
node is essential to model calls that the contract makes to external unknown
contracts, as well as reentrancy if present. The predicate that represents this
node has the same parameters as the interface predicate, but with the error
flag and an extra set of program variables and blockchain state, in order to
model possible errors and state changes. For every contract C the encoding adds
the base case rule NC(0, . . . , st, s, st, s) which performs no state changes. Then
for every external function f in the contract the encoding adds the inductive
rule N(0, . . . , st, s, st′, s′) ∧ Sf(e, . . . , st′, s′, st′′, s′′) =⇒ N(e, . . . , st, s, st′′, s′′).
These rules allow us to encode an external call to unknown code using a single
constraint N(e, . . . , st, s, st′, s′) which models every reachable state change in
the contract, in any unbounded number of transactions. If a property is unsafe,
these rules force the solver to synthesize the behavior of the adversarial contract.
Otherwise, the interpretation of such predicate gives us inductive reentrancy
properties that are true for every external call to unknown code in the contract.
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3 User Features

As SolCMC is shipped inside the Solidity compiler, it is available for the users
whenever and wherever they interact with the compiler. There are currently three
major ways the compiler is used: 1. Interfacing with the WebAssembly release
through official JavaScript bindings; 2. Interfacing with a binary release on com-
mand line; 3. Using web based IDEs, such as Remix [12]. Option 3 is the most
accessible, but currently allows only limited configuration of the model checker
through pragma statements in source code. Options 1 and 2 both allow extensive
configuration, but in addition 1 enables the SMT callback feature needed, e.g.,
for Eldarica. In 2 the options can be provided either on the command line or in
JSON [19], whereas 1 accepts only JSON using the JavaScript wrapper [15].

In 1 and 2 several parameters are available to the user for better control when
trying to prove complex properties. We list here some examples, using the com-
mand line options (without the leading --). The JSON descriptions are named
similarly. The model checking engine—BMC, CHC or both—is selected with
the option model-checker-engine. Individual verification targets can be cho-
sen with model-checker-targets, and a per-target verification timeout (in ms)
can be set with model-checker-timeout. By default, all unproved verification
targets are given in a single message after execution. More details are available by
specifying model-checker-show-unproved. Option model-checker-contracts
provides a way to choose the contracts to verify. Typically the user specifies only
the contract they wish to deploy. Inherited and library contracts are included
automatically, avoiding verifying every contract as the main one. Some options
affect the encoding. For example, integer division and modulo operations can
be encoded with the SMT function symbols div and mod or by SolCMC’s own
encoding using linear arithmetic and slack variables. Depending on the backend
one is often preferred to the other. The default is the latter, the former is set by
model-checker-div-mod-no-slacks.

Solidity provides the NatSpec [20] format for rich documentation. An annota-
tion /// @custom:smtchecker abstract-function-nondet instructs SolCMC
to abstract a function nondeterministically. Abstracting functions as an Unin-
terpreted Function [32] is under development.

Counterexamples and Inductive Invariants. When a verification target is dis-
proved, SolCMC provides a readable counterexample describing how to reach
the bug. In addition to the line of code where the verification target is breached,
the counterexample states the trace of transactions and function calls leading
to the failure along with concrete values substituted for the arguments, and the
values of the state variables at the point of failure. When necessary, the trace
includes also synthesized reentrant calls that trigger the failure.

Similarly, when SolCMC proves a verification target, the user may instru-
ment the checker to provide safe inductive invariants. The invariants can, for
instance, be used as an additional proof that the verification target holds. Tech-
nically the invariants are interpretations for the predicates in the CHC system
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and are presented in a human readable Solidity-like syntax. Similarly to coun-
terexamples, the invariants are given also for predicates guaranteeing correctness
under reentrancy. The extended version of this paper contains a short example
illustrating the counterexamples and inductive invariants. It also presents more
complex examples of both features, which were obtained from our experiments
with the ERC777 token standard.

4 Real World Experiments

In this section we analyse two real world smart contract systems using SolCMC.
Both contracts are massively important and highly nontrivial for automated
tools due to their use of complex features, loops, and the need to produce non-
trivial inductive invariants. While only the main results are stated in this section,
we want to emphasize that the results were achieved after an extensive, albeit
mechanical, experimentation on the two backend solvers (Spacer and Eldarica)
and a range of parameters. To us the fact that they were successfully analysed
using an automatic method is a strong proof of the combined power of our
encoding approach and the backend solvers.

4.1 CHC Solver Options

The options we pass to the underlying CHC solvers Spacer and Eldarica may
make the difference between a quick solving and divergences. For Spacer, we use
the options rewriter.pull cheap ite=true which pulls if-then-else terms to
the top level when it can be done cheaply, fp.spacer.q3.use qgen=true which
enables the quantified lemma generalizer, fp.spacer.mbqi=false which disables
the model-based quantifier instantiation, and fp.spacer.ground pobs=false
which grounds proof obligations using values from a model. For Eldarica, we have
found the adjustment of the predicate abstraction to be useful: -abstract:off
disables abstraction, -abstract:term uses term abstraction, and -abstract:oct
uses the octal abstraction.

4.2 Deposit Contract

The Ethereum 2.0 (Eth2) [9] Deposit Contract [2,3] is a smart contract that runs
on Ethereum 1.0 collecting deposits from accounts that wish to be validators on
Eth2. By the time of submission of this paper more than 9,100,194 ETH were
held by the Deposit Contract, the equivalent of tens of billions USD in recent
rates. Besides the financial incentive, this contract’s functionality is essential to
the progress of the protocol. The contract was formally verified before deploy-
ment [36] and further proved safe [27] with considerable amount of manual work.
Despite having relatively few lines of code (less than 200), the contract remains
a challenge for automated tools, because of its use of many complex constructs
at the same time, such as ABI encoding functions, loops, dynamic types, and
hash functions.
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As part of the logic of the deposit function, a new entry is created in a
Merkle tree for the caller. The contract asserts that such an entry can always be
found, expressed as an assert(false) in a program location reachable only if
such an entry is not found (line 162 in [2]). Using SolCMC this problem can be
encoded into a 1.4MB Horn logic file containing 127 rules, which uses the SMT
theories for Arrays, ADTs, NIA, and BV. After a syntactical change, Eldarica
can show the property safe automatically in 22.4 s, while Spacer times out after
1 h (see the extended version for details). The change is necessary to avoid bit-
vector reasoning and consists of replacing the test if ((size & 1) == 1) with
a semantically equivalent form if ((size % 2) == 1) on lines 88 and 153 in [2].

4.3 ERC777

ERC777 [6] is a token standard that offers extra features compared to the
ERC20 [5] standard. Besides the usual transfer and allowance features, ERC777
mainly adds account operators and transfer hooks which allow smart contracts
to react to sending and receiving tokens. This is similar to the native feature
of reacting to receiving Ether. In this experiment we analyze the OpenZeppelin
implementation [11] of ERC777. This contract is an interesting benchmark for
automated tools not only because of its importance, but also because it is a rather
large smart contract system with 1200 lines of Solidity code, in 8 files, and it
uses complex high level constructs such as assembly blocks, heavy inheritance,
strings, arrays, nested mappings, loops, hash functions, and makes external calls
to unknown code. The implementation follows the specification precisely, and
does not guarantee a basic safety property related to tokens: The total supply of
tokens should not change during a transfer.

Compared to the usual ERC20 token transfer that simply decreases and
increases the balances of the two accounts involved in the transfer, the ERC777
transfer function may call unknown contracts to notify them that they are
sending/receiving tokens. The logic in these external contracts is completely
arbitrary and unknown to the token contract. For example, they could make
a reentrant call to one of the nine ERC777 token mutable functions from its
external interface.

Since the analyzed ERC777 implementation is agnostic on how tokens are ini-
tially allocated, no tokens are distributed in the base implementation at deploy-
ment. Therefore, to study the property, we write the following test harness [7]
that uses the ERC777 token implemented by OpenZeppelin.

import "<path >/ ERC777.sol";

contract Harness is ERC777 {
constructor(

address [] memory defOps_ ,
uint amt_

) ERC777("ERC777", "E7", defOps_ ){
_mint(msg.sender , amt_ , "", "");

}

function transfer(address r, uint a)
public override returns (bool) {
uint prev = totalSupply ();
bool res = ERC777.transfer(r, a);
uint post = totalSupply ();
assert(prev == post);
return res;

}
}
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Fig. 2. Transaction trace that violates the safety property in transfer

First, we allocate amt tokens to the creator of the contract, in order to
have tokens circulating. Then, we override the transfer function, where our
transfer function simply wraps the one from the ERC777 contract, asserting
that the property we want to verify is true after the original transfer.

The resulting Horn encoding is 15 MB large and contains 545 rules. The
property can be shown unsafe by Eldarica in all its configurations, the quickest
taking slightly less than 3 min, including generating the counterexample (see the
extended version for details). All Spacer’s configurations time out after 1 h. Since
the property is unsafe, SolCMC also provides the full transaction trace required
to reach the assertion failure. The transaction trace is visualized in Fig. 2 in
the form of a sequence diagram, where solid arrows represent function calls and
dashed arrows represent the return of the execution control. The full output of
the tool can be found in the extended version.

The diagram shows the transaction trace from the call to transfer of
ERC777 (after our wrapper contract has been created and its transfer
was called). transfer performs 3 internal function calls (in orange):
1) callTokensToSend performs the external call to notify the sender; 2) move
moves the tokens from the sender to the recipient; 3) callTokensReceived
notifies the recipient. The external calls to unknown code are shown in red. The
transaction trace also contains the synthesized behaviour for the recipient (in
purple). It is a reentrant call to operatorBurn in the ERC777 token contract
itself, where some of the tokens of the recipient contract will be burned. At the
end of the execution of transfer, the assertion is no longer true. The total sup-
ply of tokens after the call is not the same as the total supply before the call, as
some tokens were burned during the transaction.

Given the number of mutable external functions of ERC777 and their com-
plexity, we consider the discovery of the counterexample to be quite an achieve-
ment. We ascribe the success to the combined power of the CHC encoding and
the Horn solver.

One way to guarantee that our property holds is to disallow reentrancy
throughout the contract using a mutex. After changing the ERC777 library [8], we
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ran the tool again on our test harness. Spacer timed out, but Eldarica was able
to prove that the restricted system is safe in all its configurations, the fastest one
finishing in 26.2 s, including the generation of the inductive invariants for every
predicate. SolCMC now reports back the reentrancy property <errorCode> =
0 given as part of the proof (the property is presented here in a simplified man-
ner, see the extended version for details). The inductive property states that
no external call performed by the analyzed contract can lead to an error. This
shows that the reentrant path can no longer be taken.

4.4 Discussion

While producing the above analysis of the real life contracts, we experimented
with two backend solvers Spacer and Eldarica, and a range of parameters for
them. This phase (documented in the extended version of this paper) was critical
in producing the results, because Eldarica and Spacer excel in different domains
and parameter selection has a major impact on both verification success and run
time. In both cases above Eldarica performed clearly better than Spacer. This
seems to be because Eldarica handles abstract data types better than Spacer.
This conclusion is backed by experimental evidence. We ran SolCMC using both
Spacer and Eldarica on the SolCMC regression test suite consisting of 1098 solid-
ity files [17] and 3688 Horn queries [18]. The experiment shows that while the
solvers give overall similar results, in two categories that make heavy use of
ADTs, Eldarica is consistently able to solve more benchmarks than Spacer. For
lack of space, the detailed analysis is given in the extended version.

Our encoding uses tuples to encode data that makes sense to be bundled
together. Moreover, arrays of tuples are used to emulate Uninterpreted Func-
tions (UFs) to abstract injective functions such as cryptographic primitives. This
is necessary due to UFs not being syntactically allowed in predicates of Horn
instances. While this increases the complexity of the problem, we have chosen
this path to reduce encoding complexity, considering that a pre processing step
may be available in the future to flatten such tuples and arrays.

5 Conclusions and Future Work

This paper presents the model checker SolCMC that ships with the Ethereum
Foundation’s compiler for the Solidity language. We believe that the automated
and usable tool has the potential to link a high volume of Solidity developers with
the community working on tools for formal verification. The tool is stable, and,
having been integrated into the compiler, tracks closely the quickly developing
language.

We advocate for a direct encoding approach where the same AST gets com-
piled both into EVM bytecode and into a verification model in SMT-LIB2 or the
format used in the CHC competition. In our experience this makes it more natu-
ral to model features specific to Solidity and Ethereum smart contracts as well as
for generating usable counterexamples and inductive invariants in comparison to
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producing first a language-agnostic intermediate verification representation that
is then processed for reasoning engines.

We argue for the ease of use of the tool by showing nontrivial properties
of real life contracts. The experiments also identify interesting future develop-
ment opportunities in the current CHC formalism. We show how the formalism’s
limitations can be worked around using abstract data types, and discuss their
impact on tool efficiency.
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Verifying Solidity smart contracts via communication abstraction in SmartACE.
In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 425–449.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-94583-1_21
http://creativecommons.org/licenses/by/4.0/


Hyperproperties and Security



Software Verification of Hyperproperties
Beyond k-Safety

Raven Beutner(B) and Bernd Finkbeiner

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{raven.beutner,finkbeiner}@cispa.de

Abstract. Temporal hyperproperties are system properties that relate
multiple execution traces. For (finite-state) hardware, temporal hyper-
properties are supported by model checking algorithms, and tools for
general temporal logics like HyperLTL exist. For (infinite-state) soft-
ware, the analysis of temporal hyperproperties has, so far, been limited
to k-safety properties, i.e., properties that stipulate the absence of a bad
interaction between any k traces. In this paper, we present an automated
method for the verification of ∀k∃l-safety properties in infinite-state sys-
tems. A ∀k∃l-safety property stipulates that for any k traces, there exist
l traces such that the resulting k + l traces do not interact badly. This
combination of universal and existential quantification enables us to
express many properties beyond k-safety, including, for example, gen-
eralized non-interference or program refinement. Our method is based
on a strategy-based instantiation of existential trace quantification com-
bined with a program reduction, both in the context of a fixed predicate
abstraction. Notably, our framework allows for mutual dependence of
strategy and reduction.

Keywords: Hyperproperties · HyperLTL · Infinite-state systems ·
Predicate abstraction · Hyperliveness · Verification · Program reduction

1 Introduction

Hyperproperties are system properties that relate multiple execution traces of a
system [22] and commonly arise, e.g., in information-flow policies [35], the veri-
fication of code optimizations [6], and robustness of software [19]. Consequently,
many methods for the automated verification of hyperproperties have been devel-
oped [27,39–41]. Almost all previous approaches verify a class of hyperproperties
called k-safety, i.e., properties that stipulate the absence of a bad interaction
between any k traces in the system. For example, we can express a simple form
of non-interference as a 2-safety property by stating that any two traces that
agree on the low-security inputs should produce the same observable output.

The vast landscape of hyperproperties does, however, stretch far beyond k-
safety. The overarching limitation of k-safety (or, more generally, of hypersafety
[22]) is an implicit universal quantification over all executions. By contrast, many
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S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 341–362, 2022.
https://doi.org/10.1007/978-3-031-13185-1_17

https://doi.org/10.6084/m9.figshare.19697656
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_17&domain=pdf
http://orcid.org/0000-0001-6234-5651
http://orcid.org/0000-0002-4280-8441
https://doi.org/10.1007/978-3-031-13185-1_17


342 R. Beutner and B. Finkbeiner

properties of interest, ranging from applications in information-flow control to
robust cleanness, require a combination of universal and existential quantifica-
tion. For example, consider the reactive program in Fig. 1, where �N denotes a
nondeterministic choice of a natural number. We assume that h, l, and o are
a high-security input, a low-security input, and a low-security output, respec-
tively. This program violates the simple 2-safety non-interference property given
above as the non-determinism influences the output. Nevertheless, the program
is “secure” in the sense that an attacker that observes low-security inputs and
outputs cannot deduce information about the high-security input. To capture
this formally, we use a relaxed notion of non-interference, in the literature often
referred to as generalized non-interference (GNI) [35]. We can, informally, express
GNI in a temporal logic as follows:

∀π.∀π′.∃π′′.
(
oπ = oπ′′ ∧ lπ = lπ′′ ∧ hπ′ = hπ′′

)

This property requires that for any two traces π, π′, there exists some trace π′′

that, globally, agrees with the low-security inputs and outputs on π but the high-
security inputs on π′. Phrased differently, any observation on the low-security
input-output behavior is compatible with every possible high-security input.
The program in Fig. 1 satisfies GNI. Crucially, GNI is no longer a hypersafety
property (and, in particular, no k-safety property for any k) as it requires a
combination of universal and existential quantification.

1.1 Verification Beyond k-Safety

Fig. 1. An example program is
depicted.

Instead, GNI falls in the general class of ∀∗∃∗-
safety properties. Concretely, a ∀k∃l-safety
property (using k universal and l existential
quantifiers) stipulates that for any k traces,
there exist l traces such that the resulting k + l
traces do not interact badly. k-safety properties
are the special case where l = 0. We study the
verification of such properties in infinite-state
systems arising, e.g., in software. In contrast
to k-safety, where a broad range of methods
has been developed [10,27,39–41], no method
for the automated verification of temporal ∀∗∃∗

properties in infinite-state systems exists (we
discuss related approaches in Sect. 8).

Our novel verification method is based on a
game-based reading of existential quantification
combined with the search for a program reduc-
tion. The game-based reading of existential quantification instantiates existential
trace quantification with an explicit strategy and constitutes the first practica-
ble method for the verification of ∀∗∃∗-properties in finite-state systems [23].
Program reductions are a well-established technique to align executions of inde-
pendent program fragments (such as the individual program copies in a self-
composition) to obtain proofs with easier invariants [27,34,39].
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So far, both techniques are limited to their respective domain, i.e., the game-
based approach has only been applied to finite-state systems and synchronous
specifications, and reductions have (mostly) been used for the verification of k-
safety. We combine both techniques yielding an effective (and first) verification
technique for hyperproperties beyond k-safety in infinite-state systems arising in
software. Notably, our search for reduction and strategy-based instantiation of
existential quantification is mutually dependent, i.e., a particular strategy might
depend on a particular reduction and vice versa.

1.2 Contributions and Structure

The starting point of our work is a new temporal logic called Observation-based
HyperLTL (OHyperLTL for short). Our logic extends the existing hyperlogic
HyperLTL [21] with capabilities to reason about asynchronous properties (i.e.,
properties where the individual traces are traversed at different speeds), and to
specify properties using assertions from arbitrary background theories (to reason
about the infinite domains encountered in software) (Sect. 4).

To automatically verify ∀k∃l OHyperLTL properties, we combine program
reductions with a strategy-based instantiation of existential quantification, both
in the context of a fixed predicate abstraction. To facilitate this combination, we
first present a game-based approach that automates the search for a reduction.
Concretely, we construct an abstract game where a winning strategy for the
verifier directly corresponds to a reduction with accompanying proof. As a side
product, our game-based interpretation simplifies the search for a reduction in
a given predicate abstraction as, e.g., studied by Shemer et al. [39] (Sect. 5).

Our strategic (game-based) view on reductions allows us to combine them
with a game-based instantiation of existential quantification. Here, we view the
existentially quantified traces as being constructed by a strategy that, iteratively,
reacts to the universally quantified traces. As we phrase both the search for a
reduction and the search for existentially quantified traces as a game, we can
frame the search for both as a combined abstract game. We prove the sound-
ness of our approach, i.e., a winning strategy for the verifier constitutes both
a strategy for the existentially quantified traces and accompanying (mutually
dependent) reduction. Despite its finite nature, constructing the abstract game
is expensive as it involves many SMT queries. We propose an inner refinement
loop that determines the winner of the game (without constructing it explicitly)
by computing iterative approximations (Sect. 6).

We have implemented our verification approach in a prototype tool called
HyPA (short for Hyperproperty Verification with Predicate Abstraction) and
evaluate HyPA on k-safety properties (that can already be handled by existing
methods) and on ∀∗∃∗-safety benchmarks that cannot be handled by any existing
tool (Sect. 7).

Contributions. In short, our contributions include the following:

– We propose a temporal hyperlogic that can specify asynchronous hyperprop-
erties in infinite-state systems;
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– We propose a game-based interpretation of a reduction (improving and sim-
plifying previous methods for k-safety [39]);

– We combine a strategy-based instantiation of existentially quantified traces
with the search for a reduction. This yields a flexible (and first) method for
the verification of temporal ∀∗∃∗ properties. We propose an iterative method
to solve the abstract game that avoids an expensive explicit construction;

– We provide and evaluate a prototype implementation of our method.

2 Overview: Reductions and Quantification as a Game

Our verification approach hinges on the observation that we can express both
a reduction and existential trace quantification as a game. In this section, we
provide an overview of our game-based interpretations. We begin by outlining
our game-based reading of a reduction (illustrating this in the simpler case of
k-safety) in Sect. 2.1 and then extend this to include a game-based interpretation
of existential quantification in Sect. 2.2.

2.1 Reductions as a Game

Consider the two programs in Fig. 2 and the specification that both programs
produce the same output (on initially identical values for x). We can formalize
this in our logic OHyperLTL (formally defined in Sect. 4) as follows:

∀P1π1 : (pc = 2). ∀P2π2 : (pc = 2). (xπ1 = xπ2) → (xπ1 = xπ2)

The property states that for all traces π1 in P1 and π2 in P2 the LTL specification
(xπ1 = xπ2) → (xπ1 = xπ2) holds (where xπ refers to the value of x on trace
π). Additionally, the observation formula pc = 2 marks the positions at which
the LTL property is evaluated: We only observe a trace at steps where pc = 2
(i.e., where the program counter is at the output position).

The verification of our property involves reasoning about two copies of our
system (in this case, one of P1 and one of P2) on disjoint state spaces. Conse-
quently, we can interleave the statements of both programs (between two obser-
vation points) without affecting the behavior of the individual copies. We refer
to each interleaving of both copies as a reduction. The choice of a reduction
drastically influences the complexity of the needed invariants [27,34,39]. Given
an initial abstraction of the system [30,39], we aim to discover a suitable reduc-
tion automatically. Our first observation is that we can phrase the search for a
reduction as a game as follows: In each step, the verifier decides on a scheduling
(i.e., a non-empty subset M ⊆ {1, 2}) that indicates which of the copies should
take a step (i.e., i ∈ M iff copy i should make a program step). Afterward, the
refuter can choose an abstract successor state compatible with that scheduling,
after which the process repeats. This naturally defines a finite-state two-player
safety game that we can solve efficiently.1 If the verifier wins, a winning strategy
1 The LTL specification is translated to a symbolic safety automaton that moves

alongside the game. For sake of readability, we omitted the automaton from the
following discussion.
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Fig. 2. Two output-equivalent programs P1 and P2 are depicted in Fig. 2a and 2b. In
Fig. 2c a possible winning strategy for the verifier is given. Each abstract state contains
the value of the program counter of both copies (given as the pair at the top) and the
predicates that hold in that state. For sake of readability we omit the trace variables
and write, e.g., x1 for xπ1 . We mark the initial state with an incoming arrow. The
outer label at each state gives the scheduling M ⊆ {1, 2} chosen by the strategy in
that state.

directly corresponds to a reduction and accompanying inductive invariant for
the safety property within the given abstraction.

For our example, we give (parts of) a possible winning strategy in Fig. 2c. In
each abstract state, the strategy chooses a scheduling (written next to the state),
and all abstract states compatible with that scheduling are listed as successors.
Note that whenever the program counter is (2, 2) (i.e., both programs are at
their output position), it holds that x1 = x2 (as required). The example strategy
schedules in lock-step for the most part (by choosing M = {1, 2}) but lets P1
take the inner loop twice, thereby maintaining the linear invariants x1 = x2

and y1 = 2y2. In particular, the resulting reduction is property-based [39] as
the scheduling is based on the current (abstract) state. Note that the program
cannot be verified with only linear invariants in a sequential or parallel (lock-
step) reduction.

2.2 Beyond k-Safety: Quantification as a Game

We build upon this game-based interpretation of a reduction to move beyond
k-safety. As a second example, consider the two programs Q1 and Q2 in Fig. 3,
where �τ denotes a nondeterministic choice of type τ ∈ {N,B}. We wish to check
that Q1 refines Q2, i.e., all output behavior of Q1 is also possible in Q2. We can
express this in our logic as follows:

∀Q1π1 : (pc = 2). ∃Q2π2 : (pc = 2). (aπ1 = aπ2)

The property states that for every trace π1 in Q1 there exists a trace π2 in
Q2 that outputs the same value. The quantifiers range over infinite traces of
variable assignments (with infinite domains), making a direct verification of the
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Fig. 3. Two programs Q1 and Q2 are given in Fig. 3a and 3b. In Fig. 3c a possible
winning strategy for the verifier is depicted. The outer label gives the scheduling M ⊆
{1, 2} and, if applicable, the restriction chosen by the witness strategy.

quantifier alternation challenging. In contrast to alternation-free formulas, we
cannot reduce the verification to verification on a self composition [8,28]. Instead,
we adopt (yet another) game-based interpretation by viewing the existentially
quantified traces as being resolved by a strategy (called the witness strategy)
[23]. That is, instead of trying to find a witness traces π2 in Q2 when given the
entire trace π1, we interpret the ∀∃ property as a game between verifier and
refuter. The refuter moves through the state space of Q1 (thereby producing a
trace π1), and the verifier reacts to each move by choosing a successor in the state
space of Q2 (thereby producing a trace π2). If the verifier can assure that the
resulting traces π1, π2 satisfy (aπ1 = aπ2), the ∀∃ property holds. However, this
game-based interpretation fails in many instances. There might exist a witness
trace π2, but the trace cannot be produced by a witness strategy as it requires
knowledge of future moves of the refuter. Let us discuss this on the example
programs in Fig. 3. A simple (informal) solution to construct a witness trace π2

(when given the entire π1) would be to guarantee that in Q2:4 (meaning location
4 of Q2) and line Q1:6 the value of x in both programs agrees (i.e., x1 = x2 holds)
and then simply resolve the nondeterminism at Q2:6 with 0. However, to follow
this idea, the witness strategy for the verifier, when at Q2:3, would need to know
the future value of x1 when Q1 is at location Q1:6.

Our insight in this paper is that we can turn the strategy-based interpretation
of the witness trace π2 into a useful verification method by combining it with
a program reduction. As we express both searches strategically, we can phrase
the combined search as a combined game. In particular, both the reduction and
the witness strategy are controlled by the verifier and can thus collaborate. In
the resulting game, the verifier chooses a scheduling (as in Sect. 2.1) and, addi-
tionally, whenever the existentially quantified copy is scheduled, the verifier also
decides on the successor state of that copy. We depict a possible winning strat-
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egy in Fig. 3c. This strategy formalizes the interplay of reduction and witness
strategy. Initially, the verifier only schedules {1} until Q1 has reached program
location Q1:6 (at which point the value of x is fixed). Only then does the verifier
schedule {2}, at which point the witness strategy can decide on a successor state
for Q2. In our case, the strategy chooses a value for x such that x1 = x2 holds.
As we work in an abstraction of the actual system, we formalize this by restrict-
ing the abstract successor states. In particular, in state α7 the verifier schedules
{2} and simultaneously restricts the successors to {α8} (i.e., the abstract state
where x1 = x2 holds), even though abstract state [(6, 4), a1 = a2, x1 �= x2] is
also a valid successors under scheduling {2}. We formalize when a restriction is
valid in Sect. 6. The resulting strategy is winning and therefore denotes both a
reduction and witness strategy for the existentially quantified copy. Importantly,
both reduction and witness strategy are mutually dependent. Our tool HyPA is
able to verify both properties (in Fig. 2 and Fig. 3) in a matter of a few seconds
(cf. Sect. 7).

3 Preliminaries

We begin by introducing basic preliminaries, including our basic model of com-
putation and background on (finite-state) safety games.

Symbolic Transition Systems. We assume some fixed underlying first-order the-
ory. A symbolic transition system (STS) is a tuple T = (X, init , step) where X
is a finite set of variables (possibly sorted), init is a formula over X describing
all initial states, and step is a formula over X 	 X ′ (where X ′ := {x′ | x ∈ X} is
the set of primed variables) describing the transitions of the system. A concrete
state μ in T is an assignment to the variables in X. We write μ′ for the assign-
ment over X ′ given by μ′(x′) := μ(x). A trace in T is an infinite sequence of
assignment μ0μ1 · · · such that μ0 |= init and for every i ∈ N, μi 	 μ′

i+1 |= step.
We write Traces(T ) for the set of all traces in T . We can naturally interpret
programs as STS by making the program counter explicit.

Formula Transformations. For the remainder of this paper, we fix the set of
system variables X. We also fix a finite set of trace variables V = {π1, . . . , πk}.
For a trace variable π ∈ V we define Xπ := {xπ | x ∈ X} and write �X for
Xπ1 ∪ · · · ∪ Xπk

. For a formula θ over X, we define θ〈π〉 as the formula over
Xπ obtained by replacing every variable x with xπ. Similarly, we define k fresh
disjoint copies �X ′ = X ′

π1
∪ · · · ∪ X ′

πk
(where X ′

π := {x′
π | x ∈ X}). For a formula

θ over �X, we define θ〈′〉 as the formula over �X ′ obtained by replacing every
variable xπ with x′

π.

Safety Games. A safety game is a tuple G = (SSAFE, SREACH, S0, T,B) where S =
SSAFE 	 sREACH is a set of game states, S0 ⊆ S a set of initial states, T ⊆ S × S
a transition relation, and B ⊆ S a set of bad states. We assume that for every
s ∈ S there exists at least one s′ with (s, s′) ∈ T . States in SSAFE are controlled by
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player SAFE and those in SREACH by player REACH. A play is an infinite sequence of
states s0s1 · · · such that s0 ∈ S0, and (si, si+1) ∈ T for every i ∈ N. A positional
strategy σ for player p ∈ {SAFE, REACH} is a function σ : Sp → S such that
(s, σ(s)) ∈ T for every s ∈ Sp. A play s0s1 · · · is compatible with strategy σ for
player p if si+1 = σ(si) whenever si ∈ Sp. The safety player wins G if there is a
strategy σ for SAFE such that all σ-compatible plays never visit a state in B. In
particular, SAFE needs to win from all initial states.

4 Observation-Based HyperLTL

In this section, we present OHyperLTL (short for observation-based HyperLTL).
Our logic builds upon HyperLTL [21], which itself extends linear-time temporal
logic (LTL) with explicit trace quantification. In OHyperLTL, we include predi-
cates from the background theory (to reason about infinite variable domains) and
explicit observations (to express asynchronous properties). Formulas in OHyper-
LTL are given by the following grammar:2

ϕ := ∀π : ξ. ϕ | ∃π : ξ. ϕ | φ

φ := θ | ¬φ | φ1 ∧ φ2 | φ | φ1 U φ2

Here π ∈ V is a trace variable, θ is a formula over �X, and ξ is a formula over
X (called the observation formula). For ease of notation, we assume that all
variables in V occur in the quantifier prefix exactly once. We use the standard
Boolean connectives ∧, →, ↔, and constants �,⊥, as well as the derived LTL
operators eventually φ := � U φ, and globally φ := ¬ ¬φ.

Semantics. A trace t is an infinite sequence μ0μ1 · · · of assignments to X. For
i ∈ N, we write t(i) to denote the ith value in t. A trace assignment Π is a partial
mapping of trace variables in V to traces. Given a trace assignment Π and i ∈ N,
we define Π(i) to be the assignment to �X given by Π(i)(xπ) := Π(π)(i)(x), i..e,
the value of xπ is the value of x on the trace assigned to π. For the LTL body
of an OHyperLTL formula, we define:

Π, i |= θ iff Π(i) |= θ

Π, i |= ¬φ iff Π, i �|= φ

Π, i |= φ1 ∧ φ2 iff Π, i |= φ1 and Π, i |= φ2

Π, i |= φ iff Π, i + 1 |= φ

Π, i |= φ1 U φ2 iff ∃j ≥ i.Π, j |= φ2 and ∀i ≤ k < j.Π, k |= φ1

The distinctive feature of OHyperLTL over HyperLTL are the explicit obser-
vations. Given an observation formula ξ and trace t, we say that ξ is a valid

2 For the examples in Sect. 2, we additionally annotated quantifiers with an STS if we
want to reason about different STSs within the same formula. In the following, we
assume that all quantifiers range over traces in the same STS to simplify notation.
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observation on t (written valid(t, ξ)) if there are infinitely many i ∈ N such that
t(i) |= ξ. If valid(t, ξ) holds, we write �t�ξ for the trace obtained by projecting
on those positions i where t(i) |= ξ, i.e., �t�ξ(i) := t(j) where j is the ith index
that satisfies ξ. Given a set of traces T we resolve trace quantification as follows:

Π |=T φ iff Π, 0 |= φ

Π |=T ∀π : ξ. ϕ iff ∀t ∈ {t ∈ T | valid(t, ξ)}.Π[π �→ �t�ξ] |=T ϕ

Π |=T ∃π : ξ. ϕ iff ∃t ∈ {t ∈ T | valid(t, ξ)}.Π[π �→ �t�ξ] |=T ϕ

The semantics mostly agrees with that of HyperLTL [21] but projects each trace
to the positions where the observation holds. Given an STS T and OHyperLTL
formula ϕ, we write T |= ϕ if ∅ |=Traces(T ) ϕ where ∅ is the empty assignment.

The Power of Observations. The explicit observations in OHyperLTL facilitate
the specification of asynchronous hyperproperties, i.e., properties where traces
are traversed at different speeds. For the example in Sect. 2.1, the explicit obser-
vations allow us to compare the output of both programs even though the actual
step at which the output occurs (in a synchronous semantics) differs between
both programs (as P1 takes the inner loop twice as often as P2). As the observa-
tions are part of the specification, we can model a broad spectrum of properties
ranging, e.g., from timing-insensitive properties (by placing observations only at
output locations) to timing-sensitive specifications [29] (by placing observations
at closer intervals). Functional (opposed to temporal) k-safety properties speci-
fied by pre-and postcondition [10,39,41] can easily be encoded as ∀k-OHyperLTL
properties by placing observations at the start and end of each program. By set-
ting ξ = �, i.e., observing every step, we can express synchronous properties.
OHyperLTL thus subsumes HyperLTL.

Finite-State Model Checking. Many mechanisms used to express asynchronous
hyperproperties render finite-state model checking undecidable [9,17,31]. In con-
trast, the simple mechanism used in OHyperLTL maintains decidable finite-state
model checking. Detailed proofs can be found in the full version [15].

Theorem 1. Assume an STS T with finite variable domains and decidable back-
ground theory and an OHyperLTL formula ϕ. It is decidable if T |= ϕ.

Proof Sketch. Under the assumptions, we can view T as an explicit (instead of
symbolic) finite-state transition system. Given an observation formula ξ we can
effectively compute an explicit finite-state system T ′ such that Traces(T ′) =
{�t�ξ | t ∈ Traces(T ) ∧ valid(t, ξ)}. This reduces OHyperLTL model checking on
T to HyperLTL model checking on T ′, which is decidable [28]. ��

Note that for infinite-state (symbolic) systems, we cannot effectively compute
T ′ as in the proof of Theorem 1. In fact, there may not even exist a system T ′

with the desired property that is expressible in the same background theory.
The finite-state result in Theorem 1 is of little relevance for the present

paper. Nevertheless, it indicates that our logic is well suited for verification of
infinite-state (software) systems as the (inevitable) undecidability stems from
the infinite domains in software programs and not already from the logic itself.
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Safety. In this paper, we assume that the hyperproperty is temporally safe [12],
i.e., the temporal body of any OHyperLTL formula denotes a safety property.
Note that, as we support quantifier alternation, we can still express hyperliveness
properties [22,23]. For example, GNI is both temporally safe and hyperliveness.
We model the body of a formula by a symbolic safety automaton [24], which is a
tuple A = (Q, q0, δ, B) where Q is a finite set of states, q0 ∈ Q the initial state,
B ⊆ Q a set of bad-states, and δ a finite set of automaton edges of the form
(q, θ, q′) where q, q′ ∈ Q are states and θ is a formula over �X. Given a trace t

over assignments to �X, a run of A on t is an infinite sequence of states q0q1 · · ·
(starting in q0) such that for every i, there exists an edge (qi, θi, qi+1) ∈ δ such
that t(i) |= θi. A word is accepted by A if it has no run that visits a state in B.
The automaton is deterministic if for every q ∈ Q and every assignments μ to
�X, there exists exactly one edge (q, θ, q′) ∈ δ with μ |= θ.

5 Reductions as a Game

After having defined our temporal logic, we turn our attention to the automatic
verification of OHyperLTL formulas on STSs. In this section, we begin by for-
malizing our game-based interpretation of a reduction. To illustrate this, we
consider ∀k OHyperLTL formulas, which, as the body of the formula is a safety
property, always denote k-safety properties.

Predicate Abstraction. Our search for a reduction is based in the scope of a
fixed predicate abstraction [30,33], i.e., we abstract our system by keeping track
of the truth value of a few selected predicates that (ideally) identify properties
that are relevant to prove the property in question. Let T = (X, init , step) be
an STS and let ϕ = ∀π1 : ξ1 . . . ∀πk : ξk. φ be the (k-safety) OHyperLTL we
wish to verify. Let Aφ = (Qφ, qφ,0, δφ, Bφ) be a deterministic safety automaton
for φ. A relational predicate p is a formula over �X that identifies a property of
the combined state space of k system copies. Let P = {p1, . . . , pn} be a finite
set of relational predicates. We say a formula over �X is expressible in P if it is
equivalent to a boolean combination of the predicates in P. We assume that all
edge formulas in the automaton Aφ, and formulas init〈πi〉 and (ξi)〈πi〉 for πi ∈ V
are expressible in P. Note that we can always add missing predicates to P.

Given the set of predicates P, the state-space of the abstraction w.r.t. P is
given by B

n, where for each abstract state ŝ ∈ B
n, the ith position ŝ[i] ∈ B tracks

whether or not predicate pi holds. To simplify notation, we write ite(b, θ, θ′) to
be formula θ if b = �, and θ′ otherwise. For each abstract state ŝ ∈ B

n, we
define �ŝ� :=

∧n
i=1 ite

(
ŝ[i], pi,¬pi

)
, i.e., �ŝ� is a formula over �X that captures

all concrete states that are abstracted to ŝ. To incorporate reductions in our
abstraction, we parametrize the abstract transition relation by a scheduling M ⊆
{π1, . . . , πk}. We lift the step formula from T by defining

stepM :=
k∧

i=1

ite
(
πi ∈ M, step〈πi〉,

∧

x∈X

x′
πi

= xπi

)
.
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That is all copies in M take a step while all other copies remain unchanged.
Given two abstract states ŝ1, ŝ2 we say that ŝ2 is an M -successor of ŝ1, written
ŝ1

M−→ ŝ2, if �ŝ1� ∧ �ŝ2�
〈′〉 ∧ stepM is satisfiable, i.e., we can transition from ŝ1 to

ŝ2 by only progressing the copies in M .
For an abstract state ŝ, we define obs(ŝ) ∈ B

k as the boolean vector that
indicates which copy (of π1, . . . , πk) is currently at an observation point, i.e.,
obs(ŝ)[i] = � iff �ŝ�∧(ξi)〈πi〉 is satisfiable. Note that as (ξi)〈πi〉 is, by assumption,
expressible in P, either all or none of the concrete states in �ŝ� satisfy (ξi)〈πi〉.

Game Construction. Building on the parametrized abstract transition relation,
we can construct a (finite-state) safety game where winning strategies for the
verifier correspond to valid reductions with accompanying proofs. The nodes in
our game have two forms: Either they are of the form (ŝ, q, b) where ŝ ∈ B

n is
an abstract state, q ∈ Qφ a state of the safety automaton, and b ∈ B

k a boolean
vector indicating which copy has moved since the last automaton step; Or of the
form (ŝ, q, b,M) where ŝ, q, and b are as before and ∅ �= M ⊆ {π1, . . . , πk} is a
scheduling. The initial states are all states (ŝ, qφ,0,�k) where �ŝ� ∧

∧k
i=1 init〈πi〉

is satisfiable (recall that init〈πi〉 is expressible in P). We mark a state (ŝ, q, b) or
(ŝ, q, b,M) as losing iff q ∈ Bφ. For automaton state q ∈ Qφ and abstract state ŝ,
we define δφ(q, ŝ) as the unique state q′ such that there is an edge (q, θ, q′) ∈ δφ

such that �ŝ�∧θ is satisfiable. Uniqueness follows from the assumption that Aφ is
deterministic and all edge formulas are expressible in P. The transition relation
of our game is given by the following rules:

∀πi ∈ M.¬b[i] ∨ ¬obs(ŝ)[i]
(1)

(ŝ, q, b) � (ŝ, q, b,M)
obs(ŝ) = �k q′ = δφ(q, ŝ)

(2)
(ŝ, q,�k) � (ŝ, q′,⊥k)

ŝ
M−→ ŝ′ b′ = b[i �→ �]πi∈M

(3)
(ŝ, q, b,M) � (ŝ′, q, b′)

In rule (1), we select any scheduling that schedules only copies that have not
reached an observation point or have not moved since the last automaton step.
In particular, we cannot schedule any copy that has moved and already reached
an observation point. In rule (2), all copies reached an observation point and
have moved since the last update (i.e., b = �k) so we progress the automaton
and reset b. Lastly, in rule (3), we select an M -successor of ŝ and update b for
all copies that take part in the step. In our game, player SAFE takes the role
of the verifier, and player REACH that of the refuter. It is the safety player’s
responsibility to select a scheduling in each step, so we assign nodes of the form
(ŝ, q, b) to SAFE. Nodes of the form (ŝ, q, b,M) are controlled by REACH who can
choose an abstract M -successor. Let G∀

(T ,ϕ,P) be the resulting (finite-state) safety
game. A winning strategy for SAFE in G∀

(T ,ϕ,P) picks, in each abstract state, a
valid scheduling that prevents a visit to a losing state. We can thus show:

Theorem 2. If player SAFE wins G∀
(T ,ϕ,P), then T |= ϕ.
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Proof Sketch. Assume σ is a winning strategy for SAFE in G∀
(T ,ϕ,P). Let

t1, . . . , tk ∈ Traces(T ) be arbitrary. We, iteratively, construct stuttered ver-
sions t′1, . . . , t

′
k of t1, . . . , tk by querying σ on abstracted prefixes of t1, . . . , tk:

Whenever σ schedules copy i we take a proper step on ti; otherwise we stut-
ter. By construction of G∀

(T ,ϕ,P) the stuttered traces t′1, . . . , t
′
k align at obser-

vation points. In particular, we have [π1 �→ �t1�ξ1 , . . . , πk �→ �tk�ξk ] |= φ iff
[π1 �→ �t′1�ξ1 , . . . , πk �→ �t′k�ξk ] |= φ. Moreover, the sequence of abstract states in
G∀
(T ,ϕ,P) forms an abstraction of t′1, . . . , t

′
k and shows that Aφ cannot reach a bad

state when reading �t′1�ξ1 , . . . , �t
′
k�ξk (as σ is winning). This already shows that

[π1 �→ �t′1�ξ1 , . . . , πk �→ �t′k�ξk ] |= φ and thus [π1 �→ �t1�ξ1 , . . . , πk �→ �tk�ξk ] |= φ.
As this holds for all traces t1, . . . , tk ∈ Traces(T ), we get T |= ϕ as required. ��

Game Construction and Complexity. If the background theory is decidable,
G∀
(T ,ϕ,P) can be constructed effectively using at most 2|P|+1 · 2k queries to an

SMT solver. Checking if SAFE wins G∀
(T ,ϕ,P) can be done with a simple fixpoint

computation of the attractor in linear time.
Our game-based method of finding a reduction in a given abstraction is

closely related to the notation of a property-directed self-composition [39]. The
previously only known algorithm for finding such a reduction is based on an opti-
mized enumeration [39], which, in the worst case, requires O(2|P|+1 · 2k) many
enumerations. Our worst-case complexity thus matches the bounds inferred by
[39], but avoids the explicit enumeration of reductions (and the concomitant
repeated construction of the abstract state-space) and is, as we believe, concep-
tually simpler to comprehend. Moreover, our game-based technique is the key
stepping stone for extending our method beyond k-safety in Sect. 6.

6 Verification Beyond k-Safety

Building on the game-based interpretation of a reduction, we extend our ver-
ification beyond ∀∗ properties to support ∀∗∃∗ properties. We accomplish this
by combining the game-based reading of a reduction (as discussed in the pre-
vious section) with a game-based reading of existential quantification. For the
remainder of this section, fix an STS T = (X, init , step) and let

ϕ = ∀π1 : ξ1 . . . ∀πl : ξl.∃πl+1 : ξl+1 . . . ∃πk : ξk. φ

be the OHyperLTL formula we wish to check, i.e., we universally quantify over
l traces followed by an existential quantification over k − l traces. We assume
that for every existential quantification ∃πi : ξi occurring in ϕ, valid(t, ξi) holds
for every t ∈ Traces(T ) (we discuss this later in Remark 1).

6.1 Existential Trace Quantification as a Game

The idea of a game-based verification of ∀∗∃∗ properties is to consider a ∀∗∃∗-
property as a game between verifier and refuter [23]. The refuter controls the l
universally quantified traces by moving through l copies of the system (thereby
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producing traces π1, . . . , πl) and the verifier reacts by, incrementally, moving
through k− l copies of the system (thereby producing traces πl+1, . . . , πk). If the
verifier has a strategy that ensures that the resulting traces satisfy φ, T |= ϕ
holds. We call such a strategy for the verifier a witness strategy.

We combine this game-based reading of existential quantification with our
game-based interpretation of a reduction by, additionally, letting the verifier con-
trol the scheduling of the system. When played on the concrete state-space of
T the game proceeds in three stages as follows: 1) The verifier selects a valid
scheduling M ⊆ {π1, . . . , πk}; 2) The refuter selects successor states for all uni-
versally quantified copies by fixing an assignment to X ′

π1
, . . . , X ′

πl
(only moving

copies scheduled by M); 3) The verifier reacts by choosing successor states for the
existentially quantified copies by fixing an assignment to X ′

πl+1
, . . . , X ′

πk
(again,

only moving copies scheduled by M). Afterward, the process repeats.
As we work within a fixed abstraction of T , the verifier can, however, not

choose concrete successor states directly but only work in the precision captured
by the abstraction. Following the general scheme of abstract games, we, therefore,
underapproximate the moves available to the verifier [2]. Formally, we abstract
the three-stage game outlined before (which was played at the level of concrete
states) to a simpler abstract game (consisting of only two stages). In the first
stage, the verifier selects both a scheduling M and a restriction on the set of
abstract successor states, i.e., a set of abstract states A. In the second stage,
the refuter cannot choose any abstract successor state (any M -successor in the
terminology from Sect. 5), but only successors contained in the restriction A.
To guarantee the soundness of this approach, we ensure that the verifier can
only pick restrictions that are valid, i.e., restrictions that underapproximate the
possibilities of the verifier on the level of concrete states.

Game Construction. We modify our game from Sect. 5 as follows. States are
either of the form (ŝ, q, b) (as in Sect. 5) or of the form (ŝ, q, b,M,A) where ŝ,
q, b, and M are as in Sect. 5, and A ⊆ B

n is a subset of abstract states (the
restriction). To reflect the restriction, we modify transition rules (1) and (3).
Rule (2) remains unchanged.

∀πi ∈ M.¬b[i] ∨ ¬obs(ŝ)[i] validRes ŝ,M
A (1)

(ŝ, q, b) � (ŝ, q, b,M,A)

ŝ′ ∈ A b′ = b[i �→ �]i∈M
(3)

(ŝ, q, b,M,A) � (ŝ′, q, b′)

In rule (1), the safety player (who, again, takes the role of the verifier) selects
both a scheduling M and a restriction A such that validRes ŝ,M

A holds (which we
define later). The reachability player (who takes the role of the refuter) can, in
rule (3), select any successor contained in A.

Valid Restriction. The above game construction depends on the definition of
validRes ŝ,M

A . Intuitively, A is a valid restriction if it underapproximates the pos-
sibilities of a witness strategy that can pick concrete successor states for all
existentially quantified traces. That is, for every concrete state in ŝ, a witness
strategy (on the level of concrete states) can guarantee a move to a concrete state
that is abstracted to an abstract state within A. Formally we define validRes ŝ,M

A

as follows:
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∀{Xπi
}k

i=1.∀{X ′
πi

}l
i=1. �ŝ� ∧

l∧

i=1

ite
(
πi ∈ M, step〈πi〉,

∧

x∈X

x′
πi

= xπi

)

⇒ ∃{X ′
πi

}k
i=l+1.

k∧

i=l+1

ite
(
πi ∈ M, step〈πi〉,

∧

x∈X

x′
πi

= xπi

)
∧

∨

ŝ′∈A

�ŝ′�〈′〉

It expresses that for all concrete states in �ŝ� (assignments to {Xπi
}k

i=1) and for
all concrete successor states for the universally quantified copies (assignments
to {X ′

πi
}l

i=1), there exist successor states for the existentially quantified copies
({X ′

πi
}k

i=l+1) such that one of the abstract states in A is reached.

Example 1. With this definition at hand, we can validate the restrictions cho-
sen by the strategy in Fig. 3c. For example, in state α7 the strategy sched-
ules M = {2} and restricts the successor states to {α8} even though abstract
state

[
(6, 4), a1 = a2, x1 �= x2

]
is also a {2}-successor of α7. If we spell out

validResα7,{2}
{α8} we get

∀X1∪X2∪X′
1. a1 = a2

︸ ︷︷ ︸

�α7�

∧
( ∧

z∈X

z′
1 = z1

)

⇒ ∃X′
2. a′

2 = a2 ∧ y′
2 = y2

︸ ︷︷ ︸

step〈2〉

∧ (

a′
1 = a′

2 ∧ x′
1 = x′

2
)

︸ ︷︷ ︸

�α8�〈′〉

where X = {a, x, y}. Here we assume that step :=
(
a′ = a∧y′ = y

)
is the update

performed on instruction x ← �N from Q2:3 to Q2:4. The above formula is valid.

Correctness. Call the resulting game G∀∃
(T ,ϕ,P). The game combines the search for

a reduction with that of a witness strategy (both within the precision captured
by P).3 We can show:

Theorem 3. If player SAFE wins G∀∃
(T ,ϕ,P), then T |= ϕ.

Proof Sketch. Let σ be a winning strategy for SAFE in G∀∃
(T ,ϕ,P). Let t1, . . . , tl ∈

Traces(T ) be arbitrary. We use σ to incrementally construct witness traces
tl+1, . . . , tk by querying σ. In every abstract state ŝ, σ selects a scheduling M and
a restriction A such that validRes ŝ,M

A holds. We plug the current concrete state
(reached in our construction of tl+1, . . . , tk) into the universal quantification of
validRes ŝ,M

A and get (concrete) witnesses for the existential quantification that,
by definition of validRes ŝ,M

A , are valid successors for the existentially quantified
copies in T . ��
Remark 1. Recall that we assume that for every existential quantification ∃πi : ξi

occurring in ϕ and all t ∈ Traces(T ), valid(t, ξi) holds. This is important to
ensure that the safety player (the verifier) cannot avoid observation points
forever. We could drop this assumption by strengthening the winning condi-
tion in G∀∃

(T ,ϕ,P) and explicitly state that, in order to win, SAFE needs to visit
observations points on existentially quantified traces infinitely many times.
3 In particular, G∀∃

(T ,ϕ,P) (strictly) generalizes the construction of G∀
(T ,ϕ,P) from Sect. 5:

If k = l (i.e., the property is a ∀∗-property) the unique minimal valid restriction from

ŝ, M is {ŝ′ | ŝ
M−→ ŝ′}, i.e., the set of all M -successors of ŝ. The safety player can

thus not be more restrictive than allowing all M -successors (as in G∀
(T ,ϕ,P)).
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Clairvoyance vs. Abstraction. The cooperation between reduction (the ability
of the verifier to select schedulings) and witness strategy (the ability to select
restrictions on the successor) can be seen as a limited form of prophecy [1,14].
By first scheduling the universal copies, the witness strategy can peek at future
moves before committing to a successor state, as we e.g., saw in Fig. 3. The
“theoretically optimal” reduction is thus a sequential one that first schedules
only the universally quantified traces (until an observation point is reached)
and thereby provides maximal information for the witness strategy. However,
in the context of a fixed abstraction, this reduction is not always optimal. For
example, in Fig. 3 the strategy schedules the loop in lock-step which is crucial
for generating a proof with simple (linear) invariants. In particular, Fig. 3 does
not admit a witness strategy in the lock-step reduction and does not admit a
proof with linear invariants in a sequential reduction. Our verification framework,
therefore, strikes a delicate balance between clairvoyance needed by the witness
strategy and precision captured in the abstraction, further emphasizing why the
searches for reduction and witness strategy need to be mutually dependent.

6.2 Constructing and Solving G∀∃
(T ,ϕ,P)

Algorithm 1. Iterative solver for G∀∃
(T ,ϕ,P).

1: Input: T , ϕ, P
2: G̃ := initialApproximation(T , ϕ, P)
3: repeat
4: match Solve(G̃) with
5: case REACH(σ): return REACH

6: case SAFE(σ):
7: for all (ŝ, M, A) ∈ Restrictions(σ) do
8: if ¬validRes ŝ,M

A then
9: for all A′ ⊆ A do

10: G̃ := Remove(G̃, (ŝ, M, A′))
11: goto 4
12: return SAFE

Constructing the game graph
of G∀∃

(T ,ϕ,P) requires the identi-
fication of all valid restrictions
(of which there are exponen-
tially many in the number of
abstract states and thus double
exponentially many in the num-
ber of predicates) each of which
requires to solve a quantified
SMT query. We propose a more
effective algorithm that solves
G∀∃
(T ,ϕ,P) without constructing

it explicitly. Instead, we itera-
tively refine an abstraction G̃ of
G∀∃
(T ,ϕ,P). Our method hinges on the following easy observation:

Lemma 1. For any ŝ and M , {A | validRes ŝ,M
A } is upwards closed (w.r.t. ⊆).

Our initial abstraction consists of all possible restrictions (even those that
might be invalid), i.e., we allow all restrictions of the form (ŝ,M,A) where A ⊆
{ŝ′ | ŝ

M−→ ŝ′}.4 This overapproximates the power of the safety player, i.e., a
winning strategy for SAFE in G̃ may not be valid in G∀∃

(T ,ϕ,P). To remedy this, we
propose the following inner refinement loop: If we find a winning strategy σ for

4 Note that {ŝ′ | ŝ
M−→ ŝ′} is always a valid restriction. Importantly, we can compute

{ŝ′ | ŝ
M−→ ŝ′} locally, i.e., by iterating over abstract states opposed to sets of abstract

states.
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SAFE in G̃ we check if all restrictions chosen by σ are valid. If this is the case, σ
is also winning for G∀∃

(T ,ϕ,P) and we can apply Theorem 3. If we find an invalid
restriction (ŝ,M,A) used by σ, we refine G̃ by removing not only the restriction
(ŝ,M,A) but all (ŝ,M,A′) with A′ ⊆ A (which is justified by Lemma 1). The
algorithm is sketched in Algorithm 1. The subroutine Restrictions(σ) returns all
restrictions used by σ, i.e., all tuples (ŝ,M,A) such that σ uses an edge (ŝ, q, b) �
(ŝ, q, b,M,A) for some q, b. Remove(G̃, (ŝ,M,A′)) removes from G̃ all edges of the
form (ŝ, q, b) � (ŝ, q, b,M,A′) for some q, b, and Solve solves a finite-state safety
game. To improve the algorithm further, in line 4 we always compute a maximal
safety strategy, i.e., a strategy that selects maximal restrictions (w.r.t. ⊆) and
therefore allows us to eliminate many invalid restrictions from G̃ simultaneously.
For safety games, there always exists such a maximal winning strategy (see
e.g. [11]). Note that while G̃ is large, solving this finite-state game can be done
very efficiently. The running time of solving G∀∃

(T ,ϕ,P) is dominated by the SMT
queries of which our refinement loop, in practice, requires very few.

7 Implementation and Evaluation

Table 1. Evaluation of HyPA on k-
safety instances. We give the size of
the abstract game-space (Size), the time
taken to compute the abstraction (tabs),
and the overall time taken by HyPA (t).
Times are given in seconds.

Instance Size tabs t

DoubleSquareNI 819 92.3 92.8

HalfSquareNI 1166 85.9 86.5

SquaresSum 286 29.8 29.9

ArrayInsert 213 28.2 28.2

Exp1x3 112 4.5 4.5

Fig3 268 11.9 12.0

DoubleSquareNIff 121 9.8 9.9

Fig. 2 333 23.7 23.8

ColIitem-Symm 494 24.0 24.1

Counter-Det 216 10.2 10.3

MultEquiv 757 18.9 19.0

When combining Theorem 3 and
our iterative solver from Sect. 6.2
we obtain an algorithm to verify
∀∗∃∗-safety properties within a given
abstraction. We have implemented a
prototype of our method in a tool we
call HyPA. We use Z3 [36] to discharge
SMT queries. The input of our tool is
provided as an arbitrary STS in the
SMTLIB format [5], making it lan-
guage independent. In our programs,
we make the program counter explicit,
allowing us to track predicates locally
[32].

Evaluation for k-Safety. As a special
case of ∀∗∃∗ properties, HyPA is also
applicable to k-safety verification. We
collected an exemplifying suite of pro-
grams and k-safety properties from
the literature [27,39–41] and manu-
ally translated them into STS (this
can be automated easily). The results
are given in Table 1. As done by She-
mer et al. [39], we already provide a
set of predicates that is sufficient for some reduction (but not necessarily the
lockstep or sequential one), the search for which is then automated by HyPA.
Our results show the game-based search for a reduction can verify interesting
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Table 2. Evaluation of HyPA on ∀∗∃∗-safety verification instances. We give the size and
construction time of the initial abstraction (Size and tabs). For both the direct (explicit)
and lazy (Algorithm 1) solver we give the time to construct (and solve) the game (tsolve)
and the overall time (t = tabs + tsolve). For the lazy solver we, additionally, give the
number of refinement iterations (#Ref). Times are given in seconds. TO indicates a
timeout after 5min.

