
An Inverted-ITL Algorithm for Mining
Partial Periodic-Frequent Patterns

Ye-In Chang, Xin-Long Chen, and Sheng-Hsin Chiang

Abstract In this paper, we propose an Inverted-ITL algorithm for mining partial
periodic-frequent patterns. Although the GPF-growth algorithm has been proposed
to achieve the same goal, it needs to construct the prefix tree which needs too much
storage space and processing time. Moreover, the GPF-growth algorithm will scan
the database twice and sort each transactional list. To avoid those disadvantages, in
this paper, we propose the inverted-ITL algorithm. Our algorithm is more efficient
than the GPF-growth algorithm. We will use one data structure, the ITL-tree, to store
the items which appear in the database. Therefore, our algorithm can need shorter
processing time than the GPF-growth algorithm.

Keywords Frequent patterns · Itemsets mining · Periodic patterns · Periodic-
frequent patterns · Transactional database

1 Introduction

In recent years, the research of data mining [1, 2] has become more popular. There
are many techniques for mining interesting patterns in the database, like frequent
pattern mining [3–5], frequent weighted pattern mining [6], frequent closed pattern
mining [7], maximal frequent pattern mining [8], and periodic-frequent pattern
mining [9–13]. Among the above techniques, current researches on periodic-fre-
quent pattern mining have focused on discovering full periodic-frequent patterns in
the database. However, partial periodic-frequent patterns are more common in the
real world, i.e., finding frequent patterns which frequently occur but do not succes-
sively occur one after one in the database. The reason for this phenomenon is the
imperfect nature of the real-world.

Y.-I. Chang (*) · X.-L. Chen · S.-H. Chiang
Department of Computer Science and Engineering, National Sun Yat-Sen University,
Kaohsiung, Taiwan
e-mail: changyi@mail.cse.nsysu.edu.tw

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C.-C. Wang, A. Nallanathan (eds.), Proceedings of the 5th International Conference
on Signal Processing and Information Communications, Signals and
Communication Technology, https://doi.org/10.1007/978-3-031-13181-3_10

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13181-3_10&domain=pdf
mailto:changyi@mail.cse.nsysu.edu.tw
https://doi.org/10.1007/978-3-031-13181-3_10#DOI

The periodic-frequent pattern mining is an extension of the frequent pattern
mining. In the frequent pattern mining, the count of the support is the factor which
we only care about. However, in the periodic-frequent pattern mining, we do not just
care about the frequency of each item but also need to make sure that the frequent
pattern occurs periodically in the transactional database [9]. According to the
property of the transactional database, the database consists of two fields:
(1) timestamp and (2) item. The timestamp denotes the current time, when a
transaction list is generated. For the topic of mining periodic-frequent patterns, the
item will not appear repeatedly in a transaction list. Moreover, we do not have to care
about the number of the items in a transaction list. That is, a transaction list {a, a,
b, c} will not appear. Moreover, {a, b, c} and {b, c, a} are the same. The timestamp
is used to record the time, when a transaction list is generated and the transaction lists
are sorted according to the ascending order of the timestamp. Therefore, for the
entire database, there may exist time that no transaction list is generated. For
instance, the list of transactions may contain [T1, T2, T3, T5, T6], where time T4
does not appear.

Take Table 1 as an example, which is denoted by transactional database TDB1.
Assume that the user-specified minimum support is 2, and the user-specified max-
imum period is 3. At first, we scan all the transactions of transactional database
TDB1 to count the total support and obtain the maximum period of the complete set
of periods for each item. We can exploit these data items to discover which patterns
are periodic-frequent patterns. Figure 1 shows the result after scanning database
TDB1, which is denoted by database TDB2. In database TDB2, the symbols ItemN,
CountN, and MaxD denote the item name, the count of the total support, and the
maximum period of the complete set of periods for each item, respectively.

According to the data of transactional database TDB2, we can know the support
and the maximum period of each item in the database. Take item a as an example.
CountN is larger than or equal to 2, andMaxD is lower than or equal to 3. So item “a”
is a periodic-frequent pattern. Let’s focus on item “c,” which CountN is not less than
2, but itsMaxD is larger than 3, so item c is not a periodic-frequent pattern. Next, for
item i, it is not a periodic-frequent pattern for the same reason as item c. Although its
CountN is larger than 2, its MaxD is larger than 3. Then, items j and g are not
periodic-frequent patterns, because they have the same reason as the items c and i.
That is, theMaxD is larger than the threshold. Finally, item “h” also is not a periodic-
frequent pattern. Because its CountN andMaxD, neither of them meet the threshold.
Based on the definition of anti-monotone, pruning these items will not affect the
result. Therefore, the result after the pruning step contains items a, b, d, e, and f.

