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Abstract We consider the classical problem of the construction of invariant tori
exploiting suitable Hamiltonian normal forms. This kind of approach can be trans-
lated by means of the Lie series method into explicit computational algorithms,
which are particularly suitable for applications in the field of Celestial Mechanics.
First, the algorithm constructing the Kolmogorov normal form is described in detail.
Then, the extension to lower-dimensional elliptic tori is provided.We adopt the same
formalism and notations in both cases, with the aim of making the latter easier to
understand. Finally, they are both used in a combined way in order to approximate
carefully the secular dynamics of the extrasolar system hosting two planets orbiting
around the HD 4732 star.
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1 Introduction

The birth of KAM1 theory was marked by a famous article written in 1954 by
A.N. Kolmogorov, i.e., [22]. At that epoch the great potential of KAM theorem in
order to solve interesting problems in the field of Celestial Mechanics was immedi-
ately understood. In fact, it was applied just a few years later in order to prove the
stability of the triangular Lagrangian points in the planar restricted problem of three
bodies for almost all admissible mass ratios (see [25]). Since then, several applica-
tions have ensured the existence of invariant tori in the context of other Hamiltonian
models that are of interest in Celestial Mechanics (see, e.g., [10]). Nevertheless, the
applications of KAM theory to physically realistic models have never been straight-
forward. This is mainly due to a few severe constraints that appear in the hypotheses
of KAM theorem (e.g., concerning the smallness on the parameter ruling the size of
the perturbation).

In the last few decades, the successful applications of KAM theory to Celestial
Mechanics introduced more and more refinements in the preliminary work to adapt
the Hamiltonian model in such a way to bypass the aforementioned difficulties (see,
e.g., [27, 28]). In someotherworks, the novelty concerns the designof a newapproach
strategy. In particular, this has been made by combining the results provided by two
different theorems; for instance, in [18, 20] the estimates à la Nekhoroshev have
been applied in the neighborhood of an invariant KAM torus, by following the proof
scheme described in [31]. This kind of strategy can be implemented in a natural way
by adopting an approach based on suitable normal forms. Indeed, different normal
form algorithms can be applied one after the other. This work has the ambitious
goal of fully explaining a very recent type of applications in the field of Celestial
Mechanics, where the computational procedure leading to the Kolmogorov normal
form is performed in the neighborhood of a periodic orbit. In turn, such an invariant
manifold is preliminarly located by a corresponding normal form for an elliptic torus.
The addition of this intermediate step is crucial in order to successfully apply our

1 It is worth to repeat, here and once again, the story explaining the choice of the acronym KAM. In
1954, during the International Congress of Mathematicians in Amsterdam, Kolmogorov presented
his version of the (KAM) theorem. In the same year, he also wrote the very short article [22],
where he provided just a scheme of the proof. According to a few direct witnesses, a few years later
Kolmogorov explained all the details of his proof in a cycle of lectures delivered at the Moscow
University. This was based on a sequence of canonical transformations coherently defined on a so
called scale of Banach spaces; a modern reformulation of the proof that should be very similar to
the original one is included in [11]. In 1963, V.I. Arnold (who had been a student of Kolmogorov)
published a complete proof of the theorem, based on a different approach able to ensure the exis-
tence of a Cantor set including many invariant tori and having positive Lebesgue measure (see the
statement of Corollary 1 and [1]). In the meantime, the german mathematician J. Moser developed
a completely independent version of the proof in the case of symplectic mappings (see [33]). Let
us also recall that at the beginning the correctness of the Kolmogorov’s approach was doubtful for
Moser. Indeed, also because of a famous sentence included in the report he wrote for Mathemati-
cal Reviews on the Kolmogorov’s article (see MR0097508, 20 n. 4066), for many years Arnold’s
approach was thought to be the only viable one, in order to prove KAM theorem for quasi-integrable
Hamiltonian systems.
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computational algorithm in its entirety to extrasolar planetary systems with rather
eccentric orbits (i.e., whose eccentricity values are significantly larger than those
observed for the gaseous planets of our Solar System).

The first theoretical results about the existence of elliptic tori go back to [13, 29,
36]. In the last two decades, similar statements have been proved also in the context
of Hamiltonian planetary systems (see [3, 4, 19]). In the present notes, we aim to
develop an approach that is far from being purely theoretical. Indeed, we will explain
how to extract from the proof schemes the information that is fundamental in order
to properly design a computational procedure, which allows to determine invariant
manifolds that are in good agreement with the orbital motions of extrasolar planets.

In the following, Sect. 2 contains a quick introduction of a few elementary notions
concerning the Hamiltonian perturbation theory and a careful description of the
normal form method constructing KAM tori. In Sect. 3, we show how that approach
can be adapted for the construction of lower-dimensional invariant manifolds of
elliptic type. In the final Sect. 4 our new application to an exoplanetary system is
explained in detail; this is designed by combining the two kind of normal forms
previously discussed, whose constructions are performed one after each other.