Direct Lazy

Instance Size tabs tsolve t #Ref tsolve t

NonDetAdd 4568 3.5 TO TO 4 1.0 4.5

CounterSum 479 5.3 9.1 14.4 17 0.9 6.2

AsynchGNI 437 6.1 6.9 13.0 1 0.1 6.2

CompilerOpt1 354 2.4 2.3 4.7 2 0.2 2.6

CompilerOpt2 338 2.8 2.4 5.2 2 0.2 3.0

Refine 1357 6.1 TO TO 4 0.7 6.8

Refine2 1476 5.6 TO TO 5 0.6 6.2

Smaller 327 2.3 4.0 6.3 11 0.4 2.7

CounterDiff 959 8.5 18.3 26.8 19 1.1 9.6

Fig. 3 3180 11.1 TO TO 22 2.9 14.0

P1 (simple) 83 2.0 1.4 3.4 1 0.1 2.1

P1 (GNI) 34793 17.0 TO TO 72 95.7 112.7

P2 (GNI) 15753 10.2 TO TO 7 5.1 15.3

P3 (GNI) 1429 6.6 20.9 27.5 7 0.6 7.2

P4 (GNI) 7505 16.5 TO TO 72 13.2 29.7

k-safety properties from the literature. We also note that, currently, the vast
majority of time is spent on the construction of the abstract system. If we would
move to a fixed language, the computation time of the initial abstraction could
be reduced by using existing (heavily optimized) abstraction tools [18,32].

Evaluation Beyond k-Safety. The main novelty of HyPA lies in its ability to, for
the first time, verify temporal properties beyond k-safety. As none of the existing
tools can verify such properties, we compiled a collection of very small exam-
ple programs and ∀∗∃∗-safety properties. Additionally, we modified the boolean
programs from [13] (where they checked GNI on boolean programs) by includ-
ing data from infinite domains. The properties we checked range from refine-
ment properties for compiler optimizations, over general refinement of nonde-
terministic programs, to generalized non-interference. Verification often requires
a non-trivial combination of reduction and witness strategy (as the reduction
must, e.g., compensate for branches of different lengths). As before, we provide
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a set of predicates and let HyPA automatically search for a witness strategy with
accompanying reduction. We list the results in Table 2. To highlight the effec-
tiveness of our inner refinement loop, we apply both a direct (explicit) construc-
tion of G∀∃

(T ,ϕ,P) and the lazy (iterative) solver in Algorithm 1. Our lazy solver
(Algorithm 1) clearly outperforms an explicit construction and is often the only
method to solve the game in reasonable time. In particular, we require very few
refinement iterations and therefore also few expensive SMT queries. Unsurpris-
ingly, the problem of verifying properties beyond k-safety becomes much more
challenging (compared to k-safety verification) as it involves the synthesis of a
witness function which is already 2EXPTIME-hard for finite-state systems [23,37].
We emphasize that no other existing tool can verify any of the benchmarks.

8 Related Work

Asynchronous Hyperproperties. Recently, many logics for the formal specification
of asynchronous hyperproperties have been developed [9,13,17,31]. Our logic
OHyperLTL is closely related to stuttering HyperLTL (HyperLTLS) [17]. In
HyperLTLS each temporal operator is endowed with a set of temporal formulas
Γ and steps where the truth values of all formulas in Γ remain unchanged are
ignored during the operator’s evaluation. As for most mechanisms used to design
asynchronous hyperlogics [9,17,31], finite-state model checking of HyperLTLS is
undecidable. By contrast, in OHyperLTL, we always observe the trace at a fixed
location, which is key for ensuring decidable finite-state model checking.

k-Safety Verification. The literature on k-safety verification is rich. Many
approaches verify k-safety by using a form of self-composition [8,20,25,28] and
often employ reductions to obtain compositions that are easier to verify. Our
game-based interpretation of a reduction (Sect. 5) is related to Shemer et al. [39],
who study k-safety verification within a given predicate abstraction using an
enumeration-based solver (see Sect. 5 for a discussion). Farzan and Vandikas [27]
present a counterexample-guided refinement loop that simultaneously searches
for a reduction and a proof. Sousa and Dillig [40] facilitate reductions at the
source-code level in program logic.

∀∗∃∗-Verification. Barthe et al. [7] describe an asymmetric product of the sys-
tem such that only a subset of the behavior of the second system is preserved,
thereby allowing the verification of ∀∗∃∗ properties. Constructing an asymmetric
product and verifying its correctness (i.e., showing that the product preserves
all behavior of the first, universally quantified, system) is challenging. Unno
et al. [41] present a constraint-based approach to verify functional (opposed to
temporal) ∀∃ properties in infinite-state systems using an extension of constraint
Horn clauses called pfwCHC. The underlying verification approach is orthogo-
nal to ours: pfwCHC allows for a clean separation of the actual verification and
verification conditions, whereas our approach combines both. For example, our
method can prove the existence of a witness strategy without ever formulat-
ing precise constraints on the strategy (which seems challenging). Coenen et
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al. [23] introduce the game-based reading of existential quantification to ver-
ify temporal ∀∗∃∗ properties in a synchronous and finite-state setting. By con-
trast, our work constitutes the first verification method for temporal ∀∗∃∗-safety
properties in infinite-state systems. The key to our method is a careful inte-
gration of reductions which is not possible in a synchronous setting. For finite-
state systems (where the abstraction is precise) and synchronous specifications
(where we observe every step), our method subsumes the one in [23]. Beut-
ner and Finkbeiner [14] use prophecy variables to ensure that the game-based
reading of existential quantification is complete in a finite-state setting. Auto-
matically constructing prophecies for infinite-state systems is interesting future
work. Pommellet and Touili [38] study the verification of HyperLTL in infinite-
state systems arising from pushdown systems. By contrast, we study verification
in infinite-state systems that arise from the infinite variables domains used in
software.

Game Solving. Our game-based interpretations are naturally related to infinite-
state game solving [4,16,26,42]. State-of-the-art solvers for infinite-state games
unroll the game [26], use necessary subgoals to inductively split a game into
subgames [4], encode the game as a constraint system [16], and iteratively refine
the controllable predecessor operator [42]. We tried to encode our verification
approach directly as an infinite-state linear-arithmetic game. However, existing
solvers (which, notably, work without a user-provided set of predicates) could not
solve the resulting game [4,26]. Our method for encoding the witness strategy
using restrictions corresponds to hyper-must edges in general abstract games [2,
3]. Our inner refinement loop for solving a game with hyper-must edges without
explicitly identifying all edges (Algorithm 1) is thus also applicable in general
abstract games.

9 Conclusion

In this work, we have presented the first verification method for temporal hyper-
properties beyond k-safety in infinite-state systems arising in software. Our
method is based on a game-based interpretation of reductions and existential
quantification and allows for mutual dependence of both. Interesting future
directions include the integration of our method in a counter-example guided
refinement loop that automatically refines the abstraction and ways to lift the
current restriction to temporally safe specifications. Moreover, it is interesting to
study if, and to what extent, the numerous other methods developed for k-safety
verification of infinite-state systems (apart from reductions) are applicable to the
vast landscape of hyperproperties that lies beyond k-safety.
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Abstract. Quantified information flow (QIF) has emerged as a rigor-
ous approach to quantitatively measure confidentiality; the information-
theoretic underpinning of QIF allows the end-users to link the computed
quantities with the computational effort required on the part of the
adversary to gain access to desired confidential information. In this work,
we focus on the estimation of Shannon entropy for a given program Π.
As a first step, we focus on the case wherein a Boolean formula ϕ(X, Y )
captures the relationship between inputs X and output Y of Π. Such
formulas ϕ(X, Y ) have the property that for every valuation to X, there
exists exactly one valuation to Y such that ϕ is satisfied. The existing
techniques require O(2m) model counting queries, where m = |Y |.

We propose the first efficient algorithmic technique, called Entropy
Estimation to estimate the Shannon entropy of ϕ with PAC-style guar-
antees, i.e., the computed estimate is guaranteed to lie within a (1 ± ε)-
factor of the ground truth with confidence at least 1 − δ. Further-
more, EntropyEstimation makes only O(min(m,n)

ε2
) counting and sam-

pling queries, where m = |Y |, and n = |X|, thereby achieving a sig-
nificant reduction in the number of model counting queries. We demon-
strate the practical efficiency of our algorithmic framework via a detailed
experimental evaluation. Our evaluation demonstrates that the proposed
framework scales to the formulas beyond the reach of the previously
known approaches.

1 Introduction

Over the past half-century, the cost effectiveness of digital services has led to
an unprecedented adoption of technology in virtually all aspects of our modern
lives. Such adoption has invariably led to sensitive information being stored in
data centers around the world and increasingly complex software accessing the
information in order to provide the services that form the backbone of our mod-
ern economy and social interactions. At the same time, it is vital that protected
information does not leak, as such leakages may have grave financial and societal

EntropyEstimation is available open-sourced at https://github.com/meelgroup/
entropyestimation. The names of authors are sorted alphabetically and the order does
not reflect contribution.
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consequences. Consequently, the detection and prevention of information leakage
in software have attracted sustained interest in the security community.

The earliest efforts on information leakage focused on qualitative approaches
that sought to return a Boolean output of the form “yes” or “no” [11,26,30].
While these qualitative approaches successfully capture situations where part of
the code accesses prohibited information, such approaches are not well-suited
to situations wherein some information leakage is inevitable. An oft-repeated
example of such a situation is a password checker wherein every response “incor-
rect password” does leak information about the secret password. As a result,
the past decade has seen the rise of quantified information flow analysis (QIF)
as a rigorous approach to quantitatively measure confidentiality [7,53,57]. The
information-theoretic underpinnings of QIF analyses allow an end-user to link
the computed quantities with the probability of an adversary successfully guess-
ing a secret, or the worst-case computational effort required for the adversary
to infer the underlying confidential information. Consequently, QIF has been
applied in diverse use-cases such as software side-channel detection [40], inferring
search-engine queries through auto-complete responses sizes [21], and measuring
the tendency of Linux to leak TCP-session sequence numbers [59].

The standard recipe for using the QIF framework is to measure the informa-
tion leakage from an underlying program Π as follows. In a simplified model,
a program Π maps a set of controllable inputs (C) and secret inputs (I) to
outputs (O) observable to an attacker. The attacker is interested in inferring
I based on the output O. A diverse array of approaches have been proposed
to efficiently model Π, with techniques relying on a combination of symbolic
analysis [48], static analysis [24], automata-based techniques [4,5,14], SMT-
based techniques [47], and the like. For each, the core underlying technical
problem is to determine the leakage of information for a given observation.
We often capture this leakage using entropy-theoretic notions, such as Shan-
non entropy [7,16,48,53] or min-entropy [7,44,48,53]. In this work, we focus on
computing Shannon entropy.

In this work, we focus on entropy estimation for programs modeled by
Boolean formulas; nevertheless, our techniques are general and can be extended
to other models such as automata-based frameworks. Let a formula ϕ(X,Y ) cap-
ture the relationship between X and Y such that for every valuation to X there
is atmost one valuation to Y such that ϕ is satisfied; one can view X as the set of
inputs and Y as the set of outputs. Let m = |Y | and n = |X|. Let p be a probabil-
ity distribution over {0, 1}Y such that for every assignment to Y , σ : Y �→ {0, 1},
we have pσ = |sol(ϕ(Y �→σ))|

2n , where sol(ϕ(Y �→ σ)) denotes the set of solutions of
ϕ(Y �→ σ). Then, the entropy of ϕ is defined as Hϕ(Y ) =

∑

σ
pσ log 1

pσ
.

The past decade has witnessed a multitude of entropy estimation techniques
with varying guarantees on the quality of their estimates [9,17,35,58]. The prob-
lem of computing the entropy of a distribution represented by a given circuit is
closely related to the EntropyDifference problem considered by Goldreich
and Vadhan [34], and shown to be SZK-complete. We therefore do not expect to
obtain polynomial-time algorithms for this problem. The techniques that have
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been proposed to compute H(ϕ) exactly compute pσ for each σ. Observe that
computing pσ is equivalent to the problem of model counting, which seeks to
compute the number of solutions of a given formula. Therefore, the exact tech-
niques require O(2m) model-counting queries [13,27,39]; therefore, such tech-
niques often do not scale for large values of m. Accordingly, the state of the
art often relies on sampling-based techniques that perform well in practice but
can only provide lower or upper bounds on the entropy [37,49]. As is often the
case, techniques that only guarantee lower or upper bounds can output estimates
that can be arbitrarily far from the ground truth. This raises the question: can
we design efficient techniques for approximate estimation, whose estimates have
PAC-style (ε, δ) guarantees? I.e., can we compute an estimate that is guaranteed
to lie within a (1 + ε)-factor of the ground truth for all possible values, with
confidence at least 1 − δ?

The primary contribution of our work is the first efficient algorithmic tech-
nique (given in our algorithm EntropyEstimation), to estimate Hϕ(Y ) with PAC-
style guarantees for all possible values of Hϕ(Y ). In particular, given a for-
mula ϕ, EntropyEstimation returns an estimate that is guaranteed to lie within a
(1 ± ε)-factor of Hϕ(Y ) with confidence at least 1 − δ. We stress that we obtain
such a multiplicative estimate even when Hϕ(Y ) is very small, as in the case of
a password-checker as described above. Furthermore, EntropyEstimation makes
only O(min(m,n)

ε2 ) counting and sampling queries even though the support of the
distribution specified by ϕ can be of the size O(2m).

While the primary focus of the work is theoretical, we seek to demonstrate
that our techniques can be translated into practically efficient algorithms. As
such, we focused on developing a prototype using off-the-shelf samplers and coun-
ters. As a first step, we use GANAK [52] for model counting queries and SPUR [3]
for sampling queries. Our empirical analysis demonstrates that EntropyEstimation
can be translated into practice and achieves significant speedup over baseline.

It is worth mentioning that recent approaches in quantified information leak-
age focus on programs that can be naturally translated to string and SMT
constraints, and therefore, employ model counters for string and SMT con-
straints. Since counting and sampling are closely related, we hope the algorith-
mic improvements attained by EntropyEstimation will lead to the development of
samplers in the context of SMT and string constraints, and would lead to prac-
tical implementation of EntropyEstimation for other domains. We stress again
that while we present EntropyEstimation for programs modeled as a Boolean for-
mula, our analysis applies other approaches, such as automata-based approaches,
modulo access to the appropriate sampling and counting oracles.

The rest of the paper is organized as follows: we present the notations and pre-
liminaries in Sect. 2. We then discuss related work in Sect. 3. Next, we present an
overview of EntropyEstimation including a detailed description of the algorithm
and an analysis of its correctness in Sect. 4. We then describe our experimental
methodology and discuss our results with respect to the accuracy and scalability
of EntropyEstimation in Sect. 5. Finally, we conclude in Sect. 6.
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2 Preliminaries

We use lower case letters (with subscripts) to denote propositional variables and
upper case letters to denote a subset of variables. The formula ∃Y ϕ(X,Y ) is
existentially quantified in Y , where X = {x1, · · · , xn} and Y = {y1, · · · , ym}.
For notational clarity, we use ϕ to refer to ϕ(X,Y ) when clear from the context.
We denote V ars(ϕ) as the set of variables appearing in ϕ(X,Y ). A literal is a
boolean variable or its negation.

A satisfying assignment or solution of a formula ϕ is a mapping τ :
V ars(ϕ) → {0, 1}, on which the formula evaluates to True. For V ⊆ V ars(ϕ),
τ↓V represents the truth values of variables in V in a satisfying assignment τ of
ϕ. We denote the set of all the solutions of ϕ as sol(ϕ). For S ⊆ V ars(ϕ), we
define sol(ϕ)↓S as the set of solutions of ϕ projected on S.

The problem of model counting is to compute |sol(ϕ)| for a given formula
ϕ. Projected model counting is defined analogously using sol(ϕ)↓S instead of
sol(ϕ), for a given projection set1 S ⊆ V ars(ϕ). A uniform sampler outputs a
solution y ∈ sol(ϕ) such that Pr[y is output] = 1

|sol(ϕ)| .
We say that ϕ is a circuit formula if for all assignments τ1, τ2 ∈ sol(ϕ), we

have τ1↓X = τ2↓X =⇒ τ1 = τ2. It is worth remarking that if ϕ is a circuit
formula, then X is an independent support.

For a circuit formula ϕ(X,Y ) and for σ : Y �→ {0, 1}, we define pσ =
|sol(ϕ(Y �→σ))|

|sol(ϕ)↓X | . Given a circuit formula ϕ(X,Y ), we define the entropy of ϕ,
denoted by Hϕ(Y ) as follows: Hϕ(Y ) = −∑

σ∈2Y pσ log(pσ).

3 Related Work

The Shannon entropy is a fundamental concept in information theory, and as
such have been studied by theoreticians and practitioners alike. While this is the
first work, to the best of our knowledge, that provides Probabilistic Approx-
imately Correct (PAC) (ε, δ)-approximation guarantees for all values of the
entropy, while requiring only logarithmically (in the size of the support of dis-
tribution) many queries, we survey below prior work relevant to ours.

Goldreich and Vadhan [34] showed that the problem of estimating the entropy
for circuit formulas is complete for statistical zero-knowledge. Estimation of the
entropy via collision probabilities has been considered in the statistical physics
community, but these techniques only provide lower bounds [43,55]. Batu et al.
[9] considered entropy estimation in a black-box model wherein one is allowed
to sample σ ∈ 2Y with probability proportional to pσ and pσ is revealed along
with the sample σ. Batu et al. showed that any algorithm that can estimate the
entropy within a factor of 2 in this model must use Ω(2m/8) samples. Further-
more, Batu et al. proposed a multiplicative approximation scheme assuming a
lower bound on H—precisely, it required a number of samples that grow lin-
early with 1/H; their scheme also gives rise to an additive approximate scheme.

1 Projection set has been referred to as sampling set in prior work [19,54].
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Guha et al. [35] improved Batu et al.’s scheme to obtain (ε, δ) multiplicative
estimates using O(m log 1

δ

ε2H ) samples, matching Batu et al.’s lower bound. Note
that this grows with 1/H.

A more restrictive model has been considered wherein we only get access
to samples (with the assurance that every σ is sampled with probability pro-
portional to pσ). Valiant and Valiant [58] obtained an asymptotically optimal
algorithm in this setting, which requires Θ( 2m

ε2m ) samples to obtain an ε additive
approximation. Chakraborty et al. [17] considered the problem in a different set-
ting, in which the algorithm is given the ability to sample σ from a conditional
distribution: the algorithm is permitted to specify a set S, and obtains σ from
the distribution conditioned on σ ∈ S. We remark that as discussed below, our
approach makes use of such conditional samples, by sampling from a modified
formula that conjoins the circuit formula to a formula for membership in S. In
any case, Chakraborty et al. use O( 1

ε8 m7 log 1
δ ) conditional samples to approxi-

mately learn the distribution, and can only provide an additive approximation
of entropy. A helpful survey of all of these different models and algorithms was
recently given by Canonne [15].

In this paper, we rely on the advances in model counting. Theoretical inves-
tigations into model counting were initiated by Valiant in his seminal work that
defined the complexity class #P and showed that the problem of model counting
is #P-complete. From a practical perspective, the earliest work on model count-
ing [12] focused on improving enumeration-based strategies via partial solutions.
Subsequently, Bayardo and Pehoushek [10] observed that if a formula can be
partitioned into subsets of clauses, also called components, such that each of
the subsets is over disjoint sets of variables, then the model count of the for-
mula is the product of the model counts of each of the components. Building on
Bayardo and Pehoushek’s scheme, Sang et al. [50] showed how conflict-driven
clause learning can be combined with component caching, which has been fur-
ther improved by Thurley [56] and Sharma et al. [52]. Another line of work
focuses on compilation-based techniques, wherein the core approach is to com-
pile the input formula into a subset L in negation normal form, so that counting
is tractable for L. The past five years have witnessed a surge of interest in the
design of projected model counters [6,18,20,42,45,52]. In this paper, we employ
GANAK [52], the state of the art projected model counter; an entry based on
GANAK won the projected model counting track at the 2020 model counting
competition [31].

Another crucial ingredient for our technique is access to an efficient sampler.
Counting and sampling are closely related problems, and therefore, the devel-
opment of efficient counters spurred the research on the development of sam-
plers. In a remarkable result, Huang and Darwiche [36] showed that the traces
of model counters are in d-DNNF (deterministic Decomposable Negation Nor-
mal Form [25]), which was observed to support sampling in polynomial time [51].
Achlioptas, Hammoudeh, and Theodoropoulos [3] observed that one can improve
the space efficiency by performing an on-the-fly traversal of the underlying trace
of a model counter such as SharpSAT [56].



368 P. Golia et al.

Our work builds on a long line of work in the QIF community that identified
a close relationship between quantified information flow and model counting [4,
5,27,33,38,59]. There are also many symbolic execution based approaches for
QIF based on model counting that would require model counting calls that are
linear in the size of observable domain, that is, exponential in the number of bits
represents the domain [8,46]. Another closely related line of the work concerns
the use of model counting in side-channel analysis [28,29,33]. Similarly, there
exists sampling based approaches for black-box leakage estimation that either
require too many samples, much larger than the product of size of input and
output domain [23] to converge or uses ML based approaches that predict the
error of the idea classifier for predicting secrets given observable [22]. However,
these approaches can not provide PAC guarantees on the estimation. While we
focus on the case where the behavior of a program can be modeled with a Boolean
formula ϕ, the underlying technique is general and can extended to cases where
programs (and their abstractions) are modeled using automata [4,5,14].

Before concluding our discussion of prior work, we remark that Köpf and
Rybalchenko [41] used Batu et al.’s [9] lower bounds to conclude that their
scheme could not be improved without usage of structural properties of the
program. In this context, our paper continues the direction alluded by Köpf and
Rybalchenko and designs the first efficient multiplicative approximation scheme
by utilizing white-box access to the program.

4 EntropyEstimation: Efficient Estimation of H(ϕ)

In this section, we focus on the primary technical contribution of our work: an
algorithm, called EntropyEstimation, that takes a circuit formula ϕ(X,Y ) and
returns an (ε, δ) estimate of H(ϕ). We first provide a detailed technical overview
of the design of EntropyEstimation in Sect. 4.1, then provide a detailed description
of the algorithm, and finally, provide the accompanying technical analysis of the
correctness and complexity of EntropyEstimation.

4.1 Technical Overview

At a high level, EntropyEstimation uses a median of means estimator, i.e., we first
estimate H(ϕ) to within a (1±ε)-factor with probability at least 5

6 by computing
the mean of the underlying estimator and then take the median of many such
estimates to boost the probability of correctness to 1 − δ.

Let us consider a random variable S over the domain sol(ϕ)↓Y such that
Pr[S = σ] = pσ wherein σ ∈ sol(ϕ)↓Y and consider the self-information function
g : sol(ϕ)↓Y → [0,∞), given by g(σ) = log( 1

pσ
). Observe that the entropy

H(ϕ) = E[g(S)]. Therefore, a simple estimator would be to sample S using
our oracle and then estimate the expectation of g(S) by a sample mean. At
this point, we observe that given access to a uniform sampler, UnifSample, we
can simply first sample τ ∈ sol(ϕ) uniformly at random, and then set S =
τ↓Y , which gives Pr[S = τ↓Y ] = pτ↓Y

. Furthermore, observe that g(σ) can be
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computed via a query to a model counter. In their seminal work, Batu et al. [9]
observed that the variance of g(S), denoted by variance[g(S)], can be at most
m2. The required number of sample queries, based on a straightforward analysis,

would be Θ
(

variance[g(S)]
ε2·(E[g(S)])2

)
= Θ

( ∑
pσ log2 1

pσ

(
∑

pσ log 1
pσ

)2

)

. However, E[g(S)] = H(ϕ) can

be arbitrarily close to 0, and therefore, this does not provide a reasonable upper
bound on the required number of samples.

To address the lack of lower bound on H(ϕ), we observe that for ϕ to have
H(ϕ) < 1, there must exist σhigh ∈ sol(ϕ)↓Y such that p(σhigh) > 1

2 . We then
observe that given access to a sampler and counter, we can identify such a
σhigh with high probability, thereby allowing us to consider the two cases sep-
arately: (A) H(ϕ) > 1 and (B) H(ϕ) < 1. Now, for case (A), we could use
Batu et al.’s bound for variance[g(S)] [9] and obtain an estimator that would
require Θ

(
variance[g(S)]
ε2·(E[g(S)])2

)
sampling and counting queries. It is worth remarking

that the bound variance[g(S)] ≤ m2 is indeed tight as a uniform distribution
over sol(ϕ)↓X would achieve the bound. Therefore, we instead focus on the
expression variance[g(S)]

(E[g(S)])2 and prove that for the case when E[g(S)] = H(ϕ) > h,

we can upper bound variance[g(S)]
(E[g(S)])2 by (1+o(1))·m

h·ε2 , thereby reducing the complexity
from m2 to m (Observe that we have H(ϕ) > 1, that is, we can take h = 1).

Now, we return to the case (B) wherein we have identified σhigh ∈ sol(ϕ)↓Y

with pσhigh
> 1

2 . Let r = pσhigh
and Hrem =

∑

σ∈sol(ϕ)↓Y \σhigh

pσ log 1
pσ

. Note

that H(ϕ) = r log 1
r + Hrem. Therefore, we focus on estimating Hrem. To this

end, we define a random variable T that takes values in sol(ϕ)↓Y \ σhigh such
that Pr[T = σ] = pσ

1−r . Using the function g defined above, we have Hrem =
(1 − r) · E[g(T )]. Again, we have two cases, depending on whether Hrem ≥ 1 or
not; if it is, then we can bound the ratio variance[g(T )]

E[g(T )]2 similarly to case (A). If
not, we observe that the denominator is at least 1 for r ≥ 1/2. And, when Hrem

is so small, we can upper bound the numerator by (1 + o(1))m, giving overall
variance[g(T )]
(E[g(T )])2 ≤ (1 + o(1)) · 1

ε2 · m. We can thus estimate Hrem using the median
of means estimator.

4.2 Algorithm Description

Algorithm 1 presents the proposed algorithmic framework EntropyEstimation.
EntropyEstimation takes a formula ϕ(X,Y ), a tolerance parameter ε, a confi-
dence parameter δ as input, and returns an estimate ĥ of the entropy Hϕ(Y ),
that is guaranteed to lie within a (1±ε)-factor of Hϕ(Y ) with confidence at least
1 − δ. Algorithm 1 assumes access to following subroutines:

ComputeCount: The subroutine ComputeCount takes a formula ϕ(X,Y ) and a
projection set V ⊆ X ∪ Y as input, and returns a projected model count of
ϕ(X,Y ) over V .

UnifSample: The subroutine UnifSample takes a formula ϕ(X,Y ) as an input and
returns a uniformly sampled satisfying assignment of ϕ(X,Y ).
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Algorithm 1. EntropyEstimation(ϕ(X,Y ), ε, δ)
1: m ← |Y |; n ← |X|
2: z ← ComputeCount(ϕ(X, Y ), X)
3: for i ∈ [1, log(10/δ)] do
4: τ ← UnifSample(ϕ)
5: r = z−1 · ComputeCount(ϕ(X, Y ) ∧ (Y ↔ τ↓Y ), X)
6: if r > 1

2
then

7: ϕ̂ ← ϕ ∧ (Y �↔ τ↓Y )

8: t ← 6
ε2

· min

{
n

2 log 1
1−r

, m + log(m + log m + 2.5)

}

9: ĥrem ← SampleEst(ϕ̂, z, t, 0.9 · δ)
10: ĥ ← (1 − r)ĥrem + r log( 1

r
)

11: return ĥ
12: t ← 6

ε2
· (min {n, m + log(m + log m + 1.1)} − 1)

13: ĥ ← SampleEst(ϕ, z, t, 0.9 · δ)
14: return ĥ

Algorithm 2. SampleEst(ϕ, z, t, δ)
1: C ← [ ]
2: T ← 9

2
log 2

δ

3: for i ∈ [1, T ] do
4: est ← 0
5: for j ∈ [1, t] do
6: τ ← UnifSample(ϕ)
7: r = z−1 · ComputeCount(ϕ(X, Y ) ∧ (Y ↔ τ↓Y ), X)
8: est ← est + log(1/r)

9: C.Append( est
t

)

10: return Median(C)

SampleEst: Algorithm 2 presents the subroutine SampleEst, which also assumes
access to the ComputeCount and UnifSample subroutines. SampleEst takes as
input a formula ϕ(X,Y ); the projected model count of ϕ(X,Y ) over X, z; the
number of required samples, t; and a confidence parameter δ, and returns a
median-of-means estimate of the entropy. Algorithm 2 starts off by computing
the value of T , the required number of repetitions to ensure at least 1 − δ
confidence for the estimate. The algorithm has two loops—one outer loop
(Lines 3–9), and one inner loop (Lines 5–8). The outer loop runs for [92 log(2δ )]
rounds, where in each round, Algorithm2 updates a list C with the mean
estimate, est. In the inner loop, in each round, Algorithm2 updates the value
of est : Line 6 draws a sample τ using the UnifSample(ϕ(X,Y )) subroutine.
At Line 7, value of r is computed as the ratio of the projected model count
of X in ϕ(X,Y ) ∧ (Y ↔ τ↓Y ) to z. To compute the projected model count,
Algorithm 2 calls the subroutine ComputeCount on input (ϕ(X,Y ) ∧ (Y ↔
τ↓Y ),X). At line 8, est is updated with log(1r ), and at line 9, the final est is
added to C. Finally, at line 10, Algorithm 2 returns the median of C.
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Returning back to Algorithm 1, it starts by computing the value of z as the
projected model count of ϕ(X,Y ) over X at line 2. The projected model count is
computed by calling the ComputeCount subroutine. Next, Algorithm1 attempts
to determine whether there exists an output τhigh with probability greater than
1/2 or not by iterating over lines 3–11 for [log(10/δ)] rounds. Line 4, draws a
sample τ by calling the UnifSample(ϕ(X,Y )) subroutine. Line 5 computes the
value of r by taking the ratio of the projected model count of ϕ(X,Y )∧(Y ↔ τ↓Y )
to z. Line 6 checks whether the value of r is greater than 1/2 or not, and chooses
one of the two paths based on the value of r:

1. If the value of r turns out to be greater than 1/2, the formula ϕ(X,Y ) is
updated to ϕ(X,Y ) ∧ (Y �↔ τ↓Y ) at line 7. The resulting formula is denoted
by ϕ̂(X,Y ). Then, the value of required number of samples, t, is calculated
as per the calculation shown at line 8. At line 9, the subroutine SampleEst is
called with ϕ̂(X,Y ), z, t, and 0.9 × δ as arguments to compute the estimate
ĥrem. Finally, it computes the estimate ĥ at line 10.

2. If the value of r is at most 1/2 in every round, the number of samples we
use, t, is calculated as per the calculation shown at line 12. At line 13, the
subroutine SampleEst is called with ϕ(X,Y ), z, t, and 0.9 × δ as arguments
to compute the estimate ĥ.

4.3 Theoretical Analysis

Theorem 1. Given a circuit formula ϕ with |Y | ≥ 2, a tolerance parameter
ε > 0, and confidence parameter δ > 0, the algorithm EntropyEstimation returns
ĥ such that

Pr
[
(1 − ε)Hϕ(Y ) ≤ ĥ ≤ (1 + ε)|Hϕ(Y )|

]
≥ 1 − δ

We first analyze the median-of-means estimator computed by SampleEst.

Lemma 1. Given a circuit formula ϕ and z ∈ N, an accuracy parameter ε > 0,
a confidence parameter δ > 0, and a batch size t ∈ N for which

1
tε2

·

⎛

⎜
⎝

∑
σ∈2Y

|sol(ϕ(Y �→σ))|
|sol(ϕ)↓X | (log z

|sol(ϕ(Y �→σ))| )
2

(∑
σ∈2Y

|sol(ϕ(Y �→σ))|
|sol(ϕ)↓X | log z

|sol(ϕ(Y �→σ))|
)2 − 1

⎞

⎟
⎠ ≤ 1/6

the algorithm SampleEst returns an estimate ĥ such that with probability 1 − δ,

ĥ ≤ (1 + ε)
∑

σ∈2Y

|sol(ϕ(Y �→ σ))|
|sol(ϕ)↓X | log

z

|sol(ϕ(Y �→ σ))| and

ĥ ≥ (1 − ε)
∑

σ∈2Y

|sol(ϕ(Y �→ σ))|
|sol(ϕ)↓X | log

z

|sol(ϕ(Y �→ σ))| .
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Proof. Let Rij be the random value taken by r in the ith iteration of the outer
loop and jth iteration of the inner loop. We observe that {Rij}(i,j) are a family of
i.i.d. random variables. Let Ci =

∑t
j=1

1
t log 1

Rij
be the value appended to C at

the end of the ith iteration of the loop. Clearly E[Ci] = E[log 1
Rij

]. Furthermore,
we observe that by independence of the Rij ,

variance[Ci] =
1
t
variance[log

1
Rij

] =
1
t
(E[(log Rij)2] − E[log

1
Rij

]
2

).

By Chebyshev’s inequality, now,

Pr
[

|Ci − E[log
1

Rij
]| > εE[log

1
Rij

]
]

<
variance[Ci]

ε2E[log 1
Rij

]2

=
E[(log Rij)2] − E[log 1

Rij
]2

t · ε2E[log 1
Rij

]2

≤ 1/6

by our assumption on t.
Let Li ∈ {0, 1} be the indicator random variable for the event that Ci <

E[log 1
Rij

] − εE[log 1
Rij

], and let Hi ∈ {0, 1} be the indicator random variable for
the event that Ci > E[log 1

Rij
] + εE[log 1

Rij
]. Similarly, since these are disjoint

events, Bi = Li + Hi is also an indicator random variable for the union. So
long as

∑T
i=1 Li < T/2 and

∑T
i=1 Hi < T/2, we note that the value returned

by SampleEst is as desired. By the above calculation, Pr[Li = 1] + Pr[Hi = 1] =
Pr[Bi = 1] < 1/6, and we note that {(Bi, Li,Hi)}i are a family of i.i.d. random
variables. Observe that by Hoeffding’s inequality,

Pr

[
T∑

i=1

Li ≥ T

6
+

T

3

]

≤ exp(−2T
1
9
) =

δ

2

and similarly Pr
[∑T

i=1 Hi ≥ T
2

]
≤ δ

2 . Therefore, by a union bound, the returned
value is adequate with probability at least 1 − δ overall.

The analysis of SampleEst relied on a bound on the ratio of the first and
second “moments” of the self-information in our truncated distribution. Suppose
for all assignments σ to Y , pσ ≤ 1/2. We observe that then Hϕ(Y ) ≥ ∑

σ∈2Y pσ ·
1 = 1. We also observe that on account of the uniform distribution on X, any
σ in the support of the distribution has pσ ≥ 1/2|X|. Such bounds allow us to
bound the relative variance of the self information:

Lemma 2. Let {pσ ∈ [1/2|X|, 1]}σ∈2Y be given. Then,

∑

σ∈2Y

pσ(log pσ)2 ≤ |X|
∑

σ∈2Y

pσ log
1
pσ
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Proof. We observe simply that

∑

σ∈2Y

pσ(log pσ)2 ≤ log 2|X| ∑

σ∈2Y

pσ log
1
pσ

= |X|
∑

σ∈2Y

pσ log
1
pσ

.

Lemma 3. Let {pσ ∈ [0, 1]}σ∈2Y be given with
∑

σ∈2Y pσ ≤ 1 and

H =
∑

σ∈2Y

pσ log
1
pσ

≥ 1.

Then ∑
σ∈2Y pσ(log pσ)2

(∑
σ∈2Y pσ log 1

pσ

)2 ≤
(

1 +
log(|Y | + log |Y | + 1.1)

|Y |
)

|Y |.

Similarly, if H ≤ 1 and |Y | ≥ 2,
∑

σ∈2Y

pσ(log pσ)2 ≤ |Y | + log(|Y | + log |Y | + 2.5).

Concretely, both cases give a bound that is at most 2|Y | for |Y | ≥ 3; |Y | = 8
gives a bound that is less than 1.5 × |Y | in both cases, |Y | = 64 gives a bound
that is less than 1.1 × |Y |, etc.

Proof. By induction on the size of the support, denoted as supp and defined as
|{σ ∈ 2Y |pσ > 0}|, we’ll show that when H ≥ 1, the ratio is at most log |supp|+
log(log |supp| + log log |supp| + 1.1). The base case is when there are only two
elements (|Y | = 1), in which case we must have p0 = p1 = 1/2, and the ratio is
uniquely determined to be 1. For the induction step, observe that whenever any
subset of the pσ take value 0, this is equivalent to a distribution with smaller
support, for which by induction hypothesis, we find the ratio is at most

log(|supp| − 1) + log(log(|supp| − 1) + log log(|supp| − 1) + 1.1)
< log |supp| + log(log |supp| + log log |supp| + 1.1).

Consider any value of Hϕ(Y ) = H. With the entropy fixed, we need only max-
imize the numerator of the ratio with Hϕ(Y ) = H. Indeed, we’ve already ruled
out a ratio of |supp(Y )| for solutions in which any of the pσ take value 0, and
clearly we cannot have any pσ = 1, so we only need to consider interior points
that are local optima. We use the method of Lagrange multipliers: for some λ,
all pσ must satisfy log2 pσ + 2 log pσ − λ(log pσ − 1) = 0, which has solutions

log pσ =
λ

2
− 1 ±

√

(1 − λ

2
)2 − λ =

λ

2
− 1 ±

√
1 + λ2/4.

We note that the second derivatives with respect to pσ are equal to 2 log pσ

pσ
+ 2−λ

pσ

which are negative iff log pσ < λ
2 − 1, hence we attain local maxima only for the
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solution log pσ = λ
2 − 1 − √

1 + λ2/4. Thus, there is a single pσ, which by the
entropy constraint, must satisfy |supp|pσ log 1

pσ
= H which we’ll show gives

pσ =
H

|supp|(log |supp|
H + log log |supp|

H + ρ)

for some ρ ≤ 1.1. For |supp| = 3, we know 1 ≤ H ≤ log 3, and we can verify
numerically that log

(
log 3

H +log log 3
H +ρ

log 3
H

)
∈ (0.42, 0.72) for ρ ∈ [0, 1]. Hence, by

Brouwer’s fixed point theorem, such a choice of ρ ∈ [0, 1] exists. For |supp| ≥ 4,

observe that |supp|
H ≥ 2, so log

(
log

|supp|
H +log log

|supp|
H

log
|supp|

H

)

> 0. For |supp| = 4,

log
(

log 4
H +log log 4

H +ρ

log 4
H

)
∈ [0, 1], and similarly for all integer values of |supp| up to

15, log
(

log
|supp|

H +log log
|supp|

H +1.1

log
|supp|

H

)

< 1.1, so we can obtain ρ ∈ (0, 1.1). Finally,

for |supp| ≥ 16, we have |supp|
H ≤ 2|supp|/2H , and hence log log

|supp|
H +ρ

log
|supp|

H

≤ 1, so

|supp|H(log |supp|
H + log(log |supp|

H + log log |supp|
H + ρ))

|supp|(log |supp|
H + log log |supp|

H + ρ)

≤ H
log |supp|

H + log log |supp|
H + 1

log |supp|
H + log log |supp|

H + ρ

Hence it is clear that this gives H for some ρ ≤ 1. Observe that for such a choice
of ρ, using the substitution above, the ratio we attain is

|supp| · H
H2 · |supp|(log |supp|

H
+ log log

|supp|
H

+ ρ)

(
log

|supp|(log |supp|
H

+ log log
|supp|

H
+ ρ)

H

)2

=
1

H
(log

|supp|
H

+ log(log
|supp|

H
+ log log

|supp|
H

+ ρ))

which is monotone in 1/H, so using the fact that H ≥ 1, we find it is at most

log |supp| + log(log |supp| + log log |supp| + ρ)

which, recalling ρ < 1.1, gives the claimed bound.
For the second part, observe that by the same considerations, for fixed H,

∑

σ∈2Y

pσ(log pσ)2 = H log
1
pσ

for the unique choice of pσ for |Y | and H as above, i.e., we will show that for
|Y | ≥ 2, it is

H

(

log
2|Y |

H
+ log(log

2|Y |

H
+ log log

2|Y |

H
+ ρ)

)
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for some ρ ∈ (0, 2.5). Indeed, we again consider the function

f(ρ) =
log(log 2|Y |

H + log log 2|Y |
H + ρ)

log log 2|Y |
H

,

and observe that for 2|Y |/H > 2, f(0) > 0. Now, when |Y | ≥ 2 and H ≤ 1,
2|Y |/H ≥ 4. We will see that the function d(ρ) = f(ρ) − ρ has no critical
points for 2|Y |/H ≥ 4 and ρ > 0, and hence its maximum is attained at the
boundary, i.e., at 2|Y |

H = 4, at which point we see that f(2.5) < 2.5. So, for such
values of 2|Y |

H , f(ρ) maps [0, 2.5] into [0, 2.5] and hence by Brouwer’s fixed point
theorem again, for all |Y | ≥ 4 and H ≥ 1 some ρ ∈ (0, 2.5) exists for which
pσ = log 2|Y |

H + log(log 2|Y |
H + log log 2|Y |

H + ρ) gives
∑

pσ∈2Y pσ log 1
pσ

= H.
Indeed, d′(ρ) = 1

ln 2(log 2|Y |
H +log log 2|Y |

H +ρ) log log 2|Y |
H

−1, which has a singularity

at ρ = − log log 2|Y |
H − log log 2|Y |

H , and otherwise has a critical point at ρ =
ln 2

log log 2|Y |
H

− log 2|Y |
H − log log 2|Y |

H . Since log 2|Y |
H ≥ 2 and log log 2|Y |

H ≥ 1 here,

these are both clearly negative.
Now, we’ll show that this expression (for |Y | ≥ 2) is maximized when H = 1.

Observe first that the expression H(|Y |+log 1
H ) as a function of H does not have

critical points for H ≤ 1: the derivative is |Y | + log 1
H − 1

ln 2 , so critical points
require H = 2|Y |−(1/ ln 2) > 1. Hence we see that this expression is maximized at
the boundary, when H = 1. Similarly, the rest of the expression,

H log(|Y | + log
1
H

+ log(|Y | + log
1
H

) + 2.5)

viewed as a function of H, only has critical points for

log(|Y |+log
1
H

+log(|Y |+log
1
H

)+2.5) =
1

ln 2 (1 + 1
|Y |+log 1

H

)

|Y | + log 1
H + log(|Y | + log 1

H ) + 2.5

i.e., it requires

(|Y | + log
1

H
+ log(|Y | + log

1

H
) + 2.5) log(|Y | + log

1

H
+ log(|Y | + log

1

H
) + 2.5)

=
1

ln 2
(1 +

1

|Y | + log 1
H

).

But, the right-hand side is at most 3
2 ln 2 < 3, while the left-hand side is at least

13. Thus, it also has no critical points, and its maximum is similarly taken at
the boundary, H = 1. Thus, overall, when H ≤ 1 and |Y | ≥ 2 we find

∑

σ∈2Y

pσ(log pσ)2 ≤ |Y | + log(|Y | + log |Y | + 2.5).

Although the assignment of probability mass used in the bound did not sum
to 1, nevertheless this bound is nearly tight. For any γ > 0, and letting H = 1+Δ
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where Δ = 1
logγ(2|Y |−2)

, the following solution attains a ratio of (1−o(1))|Y |1−γ :
for any two σ∗

1 , σ
∗
2 ∈ 2Y , set pσ∗

i
= 1

2 − ε
2 and set the rest to ε

2|Y |−2
, for ε chosen

below. To obtain

H = 2 · (
1
2

− ε

2
) log

2
1 − ε

+ (2|Y | − 2) · ε

2|Y | − 2
log

2|Y | − 2
ε

= (1 − ε)(1 + log(1 +
ε

1 − ε
)) + ε log

2|Y | − 2
ε

observe that since log(1 + x) = x
ln 2 + Θ(x2), we will need to take

ε =
Δ

log(2|Y | − 2) + log 1−ε
ε − (1 + 1

ln 2 ) + Θ(ε2)

=
Δ

log(2|Y | − 2) + log log(2|Y | − 2) + log 1
Δ − (1 + 1

ln 2 ) − ε
ln 2 + Θ(ε2)

.

For such a choice, we indeed obtain the ratio

(1 − ε) log2 2
1−ε + ε log2 (2|Y |−2)

ε

H2
≥ (1 − o(1))|Y |1−γ .

Using these bounds, we are finally ready to prove Theorem 1:

Proof. We first consider the case where no σ ∈ sol(ϕ) has pσ > 1/2; here, the
condition in line 6 of EntropyEstimation never passes, so we return the value
obtained by SampleEst on line 12. Note that we must have Hϕ(Y ) ≥ 1 in this
case. So, by Lemma 3,

∑
σ∈2Y pσ(log pσ)2

(∑
σ∈2Y pσ log 1

pσ

)2 ≤ min
{

|X|,
(

1 +
log(|Y | + log |Y | + 1.1)

|Y |
)

|Y |
}

and hence, by Lemma 1, using t ≥ 6·min{|X|,|Y |+log(|Y |+log |Y |+1.1)}−1)
ε2 suffices to

ensure that the returned ĥ is satisfactory with probability 1 − δ.
Next, we consider the case where some σ∗ ∈ sol(ϕ) has pσ∗ > 1/2. Since the

total probability is 1, there can be at most one such σ∗. So, in the distribution
conditioned on σ �= σ∗, i.e., {p′

σ}σ∈2Y that sets p′
σ∗ = 0, and p′

σ = pσ

1−pσ∗
otherwise, we now need to show that t satisfies

1
tε2

( ∑
σ 	=σ∗ p′

σ(log 1
(1−pσ∗ )p′

σ
)2

(
∑

σ 	=σ∗ p′
σ log 1

(1−pσ∗ )p′
σ
)2

− 1

)

<
1
6

to apply Lemma 1. We first rewrite this expression. Letting H =
∑

σ 	=σ∗ p′
σ log 1

p′
σ

be the entropy of this conditional distribution,
∑

σ 	=σ∗ p′
σ(log 1

(1−pσ∗ )p′
σ
)2

(
∑

σ 	=σ∗ p′
σ log 1

(1−pσ∗ )p′
σ
)2

=

∑
σ 	=σ∗ p′

σ(log 1
p′

σ
)2 + 2H log 1

1−pσ∗ + (log 1
1−pσ∗ )2

(H + log 1
1−pσ∗ )2

=

∑
σ 	=σ∗ p′

σ(log 1
p′

σ
)2 − H2

(H + log 1
1−pσ∗ )2

+ 1.
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Lemma 2 now gives rather directly that this quantity is at most

H|X| − H2

(H + log 1
1−pσ∗ )2

+ 1 <
|X|

2 log 1
1−pσ∗

+ 1.

For the bound in terms of |Y |, there are now two cases depending on whether
H is greater than 1 or less than 1. When it is greater than 1, the first part of
Lemma 3 again gives

∑
σ∈2Y p′

σ(log p′
σ)2

H2
≤ |Y | + log(|Y | + log |Y | + 1.1).

When H < 1, on the other hand, recalling pσ∗ > 1/2 (so log 1
1−pσ∗ ≥ 1), the

second part of Lemma 3 gives that our expression is less than

|Y | + log(|Y | + log |Y | + 2.5)) − H2

(H + log 1
1−pσ∗ )2

< |Y | + log(|Y | + log |Y | + 2.5).

Thus, by Lemma 1,

t ≥
6 · min{ |X|

2 log 1
1−pσ∗

, |Y | + log(|Y | + log |Y | + 2.5)}
ε2

suffices to obtain ĥ such that ĥ ≤ (1 + ε)
∑

σ 	=σ∗
pσ

1−pσ∗ log 1
pσ

and ĥ ≥ (1 −
ε)

∑
σ 	=σ∗

pσ

1−pσ∗ log 1
pσ

; hence we obtain such a ĥ with probability at least 1−0.9·δ
in line 10, if we pass the test on line 6 of Algorithm 1, thus identifying σ∗. Note
that this value is adequate, so we need only guarantee that the test on line 6
passes on one of the iterations with probability at least 1 − 0.1 · δ.

To this end, note that each sample(τ↓Y ) on line 4 is equal to σ∗ with prob-
ability |sol(ϕ(Y �→σ∗))|

|sol(ϕ)↓X | > 1
2 by hypothesis. Since each iteration of the loop is an

independent draw, the probability that the condition on line 6 is not met after
log 10

δ draws is less than (1 − 1
2 )log

10
δ = δ

10 , as needed.

4.4 Beyond Boolean Formulas

We now focus on the case where the relationship between X and Y is mod-
eled by an arbitrary relation R instead of a Boolean formula ϕ. As noted in
Sect. 1, program behaviors are often modeled with other representations such as
automata [4,5,14]. The automata-based modeling often has X represented as
the input to the given automaton A while every realization of Y corresponds to
a state of A. Instead of an explicit description of A, one can rely on a symbolic
description of A. Two families of techniques are currently used to estimate the
entropy. The first technique is to enumerate the possible output states and, for
each such state s, estimate the number of strings accepted by A if s was the only
accepting state of A. The other technique relies on uniformly sampling a string σ,
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noting the final state of A when run on σ, and then applying a histogram-based
technique to estimate the entropy.

In order to use the algorithm EntropyEstimation one requires access to a
sampler and model counter for automata; the past few years have witnessed the
design of efficient counters for automata to handle string constraints. In addition,
EntropyEstimation requires access to a conditioning routine to implement the
substitution step, i.e., Y �→ τ↓Y , which is easy to accomplish for automata via
marking the corresponding state as a non-accepting state.

5 Empirical Evaluation

To evaluate the runtime performance of EntropyEstimation, we implemented
a prototype in Python that employs SPUR [3] as a uniform sampler and
GANAK [52] as a projected model counter. We experimented with 96 Boolean
formulas arising from diverse applications ranging from QIF benchmarks [32],
plan recognition [54], bit-blasted versions of SMTLIB benchmarks [52,54], and
QBFEval competitions [1,2]. The value of n = |X| varies from 5 to 752 while
the value of m = |Y | varies from 9 to 1447.

In all of our experiments, the parameters δ and ε were set to 0.09, 0.8 respec-
tively. All of our experiments were conducted on a high-performance computer
cluster with each node consisting of a E5-2690 v3 CPU with 24 cores, and
96 GB of RAM with a memory limit set to 4 GB per core. Experiments were
run in single-threaded mode on a single core with a timeout of 3000 s.

Baseline: As our baseline, we implemented the following approach to com-
pute the entropy exactly, which is representative of the current state of the
art approaches [13,27,39]2. For each valuation σ ∈ sol(ϕ)↓Y , we compute
pσ = |sol(ϕ(Y �→σ))|

|sol(ϕ)↓X | , where |sol(ϕ(Y → σ))| is the count of satisfying assign-
ments of ϕ(Y �→ σ), and |sol(ϕ)↓X | represents the projected model count of ϕ
over X. Then, finally the entropy is computed as

∑

σ∈2Y

pσ log( 1
pσ

).

Our evaluation demonstrates that EntropyEstimation can scale to the for-
mulas beyond the reach of the enumeration-based baseline approach. Within a
given timeout of 3000 s, EntropyEstimation is able to estimate the entropy for
all the benchmarks, whereas the baseline approach could terminate only for 14
benchmarks. Furthermore, EntropyEstimation estimated the entropy within the
allowed tolerance for all the benchmarks.

5.1 Scalability of EntropyEstimation

Table 1 presents the performance of EntropyEstimation vis-a-vis the baseline
approach for 20 benchmarks.3 Column 1 of Table 1 gives the names of the
2 We wish to emphasize that none of the previous approaches could provide theoretical

guarantees of (ε, δ) without enumerating over all possible assignments to Y .
3 The complete analysis for all of the benchmarks is deferred to the technical report

https://arxiv.org/pdf/2206.00921.pdf.

https://arxiv.org/pdf/2206.00921.pdf
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Table 1. “-” represents that entropy could not be estimated due to timeout. Note that
m = |Y | and n = |X|.

Benchmarks |X| |Y | Baseline EntropyEstimation
count count/sample

Time(s) queries Time(s) queries

pwd-backdoor 336 64 - 1.84×1019 5.41 1.25×102

case31 13 40 201.02 1.02×103 125.36 5.65×102

case23 14 63 420.85 2.05×103 141.17 6.10×102

s1488 15 7 14 927 1037.71 3.84×103 150.29 6.10×102

bug1-fix-4 53 17 373.52 1.76×103 212.37 9.60×102

s832a 15 7 23 670 - 2.65×106 247 1.04×103

dyn-fix-1 40 48 - 3.30×104 252.2 1.83×103

s1196a 7 4 32 676 - 4.22×107 343.68 1.46×103

backdoor-2x16 168 32 - 1.31×105 405.7 1.70×103

CVE-2007 752 32 - 4.29×109 654.54 1.70×103

subtraction32 65 218 - 1.84×1019 860.88 3.00×103

case 1 b11 1 48 292 - 2.75×1011 1164.36 2.20×103

s420 15 7-1 235 116 - 3.52×107 1187.23 5.72×103

case145 64 155 - 7.04×1013 1243.11 2.96×103

floor64-1 405 161 - 2.32×1027 1764.2 7.85×103

s641 7 4 54 453 - 1.74×1012 1849.84 2.48×103

decomp64 381 191 - 6.81×1038 2239.62 9.26×103

squaring2 72 813 - 6.87×1010 2348.6 3.33×103

stmt5 731 730 379 311 - 3.49×1010 2814.58 1.49×104

benchmarks, while columns 2 and 3 list the numbers of X and Y variables.
Columns 4 and 5 respectively present the time taken, number of samples used by
baseline approach, and columns 6 and 7 present the same for EntropyEstimation.
The required number of samples for the baseline approach is |sol(ϕ)↓Y |.

Table 1 clearly demonstrates that EntropyEstimation outperforms the base-
line approach. As shown in Table 1, there are some benchmarks for which the
projected model count on V is greater than 1030, i.e., the baseline approach
would need 1030 valuations to compute the entropy exactly. By contrast, the
proposed algorithm EntropyEstimation needed at most ∼ 104 samples to esti-
mate the entropy within the given tolerance and confidence. The number of
samples required to estimate the entropy is reduced significantly with our pro-
posed approach, making it scalable.

5.2 Quality of Estimates

There were only 14 benchmarks out of 96 for which the enumeration-based base-
line approach finished within a given timeout of 3000s. Therefore, we compared
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the entropy estimated by EntropyEstimation with the baseline for those 14 bench-
marks only. Figure 1 shows how accurate were the estimates of the entropy by
EntropyEstimation. The y-axis represents the observed error, which was calcu-
lated as max(Estimated

Exact − 1, Exact
Estimated − 1), and the x-axis represents the bench-

marks ordered in ascending order of observed error; that is, a bar at x represents
the observed error for a benchmark—the lower, the better.

Fig. 1. The accuracy of estimated entropy using EntropyEstimation for 14 benchmarks.
ε = 0.8, δ = 0.09. (Color figure online)

The red horizontal line in Fig. 1 indicates the maximum allowed tolerance (ε),
which was set to 0.80 in our experiments. We observe that for all 14 benchmarks,
EntropyEstimation estimated the entropy within the allowed tolerance; in fact,
the observed error was greater than 0.1 for just 2 out of the 14 benchmarks, and
the maximum error observed was 0.29.

Alternative Baselines: As we discussed earlier, several other algorithms have
been proposed for estimating the entropy. For example, Valiant and Valiant’s
algorithm [58] obtains an ε-additive approximation using O( 2m

ε2m ) samples, and
Chakraborty et al. [17] compute such approximations using O(m7

ε8 ) samples. We
stress that neither of these is exact, and thus could not be used to assess the
accuracy of our method as presented in Fig. 1. Moreover, based on Table 1, we
observe that the number of sampling or counting calls that could be computed
within the timeout was roughly 2×104, where m ranges between 101–103. Thus,
the method of Chakraborty et al. [17], which would take 107 or more samples on
all benchmarks, would not be competitive with our method, which never used
2 × 104 calls. The method of Valiant and Valiant, on the other hand, would
likely allow a few more benchmarks to be estimated (perhaps up to a fifth of
the benchmarks). Still, it would not be competitive with our technique except in
the smallest benchmarks (for which the baseline required < 106 samples, about
a third of our benchmarks), since we were otherwise more than a factor of m
faster than the baseline.
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6 Conclusion

In this work, we considered estimating the Shannon entropy of a distribution
specified by a circuit formula ϕ(X,Y ). Prior work relied on O(2m) model count-
ing queries and, therefore, could not scale to instances beyond small values of m.
In contrast, we propose a novel technique, called EntropyEstimation, for estima-
tion of entropy that takes advantage of the access to the formula ϕ via condition-
ing. EntropyEstimation makes only O(min(m,n)) model counting and sampling
queries, and therefore scales significantly better than the prior approaches.
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1 Introduction

Secure multi-party computation (MPC) is a powerful cryptographic paradigm,
allowing mutually distrusting parties to collaboratively compute a public func-
tion over their private data without a trusted third party and revealing nothing
beyond the result of the computation and their own private data [14,43]. MPC
has potential for broader uses in practical applications, e.g., truthful auctions,
avoiding satellite collisions [22], private machine learning [41], and data anal-
ysis [35]. However, practical deployment of MPC has been limited due to its
computational and communication complexity.

To foster applications of MPC, a number of general-purpose MPC frameworks
have been proposed, e.g., [9,24,29,34,37,44]. These frameworks provide high-
level languages for specifying MPC applications as well as compilers for trans-
lating them into executable implementations, thus drastically reduce the burden
of designing customized protocols and allow non-experts to quickly develop and
deploy MPC applications. To improve performance, many MPC frameworks pro-
vide features to declare secret variables so that only these variables are to be
protected. However, such frameworks usually do not verify rigorously whether
there is information leakage, or, on some occasions, provide only light-weighted
checking (via, e.g., information-flow analysis). Even though some frameworks
are equipped with formal security guarantees, it is challenging for non-experts
to develop an MPC program that simultaneously achieves good performance and
formal security guarantees [3,28]. A typical case for an user is to declare all vari-
ables secret while ideally one would declare as few secret variables as possible to
achieve a good performance without compromising security.