Table 1 An example
of the transactional
database TDB1

ts Items ts Items

1 ab 6 degf

2 acdi 7 abi

3 cefij 8 cdej

4 abfgh 9 abef

5 bd 10 acgi

118 Y.-I. Chang et al.

Next, we combine those items into the new candidate size 2 patterns. Then, after
checking, the qualified patterns are ab and ef. In the same way, we combine the
periodic-frequent size 2 patterns into the new candidate size 3 patterns to discover
the periodic-frequent size 3 patterns. The similar process is repeated until no
periodic-frequent patterns are generated.

Recently, Kiran et al. have proposed the PFP-growth++ algorithm [10], a prefix
tree-based algorithm. They use the prefix tree with the unique timestamp to mine the
periodic-frequent patterns. However, they do not take the real-world situation into
account. Because in their algorithm, as long as the pattern does not meet the
threshold once, it will not be considered as the periodic-frequent pattern. Later,
Kiran et al. proposed the GPF-growth algorithm [12], which is also a prefix tree-
based algorithm. The GPF-growth algorithm [12] considers fault tolerance by
adding parameter periodic ratio. It can effectively solve the problems encountered
by the PFP-growth++ algorithm [10].

The GPF-growth algorithm [12] can find more realistic patterns than the PFP-
growth++ algorithm [10]. The GPF-growth algorithm considers about the fault
tolerance of each pattern. However, we think that the construction of the prefix
tree of GPF-growth needs too much time and memory space because the GPF-
growth algorithm will scan the database twice and reorder each transactional list.
Moreover, it constructs multiple prefix trees. Therefore, in this paper, we propose the
Inverted-ITL algorithm to reduce the processing time. In our algorithm, we just only
scan database once and store information of each pattern in two data structures.
Later, we use these structures to find the periodic-frequent patterns. Therefore, our
algorithm can need less processing time than the GPF-growth algorithm. Note that
we do not need too much time to sort each transactional list and construct multiple
prefix trees. From our performance study, we show that the performance of our
algorithm is more efficient than that of the GPF-growth algorithm.

Fig. 1 After scanning all transactions of database TDB1, called database TDB2 (the minimum
support ¼ 2, the maximum period ¼ 3)

An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns 119

2 Related Works

The Apriori algorithm [3] has a great start and contribution to the research of data
mining with frequent patterns. However, the algorithm is hard to achieve good
performance. Later, Han et al. propose the FP-growth algorithm [5] for mining
frequent patterns which scans twice in the database, and the algorithm exploits a tree
structure, called FP-tree with the count of each item in the FP-tree. Next, Deng et al.
propose the PrePost algorithm [4] and the dFIN algorithm [4] for mining frequent
patterns with the property of scanning the database twice. Moreover, the algorithm
exploits a tree structure, called PPC-tree which is an extension of the FP-tree and a
vertical data structure, called N-list for each item in the PPC-tree. There are many
algorithms for data mining which are developed based on this structure, such as the
PFP-growth algorithm [14], the NAFCP algorithm [7], the INLA-MFP algorithm
[8], and the NFWI algorithm [6]. Although many algorithms have been proposed as
mentioned above, none of them have considered the period. Kiran et al. have
proposed the PFP-growth++ algorithm [10] for mining periodic-frequent patterns,
which considers both the frequency and the period for each item. Later, Kiran and
Reddy use the simplified model [11] to find all frequent patterns which have
exhibited complete cyclic repetitions in the database. Kiran et al. propose the
MCPF-model [13] to discover periodic-frequent patterns involving both frequent
and rare items effectively. Kiran et al. [9, 10] have discussed greedy search tech-
niques to discover periodic-frequent patterns effectively. All of these researches
have focused on finding full periodic-frequent patterns. Then, Kiran et al. propose
the GPF-growth algorithm [12], which considers about the fault tolerance for each
item. The whole algorithm is basically the same as the PFP-growth++ algorithm.
The difference is the way to decide whether a pattern is a periodic-frequent pattern,
which will be determined according to the percentage of the interest period. The
components that make up the GPF-growth algorithm are the GPF-list and the
GPF-tree. The GPF-growth algorithm forms the GPF-list by scanning the database
once. Then, the GPF-list is sorted in the descending order of support for each item.
Finally, they recursively mine the GPF-tree to discover the complete set of partial
periodic-frequent patterns. Therefore, the GPF-growth algorithm needs to scan the
database twice, sort the items once and the database once, and build a tree structure
to find a complete set of the partial periodic-frequent patterns.

