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Abstract Dissipative systems play a very important role in several physical models,
most notably in Celestial Mechanics, where the dissipation drives the motion of
natural and artificial satellites, leading them tomigration of orbits, resonant states, etc.
Hence, there is the need to develop theories that ensure the existence of structures such
as invariant tori or periodic orbits, and device efficient computational methods. In
this work we study the existence of invariant tori for those dissipative systems known
as conformally symplectic systems, which have the property that they transform the
symplectic form into a multiple of itself. To give explicit examples of conformally
symplectic systems, we will present two different models: a discrete system known
as the standard map and a continuous system known as the spin-orbit problem.
In both cases we will consider the conservative and dissipative versions, that will
help to highlight the differences between the symplectic and conformally symplectic
dynamics. For such dissipative systems we will present a KAM theorem in an a-
posteriori format, originally developed in [44] for the symplectic case: assume we
start with an approximate solution satisfying a suitable non-degeneracy condition,
then we can find a true solution nearby. The theorem does not assume that the system
is close to integrable. This method provides a very efficient algorithmwhich provides
rigorous estimates close to optimal. Indeed, the method gives a criterion (the Sobolev
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blowup criterion) that allows to compute numerically the breakdown of invariant tori.
Wewill review thismethod aswell as an extension of J. Greene’smethod. Computing
close to the breakdown, allows to discover new mathematical phenomena, such as
the bundle collapse mechanism. We will also provide a short survey of the present
state of KAM estimates for the existence of invariant tori in the conservative and
dissipative standard maps and spin-orbit problems.

Keywords KAM theory · Invariant tori · Dissipative systems · Conformally
symplectic systems

1 Introduction

Dissipative dynamical systems play a fundamental role in shaping the motions of
physical problems. The role of dissipative forces in Celestial Mechanics is often of
less importance with respect to the conservative forces, which are mainly given by
the gravitational attraction between celestial bodies. Nevertheless dissipative forces
are present at any size and time scale and their effects accumulate over time, so that
even if some of them are negligible on a scale of centuries, they might be dominant
in a scale of a million of years.

A partial list of dissipative forces includes tidal forces, Stokes drag, Poynting-
Robertson effect, Yarkowski/YORP effects, atmospheric drag. These forces act on
bodies of different dimensions, namely planets, satellites, spacecraft, dust particles,
and in different epochs of the Solar system from the dynamics within the interplan-
etary nebula at the early stage of formation of the Solar system, to present times.
For example, the effect of the Earth’s atmosphere on the orbital lifetime of artifi-
cial satellites, happens in practical scales of time. It becomes therefore important to
understand invariant structures (e.g., periodic orbits and quasi-periodic motions on
invariant tori) in dissipative systems.

The definition of dissipative system is not uniform in the literature. Here we
will adopt that a dissipative system has the property that the phase space volume
contracts during the time evolution of the flow. In this work we will be concerned
with a special class of dissipative systems known as conformally symplectic systems,
see Definitions 1 and 2. These systems enjoy the property that the flow or the map
transform the symplectic form into a multiple of itself.

Conformally symplectic systems have appeared in many applications (see, e.g.,
[6, 18, 19, 28, 51, 115]) or have been studied because they are geometrically natural
objects [1, 5, 109].

For applications to Celestial Mechanics, an important source of conformally sym-
plectic systems is that of a mechanical systemwith friction proportional to the veloc-
ity. This is the case of the so-called spin-orbit problem in Celestial Mechanics [33,
34, 42, 114], which will be presented in Sect. 2.3. It describes the motion of an oblate
satellite around a central planet, under some simplifying assumptions like that the
orbit of the satellite is Keplerian and that the spin-axis is perpendicular to the orbital



KAM Theory for Some Dissipative Systems 83

plane. When the satellite is assumed to be rigid, the problem is conservative, while
when the satellite is assumed to be non-rigid, the problem is affected by a tidal torque.
The dissipative part of the spin-orbit problem depends upon two parameters: the dis-
sipative constant, which is a function of the physical properties of the satellite, and
a drift term, which depends on the (Keplerian) eccentricity of the orbit. A discrete
analogue of the spin-orbit problem is the dissipative standard map [35]. In Sect. 2.1
we will review conservative and dissipative versions of the standard map.

Indeed, the presence of a drift term is fundamental in conformally symplectic
systems: while in the conservative case one can find an invariant torus with fixed
frequency by adjusting the initial conditions, in the dissipative case it is not possible to
just tune the initial conditions to obtain a quasi-periodic solution of a fixed frequency.
One needs to adjust a drift parameter to find an invariant torus with preassigned
frequency (for some appropriate choice of initial conditions).

We stress that adding a dissipation to a Hamiltonian system is a very singular per-
turbation: the Hamiltonian admits quasi-periodic solutions with many frequencies,
while a system with positive dissipation leads to attractors with only one quasi-
periodic solution. To obtain attractors with a fixed frequency, one needs to adjust the
drift parameters.

The existence of invariant tori is the subject of the celebrated Kolmogorov–
Arnold–Moser (KAM) theory ([2, 78, 90], see also [3, 43, 53, 65, 91, 96, 112])
which, in its original formulation, proved the persistence of invariant tori in nearly–
integrable Hamiltonian systems. The theory can be developed under two main
assumptions:

– the frequency vector must satisfy a Diophantine condition (to deal with the so-
called small divisors problem),

– a non–degeneracy condition must be satisfied (to ensure the solution of the coho-
mological equations providing the approximate solutions).

Also, geometric properties of the system play an important role. Notably, the
original results were developed for Hamiltonian systems, but this has been greatly
extended.

A KAM theory for non-Hamiltonian systems with adjustment of parameters was
developed in the remarkable and pioneer paper [92], and later in [10, 11, 41, 86, 101].
A KAM theory for conformally symplectic systems with adjustment of parameters
was developed in [21] using the so-called automatic reducibility method introduced
in [44]. The paper [21] produces an a-posteriori result. A-posteriori means that the
existence of an approximate solution, which satisfies an invariance equation up to
a small error, ensures the existence of a true solution of the invariance equation,
provided some non-degeneracy conditions and smallness conditions on parameters
are satisfied.

The automatic reducibility proofs of KAM theorem provide very efficient and
stable algorithms to construct invariant tori in the symplectic [56, 62, 63] and con-
formally symplectic [18, 19, 26, 28, 64] case. The a-posteriori format guarantees
that these solutions are correct. Indeed, it was proved that the algorithm leads to a
continuation method in parameters that, given enough resources, reaches arbitrarily
close the boundary of the set of parameters for which the solution exists. In [20] it
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was found numerically that the tori—which are normally hyperbolic– break down
because the stable bundle becomes close to the tangent, even if the stable Lyapunov
exponent (which is given by the conformal symplectic constant) remains away from
zero.

1.1 Consequences of the A-Posteriori Method
for Conformally Symplectic Systems

The results presented in these notes are part of a more systematic program of pro-
viding KAM theorems in an a-posteriori format with many consequences that, for
completeness, we shortly review below.

• Regularity results.
The a-posteriori format, leads automatically to many regularity results: deducing

finitely differentiable results from analytic ones, bootstrap of regularity, Whitney
dependence on the frequency. We will not even mention these regularity results, but
we point that in the conformally symplectic case, we can obtain several rather striking
geometric results. The conformally symplectic systems are very rigid. A classic result
that plays a role is the paring rule of Lyapunov exponents. The conformal geometric
structure restricts severely the Lyapunov exponents that can appear [50, 115].

• Rigidity of neighborhoods of tori.
In [22] it is shown that the dynamics in a neighborbood of a Lagrangian torus is

conjugate to a rotation and a linear contraction. In particular, the only invariant in a
neighborhood is the rotation and all the tori with the same rotation are analytically
conjugate in a neighborbood.

• Greene’s method.
An analogue of Greene’s method ([59]) to compute the analyticity breakdown

is given in [27], which presents a partial justification of the method. It is proved
that when the invariant attractor exists, then one can predict the eigenvalues of the
periodic orbits approximating the torus for parameter values close to those of the
attractor.

• Whiskered tori.
In [24, 25] one can find a theory of whiskered tori in conformally symplectic

systems. This theory involves interactions of dynamics and geometry. The theory
allows—there are examples—that the stable and unstable bundles are trivial, but
somewhat surprisingly, concludes that the center bundles have to be trivial.

