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Abstract In the recent papers [5, 18], respectively, the existence of motions where
the perihelions afford periodic oscillations about certain equilibria and the onset of
a topological horseshoe have been proved. Such results have been obtained using,
as neighbouring integrable system, the so-called two-centre (or Euler) problem and
a suitable canonical setting proposed in [16, 17]. Here we review such results.

Keywords Two-centers problem · Three-body problem · Renormalizable
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1 Overview

In the recent papers [5, 18] the existence, in the three-body problem (3BP), ofmotions
which by no means can be regarded as “extending” in some way Keplerian motions
has been proved. Indeed, the motions found in those papers can be better under-
stood as continuations of the motions of the so-called two-centre problem (or Euler
problem; 2CP from now on).

The motivation that pushed such researches was a new analysis of 2CP carried
out in [17], combined with a remarkable property—which we called renormalizable
integrability—pointed out in [16]. It relates the “simply averaged Newtonian poten-
tial” (see the precise definition below) and the function, which in this paper we shall
refer to as Euler integral, that makes the 2CP integrable. Roughly, such property

J. Daquin
naXys Research Institute, University of Namur, Namur, Belgium
e-mail: jerome.daquin@unamur.be

S. Di Ruzza
Department of Mathematics, University of Palermo, Palermo, Italy
e-mail: sara.diruzza@unipa.it

G. Pinzari (B)
Department of Mathematics, University of Padua, Padua, Italy
e-mail: gabriella.pinzari@math.unipd.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Baù et al. (eds.), New Frontiers of Celestial Mechanics: Theory and Applications,
Springer Proceedings in Mathematics & Statistics 399,
https://doi.org/10.1007/978-3-031-13115-8_2

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13115-8_2&domain=pdf
mailto:jerome.daquin@unamur.be
mailto:sara.diruzza@unipa.it
mailto:gabriella.pinzari@math.unipd.it
https://doi.org/10.1007/978-3-031-13115-8_2


48 J. Daquin et al.

states that the averaged Newtonian potential and the Euler integral have the same
motions, as they are one a function of the other. As, on the other hand, the motions
of the Euler integral are, at least qualitatively, explicit, and the averaged Newtonian
potential is a prominent part of the 3BP Hamiltonian, the papers [5, 18] gave par-
tial answers to the natural question whether the motions of the Euler integral can
be traced in 3BP. Let us introduce some mathematical tools in order to make our
statements more precise.

In terms of Jacobi coordinates [10] the three-body problem Hamiltonian with
masses 1, μ, κ is the translation-free function

HJ = ‖y‖2
2

(
1 + 1

μ

)
+ ‖y′‖2

2

(
1

1 + μ
+ 1

κ

)
− μ

‖x‖ − μκ

‖x′ − 1
1+μ

x‖
− κ

‖x′ + μ
1+μ

x‖ .

Here, (y′, y, x′, x) ∈ (R3)4 (or (R2)4, in the planar case), ‖ · ‖ denotes Euclidean
norm and the gravity constant has been taken equal to one, by a proper choice of the
units system. We rescale impulses and positions

y → μ

1 + μ
y , x → (1 + μ)x , y′ → μβy′ , x′ → β−1x′, (1)

multiply the Hamiltonian by 1+μ
μ

(by a rescaling of time) and obtain

HJ = ‖y‖2
2

− 1

‖x‖ + γ

(
‖y′‖2
2

− β

β + β

1

‖x′ − βx‖ − β

β + β

1

‖x′ + βx‖

)
, (2)

with

γ = κ3(1 + μ)4

μ3(1 + μ + κ)
, β = κ2(1 + μ)2

μ2(1 + μ + κ)
, β = μβ . (3)

Likewise, one might consider the problem written in the so-called 1-centric coordi-
nates. In that case,

H0 = ‖y‖2
2

− 1

‖x‖ + γ

(
‖y′‖2
2

− β

β + β

1

‖x′‖ − β

β + β

1

‖x′ − (β + β)x‖

)

+β y′ · y, (4)

with γ, β and β analogous to (3), up to replace the factors (1 + μ + κ) with (1 + κ).
Note that we are not assuming μ, κ � 1 (in fact, in our applications, we shall make
different choices), which means that Jacobi or 1-centric coordinates above are not
necessarily centered at the most massive body. In order to simplify the analysis, we
introduce amain assumption. Both the Hamiltonians HJ and H0 in (2) and (4) include
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the Keplerian term

J0 := ‖y‖2
2

− 1

‖x‖ = − 1

2Λ2
. (5)

We assume that J0 is a “leading” term in such Hamiltonians. By averaging theory,
this assumption allows us to replace (at the cost of a small error) HJ and H0 with
their respective �-averages

Hi = − 1

2Λ2
+ γĤi (6)

with i = J, 0, where � is the mean anomaly associated to (5), and1

ĤJ := ‖y′‖2
2

− β

β + β
Uβ − β

β + β
U−β

Ĥ0 := ‖y′‖2
2

− β

β + β
Uβ+β − β

β + β

1

‖x′‖ (7)

with

Uβ := 1

2π

∫ 2π

0

d�

‖x′ − βx(�)‖ . (8)

In these formulae, the term− 1
2Λ2 will be referred to as “Keplerian term”, while terms

of the form − 1
‖x′−βx‖ will be called “Newtonian potentials”. Therefore, Uβ will be

called “averaged Newtonian potential”. What we want to underline in that respect
is that the averages (6) are “simple”, i.e., computed with respect to only one mean
anomaly. Most often, in the literature double averages are considered; e.g. [4, 7, 8,
11, 14, 15].

Whether and at which extent theHamiltonians (6) are good approximations of (2),
(4) is a demanding question, as, besides the mass parameters μ, κ, also the region of
phase spacewhich is being considered plays a crucial rôle.We limit ourselves to some
heuristics, focusing, in particular, on the case considered in [5]. Here theHamiltonian
(2) has been investigated, with μ = 1 � κ, or, equivalently, β = β � 1 (see (19) for
the precise values). Physically, this corresponds to a couple of asteroids with equal
mass interacting with a star, with x being the relative distance of the twin asteroids,
and x′ the distance of the star from their center of mass. In that case, the region of
phase space was chosen so that ‖x′‖ > β‖x‖, so that the two denominators of the
Newtonian potentials do not vanish. Expanding such Newtonian potentials in powers
of βa

r , where a = Λ2, r := ‖x′‖, one sees that the lowest order terms depending on

1 Remark that y(�) has vanishing �-average so that the last term in (4) does not survive.
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� have size γβa
r2 ∼ κ3a

r2 (as β ∼ κ, γ ∼ κ2). So, such terms are negligible compared

to the size 1
a of the Keplerian term, provided that κ3/2a

r � 1.
We now turn to describe the main features of the Hamiltonians (6). Neglecting

the Keplerian term, which is an inessential additive constant for Hi and reabsorbing
the constant γ with a time change, we are led to look at the Hamiltonians Ĥi in (7),
which, from now on, will be our object of study. Without loss2 of generality, we fix
the constant action Λ to 1.

For definiteness and simplicity, we describe the setting in the case of the planar
problem, in which case, after reducing the SO(2) symmetry, Ĥi have 2 degrees-of-
freedom; all the generalisations to the spatial problem being described in Sect. 2. To
describe the coordinates we used, we denote as E the Keplerian ellipse generated by
Hamiltonian (5), for negative values of the energy. Assume E is not a circle. Remark
that, as the mean anomaly � is averaged out, we loose any information concerning the
position of x on E, so we shall only need two couples of coordinates for determining
the shape of E and the vectors y′, x′. These are:

• the “Delaunay couple” (G, g), where G is the Euclidean length of x × y and g
detects the perihelion. We remark that g is measured with respect to x′ (instead of
with respect to a fixed direction), as the SO(2) reduction we use fixes a rotating
frame which moves with x′ (compare the formulae in (37));

• the “radial–polar couple”(R, r), where r := ‖x′‖ and R := y′ ·x′
‖x′‖ .