3 The Inverted-ITL Algorithm

In this section, we will introduce our algorithm called the Inverted-ITL (Inverted-
Item-Time-List) algorithm to mine the partial periodic-frequent patterns.

120 Y.-I. Chang et al.

3.1 Data Structure

In this subsection, we will use an example database TDB3 to explain our algorithm.
Note that there is no transaction with ts ¼ 5. During the process of partial periodic-
frequent pattern mining, we exploit the support, the interesting period, and the
periodic-ratio as main factors to determine whether the pattern is the partial peri-
odic-frequent pattern or not. Thus, we use the ITL-tree and the ITL-list to record the
information for each item. Note that we only have to scan the database once to record
the information and we do not need to do any sorting operation with the database.
During the mining process, we will frequently use these data structures to find the
partial periodic-frequent patterns. Table 2 shows an example database for timestamp
ts, and Table 3 shows the variables used in our algorithm. Next, we will illustrate the
two data structures which we will use them in our algorithm.

The ITL-tree, a tree structure, is used to store all the patterns which appear in the
database. It is a prefix tree, where each node may become a partial periodic-frequent
pattern, but the root is an empty pattern. All k-length patterns are stored at level k of
the tree, where k � 1. For instance, in Fig. 2, square boxes represent noncandidate
patterns, dotted circles represent the candidate patterns, and solid circles represent
the partial periodic-frequent patterns. Moreover, in the ITL-tree, once the pattern is
confirmed as a noncandidate pattern, its super-set pattern will not appear. In other
words, no pattern will generate new patterns with noncandidate patterns. Finally, the
patterns in the solid circle are the partial periodic-frequent patterns that we want to
find.

Table 2 An example
of the transactional
database TDB3

ts Items ts Items

1 ac 8 cdfg

2 abg 9 ab

3 de 10 cdef

4 abcd 11 abcef

6 abcd 12 abcd

7 abe 13 cef

Table 3 Variables

Variable Definition

ItemN The name of the pattern

CountN The count of the pattern

RangeC The number of the pattern which is not larger than MaxPer during the period

FirstT The first timestamp of the pattern

LastT The last timestamp of the pattern

BP Representing the timestamp of the bit pattern

Mark A Boolean flag to check whether the last period of the pattern is not larger than the
MaxPer

MinSup The minimum support threshold

MinPR The minimum periodic-ratio threshold

MaxPer The maximum period threshold

An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns 121

The ITL-list as shown in Fig. 3a (which is the result after processing the second
transaction) contains ItemN, CountN, RangeC, FirstT, LastT,Mark, and BP for each
pattern. It is used to record the useful information of each pattern. Take Table 2 as an
example. Assume that we have the MinSup ¼ 3, the MinPR ¼ 75%, and the
MaxPer ¼ 2. First, we scan on the first transaction, “1: ac” with ts ¼ 1. Since
pattern a and pattern c are the first occurrence, we create their own ITL-list because
the ts (timestamp) of the first occurrence is not larger than the MaxPer and the
RangeC plus 1. Therefore, we modify their CountN, RangeC, FirstT, and LastT to
1, 1, 1, and 1, respectively. Since FirstT only records the ts of the first occurrence,
even if it appears later, we do not need to deal with this variable. Then, we have to
deal with the BP part as shown in Fig. 3b, where BP is a table composed of a series of
items and Boolean values. For the above example, we know that pattern a and
pattern c appear, when ts is 1. So in their BP table, we will set the Boolean value to
true at T1.

Next, we scan the second transaction, “2: abg” with ts ¼ 2. Since pattern b and
pattern g are the first occurrence, we create their own ITL-list, because ts of the first
occurrence is equal to the MaxPer and the RangeC plus 1. Therefore, we modify
their CountN, RangeC, FirstT, and LastT to 1, 1, 2, and 2, respectively. Then, the

Fig. 2 The simple diagram of the ITL-tree

Fig. 3 The ITL-list and the
BP table after scanning the
second transaction (abg): (a)
the ITL-list and (b) the BP
table

122 Y.-I. Chang et al.

CountN, RangeC, and LastT values of pattern a are updated to 2, 2, and 2, respec-
tively. Because the current ts minus the LastT of pattern a is less than MaxPer,
RangeC is increased by 1. At the same time, for pattern a, we set T2 in BP to true,
and for patterns b and g, we do the same thing. The result is shown in Fig. 3a, b.