In this work, we propose an automated security policy synthesis approach for
MPC. We first formalize the leakage of an MPC application in the ideal-world
as a set of private inputs and define the notion of security policy, which assigns
each variable a security level. This can bridge the language-level and protocol-
level leakages, hence our approach is independent of the specific MPC protocols
being used. Based on the leakage characterization, we provide a type system
to infer security policies by tracking both control- and data-flow of informa-
tion from private inputs. While a security policy inferred from the type system
formally guarantees that the MPC application will not leak more information
than the result of the computation and participants’ own private data, it may
be too conservative. For instance, some variables could be declassified without
compromising security but with improved performance. Therefore, we propose a
symbolic reasoning approach to identify secret variables in security policies that
can be declassified without compromising security. We also feed back the results
from the symbolic reasoning to type inference to refine the security type further.

We implement our approach in a new tool PoS4MPC (Policy Synthesis
for MPC) based on the LLVM Compiler [1] and the KLEE symbolic execution
engine [10]. Experimental results on five typical MPC applications show that our
approach can generate less restrictive security policies than using the type system
solely. We also deploy the generated security policies in two MPC frameworks
Obliv-C [44] and MPyC [37]. The results show that, for instance, the security
policies generated by our approach can reduce the execution time by 31%–1.56×
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Fig. 1. The richest one of three millionaires Fig. 2. Ideal-world vs. real-world

105%, the circuit size by 38%–3.61 × 105%, and the communication traffic by
39%–4.17 × 105% in Obliv-C.

To summarize, our main technical contributions are as follows.

– A formalization of information leakage for MPC applications and the notion
of security policy to bridge the language-level and protocol-level leakages;

– An automated security policy synthesis approach that is able to generate less
restrictive security policies;

– An implementation of our approach for a real-world language and an evalu-
ation on challenging benchmarks from the literature.

Outline. Section 2 presents the motivation of this work and overview of our
approach. Section 3 gives the background of MPC. Section 4 introduces a simple
language on which we formalize the leakage of MPC applications. We propose
a type system for inferring security policies in Sect. 5 and a symbolic reasoning
approach for declassification in Sect. 6. Implementation details and experimen-
tal results are given in Sect. 7. Finally, we discuss related work in Sect. 8 and
conclude this paper in Sect. 9.

Missing proofs can be found in the full version of this paper [15].

2 Motivation

Figure 1 shows a motivating example that computes the richest among three
millionaires. To preserve the privacy, the millionaires can privately send their
inputs to a trusted third party (TTP) as shown in Fig. 2 (ideal-world). This
reveals the richest millionaire with the least leakage of information. Table 1 shows
the leakage for each result r = 1, 2, 3, as well as the leakage if the secret branching
variables c1 and c2 are declassified (i.e., from secret to public).

Table 1. Leakage from each result and declassified secret branching variables

Result Leakage of Result Leakage of c1 Leakage of c2

r = 1 a ≥ b ∧ a ≥ c a ≥ b a ≥ c

r = 2 a < b ∧ b ≥ c a < b b ≥ c

r = 3 c > max(a, b) a ≥ b ∨ a < b c > max(a, b)
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To achieve the same functionality without TTP, secure multi-party compu-
tation (MPC) was proposed [14,43]. One can implement the computation using
an MPC protocol π where all the parties collaboratively compute the result over
their private inputs via network communications (shown in Fig. 2 (real-world)).

To facilitate applications of MPC, various MPC frameworks, e.g., Obliv-
C [44], MP-SPDZ [24] and MPyC [37], have been proposed, which provide high-
level languages for specifying MPC applications, as well as compilers for trans-
lating them into executable implementations. To improve performance, these
frameworks often allow users to declare secret variables so that only the values
of secret variables are to be protected. However, in practice, it is usually quite
challenging for non-experts to specify secret variables properly: declaring too
many secret variables would degrade the performance, whereas declaring too
less secret variables risks compromising security and privacy.

In this work, we propose an automated synthesis approach, aiming to declare
as few secret variables as possible but without compromising security. To capture
privacy, we formalize the leakage of MPC applications in the ideal-world as a set
of private inputs. For instance, the leakage of the result r = 1 in the motivating
example is the set of inputs such that a ≥ b ∧ a ≥ c. We introduce the notion
of security policy, which assigns each variable a security level, to bridge the
language-level and protocol-level leakages, so that our approach is independent
of specific MPC protocols being used. The language-level leakage of a security
policy is characterized by a set of private inputs with respect to not only the
result but also the values of public variables in the intermediate computations.

Based on the leakage characterization, we propose a type system to automat-
ically infer security policies, inspired by the work of proving noninterference of
programs [40]. Our type system tracks both control-flow and data-flow of infor-
mation from the private inputs, and infers a security policy. For instance, all the
variables in the motivating example are inferred as secret.

Although a security policy inferred by the type system formally guarantees
that the MPC application will not leak more information than that in the ideal-
world, it may be too conservative. For instance, declassifying the variable c2 in
the example would not compromise security. As shown in Table 1, the leakage
caused by declassifying c2 can be deduced from the leakage of the result. In
contrast, we cannot declassify c1, as neither a ≥ b nor a < b can be deduced
from the leakage c > max(a, b). Once c1 is declassified, the adversary would
learn if a ≥ b or a < b. This problem is akin to downgrading and declassification
of high security levels in information-flow analysis [27], and could be solved via
self-composition [39,42] that often require users to write annotations for proce-
dure contracts and loop invariants. In this work, for the sake of efficiency and
usability for non-experts, we propose an alternative approach based on symbolic
execution. We leverage symbolic execution to finitely represent a potentially infi-
nite set of concrete executions, and propose an automated approach to infer if
a secret variable can be declassified by reasoning about pairs of symbolic exe-
cutions. For instance, in Example 1, our approach is able to identify that c2
can be declassified without compromising security. In general, the experimental
results show that our approach is effective and the generated security policies
can significantly improve the performance of MPC applications.
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3 Secure MPC

Fix a set of variables X over a domain D. We write xn ∈ X n and vn ∈ Dn

for tuples (x1, · · · , xn) and (v1, · · · , vn) respectively. (The subscript n may be
dropped when it is clear from the context.)

MPC in the Ideal-World. An n-party MPC application f : Dn → D is to
confidentially compute a given function f(x), where each party Pi for 1 ≤ i ≤ n
sends her private input vi ∈ D to a TTP T which computes and returns the
result f(v) to all the parties. In the ideal world, an adversary that controls any
of the n parties learns no more than the output f(v) and the private inputs of
the corrupted (dishonest) parties.

We characterize the leakage of an MPC application f(x) by a set of private
inputs. Hereafter, we assume, w.l.o.g., the first k parties (i.e., P1, · · · ,Pk) are
corrupted by the adversary for some k ≥ 1. For a given output v ∈ D, let
�f

v ⊆ Dn be the set {v ∈ Dn | f(v) = v}. Intuitively, �f
v is the set of the private

inputs v ∈ Dn under which f is evaluated to v. From the result v, the adversary
is able to learn the set �f

v , but cannot tell which one from �f
v given v. We refer

to �f
v as the indistinguishable space of the private inputs w.r.t. the result v. The

input domain Dn is then partitioned into indistinguishable spaces {�f
v}v∈D.

When the adversary controls the parties P1, · · · ,Pk, she will learn the set
Leakf

iw(v,vk) := {(v1, · · · , vn) ∈ Dn | vk = v1, · · · , vk}∩ �f
v , from the result v

and the adversary-chosen private inputs vk ∈ Dk.

Definition 1 (Leakage in the ideal-world). For an MPC application f(xn),
the leakage of computing v = f(vn) in the ideal-world is Leakf

iw(v,vk), for the
adversary-chosen private inputs vk ∈ Dk and the result v ∈ D.

MPC in the Real-World. An MPC application in the real-world is imple-
mented using some MPC protocol π (denoted by πf ) by which all the parties
collaboratively compute πf (x) over their private inputs v without any TTP T.
Introduction of MPC protocols can be found in [14].

There are generally two types of adversaries in the real world, i.e., semi-
honest and malicious. An adversary is semi-honest (a.k.a. passive) if the cor-
rupted parties run the protocol honestly as specified, but may try to learn private
information of other parties by observing the protocol execution (i.e., network
messages and program states). An adversary is malicious (a.k.a. active) if the
corrupted parties can deviate arbitrarily from the prescribed protocol (e.g., con-
trol, manipulate, and inject messages) in an attempt to learn private information
of the other parties. In this work, we consider semi-honest adversaries, which are
supported by most MPC frameworks and often serve as a basis for MPC in more
robust settings with powerful adversaries.

A protocol π is (semi-honest) secure if what a (semi-honest) adversary can
achieve in the real-world can also be achieved by a corresponding adversary in
the ideal-world. Semi-honest security ensures that the corrupted parties learn
no more information from executing the protocol than what they can learn from
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the result and the private inputs of the corrupted parties. Therefore, the leakage
of an MPC application f(x) in the real-world against the semi-honest adversary
can also be characterized using the indistinguishability of private inputs.

Definition 2. An MPC protocol π is (semi-honest) secure if for any MPC appli-
cation f(xn), adversary-chosen private inputs vk ∈ Dk and result v ∈ D, the
leakage of computing v = πf (vn) is Leakf

iw(v,vk).

4 Language-Level Leakage Characterization

In this section, we characterize the leakage of MPC applications from the lan-
guage perspective.

4.1 A Language for MPC

We consider a simple language While for implementing MPC applications. The
syntax of While programs is defined as follows.

p ::=skip | x = e | p1; p2 | if x then p1 else p2 | return x

| while x do p | repeat n do p

where e is an expression defined as usual and n is a positive integer.
Despite its simplicity, While suffices to illustrate our approach and our tool

supports a real-world language. Note that we introduce two loop constructs.
The while loop can only be used with the secret-independent conditions while
the repeat loop (with a fixed number n of iterations) can have secret-dependent
conditions. The restriction of the while loop is necessary, as the adversary knows
when to terminate the loop, so secret information may be leaked if a secret-
dependent condition is used [44].

The operational semantics of the While program is defined in a standard
way (cf. [15]). In particular, repeat n do p means repeating the loop body p for
a fixed number n times. A configuration is a tuple 〈p, σ〉, where p denotes a
statement and σ : X → D denotes a state that maps variables to values. The
evaluation of an expression e under a state σ is denoted by σ(e). A transition
from 〈p, σ〉 to 〈p′, σ′〉 is denoted by 〈p, σ〉 → 〈p′, σ′〉 and →∗ denotes the transitive
closure of →. An execution starting from the configuration 〈p, σ〉 is a sequence of
configurations. We write 〈p, σ〉 ⇓ σ′ if 〈p, σ〉 →∗ 〈skip, σ′〉. We assume that each
execution ends in a return statement, i.e., all the while loops always terminate.
We denote by 〈p, σ〉 ⇓ σ′ : v the execution returning value v.

4.2 Leakage Characterization in Ideal/Real-World

An MPC application f(x) is implemented as a While program p. An execution
of the program p evaluates the computation f(x) as if a TTP directly executed
the program p on the private inputs. In this setting, the adversary cannot observe
any intermediate states of the execution other than the final result.
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Let X in = {x1, · · · , xn} ⊆ X be the set of private input variables. We denote
by State0 the set of the initial states. Given a tuple of values vk ∈ Dk and a
result v ∈ D, let Leakp

iw(v,vk) denote the set of states σ ∈ State0 such that
〈p, σ〉 ⇓ σ′ : v for some state σ′ and σ(xi) = vi for 1 ≤ i ≤ k. Intuitively,
when the adversary controls the parties P1, · · · ,Pk, she learns the set of states
Leakp

iw(v,vk) from the result v and the adversary-chosen private inputs vk ∈ Dk.
We can reformulate the leakage of an MPC application f(x) in the ideal-world
(cf. Definition 1) as follows.

Proposition 1. Given an MPC application f(xn) implemented by a program p,
v′

n ∈ Leakf
iw(v,vk) iff there exists a state σ ∈ Leakp

iw(v,vk) such that σ(xi) = v′
i

for 1 ≤ i ≤ n.

We use security policies to characterize the leakage of MPC applications in
the real-world.

Security Level. We consider a lattice of security levels L = {Sec, Pub} with
Pub  Pub, Pub  Sec, Sec  Sec and Sec � Pub. We denote by �1 � �2 the least
upper bound of two security levels �1, �2 ∈ L, namely, � � Sec = Sec � � = Sec
for � ∈ L and Pub � Pub = Pub.

Definition 3. A security policy � : X → L for the MPC application f(x) is a
function that associates each variable x ∈ X with a security level � ∈ L.

Given a security policy � and a security level � ∈ L, let X � := {x | �(x) =
�} ⊆ X , i.e., the set of variables with the security level � under �. We lift the
order  to security policies, namely, �  �′ if �(x)  �′(x) for each x ∈ X .
When executing the program p with a security policy � using an MPC protocol
π, we assume that the adversary can observe the values of the public variables
x ∈ X Pub, but not that of the secret variables x ∈ X Sec.

This is a practical assumption and can be well-supported by the existing
approach. For instance, Obliv-C [44] allows developers to define an MPC appli-
cation in an extension of C language, when compiled and linked, the result will
be a concrete garbled circuit protocol πp whose computation does not reveal the
values of any oblivious-qualified variables. Thus, all the secret variables specified
by the security policy � can be declared as oblivious-qualified variables in Obliv-
C, while all the public variables specified by the security policy � are declared
without oblivious-qualification. Similarly, MPyC [37] is a Python package for
implementing MPC applications that allows programmers to define instances of
secret-typed variable classes using Python’s class mechanism. When executing
MPC applications, instances of secret-typed class variables are protected via
Shamir’s secret sharing protocol [38]. Thus, all the secret variables specified by
the security policy � can be declared as instances of secret-typed variable classes
in MPyC, while all the public variables specified by the security policy � are
declared as instances of Python’s standard classes.

Leakage Under a Security Policy. Fix a security policy � for the program
p. Remark that the values of the secret variables will not be known even at run-
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time for each party, as they are encrypted. This means that, unlike the secret-
independent conditions, the secret-dependent conditions cannot be executed nor-
mally, and thus should be removed using, e.g., multiplexers, before transforming
into circuits. We define the transformation T�(·, ·), where c is the selector of a
multiplexer.

T�(c, p1; p2) � T�(c, p1); T�(c, p2) T�(c, return x) � return x

T�(c, x = e) � x = x + c × (e − x) T�(c, skip) � skip

T�(c, if x then p1 else p2) �
{
if x then T�(1, p1) else T�(1, p2), if c = 1 ∧ �(x) = Pub;
T�(c&x, p1); T�(c&¬x, p2), otherwise.

T�(c,while x do p) �
{
while x do T�(1, p), if c = 1 ∧ �(x) = Pub;
Error, otherwise.

T�(c, repeat n do p) � repeat n do T�(c, p)

Intuitively, c in T�(c, ·) indicates whether the statement is under some secret-
dependent branching statements. Initially, c = 1. During the transformation, c
will be conjuncted with the branching condition x or ¬x when transforming
if x then p1 else p2 if x is secret or c �= 1. The control flow inside should be
protected if c �= 1. If c = 1 and the condition variable x is public, the statement
needs not be protected. T (c, x = e) simulates a multiplexer with two different
values depending on whether the assignment x = e is in the scope of some
secret-dependent conditions. At runtime, the value e is assigned to x if c is 1,
otherwise x does not change. T�(c,while x do p) enforces that the while loop
is used in secret-independent conditions and x is public in the security policy
� otherwise throws an error. The other cases are trivial. We denote by p̂� the
program T�(1, p) on which we will define the leakage of p in the real-world.

For every state σ : X → D, let σPub : X Pub → D denote the state that is
the projection of the state σ onto the public variables X Pub. For each execution
〈p̂�, σ1〉 ⇓ σ2, we denote by 〈p̂�, σ1〉 ⇓Pub

� σ2 the sequence of configurations where
each state σ is replaced by the state σPub.

Recall that the adversary can observe the values of public variables x ∈ X Pub

when executing the program p̂�. Thus, from an execution 〈p̂�, σ1〉 ⇓ σ2 : v, she
can observe the sequence 〈p̂�, σ1〉 ⇓Pub

� σ2 and the result v, written as 〈p̂�, σ1〉 ⇓Pub
�

σ2 : v. For every state σ ∈ Leakp
iw(v,vk), we denote by Leakp,�

rw (v, σ) the set of
states σ′ ∈ Leakp

iw(v,vk) such that 〈p̂�, σ
′〉 ⇓Pub

� σ′
1 : v and 〈p̂�, σ〉 ⇓Pub

� σ1 : v are
identical.

Definition 4. A security policy � is perfect for a given MPC application f(xn)
implemented by the program p, denoted by � |=p f(xn), if T�(1, p) does not throw
any errors, and for adversary-chosen private inputs vk ∈ Dk, the result v ∈ D,
and the state σ ∈ Leakp

iw(v,vk), we have that

Leakp
iw(v,vk) = Leakp,�

rw (v, σ).

Intuitively, a perfect security policy � ensures that for every state σ ∈
Leakp

iw(v,vk), from the observation 〈p̂�, σ〉 ⇓Pub
� σ′ : v, the adversary only learns

the same set Leakp
iw(v,vk) of initial states as that in the ideal-world.
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Our goal is to compute a perfect security policy � for every program p that
implements the MPC f(x). A naive way is to assign the high security level Sec
to all the variables X , which may however suffer from a lower performance, as
all the intermediate computations have to be performed on encrypted data and
conditional statements have to removed. Ideally, a security policy � should not
only be perfect but also annotate as few secret variables as possible.

5 Type System

In this section, we present a sound type system to automatically infer perfect
security policies. We first define noninterference of a program p w.r.t. a security
policy �, which is shown to entail the perfectness of �.

Definition 5. A program p is noninterfering w.r.t. a security policy �, written
as �-noninterfering, if T�(1, p) does not throw any errors and 〈p̂�, σ1〉 ⇓Pub

� σ2 : v
and 〈p̂�, σ

′
1〉 ⇓Pub

� σ′
2 : v′ are the same for each pair of states σ1, σ

′
1 ∈ State0.

Intuitively, the �-noninterference ensures that for all private inputs of the
n parties (without the adversary-chosen private inputs), the adversary observes
the same sequence of the configurations from all the executions that return the
same value.

The �-noninterference of p entails the perfectness of � where the adver-
sary can choose arbitrary private inputs vk ∈ Dk of the corrupted participants
(P1, · · · ,Pk) for any k ≥ 1.

Proposition 2. If p is �-noninterfering for a security policy �, then � |=p f(x).

Note that the converse of Proposition 2 does not necessarily hold due to the
adversary-chosen private inputs. For instance, suppose 〈p̂�, σ1〉 ⇓Pub

� σ2 : v and
〈p̂�, σ

′
1〉 ⇓Pub

� σ′
2 : v are identical for every pair of states σ1, σ

′
1 ∈ Leakp

iw(v, v1), and
〈p̂�, σ3〉 ⇓Pub

� σ4 : v and 〈p̂�, σ
′
3〉 ⇓Pub

� σ′
4 : v are identical for every pair of states

σ3, σ
′
3 ∈ Leakp

iw(v, v′
1). If v1 �= v′

1, then 〈p̂�, σ1〉 ⇓Pub
� σ2 : v and 〈p̂�, σ3〉 ⇓Pub

� σ4 : v
are different, implying that p is not �-noninterfering.

Based on Proposition 2, we present a type system for inferring a perfect
security policy � of a given program p such that p is �-noninterfering. The typing
judgement is in the form of c � p : � ⇒ �′, where the type contexts �, �′ are
security policies, p is the program under typing, and c is the security level of the
current control flow. The typing judgement c � p : � ⇒ �′ states that given the
security level of the current control flow c and the type context �, the statement
p is typable and yields a new updated type context �′.

The type inference rules are shown in Fig. 3 which track the security levels
of both data- and control-flow of information from private inputs, where �(e)
denotes the least upper bound of the security levels �(x) of variables x used in
the expression e and �1 � �2 is the security policy such that for every variable
x ∈ X , (�1 � �2)(x) = �1(x) � �2(x). lfp(c, n, �, p) is � if n = 0 or �′ = �,
otherwise lfp(c, n − 1, �′, p), where c � p : � ⇒ �′. Note that constants have the
security level Pub. Most of those rules are standard.
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Fig. 3. Type inference rules

Rule T-Assign disables the data-flow and control-flow of information from
the security level Sec to the security level Pub. To meet this constraint, the
security level of the variable x is updated to the least upper bound c � �(e)
of the security levels of the current control flow c and variables used in the
expression e. Rule T-If passes the security level c of the current control flow into
both branches, preventing from assigning values to public variables in those two
branches when c = Sec. Rule T-While requires that the loop condition is public
and the loop is used with secret-independent conditions, ensuring that T�(1, p)
does not throw any errors. Rule T-Return does not impose any constraints on
x, as the return value is observable to the adversary.

Let �0 : X → L be the mapping such that �0(x) = Sec for all x ∈ X Sec,
�0(x) = Pub otherwise. If the typing judgement Pub � p : �0 ⇒ � is valid, then
the values of all the public variables specified by � do not depend on any values
of private inputs. Thus, it is straightforward to get that:

Proposition 3. If the typing judgement Pub � p : �0 ⇒ � is valid, then the
program p is �-noninterfering.

From Proposition 2 and Theorem 3, we have

Corollary 1. If Pub � p : �0 ⇒ � is valid, then � is perfect, i.e., � |=p f(x).

6 Degrading Security Levels

The type system allows to infer a security policy � such that the type judgement
Pub � p : �0 ⇒ � is valid, from which we can deduce that � |=p f(x), i.e., � is
perfect for the MPC application f(x) implemented by the program p. However,
the security policy � may be too conservative, i.e., some secret variables specified
by � can be declassified without compromising the security. In this section, we
propose an automated approach to identify these variables. We mainly consider
minimizing the number of secret branching variables, viz., the secret variables
used in branching conditions, as they usually incur a high computation and
communication overhead. W.l.o.g., we assume that for each secret branching
variable x there is only one assignment to x and it is used only in one conditional
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Fig. 4. The symbolic semantics of While programs

statement. (We can rename variables in p if this assumption does not hold,
where the named variables have the same security levels as their original names.)
With this assumption, whether x can be declassified depends only on the unique
conditional statement where it occurs.

Fix a security policy � such that � |=p f(x). Suppose that if x then p1 else p2 is
not used with secret-dependent conditions. Let �′ be the security policy �[x �→
Pub]. It is easy to see that T�′(1, p) does not raise any errors. Therefore, to
declassify x, we need to ensure that 〈p̂�′ , σ′〉 ⇓Pub

�′ σ′
1 : v and 〈p̂�′ , σ〉 ⇓Pub

�′ σ1 : v

are identical for every adversary-chosen private inputs vk ∈ Dk, result v ∈ D,
and states σ, σ′ ∈ Leakp

iw(v,vk). However, as the number of the initial states may
be large and even infinite, it is infeasible to check all pairs of executions.

We propose to use symbolic executions to represent the potentially infinite
sets of (concrete) executions. Each symbolic execution t is associated with a path
condition φ which denotes the set of initial states satisfying φ, from each of which
the execution has the same sequence of statements. Thus, the conjunction φ∧e =
v, where e is the symbolic return value and v is concrete value, represents the set
of initial states from which the executions have the same sequence of statements
and returns the same result v. It is not difficult to observe that checking whether
x in if x then p1 else p2 can be declassified amounts to checking whether for every
pair of symbolic executions t1 and t2 that both include if x then p1 else p2, x
has the same truth value in t1 and t2 whenever t1 and t2 return the same value.
This can be solved by invoking off-the-shelf SMT solvers.

6.1 Symbolic Semantics

Let E denote the set of expressions over the private input variables x and con-
stants. A path condition φ ∈ E is a conjunction of Boolean expressions. A state
σ ∈ State0 satisfies φ, denoted by σ |= φ, if φ evaluates to True under σ. A
symbolic state α is a function X → E that maps variables to symbolic expres-
sions. α(e) denotes the symbolic value of the expression e under α, obtained
from e by replacing each occurrence of variable x by α(x). The initial symbolic
state, denoted by α0, is the identity function over the private input variables x.
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The symbolic semantics of While programs is defined by transitions between
symbolic configurations, as shown in Fig. 4, where SAT(φ) is True iff the con-
straint φ is satisfiable. A symbolic configuration is a tuple �p, α, φ�, where p
is a statement, α is a symbolic state, and φ is the path condition that should
be satisfied to reach �p, α, φ�. �p, α, φ� ↪→ �p′, α′, φ′� denotes a transition from
�p, α, φ� to �p′, α′, φ′�. The symbolic semantics is almost the same as the oper-
ational semantics except that (1) the path conditions are collected and checked
for conditional statements and while loops, and (2) the transition may be non-
deterministic if both φ ∧ α(x) and φ ∧ ¬α(x) are satisfiable.

We denote by ↪→∗ the transitive closure of ↪→, where its path condition is
the conjunction of that of each transition. An symbolic execution starting from
a symbolic configuration �p, α, φ� is a sequence of symbolic configurations, writ-
ten as �p, α, φ� ⇓ (α′, φ′), if �p, α, φ� ↪→∗ �skip, α′, φ′�. Moreover, we denote by
�p, α, φ� ⇓ (α′, φ′) : e the symbolic execution �p, α, φ� ⇓ (α′, φ′) with the sym-
bolic return value e. We denote by SymExe the set of all the symbolic executions
�p, α0, True� ⇓ (α, φ) : e of the program p. Note that α0 is the initial symbolic
state. Recall that we assumed all the (concrete) executions always terminate,
thus SymExe is a finite set of finite sequence of symbolic configurations.

6.2 Relating Symbolic Executions to Concrete Executions

A symbolic execution t = �p, α0, True� ⇓ (α, φ) : e represents the set of (con-
crete) executions starting from the states σ ∈ State0 such that σ |= φ. Formally,
consider σ ∈ State0 such that σ |= φ, by concretizing all the symbolic values
of variables x in each symbolic state α′ with concrete values σ(α′(x)) and pro-
jecting out all the path conditions, the symbolic execution t is the execution
〈p, σ〉 ⇓ σ′ : σ(e), written as σ(t). For the execution 〈p, σ〉 ⇓ σ′ : v, there are a
unique symbolic execution t such that σ(t) = 〈p, σ〉 ⇓ σ′ : v and a unique exe-
cution 〈p̂�, σ〉 ⇓ σ′ : v in the program p̂�. We denote by RW�,σ(t) the execution
〈p̂�, σ〉 ⇓� σ′ : v and denote by RWPub

�,σ(t) the sequence 〈p̂�, σ〉 ⇓Pub
� σ′ : v.

For every adversary-chosen private inputs vk ∈ Dk, result v ∈ D, and ini-
tial state σ ∈ Leakp

iw(v,vk), we can reformulate the set Leakp,�
rw (v, σ) as fol-

lows. (Recall that Leakp,�
rw (v, σ) is the set of states σ′ ∈ Leakp

iw(v,vk) such that
〈p̂�, σ

′〉 ⇓Pub
� σ′

1 : v and 〈p̂�, σ〉 ⇓Pub
� σ1 : v are identical.)

Proposition 4. For each state σ′ ∈ Leakp
iw(v,vk), σ′ ∈ Leakrwp,�(v, σ) iff for

every symbolic execution t′ = �p, α0, True� ⇓ (α′, φ′) : e′ ∈ SymExe such that
σ′ |= φ′ ∧ e′ = v, RWPub

�,σ(t) and RWPub
�,σ′(t′) are identical, where t is a symbolic

execution �p, α0, True� ⇓ (α, φ) : e such that σ |= φ ∧ e = v.

Proposition 4 allows to consider only the symbolic executions �p, α0, True� ⇓
(α, φ) : e ∈ SymExe such that σ |= φ ∧ e = v when checking if � is perfect or not.

6.3 Reasoning About Symbolic Executions

We leverage Proposition 4 to identify secret variables that can be declassified
without compromising the security by reasoning about symbolic executions. For
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each expression φ ∈ E , Primed(φ) denotes the “primed” expression φ where each
private input variable xi is replaced by x′

i (i.e., its primed version).
Consider two symbolic executions t = �p, α0, True� ⇓ (α, φ) : e and t′ =

�p, α0, True� ⇓ (α′, φ′) : e′. Assume if x then p′ else p′′ is not used with any secret-
dependent conditions. Recall that we assumed x is used only in if x then p′ else p′′.
Then, t and t′ execute the same subsequence (say p1, · · · , pm) of the statements
that are if x then p′ else p′′. Let e1, · · · , em (resp. e′

1, · · · , e′
m) be symbolic values

of x when executing p1, · · · , pm in the symbolic execution t (resp. t′). Define the
constraint Ψx(t, t′) as

Ψx(t, t′) �
(

φ ∧ Primed(φ′) ∧ e = Primed(e′)
)

⇒
(

m
∧

i=1

ei = Primed(e′
i)

)

Intuitively, Ψx(t, t′) asserts that for every pair of states σ, σ′ ∈ State0 if σ
(resp. σ′ ) satisfies the path condition φ (resp. φ′), σ(e) and σ′(e′) are identical,
then for each 1 ≤ i ≤ m, the values of x are the same when executing the
conditional statement pi in both RW�,σ(t) and RW�,σ′(t′).

Proposition 5. For each pair of states σ, σ′ ∈ Leakp
iw(v,vk) such that σ |=

φ∧e = v and σ′ |= φ′∧e′ = v, if Ψx(t, t′) is valid and RWPub
�,σ(t) and RWPub

�,σ′(t′) are
identical, then RWPub

�′,σ(t) and RWPub
�′,σ′(t′) are identical, where �′ = �[x �→ Pub].

Recall that x can be declassified in a perfect security policy � if �′ = �[x �→
Pub] is still perfect, namely, 〈p̂�′ , σ′〉 ⇓Pub

�′ σ′
1 : v and 〈p̂�′ , σ〉 ⇓Pub

�′ σ1 : v are
identical for every adversary-chosen private inputs vk ∈ Dk, result v ∈ D, and
states σ, σ′ ∈ Leakp

iw(v,vk). By Proposition 5, if Ψx(t, t′) is valid for each pair of
symbolic executions t, t′ ∈ SymExe, we can deduce that �′ is still perfect.

Theorem 1. If � |=p f(x) and Ψx(t, t′) is valid for each pair of symbolic execu-
tions t, t′ ∈ SymExe, then �[x �→ Pub] |=p f(x).

Example 1. Consider two symbolic executions t and t′ in the motivating example
such that the path condition φ (resp. φ′) of t (resp. t′) is a ≥ b ∧ c > a (resp.
a < b ∧ c > b), and both return the result 3. The secret branching variable c2
has the symbolic values c > a (resp. c > b) in t and t′, respectively. Then

Ψc2(t, t′) � (a ≥ b ∧ c > a ∧ a′ < b′ ∧ c′ > b′ ∧ 3 = 3) ⇒ ((c > a) = (c′ > b′)).

Obviously, Ψc2(t, t′) is valid. We can show that for any other pair (t, t′) of sym-
bolic executions, Ψc2(t, t′) is always valid. Therefore, the secret branching vari-
able c2 can be declassified in any perfect security policy �.

In contrast, the secret branching variable c1 has the symbolic value a < b in
both t and t′. Then,

Ψc1(t, t′) � (a ≥ b ∧ c > a ∧ a′ < b′ ∧ c′ > b′ ∧ 3 = 3) ⇒ ((a < b) = (a′ < b′)).

Ψc1(t, t′) is not valid, thus the secret branching variable c1 cannot be declassified.



398 Y. Fan et al.

An MPC 
application

Type inference
Degrading 

security level
MPyC

PoS4MPC

Security policy synthesis MPC Framework
Obliv-C

Executable 

... ...

Party 1

Party n

Fig. 5. The workflow of our tool PoS4MPC

Refinement. Theorem 1 allows us to check if the secret branching variable x
of a conditional statement if x then p′ else p′′ that does not used with any
secret-dependent conditions can be declassified. After that, if x can be declas-
sified without compromising the security, we feed back the result to the type
system before checking the next secret branching variable. This allows us to
refine the security level of variables that are updated in branches, namely, the
type inference rule T-If is refined to the following one.

c′ = (can x be declassified ? Pub : �(x))
c � c′ � p1 : � ⇒ �1 c � c′ � p2 : � ⇒ �2 �′ = �1 � �2

c � if x then p1 else p2 : � ⇒ �′ [T-If]

7 Implementation and Evaluation

We have implemented our approach in a tool, named PoS4MPC. The workflow
of PoS4MPC is shown in Fig. 5, The input is an MPC program in C, which
is parsed to an intermediate representation (IR) inside the LLVM Compiler [1]
where call graph and control flow graphs are constructed at the LLVM IR level.
We then perform the type inference which computes the a perfect security pol-
icy for the given program. To be accurate, we perform a field-sensitive pointer
analysis [6] and our type inference is also field-sensitive. As the next step, we
leverage the KLEE symbolic execution engine [10] to explore all the feasible sym-
bolic executions, as well as the symbolic values of the return variable and secret
branching variables of each symbolic execution. We fully explore loops since the
bounds of loops in MPC are public and decided by user-specified inputs. Based
on them, we iteratively check if a secret branching variable is degraded and the
result is fed back to the type inference to refine security levels before checking
the next secret branching variable. After that, we transform the program into
the input of Obliv-C [44] by which the program can be compiled into executable
implementations, one for each party. Obliv-C is an extension of C for imple-
menting 2-party MPC applications using Yao’s garbled circuit protocol [43]. For
experimental purposes, PoS4MPC also features the high-level MPC framework
MPyC [37], which is a Python package for implementing n-party MPC appli-
cations (n ≥ 1) using Shamir’s secret sharing protocol [38]. The C program is
transformed into Python by a translator.

We also implement an optimization in our tool to alleviate the path explo-
sion problem. Instead of directly checking the validity of Ψx(t, t′) for each secret
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Table 2. Number of (secret) branching variables

Name LOC #Branch var #Other var
#Secret branch var #Other secret var

After TS After Check Before refinement After refinement

QS 56 4 6 3 0 4 2

LinS 25 1 3 1 0 2 1

BinS 46 2 8 2 1 6 6

AlmS 73 6 10 6 4 8 8

PSI 34 1 5 1 0 3 1

branching variable x and pair of symbolic executions t and t′, we first check if
the premise φ ∧ Primed(φ′) ∧ e = Primed(e′) of Ψx(t, t′) is satisfiable. We can
conclude that Ψx(t, t′) is valid for any secret branching variable x if the premise
φ∧Primed(φ′)∧e = Primed(e′) is unsatisfiable. Furthermore, this yields a sound
compositional reasoning approach which allows to split a program into a sequence
of function calls. When each pair of the symbolic executions for each function
cannot result in the same return value, we can conclude that Ψx(t, t′) is valid
for any secret branching variable x and any pair of symbolic executions t and
t′ of the entire program. This optimization reduces the evaluation time of sym-
bolic execution of PSI (resp. QS) from 95.9 s–8.1 h (resp. 504.6 s) to 1.7 s–79.6 s
(resp. 11.6 s) in input array size varies from 10 to 100 (resp. 10).

7.1 Evaluation Setup

For an evaluation of our approach, we conduct experiments on five typical 2-
party MPC applications [2], i.e., quicksort (QS) [21], linear search (LinS) [13],
binary search (BinS) [13], almost search (AlmS), and private set intersection
(PSI) [5]. QS outputs the list of indices of a given integer array a in its ordered
version, where the first half of a is given by one party and the second half of a
is given by the another party. LinS (resp. BinS and AlmS) outputs the index of
an integer b in an array a if it exists, −1 otherwise, where the integer array a is
the input from one party and the integer b is the input from the another party.
LinS always scans the array from the start to the end even though it has found
the integer b. BinS is a standard iterative approach on a sorted array, where the
array index is protected via oblivious read access machine [20]. AlmS is a variant
of BinS, where the input array is almost sorted, namely, each element is at either
the correct position or the closest neighbour of the correct position. PSI outputs
the intersection of two integer sets, each of which is an input from one party.

All the experiments were conducted on a desktop with 64-bit Linux Mint
20.1, Intel Core i5-6300HQ CPU, 2.30 GHz and 8 GB RAM. When evaluating
MPC applications, the client of each party is executed with a single thread.

7.2 Performance of Security Policy Synthesis

Security Policy. The results of our approach is shown in Table 2, where column
(LOC) shows the number of lines of code, column (#Branch var) shows the
number of branching variables while column (#Other var) shows the number
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Table 3. Execution time of our security policy synthesis approach

Name

Length

10 20 30 40 50 60 70 80 90 100

SE Check SE Check SE Check SE Check SE Check SE Check SE Check SE Check SE Check SE Check

QS 11.6 0.8 0.4h 304.2 2.0h 959.8 5.0h 0.6h 9.5h 0.9h 15.5h 1.3h 22.6h 1.6h 31.0h 2.0h 40.7h 2.3h 51.6h 2.7h

LinS 0.4 1.0 0.6 1.0 1.0 1.0 1.4 1.0 2.0 1.1 2.6 1.1 3.4 1.2 4.2 1.2 5.2 1.3 6.2 1.4

BinS 0.8 1.1 2.1 4.3 3.8 10.2 6.4 20.0 9.5 34.8 13.8 54.6 19.5 80.1 25.6 103.4 34.1 151.4 42.7 204.7

AlmS 1.3 0.8 4.3 3.5 7.7 10.0 14.1 18.6 20.6 32.3 28.9 51.0 40.7 77.4 55.1 110.3 74.9 148.2 94.4 200.0

PSI 1.7 0.5 4.3 1.0 8.0 1.5 13.2 2.1 20.0 2.8 28.6 3.5 39.3 4.3 50.9 5.3 63.0 6.4 79.6 7.8

of other variables, columns (After TS) and (After Check) respectively show the
number of secret branching variables after applying the type system and checking
if the secret branching variables can be declassified, columns (Before refinement)
and (After refinement) respectively show the number of other secret variables
before and after refining the type inference by feeding back the results of the
symbolic reasoning. (Note that the input variables are excluded in counting.)

We can observe that only few variables (2 for QS, 1 for LinS, 2 for BinS,
2 for AlmS and 2 for PSI) can be found to be public by solely using the type
system. With our symbolic reasoning approach, more secret branching variables
can be declassified without compromising the security (3 for QS, 1 for LinS, 1 for
BinS, 2 for AlmS and 1 for PSI). After refining the type inference using results
of the symbolic reasoning approach, more secret variables can be declassified (2
for QS, 1 for LinS and 2 for PSI). Overall, our approach annotates 2, 1, 7, 12 and
1 internal variables as secret out of 10, 4, 10, 16 and 6 variables for QS, LinS,
BinS, AlmS and PSI, respectively.

Execution Time. The execution time of our approach is shown in Table 3,
where columns (SE) and (Check) respectively show the execution time (in second
unless indicated by h for hour) of collecting symbolic executions and checking if
secret branching variables can be declassified, by varying the size of the input
array for each program from 10 to 100 with step 10. We did not report the
execution time of our type system, as it is less than 0.1 s for each benchmark.

We can observe that our symbolic reasoning approach is able to check all
the secret branching variables in few minutes (up to 294.4 s) except for QS.
After an in-depth analysis, we found that the number of symbolic executions
is exponential in the length of the input array for QS and PSI while it is linear
in the length of the input array for the other benchmarks. Our compositional
reasoning approach works very well on PSI, otherwise it would take similar exe-
cution time as on QS. Indeed, a loop of PSI is implemented as a sequence of
function calls each of which has a fixed number of symbolic executions. Further-
more, each pair of symbolic executions in the called function cannot result in
the same return value. Therefore, the number of symbolic executions and the
execution time of our symbolic reasoning approach is reduced significantly. How-
ever, our compositional reasoning approach does not work on QS. Although the
number of symbolic executions grows exponentially on QS, the execution time of
checking if secret branching variables can be declassified is still reduced by our
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Fig. 6. Execution time (Time) in second, the number of gates (Gate) in 106 gates,
Communication (Comm.) in MB using Obliv-C

Fig. 7. Execution time (Time) in second using MPyC

optimization, which avoids the checking of the constraint Ψx(t, t′) if its premise
φ ∧ Primed(φ′) ∧ e = Primed(e′) is unsatisfiable.

7.3 Performance Improvement of MPC Applications

To evaluate the performance improvement of the MPC applications, we compare
the execution time (in second), the size of the circuits (in 106×gates), and the
volume of communication traffic (in MB) of each benchmark with the security
policies v1 and v2, where v1 is obtained by solely applying our type system and
v2 is obtained from v1 by degrading security levels and refinement without com-
promising the security. The measurement results are calculated by result of v1

result of v2 −1,
taking the average of 10 times repetitions in order to minimize the noise.

Obliv-C. The results in Obliv-C are depicted in Fig. 6 (note the logarithmic scale
of the vertical coordinate), where the size of the random input array for each
benchmark varies from 10 to 100 with step size 10. Overall, we can observe that
the performance improvement is significant especially on QS. In detail, compared
with the security policy v1 on QS (resp. LinS, BinS, AlmS, and PSI), on average
the security policy v2 reduces (1) the execution time by 1.56×105% (resp. 45%,
38%, 31% and 36%), (2) the size of circuits by 3.61×105% (resp. 368%, 52%, 38%
and 275%), and (3) the volume of communication traffic by 4.17 × 105% (resp.
367%, 53%, 39% and 274%). This demonstrates the performance improvement
of the MPC applications in Obliv-C that uses Yao’s garbled circuit protocol.
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MPyC. The results in MPyC are depicted in Fig. 7. Since MPyC does not
provide the size of circuits and the volume of communication traffic, we only
report execution time in Fig. 7. The results show that degrading security levels
also improves execution time in MPyC that uses Shamir’s secret sharing protocol.
Compared with the security policy v1 on benchmark QS (resp. LinS, BinS, AlmS,
and PSI), on average the security policy v2 reduces the execution time by 2.5 ×
104% (resp. 64%, 23%, 17% and 996%).

We note the difference in improvements of Obliv-C and MPyC. It is because:
(1) Obliv-C and MPyC use different MPC protocols with varying improvements,
where Yao’s protocol (Obliv-C) is efficient for Boolean computations while the
secret-sharing protocol (MPyC) is efficient for arithmetic computations; and (2)
the proportion of downgrading variables is different where a larger proportion
of downgrading variables (in particular branching variables with large branches)
boosts performance more.

8 Related Work

MPC Frameworks. Early efforts to MPC frameworks provide high-level lan-
guages for specifying MPC applications and compilers for translating them into
executable implementations [8,23,31,32]. For instance, Fairplay complies 2-party
MPC programs written in a domain-specific language into Yao’s garbled cir-
cuits [31]. FairplayMP [8] extends Fairplay to multi-party using a modified ver-
sion of the BMR protocol [7] with a Java interface. The others are aimed at
improving the efficiency of operations in circuits and size of circuits. Mixed MPC
protocols were also proposed to improve efficiency [9,26,34], as the efficiency of
MPC protocols vary in operations. These frameworks explore the implementa-
tion space of operations in specific MPC protocols (e.g., garbled circuits, secret
sharing and homomorphic encryption), as well as their conversions. However, all
these frameworks either entirely compile an MPC program or compile an MPC
program according to user-annotated secret variables to improve performance
without formal security guarantees. Our approach improves the performance of
MPC applications by declassifying secret variables without compromising secu-
rity, which is orthogonal to the above optimization work.

Security of MPC Applications. Since MPC applications implemented in
MPC frameworks are not necessarily secure due to information leakage dur-
ing execution in the real-world. Therefore, information-flow type systems and
data-flow analysis have been adopted in the MPC frameworks, e.g., [24,37,44].
However, they only consider security verification but not automatic generation
of security policies as we did in the current paper. Moreover, these approaches
cannot identify some variables (e.g., c2 in our motivating example) that can
actually be declassified without compromising security. Kerschbaum [25] pro-
posed to infer public intermediate values by reasoning about epistemic modal
logic, with a similar goal to ours for declassifying secret variables. However, it is
unclear how efficient this approach is, as the performance of their approach was
not reported [25].
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Alternatively, self-composition which reduces the security problem to the
safety problem on two copies of a program has been adopted by [3], where
the safety problem can be solved by safety verification tools. However, safety
verification remains challenging and these approaches often require user anno-
tations (e.g., procedure contracts and loop invariants) that are non-trivial for
MPC practitioners. Our work is different from them in: (1) they only use the
self-composition reduction to verify security instead of automatically generat-
ing a security policy; (2) they have to check almost all the program variables
which is computational expensive, while we first apply an efficient type system
to infer a security policy and then only check if the security branching variables
in the security policy can be declassified; and (3) we check if security branching
variables can be declassified by reasoning about pairs of symbolic executions
which can be seen as a divide-and-conquer approach without annotations, and
the results can be fed back to the type system to efficiently refine security levels.
We remark that the self-composition reduction could also be used to check if a
security branching variable could be declassified.

Information-Flow Analysis. A rich body of literature has studied verifica-
tion of information-flow security and noninterference in programs [12], which
requires that confidential data does not flow to outputs. This is too restrictive
for programs which allow secret data to flow to some non-secret outputs, e.g.,
MPC applications, therefore the security notion is extended with declassifica-
tion (a.k.a. delimited release) later [27]. These security problems are verified by
type systems (e.g. [27]) or self-composition (e.g., [39]) or relational reasoning
(e.g., [4]). Some of these techniques have been adapted to verify timing side-
channel security, e.g., [11,30,42]. However, as the usual notions of security in
these settings do not require reasoning about arbitrary leakage, these techniques
are not directly applicable to our setting. Different from existing analysis using
symbolic execution [33], our approach takes advantage of the public outputs of
MPC programs and regards the public outputs as a part of leakage to avoid false
positive of the noninterference approach and the quantification of information
flow.

Finally, we remark that the leakage model considered in this work is dif-
ferent from the ones used in power side-channel security [16–19,45] and timing
side-channel security [11,30,36,42] which leverage side-channel information while
ours assumes that the adversary is able to observe all the public information dur-
ing computation.

9 Conclusion

We have formalized the leakage of an MPC application which bridge the
language-level and protocol-level leakages via security policies. Based on the for-
malization, we have presented an approach to automatically synthesize a security
policy which can improve the performance of MPC applications while not com-
promising their privacy. Our approach is essentially a synergistic integration of
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type inference and symbolic reasoning with security type refinement. We imple-
mented our approach in a tool PoS4MPC. The experimental results on five
typical MPC applications confirm that our approach can significantly improve
the performance of MPC applications.

References

1. The LLVM compiler infrastructure. https://llvm.org
2. The source code of our benchmarks (2022). https://github.com/SPoS4/PoS4MPC
3. Almeida, J.B., Barbosa, M., Barthe, G., Pacheco, H., Pereira, V., Portela, B.:

Enforcing ideal-world leakage bounds in real-world secret sharing MPC frame-
works. In: CSF, pp. 132–146 (2018)

4. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: POPL, pp. 91–102 (2006)

5. Andreea, I.: Private set intersection: past, present and future. In: SECRYPT, pp.
680–685 (2021)

6. Balatsouras, G., Smaragdakis, Y.: Structure-sensitive points-to analysis for C and
C++. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 84–104. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53413-7 5

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC, pp. 503–513 (1990)

8. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS, pp. 257–266 (2008)
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Abstract. Hyperproperties relate multiple computation traces to each
other. Model checkers for hyperproperties thus return, in case a system
model violates the specification, a set of traces as a counterexample.
Fixing the erroneous relations between traces in the system that led
to the counterexample is a difficult manual effort that highly benefits
from additional explanations. In this paper, we present an explanation
method for counterexamples to hyperproperties described in the spec-
ification logic HyperLTL. We extend Halpern and Pearl’s definition of
actual causality to sets of traces witnessing the violation of a HyperLTL
formula, which allows us to identify the events that caused the violation.
We report on the implementation of our method and show that it signif-
icantly improves on previous approaches for analyzing counterexamples
returned by HyperLTL model checkers.

1 Introduction

While model checking algorithms and tools (e.g., [12,17,18,26,47,55]) have, in
the past, focused on trace properties, recent failures in security-critical systems,
such as Heartbleed [28], Meltdown [59], Spectre [52], or Log4j [1], have triggered
the development of model checking algorithms for properties that relate multiple
computation traces to each other, i.e., hyperproperties [21]. Although the coun-
terexample returned by such a model checker for hyperproperties, which takes
the shape of a set of traces, may aid in the debugging process, understanding
and narrowing down which features are actually responsible for the erroneous
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relation between the traces in the counterexample requires significantly more
manual effort than for trace properties. In this paper, we develop an explana-
tion technique for these more complex counterexamples that identifies the actual
causes [44–46] of hyperproperty violations.

Existing hyperproperty model checking approaches (e.g., [33,35,49]), take a
HyperLTL formula as an input. HyperLTL is a temporal logic extending LTL
with explicit trace quantification [20]. For example, observational determinism,
which requires that all traces π, π′ agree on their observable outputs lo when-
ever they agree on their observable inputs li , can be formalized in HyperLTL
as ∀π.∀π′. (liπ ↔ liπ′) → (loπ ↔ loπ′). In case a system model violates
observational determinism, the model checker consequently returns a set of two
execution traces witnessing the violation.

A first attempt in explaining model checking results of HyperLTL specifi-
cations has been made with HyperVis [48], which visualizes a counterexample
returned by the model checker MCHyper [35] in a browser application. While
the visualizations are already useful to analyze the counterexample at hand, it
fails to identify causes for the violation in several security-critical scenarios. This
is because HyperVis identifies important atomic propositions that appear in the
HyperLTL formula and highlights these in the trace and the formula. For detect-
ing causes, however, this is insufficient: a cause for a violation of observational
determinism, for example, could be a branch on the valuation of a secret input
is, which is not even part of the formula (see Sect. 3 for a running example).

Defining what constitutes an actual cause for an effect (a violation) in a
given scenario is a precious contribution by Halpern and Pearl [44–46], who
refined and formalized earlier approaches based on counterfactual reasoning [58]:
Causes are sets of events such that, in the counterfactual world where they do
not appear, the effect does not occur either. One of the main insights of Halpern
and Pearl’s work, however, is that naive counterfactuals are too imprecise. If, for
instance, our actual cause preempted another potential cause, the mere absence
of the actual cause will not be enough to prevent the effect, which will be still
produced by the other cause in the new scenario. Halpern and Pearl’s definition
therefore allows to carefully control for other possible causes through the notion
of contingencies. In the modified definition [44], contingencies allow to fix certain
features of the counterfactual world to be exactly as they are in the actual world,
regardless of the system at hand. Such a contingency effectively modifies the
dynamics of the underlying model, and one insight of our work is that defining
actual causality for reactive systems also needs to modify the system under
a contingency. Notably, most works regarding trace causality [13,39] do not
consider contingencies but only counterfactuals, and thus are not able to find
true actual causes.

In this paper, we develop the notion of actual causality for effects described
by HyperLTL formulas and use the generated causes as explanations for coun-
terexamples returned by a model checker. We show that an implementation of
our algorithm is practically feasible and significantly increases the state-of-the-
art in explaining and analyzing HyperLTL model checking results.
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2 Preliminaries

We model a system as a Moore machine [62] T = (S, s0, AP, δ, l) where S is
a finite set of states, s0 ∈ S is the initial state, AP = I ∪· O is the set of
atomic propositions consisting of inputs I and outputs O, δ : S × 2I → S is the
transition function determining the successor state for a given state and set of
inputs, and l : S → 2O is the labeling function mapping each state to a set of
outputs. A trace t = t0t1t2 . . . ∈ (2AP )ω of T is an infinite sequence of sets of
atomic propositions with ti = A ∪ l(si), where A ⊆ I and δ(si, A) = si+1 for
all i ≥ 0. We usually write t[n] to refer to the set tn at the (n + 1)-th position
of t. With traces(T ), we denote the set of all traces of T . For some sequence of
inputs a = a0a1a2 . . . ∈ (2I)ω, the trace T (a) is defined by T (a)i = ai ∪ l(si)
and δ(si, ai) = si+1 for all i ≥ 0. A trace property P ⊆ T is a set of traces. A
hyperproperty H is a lifting of a trace property, i.e., a set of sets of traces. A
model T satisfies a hyperproperty H if the set of traces of T is an element of the
hyperproperty, i.e., traces(T ) ∈ H.

2.1 HyperLTL

HyperLTL is a recently introduced logic for expressing temporal hyperproperties,
extending linear-time temporal logic (LTL) [64] with trace quantification:

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∧ ψ | ψ | ψ Uψ

We also consider the usual derived Boolean (∨, →, ↔) and temporal operators
(ϕRψ ≡ ¬(¬ϕU¬ψ), ϕ ≡ true Uϕ, ϕ ≡ falseRϕ). The semantics of Hyper-
LTL formulas is defined with respect to a set of traces Tr and a trace assignment
Π : V → Tr that maps trace variables to traces. To update the trace assignment
so that it maps trace variable π to trace t, we write Π[π → t].

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr ¬ϕ iff Π, i �Tr ϕ
Π, i �Tr ϕ ∧ ψ iff Π, i �Tr ϕ and Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i + 1 �Tr ϕ
Π, i �Tr ϕUψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π → t], i �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π → t], i �Tr ϕ

We explain counterexamples found by MCHyper [24,35], which is a model
checker for HyperLTL formulas, building on ABC [12]. MCHyper takes as
inputs a hardware circuit, specified in the Aiger format [8], and a Hyper-
LTL formula. MCHyper solves the model checking problem by computing the
self-composition [6] of the system. If the system violates the HyperLTL for-
mula, MCHyper returns a counterexample. This counterexample is a set of
traces through the original system that together violate the HyperLTL formula.
Depending on the type of violation, this counterexample can then be used to
debug the circuit or refine the specification iteratively.
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2.2 Actual Causality

A formal definition of what actually causes an observed effect in a given context
has been proposed by Halpern and Pearl [45]. Here, we outline the version later
modified by Halpern [44]. Causality is defined with respect to a causal model
M = (S,F), given by a signature S and set of structural equations F , which
define the dynamics of the system. A signature S is a tuple (U ,V,D), where U
and V are disjoint sets of variables, termed exogenous and endogenous variables,
respectively; and D defines the range of possible values D(Y ) for all variables
Y ∈ U ∪ V. A context �u is an assignment to the variables in U ∪ V such that
the values of the exogenous variables are determined by factors outside of the
model, while the value of some endogenous variable X is defined by the associated
structural equation fX ∈ F . An effect ϕ in a causal model is a Boolean formula
over assignments to endogenous variables. We say that a context �u of a model M
satisfies a partial variable assignment �X = �x for �X ⊆ U ∪ V if the assignments
in �u and in �x coincide for every variable X ∈ �X. The extension for Boolean
formulas over variable assignments is as expected. For a context �u and a partial
variable assignment �X = �x, we denote by (M, �u)[ �X ← �x] the context �u′ in which
the values of the variables in �X are set according to �x, and all other values are
computed according to the structural equations.

The actual causality framework of Halpern and Pearl aims at defining what
events (given as variable assignments) are the cause for the occurrence of an
effect in a specific given context. We now provide the formal definition.

Definition 1 ([44,45]). A partial variable assignment �X = �x is an actual cause
of the effect ϕ in (M, �u) if the following three conditions hold.

AC1: (M, �u) � �X = �x and (M, �u) � ϕ, i.e., both cause and effect are true in the
actual world.

AC2: There is a set �W ⊆ V of endogenous variables and an assignment �x′ to the
variables in �X s.t. if (M, �u) � �W = �w, then (M, �u)[ �X ← �x′, �W ← �w] � ¬ϕ.

AC3: �X is minimal, i.e. no subset of �X satisfies AC1 and AC2.

Intuitively, AC2 states that in the counterfactual world obtained by interven-
ing on the cause �X = �x in the actual world (that is, setting the variables in �X to
�x′), the effect does not appear either. However, intervening on the possible cause
might not be enough, for example when that cause preempted another. After
intervention, this other cause may produce the effect again, therefore clouding
the effect of the intervention. To address this problem, AC2 allows to reset values
through the notion of contingencies, i.e., the set of variables �W can be reset to
�w, which is (implicitly) universally quantified. However, since the actual world
has to model �W = �w, it is in fact uniquely determined. AC3, lastly, enforces
the cause to be minimal by requiring that all variables in �X are strictly neces-
sary to achieve AC1 and AC2. For an illustration of Halpern and Pearl’s actual
causality, see Example 1 in Sect. 3.
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3 Running Example

Consider a security-critical setting with two security levels: a high-security level
h and a low-security level l. Inputs and outputs labeled as high-security, denoted
by hi and ho respectively, are confidential and thus only visible to the user itself,
or, e.g., admins. Inputs and outputs labeled as low-security, denoted by li and
lo respectively, are public and are considered to be observable by an attacker.

Fig. 1. State graph representa-
tion of our example system.

Our system of interest is modeled by the
state graph representation shown in Fig. 1,
which is treated as a black box by an attacker.
The system is run without any low-security
inputs, but branches depending on the given
high-security inputs. If in one of the first two
steps of an execution, a high-security input hi is
encountered, the system outputs only the high-
security variable ho directly afterwards and in
the subsequent steps both outputs, regardless of
inputs. If no high-security input is given in the
first step, the low-security output lo is enabled
and after the second step, again both outputs
are enabled, regardless of what input is fed into
the system.

A prominent example hyperproperty is observational determinism from the
introduction which states that any sequence of low-inputs always produces
the same low-outputs, regardless of what the high-security level inputs are.
ϕ = ∀π.∀π′. (liπ ↔ liπ′) → (loπ ↔ loπ′). The formula states that all traces π
and π′ must agree in the low-security outputs if they agree in the low-security
inputs. Our system at hand does not satisfy observational determinism, because
the low-security outputs in the first two steps depend on the present high-security
inputs. Running MCHyper, a model checker for HyperLTL, results in the follow-
ing counterexample: t1 = {}{lo}{ho, lo}ω and t2 = {hi}{hi , ho}{ho, lo}ω. With
the same low-security input (none) the traces produce different low-security out-
puts by visiting s1 or s2 on the way to s3.