• The singular limit of zero dissipation.
We showed in [23] that, if one fixes the frequency ω, one can choose the drift

parameter μ as a function of the perturbation in a smooth way: μ = μ(ω, ε) ≡ με(ω).
Note however that μ0(ω) = 0, but for ε > 0, the function με is invertible so that the
function με(ω) is a smooth function with a limit as ε → 0. Nevertheless, the sets of
ω that appear have a complicated behaviour (devil’s staircase). Hence, the floating
frequency KAM methods, e.g. [2, 39, 95], have difficulty dealing with this limit.
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One of the advantages of the a-posteriori theorems is that they can validate approx-
imate solutions, no matter how they are obtained. We have already mentioned the
validation of numerical computations. It turns out that one can also validate formal
asymptotic expansions and obtain estimates on the domains of existence of the tori in
the singular limit [23]. This limit has also been studied numerically [12, 13], leading
to the conjecture that the Lindstedt series are Gevrey. A proof of the conjecture is
given in [14].

• Breakdown of the rotational tori.
One of the consequences of the conformal symplectic geometry is the “pairing

rule” for exponents [115]. Hence the tori, which have a dynamics which is a rotation,
must have normal exponents coinciding with λ. The tori are normally hyperbolic
attractors. Notice that the loss of hyperbolicity cannot happen because of the expo-
nents break down.This leads to themechanismof bundle collapse thatwas discovered
in [20] and will be discussed in more detail in Sect. 6.

1.2 Organization of the Paper

The work is organized as follows. In Sect. 2 we present the conservative and dis-
sipative standard maps and spin-orbit problems. Conformally symplectic systems
and Diophantine vectors are introduced in Sect. 3. The definition of invariant tori
and the statement of the KAM theorem for conformally symplectic systems is given
in Sect. 4. Two numerical methods for the computation of the breakdown thresh-
old of invariant attractors is presented in Sect. 5. The relation between the collision
of invariant bundles and the breakdown of the tori is described in Sect. 6. Applica-
tions of KAM estimates to the conservative/dissipative standard maps and spin-orbit
problems are briefly recalled in Sect. 7.

2 Conservative/Dissipative Standard Maps and Spin-Orbit
Problems

In this Section we present two models, a discrete and a continuous one, that will
help to have a qualitative understanding of the main features of conservative and
dissipative systems. The first example is a discrete model, known as the standard
map (see Sects. 2.1 and 2.2). The continuous example is a physical model, known as
the spin-orbit problem, which is closely related to the standard map (see Sect. 2.3).
In both cases we present their conservative and dissipative formulations.
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2.1 The Conservative Standard Map

The standard map is a discrete model introduced by Chirikov in [40], which has
been widely studied to understand several features of dynamical systems, such as
regular motions, chaotic dynamics, breakdown of invariant tori, existence of periodic
orbits, etc. The standard map is a 2-dimensional discrete system in the variables
(y, x) ∈ R × T, which is described by the formulas:

y′ = y + ε V (x)

x ′ = x + y′ , (1)

where ε > 0 is called the perturbing parameter and V = V (x) is an analytic function.
A wide number of articles and books in the literature (see, e.g., [60, 83]) deals

with the classical (Chirikov) standard map [40] obtained setting V (x) = sin x in (1).
Instead of (1) we can use an equivalent notation and write the standard map

assigning an integer index to each iterate:

y j+1 = y j + εV (x j )

x j+1 = x j + y j+1 = x j + y j + εV (x j ) for j ≥ 0 . (2)

We can easily verify that the standard map (2) satisfies the following properties,
that will be useful for further discussion.

(A) The standard map is integrable for ε = 0. In fact, for ε = 0 one gets the
formulas:

y j+1 = y j = y0
x j+1 = x j + y j+1 = x j + y j = x0 + j y0 for j ≥ 0 ,

which show that the mapping is integrable, since y j is constant and x j increases by
y0. For ε �= 0 but small, the map is nearly-integrable.

(B) The standard map is conservative, since the determinant of its Jacobian is
equal to one:

det

⎛
⎝

∂y j+1

∂y j

∂y j+1

∂x j

∂x j+1

∂y j

∂x j+1

∂x j

⎞
⎠ = det

(
1 εVx (x j )

1 1 + εVx (x j )

)
= 1 .

(C) The standard map satisfies the so-called twist property, which amounts to
requiring that for a constant c ∈ R, using the formulation (1):

∣∣∣∣
∂x ′

∂y

∣∣∣∣ ≥ c > 0
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for all (y, x) ∈ R × T. From (1) we have that the twist property is trivially satisfied,
since

∂x ′

∂y
= 1 .

The twist property is not satisfied when considering a slight modification of (1),
yielding a discrete system which is known as the non-twist standard map (see, e.g.,
[47, 48]). This mapping is described by the equations:

y′ = y + ε V (x) y ∈ R , x ∈ T

x ′ = x + a(1 − y′2)

with a ∈ R. In this case, the twist condition is violated along a curve in the (y, x)
plane.

Systems violating the twist condition appear in Celestial Mechanics, for example
in the critical inclination for the motion near an oblate planet [79]. One of the advan-
tages of the KAM results we will establish is that we do not need to assume global
non-degeneracy conditions on the map, but rather some properties of the approxi-
mate solution. We just need to assume that a d × d matrix is invertible. The matrix
is an explicit algebraic expression on derivatives of the approximate solution and
averages.

Figure1 shows the graph of the iterates of the standard map for several values of
the perturbing parameter and for several initial conditions in each plot.

From the upper left plot of Fig. 1, we see that for ε = 0 the system is integrable;
the initial conditions has been chosen to give rotational quasi–periodic curves (lying
on straight lines).

When we switch-on the perturbation, even for small values as ε = 0.1, the system
becomes non–integrable. It is easy to check that there exists a stable equilibrium
point at (π, 0) and an unstable one at (0, 0). The quasi–periodic (KAM) curves are
distorted with respect to the integrable case and the stable point (π, 0) is surrounded
by elliptic librational islands. The amplitude of the islands increases as ε gets larger,
as it is shown for ε = 0.4 where we also notice the appearance of minor resonances.
Chaotic dynamics is clearly present for ε = 0.7 around the unstable equilibrium
point, while the number of rotational quasi–periodic curves decreases when increas-
ing the perturbing parameter. In particular, for ε = 0.9we see large chaotic regions, a
few quasi–periodic curves, new islands around higher–order periodic orbits. Finally,
for ε = 1 we have only chaotic and librational motions, while quasi–periodic curves
disappear.

Aswewill mention in Sect. 7, there is awide literature onKAMapplications to the
standard map to prove the existence of invariant rotational tori with fixed frequency,
see [29, 46, 56].

The example we have presented in this Section shows a marked difference with
respect to themodel that will be presented in Sect. 2.2, thus witnessing the divergence
of the dynamical behaviour between conservative and dissipative dynamical systems.
This difference is clearly demonstratedby thedynamics associated to the conservative
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Fig. 1 Graphs of the conservative standard map for different values of the perturbing parameter
and different initial conditions
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and dissipative standard maps, as well as by that of more complex systems, like the
conservative and dissipative spin-orbit problems,whichwill be described in Sect. 2.3.

2.2 The Dissipative Standard Map

The dissipative standard map is obtained from (1) adding two parameters: a dissipa-
tive parameter 0 < λ < 1 and a drift parameter μ. For (y, x) ∈ R × T, the equations
describing the dissipative standard map are the following:

y′ = λy + μ + ε V (x)

x ′ = x + y′ , (3)

where λ, ε ∈ R+, μ ∈ R. We remark that we obtain the conservative standard map
when λ = 1 and μ = 0. We also remark that the Jacobian of the mapping (3) is
equal to λ, which gives a measure of the rate of contraction or expansion of the area
of the phase space. There are several results related to the existence of attractors
in the dissipative standard map; a partial list of papers is the following: [7, 8, 55,
70, 72, 104, 110, 113, 116]. Rigorous mathematical works on strange attractors for
dissipative 2-D maps with twist are [82, 84, 111].