The same step is processed until the entire database is scanned, and the variables
which have not been mentioned, Mark, will not be decided until the whole database
has been scanned. For instance, through Table 2, we can know that pattern a last
appears in ts 12. If the difference between the timestamp of the last transaction of the
database and LastT of the pattern is less than or equal to MaxPer, we set Mark to
True and increase RangeC by 1. Take pattern a as an example. The gap between
13 (ts of the last transaction) and 12 (LastT of “a”) is less than MaxPer, so Mark of
“a” is set to True and we increase its RangeC by 1. The complete ITL-list of each
pattern at level 1 is shown in Fig. 4.

Let’s start with a transactional database TDB3 to construct the ITL-tree as shown
in Fig. 5 (which is the result after processing the second transaction) and the ITL-list.
Basically, there are two cases which we must concern: (1) the item never appears
before; (2) the item has appeared before. For the first case, the item never appears
before; we add a new node at level 1 of the ITL-tree and give it a name. At the same
time for this node, we create its ITL-list. For the second case, the item has appeared
before, we need to find the node with this name from level 1 in the ITL-tree, and then
update its ITL-list. When we scan the first transaction, we can know that there are

Fig. 4 The complete ITL-list of each pattern at level 1

An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns 123

two patterns in the transaction, which are patterns a and c. When the algorithm reads
the items in a transaction, it will change the ITL-list of these patterns in the ITL-tree.
For instance, pattern a is the first pattern to be scanned, so we insert node a into level
1 of the ITL-tree. At the same time, we will create an ITL-list belonging to pattern
a and start to modify the data inside. The CountN is set to 1, because pattern
a appears for the first time. The RangeC is set to 1, because its period (i.e.,
1–0 ¼ 1, where 0 is the starting time) is less than MaxPer. The FirstT is set to
1, because the first occurrence is at ts 1. The LastT is set to 1, because the last
occurrence is at ts 1. Next, we set the T1 of BP table to True. The remaining items in
the first transaction is executed by the same way.

Next, we scan the second transaction. The second transaction has patterns a, b,
and g. Since pattern a already exists at level 1 of the ITL-tree, we only need to update
the data of its ITL-list. Take pattern a as an example. In the ITL-list of pattern a, its
CountN is set to 2. Because it has appeared once before, we have 1 + 1 ¼ 2. The
RangeC is set to 2, because its period (i.e., 2–1¼ 1, where the first 1 is LastT) is less
than MaxPer. The LastT is set to 2, because the pattern a appears at ts 2 now. Then,
for T2 of BP table, we set its BP table entry to True. Next, we turn to b and g. Take
pattern b as an example. Since pattern b appears for the first time, we insert node
b into level 1 of the ITL-tree and create its ITL-list. Then, we set its CountN to 1. The
RangeC is set to 1, because its period (i.e., 2–0 ¼ 2, where 0 is the starting time) is
equal to MaxPer. The FirstT is set to 2, because the first occurrence is at ts 2. The
LastT is set to 2, because the last occurrence is at ts 2. Moreover, we set the T2 of BP
table to True. Since “b” does not appear at ts 1, T1 of b is empty. The condition of
pattern g is the same as pattern b, so we do what has done for pattern b once for
pattern g. As a result, the ITL-tree and the ITL-list after scanning the second
transaction is shown in Fig. 5.

Finally, we perform the above process until the entire database has been scanned
to complete level 1 of the ITL-tree, and the ITL-list are shown in Fig. 6. But we have
not gotten the last period from the last ts (13). This last period will determine whether
we have to increase RangeC by 1 and set Mark to True. At the same time, we can
also know which of the patterns at level 1 are noncandidate patterns, candidate
patterns, and partial periodic-frequent patterns.