We now describe what we mean by renormalizable integrability [16]. Note first
that, in terms of the coordinates above, the functions Uβ(r,G, g) in (8) depend on
(r,G, g) and remark the homogeneity property

Uβ(r,G, g) = β−1U(β−1r,G, g) where U := U1 . (9)

By renormalizable integrability we mean that there exists a function F of two argu-
ments such that the function U in (9) verifies

U(r,G, g) = F(E0(r,G, g), r) , (10)

where

E0(r,G, g) = G2 + r
√
1 − G2 cos g . (11)

By (10), the level curves of E0 are also level curves of U. On the other hand, the
phase portrait of E0 in the plane (g,G)—i.e., the family of curves

E0(r,G, g) = G2 + r
√
1 − G2 cos g = E, (12)

2 We can do this as the Hamiltonians HJ and H0 rescale by a factor β−2 as (y′, y) → β−1(y′, y)

and (x′, x) → β2(x′, x).
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in theplane (g,G) accordingly to thedifferent values of r—is completely explicit [17].
For 0 < r < 1 or 1 < r < 2 it includes two minima (±π, 0) on the g-axis; two sym-
metric maxima on the G-axis and one saddle point at (0, 0). When r > 2 the saddle
point disappears and (0, 0) turns to be a maximum. The phase portrait includes two
separatrices in the case 0 < r < 2; one separatrix in the case r > 2. These are the level
set S0(r) through the saddle, corresponding to E = r, for 0 < r < 2, and the level
set S1(r) = {E = 1}, for any r. Rotational motions in between S0(r) and S1(r), do
exist only for 0 < r < 1. The minima and the maxima are surrounded by librational
motions and different motions (librations about different equilibria or rotations) are
separated by S0(r) and S1(r). The reader is referred to Fig. 1 for further qualitative
details about the portion of the phase space corresponding to [−π,π] × [−1, 1].

We call perihelion librations the librational motions about (±π, 0) or (0, 0). Their
physical meaning is that the perihelion of E affords oscillations while E, highly
eccentric anytime, periodically flattens to a segment in correspondence of the times
when G vanishes. After the flattening time, the sense of rotation on E is reversed
(as G changes its sign). We remark that (see the next section for a discussion) the
potential U is well defined along the level sets of E, with the exception of S0(r),
where U is singular. In particular, U remains regular for all r > 2.

Let 0 < β∗ ≤ β∗ be defined via

β∗ :=
⎧⎨
⎩

ββ

β + β
for HJ

β for H0

β∗ :=
{
max{β,β} for HJ

β + β for H0 .
(13)

De-homogeneizating via (9), we see that, if r > 2β∗, then we fall in the third panel
in Fig. 1 for any Uβ’s in (7) so that all of such potentials afford perihelion librations
about (0, 0) and (±π, 0). The works [5, 18] deal precisely with this situation.

Before (and in order to) describing the purposes of such works, we informally
discuss the rôle of the total angular momentum’s length C := ‖x × y + x′ × y′‖.
This quantity enters in (7) via kinetic term ‖y′‖2, according to

‖y′‖2 = R2 + (C − G)2

r2
, (14)

(as |C − G| is the Euclidean length of x′ × y′, assuming that x × y and x′ × y′ are
parallel). Combining (14) with an expansion

Uβ(r,G, g) = −1

r
+ 1

r

∑
k≥1

uκ(G, g)

(
β

r

)k

,

of the Uβ’s in (7) in powers of r−1, one can split the Hamiltonians ĤJ and Ĥ0 in (7)
in two parts, which we call, respectively, fast and slow:
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Hfast = R2

2
+ C2

2r2
− 1

r
, Hslow := Ũβ,β(r,G, g) + −2CG + G2

2r2
, (15)

where Ũβ,β collects terms of order β∗
r2 , or higher, hence, retains the symmetries and

the equilibria of the Uβ’s discussed above. We fix, in phase space, a region of initial
data where the terms in (15) verify (see [5] for an informal discussion)

‖Hfast‖ � ‖Ũβ,β‖ � ‖Hslow − Ũβ,β‖ . (16)

Fig. 1 Phase portraits of E0 given by (11) in the plane (g,G) for 0 < r < 1 (top left), 1 < r < 2 (top
right) and r > 2 (bottom). The points corresponding to minima of E0 are labeled in blue, maxima
appear in green and separatrices correspond to red curves
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Then, the motions of R and r, mainly ruled Hfast, are faster than the ones of G and g,
ruled by Hslow. If C = 0, the smallest term Hslow − Ũβ,β = G2

2r2 is even with respect to
G, so Hslow retains the symmetries and equilibria of Ũβ,β in Fig. 1, for the case r > 2.
However, in this case, Hfast is unbounded below, so nothing prevents r to decrease
below 2β∗ and the scenario rapidly changes from (c) to (b) or (a). In this case, one has
then to prove that perihelion librations occur in the full Hamiltonians (7) in such a
short time that it prevents the scenario to change. The following result was obtained:

Theorem 1 ([18]) Take, in (7), C = 0. Fix an arbitrary neighbourhood U0 of (0, 0)
or of (0,π) and an arbitrary neighbourhood V0 of an unperturbed curve γ0(t) =
(G0(t), g0(t)) ∈ U0 in Fig. 1. Then it is possible to find six numbers 0 < c < 1,
0 < β− < β+, 0 < α− < α+, T > 0, such that, for any β− < β∗ ≤ β∗ < β+ the
projections Γ0(t) = (G(t), g(t)) of all the orbits Γ (t) = (R(t),G(t), r(t), g(t)) of
H1,H2 with initial datum (R0, r0,G0, g0) ∈ [ 1√

cα+ , 1√
cα− ] × [cα−,α+] × U0 belong

to V0 for all 0 ≤ t ≤ T . Moreover, the angle γ(t) between the position ray of Γ0(t)
and the g-axis affords a variation larger than 2π during the time T .

The proof of Theorem 1 uses a new normal form theorem, together with the construc-
tion of a system of coordinates well adapted to perihelion librations, as reviewed in
Sect. 3.

If C = 0, Hfast is bounded below, attaining its minimum at

R0 = 0 , r0 = C2 . (17)

It is reasonable to expect that if the initial values of R and r are close to (17), they
will remain there for some time and the motions of G and g will be close to be ruled
by H0

slow := Hslow|r=r0 , which reads, to the lowest orders,

H0
slow(G, g) = −2CG + G2

2r20
−β2 (5 − 3G2)

8r30
−β2 15(1 − G2)

8r30
cos 2g

+O(r−5
0 ) . (18)

On the other hand, the equilibria of Ũ0
β,β

have some chance of surviving in H0
slow

for small values of |C|, but the symmetries of Ũ0
β,β

do not persist. As an example, in

Fig. 2, we report the phase portrait of H0
slow for ĤJ, with

C = 25 , β = β = 80 . (19)

We call unperturbed motions the motions obtained combining (17) with the motions
in Fig. 2. The natural question now is whether and at which extent the motions
of (7) may be regarded as perturbations of such unperturbed ones. The question was
considered in [5], from the numerical point of view. Namely, in [5] the full motions
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Fig. 2 Phase portrait of
H0
slow given in (18) with

C = 25, β = β̄ = 80

of ĤJ were analysed, with C, β and β chosen3 as in (19), and the initial values of R
and r close to (17). Numerical evidence of orbits continuing the unperturbed orbits
above, interposed with zones of chaos, was obtained.

The paper is organised as follows:

1. In Sect. 2, we review recent results on the two-centre problem. We discuss first
the existence of an invariant, referred as Euler integral, whose expression in the
asymmetric setting is also given. Taking advantages of canonical coordinates
lowering the number of degrees-of-freedom, coupled together with the renormal-
izable integrability property, the level sets of the averaged Newtonian potential
are discussed in the planar case.