It is also important to stress that for ε = 0 the trajectory {y ≡ μ
1−λ

} × T, or equiv-
alently {ω ≡ μ

1−λ
} × T, is invariant. In fact, for ε = 0we have y′ = λy + μ and since

we are looking for an invariant object, we need to have y′ = y. Hence, we must solve
the equation

y = λy + μ . (4)

On the other hand, the frequency ω associated to the standard map is, by definition,
given by

ω = lim
j→∞

x j

j
,

which yields ω = y. Combining this last result with (4), we obtain

ω = μ

1 − λ
,

showing the strong relation between the frequency and the drift, which cannot be
chosen independently. In particular, if we fix the frequency (as it will be required in
the KAM theorem of Sect. 4.2), then we need to tune properly the drift parameter
μ. This is a substantial difference with respect to the conservative case; dissipative
dynamical systems will require a procedure to prove KAM theory differently than
in the conservative case.
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Fig. 2 Left: Attractors for the dissipative standard map with ε = 0.9, λ = 0.91, μ = 2π(1 −
λ)(

√
5−1
2 ). Right: The corresponding basins of attraction using a color scale providing the fre-

quency

Thedynamics associated to the dissipative standardmap admits (seeFig. 2) attract-
ing periodic orbits and invariant curve attractors; for different parameters and initial
conditions, there appear also strange attractors which have an intricate geometrical
structure [83, 111]: introducing a suitable definition of dimension, the strange attrac-
tors are shown to have, for some parameter values, a non–integer dimension (namely
a fractal dimension). We will not consider these cases and concentrate on those in
which the attractor is a one-dimensional smooth torus and the motion is smoothly
conjugate to a rotation.

We remark that, due to the dissipative character of the map, there might exist at
most one invariant curve attractor, while there might be more coexisting periodic
orbits (see Fig. 2 and [55]) or strange attractors.

The existence and breakdown of smooth invariant tori in the dissipative standard
map have been recently studied in [26] (see also [20]).

Each of the attractors of Fig. 2 is characterized by an associated basin of attraction,
which is composed by the set of initial conditions (x0, y0) whose evolution ends on
the given attractor. Figure2, right, shows the basins of attraction for the case in Fig. 2,
left; they have been obtained taking a grid of 500 × 500 initial conditions and looking
at their evolution after having performed a number of preliminary iterations.

We want to stress that the role of the drift parameter μ is of paramount importance
in dissipative systems, since an inappropriate choice might prevent to find a specific
attractor. An example is given in Fig. 3, where we look for the torus with frequency
equal to the golden ratiomultiplied by the factor 2π, namelyω = 2π

√
5−1
2 
 3.8832,

for the dissipative standard map with ε = 0.1, λ = 0.9. The upper left panel shows
that taking μ = 0, the solution spirals on the point attractor at (π, 0); taking μ = 0.1
(Fig. 3, upper right panel) leads to an attractor which has frequency different than
ω, while the right choice corresponds to μ = 0.0617984 as in the left bottom panel
of Fig. 3. We present in Fig. 3, bottom right panel, the behaviour of the drift as a
function of the dissipative parameter λ, which shows that μ tends to zero in the limit
of the conservative case, as it is expected.
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Fig. 3 The dissipative standard map for different values of the drift: μ = 0 upper left, μ = 0.1
upper right, μ = 0.0617984 bottom left. Graph of μ versus λ, bottom right

The twist condition for the dissipative standard map is a condition that now
involves the parameters. A non-twist version of the dissipative standard map is the
following map,

y′ = λy + ε V (x)

x ′ = x + (y′ − a)2 + μ . (5)

In Fig. 4, we notice that this map has parameter values where the rotation number
does not change in a monotone direction when we change the parameter a. See [17]
for a study of the invariant circles of the map (5).

2.3 The Spin-Orbit Problems

An interesting example of a continuous system which shows the main dynamical
features of regular and chaotic invariant objects is the so-called spin-orbit problem
in Celestial Mechanics. The conservative version of the model is based upon the
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Fig. 4 Rotation number ρ in the map (5) w.r.t. the parameter a. Reproduced from [17]

Fig. 5 The spin-orbit problem

following assumptions.Weconsider a triaxial satellite, sayS, with principalmoments
of inertia I1 < I2 < I3.Weassume that the satellitemoves on aKeplerianorbit around
a central planet, say P , while it rotates around a spin–axis perpendicular to the orbit
plane and coinciding with its shortest physical axis.

We take a reference system centered in the planet and with the horizontal axis
coincidingwith the direction of the semimajor axis.We denote by r the orbital radius,
by f the true anomaly, while we denote by x the angle between the semimajor axis
and the direction of the longest axis of the ellipsoidal satellite (see Fig. 5).
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The equation of motion describing the conservative spin-orbit problem is

ẍ + ε
(a
r

)3
sin(2x − 2 f ) = 0 , (6)

where ε = 3
2
I2−I1
I3

is a parameter whichmeasures the equatorial flattening of the satel-
lite. Equation (6) is associated to the one-dimensional, time-dependent Hamiltonian
function:

H(y, x, t) = y2

2
− ε

2

( a

r(t)

)3
cos(2x − 2 f (t)) , (7)

where y = ẋ . Due to the assumptions of the model, the quantities r and f are known
functions of the time, being the solution of Kepler’s problem which determines the
elliptical orbit of the satellite. They depend on the orbital eccentricity, which plays
the role of an additional parameter.

It is important to observe that:

– the Hamiltonian (7) is integrable whenever ε = 0, namely the satellite has equa-
torial symmetry with I1 = I2;

– the Hamiltonian (7) is integrable when the eccentricity is equal to zero, since the
orbit becomes circular, namely r = a and f coincides with the mean anomaly,
which is proportional to time.

The existence and breakdown of invariant tori in the conservative spin-orbit prob-
lem have been investigated in [33, 34].

We remark that Hamilton’s equations associated to (7) are given by

ẋ = y

ẏ = −ε
( a

r(t)

)3
sin(2x − 2 f (t)) . (8)

Integrating (8) with a modified Euler’s method with time-step h, we obtain a discrete
systemwhich retains themany features of the conservative standardmapwhen taking
the solution on the Poincaré map at time intervals multiple of 2π:

yn+1 = yn − ε
( a

rn

)3
sin(2xn − 2 fn) h

xn+1 = xn + yn+1 h

tn+1 = tn + h ,

where rn = r(tn), fn = f (tn).
The dissipative spin-orbit problem is obtained by taking into account that the

satellite is non rigid and therefore it is subject to a tidal torque. The equation of
motion including a model for the tidal torque can be written as
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ẍ + ε
(a
r

)3
sin(2x − 2 f ) = −Kd [L(e, t)ẋ − N (e, t)] , (9)

where

L(e, t) = a6

r6
, N (e, t) = a6

r6
ḟ

(see, e.g., [35, 93]). The coefficient Kd is called the dissipative constant, and depends
on the physical and orbital features of the body:

Kd = 3n
k2
ξQ

(
Re

a

)3 M

m
,

where n is the mean motion, k2 is the so-called Love number (depending on the
structure of the satellite), Q is called the quality factor (it compares the frequency
of oscillation of the system to the rate of dissipation of the energy), ξ is a structure
constant such that I3 = ξmR2

e with Re the equatorial radius, M is the mass of the
planet, m is the mass of the satellite. For bodies like the Moon or Mercury, realistic
values are ε = 10−4 and Kd = 10−8.

The expression for the tidal torque can be simplified by assuming (as, e.g., in [42])
that the dynamics is ruled by the averages of L(e, t) and N (e, t) over one orbital
period. The averaged quantities are given by

L(e) = 1

(1 − e2)
9
2

(
1 + 3e2 + 3

8
e4

)
,

N (e) = 1

(1 − e2)6

(
1 + 15

2
e2 + 45

8
e4 + 5

16
e6

)
.

Hence, we obtain the following equation of motion in the averaged case:

ẍ + ε
(a
r

)3
sin(2x − 2 f ) = −Kd

(
L(e)ẋ − N (e)

)
. (10)

We can refer to the quantityλ = KdL(e) as the dissipative parameter and toμ = N (e)
L(e)

as the drift parameter.
Let us write (10) in canonical form as

ẋ = y

ẏ = −ε
( a

r(t)

)3
sin(2x − 2 f (t)) − λ(y − μ) . (11)

Similarly to the conservative case, the integration of (11) with a modified Euler’s
method with time-step h, leads to a discrete system similar to the dissipative standard
map with dissipative and drift parameters, when taking the solution on the Poincaré
map at time intervals multiple of 2π:
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yn+1 = (1 − λh)yn + λμ h − ε
( a

rn

)3
sin(2xn − 2 fn) h

xn+1 = xn + yn+1 h

tn+1 = tn + h .

As we will mention in Sect. 7, the existence and breakdown of invariant attractors
in the dissipative spin-orbit problem have been studied in [18, 19, 28] through an
application of KAM theory for conformally symplectic systems and through suitable
numerical methods.

3 Conformally Symplectic Systems and Diophantine
Vectors

In this Section we give the definition of conformally symplectic systems for maps
and flows (see Sect. 3.1) and we introduce the set of Diophantine vectors for discrete
and continuous systems (see Sect. 3.2).