root

a c b g

ItemN

a

c

b

g

ItemN

ItemN

ItemN

CountN

2

1

1

1

CountN

CountN

CountN

RangeC

2

1

1

1

RangeC

RangeC

RangeC

FirstT

1

1

2

2

FirstT

FirstT

FirstT

LastT T1

T1

T

T2

T T

T1 T2

T

T1 T2

T

2

1

2

2

LastT

LastT

LastT

Fig. 5 The ITL-tree and the ITL-list after scanning the second transaction

124 Y.-I. Chang et al.

Therefore, the modified ITL-tree and the modified ITL-list are shown in Fig. 7.
Through Fig. 7, according to the ITL-list of each node, we can know, whether this
node can become the partial periodic-frequent pattern. As long as the number of
RangeC in the ITL-list is not less thanMinPR� (MinSup + 1) and CountN is not less
than MinSup, we set it to the dotted circle. Furthermore, if RangeC is not less than
MinPR � (CountN + 1), we set it to the solid circle, and this pattern is the partial
periodic-frequent pattern which we need. The remaining square boxes are consid-
ered unnecessary, because its CountN is less than MinSup or its RangeC is less than
MinPR � (MinSup + 1). So even if it is merged with other patterns, it cannot be a
partial periodic-frequent pattern. Therefore, the partial periodic-frequent size 1 pat-
terns are patterns a, c, b, d, and f.

Since we have found all partial periodic-frequent size 1 patterns, we can start
finding partial periodic-frequent patterns of size 2. First, we will exploit these dotted
or solid circle patterns in Fig. 7, where RangeC is larger than or equal to the MinPR
� (MinSup + 1) and CountN is not less than MinSup. We merge two patterns on the
same level of the ITL-tree with the same prefix into a (level + 1) super-set patterns.
Note that the prefix can be null and we do not need to merge with the square box,
because it is impossible to generate the partial periodic-frequent pattern. Since we
want to merge the two patterns, we need to decide the order of the merged patterns.
In the process of generating the size 2 patterns, we will merge the patterns at level
1 from left to right. Take Fig. 7 as an example. Patterns at level 1 of the ITL-tree have
the order from left to right: [a, c, b, d, e, f]. Moreover, the pattern will generate a new
pattern with each pattern after its order, and then it will be the next pattern. For
instance, pattern a will generate the new size 2 pattern with pattern c, b, d, e, f, and
then it will turn to pattern c and pattern b, d, e, f to generate the new size 2 pattern,
and so on.

root

a c b g

ItemN

a

d e f

CountN

8 8 1 12 ...

RangeC FirstT LastT BP

ItemN

c

CountN

8 7 1 13 ...

RangeC FirstT LastT BP

ItemN

b

CountN

7 7 1 12 ...

RangeC FirstT LastT BP

ItemN

g

CountN

2 1 2 8 ...

RangeC FirstT LastT BP

ItemN

d

CountN

6 5 3 12 ...

RangeC FirstT LastT BP

ItemN

e

CountN

5 2 3 13 ...

RangeC FirstT LastT BP

ItemN

f

CountN

4 3 8 13 ...

RangeC FirstT LastT BP

Fig. 6 The ITL-tree and the ITL-list after scanning the entire database

An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns 125

Next, we illustrate how to generate size 2 patterns at level 2 of the ITL-tree and
complete their ITL-list. Take pattern a and f as an example. At first, since we cannot
find the pattern af connected to a, we create a node af and connect it to a with an
edge. Then, we compare the FirstT of patterns a and f to find the larger value. This
value means that when we check the BP table of two patterns, we only need to check
from the Boolean value at this position. Because it will never appear at the same
timestamp before. Similarly, we compare the LastT of the patterns a and f to find the
smaller value. This value means that when we check the BP table of two patterns, we
only need to check the Boolean value at this position from the front. Because after
that, they will never appear at the same timestamp. Take Fig. 8 as an example. From
this figure, we can know that pattern f does not appear before ts 8 and a does not
appear after ts 12. Therefore, we only need to check the Boolean value between ts
8 and ts 12, which avoids unnecessary actions.

Then, we do the AND operation on BPs of patterns a and f. This BP table after the
AND operation is regarded as BP table of pattern af. We will use this BP table to
complete its ITL-list. At first, we need to find the timestamp with a True value

root

a c b g

ItemN

a

d e f

CountN

8 9 1 12 ...

RangeC FirstT LastT BP

T

Mark

ItemN

c

CountN

8 8 1 13 ...

RangeC FirstT LastT BP

T

Mark

ItemN

b

CountN

7 8 2 12 ...

RangeC FirstT LastT BP

T

Mark

ItemN

g

CountN

2 1 2 8 ...