2. In Sect. 3, we outline the proof of Theorem 1 following [18]. The proof relies
on normal form of Hamiltonians (7) free of small divisors, combined with an
expression of the Euler integral suited for large values of r.

3. In Sect. 4, we further complement the understanding of the dynamics in the regime
of large r: we retrace the steps of [5] in constructing explicitly an horseshoe orbit,
therefore introducing the existence of symbolic dynamics. Themethodology relies
essentially on the construction of “boxes” stretching across one another under the
action of a specific Poincaré mapping, and uses arguments of covering relations
as introduced in [20].

3 The quantities β, β, γ, y′, x′, y, x, R, r, G, g, C of the present paper are related to β, β, σ, y′,
x ′, y, x , R, r, G, g, C in [5] via the relations (with “here” , “there” standing for “in the present
paper” and “in [5]”, respectively)βhere = (1 + μ)βthere,βhere = (1 + μ)βthere,σ(1 + μ)2 = γ,y′ =

Λ
1+μ y

′, x′ = 1+μ
Λ2 x ′, y = Λy, x = x

Λ2 , Rhere = RthereΛ
(1+μ)

, rhere = rthere(1+μ)

Λ2 , Ghere = Gthere
Λ

, ghere =
gthere, Chere = Cthere

Λ
where Λ, μ were chosen, in [5], 3.099 and 1, respectively. Note also the

misprint in the definition of σ in [5, (1.4)], as the power of μ at the denominator should be 3 instead
of 2. This misprint is inessential, as the number σ plays no rôle in [5].
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2 Euler Problem Revisited

In this section we review the classical integration of the two-centre problem and
complement it with considerations that will be useful to us in the next. The 2CP is
the system, inR3 (orR2), of one particle interactingwith two fixedmasses viaNewton
Law. If ±v0 ∈ R3 are the position coordinates of the centers, m± their masses; v,
with v = ±v0, the position coordinate of the moving particle; u = v̇ its velocity, and
1 its mass, the Hamiltonian of the system (Euler Hamiltonian) is

J = ‖u‖2
2

− m+
‖v + v0‖ − m−

‖v − v0‖ . (20)

Euler showed [13] that J exhibits 2 independent first integrals, in involution. One of
these first integrals is the projection

Θ = M · v0
‖v0‖ (21)

of the angular momentum M = v × u of the particle along the direction v0. It is not
specifically due to the Newtonian potential, but, rather, to its invariance by rotations
around the axis v0. For example, it persists if the Newtonian potential is replacedwith
a α-homogeneous one. The existence of the following constant of motion, which we
shall refer to as Euler integral:

E = ‖v × u‖2 + (v0 · u)2 + 2v · v0

(
m+

‖v + v0‖ − m−
‖v − v0‖

)
(22)

is pretty specific of J. As observed in [3], in the limit of merging centers, i.e., v0 = 0,
J reduces to the Kepler Hamiltonian (5), and E to the squared length of the angular
momentum of the moving particle.

The formula in (22) is not easy4 to be found in the literature, so we briefly discuss
it.

After fixing a reference framewith the third axis in the direction of v0 and denoting
as (v1, v2, v3) the coordinates of v with respect to such frame, one introduces the
so-called “elliptic coordinates”

λ = 1

2

(
r+
r0

+ r−
r0

)
, β = 1

2

(
r+
r0

− r−
r0

)
, ω := arg (−v2, v1) , (23)

where we have let, for short,

r0 := ‖v0‖ , r± := ‖v ± v0‖ .

4 See however [6] for a formula related to (22).
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Regarding r0 as a fixed external parameter and calling pλ, pβ , pω the generalized
momenta associated to λ, β and ω, it turns out that the Hamiltonian (20), written in
the coordinates (pλ, pβ,λ,β) is independent of ω and has the expression

J(pλ, pβ, pω,λ,β, r0) = 1

λ2 − β2

[ p2λ(λ2 − 1)

2r20
+ p2β(1 − β2)

2r20
+ p2ω

2r20

(
1

1 − β2

+ 1

λ2 − 1

)
− (m+ + m−)λ

r20
+ (m+ − m−)β

r20

]
. (24)

It follows that the solution W of Hamilton–Jacobi equation

J(Wλ,Wβ, pω,λ,β, r0) = h (25)

can be searched of the form

W (λ,β, pω, r0, h) = W (1)(λ, pω, r0, h) + W (2)(β, pω, r0, h)

and (25) separates completely as

F (1)(W (1)
λ ,λ, pω, r0, h) + F (2)(W (2)

β ,β, pω, r0, h) = 0 (26)

with F (1), F (2) defined via (24)–(25).
The identity (26) implies that there must exist a function E, which we call Euler

integral, depending on (pω, r0, h) only, such that

F (1)(pλ,λ, pω, r0, h) = −F (2)(pβ,β, pω, r0, h) = E(pω, r0, h) ∀ (pλ, pβ,λ,β) .

After elementary computations, one find that, in terms of the initial position–impulse
coordinates, the Euler Integral

E = 1

2

(
F (1) − F (2)

)
(27)

has the expression in (22), when written in the original coordinates.

The “asymmetric” case We are interested to find the expression of the Euler inte-
gral (22) when 2CP is written in the form

J = ‖y‖2
2

− 1

‖x‖ − M′

‖x′ − x‖ (28)
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namely, when the two centres are in “asymmetric positions”, 0, x′. As we shall see,
in that case we have

E = ‖M‖2 − x′ · L + M′ (x
′ − x) · x′

‖x′ − x‖ (29)

where

M := x × y , L := y × M − x
‖x‖ = eP (30)

are the angularmomentum and the eccentricity vector associated to theKeplerHamil-
tonian (5) with e and P being the eccentricity and the perihelion direction (‖P‖ = 1).
Notice that J reduces to a Kepler Hamiltonian in two cases: either for x′ = 0, in
which case, as in the symmetric case above, E reduces to ‖M‖2, or forM′ = 0. The
latter case is more interesting to us, as J and E become, respectively, J0 in (5) and

E0 = ‖M‖2 − x′ · L (31)

with E0 being—as well expected—a combination of first integrals of J0.
To prove (29)–(30), we change, canonically,

x′ = 2v0 , x = v0 + v , y′ = 1

2
(u0 − u) , y = u

(where y′, u0 denote the generalized impulses conjugated to x′, v0, respectively) we
reach the Hamiltonian J in (20), with m+ = 1, m− = M′. Turning back with the
transformations, one sees that the function E in (22) takes the expression

E :=
∥∥∥∥
(

x − x′

2

)
× y

∥∥∥∥
2

+ 1

4
(x′ · y)2 + x′ ·

(
x − x′

2

)(
1

‖x‖ − M′

‖x′ − x‖
)

.

and we rewrite it as

E = E0 + E1 + E2

with

E0 := ‖M‖2 − x′ · L , E1 := M′ (x
′ − x) · x′

‖x′ − x‖
E2 := ‖x′‖2

2

(‖y‖2
2

− 1

‖x‖ − M′

‖x′ − x‖
)

where M, L are as in (30). Since E2 is itself an integral for J, we can neglect it and
rename
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E := E0 + E1 (32)

the Euler integral to J. Namely,

{
J,E

}
= 0 . (33)

A set of canonical coordinates which lets J and E in 2 degrees-of-freedom We
describe a set of canonical coordinates, which we denote as K, which we shall use
for our analysis of the Euler Hamiltonian (28) and its integral E (32). This set of
coordinates puts J and E in two degrees-of-freedom (represented by the couples
(Λ, �), (G, g) below), precisely like the classical ellipsoidal coordinates (23) do,
both in the spatial and planar case.