3.1 Discrete and Continuous Conformally Symplectic
Systems

An important class of dissipative dynamical systems is given by the conformally
symplectic systems; the dissipative standard map is an example of a conformally
symplectic discrete system, while the dissipative spin-orbit problem is an example
of a conformally symplectic continuous system.

Before giving the formal definition, let us say that conformally symplectic systems
are characterized by the property that the map or the flow transforms the symplectic
form into a multiple of itself (see Definitions 1 and 2 below). Beside the examples
mentioned before, we stress that conformally symplectic models can be found in dif-
ferent fields, e.g. the Euler-Lagrange equations of exponentially discounted systems
([6], typically found in finance, when inflation is present and one needs to minimize
the cost in present money) or Gaussian thermostats ([51, 115], namely mechanical
systems with forcing and a thermostating term based on the Gauss Least Constraint
Principle for nonholonomic constraints).

Let us start to introduce the notion of 2n-dimensional conformally symplectic
maps. LetM = U × T

n be the phase space withU ⊆ R
n an open, simply connected

domain with smooth boundary; the phase space M is endowed with the standard
scalar product and a symplectic form Ω , represented by a matrix J at the point z
acting on vectors u, v ∈ R

n as Ω(u, v) = (u, J (z)v) with (·, ·) denoting the scalar
product. Note that the matrix J depends not only on the symplectic form but on the
metric considered.
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Definition 1 A diffeomorphism f on M is conformally symplectic, if there exists
a function λ : M → R such that, denoting by f ∗ the pull–back of f , we have:

f ∗Ω = λΩ . (12)

We remark that for n = 1 any diffeomorphism is conformally symplectic with λ
depending on the coordinates, namely one can take λ(x) = det (Df (x)) or λ(x) =
−det (Df (x)). Instead, for n ≥ 2 one obtains that λ is a constant. In fact, taking the
exterior derivative of f ∗Ω = λΩ , one obtains:

d( f ∗Ω) = f ∗ dΩ = 0 = dλ ∧ Ω + λ ∧ dΩ = dλ ∧ Ω ,

that gives dλ = 0; since the manifold is connected, then λ is equal to a constant.
We also remark that for λ = 1 in (12) we recover the symplectic case.
Let us give some explicit examples which might help to clarify the meaning of

Definition 1. First, we notice that we can re-formulate the notion of conformally
symplectic by saying that the diffeomorphism f is conformally symplectic if

Df T J D f = λ J , (13)

where the superscript T denotes transposition. In fact, from (12) we have:

f ∗Ω = λΩ ⇔ Ω(Df u, Df v) = λ Ω(u, v)

⇔ (Df u, J D f v) = λ (u, J v)

⇔ (u, Df T J D f v) = (u,λ J v)

⇔ Df T J D f = λ J .

An example of a conformally symplectic diffeomorphism is given by the dissipa-
tive standard map. Recalling (3), we have that (13) is satisfied, as shown below:

(
λ λ

εVx 1 + εVx

) (
0 1

−1 0

) (
λ εVx

λ 1 + εVx

)
=

(
0 λ

−λ 0

)
= λ J .

An example of amapwhich does not satisfy the conformally symplectic condition
(13) is given by the following 4-dimensional dissipative standardmapwith conformal
factors λ1, λ2 with λ1 �= λ2:

y′
1 = λ1y1 + μ1 + εV1(x1, x2)

y′
2 = λ2y2 + μ2 + εV2(x1, x2)

x ′
1 = x1 + y′

1

x ′
2 = x2 + y′

2 .
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In fact, even for ε = 0, we obtain that (13) is not satisfied:

Df T J D f =

⎛
⎜⎜⎝

0 0 λ1 0
0 0 0 λ2

−λ1 0 0 0
0 −λ2 0 0

⎞
⎟⎟⎠ �= λ

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ = λ J .

To conclude, we give the definition of conformally symplectic systems for con-
tinuous dynamical systems.

Definition 2 We say that a vector field X is a conformally symplectic flow if, denot-
ing by LX the Lie derivative, there exists a function λ : R2n → R such that

LXΩ = λΩ .

In analogy to the definition of conformally symplectic maps, we remark that the
time t-flow Φt satisfies the relation

(Φt )
∗Ω = eλtΩ .

3.2 Diophantine Vectors for Maps and Flows

In this section we give the definition of Diophantine vectors for maps and flows and
we briefly recall the main properties of Diophantine vectors. We start by giving the
definition for maps.

Definition 3 We say that the vector ω ∈ R
n satisfies the Diophantine condition, if

for a constant C > 0 and an exponent τ > 0, one has

∣∣∣∣
ω · q
2π

− p

∣∣∣∣
−1

≤ C |q|τ , p ∈ Z , q ∈ Z
n\{0} .

In the case of flows we have the following definition.

Definition 4 We say that the vector ω ∈ R
n satisfies the Diophantine condition, if

for a Diophantine constant C > 0 and a Diophantine exponent τ > 0, one has:

|ω · k|−1 ≤ C |k|τ , k ∈ Z
n\{0} .

We conclude this section by listing below some important properties of Diophan-
tine vectors.
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(i)Let us denote byD(C, τ ) the set ofDiophantine vectors satisfyingDefinition 4.
Then, the size of the set of Diophantine vectorsD(C, τ ) increases asC or τ increases.
The set of vectors that satisfy this condition for someC, τ is of full Lebesguemeasure
in Rn .

(i i) There are no Diophantine vectors in R
n with τ < n − 1.

(i i i) The set of Diophantine vectors with τ = n − 1 in R
n has zero Lebesgue

measure, but it is everywhere dense.
(iv) For τ > n − 1, almost every vector in R

n is τ -Diophantine, namely the
complement has zero Lebesgue measure, although it is everywhere dense.

4 Invariant Tori and KAM Theory for Conformally
Symplectic Systems

In this Section we provide the definition of KAM (rotational) invariant tori (for
maps and flows) (see Sect. 4.1); the statement of the KAM theorem for conformally
symplectic maps is given in Sect. 4.2, whose proof is briefly recalled in Sect. 4.3.
The proof can be translated into a very efficient KAM algorithm (see [21]), which
is at the basis of different results: the derivation of numerical methods to compute
the breakdown threshold (Sect. 5), the investigation of the breakdown mechanism
(Sect. 6), the implementations to specific models (see Sect. 7).

4.1 Invariant KAM Tori

Westart by giving the definition of conditionally periodic and quasi-periodicmotions.

Definition 5 A conditionally periodic motion is represented by a function t �→
f (ω1t, . . . ,ωnt), where f (x1, . . . , xn) is periodic in all variables; the vector ω =
(ω1, . . . ,ωn) is called frequency.

A quasi-periodicmotion is a conditionally periodicmotionwith incommensurable
frequencies.

Next we give the following definition of invariant torus.

Definition 6 An invariant torus is a manifold diffeomorphic to the standard torus
T
n , that gets mapped into itself by the evolution.

We remark that any trajectory on an invariant torus carrying quasi-periodic
motions is dense on the torus. We conclude by giving the definition of (rotational)
KAM torus for maps and flows. This definition is based on the invariance equation
(14) below, whose solution will be the centerpiece of the KAM theorem presented
in Sect. 4.2.
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Fig. 6 Geometric
interpretation of the
invariance equation
fμ ◦ K (θ) = K (θ + ω) in
the unknowns K , μ

Definition 7 LetM ⊆ R
n × T

n be a symplectic manifold and let f : M → M be
a symplectic map. A KAM torus with frequency ω ∈ D(C, τ ) is an n–dimensional
invariant torus described parametrically by an embedding K : Tn → M, which is
the solutions of the invariance equation:

f ◦ K (θ) = K (θ + ω) . (14)

For a family fμ of conformally symplectic diffeomorphisms depending on a real
parameter vector μ, a KAM attractor with frequency ω ∈ D(C, τ ) is an
n–dimensional invariant torus described parametrically by an embedding K : Tn →
M and a drift μ, which are the solutions of the invariance equation:

fμ ◦ K (θ) = K (θ + ω) . (15)

For conformally symplectic vector fields Xμ, the invariance equation is given by

Xμ ◦ K (θ) = (ω · ∂θ) K (θ) .

We remark that for symplectic systems the invariance equation (14) contains
as only unknown the embedding K , while for conformally symplectic systems the
invariance equation (15) contains as unknowns both the embedding K and the drift
term μ.

A graphical representation of the invariance equation (14) is given in Fig. 6.
Although the theory that will be presented in the next Sections apply both to maps

andflows, for simplicity of expositionwewill limit to the presentation ofKAMtheory
for maps. We refer to [21] for the details concerning continuous systems.