RangeC FirstT LastT BP

F

Mark

ItemN

d

CountN

6 6 3 12 ...

RangeC FirstT LastT BP

T

Mark

ItemN

e

CountN

5 3 3 13 ...

RangeC FirstT LastT BP

T

Mark

ItemN

f

CountN

4 4 8 13 ...

RangeC FirstT LastT BP

T

Mark

: not a candidate pattern

: a candidate pattern

: a partial periodic-frequent pattern

Fig. 7 The modified ITL-tree and the modified ITL-list

Begin End

T1

Ta

f

T2 T3 T4

T

T5 T6

T

T7

T

T8 T9

T

T10 T11

T

T TTT

T12

T

T13

T

Fig. 8 The BP table for patterns a and f

126 Y.-I. Chang et al.

between ts 8 and ts 12. Then, we know that the first tswith True is at ts 11. Therefore,
we set its CountN, RangeC, FirstT, and LastT to 1, 0, 11, and 11, respectively. Then,
we find that the following timestamp has no True. Therefore, as long as we find the
last period to modify the value of RangeC and Mark, we complete the ITL-list of af.
At the same time, we can confirm whether pattern af is the noncandidate pattern, the
candidate pattern, or the partial periodic-frequent pattern through the ITL-list, which
is shown in Fig. 9. We apply the above steps to the remaining patterns. The result is
shown in Fig. 10. The partial periodic-frequent size 2 patterns are patterns ac, ab, cb,
cd, ce, cf, and ef.

After mining all the partial periodic-frequent size 2 patterns, we start to find the
partial periodic-frequent size 3 patterns. Similarly, we will merge the two patterns
with the same prefix at level 2 of the ITL-tree except for the noncandidate patterns.
So based on the above sentence, we will insert the new size 3 patterns acb, cbd, cbe,
cbf, cde, cbf, and cef into level 3 of the ITL-tree and follow the previous steps to
complete their ITL-list.

Then, we confirm the type of each pattern according to their ITL-list. The result is
shown in Fig. 11. According to this figure, we can know that patterns acb and cef are
partial periodic-frequent patterns. Moreover, there is no size 4 pattern which can be
generated. So all the partial periodic-frequent patterns in this database have been
found.

Fig. 9 The ITL-tree and the ITL-list after the pattern af is inserted

Fig. 10 The size 2 patterns of the ITL-tree

An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns 127

Finally, we compare the difference between our Inverted-ITL algorithm and the
GPF-growth algorithm [12] for mining partial periodic-frequent pattern mining. We
consider the original data in Table 2 as the input. When our algorithm constructs the
data structures for the mining process, our algorithm only needs to scan database
once and does not need the sorting step. However, the GPF-growth algorithm needs
scanning database twice and sorts each transaction. Moreover, the GPF-growth
algorithm needs to generate a prefix tree based on the reordered database, and it
will generate many prefix trees during the mining process.

4 Performance

4.1 The Performance Model

We compare the processing time of the Inverted-ITL algorithm and the GPF-growth
algorithm [12]. for mining partial periodic-frequent patterns in the real and synthetic
datasets. We will consider using different values of the minimum support threshold,
the maximum period threshold, and the minimum periodic-ratio threshold to execute
different size datasets on the algorithm. For the real datasets, we use the Retail
dataset (http://fimi.ua.ac.be/data/) for experiments. The details of the dataset Retail
contains the transaction count ¼ 88,162, the item count ¼ 16,470, and the average
item count per transaction ¼ 10.30. For the synthetic dataset, T10.I4.D100K was
generated by using the generator from the IBM Quest Dataset Generator. The
parameter T, I, and D represents the average item count per transaction, the average
maximal size of frequent itemsets, and the number of transactions in the dataset,
respectively.

Fig. 11 The size 3 patterns of the ITL-tree

128 Y.-I. Chang et al.

http://fimi.ua.ac.be/data/

4.2 Experiments Results

First, let’s deal with the Retail dataset. In Fig. 12, we show the comparison of the
processing time for the Retail dataset and the synthetic dataset under the change of
the maximum period threshold. In this experiment, we set the minimum support
threshold ¼ 0.01% and the minimum periodic-ratio threshold ¼ 0.01%. Through
Fig. 12a, we observe that both our algorithm and the GPF-growth algorithm
maintain a fairly stable curve. The reason is that all items in the Retail dataset,
except for the few specific items, the rest of the items will basically not repeat within
the threshold, so this situation will happen. Moreover, according to this figure, it
shows that we provide better performance than the GPF-growth algorithm which
scans the dataset twice and sorts many times. From Fig. 12b, we observe that the
performance of our algorithm is also better than that of the GPF-growth algorithm.