In this paper, our goal is to explain the violation of a HyperLTL formula
on such a counterexample. Following Halpern and Pearl’s explanation frame-
work [46], an actual cause that is considered to be possibly true or possibly false
constitutes an explanation for the user. We only consider causes over input vari-
ables, which can be true and false in any model. Hence, finding an explanation
amounts to answering which inputs caused the violation on a specific counterex-
ample. Before we answer this question for HyperLTL and the corresponding
counterexamples given by sets of traces (see Sect. 4), we first illustrate Halpern
and Pearl’s actual causality (see Sect. 2.2) with the above running example.

Example 1. Finite executions of a system can be modeled in Halpern and Pearl’s
causal models. Consider inputs as exogenous variables U = {hi0, hi1} and out-
puts as endogenous variables V = {lo1, lo2, ho1, ho2}. The indices model at
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which step of the execution the variable appears. We omit the inputs at the
third position and the outputs at the first position because they are not rel-
evant for the following exposition. We have that D(Y ) = {0, 1} for every
Y ∈ U ∪ V. Now, the following manually constructed structural equations
encode the transitions: (1) lo1 = ¬hi0, (2) ho1 = hi0, (3) lo2 = ¬hi1 ∨ ¬lo1

and (4) ho2 = lo1 ∨ ho1. Consider context �u = {hi0 = 0, hi1 = 1}, effect
ϕ ≡ lo1 = 1∨ lo2 = 1, and candidate cause hi0 = 0. Because of (1), we have that
(M, �u) � hi0 = 0 and (M, �u) � lo1 = 1, hence AC1 is satisfied. Regarding AC2,
this example allows us to illustrate the need for contingencies to accurately
determine the actual cause: If we only consider intervening on the candidate
cause hi0 = 0, we still have (M, �u)[hi0 ← 1] � ϕ, because with lo1 = 0 and
(3) it follows that (M, �u) � lo2 = 1. However, in the actual world, the second
high input has no influence on the effect. We can control for this by consid-
ering the contingency lo2 = 0, which is satisfied in the actual world, but not
after the intervention on hi0. Because of this contingency, we then have that
(M, �u)[hi0 ← 1, lo2 ← 0] � ¬ϕ, and hence, AC2 holds. Because a singleton set
automatically satisfies AC3, we can infer that the first high input hi0 was the
actual cause for any low output to be enabled in the actual world. Note that,
intuitively, the contingency allows us to ignore some of the structural equations
by ignoring the value they assign to lo2 in this context. Our definitions in Sect. 4
will allow similar modifications for counterexamples to hyperproperties.

4 Causality for Hyperproperty Violations

Our goal in this section is to formally define actual causality for the violation
of a hyperproperty described by a general HyperLTL formula ϕ, observed in
a counterexample to ϕ. Such a counterexample is given by a trace assignment
to the trace variables appearing in ϕ. Note that, for universal quantifiers, the
assignment of a single trace to the bounded variable suffices to define a coun-
terexample. For existential quantifiers, this is not the case: to prove that an
existential quantifier cannot be instantiated we need to show that no system
trace satisfies the formula in its body, i.e., provide a proof for the whole sys-
tem. In this work, we are interested in explaining violations of hyperproperties,
and not proofs of their satisfaction [16]. Hence, we limit ourselves to instan-
tiations of the outermost universal quantifiers of a HyperLTL formula, which
can be returned by model checkers like MCHyper [24,35]. Since our goal is to
explain counterexamples, restricting ourselves to results returned by existing
model checkers is reasonable. Note that MCHyper can still handle formulas of
the form ∀n∃mϕ where ϕ is quantifier free, including interesting information flow
policies like generalized noninterference [61]. The returned counterexample then
only contains n traces that instantiate the universal quantifiers, the existential
quantifiers are not instantiated for the above reason. In the following, we restrict
ourselves to formulas and counterexamples of this form.

Definition 2 (Counterexample). Let T be a transition system and denote
Traces(T ) := Tr, and let ϕ be a HyperLTL formula of the form ∀π1 . . . ∀πkψ,
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where ψ is a HyperLTL formula that does not start with ∀. A counterexample to ϕ
in T is a partial trace assignment Γ : {π1, . . . , πk} → Tr such that Γ, 0 �Tr ¬ψ.

For ease of notation, we sometimes refer to Γ simply as the tuple of its
instantiations Γ = 〈Γ (π1), . . . , Γ (πk)〉. In terms of Halpern and Pearl’s actual
causality as outlined in Sect. 2.2, a counterexample describes the actual world at
hand, which we want to explain. As a next step, we need to define an appropriate
language to reason about possible causes and contingencies in our counterexam-
ple. We will use sets of events, i.e., values of atomic propositions at a specific
position of a specific trace in the counterexample.

Definition 3 (Event). An event is a tuple e = 〈la, n, t〉 such that la = a or
la = ¬a for some atomic proposition a ∈ AP , n ∈ N is a point in time, and
t ∈ (2AP )ω is a trace of a system T . We say that a counterexample Γ = 〈t1, . . . tk〉
satisfies a set of events C, and denote Γ � C, if for every event 〈la, n, t〉 ∈ C the
two following conditions hold:

1. t = ti for some i ∈ {1, . . . , k}, i.e., all events in C reason about traces in Γ ,
2. la = a iff a ∈ ti[n], i.e., a holds on trace ti of the counterexample at time n.

We assume that the set AP is a disjoint union of input an output propositions,
that is, AP = I ∪· O. We say that 〈la, n, t〉 is an input event if a ∈ I, and we call
it an output event if a ∈ O. We denote the set of input events by IE and the
set of output events by OE . These events have a direct correspondence with the
variables appearing in Halpern and Pearl’s causal models: we can identify input
events with exogenous variables (because their value is determined by factors
outside of the system) and output events with endogenous variables.

We define a cause as a set of input events, while an effect is a possibly infinite
Boolean formula over OE. Note that, similar to [37], every HyperLTL formula
can be represented as a first order formula over events, e.g. ∀π∀π′ (aπ ↔ aπ′) =
∀π∀π′ ∧

n∈N
(〈a, n, π〉 ↔ 〈a, n, π′〉). For some set of events S, let +Sk

π = {a ∈
AP | 〈a, k, π〉 ∈ S} denote the set of atomic propositions defined positively by
S on trace π at position k. Dualy, we define −Sk

π = {a ∈ AP | 〈¬a, k, π〉 ∈ S}.
In order to define actual causality for hyperproperties we need to formally

define how we obtain the counterfactual executions under some contingency
for the case of events on infinite traces. We define a contingency as a set of
output events. Mapping Halpern and Pearl’s definition to transition systems,
contingencies reset outputs in the counterfactual traces back to their value in the
original counterexample, which amounts to changing the state of the system, and
then following the transition function from the new state. For a given trace of the
counterexample, we describe all possible behaviors under arbitrary contingencies
with the help of a counterfactual automaton. The concrete contingency on a trace
is defined by additional input variables. In the following, let IC = {oC | o ∈ O}
be a set of auxiliary input variables expressing whether a contingency is invoked
at the given step of the execution and c : O → IC be a function s.t. c(o) = oC .

Definition 4 (Counterfactual Automaton). Let T = (S, s0,AP , δ, l) be a
system with S = 2O , i.e., every state is uniquely labeled, and there exists a state
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for every combination of outputs. Let π = π0 . . . πi(πj . . . πn)ω ∈ traces(T ) be a
trace of T in a finite, lasso-shaped representation. The counterfactual automaton
TC

π = (S×{0 . . . n}, (s0, 0), (IC ∪· I)∪· (O∪· {0 . . . n}), δC , lC) is defined as follows:

– δC((s, k), Y ) = (s′, k′) where k′ = j if k = n, else k′ = k + 1, and
l(s′) = {o ∈ O | (o ∈ δ(s, Y ∩ I) ∧ c(o) �∈ Y ) ∨ (o ∈ πk′ ∧ c(o) ∈ Y )},

– lC(s, k) = l(s) ∪ {k}.

A counterfactual automaton is effectively a chain of copies of the original
system, of the same length as the counterexample. An execution through the
counterfactual automaton starts in the first copy corresponding to the first posi-
tion in the counterexample trace, and then moves through the chain until it
eventually loops back from copy n to copy j. A transition in the counterfactual
automaton can additionally specify setting as a contingency some output vari-
able o if the auxiliary input variable oC is enabled. In this case, the execution
will move to a state in the next automaton of the chain where all the outputs
are as usual, except o, which will have the same value as in the counterexample
π. Note that, under the assumption that all states of the original system are
uniquely labeled and there exists a state for every combination of output vari-
ables, the function δC is uniquely determined.1 A counterfactual automaton for
our running example is described in the full version of this paper [22].

Next, we need to define how we intervene on a set of traces with a candidate
cause given as a set of input events, and a contingency given as a set of out-
put events. We define an intervention function, which transforms a trace of our
original automaton to an input sequence of an counterfactual automaton.

Definition 5 (Intervention). For a cause C ⊆ IE, a contingency W ⊆ OE
and a trace π, the function intervene : (2AP )ω × 2IE × 2OE → (2I∪IC )ω returns
a trace such that for all k ∈ N the following holds: intervene(π, C,W)[k] =
(π[k] \ +Ck

π) ∪ −Ck
π ∪ {c(o) | o ∈ +Wk

π ∪ −Wk
π}. We lift the intervention

function to counterexamples given as a tuple Γ = 〈π1, . . . , πk〉 as follows:
intervene(Γ, C,W) = 〈TC

π1
(intervene(π1, C,W)), . . . , TC

πk
(intervene(πk, C,W))〉.

Intuitively, the intervention function flips all the events that appear in the
cause Γ : If some a ∈ I appears positively in the candidate cause C, it will appear
negatively in the resulting input sequence, and vice-versa. For a contingency W,
the intervention function enables their auxiliary input for the counterfactual
automaton at the appropriate time point irrespective of their value, as the coun-
terfactual automaton will take care of matching the atomic propositions value
to the value in the original counterexample Γ .

1 The same reasoning can be applied to arbitrary systems by considering for contingen-
cies largest sets of outputs for which the assumption holds, with the caveat that the
counterfactual automaton may model fewer contingencies. Consequently, computed
causes may be less precise in case multiple causes appear in the counterexample.
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4.1 Actual Causality for HyperLTL Violations

We are now ready to formalize what constitutes an actual cause for the violation
of a hyperproperty described by a HyperLTL formula.

Definition 6 (Actual Causality for HyperLTL). Let Γ be a counterexam-
ple to a HyperLTL formula ϕ in a system T . The set C is an actual cause for
the violation of ϕ on Γ if the following conditions hold.

SAT Γ � C.
CF There exists a contingency W and a non-empty subset C′ ⊆ C such that:

Γ � W and intervene(Γ, C′,W) �traces(T ) ϕ.
MIN C is minimal, i.e., no subset of C satisfies SAT and CF.

Unlike in Halpern and Pearl’s definition (see Sect. 2.2), the condition SAT
requires Γ to satisfy only the cause, as we already know that the effect ¬ϕ,
i.e., the violation of the specification, is satisfied by virtue of Γ being a coun-
terexample. CF is the counterfactual condition corresponding to AC2 in Halpern
and Pearl’s definition, and it states that after intervening on the cause, under a
certain contingency, the set of traces satisfies the property. (Note that we use a
conjunction of two statements here while Halpern and Pearl use an implication.
This is because they implicitly quantify universally over the values of the vari-
ables in the set W (which should be as in the actual world) where in our setting
the set of contingencies already defines explicit values.) MIN is the minimality
criterion directly corresponding to AC3.

Example 2. Consider our running example from Sect. 3, i.e., the system from
Fig. 1 and the counterexample to observational determinism Γ = 〈t1, t2〉. Let us
consider what it means to intervene on the cause C1 = {〈hi , 0, t2〉}. Note that
we have Γ � C1, hence the condition SAT is satisfied. For CF, let us first con-
sider an intervention without contingencies. This results in intervene(Γ, C1, ∅) =
〈t′1, t′2〉 = 〈t1, {}{hi , lo}{ho}{ho, lo}ω〉. However, intervene(Γ, C1, ∅) �traces(T )

¬ϕ, because the low outputs of t′1 and t′2 differ at the third position: lo ∈ t′1[2]
and lo �∈ t′2[2]. This is because now the second high input takes effect, which
was preempted by the first cause in the actual counterexample. The contin-
gency W2 = {〈lo, 2, t2〉〉} now allows us to control this by modyfing the state
after taking the second high input as follows: intervene(Γ, C2,W2)) = 〈t′′1 , t′′2〉 =
〈t1, {}{hi , lo}{ho, lo}{ho, lo}ω〉. Note that t′′2 is not a trace of the model depicted
in Fig. 1, because there is no transition that explains the step from t′′2 [1] to t′′2 [2].
It is, however, a trace of the counterfactual automaton TC

t2 (see full version [22]),
which encodes the set of counterfactual worlds for the trace t2. The fact that
we consider executions that are not part of the original system allows us to
infer that only the first high input was an actual cause in our running exam-
ple. Disregarding contingencies, we would need to consider both high inputs as
an explanation for the violation of observational determinism, even though the
second high input had no influence. Our treatment of contingencies corresponds
directly to Halpern and Pearl’s causal models, which allow to ignore certain
structural equations as outlined in Example 1.
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Remark: With our definitions, we strictly generalize Halpern and Pearl’s actual
causality to reactive systems modeled as Moore machines and effects expressed as
HyperLTL formulas. Their structural equation models can be encoded in a one-
step Moore machine; effect specifying a Boolean combination of primitive events
can be encoded in the more expressive logic HyperLTL. Just like for Halpern and
Pearl, our actual causes are not unique. While there can exist several different
actual causes, the set of all actual causes is always unique. It is also possible
that no actual cause exists: If the effect occurs on all system traces, there may
be no actual cause on a given individual trace.

4.2 Finding Actual Causes with Model Checking

In this section, we consider the relationship between finding an actual cause for
the violation of a HyperLTL formula starting with a universal quantifier and
model checking of HyperLTL. We show that the problem of finding an actual
cause can be reduced to a model checking problem where the generated formula
for the model checking problem has one additional quantifier alternation. While
there might be a reduction resulting in a more efficient encoding, our current
result suggests that causality checking is the harder problem. The key idea of
our reduction is to use counterfactual automata (that encode the given coun-
terexample and the possible counterfactual traces) together with the HyperLTL
formula described in the proof to ensure the conditions SAT, CF, and MIN on
the witnesses for the model checking result.

Proposition 1. We can reduce the problem of finding an actual cause for the
violation of an HyperLTL formula starting with a universal quantifier to the
HyperLTL model checking problem with one additional quantifier alternation.

Proof. Let Γ = 〈t1, . . . tk〉 be a counterexample for the formula ∀π1 . . . ∀πk.ϕ
where ϕ is a HyperLTL formula that does not have a universal first quantifier.
We provide the proof for the case of Γ = 〈t1, t2〉 for readability reasons, but
it can be extended to any natural number k. We assume that t1, t2 have some
ω-regular representation, as otherwise the initial problem of computing causality
is not well defined. That is, we denote ti = ui(vi)ω such that |ui · vi| = ni.

In order to find an actual cause, we need to find a pair of traces t′1, t
′
2 that are

counterfactuals for t1, t2; satisfy the property ϕ; and the changes from t1, t2 to
t′1, t

′
2 are minimal with respect to set containment. Changes in inputs between

ti and t′i in the loop part vi should reoccur in t′i repeatedly. Note that the
differences between the counterexample 〈t1, t2〉 and the witness of the model
checking problem 〈t′1, t′2〉 encode the actual cause, i.e. in case of a difference,
the cause contains the event that is present on the counterexample. To reason
about these changes, we use the counterfactual automaton TC

i for each ti, which
also allows us to search for the contingency W as part of the input sequence
of TC

i . Note that each TC
i consists of ni copies, that indicate in which step the

automaton is with respect to ti and its loop vi. For m > |ui|, we label each state
(si,m) in TC

i with the additional label Lsm,i, to indicate that the system is now
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in the loop part of ti. In addition, we add to the initial state of TC
i the label

li, and we add to the initial state of the system T the label lor . The formula
ψi

loop below states that the trace π begins its run from the initial state of TC
i

(and thus stays in this component through the whole run), and that every time
π visits a state on the loop, the same input sequence is observed. This way we
enforce the periodic input behavior of the traces t1, t2 on t′1, t

′
2.

ψi
loop(π) := li,π ∧

∧

Lsm,i

∨

A⊆I

(Lsm,i,π → (
∧

a∈A

aπ ∧
∧

a/∈A

¬aπ))

For a subset of locations N ⊆ [1, ni] and a subset of input propositions A ⊆ I
we define ψi

diff [N,A](π) that states that π differs from ti in at least all events
〈la,m, ti〉 for a ∈ A,m ∈ N ; and the formula ψi

eq [N,A](π) that states that for
all events that are not defined by A and N , π is equal to ti.

ψi
diff [N,A](π) =

∧

j∈N,a∈A

j(aπ �↔ ati)

ψi
eq [N,A](π) =

∧

j /∈N,a∈I

j(aπ ↔ ati) ∧
∧

j∈[1,ni],a/∈A

j(aπ ↔ ati)

We now define the formula ψi
min that states that the set of inputs (and

locations) on which trace π differs from ti is not contained in the corresponding
set for π′. We only check locations up until the length ni of ti.

ψi
min(π, π′) :=

∧

N⊆[i,ni]

∧

A⊆I

((
ψi

diff [N,A](π) ∧ ψi
eq [N,A](π)

)
→ ¬ψi

eq [N,A](π′)
)

Denote ϕ := Q1τ1 . . . Qnτn. ϕ′(π1, π2) where Qi ∈ {∀,∃} and τi are trace
variables for i ∈ [1, n]. The formula ψcause described below states that the two
traces π′

1 and π′
2 are part of the systems TC

1 , TC
2 , and have the same loop struc-

ture as t1 and t2, and satisfy ϕ. That is, these traces can be obtained by changing
the original traces t1, t2 and avoid the violation.

ψcause(π′
1, π

′
2) := ϕ′(π′

1, π
′
2) ∧

∧

i=1,2

ψi
loop(π′

i)

Finally, ψactual described below states that the counterfactuals π′
1, π

′
2 corre-

spond to a minimal change in the input events with respect to t1, t2. All other
traces that the formula reasons about start at the initial state of the original
system and thus are not affected by the counterfactual changes. We verify ψactual

against the product automaton T × TC
1 × TC

2 to find these traces π′
i ∈ TC

i that
witness the presence of a cause, counterfactual and contingency.

ψactual := ∃π′
1∃π′

2. ∀π′′
1π′′

2 . Q1τ1 . . . Qnτn. ψcause(π′
1, π

′
2) ∧

∧

i=1,2

(li,π′
i
∧ li,π′′

i
)

∧
∧

i∈[1,n]

lor ,τi ∧

⎛

⎝ψcause(π′′
1 , π′′

2 ) →

⎛

⎝
∧

i=1,2

ψi
min(π′

i, π
′′
i )

⎞

⎠

⎞

⎠
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Then, if there exists two such traces π′
1, π

′
2 in the system T × TC

1 × TC
2 ,

they correspond to a minimal cause for the violation. Otherwise, there are no
traces of the counterfactual automata that can be obtained from t1, t2 using
counterfactual reasoning and satisfy the formula ϕ. ��

We have shown that we can use HyperLTL model checking to find an actual
cause for the violation of a HyperLTL formula. The resulting model checking
problem has an additional quantifier alternation which suggests that identifying
actual causes is a harder problem. Therefore, we restrict ourselves to finding
actual causes for violations of universal HyperLTL formulas. This keeps the
algorithms we present in the next section practical as we start without any
quantifier alternation and need to solve a model checking problem with a single
quantifier alternation. While this restriction excludes some interesting formulas,
many can be strengthened into this fragment such that we are able to handle close
approximations (c.f. [25]). Any additional quantifier alternation from the original
formula carries over to an additional quantifier alternation in the resulting model
checking problem which in turn leads to an exponential blow-up. The scalability
of our approach is thus limited by the complexity of the model checking problem.

5 Computing Causes for Counterexamples

In this section, we describe our algorithm for finding actual causes of hyperprop-
erty violations. Our algorithm is implemented on top of MCHyper [35], a model
checker for hardware circuits and the alternation-free fragment of HyperLTL. In
case of a violation, our analysis enriches the provided counterexample with the
actual cause which can explain the reason for the violaiton to the user.

We first provide an overview of our algorithm and then discuss each step in
detail. First, we compute an over-approximation of the cause using a satisfiability
analysis over transitions taken in the counterexample. This analysis results in
a set of events C̃. As we show in Proposition 2, every actual cause C for the
violation is a subset of C̃. In addition, in Proposition 3 we show that the set
C̃ satisfies conditions SAT and CF. To ensure MIN, we search for the smallest
subset C ⊆ C̃ that satisfies SAT and CF. This set C is then our minimal and
therefore actual cause.

To check condition CF, we need to check the counterfactual of each candidate
cause C, and potentially also look for contingencies for C. We separate our dis-
cussion as follows. We first discuss the calculation of the over-approximation C̃
(Sect. 5.1), then we present the ActualCause algorithm that identifies a minimal
subset of C̃ that is an actual cause (Sect. 5.2), and finally we discuss in detail
the calculation of contingencies (Sect. 5.3). In the following sections, we use a
reduction of the universal fragment of HyperLTL to LTL, and the advantages of
the linear translation of LTL to alternating automata, as we now briefly outline.
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HyperLTL to LTL. Let ϕ be a ∀n-HyperLTL formula and Γ be the counterexam-
ple. We construct an LTL formula ϕ′ from ϕ as follows [31]: atomic propositions
indexed with different trace variables are treated as different atomic propositions
and trace quantifiers are eliminated. For example ∀π, π′.aπ ∧ aπ′ results in the
LTL formula aπ∧aπ′ . As for Γ , we use the same renaming in order to zip all traces
into a single trace, for which we assume the finite representation t′′ = u′′ · (v′′)ω,
which is also the structure of the model checker’s output. The trace t′′ is a vio-
lation of the formula ϕ′, i.e., t′′ satisfies ¬ϕ′. We denote ϕ̄ := ¬ϕ′. We can then
assume, for implementation concerns, that the specification (and its violation)
is an LTL formula, and the counterexample is a single trace. After our causal
analysis, the translation back to a cause over hyperproperties is straightforward
as we maintain all information about the different traces in the counterexample.
Note that this translation works due to the synchronous semantics of HyperLTL.

Finite Trace Model Checking Using Alternating Automata. In verifying condi-
tion CF (that is, in computing counterfactuals and contingencies), we need to
apply finite trace model checking, as we want to check if the modified trace in
hand still violates the specification ϕ, that is, satisfies ϕ̄. To this end, we use
the linear algorithm of [36], that exploits the linear translation of ϕ̄ to an alter-
nating automaton Aϕ̄, and using backwards analysis checks the satisfaction of
ϕ̄. An alternating automaton [68] generalizes non-deterministic and universal
automata, and its transition relation is a Boolean function over the states. The
run of alternating automaton is then a tree run that captures the conjunctions in
the formula. We use the algorithm of [36] as a black box (see App. A.2 in [22] for
a formal definition of alternating automata and App. A.3 in [22] for the transla-
tion from LTL to alternating automata). For the computation of contingencies
we use an additional feature of the algorithm of [36] – the algorithm returns
an accepting run tree T of Aϕ̄ on t′′, with annotations of nodes that represent
atomic subformulas of ϕ̄ that take part in the satisfaction of ϕ̄. We use this
feature also in Sect. 5.1 when calculating the set of candidate causes.

5.1 Computing the Set of Candidate Causes

The events that might have been a part of the cause to the violation are in
fact all events that appear on the counterexample, or, equivalently, all events
that appear in u′′ and v′′. Note that due to the finite representation, this is
a finite set of events. Yet, not all events in this set can cause the violation.
In order to remove events that could not have been a part of the cause, we
perform an analysis of the transitions of the system taken during the execution
of t′′. With this analysis we detect which events appearing in the trace locally
cause the respective transitions, and thus might be part of the global cause.
Events that did not trigger a transition in this specific trace cannot be a part
of the cause. Note that causing a transition and being an actual cause are two
different notions - actual causality is defined over the behaviour of the system,
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not on individual traces. We denote the over-approximation of the cause as C̃.
Formally, we represent each transition as a Boolean function over inputs and
states. Let δn denote the formula representing the transition of the system taken
when reading t′′[n], and let ca,n,i be a Boolean variable that corresponds to the
event 〈ati , n, t′′〉.2 Denote ψt

n =
∧

ati
∈t′′[n] ca,n,i ∧

∧
ati

/∈t′′[n] ¬ca,n,i, that is, ψt
n

expresses the exact set of events in t′′[n]. In order to find events that might
trigger the transition δn, we check for the unsatisfiable core of ψn = (¬δn) ∧ ψt

n.
Intuitively, the unsatisfiable core of ψn is the set of events that force the system
to take this specific transition. For every ca,n,i (or ¬ca,n,i ) in the unsatisfiable
core that is also a part of ψt

n, we add 〈a, n, ti〉 (or 〈¬a, n, ti〉) to C̃.
We use unsatisfiable cores in order to find input events that are necessary in

order to take a transition. However, this might not be enough. There are cases
in which inputs that appear in formula ϕ̄ are not detected using this method,
as they are not essential in order to take a transition; however, they might be
considered a part of the actual cause, as negating them can avoid the violation.
Therefore, as a second step, we apply the algorithm of [36] on the annotated
automaton Aϕ̄ in order to find the specific events that affect the satisfaction of
ϕ̄, and we add these events to C̃. Then, the unsatisfiable core approach provides
us with inputs that affect the computation and might cause the violation even
though they do not appear on the formula itself; while the alternating automaton
allows us to find inputs that are not essential for the computation, but might
still be a part of the cause as they appear on the formula.

Proposition 2. The set C̃ is indeed an over-approximation of the cause for the
violation. That is, every actual cause C for the violation is a subset of C̃.

Proof (sketch). Let e = 〈la, n, t〉 be an event such that e is not in the unsatisfiable
core of ψn and does not directly affect the satisfaction of ϕ̄ according to the
alternating automata analysis. That is, the transition corresponding to ψt

n is
taken regardless of e, and thus all future events on t remain the same regardless
of the valuation of e. In addition, the valuation of the formula ϕ̄ is the same
regardless of e, since: (1) e does not directly affect the satisfaction of ϕ̄; (2) e
does not affect future events on t (and obviously it does not affect past events).
Therefore, every set C′ such that e ∈ C′ is not minimal, and does not form a
cause. Since the above is true for all events e �∈ C, it holds that C ⊆ C̃ for every
actual cause C. ��

Proposition 3. The set C̃ satisfies conditions SAT and CF.

Proof. The condition SAT is satisfied as we add to C̃ only events that indeed
occur on the counterexample trace. For CF, consider that C̃ is a super-set of
the actual cause C, so the same contingency and counterfactual of C will also
apply for C̃. This is since in order to compute counterfactual we are allowed
to flip any subset of the events in C, and any such subset is also a subset of C̃.

2 That is, ¬ca,n,i corresponds to the event 〈¬ati , n, t′′〉. Recall that the atomic propo-
sitions on the zipped trace t′′ are annotated with the original trace ti from Γ .
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Algorithm 1: ActualCause(ϕ, Γ, C̃)
Input: Hyperproperty ϕ, counterexample Γ violating ϕ, and a set of candidate

causes C̃ for which conditions SAT and CF hold.
Output: A set of input events C which is an actual cause for the violation.

1 for i ∈ [1, . . . , |C̃| − 1] do

2 for C ⊂ C̃ with |C| = i do

3 let Γ f = intervene(Γ, C, ∅);

4 if Γ f � ϕ then
5 return C;
6 else

7 W̃ = ComputeContingency(ϕ, Γ, C);

8 if W̃ �= ∅ then
9 return C;

10 return C̃;

In addition, in computing contingencies, we are allowed to flip any subset of out-
puts as long as they agree with the counterexample trace, which is independent in
C̃ and C. ��

5.2 Checking Actual Causality

Due to Proposition 2 we know that in order to find an actual cause, we only
need to consider subsets of C̃ as candidate causes. In addition, since C̃ satisfies
condition SAT, so do all of its subsets. We thus only need to check conditions
CF and MIN for subsets of C̃. Our actual causality computation, presented in
Algorithm 1 is as follows. We start with the set C̃, that satisfies SAT and CF.
We then check if there exists a more minimal cause that satisfies CF. This is
done by iterating over all subsets C′ of C̃, ordered by size and starting with the
smallest ones, and checking if the counterfactual for the C′ manages to avoid the
violation; and if not, if there exists a contingency for this C′. If the answer to
one of these questions is yes, then C′ is a minimal cause that satisfies SAT, CF,
and MIN, and thus we return C′ as our actual cause. We now elaborate on CF
and MIN.

CF. As we have mentioned above, checking condition CF is done in two stages –
checking for counterfactuals and computing contingencies. We first show that we
do not need to consider all possible counterfactuals, but only one counterfactual
for each candidate cause.

Proposition 4. In order to check if a candidate cause C̃ is an actual cause it
is enough to test the one counterfactual where all the events in C̃ are flipped.

Proof. Assume that there is a strict subset C of C̃ such that we only need to flip
the valuations of events in C in order to find a counterfactual or contingency,
thus C satisfies CF. Since C is a more minimal cause than C̃, we will find it during
the minimality check. ��
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Algorithm 2: ComputeContingency(ϕ, Γ, C)
Input: Hyperproperty ϕ, a counterexample Γ and a potential cause C.
Output: a set of output events W which is a contingency for ϕ, Γ and C, or ∅ if

no contingency found.
1 let t′′ be the zipped trace of Γ , ϕ′ be the LTL formula obtained from ϕ, and

ϕ̄ = ¬ϕ′;
2 let Aϕ̄ be the alternating automaton for ϕ̄;

3 let tf be the counterfactual trace obtained from t′′ by flipping all events in C;

4 let N be the sets of events derived from the annotated run tree of Aϕ̄ on tf ;

5 let O′ := {〈lat , n, t′′〉 ∈ OE | at ∈ t′′[n] ↔ at /∈ tf [n]};
6 for every subset W ′ ⊆ (N ∩ O′), and then for every other subset W ′ ⊆ O′ do
7 tm := intervene(t′′, C, W ′);
8 if tm � ϕ′ then
9 return W ′;

10 return ∅;

We assume that CF holds for the input set C̃ and check if it holds for any
smaller subset C ⊂ C̃. CF holds for C if (1) flipping all events in C is enough to
avoid the violation of ϕ or if (2) there exists a non-empty set of contingencies
for C that ensures that ϕ is not violated. The computation of contingencies is
described in Algorithm 2. Verifying condition CF involves model checking traces
against an LTL formula, as we check in Algorithm1 (line 3) if the property ϕ is
still violated on the counterfactual trace with the empty contingency, and on the
counterfactual traces resulting from the different contingency sets we consider
in Algorithm 2 (line 7). In both scenarios, we apply finite trace model checking,
as described at the beginning of Sect. 5 (as we assume lasso-shaped traces).

MIN. To check if C̃ is minimal, we need to check if there exists a subset of C̃
that satisfies CF. We check CF for all subsets, starting with the smallest one,
and report the first subset that satisfies CF as our actual cause. (Note that we
already established that C̃ and all of its subsets satisfy SAT.)

5.3 Computing Contingencies

Recall that the role of contingencies is to eliminate the effect of other possible
causes from the counterfactual world, in case these causes did not affect the
violation in the actual world. More formally, in computing contingencies we look
for a set W of output events such that changing these outputs from their value in
the counterfactual to their value in the counterexample t′′ results in avoiding the
violation. Note that the inputs remain as they are in the counterfactual. We note
that the problem of finding contingencies is hard, and in general is equivalent
to the problem of model checking. This is since we need to consider all traces
that are the result of changing some subset of events (output + time step) from
the counterfactual back to the counterexample, and to check if there exists a
trace in this set that avoids the violation. Unfortunately, we are unable to avoid
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an exponential complexity in the size of the original system, in the worst case.
However, our experiments show that in practice, most cases do not require the
use of contingencies.

Our algorithm for computing contingencies (Algorithm2) works as follows.
Let tf be the counterfactual trace. As a first step, we use the annotated run tree
T of the alternating automaton Aϕ̄ on tf to detect output events that appear
in ϕ̄ and take part in satisfying ϕ̄. Subsets of these output events are our first
candidates for contingencies as they are directly related to the violation (Algo-
rithm2 lines 4–9). If we were not able to find a contingency, we continue to check
all possible subsets of output events that differ from the original counterexample
trace. We test the different outputs by feeding the counterfactual automaton of
Definition 4 with additional inputs from the set IC . The resulted trace is then
our candidate contingency, which we try to verify against ϕ. The number of dif-
ferent input sequences is bounded by the size of the product of the counterfactual
automaton and the automaton for ϕ̄, and thus the process terminates.

Theorem 1 (Correctness). Our algorithm is sound and complete. That is, let
Γ be a counterexample with a finite representation to a ∀n-HyperLTL formula
ψ. Then, our algorithm returns an actual cause for the violation, if such exists.

Proof. Soundness. Since we verify each candidate set of inputs according to
the conditions SAT, CF and MIN, it holds that every output of our algorithm
is indeed an actual cause. Completeness. If there exists a cause, then due to
Proposition 2, it is a subset of the finite set C̃. Since in the worst case we test
every subset of C̃, if there exists a cause we will eventually find it. ��

6 Implementation and Experiments

We implemented Algorithm 1 and evaluated it on publicly available example
instances of HyperVis [48], for which their state graphs were available. In the
following, we provide implementation details, report on the running time and
show the usefulness of the implementation by comparing to the highlighting out-
put of HyperVis. Our implementation is written in Python and uses py-aiger [69]
and Spot [27]. We compute the candidate cause according to Sect. 5.1 with py-
sat [50], using Glucose 4 [3,66], building on Minisat [66]. We ran experiments on
a MacBook Pro with a 3, 3 GHz Dual-Core Intel Core i7 processor and 16 GB
RAM3.

Experimental Results. The results of our experimental evaluation can be found in
Table 1. We report on the size of the analyzed counterexample |Γ |, the size of the
violated formula |ϕ|, how long it took to compute the first, over-approximated
cause (see time(C̃)) and state the approximation C̃ itself, the number of computed
minimal causes #(C) and the time it took to compute all of them (see time(∀C)).
The Running Example is described in Sect. 3, the instance Security in & out

3 Our prototype implementation and the experimental data are both available at:
https://github.com/reactive-systems/explaining-hyperproperty-violations.

https://github.com/reactive-systems/explaining-hyperproperty-violations
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Table 1. Experimental results of our implementation. Times are given in ms.

Instance |Γ | |ϕ| time(C̃) C̃ #(C) time(∀C)
Running example 10 9 19 ¬hi0t1

, hi0t2
2 55

Security in & out 35 19 292 hi2t1
, ¬hi0t1

, ¬hi3t1
, ¬hi1t1

8 798

hi2t2
, hi0t2

, hi1t2
, hi3t2

Drone example 1 24 19 33 bound2t1
, ¬bound1t1

, up1t1
, ¬up2t1

5 367

bound2t2
, ¬bound1t2

, ¬up1t2

Drone example 2 18 36 31 bound1t1
, ¬bound1t2

, up1t2
3 256

Asymmetric arbiter ’19 28 35 53 see App. A.4 in [22] 10 490

Asymmetric arbiter 72 35 70 see App. A.4 in [22] 24 1480

refers to a system which leaks high security input by not satisfying a noninter-
ference property, the Drone examples consider a leader-follower drone scenario,
and the Asymmetric Arbiter instances refer to arbiter implementations that do
not satisfy a symmetry constraint. Specifications can be found in the full version
of this paper [22].

Our first observation is that the cause candidate C̃ can be efficiently com-
puted thanks to the iterative computation of unsatisfiable cores (Sect. 5.1). The
cause candidate provides a tight over-approximation of possible minimal causes.
As expected, the runtime for finding minimal causes increases for larger coun-
terexamples. However, as our experiments show, the overhead is manageable,
because we optimize the search for all minimal causes by only considering every
subset in C̃ instead of naively going over every combination of input events (see
Proposition 2). Compared to the computationally heavy task of model check-
ing to get a counterexample, our approach incurs little additional cost, which
matches our theoretical results (see Proposition 1). During our experiments, we
have found that computing the candidate C̃ first has, additionally to providing
a powerful heuristic, another benefit: Even when the computation of minimal
causes becomes increasingly expensive, C̃ can serve as an intermediate result for
the user. By filtering for important inputs, such as high security inputs, C̃ already
gives great insight to why the property was violated. In the asymmetric arbiter
instance, for example, the input events 〈¬tb secret , 3, t0〉 and 〈tb secret , 3, t1〉 of
C̃, which cause the violation, immediately catch the eye (c.f App. A.4 in [22]).

Comparison to HyperVis. HyperVis [48] is a tool for visualizing counterexam-
ples returned from the HyperLTL model checker MCHyper [35]. It highlights the
events in the trace that it considers responsible for the violation based on the
formula and the set of traces, without considering the system model. However,
violations of many relevant security policies such as observational determinism
are not caused by events whose atomic propositions appear in the formula, as can
be seen in our running example (see Sect. 3 and Example 2). When running the
highlight function of HyperVis for the counterexample traces t1, t2 on Running
example, the output events 〈lo, 1, t1〉 and 〈¬lo, 1, t2〉 will be highlighted, neglect-
ing the decisive high security input hi. Using our method additionally reveals
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the input events 〈¬hi, 0, t1〉 and 〈hi, 0, t2〉, i.e., an actual cause (see Table 1).
This pattern can be observed throughout all considered instances in our experi-
ments. For instance in the Asymmetric arbiter instance mentioned above, the
input events causing the violation also do not occur in the formula (see App. A.5
in [22]) and thus HyperVis does not highlight this important cause for the vio-
lation.

7 Related Work

With the introduction of HyperLTL and HyperCTL∗ [20], temporal hyper-
properties have been studied extensively: satisfiability [29,38,60], model check-
ing [34,35,49], program repair [11], monitoring [2,10,32,67], synthesis [30],
and expressiveness studies [23,37,53]. Causal analysis of hyperproperties has
been studied theoretically based on counterfactual builders [40] instead of
actual causality, as in our work. Explanation methods [4] exist for trace prop-
erties [5,39,41,42,70], integrated in several model checkers [14,15,19]. Min-
imization [54] has been studied, as well as analyzing several system traces
together [9,43,65]. There exists work in explaining counterexamples for function
block diagrams [51,63]. MODCHK uses a causality analysis [7] returning an over-
approximation, while we provide minimal causes. Lastly, there are approaches
which define actual causes for the violation of a trace property using Event Order
Logic [13,56,57].

8 Conclusion

We present an explanation method for counterexamples to hyperproperties
described by HyperLTL formulas. We lift Halpern and Pearl’s definition of actual
causality to effects described by hyperproperties and counterexamples given as
sets of traces. Like the definition that inspired us, we allow modifications of the
system dynamics in the counterfactual world through contingencies, and define
these possible counterfactual behaviors in an automata-theoretic approach. The
evaluation of our prototype implementation shows that our method is prac-
tically applicable and significantly improves the state-of-the-art in explaining
counterexamples returned by a HyperLTL model checker.
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39. Gössler, G., Le Métayer, D.: A general trace-based framework of logical causality.

In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 157–173.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 11

https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.1007/978-3-319-07602-7_11


428 N. Coenen et al.
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Clara Rodŕıguez-Núñez1(B) , and Albert Rubio1

1 Complutense University of Madrid, Madrid, Spain
clarrodr@ucm.es

2 Pompeu Fabra University, Barcelona, Spain

Abstract. The most widely used Zero-Knowledge (ZK) protocols
require provers to prove they know a solution to a computational problem
expressed as a Rank-1 Constraint System (R1CS). An R1CS is essentially
a system of non-linear arithmetic constraints over a set of signals, whose
security level depends on its non-linear part only, as the linear (additive)
constraints can be easily solved by an attacker. Distilling the essential
constraints from an R1CS by removing the part that does not contribute
to its security is important, not only to reduce costs (time and space) of
producing the ZK proofs, but also to reveal to cryptographic program-
mers the real hardness of their proofs. In this paper, we formulate the
problem of distilling constraints from an R1CS as the (hard) problem of
simplifying constraints in the realm of non-linearity. To the best of our
knowledge, it is the first time that constraint-based techniques developed
in the context of formal methods are applied to the challenging problem
of analysing and optimizing ZK protocols.

1 Introduction

Zero-Knowledge (ZK) protocols [8,15,17,27] enable one party, called prover, to
convince another one, called verifier, that a statement is true without reveal-
ing any information beyond the veracity of the “statement”. In this context, we
understand a statement as a relation between an instance, a public input known
to both prover and verifier, and a witness, a private input known only to the
prover, which belongs to a language L in the nondeterministic polynomial time
(NP) complexity class [5,15]. The most popular, efficient and general-purpose ZK
protocols are ZK-SNARKs: ZK Succinct Non-interactive ARguments of Knowl-
edge. While a proof guarantees the existence of a witness in a language L, and
argument of knowledge proves that, with very high probability, the prover knows
a concrete valid witness in L. A ZK-SNARK does not require interaction between
the prover and the verifier, and regardless of the size of the statement being
proved, the size of the proof is succinct. These appealing properties of ZK-
SNARKs have made them become crucial tools in many real-world applications
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with strong privacy issues. A prominent such example is Zcash [4]. ZK proto-
cols are also being used in conjunction with smart contracts, in the so-called
ZK-rollups for enhancing the scalability of distributed ledgers [18].

Like most ZK systems, ZK-SNARKs operate in the model of arithmetic cir-
cuits, meaning that the NP language L is that of satisfiable arithmetic circuits.
The gates of an arithmetic circuit consist of additions and multiplications mod-
ulo p, where p is typically a large prime number of approximately 254 bits [3].
The wires of an arithmetic circuit are called signals, and can carry any value
from the prime finite field Fp. In the ZK context, there is usually a set of public
inputs known both to the prover and the verifier, and the prover proves that she
knows a valid assignment to the rest of signals that satisfies the circuit (i.e., the
witness). Most ZK-SNARK protocols draw from a classical algebraic form for
encoding circuits and wire assignment called rank-1 constraint system (R1CS).
An R1CS encodes a circuit as a set of quadratic constraints over its variables,
so that a correct execution of a circuit is equivalent to finding a satisfying vari-
able assignment. This way, a valid witness for an arithmetic circuit translates
naturally into a solution of its R1CS representation.

Although ZK protocols guarantee that a malicious verifier cannot extract a
witness from a proof, they do not prevent the verifier from attacking the state-
ment directly. Hence, it is important that the prover is aware of the difficulty of the
statement being proved. In this regard, it is challenging for cryptographic develop-
ers that apply ZK protocols to complex computations to assess the real hardness
of the produced computational problem, being hence also difficult to verify and
audit the systems. It is partly because a syntactic assessment (e.g. based on count-
ing the number of non-linear constraints) can be inaccurate and misleading. This
is the case if the R1CS contains redundant constraints, i.e., constraints that can be
deduced from others or constraints that follow from linear constraints, since they
do not contribute to the hardness of the computational statement. Distilling the
relevant constraints is important on one hand for efficiency, to reduce costs (time
and space) of producing the ZK proofs, and also because redundancy can mislead
developers to believe that the statement is far more complex than it really is. It
is clear that when arithmetic circuits are defined over a finite field of small order,
the problem can be attacked by brute-force, or if the system consists only of linear
constraints, a solution can be found in polynomial time [25]. Moreover, in R1CS-
based systems like [17] only multiplication gates add complexity to the statement.
Also note that linear constraints induce a way to compute the value of one signal
from a linear combination of the others, and hence we can easily extend a witness
for the other signals to a witness for all the signals. As a result, the difficulty of
finding a solution to a system relies mostly in the number of non-redundant non-
linear constraints.

Contributions. This case study paper applies techniques developed in the con-
text of formal methods to distill constraints from the R1CS systems used by
ZK protocols. The main challenges are related, on the one hand, to reasoning
with non-linear information in a finite field and, on the other hand, to dealing
with very large constraint systems. Briefly, our main contributions are: (1) we



432 E. Albert et al.

present a formal framework to reason on circuit reduction which generalizes the
application of different existing optimizations and the reduction strategy in which
they are applied, (2) we introduce a concrete new optimization technique based on
Gaussian elimination that allows deducing linear constraints from the non-linear
constraints, (3) we implement our approach within circom [21] (a novel domain-
specific language and compiler for defining arithmetic circuits) and also develop an
interface for using it on the R1CS generated by ZoKrates [12], (4) we experimen-
tally evaluate its performance on multiple real-world circuits (including templates
from the circom library [22] and from [12], on implementations of different SHA-2
hash functions, on elliptic curve operations, etc.).

2 Preliminaries

This section introduces some preliminary notions and notation. We consider Fp

a finite field of prime order p. As usual, F
n
p is a sequence of n values in Fp.

We drop p from F when it is irrelevant. An arithmetic circuit (over the field F)
consists of wires (represented by means of signals si ∈ F) connected to gates
(represented by quadratic constraints). Signals can be public or private. We now
define the concepts of quadratic constraints and R1CS over a set of signals.

Definition 1 (R1CS). A quadratic constraint over a set of signals {s1, . . . , sn}
is an equation of the form Q : A × B − C = 0, where A,B,C ∈ F[s1, ..., sn] are
linear polynomials over the variables s1, ..., sn, i.e., A = a0 + a1s1 + · · · + ansn,
B = b0 + b1s1 + · · · + bnsn, and C = c0 + c1s1 + · · · + cnsn, where ai, bi, ci ∈ F

for all i ∈ {0, . . . , n}. A rank-1 constraint system (R1CS) over a set of signals
T is a collection of quadratic constraints over T .

We say that a quadratic constraint Q is linear when A or B only have the
constant term, i.e., ai = 0 ∀i ∈ {1, . . . , n} or bi = 0 ∀i ∈ {1, . . . , n}, and is non-
linear otherwise. As R1CS systems only contain quadratic constraints, in what
follows, we simply call them constraints, and specify if they are linear or not
where needed. We use the standard notation S |= c to indicate that a constraint
c is deducible from a set of constraints S and |S| for the number of constraints.

Definition 2 (arithmetic circuit and witness). An (arithmetic) circuit is
a tuple C = (U, V, S) where U represents the set of public signals, V represents
the set of private signals, and the R1CS S={Q1, . . . , Qm} over the signals U ∪V
represents the circuit operations. Given an assignment u for U , a witness for C
is an assignment v for V s.t. u together with v are a solution to the R1CS S.

We use the terms circuit and, R1CS or just constraint system, indistinctly when
the signals used in the circuit are clear. Given a circuit C and a public assignment
for U , a ZK protocol is a mechanism that allows a prover to prove to a verifier
that she knows a private assignment for V that, together with those for U , satisfy
the R1CS system describing C. ZK protocols guarantee that the proof will not
reveal any information about V .
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Example 1. We consider a circuit C1 = (U, V, S1) over a finite field F, with
U = {v, w}, V = {x, y, z}, and S1 given by the following constraint system:

Q1 : w × (y + z) − 4x − 10 = 0, Q2 : w × z − w − 3 = 0,
Q3 : (x − w + 1) × v − v + 1 = 0, Q4 : y − z − 2 = 0.

This circuit contains 3 non-linear constraints (Q1, Q2, and Q3) and a linear one
(Q4). Because of its small size, we can easily solve the system (i.e., give the
value of each signal in terms of only one of them) and find the set of solutions:

W = {(v, w, x, y, z) �→ (1, w, w − 1, 3w−1 + 3, 3w−1 + 1) | w ∈ F \ {0}}.

A cryptographic problem can be modeled by different circuits producing the
same solutions. This relation among circuits can be formalized as circuit equiv-
alence, which is a natural extension of the constraint system equivalence. We
say that two circuits C = (U, V, S) and C′ = (U, V, S′) are equivalent, written
C � C′, if S and S′ have the same set of solutions. Consequently, if C and C′ are
equivalent, they have the same set of solutions and hence of witnesses.

Example 2. The circuit C2 = (U, V, S2) with the same sets of public and private
signals U and V as C1, and the R1CS S2 given by the constraints:

Q′
1 : w×y−3w−3 = 0, Q′

2 : y−z−2 = 0, Q′
3 : v−1 = 0, Q′

4 : x−w+1 = 0,

has the same set of solutions (and thus witnesses) as C1. Hence, C1 � C2.

3 A Formal Framework for R1CS Reduction

R1CS optimizations are applied within state-of-the-art compilers like circom
[21] or ZoKrates [12]. Common to such existing compiler optimizations is the
application of rules to simplify and eliminate linear constraints and/or to deduce
information from them. As our first contribution, we present a formal framework
for R1CS reduction based on a rule-based transformation system which is general
enough to be a formal basis for developing specific simplification techniques
and reduction strategies. In particular, the simplifications already applied in the
above compilers are instantiations of our framework.

The notion of reduction that our framework formalizes is key to define the secu-
rity level of circuits. When two circuits model the same problem, they provide the
same level of security. However, an assessment of their security level based on syn-
tactically counting the number of non-linear constraints in the circuits can lead to
a wrong understanding/estimation of their security. For instance, circuits C1 and
C2 (see Examples 1-2) model the same problem, although C2 needs a single non-
linear constraint to define its set of solutions (instead of three as C1). This happens
because some of the non-linear constraints of C1 are not essential and can be sub-
stituted by linear constraints. Besides, we can observe in C2 that signals x and z
are only involved in linear constraints instead of being on non-linear constraints
like in C1. In other words, having a circuit with more private signals involved in
non-linear constraints (e.g., C1) does not ensure further security if these private
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signals can be deduced from linear combinations of the others. We build our notion
of circuit reduction upon this concept.

Definition 3 (circuit-reduction). Let C = (U, V, S) be a circuit with
U ∪ V = {s1, . . . , sn}, and C′ = (U, V ′, S′) another circuit with V ⊆ V ′.

(i) We say that C′ linearly follows from C, denoted by C |=l C′, if ∀s ∈ V ′ \ V ,
∃λs

0, λ
s
1, ..., λ

s
n ∈ F, s.t. given an assignment for U , every witness φ for C

extended with s �→ λs
0 +

∑n
i=1 λs

i ∗ φ(si) is a witness for C′.
(ii) We say that C′ reduces to C, written C′ ≥ C, if C |=l C′, |S′| ≥ |S| and every

witness of C′ restricted to V is a witness for C for the same assignment of U .
We say that C′ strictly reduces to C, written C′ > C if |S′| > |S| or V ⊂ V ′.

Intuitively, we have that for every signal defined in V , the values of the two
witnesses match, and for the signals defined in V ′ \V , the value of the witness of
C ′ can be obtained from a linear combination of the values from the assignment
for U and φ.

Example 3. Let C3 be ({v, w}, {y}, S3) with S3 = {Q′′
1 : w × y − 3w − 3 = 0,

Q′′
2 : v − 1 = 0}. Let us show that C1 (from Example 1) strictly reduces to C3.

From Example 2, we have that every solution of C1 restricted to {v, w, y} is also
a solution of C3 (since S3 ⊆ S2 and C2 � C1) and that in every witness φ′ of
C2 we have that φ′(x) = φ′(w) − 1 and φ′(z) = φ′(y) − 2. Therefore, taking
λx
0 = −1, λx

pos(w) = 1, λz
0 = −2, λz

pos(y) = 1 (where function pos(si) abstracts
the index i of the variable si in the set of signals), we have that C3 |=l C1. Finally,
since {y} ⊂ {x, y, z} and, given an assignment for {v, w}, every witness of C1

restricted to {y} is a witness for C3, and we can conclude.

We now present a set of transformation rules that ensure circuit reducibility.
The transformation is based on finding linear consequences of the constraint
system to guarantee that the transformed set of constraints linearly follows from
the original system. Our transformation rules operate on pairs in K×SL, where K
is the set of arithmetic circuits and SL is the set of linear constraint systems. As
usual, we use infix notation, writing (C, SL) ⇒ (C′, SL

′), and denote respectively
by ⇒+ and ⇒∗, its transitive and reflexive-transitive closure. Given a circuit C,
if (C, ∅) ⇒∗ (C′, SL), then C′ is a reduction for C, and the linear system SL shows
how to prove that C′ |=l C. In the following, we assume that there exists a total
order < among the private signals in V which is used to select a signal among
the private signals of a constraint c, denoted by V (c).

Fig. 1. Circuit transformation rules.
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The remove rule allows us to remove redundant constraints. The deduce
rule is needed to extract from S linear relations among the signals. Finally, the
simplify rule allows us to safely remove a signal s from V by replacing it by an
equivalent linear combination of public and (strictly) smaller private signals in
S. The fact that we replace a private signal by strictly smaller ones prevents this
rule from being applied infinitely many times. When no constraint or private
signal can be removed from a circuit (e.g., from C3) after applying a sequence
of reduction rule steps, the circuit is considered irreducible and we call it a
normal form. Note that the linear constraints in SL with signals not belonging
to U ∪ V are the ones that track how to obtain the missing signals from the
remaining ones.

The three rules from Fig. 1 are terminating and they are contained in the
circuit reducibility relation (Definition 3) when projected to the first component
(the circuit). Regarding confluence, we have that if (C, SL) ⇒∗ (C1, SL1) and
(C, SL) ⇒∗ (C2, SL2), then we have that (C1, SL1) ⇒∗ (C′

1, SL
′
1) and (C2, SL2) ⇒∗

(C′
2, SL

′
2) such that C′

1 and C′
2 are equivalent (see Appendix).

Example 4. Let us apply our reduction system to find a normal form of (C1, ∅)
which corresponds to its reduction. At each step we label the arrow with the
applied rule and show only the component that is modified from the previous
step (we use to indicate the value of the component as in the previous step):

((U, V, S1), ∅)
deduce⇒ (( , , ), {L1 : z = y − 2})

simplify⇒ ( , \ {z}, [z �→ y − 2]), )
remove⇒ (( , , \ {0 = 0}), )

deduce⇒ (( , , ), ∪ {L2 : x = w − 1})
simplify⇒ (( , \ {x}, [x �→ w − 1]), )
remove⇒ (( , , \ {Q : w × (2y − 2) − 4w − 6 = 0}), )

Here (C3, {L1, L2}) is a normal form of (C1, ∅) and, as we have already seen in
Example 3, C3 is a reduction for C1. Note that {L1, L2} shows how to obtain the
values of the removed signals as a linear combination.

4 Circuit Reduction Using Constraint Simplification

In this section, we introduce different strategies to apply the transformation rules
described in Fig. 1, and also to approximate the deduction relation S |= c in rules
remove and deduce. Note that the classical representation of our problem is
undecidable, but since we work in a finite field, it becomes decidable. However,
as the order of F is large, it is still impractical and approximation is required.

As an example, let us show how the simplification techniques applied in
ZoKrates and circom fit in our framework. In both languages, besides the
removal of tautologies, all simplification steps are made using linear constraints
that are part of the set of constraints. In particular, in a first step both lan-
guages handle the so-called redefinitions (i.e., constraints of the form x = y),
and in a second step all the remaining linear constraints are eliminated applying
the necessary substitutions. In our framework, these simplification steps can be
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described as a sequence of deduce to obtain the linear constraints that will be
applied as substitutions, followed by a sequence of simplify, and a sequence of
remove to delete the tautologies obtained after the substitutions. The whole
sequence can be repeated until no linear constraints are left in the circuit. The
specific strategy followed to perform the sequence of deduce steps to obtain
the substitutions used to simplify the circuit from its linear constraints has a
big impact in the efficiency of the process. For instance, circom considers all
maximal clusters of linear constraints (sharing signals) in the system and then
infers in one go all the substitutions to be applied for every cluster, using a lazy
version of Gauss-Jordan elimination. This process can be very expensive when
the number of constraints in the R1CS is very large (e.g. hundreds of millions in
ZK-Rollups like Hermez [20]).

Similar techniques based on analyzing the linear constraints are applied in
other circuit-design languages. However, up to our knowledge, no language uses
the non-linear part of the circuit to infer new linear constraints, or to remove
redundant constraints, and this constitutes the second main contribution of this
work. In the remaining of this section, we present a new approach inspired by
techniques used in program analysis and SMT-solving like [9,11], where the
non-linear reasoning is reduced to linear-reasoning. We can assume that we have
applied first the aforementioned strategies to obtain an R1CS containing only
non-linear constraints (or linear constrains with only public signals). Then, in our
framework, the problem of inferring new linear constraints from non-linear R1CS
can be formalized as a synthesis problem as follows: “given a circuit (U, V, S),
where U ∪ V = {s1, . . . , sn}, our goal is to find a linear expression l = c0 +
c1s1 + . . . + cnsn with c0, c1, . . . , cn ∈ F such that S |= l = 0.” In order to solve
this problem, we follow an efficient approach in which we restrict ourselves to
the case where l = 0 can be expressed as a linear combination of constraints
in S, i.e., of the form

∑
λk ∗ Qk with Qk ∈ S and λk ∈ F. It is clear that any

constraint l = 0 obtained using this approach satisfies S |= l = 0, but we are only
interested in the ones that are linear. In the following two stages, we describe
how to obtain linear expressions l, and hence, infer the constraints.

Stage 1. First, for each constraint Qk : Ak×Bk−Ck = 0, k ∈ {1, . . . , m}, we
expand the multiplication Ak ×Bk, obtaining the expression

∑
1≤i≤j≤n Qk[i, j]∗

sisj+Lk, where Qk[i, j] for 1 ≤ i ≤ j ≤ n denotes the coefficient of the monomial
sisj in the constraint Qk, and Lk is the linear part of Ak × Bk.

Example 5. Let us consider the circuit from Example 4 after applying the first
three transformation rules, i.e. after removing the linear constraints. We denote
the resulting circuit C4 = (U, V4, S4), where U ∪ V4 = {v, w, x, y} and S4 is
given by:

Q1 : w × (2y − 2) − 4x − 10 = 0, Q2 : w × (y − 2) − w − 3 = 0,
Q3 : (x − w + 1) × v − v + 1 = 0.