4.2 Conformally Symplectic KAM Theorem

We will try to answer a specific question, which is formulated below, by means
of a suitable statement of the KAM theorem; the question is motivated by many
applications in several models of Celestial Mechanics, which are often described by
nearly-integrable systems. This iswhywe set the following question in the framework
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of nearly-integrable systems, although the formulation of KAM theory does not need
that the system is close to integrable (compare with [44]).

Assume that a given integrable dynamical system admits an invariant torus run by
a quasi-periodic motion with frequency ω (e.g., think at Kepler’s 2-body problem).
Consider a perturbation of the integrable system (e.g., the restricted 3-body problem,
which is described by the 2-body problem with a perturbation proportional to the
primaries’ mass ratio). The main question that we want to raise in the framework
of KAM theory for nearly-integrable systems is the following: does the perturbed
system still admits an invariant torus run by a quasi-periodic motion with the same
frequency as the unperturbed system? The answer is given by the celebrated KAM
theory ([2, 78, 90]), which can be implemented under very general assumptions,
precisely a non-degeneracy condition of the unperturbed system and a Diophantine
condition on the frequency.

We remark that invariant tori are Lagrangian: if f is a symplectic map and K
satisfies the invariance Eq. (14), then

K ∗Ω = 0 .

The same holds for a conformally symplectic map fμ, when |λ| �= 1 and K sat-
isfies the invariance Eq. (15). If f is symplectic and ω is irrational, then the torus
is Lagrangian, i.e. with maximal dimension and isotropic (namely, the symplectic
form restricted on the manifold is zero, which implies that each tangent space is an
isotropic subspace of the ambient manifold’s tangent space).

Next step is to consider a nearly-integrable dynamical system affected by a dis-
sipative force, so that the overall system is conformally symplectic (an example is
given by the spin-orbit problem with tidal torque). We assume that the integrable
symplectic system admits an invariant torus with Diophantine frequency; the ques-
tion becomes whether the non-integrable system with dissipation still admits, for
suitable values of the drift parameter, an invariant attractor run by a quasi-periodic
motion with the same frequency of the unperturbed system. The answer is given by
the KAM theorem for conformally symplectic systems as given by Theorem 1 (see
[21]).

Since we will be interested to give explicit estimates in specific model problems,
we introduce the following norms for analytic and differentiable functions.

Definition 8 Analytic norm. Given ρ > 0, we define the complex extension of the
torus, say Tn

ρ, as the set

T
n
ρ = {θ ∈ C

n/(2πZ)n : Re(θ) ∈ T
n, |Im(θ j )| ≤ ρ , j = 1, ..., n} ;

we denote by Aρ the set of analytic functions in I nt (Tn
ρ) with the norm

‖ f ‖ρ = sup
θ∈Tn

ρ

| f (θ)| .
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Sobolev norm. For a function f = f (z) expanded in Fourier series as f (z) =∑
k∈Zn f̂k e2πik·z for an integer m > 0, we define the space Hm as

Hm =
{
f : Tn → C : ‖ f ‖2m ≡

∑
k∈Zn

| f̂k |2(1 + |k|2)m < ∞
}

.

Borrowing the statement from [21], we give below the formulation of the KAM
theorem for conformally symplectic systems (see [44] for the statement for symplec-
tic systems). We give the statement for maps, although the results can be formulated
also for systems with continuous time (flows). Indeed in [21] one can find a con-
struction that shows that the results for maps imply the results for flows as well as
direct proofs of the results for flows.

Theorem 1 Letω ∈ D(C, τ ), fμ : Rn × T
n → R

n × T
n be a conformally symplec-

tic diffeomorphism, and let (K ,μ) be an approximate solution of the invariance
equation (15) with error term E:

fμ ◦ K (θ) − K (θ + ω) = E(θ) .

Let N be the quantity
N (θ) = (DK (θ)T DK (θ))−1 (16)

and let M(θ) be the 2n × 2n matrix defined by

M(θ) = [DK (θ) | J (K (θ))−1 DK (θ)N (θ)] .

Let P(θ) be defined as
P(θ) ≡ DK (θ)N (θ) ;

let A(θ) ≡ λ Id and let S(θ) be

S(θ) ≡ P(θ + ω)T D fμ ◦ K (θ)J−1 ◦ K (θ)P(θ) − N (θ + ω)T γ(θ + ω)N (θ + ω)A(θ)

(17)
with

γ(θ) ≡ DK (θ)T J−1 ◦ K (θ)DK (θ) .

Assume that the following non–degeneracy condition is satisfied:

det

( 〈S〉 〈SB0〉 + 〈 Ã1〉
(λ − 1)Id 〈 Ã2〉

)
�= 0 (18)

with Ã1, Ã2 the first and second n columns of Ã = M−1(θ + ω)Dμ fμ ◦ K, B0 =
B − 〈B〉 is the solution of λB0(θ) − B0(θ + ω) = −( Ã2)

0(θ).
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For ρ > 0, let 0 < δ <
ρ
2 ; if the solution is sufficiently approximate, namely

‖E‖ρ ≤ C3 C
−4 δ4τ

for a suitable constant C3 > 0, then there exists an exact solution (Ke,μe
), such that

‖Ke − K‖ρ−2δ ≤ C4 C
2 δ−2τ ‖E‖ρ , |μ

e
− μ| ≤ C5 ‖E‖ρ

with suitable constants C4,C5 > 0.

Remark 1 It is useful to make a remark on the non–degeneracy condition (18),
when applied to the conservative and dissipative standard maps ((1) and (3)). For the
conservative standard map, the non–degeneracy condition is typically the so-called
twist condition, which can be written as

∂x ′

∂y
�= 0 , (19)

implying that the lift of the map transforms any vertical line always on the same side.
Instead, for the dissipative standard map, that we modify adding a generic depen-

dence on the drift through a function p = p(μ), μ ∈ R, say

y′ = λy + p(μ) + ε V (x)

x ′ = x + y′ ,

then thenon–degeneracy condition involves the twist condition andanon–degeneracy
condition with respect to to the parameters, namely:

∂x ′

∂y
�= 0 ,

dp(μ)

dμ
�= 0 . (20)

We remark, however, that (19) and (20) involve global properties of the system,
while (18) is a condition involving just the approximate solution, so that (18) may
be applied in situations where (19) and (20) fail.

The proof of Theorem 1 is given in [21] through the a-posteriori approach devel-
oped in [44] and making use of an adjustment of parameters (see [9, 92]): assume we
can find an approximate solution (K ,μ) of the invariance equation, satisfying a non-
degeneracy condition, then we can find a true solution (Ke,μe

) close to (K ,μ), such
that ‖Ke − K‖, |μ

e
− μ| is small. A sketch of the proof of Theorem 1 is presented

in Sect. 4.3.
We conclude this Section by remarking that the a-posteriori approach presents

several advantages, among which:
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• (i) it can be developed in any coordinate frame and not necessarily in action-angle
variables. In many practical problems, the action-angle variables are difficult to
compute and involve complex singularities.
Of course, once we have the existence of the torus, we can construct action angle
variables. Hence, compared to more standard results, the accomplishment of the
method is that the existence of action variables and the quasi-integrability ismoved
from the hypothesis to the conclusions. This is useful in practice since the hypoth-
esis is hard to verify in applications.

• (i i) The system is not assumed to be nearly integrable.
• (i i i) Instead of constructing a sequence of coordinate transformations on shrinking
domains as in the perturbation approach, one computes suitable corrections to the
embedding and the drift.
The computation of the embeddings requires to work only with variables of n
dimensions whereas transformation theory requires to work with variables in 2n
dimensions. The complexity of representing functions grows exponentially – with
a large exponent – with the dimension. The composition of two functions has
rather awkward analytic and numerical properties.

• (iv) The non-degeneracy assumptions are not global properties of the map, but
are rather properties of the considered approximate solution.

• (v) One does not need to justify how the approximate solution was obtained. In
particular, one can take as approximate solution the result of numerical calculations
or a formal expansion.
Verifying the hypothesis in a numerical approximation requires just a finite number
of calculations. Even if this number is too large to do by hand, it could be moderate
to do with a computer (e.g., a few hours on a common laptop). If these can be done
taking care of roundoff and truncation errors, this may lead to a computer assisted
proof.
One can also verify the hypothesis easily in a numerical expansion.

4.3 A Sketch of the Proof of the KAM Theorem

The proof of Theorem 1 can be summarized as composed by five main steps:

• Step 1: starting from an approximate solution, write the linearization of the invari-
ance equation.