In Fig. 13, we show the comparison of the processing time for the Retail dataset
and the synthetic dataset under the change of the minimum support threshold. In this
experiment, we set the maximum period threshold ¼ 10 and the minimum periodic-
ratio threshold¼ 0.01%. Through Fig. 13a, we observe that as the value of minimum
support threshold increases, the processing time of the two algorithms decreases.
The reason is that only a small number of patterns can meet the threshold of support,
when the minimum support threshold increases. When the number of the candidate
patterns continues to decrease, the processing time also decreases. Through this
figure, we observe that when the number of candidate patterns continues to decrease,
the time curve of the GPF-growth algorithm will change greatly. However, our
algorithm changes relatively small. This is because as long as the number of
candidate patterns increases, the number of times that the GPF-growth algorithm
needs to be sorted and the number of prefix trees generated will also increase.
However, our algorithm only needs to process the ITL-list of each candidate pattern
which are already in the ITL-tree. Therefore, in Fig. 13a, the processing time of our
algorithm is faster than the GPF-growth algorithm. In Fig. 13b, the performance of
our algorithm is also better than that of the GPF-growth algorithm.

(a) (b)

0

500

1000

1500

2000

2500

3000

2 4 6 8 10

Ru
nn

in
g

Ti
m

e
(m

s)

Maximum Period Threshold

Inverted ITL

GPF-growth

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10

Ru
nn

in
g

Ti
m

e
(m

s)

Maximum Period Threshold

Inverted ITL

GPF-growth

Fig. 12 A comparison of the processing time under the change of the maximum period threshold:
(a) for the Retail dataset; (b) for the synthetic dataset

An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns 129

In Fig. 14, we show the comparison of the processing time for the Retail dataset
and the synthetic dataset under the change of the minimum periodic-ratio threshold.
In this experiment, we set the maximum period threshold ¼ 10 and the minimum
support threshold ¼ 0.01%. Through Fig. 14a, we can observe that the minimum
periodic-ratio threshold has small effect on the performance of two algorithms. So
our algorithm has better performance than the GPF-growth algorithm. In Fig. 14b,
the performance of our algorithm is also better than that of the GPF-growth
algorithm.

In Fig. 15, we show the comparison of the processing time for the Retail dataset
and the synthetic dataset under the change of the data size. In this experiment, we set
the maximum period threshold ¼ 10, the minimum support threshold ¼ 0.01%, and
the minimum periodic-ratio threshold ¼ 0.01%. Through Fig. 15a, we can observe

(a) (b)

0

200

400

600

800

1000

1200

1400

1600

0.02 0.04 0.06 0.08 0.1

Ru
nn

in
g

Ti
m

e
(m

s)

Minimum Support Threshold (%)

Inverted ITL

GPF-growth

0

100

200

300

400

500

600

700

0.02 0.04 0.06 0.08 0.1

Ru
nn

in
g

Ti
m

e
(m

s)

Minimum Support Threshold (%)

Inverted ITL

GPF-growth

Fig. 13 A comparison of the processing time under the change of the minimum support threshold:
(a) for the Retail dataset; (b) for the synthetic dataset

(a) (b)

0

500

1000

1500

2000

2500

3000

0.02 0.04 0.06 0.08 0.1

Ru
nn

in
g

Ti
m

e
(m

s)

Minimum Periodic-Ra�o Threshold (%)

Inverted ITL

GPF-growth

0

1000

2000

3000

4000

5000

6000

0.02 0.04 0.06 0.08 0.1

Ru
nn

in
g

Ti
m

e
(m

s)

Minimum Periodic-Ra�o Threshold (%)

Inverted ITL

GPF-growth

Fig. 14 A comparison of the processing time under the change of the minimum periodic-ratio: (a)
for the Retail dataset; (b) for the synthetic dataset

130 Y.-I. Chang et al.

that as the size of the dataset increases, the processing time also increases. However,
the growth rate of the GPF-growth algorithm is significantly larger than that of our
algorithm. Because as the size of the dataset increases, the GPF-growth algorithm
needs to sort the items in more transactions, but our algorithm only needs to deal
with the ITL-list of each candidate pattern in the ITL-tree. Therefore, the GPF-
growth algorithm needs a lot of time to deal with sorting and generating prefix trees,
and we only need to deal with each pattern in the ITL-tree. Through Fig. 15b, the
performance of our algorithm is also better than that of the GPF-growth algorithm.