Here, we have for Q1 that A1 = w, B1 = 2y − 2 and C1 = 4x + 10 (recall that
we consider A1 × B1 − C1 = 0). Then, we expand the multiplication A1 × B1 =
2wy − 2w, so that L1 = −2w and Q1[2, 4] = 2 (for wy), where the later is
the only non-zero coefficient of a quadratic monomial. Similarly, for Q2 we have
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C2 = w + 3, Q2[2, 4] = 1 (also for wy) and L2 = −2w. Finally, for Q3 we have
C3 = v − 1, and Q3[1, 3] = 1 (for vx) and Q3[1, 2] = −1 (for vw) and L3 = v.

Stage 2. Now, we can model a sufficient condition of linearity using the
previous ingredients: if there exist λ1, . . . , λm ∈ F such that, for every i, j with
1 ≤ i ≤ j ≤ n, we have that

∑m
k=1 λk ∗Qk[i, j] = 0, then l =

∑m
k=1 λk ∗(Lk−Ck)

is linear and S |= l = 0. Moreover, assuming that S is consistent, we have that
either l = 0 is a tautology 0 = 0 or it is a non-trivial linear constraint. In the
first case, any of the constraints Qk with λk �= 0 follows from the rest of the
constraints and we can apply the remove rule. In the second case, we can apply
deduce and later simplify if l has at least one private signal. Note that, after
applying simplify one of the constraints Qk with λk �= 0 will follow from the
rest, and we will be able to finally apply remove.

Example 6 (continued). Following the example, we need to find λ1, λ2, λ3 such
that (considering only the non-zero coefficients Q[i, j]) 2λ1+λ2 = 0 (for Q[2, 4]),
2λ3 = 0 (for Q[1, 3]), and −λ3 = 0 (for Q[1, 2]). Since the monomials vx and vw
occur only once, the only solution for λ3 is 0. Now solving 2λ1 + λ2 = 0, we get
that λ2 = −2λ1. Hence, we take the solution λ1 = 1 and λ2 = −2. With this
solution, l = 1 ∗ (−2w − (4x + 10)) + (−2) ∗ (−2w − (w + 3)) + 0 ∗ (v − (v − 1)).
Hence, we obtain 4w − 4x − 4 = 0, which is equivalent to x − w + 1 = 0 that is
the deduced linear constraint used in Example 4 to reduce the original circuit.

To conclude, finding λ1, . . . , λm ∈ F such that for every i, j with 1 ≤ i ≤ j ≤
n, then

∑m
k=1 λk ∗ Qk[i, j] = 0, is a linear problem that can be solved using

Gaussian elimination or similar techniques. Note that we are only interested in
solutions with at least one λk �= 0. Therefore, we can efficiently synthesize new
linear constraints or show that some constraint follows from the others using
this approach.

Regarding the practical application of our technique, since sometimes we
are handling very large sets of non-linear constraints, additional engineering
is needed to make it work. For instance, we need to remove those constraints
that have a quadratic monomial that appears in no other constraint, and after
that, compute maximal clusters sharing the same quadratic monomials. We have
observed in our experimental evaluation that, in general, even for large circuits,
each cluster remains small. Thanks to this, we obtain rather small independent
sets of constraints that can be solved in parallel using Gaussian elimination.

5 Experimental Results

This section describes our experimental evaluation on two settings: On one hand
(Sect. 5.1), we have implemented them within circom [21], a novel domain-
specific language and compiler for defining arithmetic circuits, fully written in
Rust. The circom compiler generates executable code (WebAssembly or C++) to
compute the witness, together with the R1CS, since both are later needed by ZK
tools to produce ZK proofs. The implementation is available in a public fork of
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the compiler [1]; On the other hand (Sect. 5.2), we have decoupled the constraint
optimization module from the circom compiler in a new project, which is acces-
sible online [2], in order to be able to use it after other cryptographic-language
compilers that produce R1CS, in our case with ZoKrates [12]. ZoKrates is a
high-level language that allows the programmer to abstract the technicalities
of building arithmetic circuits. The input to our optimizer is the R1CS in the
smtlib2 format generated by ZoKrates. The goal of our experiments is two fold:
(1) assess the scalability of the approach when applied to real-world circuits
used in industry and (2) evaluate its impact on code already highly optimized
–such as circom’s libraries developed on a low-level language by experienced
programmers– and on code automatically compiled from a high-level language
such as ZoKrates. In both cases, the optimizations of linear constraints that
the compilers include (see Sect. 4) are enabled so that the reduction gains are
due only to our optimization. Experimental results have been obtained using an
AMD Ryzen Threadripper PRO 3995WX 64-Cores Processor with 512 GB of
RAM (Linux Kernel Debian 5.10.70-1).

5.1 Results on circom Circomlib

circom is a modular language that allows the definition of parameterizable small
circuits called “templates” and has its own library called circomlib [22]. This
library is widely used for cryptographic purposes and contains hundreds of tem-
plates such as comparators, hash functions, digital signatures, binary and deci-
mal converters, and many more. Our experiments have been performed on the
available test cases from circomlib. Many of them have been carefully pro-
grammed by experienced cryptographers to avoid unnecessary non-linear con-
straints and our optimization cannot deduce new linear constraints. Still, we are
able to reduce 26% of the total tests (12 out of 46).

Table 1 shows the results for the five circuits that we optimize the most. For
each of them, we show: (#C) the number of generated constraints, (#R) the
number of removed constraints, (G%) the gains expressed as #R/#C x 100,
and (T(s)) the compilation time. The largest gain is for pointbits loopback,
where circom generates 2.333 constraints and we remove 381 of them, our gain

Table 1. Results on circomlib.

Circuit #C #R G% T(s)
sha256 2 test 30134 32 0.11% 15.6s
eddsamimc test 5712 46 0.81% 1.9s
eddsaposeidon test 4217 46 1.09% 1.7s
eddsa test 7554 556 7.36% 4.8s
pointbits loopback 2333 381 16.33% 13.4s

is 16.33% and the compilation
time is 13.4s. As explained in
Sect. 4, for each linear con-
straint deduced by our tech-
nique, we are always able
to remove a non-linear con-
straint and, in general, also
a signal. Note that we some-
times produce new linear con-
straints in which all the involved signals are public and thus, none of them can
be removed. Importantly, in spite of the manual simplifications already made
in most of the circuits in circomlib, our techniques detect further redundant
constraints in a short time. Such small reductions in templates of circomlib
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can produce larger gains, since they are repeatedly used as subcomponents in
industrial circuits.

5.2 Results on ZoKrates Stdlib

Table 2. Results on stdlib.

Circuit #C #R G% T(s)
sha256bit 25730 288 1.1% 35.0s
sha512bit 26838 544 2.0% 37.8s
sha1024bit 54284 1312 2.4% 82.4s
sha1536bit 81730 2080 2.6% 128s
Poseidon 3912 851 21.8% 0.3s
EdwardsAdd 17 4 23.6% 0.07s
EdwardsOrderCheck 56 15 26.8% 0.07s
EdwardsScalarMult 9989 2304 23.1% 0.2s
ProofOfOwnership 9984 2306 23.0% 0.5s

We have used two kind of
circuits from the ZoKrates
stdlib for our experimental
evaluation: (1) The first four
circuits shaXbit are implemen-
tations of different SHA-2 hash
functions [19], where X indi-
cates the size of the output.
SHA-2 hashes are constructed
from the repeated use of simple
computation units that heavily
use bit operations. Bit opera-
tions are very inefficient inside
arithmetic circuits [13] and, as a result, the number of constraints describing
these circuits is very large, see in Table 2. The number of constraints deduced is
quite low for this kind of circuits since specialized optimization for bitwise oper-
ation is required (other compilers like xJsnark [23] are specialized on this). This
also happens in the circom implementation of SHA-256-2 (row 1 of Table 1).
However, Poseidon [16] is a recent hash function that was designed taking into
account the nature of arithmetic circuits in a prime field F, and as a result,
the function can be described with many less constraints. Our approach is able
to optimize the current implementation of Poseidon by more than 20%, which
represents a very significant reduction. (2) The second kind are the last four
circuits: they correspond to the ground for implementing elliptic curve cryp-
tography inside circuits. Our optimizer detects, in a negligible time, that more
than 23% of constraints are redundant and can be removed. Verifying if a pair
of public/private keys matches (ProofOfOwnership) is fundamental in almost
every security situation, hence the optimization of this circuit becomes particu-
larly relevant for saving blockchain space. For this reason, we have parameterized
ProofOfOwnership to the number of pairs public/private keys to be verified and
we have measured the performance impact (time and memory consumption) of
snarkjs setup step of these circuits without simplification (Table 3) and after
simplification (Table 4). The results show the effect of our reduction when the
constraints are later used by snarkjs to produce ZK proofs.
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Table 3. Results on different instantiations of ProofOfOwnership from stdlib without
nonlinear simplification. The generated ERROR in last row is an out-of-memory-error.

Circuit Generation snarkjs

T(s) #C Size T(s) Memory

ProofOfOwnership-400 1m58.1s 3,902,378 582MB 7m26.8s 14.4GB

ProofOfOwnership-1000 4m54.7s 9,740,978 1.5GB 37m50.0s 33.1GB

ProofOfOwnership-1200 6m09.6s 11,687,178 1.7GB 47m15.7s 36.2GB

ProofOfOwnership-1400 6m50.1s 13,633,378 2.0GB ERROR ERROR

Table 4. Results on different instantiations of ProofOfOwnership from stdlib with
nonlinear simplification.

Circuit Generation snarkjs

T(s) #C Size T(s) Memory

ProofOfOwnership-400 3m11.0s 2,970,072 451MB 5m00.1s 12.7GB

ProofOfOwnership-1000 8m05.1s 7,413,672 1.1GB 23m40.8s 24.6GB

ProofOfOwnership-1200 9m43.8s 8,894,872 1.4GB 31m46.8s 30.7GB

ProofOfOwnership-1400 11m06.4s 10,376,072 1.6GB 38m31.0s 32.7GB

The impact of our simplification on the setup step of snarkjs is relevant and
goes beyond the increase in the compilation time. However, this step is applied
only once. We have also measured the impact in performance when generating a
ZK-proof for a given witness using snarkjs after the setup step. This action that
is the one repeated many times when used in a real context. Our experiments
show that, e.g., with ProofOfOwnership-400 we improve from 41 s to 35 s and
with ProofOfOwnership-1000 we improve from 1 m 53 s to 1 m 12 s.

In conclusion, our experiments show that the higher the level of abstraction
is, the more redundant constraints the compiler introduces in the R1CS. Our
proposed techniques are an efficient and effective solution to enhance the perfor-
mance in this setting. On the other hand, circuits written in a low-level language
by security experts (usually optimized by hand), or circuits using bitwise oper-
ations, leave small room for optimization by applying our techniques.

6 Related Work and Conclusions

We have proposed the application of (non-linear) constraint reasoning techniques
to the new application domain of ZK protocols. Our approach has wide appli-
cability as, in the last few years, much effort has been put in developing new
programming languages that enable the generation and verification of ZK proofs
and that also focus on the design of arithmetic circuits and the constraint encod-
ing. Among the different solutions, we can distinguish: libraries (bellman [7],
libsnark [29], snarky [28]), programming-focused languages (ZoKrates [12],
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xJsnark [23], zinc [24], Leo [10]), and hardware-description languages (circom).
As opposed to the initial library approach, both programming and hardware-
description languages put focus on the design of arithmetic circuits and the con-
straint encoding. In this regard, ZoKrates, xJsnark, and the circom compiler
implement one simple but powerful R1CS-specific optimization called linearity
reduction: it consists in substituting the linear constraints to generate a new
circuit whose system only consists of non-linear constraints. However, they do
not deduce new constraints to detect further redundancies in the system. Linear
reduction is a particular case of our reduction rules in which the only linear
constraints that can be deduced and added to the linear system are those that
follow from linear constraints present in the constraint system. On the other
side, the constraint system generated by Leo is only optimized at the level of its
intermediate representation not at R1CS-level, as our method works.

Finally, there has been a joint effort towards standardizing and allowing
the interoperability between different programs, like CirC [26], an infrastructure
for building compilers to logical constraint representation. Currently, CirC only
applies the linearity reduction explained above. Recently, an interface called
zkInterface [6] has been built to improve the interoperability among several
frontends, like ZoKrates and snarky. It provides means to express statements
in a high-level language and compile them into an R1CS representation; and
several backends that implement ZK protocols like Groth16 [17] and Pinocchio
[27] that use the R1CS representation to produce ZK proofs. zkInterface could
benefit from our optimization to apply our reduction to every circuit generated
by any of the accepted frontends. zkInterface is also written in Rust, then our
optimizer could be easily integrated as a new gadget for the tool in the future.
Finally, we believe that the techniques presented in this paper can lead us to
new reduction schemes to be applied over PlonK [14] constraint systems.
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Abstract. In many Internet of Things (IoT) applications, data sensed
by an IoT device are continuously sent to the server and monitored
against a specification. Since the data often contain sensitive informa-
tion, and the monitored specification is usually proprietary, both must be
kept private from the other end. We propose a protocol to conduct obliv-
ious online monitoring—online monitoring conducted without revealing
the private information of each party to the other—against a safety LTL
specification. In our protocol, we first convert a safety LTL formula into a
DFA and conduct online monitoring with the DFA. Based on fully homo-
morphic encryption (FHE), we propose two online algorithms (Reverse
and Block) to run a DFA obliviously. We prove the correctness and secu-
rity of our entire protocol. We also show the scalability of our algorithms
theoretically and empirically. Our case study shows that our algorithms
are fast enough to monitor blood glucose levels online, demonstrating
our protocol’s practical relevance.

1 Introduction

Internet of Things (IoT) [3] devices enable various service providers to monitor
personal data of their users and to provide useful feedback to the users. For
example, a smart home system can save lives by raising an alarm when a gas stove
is left on to prevent a fire. Such a system is realized by the continuous monitoring
of the data from the IoT devices in the house [8,18]. Another application of IoT
devices is medical IoT (MIoT) [16]. In MIoT applications, biological information,
such as electrocardiograms or blood glucose levels, is monitored, and the user is
notified when an abnormality is detected (such as arrhythmia or hyperglycemia).

In many IoT applications, monitoring must be conducted online, i.e., a stream
of sensed data is continuously monitored, and the violation of the monitoring
specification must be reported even before the entire data are obtained. In the
smart home and MIoT applications, online monitoring is usually required, as con-
tinuous sensing is crucial for the immediate notifications to emergency respon-
ders, such as police officers or doctors, for the ongoing abnormal situations.
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Fig. 1. The proposed oblivious online LTL monitoring protocol.

Fig. 2. How our algorithms consume the data d1, d2, . . . , dn with the DFA M .

As specifications generally contain proprietary information or sensitive
parameters learned from private data (e.g., with specification mining [27]), the
specifications must be kept secret. One of the approaches for this privacy is to
adopt the client-server model to the monitoring system. In such a model, the
sensing device sends the collected data to a server, where the server performs
the necessary analyses and returns the results to the device. Since the client does
not have access to the specification, the server’s privacy is preserved.

However, the client-server model does not inherently protect the client’s pri-
vacy from the servers, as the data collected from and results sent back to the
users are revealed to the servers in this model; that is to say, a user has to trust
the server. This trust is problematic if, for example, the server itself intentionally
or unintentionally leaks sensitive data of device users to an unauthorized party.
Thus, we argue that a monitoring procedure should achieve the following goals:

Online Monitoring. The monitored data need not be known beforehand.
Client’s Privacy. The server shall not know the monitored data and results.
Server’s Privacy. The client shall not know what property is monitored.

We call a monitoring scheme with these properties oblivious online monitoring.
By an oblivious online monitoring procedure, 1) a user can get a monitoring
result hiding her sensitive data and the result itself from a server, and 2) a
server can conduct online monitoring hiding the specification from the user.

Contribution. In this paper, we propose a novel protocol (Fig. 1) for oblivious
online monitoring against a specification in linear temporal logic (LTL) [33].
More precisely, we use a safety LTL formula [26] as a specification, which can be
translated to a deterministic finite automaton (DFA) [36]. In our protocol, we
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first convert a safety LTL formula into a DFA and conduct online monitoring with
the DFA. For online and oblivious execution of a DFA, we propose two algorithms
based on fully homomorphic encryption (FHE). FHE allows us to evaluate an
arbitrary function over ciphertexts, and there is an FHE-based algorithm to
evaluate a DFA obliviously [13]. However, this algorithm is limited to leveled
homomorphic, i.e., the FHE parameters are dependent on the number of the
monitored ciphertexts and thus not applicable to online monitoring.

In this work, we first present a fully homomorphic offline DFA evaluation
algorithm (Offline) by extending the leveled homomorphic algorithm in [13].
Although we can remove the parameter dependence using this method, Offline
consumes the ciphertexts from back to front (Fig. 2a). As a result, Offline is
still limited to offline usage only. To truly enable online monitoring, we propose
two new algorithms based on Offline: Reverse and Block. In Reverse, we
reverse the DFA and apply Offline to the reversed DFA (Fig. 2b). In Block,
we split the monitored ciphertexts into fixed-length blocks and process each
block sequentially with Offline (Fig. 2c). We prove that both of the algorithms
have linear time complexity and constant space complexity to the length of the
monitored ciphertexts, which guarantees the scalability of our entire protocol.

On top of our online algorithms, we propose a protocol for oblivious online
LTL monitoring. We assume that the client is malicious, i.e., the client can
deviate arbitrarily from the protocol, while the server is honest-but-curious, i.e.,
the server honestly follows the protocol but tries to learn the client’s private
data by exploiting the obtained information. We show that the privacy of both
parties can be protected under the standard IND-CPA security of FHE schemes
with the addition of shielded randomness leakage (SRL) security [10,21].

We implemented our algorithms for DFA evaluation in C++20 and evalu-
ated their performance. Our experiment results confirm the scalability of our
algorithms. Moreover, through a case study on blood glucose levels monitoring,
we also show that our algorithms run fast enough for online monitoring, i.e.,
our algorithms are faster than the sampling interval of the current commercial
devices that samples glucose levels.

Our contributions are summarized as follows:

– We propose two online algorithms to run a DFA obliviously.
– We propose the first protocol for oblivious online LTL monitoring.
– We proved the correctness and security of our protocol.
– Our experiments show the scalability and practicality of our algorithms.

Related Work. There are various works on DFA execution without revealing the
monitored data (See Table 1 for a summary). However, to our knowledge, there is
no existing work achieving all of our three goals (i.e., online monitoring, privacy
of the client, and privacy of the server) simultaneously. Therefore, none of them
is applicable to oblivious online LTL monitoring.

Homomorphic encryption, which we also utilize, has been used to run a
DFA obliviously [13,25]. Among different homomorphic encryption schemes,
our algorithm is based on the algorithm in [13]. Although these algorithms
guarantee the privacy of the client and the privacy of the server, all of the
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Table 1. Related work on DFA execution with privacy of the client.

Work [37] [20] [9] [35] [31] [22] [25] [13] [1] Ours

Support online monitoring ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Private the client’s monitored data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Private DFA, except for its number of the states ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Private DFA’s number of the states ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Performance report ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

homomorphic-encryption-based algorithms are limited to offline DFA execution
and do not achieve online monitoring. We note that the extension of [13] for online
DFA execution is one of our technical contributions.

In [1], the authors propose an LTL runtime verification algorithm without
revealing the monitored data to the server. They propose both offline and online
algorithms to run a DFA converted from a safety LTL formula. The main issue
with their online algorithm is that the DFA running on the server must be
revealed to the client, and the goal of privacy of the server is not satisfied.

Oblivious DFA evaluation (ODFA) [9,20,22,31,35,37] is a technique to run
a DFA on a server while keeping the DFA secret to the server and the monitored
data secret to the client. Although the structure of the DFA is not revealed to
the client, the client has to know the number of the states. Consequently, the
goal privacy of the server is satisfied only partially. Moreover, to the best of our
knowledge, none of the ODFA-based algorithms support online DFA execution.
Therefore, the goal online monitoring is not satisfied.

Organization. The rest of the paper is organized as follows: In (Sect. 2), we
overview LTL monitoring (Sect. 2.1), the FHE scheme we use (Sect. 2.2), and the
leveled homomorphic offline algorithm (Sect. 2.3). Then, in Sect. 3, we explain
our fully homomorphic offline algorithm (Offline) and two online algorithms
(Reverse and Block). We describe the proposed protocol for oblivious online
LTL monitoring in Sect. 4. After we discuss our experimental results in Sect. 5,
we conclude our paper in Sect. 6.

2 Preliminaries

Notations. We denote the set of all nonnegative integers by N, the set of all
positive integers by N

+, and the set {0, 1} by B. Let X be a set. We write 2X for
the powerset of X. We write X∗ for the set of finite sequences of X elements and
Xω for the set of infinite sequences of X elements. For u ∈ Xω, we write ui ∈ X
for the i-th element (0-based) of u, ui:j ∈ X∗ for the subsequence ui, ui+1, . . . , uj

of u, and ui: ∈ Xω for the suffix of u starting from its i-th element. For u ∈ X∗

and v ∈ X∗ ∪ Xω, we write u · v for the concatenation of u and v.

DFA. A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is a finite set of alphabet, δ : Q×Σ → Q is a transition
function, q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. If the
alphabet of a DFA is B, we call it a binary DFA. For a state q ∈ Q and a word
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w = σ1σ2 . . . σn we define δ(q, w) := δ(. . . δ(δ(q, σ1), σ2), . . . , σn). For a DFA M
and a word w, we write M(w) := 1 if M accepts w; otherwise, M(w) := 0. We
also abuse the above notations for nondeterministic finite automata (NFAs).

2.1 LTL

We use linear temporal logic (LTL) [33] to specify the monitored properties. The
following BNF defines the syntax of LTL formulae: φ, ψ ::= � | p | ¬φ | φ ∧ ψ |
Xφ | φUψ, where φ and ψ range over LTL formulae and p ranges over a set AP
of atomic propositions.

An LTL formula asserts a property of u ∈ (2AP)ω. The sequence u expresses
an execution trace of a system; ui is the set of the atomic propositions satisfied at
the i-th time step. Intuitively, � represents an always-true proposition; p asserts
that u0 contains p, and hence p holds at the 0-th step in u; ¬φ is the negation of
φ; and φ∧ψ is the conjunction of φ and ψ. The temporal proposition Xφ expresses
that φ holds from the next step (i.e., u1:); φUψ expresses that ψ holds eventually
and φ continues to hold until then. We write ⊥ for ¬�; φ ∨ ψ for ¬(¬φ ∧ ¬ψ);

φ =⇒ ψ for ¬φ∨ψ; Fφ for �Uφ; Gφ for ¬(F¬φ); G[n,m]φ for
n occurrences of X

︷ ︸︸ ︷

X . . .X (φ∧
(m−n) occ. of X

︷ ︸︸ ︷

X(φ ∧ X(· · · ∧ Xφ))); and F[n,m]φ for
n occ. of X
︷ ︸︸ ︷

X . . .X (φ ∨
(m−n) occ. of X

︷ ︸︸ ︷

X(φ ∨ X(· · · ∨ Xφ))).
We formally define the semantics of LTL below. Let u ∈ (2AP)ω, i ∈ N, and

φ be an LTL formula. We define the relation u, i |= φ as the least relation that
satisfies the following:

u, i |= � u, i |= p
def⇐⇒ p ∈ u(i) u, i |= ¬φ

def⇐⇒ u, i �|= φ

u, i |= φ ∧ ψ
def⇐⇒ u, i |= φ and u, i |= ψ u, i |= Xφ

def⇐⇒ u, i + 1 |= φ

u, i |= φUψ
def⇐⇒ there exists j ≥ i such that u, j |= ψ and,

for any k, i ≤ k ≤ j =⇒ u, k |= φ.

We write u |= φ for u, 0 |= φ and say u satisfies φ.
In this paper, we focus on safety [26] (i.e., nothing bad happens) fragment of

LTL properties. A finite sequence w ∈ (2AP)∗ is a bad prefix for an LTL formula
φ if w · v �|= φ holds for any v ∈ (2AP)ω. For any bad prefix w, we cannot extend
w to an infinite word that satisfies φ. An LTL formula φ is a safety LTL formula
if for any w ∈ (2AP)ω satisfying w �|= φ, w has a bad prefix for φ.

A safety monitor (or simply a monitor) is a procedure that takes w ∈ (2AP)ω

and a safety LTL formula φ and generates an alert if w �|= φ. From the definition
of safety LTL, it suffices for a monitor to detect a bad prefix of φ. It is known
that, for any safety LTL formula φ, we can construct a DFA Mφ recognizing the
set of the bad prefixes of φ [36], which can be used as a monitor.

2.2 Torus Fully Homomorphic Encryption

Homomorphic encryption (HE) is a form of encryption that enables us to apply
operations to encrypted values without decrypting them. In particular, a type
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Table 2. Summary of TFHE ciphertexts, where N is a parameter of TFHE.

Ciphertext Kind Notation in this paper Plaintext Message Conversion from TRLWE

TLWE c a Boolean value b ∈ B SampleExtract (fast)
TRLWE c a Boolean vector v ∈ B

N ————

TRGSW d a Boolean value b ∈ B
SampleExtract and

CircuitBootstrapping (slow)

of HE, called Fully HE (FHE), allows us to evaluate arbitrary functions over
encrypted data [11,19,23,24]. We use an instance of FHE called TFHE [13] in
this work. We briefly summarize TFHE below; see [13] for a detailed exposition.

We are concerned with the following two-party secure computation, where
the involved parties are a client (called Alice) and a server (called Bob): 1)
Alice generates the keys used during computation; 2) Alice encrypts her plain-
text messages into ciphertexts with her keys; 3) Alice sends the ciphertexts to
Bob; 4) Bob conducts computation over the received ciphertexts and obtains
the encrypted result without decryption; 5) Bob sends the encrypted results to
Alice; 6) Alice decrypts the received results and obtains the results in plaintext.

Keys. There are three types of keys in TFHE: secret key SK, public key PK, and
bootstrapping key BK. All of them are generated by Alice. PK is used to encrypt
plaintext messages into ciphertexts, and SK is used to decrypt ciphertexts into
plaintexts. Alice keeps SK private, i.e., the key is known only to herself but not
to Bob. In contrast, PK is public and also known to Bob. BK is generated from
SK and can be safely shared with Bob without revealing SK. BK allows Bob to
evaluate the homomorphic operations (defined later) over the ciphertext.

Ciphertexts. Using the public key, Alice can generate three kinds of ciphertexts
(Table 2): TLWE (Torus Learning With Errors), TRLWE (Torus Ring Learning
With Errors), and TRGSW (Torus Ring Gentry-Sahai-Waters). Homomorphic
operations provided by TFHE are defined over each of the specific ciphertexts.
We note that different ciphertexts have different data structures, and their con-
version can be time-consuming. Table 2 shows one such example.

In TFHE, different types of ciphertexts represent different plaintext messages.
A TLWE ciphertext represents a Boolean value. In contrast, TRLWE represents
a vector of Boolean values of length N , where N is a TFHE parameter. We can
regard a TRLWE ciphertext as a vector of TLWE ciphertexts, and the conversion
between a TRLWE ciphertext and a TLWE one is relatively easy. A TRGSW
ciphertext also represents a Boolean value, but its data structure is quite different
from TLWE, and the conversion from TLWE to TRGSW is slow.

TFHE provides different encryption and decryption functions for each type
of ciphertext. We write Enc(x) for a ciphertext of a plaintext x; Dec(c) for the
plaintext message for the ciphertext c. We abuse these notations for all three
types of ciphertexts.
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Besides, TFHE supports trivial samples of TRLWE. A trivial sample of
TRLWE has the same data structure as a TRLWE ciphertext but is not encrypted,
i.e., anyone can tell the plaintext message represented by the trivial sample. We
denote by Trivial(n) a trivial sample of TRLWE whose plaintext message is
(b1, b2, . . . , bN ), where each bi is the i-th bit in the binary representation of n.

Homomorphic Operations. TFHE provides homomorphic operations, i.e.,
operations over ciphertexts without decryption. Among the operators supported
by TFHE [13], we use the following ones.

CMux(d, ctrue, cfalse) : TRGSW × TRLWE × TRLWE → TRLWE
Given a TRGSW ciphertext d and TRLWE ciphertexts ctrue, cfalse, CMux
outputs a TRLWE ciphertext cresult such that Dec(cresult) = Dec(ctrue) if
Dec(d) = 1, and otherwise, Dec(cresult) = Dec(cfalse).

LookUp({ci}2n

i=1, {di}n
i=1) : (TRLWE)2

n × (TRGSW)n → TRLWE
Given TRLWE ciphertexts c1, c2, . . . , c2n and TRGSW ciphertexts d1, d2, . . . ,
dn, LookUp outputs a TRLWE ciphertext c such that Dec(c) = Dec(ck) and
k =

∑n
i=1 2i−1 × Dec(di).

SampleExtract(k, c) : N × TRLWE → TLWE
Let Dec(c) = (b1, b2, . . . , bN ). Given k < N and a TRLWE ciphertext c,
SampleExtract outputs a TLWE ciphertext c where Dec(c) = bk+1.

Intuitively, CMux can be regarded as a multiplexer over TRLWE ciphertexts
with TRGSW selector input. The operation LookUp regards c1, c2, . . . , c2n as
encrypted entries composing a LookUp Table (LUT) of depth n and d1, d2, . . . , dn

as inputs to the LUT. Its output is the entry selected by the LUT. LookUp is
constructed by 2n − 1 CMux arranged in a tree of depth n. SampleExtract
outputs the k-th element of c as TLWE. Notice that all these operations work
over ciphertexts without decrypting them.

Noise and Operations for Noise Reduction. In generating a TFHE cipher-
text, we ensure its security by adding some random numbers called noise. An
application of a TFHE operation adds noise to its output ciphertext; if the noise
in a ciphertext becomes too large, the TFHE ciphertext cannot be correctly
decrypted. There is a special type of operation called bootstrapping1 [23], which
reduces the noise of a TFHE ciphertext.

BootstrappingBK(c) : TLWE → TRLWE
Given a bootstrapping key BK and a TLWE ciphertext c, Bootstrapping
outputs a TRLWE ciphertext c where Dec(c) = (b1, b2, . . . , bN ) and b1 =
Dec(c). Moreover, the noise of c becomes a constant that is determined by
the parameters of TFHE and is independent of c.

CircuitBootstrappingBK(c) : TLWE → TRGSW
Given a bootstrapping key BK and a TLWE ciphertext c, CircuitBoot-
strapping outputs a TRGSW ciphertext d where Dec(d) = Dec(c). The
noise of d becomes a constant that is determined by the parameters of TFHE
and is independent of c.

1 Note that bootstrapping here has nothing to do with bootstrapping in statistics.
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Algorithm 1: The leveled homomorphic offline algorithm [13].
Input : A binary DFA M = (Q, Σ = B, δ, q0, F ) and TRGSW monitored ciphertexts

d1, d2, . . . , dn

Output : A TLWE ciphertext c satisfying Dec(c) = M(Dec(d1)Dec(d2) . . .Dec(dn))
1 for q ∈ Q do
2 cn,q ← q ∈ F ? Trivial(1) : Trivial(0) // Initialize each cn,q

3 for i = n, n − 1, . . . , 1 do
4 for q ∈ Q such that q is reachable from q0 by (i − 1) transitions do
5 ci−1,q ← CMux(di, ci,δ(q,1), ci,δ(q,0))

6 c ← SampleExtract(0, c0,q0 )

7 return c

These bootstrapping operations are used to keep the noise of a TFHE cipher-
text small enough to be correctly decrypted. Bootstrapping and Circuit-
Bootstrapping are almost two and three orders of magnitude slower than
CMux, respectively [13].

Parameters for TFHE. There are many parameters for TFHE, such as the
length N of the message of a TRLWE ciphertext and the standard deviation of the
probability distribution from which a noise is taken. Certain properties of TFHE
depend on these parameters. These properties include the security level of TFHE,
the number of TFHE operations that can be applied without bootstrapping ensur-
ing correct decryption, and the time and the space complexity of each operation.
The complete list of TFHE parameters is presented in the full version [4].

We remark that we need to determine the TFHE parameters before perform-
ing any TFHE operation. Therefore, we need to know the number of applications
of homomorphic operations without bootstrapping in advance, i.e., the homo-
morphic circuit depth must be determined a priori.

2.3 Leveled Homomorphic Offline Algorithm

Chillotti et al. [13] proposed an offline algorithm to evaluate a DFA over
TFHE ciphertexts (Algorithm 1). Given a DFA M and TRGSW ciphertexts
d1, d2, . . . , dn, Algorithm 1 returns a TLWE ciphertext c satisfying Dec(c) =
M(Dec(d1)Dec(d2) . . . Dec(dn)). For simplicity, for a state q of M , we write
M i(q) for M(q,Dec(di)Dec(di+1) . . . Dec(dn)).

In Algorithm1, we use a TRLWE ciphertext ci,q whose first ele-
ment represents M i+1(q), i.e., whether we reach a final state by reading
Dec(di+1)Dec(di+2) . . . Dec(dn) from q. We abuse this notation for i = n, i.e.,
the first element of cn,q represents if q ∈ F . In Lines 1 and 2, we initialize cn,q;
For each q ∈ Q, we let cn,q be Trivial(1) if q ∈ F ; otherwise, we let cn,q

be Trivial(0). In Lines 3–5, we construct ci−1,q inductively by feeding each
monitored ciphertext di to CMux from tail to head. Here, ci−1,q represents
M i(q) because of M i(q) = M i+1(δ(q,Dec(di))). We note that for the efficiency,
we only construct ci−1,q for the states reachable from q0 by i − 1 transitions.
In Line 6, we extract the first element of c0,q0 , which represents M1(q0), i.e.,
M(Dec(d1)Dec(d2) . . . Dec(dn)).
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Algorithm 2: Our fully homomorphic offline algorithm (Offline).
Input : A binary DFA M = (Q, Σ = B, δ, q0, F ), TRGSW monitored ciphertexts

d1, d2, . . . , dn, a bootstrapping key BK, and Iboot ∈ N
+

Output : A TLWE ciphertext c satisfying Dec(c) = M(Dec(d1)Dec(d2) . . .Dec(dn))
1 for q ∈ Q do
2 cn,q ← q ∈ F ? Trivial(1) : Trivial(0)
3 for i = n, n − 1, . . . , 1 do
4 for q ∈ Q such that q is reachable from q0 by (i − 1) transitions do
5 ci−1,q ← CMux(di, ci,δ(q,1), ci,δ(q,0))

6 if (n − i + 1) mod Iboot = 0 then
7 for q ∈ Q such that reachable from q0 by (i − 1) transitions do
8 ci−1,q ← SampleExtract(0, ci−1,q)
9 ci−1,q ← BootstrappingBK(ci−1,q)

10 c ← SampleExtract(0, c0,q0 )

11 return c

Theorem 1 (Correctness [13, Thm. 5.4]). Given a binary DFA M and
TRGSW ciphertexts d1, d2, . . . , dn, if c in Algorithm 1 can be correctly decrypted,
Algorithm 1 outputs c satisfying Dec(c) = M(Dec(d1)Dec(d2) . . .Dec(dn)). ��

Complexity Analysis. The time complexity of Algorithm 1 is determined by
the number of applications of CMux, which is O(n|Q|). Its space complexity
is O(|Q|) because we can use two sets of |Q| TRLWE ciphertexts alternately for
c2j−1,q and c2j,q (for j ∈ N

+).

Shortcomings of Algorithm1. We cannot use Algorithm 1 under an online
setting due to two reasons. Firstly, Algorithm1 is a leveled homomorphic algo-
rithm, i.e., the maximum length of the ciphertexts that Algorithm 1 can handle
is determined by TFHE parameters. This is because Algorithm 1 does not use
Bootstrapping, and if the monitored ciphertexts are too long, the result c can-
not be correctly decrypted due to the noise. This is critical in an online setting
because we do not know the length n of the monitored ciphertexts in advance,
and we cannot determine such parameters appropriately.

Secondly, Algorithm1 consumes the monitored ciphertext from back to front,
i.e., the last ciphertext dn is used in the beginning, and d1 is used in the end.
Thus, we cannot start Algorithm1 before the last input is given.

3 Online Algorithms for Running DFA Obliviously

In this section, we propose two online algorithms that run a DFA obliviously. As
a preparation for these online algorithms, we also introduce a fully homomorphic
offline algorithm based on Algorithm 1.

3.1 Preparation: Fully Homomorphic Offline Algorithm (Offline)

As preparation for introducing an algorithm that can run a DFA under an online
setting, we enhance Algorithm 1 so that we can monitor a sequence of ciphertexts
whose length is unknown a priori. Algorithm2 shows our fully homomorphic



456 R. Banno et al.

Algorithm 3: Our first online algorithm (Reverse).
Input : A binary DFA M , TRGSW monitored ciphertexts d1, d2, d3, . . . , dn, a

bootstrapping key BK, and Iboot ∈ N
+

Output : For every i ∈ {1, 2, . . . , n}, a TLWE ciphertext ci satisfying
Dec(ci) = M(Dec(d1)Dec(d2) . . .Dec(di))

1 let MR = (QR,B, δR, qR
0 , FR) be the minimum reversed DFA of M

2 for qR ∈ QR do
3 c0,qR ← qR ∈ FR ? Trivial(1) : Trivial(0)
4 for i = 1, 2, . . . , n do
5 for qR ∈ QR do
6 ci,qR ← CMux(di, ci−1,δR(qR,1), ci−1,δR(qR,0))

7 if i mod Iboot = 0 then
8 for qR ∈ QR do
9 ci,qR ← SampleExtract(0, ci,qR )

10 ci,qR ← BootstrappingBK(ci,qR )

11 ci ← SampleExtract(0, c
i,qR0

)

12 output ci

offline algorithm (Offline), which does not require TFHE parameters to depend
on the length of the monitored ciphertexts. The key difference lies in Lines 6–9
(the red lines) of Algorithm 2. Here, for every Iboot consumption of the monitored
ciphertexts, we reduce the noise by applying Bootstrapping to the ciphertext
ci,j representing a state of the DFA. Since the amount of the noise accumulated
in ci,j is determined only by the number of the processed ciphertexts, we can keep
the noise levels of ci,j low and ensure that the monitoring result c is correctly
decrypted. Therefore, by using Algorithm 2, we can monitor an arbitrarily long
sequence of ciphertexts as long as the interval Iboot is properly chosen according
to the TFHE parameters. We note that we still cannot use Algorithm2 for online
monitoring because it consumes the monitored ciphertexts from back to front.

3.2 Online Algorithm 1: Reverse

To run a DFA online, we modify Offline so that the monitored ciphertexts are
consumed from front to back. Our main idea is illustrated in Fig. 2b: we reverse
the DFA M beforehand and feed the ciphertexts d1, d2, . . . , dn to the reversed
DFA MR serially from d1 to dn.

Algorithm3 shows the outline of our first online algorithm (Reverse) based
on the above idea. Reverse takes the same inputs as Offline: a DFA M ,
TRGSW ciphertexts d1, d2, . . . , dn, a bootstrapping key BK, and a positive inte-
ger Iboot indicating the interval of bootstrapping. In Line 1, we construct the
minimum DFA MR that satisfies, for any w = σ1σ2 . . . σk ∈ B

∗, we have
MR(w) = M(wR), where wR = σk . . . σ1. We can construct such a DFA by
reversing the transitions and by applying the powerset construction and the
minimization algorithm.

In the loop from Lines 4-12, the reversed DFA MR consumes each moni-
tored ciphertext di, which corresponds to the loop from Lines 3-9 in Algorithm
2. The main difference lies in Line 5 and 8: Algorithm3 applies CMux and
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Algorithm 4: Our second online algorithm (Block).
Input : A binary DFA M = (Q, Σ = B, δ, q0, F ), TRGSW monitored ciphertexts

d1, d2, d3, . . . , dn, a bootstrapping key BK, and B ∈ N
+

Output : For every i ∈ N
+ (i ≤ �n/B�), a TLWE ciphertext ci satisfying

Dec(ci) = M(Dec(d1)Dec(d2) . . .Dec(di×B))
1 S1 ← {q0} // Si: the states reachable by (i − 1) × B transitions.
2 for i = 1, 2, . . . , �n/B� do
3 Si+1 ← {q ∈ Q | ∃si ∈ Si. q is reachable from si by B transitions}

// We denote Si+1 = {si+1
1 , si+1

2 , . . . , si+1
|Si+1|}

4 for q ∈ Q do
5 if q ∈ Si+1 then
6 j ← the index of Si+1 such that q = si+1

j

7 c
Ti
B,q ← Trivial((j − 1) × 2 + (q ∈ F ? 1 : 0))

8 for k = B, B − 1, . . . , 1 do
9 for q ∈ Q such that q is reachable from a state in Si by (k − 1) transitions do

10 c
Ti
k−1,q ← CMux(d(i−1)B+k, c

Ti
k,δ(q,1), c

Ti
k,δ(q,0))

11 if |Si| = 1 then
12 ccur

i+1 ← c
Ti
0,q where Si = {q}

13 else
14 for l = 1, 2, . . . , 
log2(|Si|)� do
15 cl ← SampleExtract(l, ccur

i )

16 d′
l ← CircuitBootstrappingBK(cl)

17 ccur
i+1 ← LookUp({cTi

0,si
1
, c

Ti

0,si
2
, . . . c

Ti

0,si
|Si|

}, {d′
1, . . . , d′

�log2(|Si|)�})

18 ci ← SampleExtract(0, ccur
i+1)

19 output ci

Bootstrapping to all the states of MR, while Algorithm2 only considers the
states reachable from the initial state. This is because in online monitoring, we
monitor a stream of ciphertexts without knowing the number of the remaining
ciphertexts, and all the states of the reversed DFA MR are potentially reachable
from the initial state qR

0 by the reversed remaining ciphertexts dn, dn−1, . . . , di+1

because of the minimality of MR.

Theorem 2. Given a binary DFA M , TRGSW ciphertexts d1, d2, . . . , dn, a boot-
strapping key BK, and a positive integer Iboot, for each i ∈ {1, 2, . . . , n}, if
ci in Algorithm 3 can be correctly decrypted, Algorithm 3 outputs ci satisfying
Dec(ci) = M(Dec(d1)Dec(d2) . . .Dec(di)).

Proof (sketch). SampleExtract and Bootstrapping in Line 9 and 10 do not
change the decrypted value of ci. Therefore, Dec(ci) = MR(Dec(di) . . . Dec(d1))
for i ∈ {1, 2, . . . , n} by Theorem 1. As MR is the reversed DFA of M , we have
Dec(ci) = MR(Dec(di) . . . Dec(d1)) = M(Dec(d1) . . . Dec(di)). ��

3.3 Online Algorithm 2: Block

A problem of Reverse is that the number of the states of the reversed DFA
can explode exponentially due to powerset construction (see Sect. 3.4 for the
details). Another idea of an online algorithm without reversing a DFA is illus-
trated in Fig. 2c: we split the monitored ciphertexts into blocks of fixed size B
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and process each block in the same way as Algorithm 2. Intuitively, for each block
d1+(i−1)×B , d2+(i−1)×B , . . . , dB+(i−1)×B of ciphertexts, we compute the function
Ti : Q → Q satisfying Ti(q) = δ(q, d1+(i−1)×B , d2+(i−1)×B , . . . , dB+(i−1)×B) by a
variant of Offline, and keep track of the current state of the DFA after reading
the current prefix d1, d2, . . . , dB+(i−1)×B .

Algorithm4 shows the outline of our second online algorithm (Block)
based on the above idea. Algorithm 4 takes a DFA M , TRGSW ciphertexts
d1, d2, . . . , dn, a bootstrapping key BK, and an integer B representing the inter-
val of output. To simplify the presentation, we make the following assumptions,
which are relaxed later: 1) B is small, and a trivial TRLWE sample can be cor-
rectly decrypted after B applications of CMux; 2) the size |Q| of the states of
the DFA M is smaller than or equal to 2N−1, where N is the length of TRLWE.

The main loop of the algorithm is sketched on Lines 2–19. In each iteration, we
consume the i-th block consisting of B ciphertexts, i.e., d(i−1)B+1, . . . , d(i−1)B+B .
In Line 3, we compute the set Si+1 = {si+1

1 , si+1
2 , . . . , si+1

|Snext|} of the states reach-
able from q0 by reading a word of length i × B.

In Lines 4–10, for each q ∈ Q, we construct a ciphertext representing Ti(q) by
feeding the current block to a variant of Offline. More precisely, we construct
a ciphertext cTi

0,q representing the pair of the Boolean value showing if Ti(q) ∈ F
and the state Ti(q) ∈ Q. The encoding of such a pair in a TRLWE ciphertext is
as follows: the first element shows if Ti(q) ∈ F and the other elements are the
binary representation of j ∈ N

+, where j is such that si+1
j = Ti(q).

In Lines 11–17, we construct the ciphertext ccuri+1 representing the state of
the DFA M after reading the current prefix d1, d2, . . . , dB+(i−1)×B . If |Si| = 1,
since the unique element q of Si is the only possible state before consuming the
current block, the state after reading it is T (q). Therefore, we let ccuri+1 = cTi

0,q.
Otherwise, we extract the ciphertext representing the state q before consum-

ing the current block, and let ccuri+1 = cTi
0,q. Since the ccuri (except for the first ele-

ment) represents q (see Line 7), we extract them by applying SampleExtract
(Line 15) and convert them to TRGSW by applying CircuitBootstrapping
(Line 16). Then, we choose cTi

0,q by applying LookUp and set it to ccuri+1.
The output after consuming the current block, i.e., M(Dec(d1)Dec(d2) . . .

Dec(d(i−1)B+B)) is stored in the first element of the TRLWE ciphertext ccuri+1. It
is extracted by applying SampleExtract in Line 18 and output in Line19.

Theorem 3. Given a binary DFA M , TRGSW ciphertexts d1, d2, . . . , dn, a boot-
strapping key BK, and a positive integer B, for each i ∈ {1, 2, . . . , �n/B�}, if ci

in Algorithm 4 can be correctly decrypted, Algorithm 4 outputs a TLWE ciphertext
ci satisfying Dec(ci) = M(Dec(d1)Dec(d2) . . .Dec(di×B)).

Proof (sketch). Let qi be δ(q0,Dec(d1)Dec(d2) . . . Dec(di×B)). It suffices to show
that, for each iteration i in Line 2, Dec(ccuri+1) represents a pair of the Boolean
value showing if qi ∈ F and the state qi ∈ Q in the above encoding format.
This is because ci represents the first element of ccuri+1. Algorithm 4 selects ccuri+1

from {cTi
0,q}q∈Si

in Line 12 or Line 17. By using a slight variant of Theorem 1 in
Lines 11–17, we can show that cTi

0,q represents if T i(q) ∈ F and the state T i(q).
Therefore, the proof is completed by showing Dec(ccuri+1) = Dec(cTi

0,qi−1).
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Table 3. Complexity of the proposed algorithms with respect to the number |Q| of
the states of the DFA and the size |φ| of the LTL formula. For Block, we show the
complexity before the relaxation.

Algorithm w.r.t.
Number of Applications

Space
CMux Bootstrapping CircuitBootstrapping

Offline
DFA O(n|Q|) O(n|Q|/Iboot) — O(|Q|)
LTL O(n22

|φ|
) O(n22

|φ|
/Iboot) — O(22

|φ|
)

Reverse
DFA O(n2|Q|) O(n2|Q|/Iboot) — O(2|Q|)

LTL O(n2|φ|) O(n2|φ|/Iboot) — O(2|φ|)

Block
DFA O(n|Q|) — O((n log |Q|)/B) O(|Q|)
LTL O(n22

|φ|
) — O(n2|φ|/B) O(22

|φ|
)

We prove Dec(ccuri+1) = Dec(cTi

0,qi−1) by induction on i. If i = 1, |Si| = 1
holds, and by qi−1 ∈ Si, we have Dec(ccuri+1) = Dec(cTi

0,qi−1). If i > 1 and |Si| = 1,
Dec(ccuri+1) = Dec(cTi

0,qi−1) holds similarly. If i > 1 and |Si| > 1, by induction
hypothesis, Dec(ccuri ) represents if Ti−1(qi−2) = qi−1 ∈ F and the state qi−1.
By construction in Line 16, Dec(d′

l) is equal to the l-th bit of (j − 1), where j is
such that si

j = qi−1. Therefore, the result of the application of LookUp in Line
17 is equivalent to cTi

0,si
j
(= cTi

0,qi−1), and we have Dec(ccuri+1) = Dec(cTi

0,qi−1). ��

We note that Block generates output for every B monitored ciphertexts
while Reverse generates output for every monitored ciphertext.

We also remark that when B = 1, Block consumes every monitored cipher-
text from front to back. However, such a setting is slow due to a huge number
of CircuitBootstrapping operations, as pointed out in Sect. 3.4.

Relaxations of the Assumptions. When B is too large, cTi
0,q may not be

correctly decrypted. We can relax this restriction by inserting Bootstrapping
just after Line 10, which is much like Algorithm 2. When the size |Q| of the states
of the DFA M is larger than 2N−1, we cannot store the index j of the state using
one TRLWE ciphertext (Line 7). We can relax this restriction by using multiple
TRLWE ciphertexts for cTi

0,q and ccur
i+1.

3.4 Complexity Analysis

Table 3 summarizes the complexity of our algorithms with respect to both the
number |Q| of the states of the DFA and the size |φ| of the LTL formula. We
note that, for Block, we do not relax the above assumptions for simplicity.
Notice that the number of applications of the homomorphic operations is linear
to the length n of the monitored ciphertext. Moreover, the space complexity is
independent of n. This shows that our algorithms satisfy the properties essential
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to good online monitoring; 1) they only store the minimum of data, and 2) they
run quickly enough under a real-time setting [5].

The time and the space complexity of Offline and Block are linear to |Q|.
Moreover, in these algorithms, when the i-th monitored ciphertext is consumed,
only the states reachable by a word of length i are considered, which often makes
the scalability even better. In contrast, the time and the space complexity of
Reverse is exponential to |Q|. This is because of the worst-case size of the
reversed DFA due to the powerset construction. Since the size of the reversed
DFA is usually reasonably small, the practical scalability of Reverse is also
much better, which is observed through the experiments in Sect. 5.

For Offline and Block, |Q| is doubly exponential to |φ| because we first
convert φ to an NFA (one exponential) and then construct a DFA from the
NFA (second exponential). In contrast, for Reverse, it is known that we can
construct a reversed DFA for φ of the size of at most singly exponential to
|φ| [15]. Note that, in a practical scenario exemplified in Sect. 5, the size of the
DFA constructed from φ is expected to be much smaller than the worst one.

4 Oblivious Online LTL Monitoring

In this section, we formalize the scheme of oblivious online LTL monitoring. We
consider a two-party setting with a client and a server and refer to the client
and the server as Alice and Bob, respectively. Here, we assume that Alice has
private data sequence w = σ1σ2 . . . σn to be monitored where σi ∈ 2AP for each
i ≥ 1. Meanwhile, Bob has a private LTL formula φ. The purpose of oblivious
online LTL monitoring is to let Alice know if σ1σ2 . . . σi |= φ for each i ≥ 1,
while keeping the privacy of Alice and Bob.

4.1 Threat Model

We assume that Alice is malicious, i.e., Alice can deviate arbitrarily from the pro-
tocol to try to learn φ. We also assume that Bob is honest-but-curious, i.e., Bob cor-
rectly follows the protocol, but he tries to learn w from the information he obtains
from the protocol execution. We do not assume that Bob is malicious in the present
paper; a protocol that is secure against malicious Bob requires more sophisticated
primitives such as zero-knowledge proofs and is left as future work.

Public and Private Data. We assume that the TFHE parameters, the parameters
of our algorithms (e.g., Iboot and B), Alice’s public key PK, and Alice’s boot-
strapping key BK are public to both parties. The input w and the monitoring
result are private for Alice, and the LTL formula φ is private for Bob.

4.2 Protocol Flow

The protocol flow of oblivious online LTL monitoring is shown in Fig. 3. It takes
σ1, σ2, . . . , σn, φ, and b ∈ B as its parameters, where b is a flag that indicates the
algorithm Bob uses: Reverse (b = 0) or Block (b = 1). After generating her
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Input : Alice’s private inputs σ1, σ2, . . . , σn ∈ 2AP, Bob’s private LTL formula φ, and
b ∈ B

Output : For every i ∈ {1, 2, . . . n}, Alice’s private output representing σ1σ2 . . . σi |= φ
1 Alice generates her secret key SK.
2 Alice generates her public key PK and bootstrapping key BK from SK.
3 Alice sends PK and BK to Bob.
4 Bob converts φ to a binary DFA M = (Q, Σ = B, δ, q0, F ).
5 for i = 1, 2, . . . , n do
6 Alice encodes σi to a sequence σ′

i := (σ′1
i , σ′2

i , . . . , σ′|AP|
i ) ∈ B

|AP|.
7 Alice calculates di := (Enc(σ′1

i ),Enc(σ′2
i ), . . .Enc(σ′|AP|

i )).
8 Alice sends di to Bob.
9 Bob feeds the elements of di to Reverse (if b = 0) or Block (if b = 1).

// σ′
1 · σ′

2 · · · σ′
i refers σ′1

1 . . . σ′|AP|
1 σ′1

2 . . . σ′|AP|
2 σ′1

3 . . . σ′|AP|
i .

10 Bob obtains the output TLWE ciphertext c produced by the algorithm, where
Dec(c) = M(σ′

1 · σ′
2 · · · · · σ′

i).
11 Bob randomizes c to obtain c′ so that Dec(c) = Dec(c′).
12 Bob sends c′ to Alice.
13 Alice calculates Dec(c′) to obtain the result in plaintext.

Fig. 3. Protocol of oblivious online LTL monitoring.

secret key and sending the corresponding public and bootstrapping key to Bob
(Lines 1–3), Alice encrypts her inputs into ciphertexts and sends the ciphertexts
to Bob one by one (Lines 5–8). In contrast, Bob first converts his LTL formula
φ to a binary DFA M (Line 4). Then, Bob serially feeds the received ciphertexts
from Alice to Reverse or Block (Line 9) and returns the encrypted output of
the algorithm to Alice (Lines 10–13).

Note that, although the alphabet of a DFA constructed from an LTL formula
is 2AP [36], our proposed algorithms require a binary DFA. Thus, in Line 4, we
convert the DFA constructed from φ to a binary DFA M by inserting auxiliary
states. Besides, in Line 6, we encode an observation σi ∈ 2AP by a sequence σ′

i :=
(σ′1

i , σ
′2
i , . . . , σ

′|AP |
i ) ∈ B

|AP | such that pj ∈ σi if and only if σ′j
i is true, where

AP = {p1, . . . , p|AP|}. We also note that, taking this encoding into account, we
need to properly set the parameters for Block to generate an output for each
|AP|-size block of Alice’s inputs, i.e., B is taken to be equal to |AP|.

Here, we provide brief sketches of the correctness and security analysis of the
proposed protocol. See the full version [4] for detailed explanations and proofs.

Correctness. We can show that Alice obtains correct results in our protocol
directly by Theorem 2 and Theorem 3.

Security. Intuitively, after the execution of the protocol described in Fig. 3,
Alice should learn M(σ′

1 · σ′
2 · · · σ′

i) for every i ∈ {1, 2, . . . , n} but nothing else.
Besides, Bob should learn the input size n but nothing else.

Privacy for Alice. We observe that Bob only obtains Enc(σ′j
i ) from Alice for each

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , |AP|}. Therefore, we need to show that Bob
learns nothing from the ciphertexts generated by Alice. Since TFHE provides
IND-CPA security [7], we can easily guarantee the client’s privacy for Alice.

Privacy for Bob. The privacy guarantee for Bob is more complex than that
for Alice. Here, Alice obtains σ′

1, σ
′
2, . . . , σ

′
n and the results M(σ′

1 · σ′
2 · · · σ′

i) for
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every i ∈ {1, 2, . . . , n} in plaintext. In the protocol (Fig. 3), Alice does not obtain
φ,M themselves or their sizes, and it is known that a finite number of checking
M(w) cannot uniquely identify M if any additional information (e.g., |M |) is
not given [2,32]. Thus, it is impossible for Alice to identify M (or φ) from the
input/output pairs.

Nonetheless, to fully guarantee the model privacy of Bob, we also need to
show that, when Alice inspects the result ciphertext c′, it is impossible for Alice
to know Bob’s specification, i.e., what homomorphic operations were applied by
Bob to obtain c′. A TLWE ciphertext contains a random nonce and a noise term.
By randomizing c properly in Line 11, we ensure that the random nonce of c′

is not biased [34]. By assuming SRL security [10,21] over TFHE, we can ensure
that there is no information leakage regarding Bob’s specifications through the
noise bias. A more detailed discussion is in the full version [4].

5 Experiments

We experimentally evaluated the proposed algorithms (Reverse and Block)
and protocol. We pose the following two research questions:

RQ1. Are the proposed algorithms scalable with respect to the size of the mon-
itored ciphertexts and that of the DFA?

RQ2. Are the proposed algorithms fast enough in a realistic monitoring sce-
nario?

RQ3. Does a standard IoT device have sufficient computational power acting
as a client in the proposed protocol?

To answer RQ1, we conducted an experiment with our original benchmark where
the length of the monitored ciphertexts and the size of the DFA are configurable
(Sect. 5.1). To answer RQ2 and RQ3, we conducted a case study on blood glucose
monitoring; we monitored blood glucose data obtained by simglucose2 against
specifications taken from [12,38] (Sect. 5.2). To answer RQ3, we measured the
time spent on the encryption of plaintexts, which is the heaviest task for a client
during the execution of the online protocol.

We implemented our algorithms in C++20. Our implementation is publicly
available3. We used Spot [17] to convert a safety LTL formula to a DFA. We also
used a Spot’s utility program ltlfilt to calculate the size of an LTL formula4.
We used TFHEpp [30] as the TFHE library. We used N = 1024 as the size of the
message represented by one TRLWE ciphertext, which is a parameter of TFHE.
The complete TFHE parameters we used are shown in the full version [4].