• Step 2: by a Newton’s method find a quadratically smaller approximation.
• Step 3: under a non–degeneracy condition, solve the cohomological equation that
allows to find the new approximation.

• Step 4: iterate the procedure and show its convergence.
• Step 5: prove that the solution is locally unique.

We briefly describe such steps as follows.
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4.3.1 Step 1: Approximate Solution and Linearization

Let (K ,μ) be an approximate solution satisfying

fμ ◦ K (θ) − K (θ + ω) = E(θ) . (21)

Using the Lagrangian property K ∗Ω = 0 written in coordinates, namely

DKT (θ) J ◦ K (θ) DK (θ) = 0 ,

we get that the tangent space is given by

Range
(
DK (θ)

)
⊕ Range

(
V (θ)

)
(22)

with N as in (16) and

V (θ) = J−1 ◦ K (θ) DK (θ)N (θ) .

Define the quantity
M(θ) = [DK (θ) | V (θ)] . (23)

Then, we have the following result.

Lemma 1 Up to a remainder R, we have the following relation:

D fμ ◦ K (θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) .

Proof Recalling the definition of M in (23), we have that taking the derivative of

fμ ◦ K (θ) = K (θ + ω) + E(θ) ,

one obtains the relation

Dfμ ◦ K (θ) DK (θ) = DK (θ + ω) + DE(θ) .

Due to (22), one obtains:

Dfμ ◦ K (θ) V (θ) = DK (θ + ω) S(θ) + V (θ + ω) λ Id + h.o.t.

with S as in (17).
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4.3.2 Step 2: Determine a New Approximation.

Let the new approximation (K ′,μ′) be defined as K ′ = K + MW , μ′ = μ + σ. Let
E ′ be the error associated to (K ′,μ′):

fμ′ ◦ K ′(θ) − K ′(θ + ω) = E ′(θ) . (24)

Expanding (24) in Taylor series, we get

fμ ◦ K (θ) + Dfμ ◦ K (θ) M(θ)W (θ) + Dμ fμ ◦ K (θ)σ

−K (θ + ω) − M(θ + ω) W (θ + ω) + h.o.t. = E ′(θ) .

Recalling (21), the new error E ′ is quadratically smaller provided the following
relation holds:

Dfμ ◦ K (θ) M(θ)W (θ) − M(θ + ω) W (θ + ω) + Dμ fμ ◦ K (θ)σ = −E(θ) .

(25)
Combining (25) and Lemma 1, we have:

Dfμ ◦ K (θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) .

This allows to get the following equations for W = (W1,W2) and σ

M(θ + ω)

(
Id S(θ
0 λId

)
W (θ) − M(θ + ω) W (θ + ω) = −E(θ) − Dμ fμ ◦ K (θ)σ

that we are going to make more explicit. Multiplying by M(θ + ω)−1 and writing
W = (W1,W2), one gets that the previous equation is equivalent to:

(
Id S(θ)
0 λId

) (
W1(θ)
W2(θ)

)
−

(
W1(θ + ω)

W2(θ + ω)

)
=

(−Ẽ1(θ) − Ã1(θ)σ

−Ẽ2(θ) − Ã2(θ)σ

)
(26)

with Ẽ j (θ) = −(M(θ + ω)−1E) j , Ã j (θ) = (M(θ + ω)−1Dμ fμ ◦ K ) j . Writing
(26) in components, we obtain:

W1(θ) − W1(θ + ω) = −Ẽ1(θ) − S(θ)W2(θ) − Ã1(θ)σ

λW2(θ) − W2(θ + ω) = −Ẽ2(θ) − Ã2(θ)σ . (27)

The cohomological equations (27) allow to find the corrections W1, W2 and σ, as
sketched in the next step.
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4.3.3 Step 3: Solve the Cohomological Equations

To determine the new approximation, we need to solve equations (27), which are
equations with constant coefficients for W1, W2 and σ for known S, Ẽ ≡ (Ẽ1, Ẽ2),
Ã ≡ [ Ã1| Ã2].

The first equation in (27) is a standard small divisor equation, which can be solved
under the Diophantine condition on the frequency, so to bound the small divisors.

For |λ| �= 1 and for all real vectors ω, it is possible to solve the second equation
in (27) by an elementary contraction mapping argument.

We remark that, using Cauchy estimates for the cohomological equations (27),
we can bound ‖W1‖ρ−δ and ‖W2‖ρ−δ by ‖E‖ρ.

To solve the cohomological equations, we proceed as follows. Take the averages
of each equation in (27) and use the non–degeneracy condition to determine 〈W2〉,
σ by solving the equation

( 〈S〉 〈SB0〉 + 〈 Ã1〉
(λ − 1)Id 〈 Ã2〉

) ( 〈W2〉
σ

)
=

(−〈SB̃0〉 − 〈Ẽ1〉
−〈Ẽ2〉

)
,

where we have split W2 as W2 = 〈W2〉 + B0 + B̃0σ.
Next, we need to solve the second equation in (27) for W2, which is an equation

of the form λW2(θ) − W2(θ + ω) = Q2(θ)with Q2 known. Such equation is always
solvable for any |λ| �= 1 by a contraction mapping argument, using that λW2(θ) −
W2(θ + ω) = ∑

k Ŵ2,k eik·θ(λ − eik·ω).
Finally, we solve the first equation in (27) for W1, which amounts to solving an

equation of the formW1(θ) − W1(θ + ω) = Q1(θ)with Q1 known. It involves small
(zero) divisors, since for k = 0 one has 1 − eik·ω = 0. The left hand side of the first
equation in (27) can be expanded as

W1(θ) − W1(θ + ω) =
∑

k∈Zn\{0}
Ŵ1,k e

ik·θ(1 − eik·ω) .

To get a bound for the solution of (27), we need the following result.

Proposition 1 Let Z = Z(θ) be a function with zero average and such that Z ∈ Aρ

or Z ∈ Hm. Let ω ∈ D(C, τ ). Assume that the function U = U (θ) satisfies

λU (θ) −U (θ + ω) = Z(θ) .

Then, if λ �= 1, |λ| ∈ [A, A−1] for 0 < A < 1, we have that

‖U (θ)‖ρ−δ ≤ Cδ−τ‖Z‖ρ .

We refer to [21, 102] for the proof of Proposition 1.
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4.3.4 Step 4: Convergence of the Iterative Step.

The solution described in Step 3, allows to state that the invariance equation is
satisfied with an error quadratically smaller, i.e.

‖E ′‖ρ−δ ≤ C8δ
−2τ‖E‖2ρ .

The procedure at Step 3 can be iterated to get a sequence of approximate solutions, say
{K j ,μ j

}. Its convergence is obtained through an abstract implicit function theorem,
alternating the iteration with carefully chosen smoothing operators defined in a scale
of Banach spaces (which can be either analytic functions or Sobolev spaces).

4.3.5 Step 5: Local Uniqueness

Under smallness conditions, one can prove that, if there exist two solutions (Ka,μa
),

(Kb,μb
), then there exists ψ ∈ R

n such that

Kb(θ) = Ka(θ + ψ) and μ
a

= μ
b
.

We remark that in the analytic case, the smoothing is obtained by rescaling the size
of the strip on which the analytic functions are defined at each step, given that the
domains where they are defined shrink by a given amount. Then, for the sequence
of solutions {K j ,μ j

}, one can take the analyticity domain parameters ρh and the
shrinking parameters δh as

ρ0 = ρ , δh = ρ0

2h+2
, ρh+1 = ρh − δh , h ≥ 0 .

Given that the error is quadratic, we can write for some a, b > 0 and a constant
CE > 0:

‖E(Kh+1,μh+1
)‖ρh+1 ≤ CE νaδbh ‖E(Kh,μh

)‖2ρh .

If the quantity ε0 ≡ ‖E(K0,μ0
)‖ρ0 is small enough, then one can prove that

‖Kh − K0‖ρh ≤ CK ε0 , |μ
h
− μ

0
| ≤ Cμε0

for some constants CK ,Cμ > 0. A finite number of conditions on parameters and
norms will imply the indefinite iterability of the procedure and its convergence.