5 Conclusion

In this paper, we have proposed an Inverted-ITL algorithm which can efficiently
mine the partial periodic-frequent patterns. In the data mining, we have constructed
the ITL-tree and the ITL-list which need less processing time to store information of
each pattern than the GPF-growth algorithm for the same transactional database.
From our simulation result, we have shown that our algorithm is more efficient than
the GPF-growth algorithm.

Acknowledgments This research was supported in part by the National Science Council of
Republic of China under Grant No. MOST 110-2221-E-110-054.

(a) (b)

0

500

1000

1500

2000

2500

3000

35000 48000 61000 75000 88162

Ru
nn

in
g

Ti
m

e
(m

s)

Data Size

Inverted ITL
GPF-growth

0

1000

2000

3000

4000

5000

6000

40000 55000 70000 85000 100000

Ru
nn

in
g

Ti
m

e
(m

s)

Data Size

Inverted ITL
GPF-growth

Fig. 15 A comparison of the processing time under the change of the change of the data size: (a)
for the Retail dataset; (b) for the synthetic dataset

An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns 131

References

1. M.K. Gupta, P. Chandra, A comprehensive survey of data mining. Int. J. Inf. Technol. 12,
1243–1257 (2020)

2. K. Kaithwas, P. Borkar, A review on different data mining algorithms and selection methods, in
Proc. of the 2019 Int. Conf. on Intelligent Sustainable Systems, (2019), pp. 511–515

3. R. Agrawal, R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large
databases. Proc. 20th Int. Conf. Very Large Data Bases, 487–499 (1994)

4. Z.-H. Deng, DiffNodesets: An efficient structure for fast mining frequent itemsets. Appl. Soft
Comput. 41, 214–223 (2016)

5. J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation. Proc. 2000 ACM
SIGMOD Int. Conf. Manag Data 29(2), 1–12 (2000)

6. H. Bui, B. Vo, H. Nguyen, T.-A. Nguyen-Hoang, T.-P. Hong, A weighted N-list-based method
for mining frequent weighted itemsets. Expert Syst. Appl. 96, 388–405 (2018)

7. T. Le, B. Vo, An N-list-based algorithm for mining frequent closed patterns. Expert Syst. Appl.
42(19), 6648–6657 (2015)

8. B. Vo, S. Pham, T. Le, Z.-H. Deng, A novel approach for mining maximal frequent patterns.
Expert Syst. Appl. 73, 178–186 (2017)

9. R.U. Kiran, M. Kitsuregawa, Novel techniques to reduce search space in periodic-frequent
pattern mining. Proc. 19th Int. Conf. Database Syst. Adv. Appl., 377–391 (2014)

10. R.U. Kiran, M. Kitsuregawa, P.K. Reddy, Efficient discovery of periodic-frequent patterns in
very large database. J. Syst. Software 112, 110–121 (2016)

11. R.U. Kiran, P.K. Reddy, Towards efficient mining of periodic-frequent patterns in transactional
databases. Proc. 21th Int. Conf. Database Exp Syst Appl, 194–208 (2010)

12. R.U. Kiran, J.N. Venkatesh, M. Toyoda, M. Kitsuregawa, P.K. Reddy, Discovering partial
periodic-frequent patterns in a transactional database. J. Syst. Software 125, 170–182 (2017)

13. A. Surana, R.U. Kiran, P.K. Reddy, An efficient approach to mine periodic- frequent patterns in
transactional databases. Proc. 15th Pacific-Asia Conf. Knowl. Discov. Data Mining, 254–266
(2011)

14. S.-S. Chen, T.C.-K. Huang, Z.-M. Lin, New and efficient knowledge discovery of partial
periodic patterns with multiple minimum supports. J. Syst. Software 84(10), 1638–1651 (2011)

132 Y.-I. Chang et al.

	An Inverted-ITL Algorithm for Mining Partial Periodic-Frequent Patterns
	1 Introduction
	2 Related Works
	3 The Inverted-ITL Algorithm
	3.1 Data Structure

	4 Performance
	4.1 The Performance Model
	4.2 Experiments Results

	5 Conclusion
	References