For RQ1 and RQ2, we ran experiments on a workstation with Intel Xeon
Silver 4216 (3.2GHz; 32 cores and 64 threads in total), 128GiB RAM, and
Ubuntu 20.04.2 LTS. We ran each instance of the experiment setting five times
2 https://github.com/jxx123/simglucose.
3 Our implementation is uploaded to https://doi.org/10.5281/zenodo.6558657..
4 We desugared a formula by ltlfilt with option --unabbreviate="eFGiMRˆW" and

counted the number of the characters.

https://github.com/jxx123/simglucose
https://doi.org/10.5281/zenodo.6558657
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Fig. 4. Experimental results of Mm. The left figure shows runtimes when the number
of states (i.e., m) is fixed to 500, while the right one is when the number of monitored
ciphertexts (i.e., n) is fixed to 50000.

and reported the average. We measured the time to consume all of the monitored
ciphertexts in the main loop of each algorithm, i.e., in Lines 4–12 in Reverse
and in Lines 2–19 in Block.

For RQ3, we ran experiments on two single-board computers with and with-
out Advanced Encryption Standard (AES) [14] hardware accelerator. ROCK64
has ARM Cortex A53 CPU cores (1.5GHz; 4 cores) with AES hardware acceler-
ator and 4GiB RAM. Raspberry Pi 4 has ARM Cortex A72 CPU cores (1.5GHz;
4 cores) without AES hardware accelerator and 4GiB RAM.

5.1 RQ1: Scalability

Experimental Setup. In the experiments to answer RQ1, we used a simple
binary DFA Mm, which accepts a word w if and only if the number of the
appearance of 1 in w is a multiple of m. The number of the states of Mm is m.

Our experiments are twofold. In the first experiment, we fixed the DFA size
m to 500 and increased the size n of the input word w from 10000 to 50000. In
the second experiment, we fixed n = 50000 and changed m from 10 to 500. The
parameters we used are Iboot = 30000 and B = 150.

Results and Discussion. Figure 4 shows the results of the experiments. In the
left plot of Fig. 4, we observe that the runtimes of both algorithms are linear
to the length of the monitored ciphertexts. This coincides with the complexity
analysis in Sect. 3.4.

In the right plot of Fig. 4, we observe that the runtimes of both algorithms
are at most linear to the number of the states. For Block, this coincides with
the complexity analysis in Sect. 3.4. In contrast, this is much more efficient than
the exponential complexity of Reverse with respect to |Q|. This is because the
size of the reversed DFA does not increase.

In both plots of Fig. 4, we observe that Reverse is faster than Block.
Moreover, in the left plot of Fig. 4, the curve of Block is steeper than that of
Reverse. This is because 1) the reversed DFA MR

m has the same size as Mm,
2) CircuitBootstrapping is about ten times slower than Bootstrapping,
and 3) Iboot is much larger than B.

Overall, our experiment results confirm the complexity analysis in Sect. 3.4.
Moreover, the practical scalability of Reverse with respect to the DFA size
is much better than the worst case, at least for this benchmark. Therefore, we
answer RQ1 affirmatively.
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5.2 RQ2 and RQ3: Case Study on Blood Glucose Monitoring

Experimental Setup. To answer RQ2, we applied Reverse and Block to
the monitoring of blood glucose levels. The monitored values are generated by
simulation of type 1 diabetes patients. We used the LTL formulae in Table 4.
These formulae are originally presented as signal temporal logic [28] formulae [12,
38], and we obtained the LTL formulae in Table 4 by discrete sampling.

To simulate blood glucose levels of type 1 diabetes patients, we adopted
simglucose, which is a Python implementation of UVA/Padova Type 1 Diabetes
Simulator [29]. We recorded the blood glucose levels every one minute5 and
encoded each of them in nine bits. For ψ1, ψ2, ψ4, we used 720min of the sim-
ulated values. For φ1, φ4, φ5, we used seven days of the values. The parameters
we used are Iboot = 30000, B = 9.

To answer RQ3, we encrypted plaintexts into TRGSW ciphertexts 1000 times
using two single-board computers (ROCK64 and Raspberry Pi 4) and reported
the average runtime.

Results and Discussion (RQ2). The results of the experiments are shown in
Table 5. The result for ψ4 with Reverse is missing because the reversed DFA
for ψ4 is too huge, and its construction was aborted due to the memory limit.

Although the size of the reversed DFA was large for ψ1 and ψ2, in all the
cases, we observe that both Reverse and Block took at most 24 s to process
each blood glucose value on average. This is partly because |Q| and |QR| are
not so large in comparison with the upper bound described in Sect. 3.4, i.e.,
doubly or singly exponential to |φ|, respectively. Since each value is recorded
every one minute, at least on average, both algorithms finished processing each
value before the next measured value arrived, i.e., any congestion did not occur.
Therefore, our experiment results confirm that, in a practical scenario of blood
glucose monitoring, both of our proposed algorithms are fast enough to be used
in the online setting, and we answer RQ2 affirmatively.

We also observe that average runtimes of ψ1, ψ2, ψ4 and φ1, φ4, φ5 with
Block are comparable, although the monitoring DFA of ψ1, ψ2, ψ4 are sig-
nificantly larger than those of φ1, φ4, φ5. This is because the numbers of the
reachable states during execution are similar among these cases (from 1 up to 27
states). As we mentioned in Sect. 3.4, Block only considers the states reachable
by a word of length i when the i-th monitored ciphertext is consumed, and thus,
it ran much faster even if the monitoring DFA is large.

Results and Discussion (RQ3). It took 40.41 and 1470.33 ms on average to
encrypt a value of blood glucose (i.e., nine bits) on ROCK64 and Raspberry Pi
4, respectively. Since each value is sampled every one minute, our experiment
results confirm that both machines are fast enough to be used in an online
setting. Therefore, we answer RQ3 affirmatively.

5 Current continuous glucose monitors (e.g., Dexcom G4 PLATINUM) record blood
glucose levels every few minutes, and our sampling interval is realistic.
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Table 4. The safety LTL formulae used in our experiments. ψ1, ψ2, ψ4 are originally
from [12], and φ1, φ4, and φ5 are originally from [38].

LTL formula

ψ1 G[100,700](p8 ∨ p9 ∨ (p4 ∧ p7) ∨ (p5 ∧ p7) ∨ (p6 ∧ p7) ∨ (p2 ∧ p3 ∧ p7))

ψ2 G[100,700](¬p9 ∨ (¬p7 ∧ ¬p8) ∨ (¬p5 ∧ ¬p6 ∧ ¬p8) ∨ (¬p4 ∧ ¬p6 ∧ ¬p8) ∨
(¬p3 ∧ ¬p6 ∧ ¬p8) ∨ (¬p2 ∧ ¬p6 ∧ ¬p8) ∨ (¬p1 ∧ ¬p6 ∧ ¬p8))

ψ4 G[600,700]((¬p8 ∧ ¬p9) ∨ (¬p7 ∧ ¬p9) ∨ (¬p4 ∧ ¬p5 ∧ ¬p6 ∧ ¬p9) ∨ (¬p1 ∧
¬p2 ∧ ¬p3 ∧ ¬p5 ∧ ¬p6 ∧ ¬p9))

φ1 G((¬p6 ∧ ¬p7 ∧ p8 ∧ ¬p9) ∨ (¬p5 ∧ ¬p7 ∧ p8 ∧ ¬p9) ∨ (¬p3 ∧ ¬p4 ∧ ¬p7 ∧
p8 ∧¬p9)∨ (p4 ∧ p7 ∧¬p8 ∧¬p9)∨ (p5 ∧ p7 ∧¬p8 ∧¬p9)∨ (p6 ∧ p7 ∧¬p8 ∧
¬p9) ∨ (p1 ∧ p2 ∧ p3 ∧ p7 ∧ ¬p8 ∧ ¬p9))

φ4 G((¬p7 ∧ ¬p8 ∧ ¬p9) =⇒ F[0,25](p7 ∨ p8 ∨ p9))

φ5 G(p9 ∨ (p3 ∧ p7 ∧ p8)∨ (p4 ∧ p7 ∧ p8)∨ (p5 ∧ p7 ∧ p8)∨ (p6 ∧ p7 ∧ p8) =⇒
F[0,25]((¬p8 ∧ ¬p9) ∨ (¬p7 ∧ ¬p9) ∨ (¬p3 ∧ ¬p4 ∧ ¬p5 ∧ ¬p6 ∧ ¬p9)))

Table 5. Experimental results of blood glucose monitoring, where Q is the state space
of the monitoring DFA and QR is the state space of the reversed DFA.

Formula φ |φ| |Q| |QR| # of blood glucose values Algorithm Runtime (s) Mean Runtime (ms/value)

ψ1 40963 10524 2712974 721
Reverse 16021.06 22220.62

Block 132.68 184.02

ψ2 75220 11126 2885376 721
Reverse 17035.05 23626.97

Block 131.53 182.43

ψ4 10392 7026 — 721
Reverse — —
Block 35.42 49.12

φ1 195 21 20 10081
Reverse 22.33 2.21

Block 1741.15 172.72

φ4 494 237 237 10081
Reverse 42.23 4.19

Block 2073.45 205.68

φ5 1719 390 390 10081
Reverse 54.87 5.44

Block 2084.50 206.78

We also observe that encryption on ROCK64 is more than 35 times faster
than that on Raspberry Pi 4. This is mainly because of the hardware accelerator
for AES, which is used in TFHEpp to generate TRGSW ciphertexts.

6 Conclusion

We presented the first oblivious online LTL monitoring protocol up to our knowl-
edge. Our protocol allows online LTL monitoring concealing 1) the client’s mon-
itored inputs from the server and 2) the server’s LTL specification from the
client. We proposed two online algorithms (Reverse and Block) using an FHE
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scheme called TFHE. In addition to the complexity analysis, we experimentally
confirmed the scalability and practicality of our algorithms with an artificial
benchmark and a case study on blood glucose level monitoring.

Our immediate future work is to extend our approaches to LTL semantics
with multiple values, e.g., LTL3 [6]. Extension to monitoring continuous-time
signals, e.g., against an STL [28] formula, is also future work. Another future
direction is to conduct a more realistic case study of our framework with actual
IoT devices.
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Abstract. The analysis of legacy systems requires the automated
extraction of high-level specifications. We propose a framework, called
Abstraction Modulo Stability, for the analysis of transition systems oper-
ating in stable states, and responding with run-to-completion transac-
tions to external stimuli. The abstraction captures the effects of external
stimuli on the system state, and describes it in the form of a finite state
machine. This approach is parametric on a set of predicates of interest
and the definition of stability. We consider some possible stability defini-
tions which yield different practically relevant abstractions, and propose
a parametric algorithm for abstraction computation. The obtained FSM
is extended with guards and effects on a given set of variables of interest.
The framework is evaluated in terms of expressivity and adequacy within
an industrial project with the Italian Railway Network, on reverse engi-
neering tasks of relay-based interlocking circuits to extract specifications
for a computer-based reimplementation.

Keywords: Timed Transition Systems · Property extraction ·
Simulations · Relay-based circuits

1 Introduction

The maintenance of legacy systems is known to be a very costly task, and the lack
of knowledge hampers the possibility of a reimplementation with more modern
technologies. Legacy systems may have been actively operating for decades, but
their behavior is known only to a handful of people. It is therefore important to
have automated means to reverse-engineer and understand their behavior, for
example in the form of state machines or temporal properties.

We focus on understanding systems that exhibit self-stabilizing behaviors, i.e.
that are typically in a stable state, and respond to external stimuli by reaching
stability in a possibly different state. As an industrially relevant example, con-
sider legacy Railway Interlocking Systems based on Relay technology (RRIS):
these are electro-mechanical circuits for the control of railway stations, with
thousands of components that respond to the requests of human operators to
activate the shunting routes for the movement of the trains. They support a
computational model based on “run-to-completion”, where a change in a part
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of the circuit (e.g. a switch closing) may change the power in another part of
the circuit, and in turn operate other switches, until a stable condition is (hope-
fully) reached. This is very different in spirit from typical “cycle-based” control
implemented in computer-based systems such as SCADA.

In this paper, we tackle the problem of extracting abstract specifications of
the possible behaviors of an infinite-state timed transition system. The idea is
to understand how the system evolves from a stable state, in response to a given
stimulus, to the next stable state. In addition, we are interested in knowing
under which conditions the transitions are possible and which are the effects
on selected state variables. All this information is presented in the form of an
extended finite state machine, which can be seen as a collection of temporal
specifications satisfied by the system.

We make the following contributions. First, we propose the general framework
of Abstraction Modulo Stability, a white-box analysis of self-stabilizing systems
with run-to-completion behavior. The set of abstract states is the grid induced by
a set of given predicates of interest. The framework is generic and parameterized
with respect to the notion of stability. Different notions of stability are possible,
depending on several factors: remaining in a region is possible (for some paths)
or necessary (for all paths); whether the horizon of persistence in the stable
region is unbounded, or lower-bounded on the number of discrete transitions
and/or on the actual time. The framework also takes into account the notion
of reachability in the concrete space, in order to limit the amount of spurious
behaviors in the abstract description. We illustrate the relations holding between
the corresponding abstractions, depending on the strength of the selected notion
of stability.

Second, we present a practical algorithm to compute stability abstractions.
We face two key difficulties. In the general case, one abstract transition is asso-
ciated to a sequence of concrete transitions, of possibly unbounded length, so
that a fix point must be reached. Furthermore, we need to make sure that the
sequence is starting from a reachable state. Contrast this with the standard
SMT-based computation of predicate abstractions [15], where one transition in
the abstract space corresponds to one concrete transition, and reachability is not
considered.

Third, we show how to lift to the abstract space other relevant variables from
the concrete space, so that each abstract transition is associated with guards and
effects. This results in a richer abstraction where the abstract states (typically
representing control modes) are complemented by information on the data flow
of the additional variables (typically representing the actual control conditions
in a given mode).

We experimentally evaluate the approach on several large RRIS implement-
ing the control logic for shunting routes and switch controls. This research is
strongly motivated by an ongoing activity on the migration of the Italian Rail-
way Network from relay-based interlocking to computer-based interlocking [3].
Stability abstraction is the chosen formalism to reverse engineer the RRIS, and
to automatically provide the actual specifications for computer-based interlock-
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ing. We demonstrate the effectiveness of the proposed algorithms, and the crucial
role of reachability in terms of precision of the abstractions.

Related Works. This work has substantial differences with most of the lit-
erature in abstraction. For example, Predicate Abstraction (PA) [11] can be
directly embedded within the framework; furthermore, PA does not take into
account concrete reachability; finally, an abstract transition is the direct result
of a concrete transition, and not, as in our case, of a sequence of concrete tran-
sitions.

In [5] the authors propose to analyze abstract transitions between invariant
regions with an approximated approach. In comparison, we propose a general
framework, parameterized on the notion of stability. Additionally, we propose
effective algorithms to construct automata from concrete behaviors only, and
that represent symbolically the guards and the effects of the transitions.

The idea of weak bisimilarity [19], proposed for the comparison of observable
behaviors of CCS, is based on collapsing sequences of silent, internal actions.
The main difference with our approach is that weak bisimilarity is not used
to obtain an abstraction for reverse engineering. Furthermore, in Abstraction
Modulo Stability, observability is a property of states, and the silent actions are
collapsed only when passing through unobservable (i.e., unstable) states.

Somewhat related are the techniques for specification mining, that have
been extensively studied, for example in hardware and software. For example,
DAIKON [9] extracts candidate invariant specifications from simulations. In our
approach, the abstraction directly results in temporal properties that are guar-
anteed to hold on the system being abstracted. Yet, simulation-based techniques
might be useful to bootstrap the computation of Abstraction Modulo Stability.

The work in [1] proposes techniques for the analysis of RRIS, assuming that
a description of the stable states is already given. There are two key differences:
first, the analysis of transient states is not considered; second, the extraction of
a description in terms of stable states is a manual (and thus inefficient and error
prone) task. For completeness, we mention the vast literature on the application
of formal methods to railways interlocking systems (see e.g. [6,12,13,17,18]).
Aside from the similarity in the application domain, these works are not directly
related, given their focus on the verification of the control algorithms.

Structure of the Paper. In Sect. 2 we present the background notions. In
Sect. 3 we present the framework of Abstraction Modulo Stability. In Sect. 4
we present the algorithms for computing abstraction. In Sect. 5 we present the
experimental evaluation. In Sect. 6 we draw some conclusions and present the
directions of future work.

2 Background

We work in the setting of Satisfiability Modulo Theories (SMT) [4], with
quantifier-free first order formulae interpreted over the theory of Linear Real
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Arithmetic (LRA). We use P,Q to denote sets of Boolean variables, p, q to
denote truth assignments, and the standard Boolean connectives ∧,∨,¬,→ for
conjunction, disjunction, negation and implication. � and ⊥ define true and
false respectively. For a set of variables V , let ΨT (V ) denote the set of first-order
formulae over a theory T with free variables in V . When clear from context we
omit the subscript. Let V ′ .= {v′ | v ∈ V }. For a formula φ ∈ Ψ(V ), let φ′ denote
φ[V/V ′], i.e. the substitution of each variable v ∈ V with v′.

A finite state automaton is a tuple A = 〈Q,L,Q0, R〉 where: Q is a finite set
of states; L is the alphabet; Q0 ⊆ Q is the set of initial states; R ⊆ (Q × L × Q)
is the labeled transition relation. We also consider automata with transitions
annotated by guards and effects expressed as SMT formulae over given sets
of variables. For (q1, �, q2) ∈ R, we write q1

�−→A q2. Let A1 and A2 be two
automata defined on the same set of states Q and on the same alphabet L
including a label τ : we say that A1 weakly simulates A2, and we write A1 � A2,
if whenever q

�−→A1 q′, then q
�−→A2

τ−→∗
A2

q′, where τ−→∗
is a (possibly null)

sequence of transitions labeled with τ .
A symbolic timed transition system is a tuple M = 〈V,C,Σ, Init, Invar,

Trans〉, where: V is a finite set of state variables; C ⊆ V is a set of clock variables;
Σ is a finite set of boolean variables encoding the alphabet; Init(V ), Invar(V ),
Trans(V,Σ, V ′) are SMT formulae describing the initial states, the invariant and
the transition relation respectively. The clocks in C are real-valued variables. We
restrict the formulae over clock variables to atoms of the form c �� k, for c ∈ C,
k ∈ R and ��∈ {≤, <,≥, >,=}. The clock invariants are convex. We allow the
other variables in V to be either boolean or real-valued.

A state is an assignment for the V state variables, and let S denote the set of
all the interpretations of V . We assume a distinguished clock variable time ∈ C
initialized with time = 0 in Init, representing the global time.

The system evolves following either a discrete or a timed step. The timed
transition entails that there exists δ ∈ R+ such that c′ = c + δ for each clock
variable c ∈ C, and v′ = v for all the other variables1. The discrete transition
entails that time ′ = time and can change the other variables instantaneously.

A valid trace π is a sequence of states (s0, s1, . . . ) that all fulfill the Invar
condition, such that s0 |= Init and for all i, (si, �i, si+1) |= Trans(V,Σ, V ′) for
some �i assignment to Σ. We denote with Reach(M) the set of states that are
reachable by a valid trace in M. We adopt a hyper-dense semantics: in a trace π,
time is weakly monotonic, i.e. si.time ≤ si+1.time. We disregard Zeno behaviors,
i.e. every finite run is a prefix of a run in which time diverges.

The states in which time cannot elapse, i.e. which are forced to take an instan-
taneous discrete transition, are called urgent states. We assume the existence of
a boolean state variable urg ∈ V which is true in all and only the urgent states.
Namely, for every pair of states (si, si+1) in a path π where si.urg is true, then
(si.time = si+1.time).

1 We abuse the notation and write P = Q for P ↔ Q when P and Q are Boolean
variables.
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We consider CTL+P [16], a branching-time temporal logic with the future
and past temporal operators. A history h = (s0, ..., sn) for M is a finite prefix
of a trace of M. For a CTL+P formula ψ, write M, h |= ψ meaning that after
h, sn satisfies ψ in M. Operators AGψ, E(ψ1 U ψ2), Hψ are used with their
standard interpretations (in every future ψ will always hold, there exists a future
in which ψ1 holds until ψ2, in the current history ψ always held, respectively).

3 The Framework of Abstraction Modulo Stability

3.1 Overview

We tackle the problem of abstracting a concrete system in order to mine relevant
high-level properties about its behavior.

We are interested in how the system reacts to stimuli: when an action is
performed, we want to skip the intermediate steps that are necessary to accom-
plish an induced effect, and evaluate how stable conditions are connected to each
other. The definition of stability is the core filter that defines which states we
want to observe when following a run-to-completion process, i.e., the run trig-
gered by a stimulus under the assumption that the inputs remain stationary. In
practice, several definitions of stability are necessary, each of them corresponding
to a different level of abstraction.

An additional element of the desired abstraction is that relevant properties
regard particular evaluations of the system. We consider a defined abstract space
which intuitively holds the observable evaluations on the system, on which we
will project the concrete states.

In this section we describe a general framework for Abstraction Modulo Sta-
bility, which is parametric with respect to the abstract domain and the definition
of stability. The result will be a finite state system which simulates the original
model, by preserving only the stable way-points on the abstract domain, and by
skipping the transient (i.e., unstable and unobservable) states.

Finally, we define how the obtained abstract automata can be enriched with
guards and effects for each transition.

Example 1. Consider as running example the timed transition system S shown
in the right hand side of Fig. 1 which models a tank receiving a constant incoming
flow of water, with an automatic safety valve.

S has a clock variable c which monitors the velocity of filling and emptying
processes, and reads an input boolean variable in.flow. The status of this variable
is controlled by the environment E , shown in the left hand side of the figure. In the
transition relation of E , the variables in Σ encode the labels for the stimuli, which
are variations of the input variable in.flow. In particular, if Σ = τ , then in.flow is
unchanged, and we say that the system S is not receiving any stimulus. S reacts
accordingly to the updated in.flow′. The discrete transitions of S are labeled
with guards and with resetting assignments on the clock variable (in the form
[guards]/resets). The system starts in the Empty location. A discrete transition
reacts to a true in.flow jumping in Filling and resetting c′ := 0. The invariant c ≤
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M S

TransS(V, in.flow′, V ′)

E

TransE(in.flow, Σ, in.flow′)

Σ = τ → (in.flow′ = in.flow)
Σ = open → in.flow′

Σ = close → ¬in.flow′
Empty

Filling
c ≤ 10

Warning, urg

Full

Emptying
c ≤ 2

[in.flow′]
/ c′ := 0

[in.flow′]
[c = 10]

[in.flow′]
/ c′ := 0

[¬in.flow′]
/ c′ := 0

[¬in.flow′]
[c = 2]

/ c′ := 0
[in.flow′]

/ c′ := 0
[¬in.flow′]

Fig. 1. A timed transition system representing a tank of water.

10 of Filling forces the system to transit to a Warning location after 10 time units,
corresponding to the time needed to reach a critical level. Warning is urgent: as
soon as S reaches this state, it is forced to take the next discrete transition. The
urgency of location Warning models the causality relation between the evaluation
on the level of water and the instantaneous opening of a safety valve. Due to
the latter, in location Full the system dumps all the incoming water and keeps
the level of water stable. If the input is closed, S transits in Emptying. In this
condition, water is discharged faster: after 2 time units the system is again in
Empty. Transitions between Filling and Emptying describe the system’s reaction
to a change of the input while in charging/discharging process.

We consider as predicates of interest exactly the five locations of the system.
The stability abstraction of the composed system is meant to represent the stable
conditions reached after the triggering events defined by Σ.

3.2 Abstraction Modulo Stability

Consider a symbolic timed transition system M = 〈X,C,Σ, Init, Invar,Trans〉
whose discrete transitions are labeled by assignments to Σ representing stim-
uli. A stimulus corresponds to a variation of some variables I ⊆ V which we
call input variables. Namely, we can picture M as a closed system partitioned
into an environment E which changes the variables I, and a open system S
which reads the conditions of the updated variables I and reacts accordingly:
Trans(X,Σ,X ′) = TransE(I,Σ, I ′) ∧ TransS(V, I ′, V ′), with V = X \ I.

In particular, we assume a distinguished assignment τ to the labels Σ, cor-
responding to the absence of stimuli: TransE [Σ/τ ] = (I ↔ I ′). The transition
labeled with τ is the silent or internal transition. It corresponds to the discrete
changes which keep the inputs stationary (i.e., unchanged) and the timed tran-
sitions. We write Mτ for the restriction of M which evolves only with the silent
transition τ , i.e., under the assumption that no external interrupting action is
performed on S, so that I ↔ I ′ is entailed by the transition relation. We assume
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that M is never blocked waiting for an external action: this makes Mτ always
responsive to τ transition. Moreover, we assume that Zeno behaviors are not
introduced by this restriction.

We define a framework for abstracting M parametric on an abstract domain
Φ and a stability definition σ.

Abstract Domain. Between the variables of the system M, consider a set
of boolean variables P ⊆ X representing important predicates. The abstract
domain Φ is the domain of the boolean combinations of P variables.

Stability Definition. Let σ(X) be a CTL+P formula providing a stability crite-
rion.

Definition 1 (σ-Stability). A concrete state s with history h = (s0, . . . , s) is
σ-stable if and only if

Mτ , h |= σ.

Note that the stability is evaluated in Mτ , i.e. under the assumption that the
inputs are stationary: at the reception of an external stimulus, a σ-stable might
move to a new concrete state which does not satisfy σ. We say that a state s is
σ-stable in a region p ∈ Φ if it is σ-stable and s |= p.

The states for which Mτ , (s0, . . . , s) �|= σ, are said σ-unstable. These states
might be transient during a convergence process which leads to the next stable
state. In the following we will omit the prefix σ when clear from context.

Definition 2 (Abstraction Modulo σ-Stability). Given a concrete system
M = 〈X,C,Σ, Init, Invar,Trans〉, with P ⊆ X boolean variables, the abstraction
modulo σ-stability of M is a finite state automaton Aσ = 〈Φ, 2Σ , Initσ,Transσ〉.
For each p0 ∈ Φ, p0 |= Initσ if and only if there exists a state s0 ∈ S such that
s0 |= Init, and with h0 = (s0)

Mτ , h0 |= E(¬σ U (σ ∧ p0)).

For each p1, p2 ∈ Φ, � ∈ 2Σ, the triple (p1, �, p2) |= Transσ if and only if there
exist states s0, s1, s2 ∈ S and histories h1 = (s0, . . . , s1), h2 = (s2) such that
(s1, �, s2) |= Trans, and such that

Mτ , h1 |= σ ∧ p1, Mτ , h2 |= E(¬σ U (σ ∧ p2)).

Abstract automaton Aσ simulates with a single abstract transition a run of the
concrete system M that connects two σ-stable states with a single event and
possibly multiple steps of internal τ transitions. We call such convergence process
a run-to-completion triggered by the initial event.

Observe that the abstraction is led by the definition of σ-stability. It preserves
only the abstract regions in which there is a σ-stable state. The transient states
are not exposed, hence disregarding also the behaviors of M in which a new
external stimuli interrupts a convergence still in progress. In other words, it
represents the effects of stimuli accepted only in stable conditions.

In this way, Aσ satisfies invariant properties that would have been violated
in σ-unstable states, transient along an internal run-to-completion.
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Reachability-Aware Abstraction. Abstractions modulo stability can be tightened
by considering only concrete reachable states in M. In fact, in the setting of
reverse engineering, considering unreachable states may result in an abstraction
that includes impossible behaviors that have no counterpart in the concrete
space. This is done by enforcing that the first state of h1 in Definition 2 to
be reachable in M. This is an orthogonal option to the choice of the stability
definition σ.

3.3 Instantiating the Framework

The level of abstraction of Aσ, i.e., the disregarded behaviors, is directly induced
by the chosen definition of σ. Its adequacy depends on both the application
domain and the objective of the analysis. We now explore some possibilities that
we consider relevant in practice.

Predicate Abstraction. Firstly, we show that the Abstraction Modulo Stability
framework is able to cover the known predicate abstraction [11,14]. With a trivial
stability condition

σ1
.= �,

every concrete state s is stable and is projected in the abstract region it belongs
to (p = ∃(X \ P ) . s). In this way, all concrete transitions (including the timed
ones) are reflected in the corresponding Aσ1 .

Non-urgent Abstraction. Urgent states are the ones in which time cannot elapse,
and are forced to transit with a discrete transition. They are usually exploited
to decompose a complex action made of multiple steps and to faithfully model
the causality along a cyclical chain of events. Unfortunately, by construction,
urgent states introduce transient conditions which may be physically irrelevant.
In practice, in the analysis of the system’s behaviors, one may want to disregard
the intermediate steps of a complex instantaneous action.

To this aim, we apply the Abstraction Modulo Stability framework and keep
only the states in which time can elapse for an (arbitrarily small) time bound T .

σ2(X) .= ¬urg .

The obtained abstract automaton Aσ2 has transitions that correspond to
instantaneous run-to-completion processes, skipping urgent states until time is
allowed to elapse.

Example 2. On the left hand side of Fig. 2 we show the abstraction of the tank
system obtained using σ1. An abstract transition connects two predicates (recall
that in this example predicates correspond to concrete locations) if they are
connected in S, by either a discrete or a timed transition.

On the right hand side of Fig. 2 we show the abstraction obtained using σ2.
With respect to Aσ1 , here location Warning is missing, since time cannot elapse
in it, and an abstract transition connects directly Filling to Full.
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(Aσ1)

E

Fing W

FEing

τ ττ

τ

open, [in.f]

τ

τ

close
[¬in.f]

τ

close
[¬in.f]

open
[in.f]

(Aσ2)

E

Fing

FEing

τ ττ

τ

open, [in.f] τ

close
[¬in.f]

τ

close
[¬in.f]

open
[in.f]

Fig. 2. Abstractions modulo σ1 and σ2 on the tank running example.

Eq-predicate Abstractions. Let Eq(P ) be a formula expressing implicitly that the
interpretations of the abstract predicates are not changing during a transition
(either a discrete or a timed step).

We now address the intuitive definition: “a stable state is associated with
behaviors that preserve the abstract predicates for enough time, i.e., if the sys-
tem is untouched, then the predicates do not change value for a sufficient time
interval”. One can choose to measure the permanence of s in p ∈ Φ in terms of
number of steps (e.g., at least K concrete steps, with K ∈ N+), or in terms of
continuous-time (e.g., for at least T time, with T ∈ R+), or both.

This intuitive definition can be interpreted both backward and forward. In
this paragraph we illustrate the backward perspective.

Consider the doubly bounded definition

σT,K
3 (X) .= H>T,>KEq(P ),

where: Mτ , h |= σT,K
3 , if and only if h = (s0 . . . si), with i ≥ K and for some

p ∈ 2P (
∀j ∈ [(i − K), i] : sj |= p ∧
si.time − si−K .time > T

)
.

Such characterization of stability captures the states that have been in the same
predicate assignment for at least K steps and at least T time has elapsed in
such frame. Several variants of this definition are possible, e.g. by using only one
bound.

This definition is referred to as backward since we consider the history of the
system: a stable state has a past trajectory that remained in the same abstract
region for enough time/steps. It is practically relevant in contexts where it is
useful to highlight the dwell time of the system in a given condition. The only
visible behaviors are the ones that were exposed for sufficient time/steps.

It can be easily seen that if a history h satisfies σT2,K
3 , then it also satisfies

σT1,K
3 , with T1 ≤ T2.

Notably, for the instantiations of σ3 with K = 1, a state is stable if it has
just finished a timed transition elapsing at least T time. In the following, we
omit the superscript K from σT,K

3 when K = 1. We have that if a history h
satisfies σT

3 , then it also satisfies σ2. Namely, while every urgent state (i.e., a
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(AσT=7
3

)

E

Fing

F
τ τ

τ

open, [in.f]
close,

[¬in.f]

τ

close, [¬in.f]

(Aσ4)

E F
τ τ

open, [in.f]

close, [¬in.f]

Fig. 3. Abstractions modulo σT=7
3 and σ4 on the tank running example.

transient state for σ2) is transient also for σT
3 , for σT

3 also become transient the
non-urgent states that are accidentally traversed in 0 time, for example because
an exiting discrete transition is immediately enabled.

Future Eq-predicate Abstractions. In contrast to the backward evaluation of σ3,
one can think of assessing stability forward, by looking at the future(s)2 of the
state. A possible definition in this perspective would be

σ4(X) .= AGEq(P ),

asking that, as long as only τ transitions are taken, the system will never change
the evaluation of predicates. Namely, once a state is σ4-stable, it can change the
predicates only with an external event, and the abstract states in Aσ4 are closed
under τ transitions. This is similar in spirit to the notion of P -stable abstraction
of [5], with the difference that in the latter arbitrary regions are considered.

Within this perspective, alternative definitions can be obtained by inter-
changing the existential/universal path quantifiers (e.g., EGEq(P ) characterizes
a state for which there exists a future that never changes the predicate evalu-
ations), or by bounding the “globally” operator (e.g., AG>KEq(P ) captures a
state which is guaranteed to expose the same evaluations of predicates in the next
K steps). Observe that all these variants would assess σ-stability of a state before
it has actually proven to expose the same predicates for enough time/steps.

Example 3. On the left hand side of Fig. 2 we show the abstraction obtained
with σT,K

3 definition, using T = 7 and K = 1. State Emptying is unstable, since
time cannot elapse in it more than T time: namely, from Full, at the reception
of the stimulus which opens in.flow, all the τ -paths lead to Empty in less than T
time. On the other hand, Fing is kept, since the system may stay in this location
for enough time to be considered relevant.

On the right hand side of Fig. 2 we show the abstraction obtained with σ4.
Here, the stable states are only Empty and Full: the others are abstracted since
they are not invariant for the τ internal transition. Each external event directly
leads to the end of a timed process which converges in the next stable state. Note
that in this setting, an abstract transition labeled with τ can only be self loops.
2 Note that, in contrast to the backward case where the past is unique, in the forward

case we adopt a branching time view with multiple futures.
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Here, Aσ4 corresponds to the P -stable abstraction because the chosen abstract
domain Φ is able to express the “minimally stable” regions [5] of M.

Observe that Aσ4 would be also obtained by increasing the time bound of
σT
3 , e.g., with T = 15.

As the examples show, different stability definitions induce abstract automata
with different numbers of states and transitions. The following proposition states
what is the effect on the abstract automata of making stricter the stability
definition. Let us write p1

�−→σ p2 meaning that (p1, �, p2) |= Transσ in Aσ.

Proposition 1. Let σ and σ′ be two stability definitions such that every his-
tory that is σ-stable, is also σ′-stable, and let Aσ and Aσ′ be the corresponding
abstractions modulo stability of the same concrete model M. Then, Aσ weakly
simulates Aσ′ .

Proof. By definition, if p1
�−→σ p2, then there exists (s1, �, s2) |= Trans with (1)

Mτ , h1 |= σ ∧ p1, and (2) Mτ , h2 |= E(¬σ U (σ ∧ p2), with h1 = (s0 . . . , s1) and
h2 = (s2). Since every σ-stable history is also σ′-stable, from (1) we obtain that
Mτ , h1 |= σ′ ∧ p1, and from (2) we derive

Mτ , h2 |= EF(σ ∧ p2) =⇒ Mτ , h2 |= EF(σ′ ∧ p2)
=⇒ Mτ , h2 |= E(¬σ′ U (σ′EX(¬σ′... U (σ′ ∧ p2)...)))

Hence, p1
�−→σ′

τ−→∗
σ′ p2 and Aσ � Aσ′ .

Corollary 1. For every bounds T1 ≤ T2 ∈ R+

A
σ

T2
3

� A
σ

T1
3

� Aσ2 � Aσ1

3.4 Extending with Guards and Effects

Abstract transitions in Aσ are labeled with the stimulus that has triggered the
abstracted run-to-completion process. Recall that a stimulus � ∈ 2Σ is connected
to a (possibly null) variation of the inputs I by TransE(I,Σ, I ′). A guard for an
abstract transition (p1, �, p2) is a formula on I ′ variables entailed by TransE [Σ/�]
which describes the configurations of inputs that, starting from p1 with event
�, lead to p2. In order to enrich the description of the effects of an abstract
transition, we also consider a subset of state variables O ⊆ V , called output
variables. Observe that an abstract transition may be witnessed by multiple
concrete paths, each with its own configuration of inputs and outputs. Hence,
we can keep track of a precise correlation between guards and effects with a
unique relational formula on I and O variables. This formula is obtained as a
disjunction of all the configurations of inputs and outputs in the concrete states
accomplishing stability in p2 (since the configuration of I set by the stimulus is
preserved by τ along the run-to-completion process).

Example 4. The stability abstractions shown in Figs. 2 and 3 are equipped with
guard constraints, as evaluations on the original input variable in.flow, (shown
in square brackets near the label of the stimuli).
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4 Algorithms for Stability Abstractions

In order to build the abstract automaton structure we have to check whether
there exists a (reachable) σ-stable state in p1, with (s1, �, s2) |= Trans and
Mτ , s2 |= E(¬σ U (σ ∧ p2)), for every pair (p1, p2) ∈ Φ × Φ. Reachability
analysis and (C/)LTL model checking for infinite state systems are undecidable
problems. The work in [5] computes overapproximations of the regions that are
invariant for silent transitions (i.e., addresses an unbounded stability criterion
AGφ), exploiting the abstract interpretation framework. This approach also over-
approximates multiple stable targets that may be given by the non-determinism
of the concrete system.

Here, instead, we deal precisely with the non-determinism of the underlying
concrete system by collecting information about actual, visible consequences of
an action, by focusing on bounded stability definitions. In fact, we consider sta-
bility criteria that do not require fixpoint computations in the concrete system,
and we under-approximate the reachability analysis fixing a bound for unstable
paths. Namely, our algorithm follows an iterative deepening approach, which
considers progressively longer unstable run-to-completion paths, seeking for the
next stable condition.

Intuitively we search for concrete witnesses for an abstract transition
(p1, �, p2) by searching for a concrete path connecting a concrete σ-stable state
s1 in p1 and a σ-stable state in p2, with a bounded reachability analysis from
s1.

Notice that the algorithm builds a symbolic characterization for the stability
automaton. In fact, instead of enumerating all (p1, p2) ∈ Φ × Φ and check if
they are connected by some concrete path, we incrementally build a formula
characterizing all the paths of Mτ connecting two σ-stable states. Then, we
project such formula on the P variables, hence obtaining symbolically all the
abstract transitions having a witness of that length. This intuition is similar
to [15] to efficiently compute predicate abstractions.

Moreover, having a formula representing finite paths of Mτ connecting two
σ-stable states, we can extract guards and effects with a projection on I and O
variables. Namely, while checking the existence of an abstract transition, we also
synthesize the formula on I and O annotating it.

A significant characteristic of our approach, also with respect to the classical
instantiation of predicate abstraction, is that we refine the abstract transitions
by forcing the concrete states to be reachable from the initial condition.

In the following we describe the general algorithm for computing abstractions
parametric on the stability definition σ, and then show how the criteria proposed
in Sect. 3.3 can be actually passed as parameter.

4.1 Symbolic Algorithm for Bounded Stability

Consider the symbolic encoding of automaton M = 〈X,C,Σ, Init, Invar,
Trans〉,3 and a classification of the variables in X distinguishing P boolean pred-
icates variables, I input variables, O output variables.
3 For exposition purposes, let Trans entails both Invar and Invar′.



Abstraction Modulo Stability for Reverse Engineering 481

We address the computation of the formulae Initσ(P ) and Transσ(P, I,
O, P ′), for a stability definition provided as a formula σ(X0, . . . , Xn) with n ∈ N.

The algorithm performs a reachability analysis based on two bounds:

– U ∈ N, as the bound for the length for unstable paths.
– L ∈ N, with L ≥ n + 1, as the bound for the length of the run witnessing an

abstract transition, starting from the initial state, used for the reachability-
aware refinement.

Pseudocode 1. Reachability-aware symbolic computation of the abstract tran-
sition relation Transσ

1: function extract-abstract-trans(Init, Trans)
2: Transσ := ⊥;
3: S := new solver();
4: S.assert(Init(X0));
5: for all j ∈ [0, L) do
6: S.assert(Trans(Xj , Σj , Xj+1));
7: if j < n + 1 then continue;

8: S.push();
9: S.assert(σ(Xj−n, . . . , Xj)); � stable slot at j

10: for all i ∈ reversed[j − 1 − U, j) do
11: if i + 1 < j then
12: S.assert(Ii+1 = Ii+2 ∧ ¬σ(Xi+1−n, . . . , Xi+1)); � unstable path

13: S.push();
14: S.assert(σ(Xi−n, . . . , Xi) ∧ ∧

i−n≤h<i Ih = Ih+1); � stable slot at i

15: S.assert(¬Transσ[P/Pi, I/Ij , O/Oj , P
′/Pj ]);

16: Trans
(i,j)
σ ← S.project-on(Pi, Ij , Oj , Pj);

17: Transσ ← Transσ ∨ Trans
(i,j)
σ [Pi/P, Ij/I, Oj/O, Pj/P ′];

18: S.pop();

19: S.pop();
return Transσ

Computation of Transσ. Pseudocode 1 shows the algorithm for extraction of the
transition relation Transσ. It builds a formula

Init(X0) ∧
∧

0≤h≤j

Trans(Xh, Xh+1) ∧

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ(Xi−n, ..., Xi) ∧
∧

i−n≤h<i

Ih = Ih+1 ∧
∧

i<h<j

(Ih = Ih+1 ∧ ¬σ(Xh−n, ..., Xh)) ∧

σ(Xj−n, ..., Xj)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

for each i, j with 0 ≤ j − i ≤ U and j < L. The procedure exploits the incre-
mentality of the SMT solvers which organize assertions in a stack: the push/pop
interface allows the addition of layers, in which to insert new formulae with the
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assert primitive. In this way, we can progressively build the path and avoid its
recomputation for every pair i, j. Namely, for each j < L, firstly we build the
path until j (line 6) and assert σ-stability in j (line 9). Then we progressively
try i going backward (in order to better exploit incrementality), constrain the I
variables to be unchanged, and σ-unstability (lines 11–12).

Function S.project-on() (line 16) performs an existential quantification of
the formula currently present in the solver stack. We preserve variables Pi and Pj ,
which characterize the two stable states connected by the transition. Variables
Ij and Oj are also preserved: in this way, we extract the guards and the effects
formulae directly within the building of the abstract transition. Notice that, due
to the input stability hypothesis preserved during the unstable path, the input
configuration read in j is the same read immediately following the external event
in i + 1.

Every found contribute Trans(i,j)σ is then merged in a single Transσ, after
substitution of the variables in P, I,O, P ′. Observe that an important optimiza-
tion is to block the negation of the already computed formula Transσ (shifted
in the current i, j indices) before each projection (line 15), in order to avoid
recomputing the same transitions.

Reachability-Awareness. A reachability-unaware version would drop the first
part of the formula characterizing the path from 0 to i − n.

The described algorithm is reachability-aware, meaning that every considered
stable state is, by construction, reachable from the initial condition Init. This is
important to extract actually concretizable behaviors, and is a main difference
with respect to the classical predicate abstraction technique: it is well known that
mere the projection on the boolean predicates of the single transition relation
may introduce several spurious behaviors.

Note that the reachability-aware improvement is based on concrete reacha-
bility. In contrast, the algorithm of [5], exploits abstract reachability until fix-
point in the abstract automaton, possibly incurring in further overapproxima-
tions induced by the use of convergence accelerators.

Computation of Initσ. The algorithm for the extraction of the initial state Initσ

is similar: it builds a formula

Init(X0) ∧
∧

0≤h≤i

(Trans(Xh,Xh+1) ∧ Ih = Ih+1) ∧ σ(Xi−n, ...,Xi)

for every i ≤ U . Initσ is the collection of the contributes Init(i)σ , obtained by
fixing a stable slot in the last position i and projecting on Pi variables.

4.2 Instantiating the Algorithm

The bounded stability definitions presented in Sect. 3 can be unrolled and
expressed in the form σ(X0, . . . , Xn)
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Predicate Abstraction. σ1(X0) = � trivially needs only the current variables.
Observe that in this case we can use a U = 1 bound, since the unstability
constraint is always unsatisfiable.

Non-urgent Abstraction. Having a classification of urgent conditions, also
σ2(X0) = ¬urg0 can be established looking only at the current variables (it
only needs n = 0).

Eq-predicate Abstraction. More generally, given K and T bounds, we encode
that the abstract region has not changed for the last K steps and that at least
T time has elapsed using n = K and

σT,K
3 (X0 . . . XK) =

∧
h<K

(Ph = Ph+1) ∧ (time0 + T < timeK).

5 Experimental Evaluation

We evaluate the applicability and the adequacy of stability abstractions for the
reverse engineering of real-world Relay-based Railway Interlocking Systems.

Relay-Based Railway Interlocking Systems (RRIS). RRIS are complex electro-
mechanical circuits used for the control stations and train traffic. Such systems
receive stimuli from an external environment, including both human operators
(e.g., performing actions on buttons) and physical entities (e.g., a train passing
on some sensors). In response, they control railway elements, like signaling lights
or railway switches. Internally, they use relays to propagate signals: relays are
electro-mechanical components which, when activated, change the position of an
associated contact after a (possibly null) delay.

The controlling logic implemented by RRIS is hidden by complex legacy
internal optimizations performed over the years by numerous electro-mechanical
engineers. For this reason, it is hard to understand their high-level behavior and
highlight the connections between stimuli and observable railway properties.

The experimental evaluation is based on real-world RRIS schematics that are
intended to control level crossing and shunting routes. Using the tool norma [2],
the considered RRIS have been modeled and automatically converted in timed
transition systems in the syntax of Timed nuXmv [7]. The obtained models
involve several real-valued variables (modeling voltages and currents in the cir-
cuits), changing accordingly to the configuration of the boolean variables (mod-
eling the switches of the circuit). The discrete state changes when an external
event updates the position of a switch, or as a consequence of the activation of an
internal relay. Hence, these systems react to an external variation with a chain of
internal transitions. The duration of the triggered run-to-completion process is
important: urgent states are widely used to model the causality relation between
the activation of an instantaneous relay and the action performed on the associ-
ated switch; timed relays may impose a low delay, so that the internal response
is actually very fast and almost non observable.
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Table 1. Result of the abstraction of routesN RRIS benchmarks with different stability
definitions.

reach. unaware reach. aware

test X I O P Φ σ Aσstates Aσtrans time Aσstates Aσtrans time

routes01 54 2 1 3 8 σ1 8 40 01s 7 13 26s

σ2 4 6 20s 3 4 3m 09s

σ3,T=1 3 4 15s 2 2 1m 57s

σ3,T=7 3 4 15s 2 2 1m 57s

routes02 90 4 2 6 48 σ1 48 768 22s 11 22 1m 02s

σ2 7 13 46s 6 11 6m 16s

σ3,T=1 5 9 38s 4 7 4m 32s

σ3,T=7 5 9 38s 4 7 4m 20s

routes04 166 8 3 12 4096 σ1 – – to 49 97 3h 7m 03s

σ2 29 83 1h 42m 29s 25 48 2h 56m 46s

σ3,T=1 17 52 1h 41m 17s 13 24 2h 42m 04s

σ3,T=7 17 52 1h 41m 10s 13 24 2h 41m 55s

Abstraction Modulo Stability of RRIS. The Timed nuXmv model checker was
used to convert the models produced by norma in untimed transition systems
in SMV. The algorithm presented in Sect. 4 has been implemented using the
pySMT library [10] and the MathSAT5 SMT solver [8]. It requires in input
a classification of the variables X, selecting the predicates P , the inputs I and
the outputs O, which can be directly provided by railway domain experts. We
choose as P the status of some relays or (boolean variables associated with)
linear predicates on the electrical variables, representing, as an example, the
status of a lamp.

Table 1 and 2 report the number of variables X, P , I, O for each bench-
mark. Column Φ reports the size of the resulting abstract domain, obtained by
considering all the consistent combinations of P predicates (with respect to the
invariant of the model).

We show the results of the Abstraction Modulo Stability considering the
stability definitions described in Sect. 3.3, using the algorithm of Sect. 4 with
bounds L = 40 and U = 15. All the experiment ran on a 2.4 GHz CPU, with
time out (to) set to 15 h, and memory limit set to 20 GB.

Columns “Aσstates” and “Aσtrans” hold the number of abstract states and
transitions respectively, computed counting the configurations of the predicate
variables in the abstract automaton Aσ. As stated in Corollary 1, the corre-
sponding abstract automata have progressively less states.

Stability abstractions were used by railway experts from the Italian Railway
Network company (RFI) to understand two main families of legacy RRIS.

Routes. routesN is a RRIS regulating the activation/deactivation of N shunt-
ing routes concurring for the same resources. The implemented logic takes care
of avoiding the simultaneous activation of conflicting routes. In such RRIS
the inputs are the switches controlled by a human operator, attempting to
enable/disable a route; the outputs are the status of some internal entities that
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we want to monitor; the predicates are the status of lamps representing whether
the routes have been registered.

In the routes benchmarks the delays used in the run-to-completion processes
are very small, so that in the abstract automata obtained (Table 1) there is no
difference between σT=1

3 and σT=7
3 (i.e., if a state has stayed in the same predicate

for 1 time unit, then it can also stay there for 7). These abstract automata clearly
highlight what are the consequences of the requests of a human operator with
respect to the active/inactive status of the routes involved. As an example, the
abstraction routes02 (a circuit handling two routes) has only 4 stable states
which show that the routes are incompatible and one of them has priority on
the other, and disregards all the intermediate steps that the concrete system
needs to progressively check the availability of the resources. These steps are
visible with a less strict stability definition, like σ1 or σ2.

Table 1 also evaluates the effectiveness of the reachability refinement. When
dropping the prefix starting from the initial states of the concrete system, the
algorithm would consider several spurious behaviors. Especially in these bench-
marks, the resulting abstract automaton would also show the unreachable states
(e.g., the ones in which two routes are in conflict), therefore reducing the rele-
vance for the reverse engineering purpose. Moreover, the reach.unaware compu-
tation may be harder to compute as it has to explore more transitions and more
models in the guards and effects formulae.

Railway Switch. r-switch is a RRIS modeling a railway switch. It has sev-
eral externally controlled switches and only 4 relevant observations, defining its
abstract state. The schema can be instantiated as nominal (N) or faulty (F), by
injecting faulty behaviors in some physical components. We consider three ver-
sions: r-switch1 interacts with a free environment, showing a wide number of
circuit configurations; r-switch2 and r-switch3, instead, exploit some assump-
tions on the environment and expose less inputs, and, although using different
internal implementations, are supposed to guarantee the same controlling logic.

Table 2 reports the features of the abstract automata obtained for these
benchmarks. Here, during a run-to-completion process, some states dwell in the
same predicate for a time 1 ≤ t ≤ 7, so that are visible in σT=1

3 but skipped by
σT=7
3 when reporting the corresponding abstract transition.

Again, the reach.unaware option reports more transitions. The difference is
especially evident in the nominal versions, as the faulty concrete system already
covers more behaviors. Even when the number of abstract transitions is the
same, the reach.aware option reports more precise guards and effects, i.e., each
annotating formula on I and O has less models.

By looking at the abstract automata, the user could recover what are the
triggering reasons that make the system reach certain states (e.g., the ones that
are shown in r-switch1 and not in r-switch2). Namely, Aσ could highlight the
enabling conditions for certain behaviors, which may apply far from the final
observable consequence and were hard to inspect by hand. In this way, the user
could also collect what assumptions are needed to avoid certain behaviors (e.g.,
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Table 2. Result of the abstraction of r-switch RRIS benchmarks with different sta-
bility definitions.

reach. unaware reach. aware

test X I O P Φ σ Aσstates Aσtrans time Aσstates Aσtrans time

r-switch1-N 128 18 3 4 12 σ1 – – to 12 78 8h 12m

σ2 12 112 4h 12m 12 94 2h 42m

σ3,T=1 12 112 7h 47m 12 86 2h 30m

σ3,T=7 12 112 7h 24m 12 66 2h 07m

r-switch1-F 128 18 3 4 12 σ1 – – to – – to

σ2 – – to 12 112 7h 60m

σ3,T=1 12 112 13h 12m 12 112 5h 24m

σ3,T=7 12 112 14h 05m 12 112 4h 45m

r-switch2-N 127 17 3 4 12 σ1 12 102 8h 18m 12 74 3h 29m

σ2 10 86 1h 56m 10 74 1h 18m

σ3,T=1 10 86 2h 12m 10 66 1h 10m

σ3,T=7 10 86 2h 31m 10 54 58m

r-switch2-F 127 17 3 4 12 σ1 – – to 12 90 10h 34m

σ2 10 86 4h 21m 10 86 2h 42m

σ3,T=1 10 86 4h 30m 10 86 2h 12m

σ3,T=7 10 86 4h 33m 10 86 1h 39m

r-switch3-N 121 16 3 4 12 σ1 12 102 3h 28m 12 74 2h 08m

σ2 10 86 52m 10 74 52m

σ3,T=1 10 86 1h 34m 10 66 51m

σ3,T=7 10 86 1h 32m 10 54 44m

r-switch3-F 121 16 3 4 12 σ1 – – to 12 90 4h 21m

σ2 10 86 2h 46m 10 86 1h 38m

σ3,T=1 10 86 2h 01m 10 86 1h 22m

σ3,T=7 10 86 2h 16m 10 86 1h 24m

in understanding what changes were made from r-switch1 to r-switch2 or
r-switch3 schemas).

Finally, as expected, r-switch2 and r-switch3 have exactly the same
abstract automata for every stability definition and nominal/faulty configura-
tion, since they are two different implementations for the same observable prop-
erties.

P-Stable Abstractions. We also tried the implementation of [5], for approximated
P -stable abstractions (σ4), which uses BDDs and convex polyhedra. On small
handcrafted models like the tank system used as running example we could
run all the approaches and confirm the output automata described in Sect. 3.
Nonetheless, in the analysis of RRIS the approach of [5] turned out to be imprac-
tical, and was unable to deal with any of the considered RRIS models, due to
the high number of variables.

More importantly, in our case studies, σ4 would likely result in abstractions
that are too aggressive, hiding states that are practically interesting, such as
the ones that emerge from the analysis of run-to-completion processes with non
negligible duration.
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6 Conclusions

In this paper we presented a framework for the reverse engineering of legacy
systems. Starting from a symbolic timed transition system, the framework sup-
ports the construction of abstractions in the form of state machines with guards
and effects over transitions. The abstractions are parameterized on the notion
of stability. We propose an SMT-based algorithm for abstraction computation,
and we instantiate it over several notions of stability.

The results have been evaluated within an industrial project with the Italian
Railway Network, on reverse-engineering tasks of complex relay-based interlock-
ing circuits. The experimental analysis demonstrated that the approach is prac-
tical, and able to construct abstractions for complex real-world circuits. Taking
reachability into account allowed us to produce tighter, more informative repre-
sentations of the system under inspection. Railway signaling engineers involved
in the project considered the proposed approach adequate in terms of expres-
siveness and able to provide substantial support in understanding the legacy
RRIS.

In the future, we will define an “anytime” version of algorithms, so that the
abstraction can be incrementally visualized as the computation proceeds, and
leverage parallelization to increase the efficiency. Given the positive feedback
from the RFI experts, we plan to integrate the proposed abstraction techniques
abstraction within a RRIS modeling front-end, and to apply them on a larger
set of interlockings.
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Abstract. Koopman operator linearization approximates nonlinear sys-
tems of differential equations with higher-dimensional linear systems.
For formal verification using reachability analysis, this is an attractive
conversion, as highly scalable methods exist to compute reachable sets
for linear systems. However, two main challenges are present with this
approach, both of which are addressed in this work. First, the approx-
imation must be sufficiently accurate for the result to be meaningful,
which is controlled by the choice of observable functions during Koopman
operator linearization. By using random Fourier features as observable
functions, the process becomes more systematic than earlier work, while
providing a higher-accuracy approximation. Second, although the higher-
dimensional system is linear, simple convex initial sets in the original
space can become complex non-convex initial sets in the linear system.
We overcome this using a combination of Taylor model arithmetic and
polynomial zonotope refinement. Compared with prior work, the result
is more efficient, more systematic and more accurate.

Keywords: Koopman operator · Reachability analysis · Polynomial
zonotopes · Random Fourier features · Formal verification

1 Introduction

Despite recent advances, systems described by nonlinear ordinary differential
equations are still hard to analyze, control, and verify. On the other hand, a
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powerful body of methods and theories exists for linear systems making analy-
sis, control, and verification much easier, even for high-dimensional systems. The
efficiency of techniques related to reachability analysis for linear systems [4,6,15]
motivates the use of Koopman operator linearization, where a higher-dimensional
linear system approximates the dynamic behavior of a nonlinear system. Koop-
man operator techniques are also well-suited for data-driven approaches since
the Koopman linearized system can be directly created from measurements,
bypassing a potentially complex modeling step. The Koopman framework has
been successfully applied to many applications, including control [26,28], state
estimation [31] and recently, formal verification [5].

The main contribution of this paper is to advance the state-of-the-art in
formal verification using reachability analysis on Koopman operator linearized
systems. First, we improve the accuracy of the finite Koopman linearization
by employing random Fourier features [29]. In contrast with an ad hoc, finite-
dimensional feature space, random Fourier features leverage the powerful ker-
nel trick from machine learning [36,38] to generate a computationally tractable
mapping over an infinite-dimensional feature space. Second, we improve speed.
Instead of using an SMT solver to reason over non-convex initial sets, we propose
combining Taylor models with polynomial zonotope refinement. A comparison
on the same nonlinear system benchmarks used in the earlier Koopman veri-
fication work [5] demonstrates both the improved accuracy and the improved
verification speed.

1.1 Related Work

The concept of Koopman operator linearization was originally introduced in 1931
[22]. Instead of investigating the dynamic evolution of the original system state,
the Koopman approach considers the evolution of so-called observable functions
or observables defined by nonlinear transformations of the original system state.
Since the set of all possible observables defines a vector space, it then holds that
the dynamic behavior of every nonlinear system can be equivalently represented
by an infinite dimensional linear system. Because it is obviously infeasible to
handle infinite dimensions, a finite set of observables is used in practice. Given
such a set, the system matrix resulting in the most accurate linear approximation
of the original system behavior can be determined using extended dynamic mode
decomposition [41].