The a-posteriori approach for conformally symplectic systems has a number of
consequences and further developments that we briefly summarize below, referring
to the cited literature for full details:

• the method provides an efficient algorithm to determine the breakdown threshold,
very suitable for computer implementations [15];
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• the a-posteriori method allows to find rigorous lower estimates of the breakdown
threshold [56, 97]. The rigorous lower estimates for symplectic maps in [56, 97]
are very close to to the rigorous upper estimates in [67]. In [26] one can find very
detailed estimates (they do not control completely the round off error, but they
control everything else), that are comparable with the best numerical estimates
computed by other methods;

• one gets that the local behavior near quasi–periodic solutions is given by a rotation
in the angles and a shrink in the actions [22];

• the method allows to obtain a partial justification of Greene’s criterion for the
computation of the breakdown threshold of invariant attractors [27];

• one obtains a bootstrap of regularity, which allows to state that all smooth enough
tori are analytic, whenever the map is analytic [21];

• one gets a characterization of the analyticity domains of the quasi–periodic attrac-
tors in the symplectic limit [23];

• one can prove the existence of whiskered tori for conformally symplectic systems
[24].

Concerning the first item above, we stress that the proof given in [21] leads to a
very efficientKAMalgorithm,which can be implemented numerically and it is shown
to work very close to the boundary of validity [26]. Indeed, all steps of the algorithm
involve diagonal operations in the Fourier space and/or diagonal operations in the real
space.Moreover, if we represent a function in discrete points or in Fourier space, then
we can compute the other functions by applying the Fast Fourier Transform (FFT).
Using N Fourier modes to discretize the function, then we need O(N ) storage and
O(N log N ) arithmetic operations. Note that all the steps in the algorithm can be
implemented in a few lines in a high level language so that the resulting algorithm is
not very hard to implement (about 200 lines in Octave, see [52], and about 2000
lines in C). Even if the above transcription of the algorithm works extremely well in
near integrable systems, when approaching the breakdown, one needs to take some
standard precautions (e.g. monitoring the size of the tails of Fourier series).

We also remark that theKAMproof requires a computer tomake very long compu-
tations, which are needed to determine, for example, the initial approximate solution
or to check the KAM algorithm. However, the computer introduces rounding-off and
propagation errors, which can be controlled through interval arithmetic for which
we refer to the specialized literature (see, e.g., [61, 74, 80, 89]).

5 Breakdown of Quasi–periodic Tori and Quasi–periodic
Attractors

The analytical estimates which can be obtained through the implementation of the
KAM theorem represent a rigorous lower bound of the breakdown threshold of
invariant tori. In problems with a well-defined physical meaning, one can compare
the KAM results with a measure of the parameter(s). For example in the restricted
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3-body problem, one aims to prove the theorem for the true value of the mass ratio
of the primaries. If we consider an asteroid under the gravitational attraction of
Jupiter and the Sun, then the mass ratio amounts to ε 
 10−3, which represents the
benchmark that one wants to reach through rigorous KAM estimates.

Model problems like the standard maps do not have a physical reference value;
therefore, one needs to apply numerical techniques that allow to determine the KAM
breakdown threshold. Among the others, we mention Greene’s technique [59], fre-
quency analysis [81], Sobolev’s method [15].

In the next Sections we review two methods for the numerical computation of
the breakdown threshold that have been successfully applied to the standard map
[15, 16, 59]: one is based on Sobolev’s method (Sect. 5.1) and the other is based
on Greene’s method (Sect. 5.2). The problem of breakdown of KAM tori has been
studied by many methods. The paper [16] contains a small survery and comparison
of several different methods, some of which we will not mention here.

5.1 Sobolev Breakdown Criterion

To illustrate the method, we focus on the specific examples of the conservative
and dissipative standard maps; hence we have a two-dimensional discrete system,
which can be parametrized by a one-dimensional variable θ ∈ T. In particular, in the
conservative case we write the invariance equation for K as

f ◦ K (θ) = K (θ + ω) ,

while in the dissipative case we write the invariance equation for (K ,μ) as

fμ ◦ K (θ) = K (θ + ω) . (28)

As shown rigorously in [16] for the conservative case and in [15] for the dissipa-
tive case, the continuation method based in the constructive Newton method can (if
given enough computer resources) reach arbitrarily close to the breakdown. Further-
more, the breakdown of analytic tori happens if and only if some Sobolev norm of
sufficiently high order blows up.

This rigorous result can, of course, be readily implemented. Today’s computers,
of course, do not have infinite resources, but they are fairly impressive for people who
started to work with a PDP-11 with 16K of RAM. Since the algorithms we describe
are based on computing Fourier series, one can get readily the Sobolev norms of the
embedding K and monitor their blow up.

The blow up of the Sobolev norm gives a clear indication that the torus is breaking
down. Note that, given the a-posteriori theorem, and the bootstrap of regularity
results, if the norm of the computed solution is not blowing up, it is a very clear
indication that the torus is there.
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Table 1 Breakdown values εcri t of the golden mean curve obtained implementing Sobolev’s
method for the conservative case (left column) and for the dissipative case (right column), the
latter one for two different values of the dissipative parameter

Conservative case Dissipative case

εcri t λ εcri t

0.9716 0.9 0.9721

0.5 0.9792
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Fig. 7 Existence domain for invariant circles of the dissipative standard map with potential (29).
Left: λ = 0.9. Right: λ = 0.1

Remark 2 Something that increases the possible effectiveness of this method is that
it has been found empirically that the blow up of Sobolev norms is given by power
laws whose exponents are universal. Even if this is mainly an empirical observation
(that needs to be somehow tone down since [16] contains several warnings for some
maps), it can improve dramatically the computation of breakdowns. Many of these
empirical results are organized using Renormalization Group methods [88, 98–100].
Even if some aspects of renormalization group have been made rigorous [73, 75–77,
107, 108], much more mathematical work seems to remain.

We implement the method for the conservative and dissipative standard maps (1)
and (3), computing in Table1 the value of εcri t for the frequency equal to the golden
ratio: ω = 2π

√
5−1
2 . The result in the conservative case is in full agreement with

the value which can be obtained by implementing Greene’s method (see [59]). The
values for the dissipative case given in Table1 will be compared in Sect. 5.2 to those
obtained implementing a version of Greene’s method for the dissipative standard
map.

In Fig. 7, we present the existence domain of the dissipative standard map (3) with
a two harmonic potential given by

V (x) = ε1 sin(x) + ε2 sin(2x) . (29)

We call attention to the fact that this region contains parts with smooth boundaries,
but–specially in the conservative case–it contains some parts of the boundary that
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are rather ragged. A tentative explanation ([85]) is that the smooth parts of the the
boundary of the region of existence are the intersection of the family considered with
the stable manifold of fixed point of renormalization. Even if this is not a completely
rigorous picture, there has been significant mathematical progress in verifying it in
an open set of families. We hope that, in the future, there could be more progress in
this area.

One important advantage of the Sobolev method is that it can be programmed
systematically and run unattended. The Greene’s method relies on periodic orbits
and one has to pay attention to making sure that the periodic orbits are continued
correctly. We also note that the Sobolev method works for models of long range
interaction in Statistical Mechanics without a dynamical interpretation.

5.2 Greene’s Method, Periodic Orbits and Arnold’s Tongues

The method by J. Greene, developed for the standard map in [59], is based on the
conjecture that the breakdown of an invariant curve with frequency ω, say C(ω),
is related to a change from stability to instability of the periodic orbits P(

p j

q j
) with

frequencies p j

q j
, j = 1, 2, ..., tending to ω. We observe that a standard procedure to

obtain the rational approximants of ω is to compute the successive truncations of the
continued fraction representation of ω.

Greene’s method has been successfully developed for the conservative standard
map for which a partial justification is given in [54, 85]. In the dissipative case, there
appears an extra difficulty due to the fact that the periodic orbits with frequency p j

q j

occur in a whole interval of the drift parameter. This phenomenon gives rise to the
appearance of the so-called Arnold tongues. Figure8, left panel, gives a graphical
representation of theArnold tongues; havingfixed a value of the dissipative parameter

Fig. 8 Left: Arnold’s tongues providing μ versus ε for three periodic orbits of the dissipative
standard map with periods 1/3, 1/2, 2/3. Right: periodic orbits of the dissipative standard map
approximating the golden mean curve
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Fig. 9 Left: periodic orbits with increasing periods, approximating the golden mean curve. Right:
the corresponding drift parameters with the successive periodic orbits labeled by integer numbers
on the x-axis
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ε, there is awhole interval of the drift parameterμwhich admits a periodic orbit of the
same period. The right panel of Fig. 8 shows several periodic orbits approaching the
torus with frequency equal to the golden mean; such periodic orbits have frequency
equal to the rational approximants which are given by the ratio of the Fibonacci
numbers.

A partial justification of an extension of Greene’s criterion in the conformally
symplectic case is presented in [27], where it is proved that if there exists a smooth
invariant attractor, one can predict the eigenvalues of the periodic orbits approximat-
ing the torus for parameters close to those of the attractor.