We consider, in the region of (y, x) where J0 in (5) takes negative values and the
ellipse E(y, x) it generates starting from any initial datum (y, x) in this region is not
a circle. Denote as:

• a the semi-major axis;
• P, with ‖P‖ = 1, the direction of perihelion, assuming the ellipse is not a circle;
• �: the mean anomaly, defined, mod 2π, as the area of the elliptic sector spanned
by x from P, normalized to 2π.

Finally,

• given three vectors u, v and w, with u, v ⊥ w, we denote as αw(u, v) the oriented
angle from u to v relatively to the positive orientation established by w.

We fix an arbitrary (“inertial”) frame

F0 : i =
⎛
⎝1
0
0

⎞
⎠ , j =

⎛
⎝ 0
1
0

⎞
⎠ , k =

⎛
⎝0
0
1

⎞
⎠

in R3, and denote as

M = x × y , M′ = x′ × y′ , C = M′ + M ,

where “×” denotes skew-product in R3. Observe the following relations

x′ · C = x′ · (M + M′) = x′ · M , P · M = 0 , ‖P‖ = 1 . (34)

Assume that the “nodes”

n1 := k × C , n2 := C × x′ , n3 := x′ × M (35)

do not vanish. We define the coordinates

K = (Z,C,Θ,G,R,Λ, ζ, g,ϑ, g, r, �)
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via the following formulae.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z := C · k
C := ‖C‖
R := y′ · x′

‖x′‖
Λ = √

a
G := ‖M‖
Θ := M · x′

‖x′‖

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z := αk(i, n1)

g := αC(n1, n2)

r := ‖x′‖
� := meananomalyofx on E
g := αM(n3, M × P)

ϑ := αx′(n2, n3)

(36)

The canonical character of K has been discussed in [17]. In the planar case, the
coordinates (36) reduce to the 8 coordinates

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C = ‖x × y + x′ × y′‖
G = ‖x × y‖
R = y′ · x′

‖x′‖
Λ = √

a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ = αk(i, x′) + π

2
g = αk(x′, P) + π
r = ‖x′‖
� = mean anomaly of x in E

(37)

Using the formulae in the previous section, we provide the expressions of J in (28)
and E in (31) in terms of K:

J(Λ,G,Θ, r, �, g) = − 1

2Λ2
− M′√

r2 + 2ra
√
1 − Θ2

G2 p + a2�2

=: J0 + J1

E(Λ,G,Θ, r, �, g) = G2 + r

√
1 − Θ2

G2

√
1 − G2

Λ2
cos g

+ M′r
r + a

√
1 − Θ2

G2 p√
r2 + 2ra

√
1 − Θ2

G2 p + a2�2

=: E0 + E1 (38)

and, if ξ = ξ(Λ,G, �) is the eccentric anomaly, defined as the solution of Kepler
equation

ξ − e(Λ,G) sin ξ = � (39)

and a = a(Λ) the semi-major axis; e = e(Λ,G), the eccentricity of the ellipse,
� = �(Λ,G, �), p = p(Λ,G, �, g) are defined as
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a(Λ) = Λ2

e(Λ,G) :=
√
1 − G2

Λ2

�(Λ,G, �) := 1 − e(Λ,G) cos ξ(Λ,G, �)

p(Λ,G, �, g) := (cos ξ(Λ,G, �) − e(Λ,G)) cos g − G

Λ
sin ξ(Λ,G, �) sin g . (40)

The angle

ν(Λ,G, �) := arg

(
cos ξ(Λ,G, �) − e(Λ,G),

G

Λ
sin ξ(Λ,G, �)

)
(41)

is usually referred to as true anomaly, so one recognises that p(Λ,G, �, g) =
� cos(ν + g).

Observe that E and J in (38) do not depend on C, Z, ζ, γ, R, ϑ, while the Hamil-
tonians (7), do not depend on Z, ζ, γ, �.

The details on the derivation of the formulae in (38) may be found in [17].

Renormalizable integrability In this sectionwe review the property of renormalizable
integrability pointed out in [16].

We consider the function Uβ in (8) with β = 1, which is given by

U(r,Λ,Θ,G, g) = 1

2π

∫ 2π

0

d�√
r2 + 2ra

√
1 − Θ2

G2 p + a2�2
(42)

and the function

E0 = G2 + r

√
1 − Θ2

G2

√
1 − G2

Λ2
cos g

in (38). These two functions have the following remarkable properties:

(P1) they have one effective degree-of-freedom, as they depend on one conjugated
couple of coordinates: the couple (G, g);

(P2) they Poisson-commute:

{
U, E0

}
= 0 . (43)

Relation (43) can be proved taking the �-average of (33), and exploiting that J0
depends only on Λ; see [16]. The following definition relies precisely with this
situation.

Definition 1 ([16]) Let h, g be two functions of the form

h(p, q, y, x) = ĥ(I(p, q), y, x) , g(p, q, y, x) = ĝ(I(p, q), y, x) (44)
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where

(p, q, y, x) ∈ D := B ×U (45)

with U ⊂ R2, B ⊂ R2n open and connected, (p, q) = (p1, · · · , pn , q1, · · · , qn)
conjugate coordinates with respect to the two-form ω = dy ∧ dx + ∑n

i=1 dpi ∧ dqi
and I(p, q) = (I1(p, q), · · · , In(p, q)), with

Ii : B → R , i = 1, · · · , n

pairwise Poisson commuting:

{
Ii , I j

} = 0 ∀ 1 ≤ i < j ≤ n i = 1, · · · , n . (46)

We say that h is renormalizably integrable via g if there exists a function

h̃ : I(B) × g(U ) → R ,

such that

h(p, q, y, x) = h̃(I(p, q), ĝ(I(p, q), y, x)) (47)

for all (p, q, y, x) ∈ D.

Proposition 1 ([16]) If h is renormalizably integrable via g, then:

(i) I1, · · · , In are first integrals to h and g;
(ii) h and g Poisson commute.

Proposition 2 ([16]) U is renormalizably integrable via E0. Namely, there exists a
function F such that

U(r,Λ,Θ,G, g) = F
(
r,Λ,Θ,E0(r,Λ,Θ,G, g)

)
.

The proof of Proposition 2 is based on P1 ÷ P2 above. Below, we list some
consequences.
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(i) If FE0 = 0, the time laws of (G, g) under U or E0 are basically (i.e., up to a
change of time) the same;

(ii) Motions of E0 corresponding to level sets for which FE0 = 0 are fixed points
curves to U (“frozen orbits”). In [16] we provided an example of frozen orbit
of U in the spatial case, for r � 1;

(iii) U and E0 have the same action–angle coordinates;
(iv) F may have several expressions, as well as U, which is defined via a quadrature.

Two different representation formulae have been proposed in [16, 18].

In the next section, we investigate the dynamical properties of E0 for the planar
case (Θ = 0).

The phase portrait of E0 in the planar caseHerewefixΛ = 1,Θ = 0. For r ∈ (0, 2),
the function E0(g,G) has a minimum, a saddle and a maximum, respectively at

P− = (±π, 0) , P0 = (0, 0) , P+ =
(
0,

√
1 − r2

4

)

where it takes the values, respectively,

E− = −r , E0 = r , E+ = 1 + r2

4
.

Thus, the level sets in (12) are non-empty only for

E ∈
[
−r, 1 + r2

4

]
. (48)

We denote as S0, the level set through the saddle P0. When G = 1, E0 takes the value
1 for all g and we denote as S1 the level curve with E = 1. The equations of S0, S1

are, respectively:

S0(r) =
{
(g,G) : G2 + r

√
1 − G2 cos g = r

}
,

S1(r) =
{
G = ±1

}
∪
{
G = ±√

1 − r2 cos2 g
}
. (49)

S1 is composed of two branches, which will be referred to as “horizontal”, “vertical”,
respectively, transversally intersecting at (±π

2 , 1), with g mod 2π. Note that, when
0 < r < 1, the vertical branch is defined for all g ∈ T; when r > 1, its domain in g
is made of two disjoint neighbourhoods of ±π

2 .
When r > 2, the saddle P0 and its manifold S0 do not exist, P− = (π, 0) is still

a minimum, while the maximum becomes P+ = (0, 0). The manifold S1 still exists,
with the vertical branch closer and closer, as r → +∞, to the portion of straight
g = ±π

2 in the strip −1 ≤ G ≤ 1. In this case the admissible values for E are
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E ∈ [−r, r] .