Many different methods for determining good observables have been pro-
posed: Carleman linearization [7] equivalently represents the dynamic behavior of
polynomial systems with an infinite dimensional linear system. The correspond-
ing observables are multi-variate monomials, which are determined by repeatedly
computing the time-derivative of the current observables. Terminating this iter-
ation after a certain number of steps yields a finite set of observables. Carleman
linearization can be extended to general nonlinear systems by using a Taylor
series expansion. A finite set of observables defines an exact linear representa-
tion of the original system if the vector space spanned by the observables is closed
under the operation of Lie-derivatives [34]. Consequently, a natural approach is
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to refine an initial set of observables by removing observables that violate the
condition [34]. This concept can be extended to obtain polynomial instead of
linear representations for the original nonlinear system [35]. Another class of
approaches uses neural networks as observables [16,43], where the weights of the
network are trained on traces of the real system. Since these approaches usually
train the system matrix together with neural networks, they circumvent the sub-
sequent application of dynamic mode decomposition. If one aims to reason about
the original system based on the Koopman linearization, some quantification of
the approximation error is required. Several approaches derive error bounds for
truncated Carleman linearization [3,12,24] considering quadratic systems [24],
polynomial systems [12], as well as general nonlinear systems [3].

The main motivation for using the Koopman framework for reachability
analysis is that reachable sets for linear systems can be computed efficiently
[11,15,23] even for high-dimensional systems [2,4,6], while reachability analysis
for nonlinear systems [1,8,27] is often computationally demanding and poten-
tially results in large over-approximations. Another advantage is that the Koop-
man approach can also be applied to data-driven systems where no model is
available. Due to the nonlinear transformation of the initial state defined by
the observables, reachability analysis for Koopman operator linearized system
represents a special type of reachability problem. To the best of our knowl-
edge only two approaches exist for far: The first approach [13] utilizes the error
bounds for quadratic systems [24] to compute an enclosure of the reachable set
for weakly nonlinear systems based on a finite Carleman linearization, where
interval arithmetic [17] is applied to enclose the image of the initial set through
the observables. The second approach [5], which represents the work closest to
our method, presents two different verification strategies: 1) Direct encoding of
the nonlinear transformation defined by the observables using a SMT solver,
and 2) zonotope domain splitting, where the initial set is recursively split into
smaller sets until the specification can be verified or falsified.

1.2 Overview

In this work we address the two main bottlenecks of formal verification for Koop-
man operator linearized systems, which are the selection of observables and the
computation of the image of the initial set through the nonlinear transforma-
tion defined by the observables. In particular, while currently observables often
have to be selected manually by the user, we generate observables in a systematic
fashion using random Fourier features. As we demonstrate with numerical exper-
iments, these observables yield high-accuracy approximations of the real system
behavior. Moreover, while previous approaches either compute very conservative
convex enclosures of the image through the observables [13] or have to split the
initial set in order to achieve a desired precision [5], we calculate tight non-convex
enclosures of the image by combining Taylor model arithmetic with polynomial
zonotopes. To conduct collision checks between the resulting non-convex reach-
able set enclosures and unsafe regions we then use a novel polynomial zonotope
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refinement strategy, which is significantly faster than the previous SMT solver
and zonotope domain splitting approaches [5].

The remainder of the paper is structured as follows: We first recapitulate
some preliminary results that are required throughout the paper in Sect. 2. In
the main part we then describe the systematic generation of observables using
random Fourier features in Sect. 3, before we present our proposed verification
algorithm in Sect. 4. Finally, we demonstrate the superior performance of random
Fourier feature observables and our verification algorithm in comparison with
existing techniques on various benchmark systems in Sect. 5.

1.3 Notation

In the remainder of this paper, we will use the following notations: Sets are
denoted by calligraphic letters, matrices by uppercase letters, vectors by lower-
case letters, and lists by bold uppercase letters. Given a vector b P R

n, b(i) refers
to the i-th entry. Given a matrix A P R

n×m, A(i,·) represents the i-th matrix row,
A(·,j) the j-th column, and A(i,j) the j-th entry of matrix row i. Given a discrete
set of positive integer indices H “ {h1, . . . , hw} with 1 ď hi ď m @i P {1, . . . , w},
A(·,H) is used for [A(·,h1) . . . A(·,hw)], where [C D] denotes the concatenation
of two matrices C and D. The symbols 0 and 1 represent matrices of zeros and
ones of proper dimension, the empty matrix is denoted by [ ], and In P R

n×n is
the identity matrix. Given an ordered list L “ (l1, . . . , ln), L(i) “ li refers to the
i-th entry and |L| “ n denotes the number of elements in the list. Moreover, the
concatenation of two lists L1 and L2 is denoted by (L1,L2). The left multiplica-
tion of a matrix M P R

m×n with a set S Ă R
n is defined as MS “ {Ms | s P S},

and the Cartesian product of two sets is denoted by the × operator. We further
introduce an n-dimensional interval as I “ [l, u], @i l(i) ď u(i), l, u P R

n.

2 Preliminaries

Our approach utilizes several existing techniques and concepts, which we shortly
recapitulate here. We use the nonlinear system

ẋ1 “ x1

ẋ2 “ x2 ´ x4
1

(1)

in combination with the initial set X0 “ [´2, 2] × [0, 4] as a running example
throughout this section.

2.1 Koopman Operator Linearization

First, we describe the general concept of Koopman operator linearization [22].
Given a nonlinear system

Bx

Bt
“ f

(
x
)

with x P R
n, f : R

n → R
n, (2)
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our goal is to find observables gi : R
n → R such that the dynamics of the

resulting new variables gi(x) is linear:

Bg
(
x
)

Bt
“ Ag

(
x
)

with A P R
m×m, (3)

where g(x) “ [g1(x) . . . gm(x)]T is the observable function. Since the new vari-
ables gi(x) are functions of the original system state x, the linear system (3)
defines an equivalent representation of the dynamic behavior of the original sys-
tem (2). Usually, the number of observables m is significantly larger than the
dimension n of the original system.

Let us demonstrate Koopman linearization for our exemplary system in (1).
By choosing the observables g1(x) “ x1, g2(x) “ x2, and g3(x) “ x4

1 we obtain
the linear system

B
Bt

⎡

⎣
g1(x)
g2(x)
g3(x)

⎤

⎦ “
⎡

⎣
1 0 0
0 1 ´1
0 0 4

⎤

⎦

⎡

⎣
g1(x)
g2(x)
g3(x)

⎤

⎦

since Bg1(x)/Bt “ ẋ1 “ x1, Bg2(x)/Bt “ ẋ2 “ x2 ´ x4
1 “ g2(x) ´ g3(x), and

Bg3(x)/Bt “ 4x3
1 ẋ1 “ 4x4

1 “ 4 g3(x).
The exact linearization using a finite number of observables demonstrated by

the example above is unfortunately only possible for a small number of special
systems. In practice one therefore usually aims to instead determine a linear
system (3) that approximates the dynamic behavior of the nonlinear system
(2) well enough. Given observables gi(x), the system matrix A resulting in the
best approximation can be determined by applying extended dynamic mode
decomposition [41] to traces of the original system. Since those traces can also
be generated by simulating black-box systems or by measuring the real system
behavior, we do not necessarily require a model (2) of the original system. This
is one of the biggest advantages of the Koopman framework making it well
suited for data-driven approaches. The approach we present in this work verifies
Koopman linearized systems using reachability analysis:

Definition 1. (Reachable set) Given an initial set X0 Ă R
n, the reachable set

for a Koopman linearized system is

R(t) :“ {
ξ(t, g(x0))

∣
∣ x0 P X0

}
,

where ξ(t, g(x0)) is the solution to (3) at time t P Rě0 for the initial state g(x0).

Consequently, to compute the reachable set for a Koopman linearized system
one first needs to propagate the initial set through the nonlinear transformation
defined by the observables, followed by the calculation of the reachable set for the
linear system in (3) using a reachability algorithm. This procedure is visualized in
Fig. 1. Definition 1 defines the reachable set for the observables gi(x). However,
since safety specifications are typically defined on the original system state x
rather than on g(x), we usually require the reachable set for the original state
Rx(t) for verification. This issue can easily be resolved by using the original
system state x for the first n observables gi(x) “ x(i), i “ 1, . . . , n, in which case
Rx(t) can be obtained via projection: Rx(t) “ [In 0]R(t).
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Fig. 1. Schematic visualization of reachability analysis for Koopman linearized systems:
We first transform the initial set to the higher-dimensional observable space using g(x),
then compute the reachable set of the linear system using the matrix exponential eAΔt

with time-step size Δt, and finally obtain the reachable set in the original state space
via projection.

2.2 Taylor Model Arithmetic

Taylor model arithmetic [25] can be utilized to compute tight non-convex enclo-
sures for the image through a nonlinear function. It is based on a set represen-
tation called Taylor models:

Definition 2. (Taylor model) Given a polynomial function p : R
s → R

n, an
interval domain D Ă R

s, and an interval remainder Y Ă R
n, a Taylor model

T (x) is defined as

@x P D : T (x) :“ {
p(x) + y

∣
∣ y P Y

}
.

The Taylor order κ P N defines an upper bound for the polynomial degree of the
polynomial p(x). The set defined by a Taylor model is

{
T (x)

∣
∣ x P D

} “ {
p(x) + y

∣
∣ x P D, y P Y

}
.

For a concise notation we use the shorthand T (x) “ xp(x),Y,DyT .

The general concept of Taylor model arithmetic is to define rules on how to
perform the arithmetic operations +, ´, ·, and / as well as elementary functions
such as sin(x) or

√
x on Taylor models [25, Sec. 2]. Since every nonlinear function

represents a composition of arithmetic operations and elementary functions, the
image through the function can then be computed by successively evaluating
those rules. Given two one-dimensional Taylor models T1(x) “ xp1(x),Y1,DyT

and T2(x) “ xp2(x),Y2,DyT the rules for addition and multiplication are for
example given as

T1(x) + T2(x) :“ @
p1(x) + p2(x),Y1 + Y2,D

D
T

T1(x) · T2(x) :“ @
p1(x) · p2(x),Y1 · Y2 + I1 · Y2 + Y1 · I2,D

D
T
,
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where I1 “ {p1(x) | x P D} and I2 “ {p2(x) | x P D}. The rules for elementary
functions are obtained using a finite Taylor series expansion, where the order of
the Taylor series is equal to the Taylor order κ. For sin(x) we for example obtain
with κ “ 2 the rule

sin
(
T1(x)

)
:“ @

sin(c) + cos(c) (p1(x) ´ c) ´ 0.5 sin(c) (p1(x) ´ c)2,Y,D
D

T
,

where the expansion point c is chosen as c “ p1(cd) with cd being the center of
the domain D, and the interval Y computed according to [25, Sec. 2] encloses
the remainder of the Taylor series. Due to the finite Taylor series approximation,
Taylor model arithmetic yields a tight enclosure rather than the exact image.
The accuracy of the enclosure can be improved by choosing a larger Taylor order.

For our verification approach we apply Taylor model arithmetic to compute
the image of the initial set through the observable function. The initial set X0 “
[´2, 2] × [0, 4] for the exemplary system in (1) can be represented by the Taylor
model T (x) “ xx, H,X0yT . Applying Taylor model arithmetic to the observable
function g(x) defined by the observables g1(x) “ x1, g2(x) “ x2, and g3(x) “ x4

1

then yields the Taylor model

{
g(x)

∣
∣ x P X0

}
⊆

C⎡

⎣
x1

x2

x4
1

⎤

⎦ , H, [´2, 2] × [0, 4]

G

T

, (4)

which represents the exact image in this case since the observables contain poly-
nomial functions only.

2.3 Set Representations

In this work we use polynomial zonotopes to represent reachable sets, polytopes
to represent unsafe sets, and zonotopes for efficient collision checking. Let us
first introduce polytopes, for which we consider the halfspace representation:

Definition 3. (Polytope) Given a matrix H P R
s×n and vector d P R

s, the
halfspace representation of a polytope P Ă R

n is defined as

P :“ {x P R
n | H x ď d}.

We use the shorthand P “ xH, dyP .

A halfspace H Ă R
n is a special case of a polytope consisting of a single inequality

constraint hT x ď d with h P R
n, d P R. We use the shorthand H “ xh, dyH .

Another special type of polytopes are zonotopes, which can be stored efficiently
using so-called generators:

Definition 4. (Zonotope) Given a center vector c P R
n and a generator matrix

G P R
n×p, a zonotope Z Ă R

n is defined as

Z :“
{

c +
p∑

i“1

αi G(·,i)

∣
∣
∣
∣ αi P [´1, 1]

}
,

where the scalars αi are called factors. We use the shorthand Z “ xc,GyZ .
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Polynomial zonotopes are a novel non-convex set representation that has been
originally introduced for reachability analysis of nonlinear systems [1]. We use
the sparse representation of polynomial zonotopes [20]1:

Definition 5. (Polynomial zonotope) Given a constant offset c P R
n, a genera-

tor matrix of dependent generators G P R
n×h, a generator matrix of independent

generators GI P R
n×q, and an exponent matrix E P N

p×h
0 , a polynomial zonotope

PZ Ă R
n is defined as

PZ :“
{

c +
h∑

i“1

( p∏

k“1

α
E(k,i)

k

)
G(·,i) +

q∑

j“1

βjGI(·,j)

∣
∣
∣
∣ αk, βj P [´1, 1]

}
.

The scalars αk are called dependent factors since a change in their value affects
multiplication with multiple generators. Consequently, the scalars βj are called
independent factors because they only affect multiplication with one generator.
We use the shorthand PZ “ xc,G,GI , EyPZ .

Using polynomial zonotopes for verification has two main advantages:

1. Due to the similarity with Taylor models the set defined by a Taylor model
can be equivalently represented as a polynomial zonotope [20, Prop. 4].

2. Due to the similarity with zonotopes tight enclosing zonotopes can be com-
puted efficiently for polynomial zonotopes [20, Prop. 5].

For verification we therefore convert the Taylor model representing the image
of the initial set through the observable function to a polynomial zonotope, for
which collision checks with the unsafe sets can be efficiently realized using zono-
tope enclosures that are iteratively refined by splitting the polynomial zonotope.

The conversion of the Taylor model in (4) corresponding to our running
example in (1) yields the following polynomial zonotope

C⎡

⎣
x1

x2

x4
1

⎤

⎦ , H, [´2, 2] × [0, 4]

G

T

“
C⎡

⎣
0
2
0

⎤

⎦ ,

⎡

⎣
2 0 0
0 2 0
0 0 16

⎤

⎦ , [ ],
[
1 0 4
0 1 0

]G

PZ

“
⎧
⎨

⎩

⎡

⎣
0
2
0

⎤

⎦ +

⎡

⎣
2
0
0

⎤

⎦α1 +

⎡

⎣
0
2
0

⎤

⎦α2 +

⎡

⎣
0
0
16

⎤

⎦α4
1

∣
∣
∣
∣
∣
∣

α1, α2 P [´1, 1]

⎫
⎬

⎭
,

where the high-level idea of the conversion is to represent the interval domain
D with dependent zonotope factors αi P [´1, 1].

3 Linearization via Fourier Features

We now present the automated generation of observables using random Fourier
features [10]. Let us first motivate why Fourier features are a good choice for
1 In contrast to [20, Def. 1], we explicitly do not integrate the constant offset c in G.

Moreover, we omit the identifier vector used in the original work [20] for simplicity.
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observables. For Koopman linearization, the observables g(x) define a transfor-
mation to a high-dimensional space. One commonly used approach to handle
such high-dimensional spaces efficiently is the kernel trick : In many algorithms
the data points x, y P R

n only appear in the form of inner products g(x)T g(y).
In this case it suffices to define a kernel function k(x, y) that represents the sim-
ilarity measure g(x)T g(y) between data points in the high-dimensional feature
space, rather than explicitly defining a transformation g(x) to this space. Kernel
functions can also represent more general features that are not vectors and even
infinite dimensional features, which motivates their application in the Koopman
framework. The kernel trick is mainly applied for machine learning techniques
[36], such as regression [38], clustering [18], and classification [39]. However, also
the extended dynamic mode decomposition algorithm [41] can be formulated in
terms of inner-products [42], so that the kernel trick can be applied for Koopman
linearization. Rather than explicitly choosing observables g(x) we can therefore
select a kernel function instead, which implicitly defines the observable function
g(x) through the kernel’s relation to an inner product space. Commonly used
kernels are radial basis function kernels, polynomial kernels, and spline kernels.

The kernel trick cannot be applied directly to our reachability technique since
we require an explicit formulation of the observables g(x). We therefore first
select a kernel function k(x, y), and then determine observables g(x) that yield a
good approximation of the kernel function k(x, y) « g(x)T g(y). Random Fourier
features are a common technique to approximate kernel functions [10,29]. They
are based on Bochner’s theorem [33, Sec. 1.4.3], which links a weakly stationary
kernel function to a Fourier transform:

k(x, y) “
∫

Rn

e j ωT (x´y) dμ(ω) “ Eω

(
e j ωT x e j ωT y

)
, (5)

where the function μ : R
n → [0, 1] defines a probability distribution, Eω(·)

denotes the expected value with respect to ω, j is the imaginary unit, and a
denotes the complex conjugate for a complex number a P C. The distribution
μ(ω) associated with a specific kernel can be obtained by taking the inverse
Fourier transform of k(x, y) [29]. We can collect m samples from the distribution
μ(ω) to approximate the expected value in (5), which finally yields

k(x, y) “ Eω

(
e j ωT x e j ωT y

)
« 1

m

m∑

i“1

e j ωT
i x

︸ ︷︷ ︸
gi(x)

e j ωT
i y

︸ ︷︷ ︸
gi(y)

.

The random Fourier features are the resulting observables gi(x) that approxi-
mate the kernel function. Note that we can omit the constant factor 1

m since
extended dynamic mode decomposition will automatically scale the observables
accordingly. We consider real-valued kernels only, so we use Euler’s formula
ej x “ cos(x) + j sin(x) to simplify the random Fourier features to

gi(x) “ √
2 cos(ωT

i x + bi), i “ 1, . . . , m, (6)

where the shift bi is selected uniformly from the interval [0, 2π] and ωi is drawn
randomly from the probability distribution μ(ω) corresponding to the kernel
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that is used. While this random selection might appear to be a disadvantage
at first sight, it is guaranteed that the random Fourier feature approximation
converges to the exact kernel function when increasing the number of observables
[29]. Moreover, we observed from our numerical experiments that changes in the
values for bi and ωi do not significantly influence the accuracy of the resulting
linear approximation.

In summary, the random Fourier features presented above represent a sys-
tematic method for selecting a finite set of accurate observables, which requires
only few hyperparameters. These hyperparameters include the type of kernel
that is used, the kernel parameters, and the number of observables. For the
numerical experiments in this paper we use a radial basis function kernel

k(x, y) “ e´ ‖x´y‖2
2

2 �2 ,

which contains the lengthscale � as the only parameter. The probability distribu-
tion μ(ω) for this kernel is the multivariate normal distribution with covariance
matrix �2 · In centered at the origin [29, Fig. 1].

4 Verification Using Reachability Analysis

We now present our novel verification algorithm for Koopman linearized systems,
which is summarized in Algorithm 1. For simplicity we assume that the specifi-
cation we aim to verify is described by a single unsafe set U , but the extension to
multiple unsafe sets is straightforward. We first apply Taylor model arithmetic
(see Sect. 2.2) to compute a tight non-convex enclosure for the image of the
initial set X0 through the observable function g(x) in Line 3. Since it simplifies
the computation of the zonotope enclosures required later on, we then convert
the resulting Taylor model to a polynomial zonotope in Line 4. This polynomial
zonotope is used as the initial set for the computation of the reachable set for
the Koopman linearized system as performed in Line 5, for which we can use any
reachability algorithm for linear systems. For simplicity we assume here that the
obtained reachable sets are exact. In the general case where the exact reachable
set cannot be computed one can for example incorporate the error measures
from [14] and [40] into the verification algorithm.

The problem we are facing now is that the reachable sets R0, . . . ,RtF /Δt

are represented by polynomial zonotopes, a set representation for which exact
collision checks with the unsafe set U are computationally demanding. We resolve
this issue by applying a novel polynomial zonotope refinement procedure in lines
6–19, where we recursively split the polynomial zonotopes until we can either
verify or falsify the specification using zonotope enclosures of the split sets. In
particular, we first enclose each polynomial zonotope in the queue L with a
zonotope in Line 9. For a zonotope Z “ xc,GyZ collision checks with an unsafe
set as performed in Line 10 are very efficient: If the unsafe set is a halfspace
U “ xh, dyH , we have according to [15, Sec. 5.1]

(Z X U ‰ H) ô
(

hT c ´
p∑

i“1

|hT G(·,i))| ď d

)
(7)
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Algorithm 1. Verification of Koopman linearized systems
Require: Koopman linearized system ġ(x) “ A g(x), initial set X0, final time tF ,
specification given as an unsafe set U , time step size Δt, initial Taylor order κ0.
Ensure: System is safe (res =

⊥

) or unsafe (res = ⊥).

1: ŗes ←⊥, κ ← κ0 (initialization)
2: repeat
3: T (x) ← {g(x) | x P X0} (comp. using Taylor model arithmetic with order κ)
4: PZ ← T (x) (convert Taylor model to polynomial zonotope, see [20, Prop. 4])
5: R0, . . . , RtF /Δt ← reachability analysis of ġ(x) “ A g(x) for initial set PZ
6: L ← (R0, . . . , RtF /Δt) (initialize queue of not yet verified sets)
7: repeat
8: PZ ← L(1), L ← (L(2), . . . ,L(|L|)) (pop first element from queue)
9: Z ← zonotope enclosure of PZ (see [20, Prop. 5])

10: if Z X U �“ H then (check if specification is satisfied, see (7) and (8))
11: x0, t ← most critical initial state and corresponding time
12: if [In 0] eAtg(x0) P U then
13: return (specification falsified ⇒ system is unsafe)
14: else
15: PZ1, PZ2 ← split PZ (see Prop. 1 and (11))
16: L ← (L, PZ1, PZ2) (add new sets to queue)
17: end if
18: end if
19: until L “ ( ) or splitting does not yield any further improvement
20: κ ← κ + 1 (increase Taylor order)
21: until L “ ( ) (queue empty ⇒ no intersection with U)
22: res ← ⊥

(if this line is reached no reach. set intersects U ⇒ system is safe)

For general polytopes U “ xH, dyP collision checks can be realized using linear
programming:

(Z X U ‰ H) ô (δ “ 0), (8)

where
δ “ min

α,x
‖c + Gα ´ x‖1 s.t. α P [´1,1], Hx ď d. (9)

If the specification cannot be verified, we next try to falsfy it in lines 11–13
by extracting the initial point x0 that is expected to violate the specification
the most from Z. For a halfspace U “ xh, dyH the vector of zonotope factors
α “ [α1 . . . αp]T resulting in the largest violation is given as α “ ´sign(hT G),
where the signum function is interpreted elementwise. Since the factors α of the
zonotope enclosure are related to the dependent factors of the original poly-
nomial zonotope and since polynomial zonotopes preserve dependencies during
reachability analysis [21], we can then directly extract the initial point x0 cor-
responding to α from the polynomial zonotope. For general polytopes we can
use the optimal α from the linear program in (9) to estimate the most critical
initial point. If we can neither verify nor falsify the specification we have a so
called spurious counterexample that arises due to the over-approximation intro-
duced by the zonotope enclosure. We therefore split the polynomial zonotope in
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Fig. 2. Reachable set for the Roessler system (see Sect. 5.1) at time t “ 2.95, where
polynomial zonotopes are depicted by solid lines, the corresponding zonotope enclosures
are depicted by dashed lines, and the unsafe set is shown in orange. While the zonotope
enclosure of the original polynomial zonotope is too conservative to verify the speci-
fication (left), splitting the polynomial zonotope once reduces the over-approximation
enough for verification to succeed (right).

this case in Line 15 since splitting reduces the over-approximation in the zono-
tope enclosure (see Fig. 2). The split sets are then added to the queue in Line 16,
where we use a first-in, first-out scheme for the queue to detect easy falsifications
fast before excessively splitting the sets.

One remaining issue we are facing is that Taylor model arithmetic is not
exact. Due to the over-approximation in the initial set it can therefore happen
that we can neither verify nor falsify the specification by splitting the polynomial
zonotope. To solve this issue we embed our whole algorithm into a repeat-until-
loop that iteratively increases the order κ used for Taylor model arithmetic (see
Line 20). Since Taylor model arithmetic converges to the exact result if the order
goes to infinity, we obtain a complete algorithm that is guaranteed to terminate.
In practice we can often prevent computational expensive iterations of the outer
loop by choosing the initial order κ0 large enough. It remains to decide when to
stop splitting the polynomial zonotopes and increase the Taylor order instead
(see Line 19). The simplest method is to just use an upper bound for the number
of recursive splits that are performed. A more sophisticated approach is to abort
splitting if the distance between the most critical point [In 0] eAtg(x0) and the
unsafe set U is smaller than the over-approximation in the polynomial zonotope
PZ, which is given by the independent generators.

Finally, we provide a closed-form expression for splitting a polynomial zono-
tope since this operation is not specified in the original work [20]:

Proposition 1. (Split) Given a polynomial zonotope PZ “ xc,G,GI , EyPZ Ă
R

n and the index r P {1, . . . , p} of one dependent factor, the operation
split(PZ, r) returns two polynomial zonotopes PZ1, PZ2 satisfying PZ1 Y
PZ2 “ PZ:
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PZ1 “
A

c,
[
Ĝ

(1)
1 . . . Ĝ

(1)
h

]
, GI ,

[
Ê1 . . . Êh

]E

PZ

PZ2 “
A

c,
[
Ĝ

(2)
1 . . . Ĝ

(2)
h

]
, GI ,

[
Ê1 . . . Êh

]E

PZ

with

Êi “
⎡

⎣
E({1,...,r´1},i) E({1,...,r´1},i) . . . E({1,...,r´1},i) E({1,...,r´1},i)

0 1 . . . E(r,i) ´ 1 E(r,i)

E({r+1,...,p},i) E({r+1,...,p},i) . . . E({r+1,...,p},i) E({r+1,...,p},i)

⎤

⎦ ,

Ĝ
(k)
i “

[
b
(k)
i,0 · G(·,i) . . . b

(k)
i,E(r,i)

· G(·,i)
]
,

b
(1)
i,j “ 0.5E(r,i)

(
E(r,i)

j

)
, b

(2)
i,j “ ´0.5E(r,i)

(
2(E(r,i) mod 2) ´ 1

)
(

E(r,i)

j

)
,

where xmod y, x, y P N0 is the modulo operation and
(
w
z

)
, w, z P N0 denotes the

binomial coefficient. To remove redundancies we subsequently apply the compact
operation as defined in [20, Prop. 2] to PZ1 and PZ2.

Proof. The split operation is based on the substitution of the selected depen-
dent factor αr with two new dependent factors αr,1 and αr,2:
{
αr | αr P [´1, 1]

} “ {
0.5(1 + αr,1) ´ 0.5(1 + αr,2) | αr,1, αr,2 P [´1, 1]

}

{
0.5(1 + αr,1) | αr,1 P [´1, 1]

} Y { ´ 0.5(1 + αr,2) | αr,2 P [´1, 1]
}
.

(10)

Inserting this substitution into the definition of polynomial zonotopes in Defini-
tion 5 yields

PZ “
{

c +
h∑

i“1

( p∏
k“1

α
E(k,i)
k

)
G(·,i) +

q∑
j“1

βjGI(·,j)

∣∣∣∣ αk, βj P [�1, 1]

}
(10)“

{
c+

h∑
i“1

( p∏
k“1
k‰r

α
E(k,i)
k

)(1 + αr,1

2

)E(r,i)
G(·,i)+

q∑
j“1

βjGI(·,j)

∣∣∣∣ αk, βj , αr,1 P [�1, 1]

}

︸ ︷︷ ︸
“PZ1

Y
{

c+
h∑

i“1

( p∏
k“1
k‰r

α
E(k,i)
k

)(1 + αr,2

´2

)E(r,i)
G(·,i)+

q∑
j“1

βjGI(·,j)

∣∣∣∣ αk, βj , αr,2 P [�1, 1]

}

︸ ︷︷ ︸
“PZ2

.

Finally, with
(1 + αr,1

2

)E(r,i) “ b
(1)
i,0 + b

(1)
i,1αr,1 + b

(1)
i,2α2

r,1 + · · · + b
(1)
i,E(r,i)

α
E(r,i)
r,1

(1 + αr,2

´2

)E(r,i) “ b
(2)
i,0 + b

(2)
i,1αr,2 + b

(2)
i,2α2

r,2 + · · · + b
(2)
i,E(r,i)

α
E(r,i)
r,2

we obtain the equations above.
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The split operation for polynomial zonotopes is not exact, meaning that the
resulting sets usually overlap (see Fig. 2). To minimize the size of the overlapping
region we split the dependent factor with index r that maximizes the following
heuristic:

max
rP{1,...,p}

h∑

i“1
E(r,i)>1

(
1 ´ 0.5E(r,i)

)
‖G(·,i)‖2, (11)

where G P R
n×h and E P N

p×h
0 are the generator and exponent matrix of the

polynomial zonotope. Moreover, since the goal of splitting in Algorithm 1 is to
verify a certain specification, it is advisable to first project the polynomial zono-
tope onto the halfspace normal directions of the unsafe set U before evaluating
the heuristic (11) in order to direct the splitting process towards directions that
are beneficial for verification.

Note that the polynomial zonotope refinement technique presented in this
section is not restricted to verification of Koopman linearized systems, but can
equally be applied for collision checks of polynomial zonotopes or Taylor models
with halfspaces and polytopes in general. Moreover, by inverting the inequality
constraints polynomial zonotope refinement can also be applied to check if a
Taylor model or polynomial zonotope is contained in a halfspace or polytope.

5 Experimental Results

We now evaluate the performance of random Fourier feature observables and
our novel reachability algorithm on various benchmark systems. For this, we
compare our approach with the closest method from the literature [5]. Since the
algorithms presented there are implemented in Julia, we also implemented our
approach in Julia to obtain a fair comparison of the computation time. In our
implementation we use the package TaylorModels.jl2 for Taylor model arithmetic
and the package DataDrivenDiffEq.jl3 for extended dynamic mode decomposi-
tion. All computations are carried out on a 3.2 GHz 8-core AMD Ryzen 7 5800H
processor with 16 GB memory. We published our implementation together with
a repeatability package that reproduces the results shown in this paper as a
CodeOcean compute capsule4.

5.1 Benchmarks

Let us first define all benchmarks that we use for the evaluation. Again, we
consider the same systems and specifications as in [5] for a fair comparison:

2 https://github.com/JuliaIntervals/TaylorModels.jl.
3 https://datadriven.sciml.ai/.
4 https://codeocean.com/capsule/8730054/tree/v1.

https://github.com/JuliaIntervals/TaylorModels.jl
https://datadriven.sciml.ai/
https://codeocean.com/capsule/8730054/tree/v1
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Roessler Attractor: The dynamic equations for the Roessler attractor [32] are

ẋ1 “ ´x2 ´ x3

ẋ2 “ x1 + 0.2x2

ẋ3 “ 0.2 + x3 (x1 ´ 5.7),

and we consider the initial set X0 “ [´0.05, 0.05]× [´8.45, ´8.35]× [´0.05, 0.05],
the final time tF “ 6, and the unsafe region x2 ě 6.375 ´ 0.025 · i parameterized
by i P [0, 20].

Steam Governor: The dynamic equations for the steam governor [37] are

ẋ1 “ x2

ẋ2 “ x2
3 sin(x1) cos(x1) ´ sin(x1) ´ 3x2

ẋ3 “ cos(x1) ´ 1,

and we consider the initial set X0 “ [0.95, 1.05] × [´0.05, 0.05] × [0.95, 1.05], the
final time tF “ 3, and the unsafe set x2 ď ´0.25 + 0.01 · i parameterized by
i P [0, 10].

Coupled Van-der-Pol Oscillator: The dynamic equations for the coupled
Van-der-Pol oscillator [30] are

ẋ1 “ x2 ẋ3 “ x4

ẋ2 “ (1 ´ x2
1)x2 ´ x1 + (x3 ´ x1) ẋ4 “ (1 ´ x2

3)x4 ´ x3 + (x1 ´ x3),

and we consider the initial set X0 “ [´0.025, 0.025] × [0.475, 0.525] ×
[´0.025, 0.025] × [0.475, 0.525], the final time tF “ 2, and the unsafe set
x1 ě 1.25 ´ 0.05 · i parameterized by i P [1, 16].

Biological System: The dynamic equations for the biological system [19] are

ẋ1 “ ´0.4x1 + 5x3 x4 ẋ5 “ ´5x5 x6 + 5x3 x4

ẋ2 “ 0.4x1 ´ x2 ẋ6 “ 0.5x7 ´ 5x5 x6

ẋ3 “ x2 ´ 5x3 x4 ẋ7 “ ´0.5x7 + 5x5 x6,
ẋ4 “ 5x5 x6 ´ 5x3 x4

and we consider the initial set X0 “ [0.99, 1.01]× · · · × [0.99, 1.01], the final time
tF “ 2, and the unsafe set x4 ď 0.883 + 0.002 · i parameterized by i P [0, 20].

5.2 Approximation Error

We first investigate the accuracy of the Koopman linearized system with
respect to the original nonlinear dynamics, where we compare our random
Fourier feature observables with the ad hoc observables from [5]. These ad hoc
observables consist of multi-variate polynomials of the system state x up to a
fixed order, trigonometric functions of the time t, and combinations of these
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Fig. 3. Relative simulation error between Koopman linearized systems and the original
nonlinear system in percent.

(e.g., x1 x2 sin2(t) cos(t)). To obtain the data traces required for extended
dynamic mode decomposition we simulate the original nonlinear systems for
500 points sampled from the corresponding initial set, where a Sobol sequence
is used for sampling. For the generation of the random Fourier feature observ-
ables according to (6) we use the parameter � “ 0.3 and m “ 71 for the Roessler
attractor, � “ 1.62 and m “ 72 for the steam governor, � “ 1.24 and m “ 132 for
the coupled Van-der-Pol oscillator, and � “ 1.81 and m “ 105 for the biological
system, where � is the lengthscale parameter of the kernel and the number of
observables m is chosen identical to the one used for the ad hoc observables [5].
As a measure for the accuracy we use the Euclidean distance between simulated
trajectories for the original nonlinear system and the Koopman linearized sys-
tem. The initial points for these trajectories are the center and the vertices of
the initial set. According to Fig. 3 random Fourier feature observables are for the
steam governor and the Roessler attractor more accurate than than the ad hoc
observables used in earlier work [5]. Moreover, while for the short time horizons
considered in Fig. 3 it seems that the ad hoc observables are more precise for the
coupled Van-der-Pol oscillator and the biological system, over longer time hori-
zons the error of the ad hoc observables is exploding. This is visualized in Fig. 4,
where the trajectory corresponding to the ad hoc observables progresses into a
completely different direction than the original system, while random Fourier
features stay accurate. In this way, random Fourier features are not only a more
systematic approach for choosing observables, but also improve the precision of
the resulting Koopman linearized system.
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Fig. 4. Comparison of simulations for Koopman linearized systems with the ground
truth from the original nonlinear system for a time horizon of tF “ 10, where the
biological system is shown on the left and the coupled Van-der-Pol oscillator is shown
on the right.

5.3 Verification Using Reachability Analysis

We now compare our novel verification algorithm for Koopman linearized sys-
tems with the verification strategies presented in [5]. In particular, we compare
to verification of the original nonlinear system using Flow* [9], direct encoding
of nonlinear constraints using a SMT solver [5, Sec. 4.1], and zonotope domain
splitting [5, Sec. 4.4]. Both approaches from [5] consider discrete-time safety,
where the system is considered to be safe if the specification is satisfied at time
points 0,Δt, 2Δt, . . . , tF with Δt “ 0.05. While our verification algorithm also
supports continuous-time safety, we consider discrete-time safety here to obtain
a fair comparison. Note that for discrete-time safety the reachable set computa-
tion in Line 5 of Algorithm 1 simplifies to Ri “ [In 0] eAiΔt X0, i “ 0, . . . , tF /Δt.
For the comparison we consider both, the ad hoc observables used in [5] as well
as the random Fourier feature observables presented here.

The resulting computation times for verification are summarized in Table 1.
For all benchmark instances our novel verification algorithm has the lowest com-
putation time, and is often even magnitudes faster than the other verification
approaches. The main reason for this is that with our polynomial refinement
strategy we can completely avoid the computational expensive calls to SMT
solvers used by the other methods. Moreover, while the computation time for
the other approaches often depends on how difficult it is to verify or falsify the
specification, our algorithm exhibits roughly equal runtimes for all specifications.
The explanation for this is that the polynomial zonotope refinement approach
that we use for the collision checks with unsafe sets is very efficient, so that the
majority of the runtime is spent on the computation of the image through the
observable function using Taylor model arithmetic, a task which is independent
from the specification. Interestingly, using random Fourier features instead of ad
hoc observables can either prolong or accelerate the verification process, depend-
ing on the benchmark instance and verification approach used. However, even if



Reachability of Koopman Linearized Systems 507

Table 1. Computation time in seconds for verification or falsification of the benchmark
systems from Sect. 5.1 using different approaches, where the symbol ´ indicates that
the computation timed-out after 2 h. The parameter i specified in the second column
changes the specification, and the third column shows weather the specification can be
verified or falsified.

i Safe? Flow* Direct Enc. Zono. Split. Our App.

ad hoc fourier ad hoc fourier ad hoc fourier

1 � 251 788 398 0.57 171 0.20 3.00

Coupled VP 8 × 497 680 120 53 232 0.79 3.77

16 × 1665 557 373 18 38 0.20 2.99

1 � 260 470 ´ 0.59 ´ 0.44 1.95

Biological 5 � 250 426 ´ 49 ´ 0.44 1.73

10 � 238 427 ´ 179 ´ 0.46 1.76

0 � 61 197 149 182 42 0.12 0.25

Steam 5 × 285 59 40 37 38 0.38 0.56

10 × 77 29 20 18 27 0.12 0.26

0 � 55 181 291 9.53 117 0.55 0.35

Roessler 10 × 78 177 385 5.01 241 0.22 0.75

20 × 55 174 158 3.5 86 0.21 0.34

they prolong the time required for verification in some cases, the usage of random
Fourier feature observables can be justified by their superior accuracy demon-
strated in Sect. 5.2. Yet another observation is that direct encoding and zonotope
domain splitting are not able to verify or falsify the high-dimensional biological
model at all if random Fourier feature observables are used. The reason for this
is that both of these approaches apply an SMT solver for verification, which do
not scale to high-dimensions and are not well-suited for handling the trigono-
metric functions as well as the high coupling between variables used for random
Fourier feature observables. So in summary our proposed verification algorithm
outperforms all exiting verification techniques for Koopman linearized systems
in terms of runtime. In addition, it handles different types of observables well
and scales to high-dimensional systems.

6 Conclusion

We presented two major improvements for reachability analysis of Koopman
operator linearized systems: First, we use random Fourier features as observable
functions, which yields a systematic approach requiring much less user insight
than previous methods. Second, we handle the nonlinear transformation of the
initial state by combining Taylor model arithmetic with polynomial zonotope
refinement. As demonstrated on several nonlinear system benchmarks, the com-
bination of these two techniques is both extremely accurate and extremely fast.

The main trade-off with Koopman linearized systems is that the guarantees
are on the system approximation, not the original system. Despite this, we believe
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the method could still be useful for verification in systems engineering, where
the goal is to produce evidence that the system meets its requirements. It could
also be effective for finding unsafe counterexamples—falsification—or to analyze
systems where only simulation code is provided, or even real-world systems where
sensor measurements could be used to create a Koopman linearized model for
analysis. As such systems do not have models given with symbolic differential
equations, most traditional reachability methods cannot be applied.
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Abstract. We present a unified approach, implemented in the RINO
tool, for the computation of inner and outer-approximations of reach-
able sets of discrete-time and continuous-time dynamical systems, pos-
sibly controlled by neural networks with differentiable activation func-
tions. RINO combines a zonotopic set representation with generalized
mean-value AE extensions to compute under and over-approximations
of the robust range of differentiable functions, and applies these tech-
niques to the particular case of learning-enabled dynamical systems.
The AE extensions require an efficient and accurate evaluation of the
function and its Jacobian with respect to the inputs and initial condi-
tions. For continuous-time systems, possibly controlled by neural net-
works, the function to evaluate is the solution of the dynamical system.
It is over-approximated in RINO using Taylor methods in time cou-
pled with a set-based evaluation with zonotopes. We demonstrate the
good performances of RINO compared to state-of-the art tools Verisig
2.0 and ReachNN* on a set of classical benchmark examples of neural
network controlled closed loop systems. For generally comparable preci-
sion to Verisig 2.0 and higher precision than ReachNN*, RINO is always
at least one order of magnitude faster, while also computing the more
involved inner-approximations that the other tools do not compute.

Keywords: Neural networks verification · Reachability analysis ·
Robustness · Inner-approximation

1 Introduction

Over the last few years, neural networks have emerged as an increasingly classical
choice for the control of autonomous systems, in particular due to their properties
as universal function approximators. However, their adoption in safety-critical
systems, the inherent uncertainties from the dynamic environment, and their
sensitivity to adversarial examples make it crucial to establish their safety and
robustness. This verification is challenging because of the complex non-linear
characteristics of neural networks. Recent works come up with some approaches
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 511–523, 2022.
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and tools to bound the output uncertainty of neural networks with respect to
input perturbations. However, many of them are restricted to the analysis of
networks with ReLU activation functions. Moreover, the approaches considering
general differentiable activation functions and systems with general non linear
dynamics provide over-approximations, which conservatism is difficult to esti-
mate. RINO proposes a scalable and adaptive approach to compute both inner
(or under) and outer (or over) approximations for the closed loop reachabil-
ity problem of neural network controlled systems, with differentiable activation
functions. The outer-approximation allows for property verification, while the
inner-approximation allows for property refutation. Combined, the inner and
outer-approximations allow to assess the conservatism of the approximations.

As the behavior of a neural network controlled closed-loop system relies on
the interaction between the continuous dynamics and the neural network con-
troller, a good precision requires to not only compute the output range but also
describe the input-output mapping for the controller. In this work, we propose to
use a zonotope-based abstraction to compute in a unified way both the reachable
sets of neural networks and dynamical systems. This seamless integration of the
reachability of neural networks and dynamical systems presents the advantage of
a natural propagation of useful correlations through the different components of
the closed loop system, resulting in an efficient and precise approach compared
to many existing works which rely on external reachability tools.

Contributions

– RINO implements all ideas presented in [8–11] for the joint computation of inner
and outer approximations of robustly reachable sets of differentiable nonlin-
ear discrete-time or continuous-time systems (without neural networks in the
loop), possibly with constant delays. These previous works demonstrated the
good scaling properties of our approach on different examples including a full
nonlinear quadcoptor flight model but the tool was never presented as such.

– Additionally, we demonstrate here that an application of these ideas to the
case of neural networks enabled dynamical systems provides very competitive
results for the over-approximation compared to the state of the art (at least
similar precision and one order of magnitude faster) while also providing the
first approach for inner-approximation of the reachable sets of such systems,
which we use to falsify some safety properties.

– Finally, RINO also computes approximations of output ranges that are reach-
able robustly or adversarially with respect to a subset of inputs: while these
robust ranges are mostly used in this work to compute inner-approximations
of joint ranges of state variables instead of projections, we believe this sen-
sitivity information can be a useful tool in the future in particular to assess
global robustness properties of neural networks.

Related Work. The safety verification for DNNs has received considerable atten-
tion recently, with several threads of work being developed. We draw below a
non exhaustive panorama focusing on available tools for reachability analysis of
neural network controlled systems with smooth activation functions.
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Different approaches have been proposed to the reachability analysis closed-
loop systems with neural network controllers, often by a transformation to a
continuous or hybrid system reachability. Sherlock [6] targets both the open-
loop and closed-loop problems with ReLU activation functions, in particular
using the regressive polynomial rule inference approach [5] for the closed-loop,
and Flow* [3] for the reachability of the dynamical system. NNV [24] also targets
both the open loop and closed loop verification problems, with various activa-
tion functions and set representations such as polyhedra or star sets [23], and
different reachability algorithms for dynamical systems relying on CORA [1] and
the MPT toolbox [18]. ReachNN [13] and its successor ReachNN* [7] propose
a reachability analysis based on Bernstein polynomials for closed-loop systems
with general activation functions, also relying on Flow* [3] for the reachabil-
ity of the dynamical system. Verisig [14] handles NNCS with nonlinear plants
controlled by sigmoid-based networks, exploiting the fact that the sigmoid is
the solution to a differential equation to transform the neural network into an
equivalent hybrid system, which is then fed to Flow*. Verisig 2.0 [15] uses pre-
conditioned Taylor Models to propagate reachable sets in neural networks, and
also relies on Flow* for reachability of the hybrid system component.

The very recent works [21] and [12] implemented respectively over JuliaReach
and in POLAR are also closely related to our work. In [21], the authors imple-
ment a bridge between zonotope abstractions and Taylor model abstractions in
order to combine tools analyzing controllers (e.g. using zonotopes like deepZ
[22]) with tools analyzing ordinary differential equations (e.g. Flow* [3]). In [12],
the authors use a polynomial arithmetic made up of a combination of Berstein
polynomials and Taylor models to iteratively overapproximate networks layers,
according to whether the activation function is differentiable or not.

2 Problem Statement and Background

2.1 Robust Reachability of Closed-Loop Dynamical Systems

We consider in this work a closed-loop system consisting of a plant with states
x, modeled as a discrete-time or continuous-time system with time-varying dis-
turbances w and inputs u, where some components of the control inputs can be
the output a neural network h taking x as input. For notation’s simplicity, we
focus on continuous-time systems and define:{

ẋ(t) = f(x(t), u(t), w(t)) if t ≥ 0
x(t) = x0 if t = 0

(1)

where f is a sufficiently smooth function and at least C1, and controls u and
disturbances w are also supposed to be sufficiently smooth Ck for some k ≥ 0
stepwise. This allows discontinuous controls and disturbances, where the discon-
tinuities can only appear at discrete times tj .

The neural network h is a fully-connected feedforward NN with differentiable
activation functions, defined as the composition h(x) = hL ◦ hL−1 ◦ . . . h1(x) of
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L layers where each layer hi(x) = σ(Wix + bi) performs a linear transform
followed by a sigmoid or hyperbolic tangent activation σ. We assume the control
is decomposed as u(t) = (u1(t), u2(t)) where u2(t) is a control input defined in
U2 and u1(t) is the output of the neural network controller. This controller is
executed in a time-triggered fashion with control step T , so that u1(t) = h(x(tk)),
for t ∈ [tk, tk + T ), where tk = kT for positive integers k. System (1) can then
be rewritten as{

ẋ(t) = f(x(t), h(x(tk)), u2(t), w(t)) if t ∈ [tk, tk + T ), tk = kT, k ≥ 0
x(t) = x0 if t = 0

(2)

Let ϕf (t;x0, u2, w) for time t ∈ T denote the time trajectory of (2) with initial
state x(0) = x0, for input signal u2 and disturbance w.

We consider the problem of computing inner and outer-approximations of
robust reachable sets as introduced in [9], defined here as

Rf
AE(t;X0,U2,W) = {x | ∀w ∈ W,∃u2 ∈ U2, ∃x0 ∈ X0, x = ϕf (t;x0, u, w)}

Note that this notion of robust reachability extends the classical notions of mini-
mal and maximal reachability [20]. We use the subscript notation AE to indicate
that the reachable set is minimal with respect to the disturbances w (universal
quantification A) and maximal with respect to the input u2 (existential quan-
tification indicated by E), and that the universal quantification always precedes
the existential quantification.

2.2 Mean-Value Inner and Outer-Approximating Robust Extensions

A classical but often overly conservative way to overapproximate the image of a set
by a real-valued function f : Rm → R is the natural interval extension F : IRm →
IR, IR being the set of intervals with real bounds, which consists in replacing real
operations by their interval counterparts in the expression of the function.

A generally more accurate extension relies on a linearization by the mean-value
theorem. Mean-value extensions can be generalized to compute ranges that are
robust to disturbances, identified as a subset of the input components. Let f be
a continuously differentiable function from R

m to R with input decomposed as
x = (u,w) ∈ (U ,W) ⊆ IR

m. We define the robust range of function f on x,
robust with respect to component w ∈ W, as Rf

AE(U ,W) = {z | ∀w ∈ W, ∃u ∈
U , z = f(u,w)}.

For a continuously differentiable function f : R
m → R

n, we note ∇f =
(∇jfi)ij = ( ∂fi

∂xj
)1≤i≤n,1≤j≤m its Jacobian matrix. We note 〈x, y〉 the scalar

product of vectors x and y, and |x| the absolute value extended componentwise.
For a vector of intervals X = [X ,X ], we note c(X ) = (X + X )/2.0 and r(X ) =
(X − X )/2.0 its center and radius defined componentwise.

Theorem 1. ([8], slightly simplified version of Thm. 2). Let f be a con-
tinuously differentiable function from R

m to R and X = U × W ⊆ IR
m. Let F0,
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∇X
w and ∇X

u be vectors of intervals such that c(X ) ⊆ F0, {|∇wf(u,w)| , (u,w) ∈
X} ⊆ ∇X

w and {|∇uf(u,w)| , (u,w) ∈ X} ⊆ ∇X
u . We have:

[F0 − 〈∇X
u , r(U)〉 + 〈∇X

w , r(W)〉,F0 + 〈∇X
u , r(U)〉 − 〈∇X

w , r(W)〉] ⊆ Rf
AE(U ,W)

Rf
AE(U ,W) ⊆ [F0 − 〈∇X

u , r(U)〉 + 〈∇X
w , r(W)〉,F0 + 〈∇X

u , r(U)〉 − 〈∇X
w , r(W)〉]

Theorem 1 provides inner and outer-approximations of the robust range (or
of the classical range when there is no disturbance component w) of scalar-valued
functions, or of the projections on each component of vector-valued functions,
using bounds on the slopes on the input set. The result is useful to compute a
projected range that is robustly reachable with respect to the disturbances w, or
as a brick in computing an under-approximation of the image of a vector-valued
function, as stated in Theorem 3 in [8].

Note that the accuracy of the mean-value AE extension can be improved
with an evaluation by a quadrature formula ([10], Sect. 4.2). Alternatively, an
order 2 Taylor-based extension ([10], Sect. 3) can be used.

2.3 Reachability of Neural Network Controlled Closed-Loop
Systems

The inner and outer approximations defined in Sect. 2.2 can be computed for
f being a simple function, possibly involving a neural network evaluation, or f
being the function defined by the iterated values of a discrete systems, or finally
f being the solution flow of closed-loop system (2).

In both discrete-time and the continuous-time cases, and whether some neu-
ral network controller is present or not, the evaluation of an outer-approximation
of the image of the solution and its Jacobian with respect to inputs and distur-
bances over sets is needed in order to apply Theorem 1.

In our work and implementation, we advocate the use of a unique abstraction
by affine forms (or zonotopes for the geometric view of a tuple of variables repre-
sented by affine forms) for these sets and these evaluations, including performing
reachability of the neural network controller. This abstraction is very convenient
and versatile to over-approximate any smooth function, providing a good trade-
off between efficiency and precision in most cases (and for more precision, one
can consider extensions with e.g. polynomial zonotopes [2]).

For continuous-time systems, we use Taylor expansions in time of the solution
on a time grid. To build these Taylor expansions, we evaluate function f and its
(Lie) derivatives over affine forms by a combination of automatic differentiation
and numerical evaluation by affine arithmetic, as described in e.g. [9]. The neural
network is seen as a nonlinear function h, composed with f to build function g
for which we compute the solution flow. Theorem 1 is applied to this solution
flow. We build the abstraction of h and thus g by a simple propagation of affine
forms by affine arithmetic in the network: linear transformers are exact, and
we propagate affine forms through the activation functions seen as standard
nonlinear functions relying on the elementary exponential function, tanh(x) =
2/(1 + e−2x) − 1 and sig(x) = 1/(1 + e−x). For differentiating the activation
functions, we use tanh′(x) = 1.0 − tanh(x)2 and sig′(x) = sig(x)(1 − sig(x)).



516 E. Goubault and S. Putot

3 Implementation

As mentioned in the introduction, RINO implements all ideas presented in [8–11]
for the joint computation of inner and outer approximations of robustly reachable
sets of differentiable nonlinear discrete-time [8,10] or continuous-time systems
[8,9], possibly with constant delays [11]. For experiments with systems without
neural networks, we refer to the results presented in these works, obtained with
a previous version of RINO.

RINO is written in C++. Intervals and zonotopes are used for set represen-
tation: the tool relies on the FILIB++ library [19] for interval computations and
the aaflib library1 for affine arithmetic [4]. Ole Stauning’s FADBAD++ library2

is used for automatic differentiation: its implementation with template enables
us to easily evaluate the differentiation in the set representation of our choice
(affine forms or zonotopes mostly). The tool takes as inputs:

– an open-loop or closed loop system, either discrete time or continuous-time,
which for now is hard-coded in C++,

– an optional neural network, provided to the tool in a format directly inspired
from the format analyzed by Sherlock [6], which can be used as some inputs
of the closed-loop system,

– an optional configuration file to set initial values, input and disturbances
ranges, and some parameter of the analysis (such as time step, order of Taylor
expansion in time)

It computes inner and outer-approximations of the projection on each component
of ranges, as well as joint 2D and 3D inner-approximations (provided as yaml
file and Jupyter/python-produced figures). Additionally to the classical ranges,
RINO computes approximations of output ranges that are reachable robustly
or adversarially with respect to disturbances, specified as a subset of inputs.
In the experiments presented herafter, we consider examples only of classical
reachability, for which comparisons with existing work are available, but the
extension to robust reachability based on our previous work is straightforward.

4 Experiments

For space reasons, we focus here on the main novelty which is the extension
of this previous work to compute under and over-approximations of (robust)
reachable sets of neural network controlled systems (2).

Choice of Tools and Benchmark Examples. We compare RINO against
ReachNN* and Verisig 2.0 that are the most recent fully-fledged reachability
analyzers for neural network based control systems, and for which comparisons
with other tools on classical benchmarks are well documented in e.g. [15]. They
both improve on previous versions, Verisig and ReachNN, and on state of the art
1 http://aaflib.sourceforge.net.
2 http://www.fadbad.com.

http://aaflib.sourceforge.net
http://www.fadbad.com
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tools Sherlock, also based on Flow*, and NNV. As noted in e.g. [15]: “Firstly,
note that Verisig takes significantly more time to compute reachable sets (21
times slower in the case of the B5 benchmark). Furthermore, Verisig is unable
to verify some properties due to increasing error. Note that NNV is unable to
verify any of the properties considered in this paper due to high approximation
error.”. Remark though that there has been some amelioration to the internal
solvers used in NNV which should qualify the latter statement (see e.g. [16]). We
do not compare with the implementation in JuliaReach [21] since, first, timings
are difficult to compare with an interpreted framework, and second, because it
would require mixing several tools together, with many potential combinations.
We try to provide elements of comparison with POLAR [12], but in many ways
the latter addresses a different problem, with the emphasis on being able to
interpret e.g. ReLU activation functions.

Table 1. List of benchmarks (see [15])

Name Dynamics Initial set Horizon Control step

Mountain

Car

ẋ1 = x2

ẋ2 = 0.0015u − 0.0025 cos(3x1)

[ − 0.5,−0.48]

[0, 0.001]
T = 75 1

discrete MC

(stepsize 1)

xn+1
1 = xn

1 + xn
2

xn+1
2 = xn

2 + 0.0015un

−0.0025 cos(3xn
1 )

[ − 0.5,−0.48]

[0, 0.001]
T = 75 1

TORA

ẋ1 = x2

ẋ2 = −x1 + 0.1 ∗ sin(x3)

ẋ3 = x4

ẋ4 = u

[ − 0.77,−0.75]

[ − 0.45,−0.43]

[0.51, 0.54]

[ − 0.3,−0.28]

T = 5 0.1

ACC

ẋ1 = x2, ẋ4 = x5

ẋ2 = x3, ẋ5 = x6

ẋ3 = −4 − 0.0001x2
2 − 2x3

ẋ6 = 2u − 0.0001x2
5 − 2x6

x1 = [90, 91]

x2 = [32, 32.05]

x4 = [10, 11]

x5 = [30, 30.05]

T = 5 0.1

B1

(Ex 1 in [7])

ẋ1 = x2

ẋ2 = ux2
2 − x1

[0.8, 0.9]

[0.5, 0.6]
T = 7 0.2

B2

(Ex 2 in [7])

ẋ1 = x2 − x3
1

ẋ2 = u

[0.7, 0.9]

[0.7, 0.9]
T = 1.8 0.2

B3

(Ex 3 in [7])

ẋ1 = −x1(0.1 + (x1 + x2)2)

ẋ2 = (u+ x1)(0.1 + (x1 + x2)2)

[0.8, 0.9]

[0.4, 0.5]
T = 6 0.1

B4

(Ex 4 in [7])

ẋ1 = −x1 + x2 − x3

ẋ2 = −x1(x3 + 1) − x2

ẋ3 = −x1 + u

[0.25, 0.27]

[0.08, 0.1]

[0.25, 0.27]

T = 1 0.1

B5

(Ex 5 in [7])

ẋ1 = x3
3 − x2

ẋ2 = x3

ẋ3 = u

[0.38, 0.4]

[0.45, 0.47]

[0.25, 0.27]

T = 2 0.2
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We use a large subset (7/10) of the examples from Verisig 2.0 [15], which
are benchmarks used by most of the tools in the field, through e.g. the ARCH
competition [17]. We also consider the same settings in terms of initial sets and
the same time horizon. These are recalled in Table 1.

We indicate some of RINO’s reachability results on these benchmarks in
Table 2, before comparing the tightness and computing times with other tools.