Figure9 shows some approximating periodic orbits (left panels) and the corre-
sponding behaviour of the drift parameter (right panels) that, in the limit, tends to
the value of the drift that corresponds to the golden mean torus.

We also call attention to [37] which contains tentative results on the non-existence
of invariant tori for the spin-orbit models. Even if the methods developed there are
not rigorous, they may present a counterpoint to the methods to study the existence.

6 Collision of Invariant Bundles of Quasi-periodic
Attractors

Quasi-periodic attractors of conformally symplectic maps are normally hyperbolic
invariant manifolds (NHIM). As developed in [20] for the dissipative standard map,
one can obtain the Lyapunov multipliers of the attractor from a simple computation.
We start from the invariance Eq. (28) for a pair (K ,μ). We then introduce a change of
variables to reduce the cocycle. Let M̃(θ) = [DK (θ) | Es(θ)], θ ∈ T, be the matrix
whose columns are the tangent and stable bundles of K = K (Tn):

Dfμ ◦ K (θ)M̃(θ) = M̃(θ + ω)

(
1 0
0 λ

)
. (30)

From Eq. (30) we can write the stable bundle as follows

Es(θ) = DK (θ)B(θ) + J−1DK (θ)N (θ) ,

where B(θ) is the function that satisfies

B(θ) − λB(θ + ω) = −S(θ) .

Indeed, after j iterates of the map we have that,

Df j
μ ◦ K (θ) = M̃(θ + ω)

(
1 0
0 λ j

)
M̃−1(θ) ,
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which shows that the tangent space of M at K (θ) is

TK (θ)M = Range(DK (θ)) ⊕ Es
K (θ) .

We can conclude that there exists a constant C such that

C−1λ j |v| ≤ |Df j
μ ◦ K (θ) v| ≤ Cλ j |v| , v ∈ Es

K (θ) ,

C−1 |v| ≤ |Df j
μ ◦ K (θ) v| ≤ C |v| , v ∈ Ec

K (θ) ,

showing that K = K (Tn) is a NHIM. Equation (30) also tells us that the Lyapunov
multipliers are constant along the family of quasi-periodic attractors for fixed Dio-
phantine vectors.

In the case of maps of the cylinder M = R × T, we know that the curve K is
Cr , one dimensional, and since ω satisfies the Diophantine condition, we know by
the results of [66, 68, 69, 71] that the map conjugating the dynamics in K to a rigid
rotation is in Cr−τ−δ for a small δ > 0. Therefore, by the bootstrap of regularity
results1, the conjugacy is analytic for analytic maps. Since the bundles depend on
the conjugacy, then the regularity of the manifold implies the analyticity of K and
the bundles up to the breakdown.

To investigate the breakdown of normal hyperbolicity, we note that, because of
the pairing rule of Lyapunov exponents [51, 115], since one Lyapunov multiplier
is 1—the one along the tangent directional (remember that the map on the torus is
smoothly conjugate to the torus)—the other one is precisely λ.

We recall that hyperbolicity is equivalent to the existence of transversal invariant
bundles with different rates. In our case, if the tori have to cease to be normally
hyperbolic, because the exponents remain constant, the only thing that can happen
is that the transversality of the bundles deteriorates.

What is found empirically is that the breakdown happens because at the same
time the regularity of the conjugacy deteriorates quantitatively (even if the conjugacy
remains analytic, some Sobolev norm blows up). See [20] for full details.

At the same parameter values, the breakdown of hyperbolicity happens via the
stable and tangent bundle collision. Even if the Lyapunov exponents remain safely
away, the transversality deteriorates and the tangent and stable bundles become close
to tangent.

In the case at hand, we can make a very detailed study: the bundles are one
dimensional and we compute a formula for the angle between the bundles for every
θ. In fact, let α(θ) be the angle between the stable and tangent bundles for every
θ ∈ T, then we have

α(θ) = arctan

(
1

B(θ)(DK (θ)T DK (θ))

)
.

1 i.e., all tori which are smooth enough are analytic if the map is analytic ([21]).
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Fig. 10 Invariant bundles close to their collision. Left: dissipative standard map. Right: dissipative
standard non-twist map. Reproduced from [17]

This formula says that the angle α(θ) goes to zero at points where the functions in
the denominator go to infinity.

We present figures (see Fig. 10) of the angle between the bundles close to the
breakdown.

Rather remarkably these two phenomena (the blow up of Sobolev norms and the
stable bundles and the tangent becoming parallel) happen at the same time and present
very unexpected regularities. There are scaling relations that seem to be independent
of the family considered and they happen in codimension 1 smooth submanifolds in
the space of maps. We think that this is a very interesting mathematical phenomenon
that deserves rigorous study. It seems quite unlikely that it would have been discov-
ered except for the very careful numerics that can explore with confidence close to
the breakdown. Such delicate numerics are only possible because of the rigorous
mathematical development.

7 Applications

In this Section we want to briefly review some constructive applications of KAM
theory for conservative and dissipative models. We will consider applications to the
standard map and to the spin-orbit problem, both in the conservative and dissipative
settings. Although we will not present other applications of KAM theory, it is worth
mentioning also the constructive KAM results to the N-body and planetary problems
in Celestial Mechanics ([94]); in this context, for results obtained in the conserva-
tive framework we refer the reader to [30–32, 58, 103] and to [38] for numerical
investigations including dissipative effects.
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7.1 Applications to the Standard Maps

The first applications of computer-assisted KAM proofs have been given for the
conservative standard map; these results show that the golden mean torus persists for
values of the perturbing parameter equal to 93% of the numerical breakdown value
(see [45, 46]); we also mention [29] which, at the same epoch but using a different
approach than [45, 46], reached 86% of the numerical breakdown value.

Rigorous estimates for the conservative standard map using the a-posteriori
method have been proved in the remarkable paper [56], where for the twist and
non-twist conservative standard maps the golden mean torus is proved to persist for
values of the perturbing parameter as high as 99.9% of the numerical breakdown
value.

For the dissipative standard map, the paper [26] analyzes the persistence of the
invariant attractorwith frequency equal to the goldenmean and for a fixed value of the
dissipative parameter (precisely λ = 0.9); such persistence is shown for values of the
perturbing parameter equal to 99.9% of the breakdown value, where the numerical
value has been obtained through the techniques presented in Sects. 5.1 and 5.2.

7.2 Applications to the Spin–Orbit Problems

The first application of KAM theory to the conservative spin-orbit problem is found
in [33, 34]. In those articles some satellites in synchronous spin-orbit resonance have
been considered; the synchronous or 1:1 spin-orbit resonance implies that the satellite
always points the same face to the host planet. In particular, the following satellites
have been considered: the Moon, and three satellites of Saturn, Rhea, Enceladus,
Dione. Being the normalized frequency (namely, the ratio between the rotational
and orbital frequency) equal to one, two Diophantine numbers bounding unity from
above and below have been considered. Through a computer-assisted KAM theorem,
the existence of invariant tori with frequency equal to the bounding numbers have
been established for the true values of the parameters of the satellites, namely the
eccentricity and the equatorial oblateness.

Such result guarantees the stability for infinite times in the sense of confinement
in the phase space. In fact, the phase space associated to the Hamiltonian describing
the conservative spin-orbit problem is 3-dimensional; since the KAM tori are 2-
dimensional, one gets a confinement of the motion between the bounding invariant
tori.

We remark that the confinement is no more valid for n > 2 degrees of freedom,
since the motion can diffuse through invariant tori, reaching arbitrarily far regions;
this phenomenon is known as Arnold’s diffusion [4] for which we refer to the exten-
sive literature on this topic (see, e.g., [49, 57] and references therein).

For the dissipative spin-orbit problem, we refer to [19, 36, 87, 105] for the devel-
opment of KAM theory for a model of spin-orbit interaction with tidal torque as
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in (11). Precisely, for λ0 ∈ R+ and ω Diophantine, it is proven that there exists
0 < ε0 < 1, such that for any ε ∈ [0, ε0] and any λ ∈ [−λ0,λ0] there exists a unique
function K = K (θ, t) and a drift term μ which is the solution of the invariance
equation for the dissipative spin-orbit model.

Explicit estimates for the dissipative spin-orbit problem, even in the more general
case with a time-dependent tidal torque as in (9), are given in [19] (see also [105]).
Here, the a-posteriori method is implemented to construct invariant attractors with
Diophantine frequency; the results are valid for values of the perturbing parameter
consistentwith the astronomical quantities andvery close to the numerical breakdown
threshold, which has been computed in [28] through Sobolev and Greene’s method
(see also [106]).
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