It is worth mentioning [17] that, when 0 < r < 2, the motions generated by E0 along
S0(r) can be explicitly computed, and are given by

⎧⎪⎪⎨
⎪⎪⎩

G(t) = σΛ
cosh σΛ(t−t0)

,

g(t) = ± cos−1
1 − α2

cosh2 σΛ(t−t0)√
1 − σ2

cosh2 σΛ(t−t0)

,

where
σ2 := r(2 − r) , α2 := 2 − r , r ∈ (0, 2) . (50)

These motions—which have a remarkable similitude with the separatrix motions of
the classical pendulum—are however meaningless for U, which is singular on S0(r).

The scenario is depicted in Fig. 1 to which we refer for further qualitative details.

3 Perihelion Librations in the Three-Body Problem

In this section we review the results of [16–18].
As mentioned in the introduction, the proof of Theorem 1 is based on two ingre-

dients: a normal form theory well designed around the Hamiltonians (7), where no
non-resonance condition is required, and a set of action–angle-like coordinateswhich
approximate well the natural action–angle coordinates of E0 when r is large. In this
section we briefly summarise the procedure. Full details may be found in [18].

A normal form theory without small divisors We describe a procedure for elimi-
nating the angles5 ϕ at high orders, given Hamiltonian of the form

H(I,ϕ, p, q, y, x) = h(I, J(p, q), y) + f (I,ϕ, p, q, y, x) (51)

which we assume to be holomorphic on the neighbourhood

Pρ,s,δ,r,ξ = Iρ × Tn
s × Bδ × Yr × Xξ ⊃ P = I × Tn × B × Y × X ,

for suitable ρ, s, δ, r , ξ > 0 and

J(p, q) = (p1q1, · · · , pmqm) .

5 Note that the procedure described in this section does not seem to be related to [2, Sect. 6.4.4],
for the lack of slow–fast couples.



64 J. Daquin et al.

Here, I ⊂ Rn , B ⊂ R2m , Y ⊂ R, X ⊂ R are open and connected; T = R/(2πZ) is the
standard torus, and we have used the common notation Ar := ⋃

x∈A Br (x), where
Br (x) is the complex open ball centered in x with radius r .

We denote as Oρ,s,δ,r,ξ the set of complex holomorphic functions

φ : Pρ̂,ŝ,δ̂,r̂ ,ξ̂ → C

for some ρ̂ > ρ, ŝ > s, δ̂ > δ, r̂ > r , ξ̂ > ξ, equipped with the norm

‖φ‖ρ,s,δ,r,ξ :=
∑
k,h, j

‖φkh j‖ρ,r,ξe
s|k|δh+ j

where φkh j (I, y, x) are the coefficients of the Taylor–Fourier expansion6

φ =
∑
k,h, j

φkh j (I, y, x)eiksphq j , ‖φ‖ρ,r,ξ := sup
Iρ×Yr×Xξ

|φ(I, y, x)| .

If φ is independent of x , we simply write ‖φ‖ρ,r for ‖φ‖ρ,r,ξ . If φ ∈ Oρ,s,δ,r,ξ , we
define its “off-average” φ̃ and “average” φ as

φ̃ :=
∑
k,h, j :

(k,h− j)=(0,0)

φkh j (I, y, x)eiksphq j

φ := φ − φ̃ = 1

(2π)n

∫
[0,2π]n

Πpqφ(I,ϕ, J(p, q), y, x)dϕ ,

with

Πpqφ(I,ϕ, J(p, q), y, x) :=
∑
k,h

φkhh(I, y, x)eiksphqh

We decompose

Oρ,s,δ,r,ξ = Zρ,s,δ,r,ξ ⊕ Nρ,s,δ,r,ξ .

where Zρ,s,δ,r,ξ , Nρ,s,δ,r,ξ are the “zero-average” and the “normal” classes

Zρ,s,δ,r,ξ := {φ ∈ Oρ,s,δ,r,ξ : φ = φ̃} = {φ ∈ Oρ,s,δ,r,ξ : φ = 0} (52)

Nρ,s,δ,r,ξ := {φ ∈ Oρ,s,δ,r,ξ : φ = φ} = {φ ∈ Oρ,s,δ,r,ξ : φ̃ = 0} . (53)

respectively. We finally let ωy,I,J := ∂y,I,Jh.

6 We denote as xh := xh11 · · · xhnn , where x = (x1, · · · , xn) ∈ Rn and h = (h1, · · · , hn) ∈ Nn .
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In the following result, no non-resonance condition is required on the frequencies
ωI, which, as a matter of fact, might also be zero.

Theorem 2 ([18]) For any n, m, there exists a number cn,m ≥ 1 such that, for any
N ∈ N such that the following inequalities are satisfied

4NX
∥∥∥∥ Im ωI

ωy

∥∥∥∥
ρ,r

< s , 4NX
∥∥∥∥ωJ

ωy

∥∥∥∥
ρ,r

< 1

c̃n,mN
X
d

‖ f ‖ρ,s,δ,r,ξ

∥∥∥∥ 1

ωy

∥∥∥∥
ρ,s,δ,r,ξ

< 1 (54)

with d := min
{
ρs, rξ, δ2

}
, X := sup

{|x | : x ∈ Xξ

}
, one can find an operator

Ψ∗ : Oρ,s,δ,r,ξ → O1/3(ρ,s,δ,r,ξ) (55)

which carries H to

H∗ = h + g∗ + f∗

where g∗ ∈ N1/3(ρ,s,δ,r,ξ), f∗ ∈ O1/3(ρ,s,δ,r,ξ) and, moreover, the following inequalities
hold

‖g∗ − f ‖1/3(ρ,s,δ,r,ξ) ≤ 162̃cn,m
X
d

∥∥∥∥ f̃

ωy

∥∥∥∥
ρ,s,δ,r,ξ

‖ f ‖ρ,s,δ,r,ξ

‖ f∗‖1/3(ρ,s,δ,r,ξ) ≤ 1

2N+1
‖ f ‖ρ,s,δ,r,ξ . (56)

The transformation Ψ∗ can be obtained as a composition of time-one Hamiltonian
flows, and satisfies the following. If

(I,ϕ, p, q, y, x) := Ψ∗(I∗,ϕ∗, p∗, q∗,R∗, r∗)

the following uniform bounds hold:

dmax
{ |I − I∗|

ρ
,

|ϕ − ϕ∗|
s

,
|p − p∗|

δ
,

|q − q∗|
δ

,
|y − y∗|

r
,
|x − x∗|

ξ

}

≤ max
{
s|I − I∗|, ρ|ϕ − ϕ∗|, δ|p − p∗|, δ|q − q∗|, ξ|y − y∗|, r |x − x∗|

}

≤ 19X
∥∥∥∥ f

ωy

∥∥∥∥
ρ,s,δ,r,ξ

. (57)

Hints on the proof of Theorem 2 may be found in Appendix A.
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Asymptotic action–angle coordinates The explicit construction of the action–angle
coordinates for E0 for any value of r and Θ exhibits elliptic integrals. This is true
even in the case Θ = 0, in which the phase portrait is, as discussed, explicit. As
we are interested to the case that r is large, we adopt the “approximate” solution of
integrating only the leading part of E. Namely, we replace Eq. (12) with

√
1 − G2 cos g = Ẽ . (58)

We show that, for this case, the action–angle coordinates, denoted as (G, γ), are given
by

G = Ẽ , γ = τ (59)

where τ is the time the flows employs to reach the value (G, g) on the level set Ẽ ,
starting from (

√
1 − Ẽ2, 0) ((

√
1 − Ẽ2,π)). Namely, for the Hamiltonian (58), the

action–angle coordinates coincidewith the energy–time coordinates. Indeed, by (58),
the action variable can be taken to be

G(Ẽ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 + 1

π

∫ arccos |Ẽ|

− arccos |Ẽ|

√
1 − Ẽ2

cos2 g
dg − 1 < Ẽ < 0

1 − 1

π

∫ arccos Ẽ

− arccos Ẽ

√
1 − Ẽ2

cos2 g
dg 0 < Ẽ < 1 .