Table 2. RINO’s results for time step 0.05 (except Mountain Car, step 1.)

Name over-approx under-approx t (s) t docker

Mountain Car

sigmoid (2 × 200)

[ − 0.78197,−0.64704]

[ − 0.019387,−0.0093975]
⊥ 31. 40.41

Discrete MC

sigmoid (2 × 200)

[ − 0.8711,−0.68326]

[ − 0.026888,−0.01411]

[ − 0.82466,−0.7297]

[ − 0.023716,−0.017282]
35 19.85

TORA

tanh (3 × 20)

[0.022471, 0.04829]

[ − 0.80790,−0.78039]

[ − 0.37201,−0.3433]

[0.30682, 0.33235]

[0.029133, 0.041776]

[ − 0.8037,−0.78452]

∅
∅

1.6 2.54

ACC

tanh

[229.05, 230.29]

[22.819, 22.868]

[ − 2.0285,−2.0284]

[159.88, 161.02]

[29.893, 30.006]

[ − 0.30836, 0.01398]

[229.05, 230.29]

[22.819, 22.868]

[ − 2.0285,−2.0284]

[160.03, 160.87]

∅
∅

6. 7.65

B1

tanh (3 × 20)

[0.012957, 0.1349]

[0.18089, 0.23235]

∅
∅ 0.7 0,92

B1

sigmoid (3 × 20)

[0.10155, 0.15331]

[0.17188, 0.20041]

[0.12092, 0.13398]

∅ 0.6 0.77

B2

sigmoid (3 × 20)

[ − 0.12356,−0.0811]

[0.16682, 0.26396]
⊥ 0.2 0.21

B3

tanh

[0.2256, 0.25296]

[ − 0.17777,−0.16092]

[0.23507, 0.24352]

∅ 1.3 1.67

B4

tanh

[ − 0.0017942, 0.010039]

[ − 0.03494,−0.02305]

[0.064524, 0.070953]

∅
[ − 0.032405,−0.02557]

∅
0.1 0,098

B5

tanh

[ − 0.42399,−0.38098]

[0.16388, 0.17547]

[ − 0.24869,−0.23363]

⊥ 2.7 3.8

Settings. All tools, Verisig 2.0 and ReachNN* and RINO, were run without
GPU support, under Ubuntu 18.04 docker, on a Mac running Mac OS Big Sur
11.2.3 on a 2.3 GHz Intel Core i9 processor with 16Gb of memory. Verisig 2.0
and ReachNN* were run with the Reproductibility Package of Verisig 2.0 [15].
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For fairness of timing results, we also run RINO with docker, and the running
ratios given in Table 3 are those using these docker versions. RINO was also
run natively on the same Mac. The performance degradation between the two
versions of RINO can be estimated from the full data given in Table 2 from none
to a 40% increase (with one exception at 80%), and most between 20 and 30%.
This is higher than generally observed with docker, but due to the fact that
docker on Macintosh is known to perform badly when it comes to IOs, using
the underlying file system. Therefore, the performance degrades more when the
system is of higher dimension and have more time steps to evaluate, since RINO
logs all estimated ranges for all variables in separate files.

Comparisons Results. We compare in Table 3 the running times of Verisig 2.0,
ReachNN* and RINO, and volumes of their final over-approximations, more
precisely the widths of the projections of each component at final time horizon.

The three tools depend on some parameters, in particular integration time
steps and order of approximation. RINO does not require tuning the integration
time steps and order of Taylor models so much, so we use one fixed time step
of 0.05 for all examples. We use for Verisig 2.0 and ReachNN* the settings of
the CAV Reproductibility package, that we suppose give good results. Verisig
2.0 and ReachNN* actually perform poorly on the same examples with a fixed
time steps of 0.05 s.

We experimented RINO with different time steps. The precision is relatively
stable and does not necessarily improve when decreasing the time step. Indeed,
as already noted [25], the improvement in approximation by Taylor models on
smaller time steps is balanced by the loss of precision due to set-based abstraction
being performed more often. Note also that the analysis time does not depend
linearly on the time step: the control step, which rules the frequency at which the
analysis of the neural net controller has to be performed, is fixed (see Table 1)
and does not depend on the integration time step.

Column 2 in Table 3 describes the relative width of the intervals given by
Verisig 2.0 for each variable at the final time and for each system, with respect
to the one given by RINO. Column 4 is the same, but for ReachNN*. Columns 3
and 5 give the ratio of the analysis time of Verisig 2.0 (respectively ReachNN*),
with respect to the analysis time of RINO.

In all cases, RINO is much faster than both Verisig 2.0 and ReachNN*, by
factors ranging from 13 to 638.5. Moreover, this includes for RINO the time
to compute the inner-approximations that Verisig 2.0 and ReachNN* do not
compute. ReachNN* could not analyze TORA because of lack of memory on
our platform, and timed out on ACC. Finally, interpolating the timings given
in Table 1 of [12], e.g. for B1 (sig), Verisig 2.0 is reported to take 47 s whereas
POLAR is reported to take 20 s on their platform. As Verisig 2.0 took 81.33 s on
our platform, we can infer that RINO is most certainly much faster, with e.g.
3.62 s for B1, than POLAR.

RINO’s precision is of the same order as Verisig 2.0, and always better than
ReachNN* by a factor of about 2 to 10. RINO is in fact even substantially more
precise than Verisig 2.0 in some cases (B1 and B2 in particular).
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Inner-Approximations. Let us take example B1 (with sigmoid-based controller),
and suppose we have a safety property that the value of x1 should never be
bigger than 1. Figure 1a represents in filled blue region the inner-approximation,
as plain black lines the bounds of the outer-approximation, and as purple dots
values actually reached, obtained by trajectories for sample initial conditions
The over-approximation alone does raise a potential alarm with respect to the
unsafe zone (in red), only the inner-approximation actually proves that the safety

Table 3. Precision and running time comparisons RINO [timestep=0.05] vs Verisig
2.0 [time steps of [15]] vs ReachNN* [time steps of [15]]

% width Verisig2 Ratio time % width ReachNN* Ratio time
Example over RINO Verisig2/RINO over RINO ReachNN*/RINO
TORA (tanh) 38,6 Mem full Mem full

TORA (sig) 43,4 Mem full Mem full

ACC (tanh) 500,8 Time out Time out

B1 (tanh) 88,8 85,1

B1 (sig) 105,4 86,8

B2 (sig) 77,6 121,9

B3 (tanh) 57,5 81,9

B3 (sig) 55,2 76,4

B4 (tanh) 187,9 214,6

B4 (sig) 154,4 173,5

B5 (tanh) 365,3 8,9

B5 (sig) 360,2 9,0
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property is falsified. We also note on this picture that the over-approximation
is very tight, given that samples give almost indistinguishable ranges. Figure 1b
represents the inner and outer approximations of joint range (x1, x2) as well as
estimation by sampling. As shown by the samples, (x1, x2) becomes almost a
1D curve after some time, making inner approximation extremely difficult to
estimate. Indeed our inner-approximation in orange is fairly precise for the first
time steps, and the corresponding inner skewed boxes are rotated to match the
curvy, 1D, shape of the samples. The green boxes printed on the picture are
the box enclosure of the actually computed outer-approximation. Note that the
inner-approximation of the projections on each component can be non-empty
while having an empty joint inner range, as some approximation is committed
in the joint inner range computation (as a skewed box) from the projected ranges.

Fig. 1. B1: inner-approximation, outer-approximation and sampling (purple dots)
(Color figure online)

5 Conclusion and Future Work

We presented the RINO tool, dedicated to the reachability analysis of dynam-
ical systems, possibly controlled by neural networks. While providing accurate
results, RINO is significantly faster than other state-of-the-art tools, which is
key in view to address real-life reachability problems, where the systems and
neural networks can be of high dimension. Moreover, as far as we are aware, it
is the only existing tool to propose inner-approximations of the reachable sets
of such systems. We currently handle only differentiable activation functions.
We are thinking of some abstractions to handle ReLU activations as well, even
though the approach is less natural in that case as it will introduce conservatism.
We also plan to improve the accuracy of our current results by further special-
izing this work to exploit the structure of neural network, such as monotonicity
of activation functions. Finally, robustness is a crucial property for neural net-
works enabled systems, and we plan to explore the possibilities offered by the
computation of robust reachable sets.
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Abstract. We present the STLmc model checker for signal temporal
logic (STL) properties of hybrid systems. The STLmc tool can perform
STL model checking up to a robustness threshold for a wide range of
hybrid systems. Our tool utilizes the refutation-complete SMT-based
bounded model checking algorithm by reducing the robust STL model
checking problem into Boolean STL model checking. If STLmc does not
find a counterexample, the system is guaranteed to be correct up to the
given bounds and robustness threshold. We demonstrate the effectiveness
of STLmc on a number of hybrid system benchmarks.

1 Introduction

Signal temporal logic (STL) [31] has emerged as a popular property specification
formalism for hybrid systems. STL formulas describe linear-time properties of
continuous real-valued signals. Because hybrid systems exhibit both discrete and
continuous behaviors, STL provides a convenient and expressive way to specify
important requirements of hybrid systems. STL has a vast range of applications
on hybrid systems, including automotive systems [26], robotics [24,40], medical
systems [36], IoT [7], smart cities [30], etc.

Due to the infinite-state nature of hybrid systems with continuous dynamics,
most techniques and tools for analyzing STL properties focus on monitoring and
falsification. These techniques analyze concrete samples of signals obtained by
simulating hybrid automata to monitor the system’s behavior [13,15,32] or find
counterexamples [1,37,43], often combined with stochastic optimization. To this
end, STL monitoring and falsification use quantitative semantics that defines the
robustness degree to indicate how well the formula is satisfied. However, these
methods cannot be used to guarantee correctness.

Recently, several STL model checking techniques have been proposed for
hybrid systems [3,29,35]. In particular, the SMT-based bounded model checking
algorithms [3,29] are refutation-complete, i.e., they can guarantee correctness up
to given bounds. However, these techniques are based on the Boolean semantics
of STL instead of quantitative semantics. This is a limitation for hybrid systems
as small perturbations of signals can cause the system to violate the properties
verified by Boolean STL model checking. Moreover, there exists no tool with a
convenient user interface implementing STL model checking techniques.
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This paper presents the STLmc tool for robust STL model checking of hybrid
systems. Our tool can verify that, up to given bounds, the robustness degree of
an STL formula ϕ is greater than a robustness threshold ε > 0 for all possible
behaviors of the system. We reduce the robust STL model checking problem
to Boolean STL model checking using ε-strengthening (perturbing the problem
by ε to make it harder to be true), first proposed in [21] for first-order logic
and extended to STL. We then apply the refutation-complete bounded model
checking algorithm [3,29] to build the SMT encoding of the resulting Boolean
STL model checking problem, which can be solved using SMT solvers.

Apart from the robust STL model checking method, STLmc also implements
several techniques to improve the usability and scalability of the tool:

– STLmc implements a generic interface to connect with various SMT solvers,
such as Z3 [12], Yices2 [17], and dReal [22]. Since dReal can (approximately)
deal with nonlinear ordinary differential equations (ODEs), STLmc can also
support hybrid systems with nonlinear ODE dynamics.

– STLmc implements parallelized two-step SMT solving to improve scalability.
Instead of directly solving the complex encoding with ODEs, we first obtain
a discrete abstraction without ODEs and find satisfying scenarios. We then
check the discrete refinements of such scenarios using dReal in parallel.

– STLmc provides a visualization command to draw counterexample signals
and robustness degrees. Such graphs intuitively explain why the robustness
degree of the formula is greater than a given threshold, and thus greatly help
in analyzing counterexamples and debugging hybrid systems.

We demonstrate the effectiveness of the STLmc tool on a number of hybrid
system benchmarks— including linear, polynomial, and ODE dynamics— and
nontrivial STL properties. The tool is available at https://stlmc.github.io.

2 Background: Robust STL Model Checking

Hybrid Automata. Hybrid systems are often formalized as hybrid automata [25],
defined as a tuple H = (Q,X, init , inv , jump,flow). A set of modes Q specifies
discrete states. A set of real-valued variables X = {x1, ...., xl} gives continuous
states. A pair 〈q,�v〉 of mode q ∈ Q and vector �v ∈ R

l constitutes a state of H. An
initial condition init(q,�v) defines a set of initial states. An invariant condition
inv(q,�v) defines a set of valid states. A jump condition jump(q,�v, q′, �v′) defines a
discrete transition from 〈q,�v〉 to 〈q′, �v′〉. A flow condition flow(q,�v,�vt, t) defines
a continuous evolution of X’s values from �v to �vt over time t in mode q.

A signal σ represents a continuous execution of a hybrid automaton H, given
by a function [0, τ) → Q × R

l with a time bound τ > 0. A signal σ is called
a trajectory of a hybrid automaton H, written σ ∈ H, if σ describes a valid
behavior of H: formally, there exists a sequence of times 0 = t0 < t1 < ... < τ
such that: (i) σ(t0) is an initial state by init ; (ii) for i ≥ 1, H’s state evolves from
σ(ti) according to flow , while satisfying inv , for each time interval [ti−1, ti); and
(iii) for i ≥ 1, a discrete transition occurs by jump at each time point ti.

https://stlmc.github.io
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Signal Temporal Logic. Signal temporal logic (STL) is widely used to specify
properties of hybrid systems [31]. The syntax of STL is defined by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

where p denotes state propositions, and I ⊆ R≥0 is any interval of nonnegative
real numbers. Examples of state propositions include relational expressions of
the form f(�x) ≥ 0 over variables X with a real-valued function f : R

l → R.
Other common Boolean and temporal operators can be derived by equivalences:
e.g., ϕ ∨ ϕ′ ≡ ¬(¬ϕ ∧ ¬ϕ′), ♦I ϕ ≡ �UI ϕ, �I ϕ ≡ ¬♦I ¬ϕ, etc.

We consider a quantitative semantics of STL based on robustness degrees [15].
The semantics of a state proposition p is defined as a function p : Q × R

l → R

that assigns to a state the degree to which p is true, where R = R ∪ {−∞,∞}.
Specifically, the robustness degree of a state proposition f(�x) ≥ 0 is the value of
f(�x). E.g., the robustness degree of x ≥ 4 is the value of x − 4 at a given state.
The robustness degree of an STL formula can be defined as follows [15], where
a time bound τ of a signal is explicitly taken into account.1

Definition 1. Given an STL formula ϕ, a signal σ : [0, τ) → R
l, and a time

t ∈ [0, τ), the robustness degree ρτ (ϕ, σ, t) ∈ R is defined inductively by:2

ρτ (p, σ, t) = p(σ(t))
ρτ (¬ϕ, σ, t) = −ρτ (ϕ, σ, t)

ρτ (ϕ1 ∧ ϕ2, σ, t) = min(ρτ (ϕ1, σ, t), ρτ (ϕ2, σ, t))
ρτ (ϕ1 UI ϕ2, σ, t) = supt′∈(t+I)∩[0,τ) min(ρτ (ϕ2, σ, t′), inft′′∈[t,t′] ρτ (ϕ1, σ, t′′))

The robust STL model checking problem is to determine if the robustness
degree of an STL formula ϕ is always greater than a given robustness threshold
ε > 0 for all possible trajectories of a hybrid automaton H.

Definition 2 (Robust STL Model Checking). For a time bound τ > 0, an
STL formula ϕ is satisfied at time t ∈ [0, τ) on a hybrid automaton H with respect
to a robustness threshold ε > 0 iff for every trajectory σ ∈ H, ρτ (ϕ, σ, t) > ε.

A Running Example. Consider two rooms interconnected by an open door. The
temperature xi of each room, i = 0, 1, changes depending on the heater’s mode
qi ∈ {On,Off} and the temperature of the other room. The continuous dynamics
of xi can be specified as the following ODEs, where Ki, hi, ci, di are determined
by the size of the room, the heater’s power, and the size of the door [2,19,25]:

ẋi =

{
Ki(hi − (cixi − dix1−i)) (On)

−Ki(cixi − dix1−i) (Off),

1 C.f., in the Boolean semantics of STL [29,31], the satisfaction of an STL formula is
defined as a Boolean value (i.e., true or false).

2 The Minkowski sum of intervals I and J is denoted by I +J . For a singular interval,
{t} + I is written as t + I. We write supa∈A g(a) and infa∈A g(a) to denote the least
upper bound and the greatest lower bound of the set {g(a) | a ∈ A}, respectively.
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Fig. 1. A hybrid automaton for the networked thermostats.

Figure 1 shows a hybrid automaton of our networked thermostat controllers.
Initially, both heaters are off and the temperatures are between 18 and 22. The
jumps between modes then define a control logic to keep the temperatures within
a certain range using only one heater. We are interested in robust model checking
of nontrivial STL properties, such as:

φ1: ♦[0,15](x0 ≥ 14 U[0,∞) x1 ≤ 19): at some moment in the first 15 s, x1 is less
than or equal to 19; until then, x0 is greater than or equal to 14.

φ2: �[2,4](x0 − x1 ≥ 4 → ♦[3,10] x0 − x1 ≤ −3): between 2 and 4 s, whenever
x0 − x1 ≥ 4, x0 − x1 ≤ −3 holds within 10 s after 3 s.

3 The STLmc Model Checker

The STLmc tool can model check STL properties of hybrid automata, given
three parameters ε > 0 (robustness threshold), τ > 0 (time bound), and N ∈ N

(discrete bound). STLmc provides an expressive input format to easily specify a
wide range of hybrid automata. STLmc also provides a visualization command
to give an intuitive description of counterexamples.

3.1 Input Format

The input format of STLmc, inspired by dReach [28], consists of five sections:
variable declarations, mode definitions, initial conditions, state propositions, and
STL properties. Mode and continuous variables define discrete and continuous
states of hybrid automata. Mode definitions specify flow, jump, and invariant
conditions. STL formulas can also include user-defined state propositions.

Figure 2 shows the input model of the hybrid automaton described in the
running example above. Constants are introduced with the const keyword. Two
mode variables on0 and on1 denote the heaters’ modes. Continuous variables x0
and x1 are declared with domain intervals. There are three “mode blocks” that
specify the three modes in Fig. 1 and their invariant, flow, and jump conditions.

In mode blocks, a mode component includes a set of logic formulas over mode
variables. An inv component contains a set of logic formulas over continuous
variables. A flow component can include ODEs over continuous variables. A
jump component contains a set of jump conditions of the form guard => reset ,
where guard and reset are logic formulas over mode and continuous variables,
and “primed” variables denote states after the jump has occurred.
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Fig. 2. An input model example

STL properties are declared in the goal section, and “named” propositions
are declared in the proposition section. State propositions are arithmetic and
relational expressions over mode and continuous variables. For example, in Fig. 2,
the STL formula f1 contains two state propositions x0 ≥ 14 and x1 ≤ 19, and
the formula f2 contains the user-defined propositions p1 and p2.

3.2 Command Line Options

STLmc provides a command-line interface with various options in Table 1. The
options -two-step and -parallel enable the two-step solving optimization in
Sect. 4.3. STLmc supports three SMT solvers to choose from based on con-
tinuous dynamics: Z3 [12] and Yices2 [17] can deal with linear and polynomial
dynamics (solutions of ODEs are linear functions or polynomials), and dReal [22]
can approximately deal with ODE dynamics with Lipschitz-continuous ODEs.

A discrete bound N limits the number of mode changes and variable points
at which the truth value of some STL subformula changes. This is a distinctive
parameter of STL model checking that cannot typically be derived from a time
bound τ or the maximal number of jumps (say, m). E.g., for any positive natural
number n ∈ N, consider the function y(t) = sin(π

τ · n · t); the state proposition
y > 0 has n − 1 variable points even if there is no mode change (m = 0).3

For the input model in Fig. 2, the following command found a counterexample
of the formula f2 at bound 2 with respect to ε = 2 in 15 s using dReal:

3 This example also hints that STL model checking can be arbitrary complex even for
one mode; τ and m cannot limit such model checking computation, whereas N can
limit the computation involving both discrete and continuous behaviors.
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Table 1. Some command line options for STLmc.

Option Explanation Option Explanation

-bound〈N〉 a discrete bound -two-step enable two-step solving

-time-bound〈τ〉 a time bound -parallel parallel two-step solving

-threshold〈ε〉 a robustness threshold -visualize generate visualization data

-solver〈Name〉 z3, yices, or dreal -goal goals to be checked

Fig. 3. Visualization of a counterexample (horizontal dotted lines denote ε = 2).

$./stlmc ./therm.model -bound 5 -time-bound 25 -threshold 2 \
-goal f2 -solver dreal -two-step -parallel -visualize

result: counterexample found at bound 2 (14.70277s)

Similarly, the following command verified the formula f1 up to bounds N = 5
and τ = 25 with respect to ε = 0.5 in 819 s using dReal:

$./stlmc ./therm.model -bound 5 -time-bound 25 -threshold 0.5 \
-goal f1 -solver dreal -two-step -parallel

result : True (818.73110s)

STLmc provides a command to visualize counterexamples for robust STL
model checking. It can generate images representing counterexample trajectories
and robustness degrees. Figure 3 shows the visualization graphs, showing the
values of variables or robustness degrees over time, generated for the formula
f2 = �[2,4](x0 − x1 ≥ 4 → ♦[3,10](x0 − x1 ≤ −3)) with the subformulas:

f21 = x0 − x1 ≥ 4 → ♦[3,10](x0 − x1 ≤ −3) f22 = ¬(x0 − x1 ≥ 4)
f23 = ♦[3,10](x0 − x1 ≤ −3) p1 = x0 − x1 ≥ 4 p2 = x0 − x1 ≤ −3

The robustness degree of f2 is less than ε at time 0, since the robustness degree
of f21 goes below ε in the interval [2, 4], which is because both the degrees of
f22 and f23 are less than ε in [2, 4]. The robustness degree of f23 is less than ε
in [2, 4], since the robustness degree of p2 is less than ε in [5, 14] = [2, 4]+ [3, 10].
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Fig. 4. The STLmc architecture

4 Algorithms and Implementation

Figure 4 shows the architecture of the STLmc tool. The tool first reduces robust
STL model checking into Boolean STL model checking using ε-strengthening. It
then applies an existing SMT-based STL model checking algorithm [3,29]. The
satisfiability of the SMT encoding can be checked directly using an SMT solver
or using the two-step solving algorithm to improve the performance for ODE
dynamics. Our tool is implemented in around 9,500 lines of Python code.

4.1 Reduction to Boolean STL Model Checking

As usual for model checking, robust STL model checking is equivalent to finding
a counterexample. Specifically, an STL formula ϕ is not satisfied on a hybrid
automata H with respect to a robustness threshold ε > 0 iff there exists a
counterexample for which the robustness degree of ¬ϕ is greater than or equal
to −ε. (Formally, ¬(∀σ ∈ H. ρτ (ϕ, σ, t) > ε) iff ∃σ ∈ H. ρτ (¬ϕ, σ, t) ≥ −ε.)

Consider a state proposition x < 0. Its robust model checking is equivalent to
finding a counterexample σ ∈ H with ρτ (x ≥ 0, σ, t) ≥ −ε, which is equivalent to
ρτ (x ≥ −ε, σ, t) ≥ 0. Observe that x ≥ −ε is weaker than x ≥ 0 by ε. The notion
of ε-weakening is first introduced in [21] for first-order logic, and we extend the
definitions of ε-weakening and ε-strengthening to STL as follows.

Definition 3. The ε-weakening ϕ−ε and ε-strengthening ϕ+ε of ϕ are defined
as follows: (p−ε)(s) = p(s) − ε and (p+ε)(s) = p(s) + ε for a state s, and:

(¬ϕ)−ε ≡ ¬(ϕ+ε) (ϕ1 ∧ ϕ2)−ε ≡ ϕ−ε
1 ∧ ϕ−ε

2 (ϕ1 UI ϕ2)−ε ≡ ϕ−ε
1 UI ϕ−ε

2

(¬ϕ)+ε ≡ ¬(ϕ−ε) (ϕ1 ∧ ϕ2)+ε ≡ ϕ+ε
1 ∧ ϕ+ε

2 (ϕ1 UI ϕ2)+ε ≡ ϕ+ε
1 UI ϕ+ε

2

Finding a counterexample of ϕ for robust STL model checking can be reduced
to finding a counterexample of the ε-strengthening ϕ+ε for Boolean STL model
checking. The satisfaction of ϕ by the Boolean STL semantics [29,31] is denoted
by σ, t |=τ ϕ. We have the following theorem (see our report [42] for details).

Theorem 1. (1) ∃σ ∈ H. σ, t |=τ ¬(ϕ+ε) implies ∃σ ∈ H. ρτ (¬ϕ, σ, t) ≥ −ε,
and (2) ∀σ ∈ H. σ, t �|=τ ¬(ϕ+ε) implies ∀σ ∈ H. ρτ (ϕ, σ, t) ≥ ε.

As a consequence, a counterexample of ϕ+ε for Boolean STL model checking
is also a counterexample of ϕ for robust STL model checking. If there is no
counterexample of ϕ+ε for Boolean STL model checking, then ϕ is satisfied on
H with respect to any robustness threshold 0 < ε′ < ε. It is worth noting that
ϕ may not be satisfied on H with respect to ε itself.
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4.2 Boolean STL Model Checking Algorithm

For Boolean STL model checking, there exist refutationally complete bounded
model checking algorithms [3,29] with two bound parameters: τ for the time
domain, and N for the number of mode changes and variable points. A time
point t is a variable point if a truth value of ϕ’s subformula changes at t. The
algorithms build an SMT encoding ΨN,τ

H,¬ϕ of Boolean STL model checking:

Theorem 2. [3,29] ΨN,τ
H,¬ϕ is satisfiable iff there is a counterexample trajectory

σ ∈ H, with at most N variable points and mode changes, such that σ, t �|=τ ϕ.

For hybrid automata with polynomial continuous dynamics, the satisfiability
of the encoding Ψ can be precisely determined using standard SMT solvers,
including Z3 [12] and Yices2 [17]. For ODE dynamics, the satisfiability of Ψ is
undecidable in general, but there exist specialized solvers, such as dReal [22] and
iSAT-ODE [18], that can approximately determine the satisfiability.

To support various SMT solvers, the implementation of STLmc utilizes a
generic wrapper interface based on the SMT-LIB standard [5]. Therefore, if it
follows SMT-LIB, a new SMT solver can be easily integrated with our tool.
Moreover, STLmc can also detect the most suitable solver for a given input
model; e.g., if the model has ODE dynamics, then the tool chooses dReal.

The encoding Ψ includes universal quantification over time, e.g., because of
invariant conditions. Several SMT solvers (including Z3 and Yice2) support these
∃∀-conditions but at high computational costs [27]. For polynomial dynamics, we
implement the encoding method [10] to simplify ∃∀-conditions to quantifier-free
formulas. For ODE dynamics, dReal natively supports ∃∀-conditions [23].

4.3 Two-Step Solving Algorithm

To reduce the complexity of ODE dynamics, we propose a two-step solving
algorithm in Algorithm 1, inspired by the lazy SMT solving approach [38]:

1. We obtain the discrete abstraction of the encoding Ψ by substituting the
flow and invariant conditions with Boolean variables. We then enumerate a
satisfying scenario π, a conjunction of literals, where π implies Ψ .

2. For each scenario π, we check the satisfiability of its discrete refinement with
the flow and invariant conditions using dReal. If any refinement is satisfiable,
we obtain a counterexample; otherwise, there is no counterexample.

We also implement a simple method to avoid redundant scenarios by minimiz-
ing a scenario. A scenario π = l1 ∧ · · · ∧ lm is minimal if (¬li ∧∧

j �=i lj) → Ψ— one
literal in π is false— is not valid. To minimize a scenario π, we use a dual propa-
gation approach [33]. Since π implies Ψ , π ∧ ¬Ψ is unsatisfiable. We compute the
unsatisfiable core of π ∧ ¬Ψ using Z3 to extract a minimal scenario from π.

We parallelize the two-step solving algorithm by running the satisfiability
checking of refinements in parallel. If any of such refinements is satisfied and a
counterexample is found, then all other jobs are terminated. If all refinements,
checking in parallel, are unsatisfiable, then there is no counterexample. As shown
in Sect. 5, it greatly improves the performance for the ODE cases in practice.
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Algorithm 1: Two-Step SMT Solving Algorithm
Input: Hybrid automaton H, STL formula ϕ, threshold ε, bounds τ and N

1 for k = 1 to N do

2 Ψ ← abstraction of the encoding Ψk,τ

H,¬(ϕ+ε)
without flow and inv ;

3 while checkSat(Ψ) is Sat do
4 π ← a minimal satisfying scenario;
5 π̂ ← the refinement of π with flow and inv ;
6 if checkSat(π̂) is Sat then
7 return counterexample(result.satAssignment);

8 Ψ ← Ψ ∧ ¬π;

9 return True;

5 Experimental Evaluation

We evaluate the effectiveness of the STLmc model checker using a number of
hybrid system benchmarks and nontrivial STL properties.4 We use the following
models, adapted from existing benchmarks [2,6,19,20,25,34]: load management
for two batteries (Bat), two networked water tank systems (Wat), autonomous
driving of two cars (Car), a railroad gate (Rail), two networked thermostats
(Thm), a spacecraft rendezvous (Space), navigation of a vehicle (Nav), and a
filtered oscillator (Oscil). We use a modified model with either linear, polynomial,
or ODE dynamics to analyze the effect of different continuous dynamics. For each
model, we use three STL formulas with nested temporal operators. More details
on the benchmark models can be found in the longer report [42].

We measure the SMT encoding size and execution time for robust STL model
checking, up to discrete bound N = 20 for linear models, N = 10 for polynomial
models, and N = 5 for ODEs models, with a timeout of 60 min. We use different
time bounds τ and robustness thresholds ε for different models, since τ and ε
depend on each model. As an underlying SMT solver, we use Yices for linear
and polynomial models, and dReal for ODE models with a precision δ = 0.001.
We run both direct SMT solving (1-step) and two-step SMT solving (2-step).
We use 25 cores for parallelizing the two-phase solving algorithm. We have run
all experiments on Intel Xeon 2.8 GHz with 256 GB memory.

The experimental results are summarized in Table 2, where |Ψ | denotes the
size of the SMT encoding Ψ (in thousands) as the number of connectives in Ψ . For
the model checking results, � indicates that the tool found no counterexample
up to bound N , and ⊥ indicates that the tool found a counterexample at bound
k ≤ N . For the algorithms (Alg.), we write one of the results with a better
4 For reachability properties, STLmc has a similar performance to other SMT-based

tools, because STLmc uses the same SMT encoding. Indeed, our previous work [29]
shows that the underlying algorithm used for STLmc has comparable performance
to other tools for reachability properties. Nonetheless, our companion report [42]
also includes some experimental results comparing STLmc with four reachability
analysis tools (HyComp [9], SpaceEx [20], Flow* [8], and dReach [28]).
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Table 2. Robust Bounded Model Checking of STL (Time in seconds)

Dyn. Model τ STL formula ε |Ψ | Time Result k Alg. #π
L
in

e
a
r
(N

=
2
0
)

Car 40

(♦[3,5] p1)U[2,10] p2 0.1 2.5 7.6 ⊥ 5 1-step -

�[3,10](♦[5,15] p1) 0.5 10.8 559.2 � - 1-step -

(�[2,5] p1)R[0,10) p2 1.0 2.5 7.8 ⊥ 5 1-step -

Wat 20

�[1,3](p1 R[1,10] p2) 2.5 18.8 25.1 � - 1-step -

(♦[1,10) p1)U[2,5] p2 0.1 1.9 4.3 ⊥ 4 1-step -

♦[4,10](p1 → �[2,5] p2) 0.01 11.2 16.3 � - 1-step -

Bat 30

♦[4,10](p1 → �[4,10] p2) 0.1 12.9 119.5 � - 1-step -

(♦[1,5] p1)R[5,20] p2 3.5 2.8 6.0 ⊥ 5 1-step -

�[4,14](p1 → ♦[0,10] p2) 0.1 3.8 44.6 ⊥ 8 1-step -

P
o
ly

(N
=

1
0
)

Thm 10

(�[2,10] p1)U[1,4] p2 0.5 2.0 4.4 ⊥ 4 1-step -

♦[0,5](p1 → �[2,5) p2) 0.1 3.9 5.0 � - 1-step -

♦[0,10](p1 R[2,4] p2) 1.0 5.7 6.3 � - 1-step -

Car 15

�[0,4](p1 → ♦[2,5] p2) 0.5 2.2 5.5 ⊥ 5 1-step -

(♦[0,4] p1)U[0,5] p2 2.0 1.7 4.7 ⊥ 3 1-step -

♦[0,3](p1 U[0,5] p2) 0.1 7.3 7.7 � - 1-step -

Rail 20

♦[0,5](p1 U[1,8] p2) 1.0 2.3 3.0 ⊥ 5 1-step -

♦[0,4](p1 → �[2,10] p2) 5.0 3.8 3.8 � - 1-step -

(�[0,5) p1)U[2,10] p2 4.0 1.9 2.7 ⊥ 4 1-step -

O
D
E

(N
=

5
)

Thm 25

♦[0,15](p1 U[0,∞) p2) 0.5 1.2 818.7 � - 2-step 3,580

�[2,4](p1 → ♦[3,10] p2) 2.0 0.7 14.7 ⊥ 2 2-step 91

�[0,10](p1 R[0,∞) p2) 2.0 1.2 161.7 ⊥ 4 2-step 279

Space 5

�[0,2](p1 → ♦[0,3] p2) 1.5 0.8 278.3 ⊥ 2 2-step 79

♦[2,3](�[1,2] p1) 0.1 1.1 37.0 ⊥ 3 2-step 138

♦[0,4](p1 U[0,∞] p2) 0.5 1.3 716.8 � - 2-step 2,681

Oscil 8

♦[0,3](p1 R[0,∞) p2) 0.1 1.5 108.9 � - 2-step 326

♦[2,5](�[0,3] p1) 1.0 1.2 192.8 ⊥ 3 2-step 601

(�[1,3] p1)R[2,5] p2 0.1 1.8 112.1 ⊥ 3 2-step 258

Nav 10

♦[2,4](p1 → �[1,5] p2) 3.0 1.2 399.3 ⊥ 3 2-step 1,388

♦[2,4](�[3,6] p1) 2.0 1.1 332.2 ⊥ 3 2-step 1,213

♦[1,5](p1 R[0,∞) p2) 1.0 1.4 749.6 � - 2-step 2,411

performance. For the 2-step case, we also write the number of minimal scenarios
generated (#π). Actually, two-step SMT solving timed out for all linear and
polynomial models, and direct SMT solving timed out for all ODE models.

As shown in Table 2, our tool can perform robust model checking of nontrivial
STL formulas for hybrid systems with different continuous dynamics. The cases
of ODE models generally take longer than the cases of linear and polynomial
models, because of the high computational costs for ODE solving. Nevertheless,
our parallelized two-step SMT solving method works well and all model checking
analyses are finished before the timeout. In contrast, for linear and polynomial
models with a larger discrete bound N ≥ 10, direct SMT solving is usually effec-
tive but the two-step SMT solving method is not. There are too many scenarios,
and the scenario generation does not terminate within 60 min. Therefore, the
two algorithms implemented in our tool are complementary.
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6 Related Work

There exist many tools for falsifying STL properties of hybrid systems, including
Breach [14], S-talrio [1], and TLTk [11]. STL falsification techniques are based
on STL monitoring [13,32], and often use stochastic optimization techniques,
such as Ant-Colony Optimization [1], Monte-Carlo tree search [43], deep rein-
forcement learning [41], and so on. These techniques are often quite useful for
finding counterexamples in practice, but, as mentioned, cannot be used to verify
STL properties of hybrid systems.

There exist many tools for analyzing reachability properties of hybrid systems
based on reachable-set computation, including C2E2 [16], Flow* [8], Hylaa [4],
and SpaceEx [20]. They can be used to guarantee the correctness of invariant
properties of the form p → �I q, but cannot verify general STL properties.
In contrast, STLmc uses a refutation-complete bounded STL model checking
algorithm to verify general STL properties, including complex ones.

Our tool is also related to SMT-based tools for analyzing hybrid systems,
including dReach [28], HyComp [9], and HybridSAL [39]. These techniques also
focus on analyzing invariant properties of hybrid systems, but some SMT-based
tools, such as HyComp, can verify LTL properties of hybrid systems. Unlike
STLmc, they cannot deal with general STL properties of hybrid systems.

7 Concluding Remarks

We have presented the STLmc tool for robust bounded model checking of STL
properties for hybrid systems. STLmc can verify that, up to given bounds, the
robustness degree of an STL formula ϕ is always greater than a given robustness
threshold for all possible behaviors of a hybrid system. STLmc also provides a
convenient user interface with an intuitive counterexample visualization.

Our tool leverages the reduction from robust model checking to Boolean
model checking, and utilizes the refutation-complete SMT-based Boolean STL
model checking algorithm to guarantee correctness up to given bounds and find
subtle counterexamples. STLmc can deal with hybrid systems with (nonlinear)
ODEs using dReal. We have shown using various hybrid system benchmarks
that STLmc can effectively analyze nontrivial STL properties.

Future work includes extending our tool with other hybrid system analysis
methods, such as reachable-set computation, besides SMT-based approaches.

Acknowledgments. This work was supported in part by the National Research
Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No.
2021R1A5A1021944 and No. 2019R1C1C1002386).
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Abstract. UCLID5 is a tool for the multi-modal formal modeling, ver-
ification, and synthesis of systems. It enables one to tackle verification
problems for heterogeneous systems such as combinations of hardware
and software, or those that have multiple, varied specifications, or sys-
tems that require hybrid modes of modeling. A novel aspect of UCLID5
is an emphasis on the use of syntax-guided and inductive synthesis to
automate steps in modeling and verification. This tool paper presents
new developments in the UCLID5 tool including new language features,
integration with new techniques for syntax-guided synthesis and satisfia-
bility solving, support for hyperproperties and combinations of axiomatic
and operational modeling, demonstrations on new problem classes, and
a robust implementation.

1 Overview

Tools for formal modeling and verification are typically specialized for particu-
lar domains and for particular methods. For instance, software verification tools
like Boogie [4] focuses on modeling sequential software and Floyd-Hoare style
reasoning, while hardware verifiers like ABC [5] are specialized for sequential
circuits and SAT-based equivalence and model checking. Specialization makes
sense when the problems fit well within a homogeneous problem domain with
specific verification needs. However, there is an emerging class of problems, such
as in security and cyber-physical systems (CPS), where the systems under verifi-
cation are heterogeneous, or the types of specifications to be verified are varied,
or there is not a single type of model that is effective for verification. An example
of such a problem is the verification of trusted computing platforms [37] that
involve hardware and software components working in tandem, and where the
properties to be checked include invariants, refinement checks, and hyperprop-
erties. There is a need for automated formal methods and tools to handle this
class of problems.

UCLID5 is a system for multi-modal formal modeling, verification, and syn-
thesis that addresses the above need. UCLID5 is multi-modal in three impor-
tant ways. First, it permits different modes of modeling, using axiomatic and
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operational semantics, or as combinations of concurrent transition systems and
procedural code. This enables modeling systems with multiple characteristics.
Second, it offers a varied suite of specification modes, including first-order for-
mulas in a combination of logical theories, temporal logic, inline assertions, pre-
and post-conditions, system invariants, and hyperproperties. Third, it supports
the first two capabilities with a varied suite of verification techniques, including
Floyd-Hoare style proofs, k-induction and bounded model checking (BMC), veri-
fying hyperproperties, or using syntax-guided and inductive synthesis to provide
more automation in tedious steps of verification, or to automate the modeling
process (as proposed in [34]).

The UCLID5 framework was first proposed in 2018 [35], itself a major evo-
lution of the much older UCLID system [6], one of the first satisfiability modulo
theories (SMT) based modeling and verification tools. Since that publication [35],
which laid out the vision for the tool and described a preliminary implementa-
tion, the utility of the tool has been demonstrated on several problem classes
(e.g., [7,8,25]), such as for verifying security across the hardware-software inter-
face. The syntax has been extended and state-of-the-art methods for syntax-
guided synthesis (SyGuS) have also been integrated into the tool [28], including
new capabilities for satisfiability and synthesis modulo oracles [32]. This tool
paper presents an overview of the latest version of UCLID5, highlighting novel
multi-modal aspects of the tool, as well as the new features supported since
2018 [35]. The paper is structured as follows: in Sect. 2 we give an overview of
the UCLID5 tool; in Sect. 3 we detail different multi-modal aspects of the tool,
as well as high-lighting new features; and in Sect. 4 we present a case study using
UCLID5 to verify a Trusted Abstract Platform. We cover related work in Sect. 5.
The new features we highlight are:

1. Fully integrated support for synthesis across all verification modes
2. Support for modeling with external oracles, via satisfiability and synthesis

modulo oracles [32]
3. New language features to support combining axiomatic and operational mod-

eling
4. Direct support for hyperproperties
5. Front-end translations from Chisel/FIRRTL to UCLID5, and from RISC-V

binaries to UCLID5, referenced in Sect. 6.
6. New case studies: covering models for distributed CPS in Lingua Franca [23],

and encodings of µhb specifications and verification of a Trusted Abstract
Platform described in Sects. 3.2 and 4 and in the corresponding artifact [31].

2 Overview of UCLID5

In verification mode, UCLID5 reduces the question of whether a model satisfies
a given specification to a set of constraints that can be solved by an off-the-
shelf SMT solver. In synthesis mode, UCLID5 reduces the problem of finding
an interpretation for an uninterpreted function such that the specification is
satisfied into a SyGuS problem that can be solved by an off-the-shelf SyGuS
solver. In order to do so, UCLID5 performs the following main tasks, as shown
in Fig. 1:
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Front End: UCLID5 takes models written in the UCLID5 language as input.
The command-line front-end allows user configuration, including specifying the
external SMT-solver/SyGuS-solver to be used, as well as enabling certain utilities
such as automatically converting uninterpreted functions to arrays. The parser
builds an abstract syntax tree from the model.

AST Passes: UCLID5 performs a number of transformations and checks on the
abstract syntax tree, including type-checking and inlining of procedures. This
intermediate representation supports limited control flow such as if-statements
and switch-cases, but loops are not permitted in procedural code and are removed
via unrolling (bounded for-loops) or replacement with user-provided invariants
(while loops). However, unbounded control flow can be handled by representation
as transition systems (where each module consists of a transition system with
an initial and a next block, each represented as a separate AST).

Symbolic Simulator: The symbolic simulator performs a simulation of the tran-
sition system in the model, according to the verification command provided, and
produces a set of assertions. For instance, if bounded model checking is used,
UCLID5 will symbolically execute the main module a bounded number of times.
UCLID5 encodes the violation of each independent verification condition as a
separate assertion tree.

Synth-Lib Interface: UCLID5 supports both synthesis and verification. The
Synth-Lib interface constructs either a verification or a synthesis problem from
the assertions generated by the symbolic simulator. The verification problems
are passed to the SMT-LIB interface, which converts each assertion in UCLID5’s
intermediate representation to an assertion in SMT-LIB. Similarly, the synthesis
problems are passed to the SyGuS-IF interface, which converts each assertion
to an assertion in SyGuS-IF. The verification and synthesis problems are then
passed to the appropriate provided external solver and the result is reported
back to the user.

Fig. 1. Architecture of UCLID5
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Basic UCLID5 Models. A simple UCLID5 model that computes the
Fibonacci sequence is shown in Fig. 2. UCLID5 models are contained within
modules which comprise of 3 parts: a system model represented using combina-
tions of sequential, concurrent, operational and axiomatic modeling, as described
in Sects. 3.2; a system specification described in Sect. 3.1; and a proof script that
specifies the verification tasks UCLID5 should perform to prove that the system
satisfies its specification, using a variety of supported verification and synthesis
techniques described in Sect. 3.1.

3 Multi-modal Language Features

3.1 Multi-modal Verification and Synthesis

Specification. UCLID5 supports a variety of different types of specifications.
The standard properties supported include inline assertions and assumptions in
sequential code, pre-conditions and post-conditions for procedures, and global
axioms and invariants (both as propositional predicates, and temporal invariants
in Linear Temporal Logic (LTL)).

The latest version of UCLID5 further provides direct support for hyperinvari-
ants and hyperaxioms (for k-safety). This new support for direct hyperproperties
comprises of two new language constructs: hyperaxiom and hyperinvariant. The
former places an assumption on the behavior of the module, if n instances of the
module were instantiated, and the latter is an invariant over n instances of the
module, which is verified via the usual verification methods. A variable x from
the nth instance of the module is reasoned about in the predicate using x.n, and
the number of modules instantiated is determined by the maximum n in both the
invariant and the axiom. For example, hyperinvariant[2] det xy: y.1 == y.2
asserts that a 2-safety hyperproperty holds.

Verification. To verify these specifications, we implement multiple classic tech-
niques. As a result, once a model is written in UCLID5, the user can deploy a
combination of verification techniques, depending on the properties targeted.
UCLID5 supports a range of verification techniques including: Bounded Model
Checking (for LTL, hyperinvariants and assertion-based properties); induction
and k-induction for assertion-based invariants and hyperinvariants; and verifica-
tion of pre-and post-conditions on procedures and hyperinvariants.

As an exemplar of the utility of multi-modal verification, consider the hyper-
property based models verified by Sahai et al. [33]. These models use both pro-
cedure verification and induction to verify k-trace properties.

Synthesis. The latest version of UCLID5 integrates program synthesis fully
across all the verification modes previously described. Specifically, users are able
to declare and use synthesis functions anywhere in their models, and UCLID5
will seek to automatically synthesize function bodies for these functions such
that the user-selected verification task will pass. In this section, we give an illus-
trative example of synthesis in UCLID5, we provide the necessary background
on program synthesis, and then we formulate the existing verification techniques
inside of UCLID5 for synthesis.
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Fig. 2. UCLID5 Fibonacci model. Part 3 shows the new synthesis syntax, and
how to find an auxiliary invariant.

Consider the UCLID5 model in Fig. 2. The user wants to prove by induction
that the invariant a le b at line 13 always holds. Unfortunately, the proof fails
because the invariant is not inductive. Without synthesis, the user would need to
manually strengthen the invariant until it became inductive. However, the user
can ask UCLID5 to automatically do this for them. Figure 2 demonstrates this
on lines 16, 17 and 18. Specifically, the user specifies a function to synthesize
called h at lines 16 and 17, and then uses h at line 18 to strengthen the existing
set of invariants. Given this input, UCLID5, using e.g. cvc5 [3] as a syntax-
guided synthesis engine, will automatically generate the function h(x, y) = x
>= 0, which completes the inductive proof.

In this example, the function to synthesize represents an inductive invariant.
However, functions to synthesize are treated exactly like any interpreted function
in UCLID5: the user could have called h anywhere in the code. Furthermore, this
example uses induction and a global invariant, however, the user could also have
used a linear temporal logic (LTL) specification and bounded model checking
(BMC). In this sense, our integration is fully flexible and generic. Furthermore,
the integration scheme allows us to enable synthesis for any verification proce-
dure in UCLID5, by simply letting users declare and use functions to synthesize
and relying on existing SyGuS-IF solvers to carry out the automated reasoning.

3.2 Multi-modal Modeling

Combining Concurrent and Sequential Modeling. A unique feature of
the UCLID5 modeling language is the ability to easily combine sequential and
concurrent modeling. This allows a user to easily express models representing
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sequential programs, including standard control flow, procedure calls, sequential
updates, etc., in a sequential model, and to combine these components within
a system designed for concurrent modeling based on transition systems. The
sequential program modeling is inspired by systems such as Boogie [4] and allows
the user to port Boogie models to UCLID5. The concurrent modeling is done by
defining transition systems with a set of initial states and a transition relation.
Within UCLID5, each module is a transition system. A main module can be
defined that triggers when each child module is stepped. For an example of
this combination of sequential and concurrent modeling, we refer the reader
to the CPU example presented in the original UCLID5 paper [35], which uses
concurrent modules to instantiate multiple CPU modules, modeled as transition
systems, with sequential code to model the code that executes instructions, and
to the case study in Sect. 4.

Reasoning with External Oracles. New in the latest version, UCLID5 sup-
ports the modeling with oracle function symbols [32] in both verification and
synthesis. Namely, a user can include “oracle functions” in any UCLID5 model,
where an oracle function is a function without a provided implementation, but
which is associated to a user-provided external binary that can be queried by
the solver. We note that oracle functions (and functions in general) can only be
first-order within the UCLID5 modeling language, i.e., functions cannot receive
functions as arguments.

This support is useful in cases where some components of the system are
difficult or impossible to model, but could be compiled into a binary that the
solver can query; or where the model of the system would be challenging for an
SMT solver to reason about (for instance, highly non-linear arithmetic), and it
may be better to outsource that reasoning to an external binary.

UCLID5 supports oracle function symbols in verification by interfacing with a
solver that supports Satisfiability Modulo Theories and Oracles (SMTO) [32], and
in synthesis by interfacing with a solver that supports Synthesis Modulo Oracles
(SyMO) [32].

Oracle function symbols are declared like functions, with the keyword oracle,
and an annotation pointing to the binary implementation. For instance oracle
function [isprime] Prime (x: integer): boolean would indicate to the
solver that the binary isprime takes an integer as input and returns a boolean.
This is translated into the corresponding syntax in SMTO or SyMO, as detailed
in [30].

An exemplar of such reasoning in a synthesis file is available in the arti-
fact [31], where we use UCLID5 to synthesize a safe and stabilizing controller
for a Linear Time Invariant system, similar to Abate et al. [1].

Combining Operational and Axiomatic Modeling. UCLID5 can model
a system being verified using an operational (transition system-based) app-
roach, as Fig. 2 shows. However, UCLID5 also supports modeling a system in an
axiomatic manner, whereby the system is specified as a set of properties over
traces. Any execution satisfying the properties is allowed by the system, and
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any execution violating the properties is disallowed. Axiomatic modeling can
provide order-of-magnitude performance improvements over operational models
in certain cases [2], and is often well suited to systems with large amounts of
non-determinism. We provide an example of fully axiomatic modeling in the
artifact [31].

However, uniquely, UCLID5 allows users to specify multi-modal systems
using a combination of operational and axiomatic modeling. In such models,
some constraints on the execution are enforced by the initial state and transi-
tion relation (operational modeling), while others are enforced through axiomatic
invariants (axiomatic modeling). This allows the user to choose the mode of mod-
eling most appropriate to each constraint. For example, the ILA-MCM work [39]
combined operational ILA (Instruction Level Abstraction) models to describe
the functional behavior of processing elements with memory consistency model
(MCM) orderings that are more naturally specified axiomatically [2]. (MCM
orderings constrain shared-memory communication and synchronization between
multiple processing elements.) The combined model, used for System-on-Chip
verification, worked by sharing variables (called “facets”) between both the mod-
els. UCLID5 makes it much easier to perform such a combination.

Figure 3 depicts parts of a UCLID5 model of microarchitectural execution
that uses both operational and axiomatic modeling (similar to that from the
ILA-MCM work), based on the µspec specifications of COATCheck [24]. In this
model, the steps of instruction execution are driven by the init and next blocks,
i.e., the operational component of the model. Multiple instructions can step at
any time (curTime denotes the current time in the execution), but they can only
take one step per timestep. Meanwhile, axioms such as the fifoFetch axiom
enforce ordering between the execution of multiple instructions. The fifoFetch
axiom specifically enforces that instructions in program order on the same core
must be fetched in program order. (Enforcing this order is tricky using opera-
tional modeling alone). The transition rules and axioms operate over the same
data structures, ensuring that executions of the final model abide by both sets
of constraints.

µspec models routinely function by grounding quantifiers over a finite
set of instructions. Thus, to fully support µspec axiomatic modeling, we
introduce two new language features —namely, groups and finite quanti-
fiers. A group is a set of objects of a single type. A group can have any
number of elements, but it must be finite, and the group is immutable
once created. For instance, the group testInstrs in Fig. 3 consists of four
instructions. Finite quantifiers, meanwhile, are used to quantify over group
elements.

This example showcases UCLID5’s highly flexible multi-modal modeling
capability. Models can be purely operational, purely axiomatic, or a combination
of the two. Note that axiomatic modeling relies on the new language features
finite forall and groups. For a further example of axiomatic and operational
multi-modal modeling, we refer the reader to the case study checking reachability
properties in reactive embedded systems described in the artifact [31].
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Fig. 3. UCLID5 model that incorporates both operational modeling (through
the init and next blocks) and axiomatic modeling (through the axiom keyword).

4 Case Study: TAP Model

The final case study we wish to describe verifies a model of a trusted execution
environment. Trusted execution environments [10,11,17,20] often provide a soft-
ware interface for users to execute enclaves, using hardware primitives to enforce
memory isolation. In contrast to software which requires reasoning about sequen-
tial code, hardware modeling uses a paradigm that permits concurrent updates
to a system. Moreover, verifying hyperproperties such as integrity requires rea-
soning about multiple instances of a system which most existing tools are not
well suited for. In this section, we present the UCLID5 port1 of the Trusted
1 https://github.com/uclid-org/trusted-abstract-platform/.

https://github.com/uclid-org/trusted-abstract-platform/
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Abstract Platform (TAP) which was originally2 written in Boogie and intro-
duced by Subramanyan et al. [37] to model an abstract idealized trusted enclave
platform. We demonstrate how UCLID5’s multi-model support alleviates the
difficulties in modeling the TAP model in existing tools.

Fig. 4. UCLID5 transition system-styled model of TAP and the integrity proof.

Modeling the TAP and Proving Integrity. The UCLID5 model of TAP in
Fig. 4 demonstrates some of UCLID5’s key features: the enclave operations of the
TAP model (e.g. launch) are implemented as procedures, and a transition rela-
tion of the TAP is defined using a next block that either executes an untrusted
adversary operation or the trusted enclave, which in turn executes one of the
enclave operations atomically. Proving the integrity hyperproperty on the TAP
thus only requires two instantiations of the TAP model, specifying the integrity
invariants, and defining a next block which steps each of the TAP instances
as shown in the integrity proof module. The integrity proof in UCLID5 uses
inductive model checking.
2 https://github.com/0tcb/TAP.

https://github.com/0tcb/TAP
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Table 1. Boogie vs UCLID5 Model Results

Model/Proof
Size Verif.

Time (s)#pr #fn #an#ln
Boogie

TAP 22 25 254 1840 51
Integrity 14 11 71 835 346

UCLID5
TAP 53 25 87 2765 49
Integrity 2 0 54 293 30

Results and Statistics of
the TAP Modules. Table 1
shows the approximate size of
the TAP model in both Boo-
gie and UCLID5. #pr, #fn,
#an, and #ln refer to the
number of procedures, func-
tions, annotations, and lines
of code respectively. Annota-
tions are the number of loop
invariants, assertions, assump-
tions, pre- and post-conditions
that were manually specified. The verification time includes compilation and
solving.

While the #ln for the TAP model in UCLID5 is higher than that of the model
in Boogie due to stylistic differences, the crucial difference is in the integrity
proof. The original model in Boogie implements the TAP model and integrity
proof as procedures, where the transition of the TAP model is implemented
as a while loop. However, this lack of support for modeling transition systems
introduces duplicate state variables in a hyperproperty such as integrity, requires
context switching and additional procedures for the new variables, which makes
the model difficult to maintain and self composition unwieldy. In UCLID5, the
proof is no longer implemented as a procedure, but rather, we create instances of
the TAP model. We also note that the number of annotations is less in UCLID5
compared to Boogie for the TAP model and proof. Additionally, this model
lends itself for more direct verification of hyperproperties.

The verification results are run on a machine with 2.6GHz 6-Core Intel Core
i7 and 16GB of RAM running OSX. As shown on the right of Table 1, the
verification runtimes between the Boogie and UCLID5 models and proofs are
comparable.

5 Related Work

There are a multitude of verification and synthesis tools related to UCLID5.
In this brief review, we highlight prominent examples and contrast them with
UCLID5 along the key language features described in Sect. 3.

UCLID5 allows users to combine sequential and concurrent modeling (see
Sect. 3.2). Most existing tools primarily support either sequential, e.g. [4,21,38],
or concurrent computation modeling, e.g. [5,9,14,26,27]. Although users of these
systems can often overcome the tool’s modeling focus by manually including
support for different computation paradigms, for example, Dafny can be used
to model concurrent systems [22], this is not always straightforward, and lim-
ited support for different paradigms can manifest as limitations in downstream
applications. For example, the Serval [29] framework, based on Rosette, cannot
reason about concurrent code. UCLID5, to the best of our knowledge, is the only
verification tool natively supporting modeling with external oracles.
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UCLID5 supports different kinds of specifications and verification procedures
(see Sect. 3.1). Most existing tools [5,9,21] do not support multi-modal verifi-
cation at all. Tools that do offer multi-modal verification do not offer the same
range of options as UCLID5. For example, [26] does not support linear temporal
logic, and [13,27] does not support hyperproperty verification.

Finally, UCLID5 supports a generic integration with program synthesis (see
Sect. 3.1), and so related work includes a number of synthesis engines. The
SKETCH system [36] synthesizes expressions to fill holes in programs, and has
subsequently been applied to program repair [16,19]. UCLID5 is more flexi-
ble than this work, and allows users to declare unknown functions even in the
verification annotations, as well as supporting multiple verification algorithms
and types of properties. Rosette [38] provides support for synthesis and verifi-
cation, but, unlike UCLID5, the synthesis is limited to bounded specifications
of sequential programs and external synthesis engines are not supported. Syn-
thesis algorithms have been used to assist in verification tasks, such as safety
and termination of loops [12], and generating invariants [15,40], but none of this
work to-date integrates program synthesis fully into an existing verification tool.
Before the new synthesis integration, UCLID5 supported synthesis of inductive
invariants. The key insight of this work is to generalize the synthesis support,
and to unify all synthesis tasks by re-using the verification back-end.

6 Software Project

The source code for UCLID5 is made publicly available under a BSD-license3.
UCLID5 is maintained by the UCLID5 team4, and we welcome patches from the
community. Additional front-ends are available for UCLID5, including transla-
tors from Firrtl [18]5, and RISC-V binaries6 to UCLID5 models. An artifact
incuding the code for the case studies in this paper is available [31].
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