We have defined G(Ẽ) so that G(0) = 0. Then the period of the orbit is given by

T (Ẽ) = 2πGẼ(Ẽ) .

With the change of variable

w = |Ẽ |√
1 − Ẽ2

tan g , (60)

we obtain

T (Ẽ) = 4|Ẽ |
∫ arccos |Ẽ|

0

1

cos2 g

dg√
1 − Ẽ2

cos2 g

= 4
∫ 1

0

dw√
1 − w2

= 2π

which implies (59).
Looking at the (multi-valued) generating function



A New Analysis of the Three-Body Problem 67

S(G, g) =
∫ Pg(G)

P0(G)

√
1 − G2

cos2 g′ dg
′

(where, as it is standard to do [1], the integral is computed along the Gth level set,
from P0(G) := (− arccosG, 0) to a prefixed point Pg(G) = (g, ·) of the level set, so
as to make S(G, ·) continuous) we obtain the transformation of coordinates

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G =
√
1 − G2 cos γ

g = − tan−1

(
1

G
√
1 − G2 sin γ

)
+ kπ

with k =
{
0 if 0 < G < 1
1 if − 1 < G < 0 .

(61)

Then, using the coordinates (G, γ), one obtains the expression

E0 = G r + (1 − G2) cos2 γ

which will be used in the next section.
The proof of Theorem 1 is a direct application of Proposition 2. As such, a careful

evaluation of the involved quantities is needed. Those evaluations are completely
explicit in [18]. For the purpose of this review, we report below the main ideas while
we skip most of computational details. The reader who is interested in them might
consult [18].

Sketch of proof of Theorem 1 For definiteness, we sketch the proof of Theorem 1 for
(0, 0). The proof for (0,π) is similar. For the purposes of this proof, we let Ĥ1 := ĤJ

and Ĥ2 := Ĥ0, where ĤJ and ĤJ are as in (7). It is convenient to rewrite the functions
Ĥi as

Ĥ1(R,G, r, g) =
(
R2

2
− 1

r

)
+ G2

2r2
− β

β + β

1

r

(̂
Fβε(r)

(
Êβε(r)(G, g)

)
− 1

)

− β

β + β

1

r

(̂
F−βε(r)

(
Ê−βε(r)(G, g)

)
− 1

)

Ĥ2(R,G, r, g) =
(
R2

2
− 1

r

)
+ G2

2r2
− β

β + β

1

r

(̂
F(β+β)ε(r)

(
Ê(β+β)ε(r)(G, g)

)
− 1

)

where

ε(r) := 1

r
, Êε(G, g) := εE0(ε

−1,G, g) , F̂ε(t) := ε−1 F(ε−1, ε−1t) .

We next change coordinates via the canonical changes

C1 : (G, γ) → (G, g) , C2 : (y, x) → (R, r)
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where C1 is defined as in (61), with k = 0, while C2 is
⎧⎪⎨
⎪⎩
R(y, x) = 1

y

√
cos ξ′(x) + 1

1 − cos ξ′(x)
r(y, x) = y2(1 − cos ξ′(x))

(62)

where ξ′(x) solves

ξ′ − sin ξ′ = x . (63)

C2 has been chosen so that

(
R2

2
− 1

r

)
◦ C2 = − 1

2y2
.

Using the new coordinates, we have

Ĥ1 = − 1

2y2
+ 1

r(y, x)

(
ε(y, x)

(1 − G2)

2
cos2 γ − β

β + β

(̂
Fβε(y,x)

(
Êβε(y,x)(G, γ)

)
− 1

)

− β

β + β

(̂
F−βε(y,x)

(
Ê−βε(y,x)(G, γ)

)
− 1

))

Ĥ2 = − 1

2y2
+ 1

r(y, x)

(
ε(y, x)

(1 − G2)

2
cos2 γ

− β

β + β

1

r(y, x)

(̂
F(β+β)ε(y,x)

(
Ê(β+β)ε(y,x)(G, γ)

)
− 1

))

having abusively denoted as ε(y, x) := ε
(
r(y, x)

)
and

Êε(G, γ) := G + ε
(
1 − G2) cos2 γ . (64)

A domain where we shall check holomorphy for Ĥi is chosen as

Dδ,s0,
√

α−,
√

ε0 := Y√
α− × X√

ε0 × Gδ × Ts0 (65)

where

Y :=
{
y ∈ R : 2

√
α− < y <

√
α+

}
, X :=

{
x ∈ R : |x − π| ≤ π − 2

√
ε0

}

G :=
{
G ∈ R : 1 − δ < G < 1

}
(66)

where 0 < α− <
α+
4 , 0 < ε0 < π2

4 , 0 < δ < 1. If c0 > 0 is such that for any 0 <

ε0 < 1 and for any x ∈ X√
ε0 , Eq. (63) has a unique solution ξ′(x) which depends
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analytically on x and and verifies

|1 − cos ξ′(x)| ≥ c0ε0 (67)

(the existence of such a number c0 is well known) and if the following inequalities
are satisfied

0 < δ ≤ 1

4
, C∗(s0)δ < 1 C∗(s0) := 16

(
sup
Ts0

| sin γ|
)2

α−ε0 >
4β∗

c0
(68)

with β∗ as in (13), then Ĥi are holomorphic in the domain (65). The proof is based on
the explicit evaluation of the function F̂ε(t) for complex values of its arguments, the
accomplishment of which is obtained using the explicit expression of F̂ε(t): see [18,
Proposition 3.1 and Proposition 3.3].

We aim to apply Theorem 2, with I = G, ϕ = γ, (y, x) as in (62), h(y) = − 1
2y2

and, finally

f (G, γ, y, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r(y,x)

(
ε(y, x) (1−G2)

2 cos2 γ − β

β+β

(̂
Fβε(y,x)

(
Êβε(y,x)(G, γ)

)
− 1

)

− β

β+β

(̂
F−βε(y,x)

(
Ê−βε(y,x)(G, γ)

)
− 1

))
i = 1

1
r(y,x)

(
ε(y, x) (1−G2)

2 cos2 γ

− β

β+β
1

r(y,x)

(̂
F
(β+β)ε(y,x)

(
Ê

(β+β)ε(y,x)(G, γ)
)

− 1
))

i = 2

(69)

As h does not depend on G and the coordinates p, q do not exist, in order to apply
Theorem 2, only the last condition in (54) needs to be verified. Direct computations
show that such condition is verified provided that N = [N0] − 1, where

1

N0
:= C∗ max

⎧⎨
⎩

β∗
c20ε

2
0δs0

√
1

α−
,

β∗

c20ε
5
2
0

1

α−

⎫⎬
⎭

α
3/2
+

α
3/2
−

with β∗ as in (13) and C∗ is independent of s0. Assuming also that

N−1
0 <

c20ε
2
0α

2−
2α2+

(70)
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we have, in particular, N0 > 2. We denote as

Ĥ∗ = h(y∗) + g∗(y∗, x∗,G∗) + f∗(G∗, γ∗, y∗, x∗) (71)

the Hamiltonian obtained after the application of Theorem 2 where, g∗, f∗ satisfy
the following bounds:

‖g∗− f ‖ ≤ 2Δ, ‖g∗‖ ≤ 2−NΔ

with f (y∗, x∗,G∗) the γ∗-average of f (y∗, x∗,G∗, γ∗) and

Δ := C∗
m2

0aβ∗
c20ε

2
0α

2−

is an upper bound to ‖ f ‖ above. Let now Γ∗(t) = (G∗(t), γ∗(t), y∗(t), x∗(t)) be
a solution of Ĥ∗ with initial datum Γ∗(0) = (G∗(0), γ∗(0), y∗(0), x∗(0)) ∈ D and
verifying

|G∗(0) − 1| ≤ δ

2
, 2

√
m3

0α− ≤ |y∗(0)|≤
√
m3

0α− +
√
m3

0α+
2

x∗(0) = π . (72)

We look for a time T > 0 such that Γ∗(t) ∈ D for all 0 ≤ t ≤ T . Then T can be
taken to be

T = min

{√
α3− ,

√
α−ε0

Δ
, 2N0

s0δ

Δ

}
(73)

as this choice easily allows to check

|y∗(t) − y∗(0)| ≤ |y∗(0)| − √
α− , |G∗(t) − G∗(0)| ≤ 2−(N+1)Δt

s0
≤ δ

2
|x∗(t) − x∗(0)| ≤ π − √

ε0

for all |t | ≤ T . In addition, at the time t = T , one has

|γ∗(T ) − γ∗(0)| ≥ c◦ min

{
β∗

√
α3−
α4+

,
c20ε

5/2
0 α2−
α2+

√
α− ,

c20ε
2
0α

2−
α2+

2N0s0δ

}

=: 3π
η
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with c◦ independent of α−, α+, β, β, δ, ε0 and s0. We then see that |γ∗(T ) − γ∗(0)|
is lower bounded by 3π as soon as

η < 1 . (74)

The last step of the proof consists of proving that inequalities (68), (70) and (74)
may be simultaneously satisfied. This is discussed in [18, Remark 5.1]. �

4 Chaos in a Binary Asteroid System

This section describes the main steps of [5] in constructing explicitly a topological
horseshoe; henceforth providing evidences of the existence of symbolic dynamics.
The construction essentially relies on the introduction of a two-dimensional Poincaré
map from which invariants are computed. Following arguments presented in [20],
the introduction of ad hoc sets and the computation of their images provide the
self-covering relationships needed to conclude.

We fix β = β = 80, which corresponds to take μ = 1 and κ ∼ 40; see (3). We
interpret the Hamiltonian ĤJ with this choice of parameters as governing the (aver-
aged out after many periods of the reference asteroid) motions of a binary asteroid
system interacting with a massive body, with the Jacobi reduction referred at one
of the two twin asteroids. The parity triggered by the equality β = β reflects on the
Taylor–Fourier coefficients of the expansion

ĤJ(R,G, r, g) = R2

2
+ (C − G)2

2r2
− 1

r
+ 1

r

∞∑
ν=1

qν(G, g)

(
β

r

)ν

(75)

accordingly to

qν(G, g) =

⎧⎪⎪⎨
⎪⎪⎩

ν/2∑
p=0

q̃p(G) cos 2p g if ν is even

0 otherwise .

(76)

In our numeric implementations, we truncated the infinite sum in (75) up to a certain
order νmax, chosen so that the results did not vary increasing it again. Moreover,
as the coefficients qν(G, ·) in (76) are π-periodic, without loss of generality, we
restricted g ∈ T/2 ∼ [0,π). We describe the steps we followed in our numerical
analysis, recalling the reader to use Footnote 3 to relate the values in (77) and (78)
with the homonymous ones in [5].
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Construction of a 2-dimensional Poincaré map The motions of (75) evolve on 3-
dimensional manifoldsMc labeled by the constant value c of the energy. The struc-
ture of ĤJ allows to reduce the coordinate R after fixing c and hence to identifyMc as
the 3-dimensional space of triples {(r,G, g)}. The dimension can be further reduced
to 2 considering a plane Σ through a given P∗ = (r∗,G∗, g∗) and perpendicular to
the velocity vector V∗ = (v∗

r , v
∗
G, v∗

g) of the the orbit through P∗. This leads us to
construct a Poincaré map, which we define as follows.We start by defining two oper-
ators l and π consisting in “lifting” the initial two-dimensional seed z = (G, g) to the
four-dimensional space (R,G, r, g) and “projecting” it back to plan after the action
of the flow-map Φ t

ĤJ
during the first return time τ . The lift operator reconstructs the

four-dimensional state vector from a seed on D × T/2, where the domain D of the
variable G is a compact subset of the form [−1, 1]. For a suitable (A, A) ⊂ R2 × R2,
its definition reads

l : D × T/2 ⊃ A → D × T/2 × A

z �→ z̃ = l(z),

where z̃ = (G, g,R, r) satisfies the two following conditions:

1. Planarity condition. The triplet (r,G, g) belongs to the plane Σ , i.e. r solves the
algebraic condition v∗

r (r − r∗) + v∗
G(G − G∗) + v∗

g(g − g∗) = 0.
2. Energetic condition. The component R solves the energetic condition

ĤJ(R,G, r, g) = c.

The projector π is the projection onto the first two components of the vector,

π : D × T/2 × A → D × T/2

z̃ = (z1, z2, z3, z4) �→ π(z) = (z1, z2) .

The Poincaré mapping is therefore defined and constructed as

P : D × T/2 → D × T/2

z �→ z′ = P(z) = (
π ◦ Φ

τ (z)
ĤJ

◦ l)(z) .

The mapping is nothing else than a “snapshots” of the whole flow at specific return
time τ . It should be noted that the successive (first) return time is in general function
of the current seed (initial condition or current state), i.e.τ = τ (z̃), formally defined
(if it exists) as

τ (z) = inf
{
t ∈ R+,

(
r(t),G(t), g(t)

) ∈ Σ
}
,

where
(
r(t),G(t), g(t)

)
is obtained through the flow.
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With C = 24.394, we fixed the initial values

R∗ = −0.0060 , G∗ = −0.804 , r∗ = 652.256 , g∗ = 1.4524 rad (77)

and we obtained the results plotted in the first panel of Fig. 3. We invite the reader
to compare this figure with the unperturbed phase portrait of Fig. 2. In particular,
due to the non-integrability of the problem, chaotic zones appear, mostly distributed
for positive values of G. This chaos was the object of our next investigations, as
discussed below.
Hyperbolic fixed points and heteroclinic intersectionsEquilibrium points of themap-
ping P (i.e. periodic orbits of the Hamiltonian system (75)) have been found using
a Newton algorithm with initial guesses distributed on a resolved grid of initial
conditions in D × T/2. We found more than 20 fixed points x∗. The eigensystems
associated to the fixed points have been computed to determine the local stability
properties. The result of the analysis is displayed on Fig. 3 along with the following
convention: hyperbolic fixed points appear as red crosses, elliptical points aremarked
with blue circles.

The local stable manifold associated to an hyperbolic point x�,

Ws
loc.(x�) =

{
x | ‖Pn(x) − x�‖ → 0, n ∈ N+, n → ∞

}
,

can be grown by computing the images of a fundamental domain I ⊂ Es(x�), Es(x�)

being the stable eigenspace associated to the saddle point x�. The local unstable
manifoldsWu

loc.(x�)were similarly computed, but changing the sign of the time inte-
gration. See Fig. 3.

Covering relations Let us introduce some notations. Let N be a compact set con-
tained in R2 and u(N ) = s(N ) = 1 being, respectively, the exit and entry dimension
(two real numbers such that their sum is equal to the dimension of the space con-
taining N ); let cN : R2 → R2 be an homeomorphism such that cN (N ) = [−1, 1]2;
let Nc = [−1, 1]2, N−

c = {−1, 1} × [−1, 1], N+
c = [−1, 1] × {−1, 1}; then, the two

set N− = c−1
N (N−

c ) and N+ = c−1
N (N+

c ) are, respectively, the exit set and the entry
set. In the case of dimension 2, they are topologically a sum of two disjoint inter-
vals. The quadruple (N , u(N ), s(N ), cN ) is called a h-set and N is called sup-
port of the h-set. Finally, let S(N )lc = (−∞,−1) × R, S(N )rc = (1,∞) × R, and
S(N )l = c−1

N (S(N )lc), S(N )r = c−1
N (S(N )rc) be, respectively, the left and the right

side of N . The general definition of covering relation can be found in [9]. Here
we provide a simplified notion, suited to the case that N is two-dimensional, based
on [20, Theorem 16].
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Definition 2 Let f : R2 → R2 be a continuous map and N and M the supports of

two h-sets. We say that M f -covers N and we denote it by M
f=⇒ N if:

(1) ∃ q0 ∈ [−1, 1] such that f (cN ([−1, 1] × {q0})) ⊂ int(S(N )l
⋃

N
⋃

S(N )r ),
(2) f (M−)

⋂
N = ∅,

(3) f (M)
⋂

N+ = ∅.
Conditions (2) and (3) are called, respectively, exit and entry condition.

The notions of covering (including self-covering) relations are useful in defining
topological horseshoe [9, 20].

Definition 3 Let N1 and N2 be the supports of two disjoint h-sets inR2. A continuous
map f : R2 → R2 is said to be a topological horseshoe for N1 and N2 if

N1
f=⇒ N1 , N1

f=⇒ N2 , N2
f=⇒ N1 , N2

f=⇒ N2 .

Topological horseshoes are associated to symbolic dynamics as discussed in
[9, Theorem 2] and in [20, Theorem 18].

The topological horseshoe Based on the couple of hyperbolic fixed points

{
q1 = (g1,G1) = (0.203945459, 0.665706),

q2 = (g2,G2) = (0.278077917, 0.714484),
(78)

we define two sets N1, N2 ⊂ R2 which are supports of two h-sets as follows:

{
N1 = q1 + A1v

s
1 + B1v

u
1 ,

N2 = q2 + A2v
s
2 + B2v

u
2 ,

where vs
1, vu

1 , vs
2, vu

2 are the stable and the unstable eigenvectors related to q1, q2,
respectively, and the A1, A2, B1 and B2 are numbers suitably chosen in a grid of
values. Then the following covering relations are numerically detected

N1
P=⇒ N1 , N1

P=⇒ N2 , N2
P=⇒ N1 , N2

P=⇒ N2 ,

proving the numerical evidence of a topological horseshoe, i.e. , existence of sym-
bolic dynamics for P . The obtained horseshoe associated to q1 and q2 with the
aforementioned parameters is illustrated in Fig. 3.
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Fig. 3 Composite panels illustrating our main steps in constructing the topological horseshoe. (Top
left) The continuous flow is reduced to a 2-dimensional mapping by introducing a suitable Poincaré
map P . The phase space contains both elliptic (blue) and hyperbolic (red) fixed-points. (Top right)
Finite pieces of the stable and unstable manifolds might be constructed from the knowledge of the
eigensystem derived from the linearisation DP . (Bottom) Carefully chosen sets and their images
under P provide the covering relations and imply existence of symbolic dynamics. See text for
details
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Appendix 1: Outline of the Proof of Theorem 2

In this section we provide some technical details of the proof of Theorem 2. For the
full proof we refer to [18].

The proof is by recursion. We assume that, at a certain step, we have a system of
the form

H(I,ϕ, J(p, q), y) = h(I, J(p, q), y) + g(I, J(p, q), y, x) + f (I,ϕ, J(p, q), y, x) (79)

where f ∈ Oρ,s,δ,r,ξ , g ∈ Nρ,s,δ,r,ξ . At the first step, just take g ≡ 0.
After splitting f on its Taylor–Fourier basis

f =
∑
k,h, j

fkh j (I, y, x)eik·ϕphq j .

one looks for a time-1 map

Φ = eLφ =
∞∑
k=0

Lk
φ

k! Lφ( f ) := {
φ, f

}

generated by a small Hamiltonian φ which will be taken in the classZρ,s,δ,r,ξ in (52).
Here,

{
φ, f

} :=
n∑

i=1

(∂Ii φ∂ϕi
f − ∂Ii f ∂ϕi

φ) +
m∑
i=1

(∂pi φ∂qi f − ∂pi f ∂qi φ)

+(∂yφ∂x f − ∂y f ∂xφ)

denotes the Poisson parentheses of φ and f . One lets

φ =
∑
(k,h, j):

(k,h− j)=(0,0)

φkh j (I, y, x)eik·ϕphq j . (80)

The operation

φ → {φ, h}
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acts diagonally on the monomials in the expansion (80), carrying

φkh j → −(
ωy∂xφkh j + λkh jφkh j

)
, with λkh j := (h − j) · ωJ + ik · ωI . (81)

Therefore, one defines

{φ, h} =: −Dωφ .

The formal application of Φ = eLφ yields:

eLφH = eLφ(h + g + f ) = h + g − Dωφ + f + Φ2(h) + Φ1(g) + Φ1( f )(82)

where the Φh := Φh := ∑
j≥h

L j
φ

j ! ’s are the tails of e
Lφ .

Next, one requires that the residual term −Dωφ + f lies in the class Nρ,s,δ,r,ξ

in (53)

(−Dωφ + f ) ∈ Nρ,s,δ,r,ξ (83)

for φ.
Since we have chosen φ ∈ Zρ,s,δ,r,ξ , by (81), we have that also Dωφ ∈ Zρ,s,δ,r,ξ .

So, Eq. (83) becomes

−Dωφ + f̃ = 0 .

In terms of the Taylor–Fourier modes, the equation becomes

ωy∂xφkh j + λkh jφkh j = fkh j ∀ (k, h, j) : (k, h − j) = (0, 0) . (84)

In the standard situation, one typically proceeds to solve such equation via Fourier
series:

fkh j (I, y, x) =
∑

�

fkh j�(I, y)ei�x , φkh j (I, y, x) =
∑

�

φkh j�(I, y)ei�x

so as to find φkh j� = fkh j�
μkh j�

with the usual denominators μkh j� := λkh j + i�ωy which

one requires not to vanish via, e.g., a “diophantine inequality” to be held for all
(k, h, j, �) with (k, h − j) = (0, 0). In this standard case, there is not much free-
dom in the choice of φ. In fact, such solution is determined up to solutions of the
homogenous equation

Dωφ0 = 0 (85)
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which, in view of the Diophantine condition, has the only trivial solution φ0 ≡ 0.
The situation is different if f is not periodic in x , or φ is not needed so. In such a
case, it is possible to find a solution of (84), corresponding to a non-trivial solution
of (85), where small divisors do not appear. This is

φkh j (I, y, x) =
⎧⎨
⎩

1

ωy

∫ x

0
fkh j (I, y, τ )e

λkh j
ωy

(τ−x)dτ if (k, h − j) = (0, 0)

0 otherwise.
(86)

Multiplying by eikϕ and summing over k, h and j , we obtain

φ(I,ϕ, p, q, y, x) = 1

ωy

∫ x

0
f̃

(
I, ϕ + ωI

ωy
(τ − x), pe

ωJ
ωy

(τ−x)
, qe

− ωJ
ωy

(τ−x)
, y, τ

)
dτ .

In [18] it is proved that, under the assumptions (54), this function can be used to
obtain a convergent time-one map and that the construction can be iterated so as to
provide the proof of Theorem 2. The construction of the iterations and the proof of
its convergence is obtained adapting the techniques of [19] to the present case.
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