2 Basics of KAM Theory

2.1 Near to the Identity Canonical Transformations by Lie
Series

Let us consider two generic dynamical functions f = f ( p, q) andχ = χ( p, q), that
are defined on all the phase space endowed by n pairs of conjugate canonical variables
( p, q) = (p1 , . . . , pn , q1 , . . . , qn). It is well known that the time evolution of f
under the flow induced by χ is ruled by the Poisson bracket between these two
functions, i.e., ḟ = d

dt f ( p(t), q(t)) = { f,χ}, where

{ f , χ} =
n∑

j=1

∂ f

∂q j

∂χ

∂ p j
− ∂ f

∂ p j

∂χ

∂q j
(1)

and the flow ( p(t), q(t)) = Φ t
χ

(
p(0), q(0)

)
is defined by the solution of the corre-

sponding Hamilton equations

ṗ j = − ∂χ

∂q j
, q̇ j = ∂χ

∂ p j
, ∀ j = 1, . . . , n (2)

(being ( p(0), q(0)) regarded as initial conditions).
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Let us now focus on the Taylor expansion with respect to time of the generic
dynamical function f , i.e., f + t ḟ + t2

2
d
dt ḟ + . . . = f + t{ f,χ} + t2

2 {{ f,χ},χ} +
. . ., that can be reformulated in terms of Lie series. First, let us introduce the so called
Lie derivative operator:Lχ· = {·,χ}; in the present context, it is usual to refer to χ as
the generating function of the correspondingLie derivative. Thus, the previous Taylor
expansion in time can be expressed as exp

(
tLχ

)
f =∑∞

j=0
t j

j !L j
χ f . It is common to

define the Lie series operator just in the case with t = 1, i.e., it acts on the generic
dynamical function f in such a way that

exp
(Lχ

)
f =

∞∑

j=0

1

j !L
j
χ f ;

let us emphasize that this formula must be interpreted at a purely formal level, in the
sense that we do not wonder about the convergence of the series. However, it can be
ensured if the sup-norm of the generating function χ is small enough,2 as it is natural
to expect.

Since any single canonical coordinate can be seen as a particular dynamical func-
tion, we can express the Hamiltonian flow at time 1 in terms of Lie series in the
following way:

Φ1
χ( p, q) = exp

(Lχ

)
( p, q), (3)

where, for every pair of canonical variables (pi , qi ) (being i = 1, . . . , n), we put

Φ1
χ pi = exp

(Lχ

)
pi , Φ1

χqi = exp
(Lχ

)
qi .

It is well known that the Hamiltonian flow is canonical, then we readily obtain that
the map defined by the Lie series operator in the right hand side of (3) is canonical
as well. Moreover, such a change of coordinates is obviously close to the identity in
the limit of the generating functions shrinking to zero.

The canonical formalism makes very convenient the writing of the equations
of motion in the new variables. Let us assume that the evolution in the original
set of coordinates ( p, q) is ruled by a single function H = H( p, q) entering the
Hamilton equations (2) in place of χ; moreover, let ( p, q) = C(P, Q) be a canonical
transformation. Therefore, the new equations of motions can be written as follows:

Ṗj = − ∂K
∂Q j

, Q̇ j = ∂K
∂Pj

, ∀ j = 1, . . . , n, (4)

being K(P, Q) = H
(C(P, Q)

)
the new Hamiltonian function. In such a context,

the Lie series formalismmakes automatic (and, then, somehow easier) the procedure

2 The convergence of the Lie series is carefully discussed in [14, 15]; in particular, the explanatory
notes in [15] contains also a rather self-consistent introduction to the Lie series formalism in the
Hamiltonian framework.
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of substitution, because of the so called “exchange theorem” (see [14]). In fact, if χ
is a small enough generating function, the new Hamiltonian can be expressed as

K(P, Q) = exp
(Lχ

)
H
∣∣∣
( p,q)=(P,Q)

,

this means that we can apply the Lie series to the old Hamiltonian function so as to
rename the variables, only at the end. For more detailed explanations we defer to the
whole Sect. 4.1 of [15]. Of course, the same computational procedure holds also for
the corresponding canonical transformation, that is given by

( p, q) = C(P, Q) = exp
(Lχ

)
( p, q)

∣∣∣
( p,q)=(P,Q)

.

2.2 Statement(s) of KAM Theorem

First, let us recall the statement of KAM theorem as in its very first version introduced
by Kolmogorov (see [22]).

Theorem 1 (KAM, according to the version due to Kolmogorov) Consider a
Hamiltonian function H : A × T

n �→ R (being A ⊆ R
n an open set) of the form

H( p, q) = ω · p + h( p) + ε f ( p, q) where h is at least quadratic with respect to
the actions p, i.e., h( p) = O(‖ p‖2) for p → 0. Moreover, let us assume the follow-
ing hypotheses:

(a) ω is Diophantine; this means that there are two positive constants3 γ and τ such
that |k · ω| ≥ γ

|k|τ ∀ k ∈ Z
n \ {0};

(b) H is analytic on its action–angle4 domain of definition A × T
n;

(c) h( p) is non-degenerate, i.e., det
(

∂2 h
∂ pi ∂ p j

( p)
)

i, j 
= 0 ∀ p ∈ A;
(d) ε is a small enough parameter.

Therefore, there is a canonical transformation ( p, q) = ψε(P, Q), leading H in
the so called Kolmogorov normal form K(P, Q) = ω · P + O(‖P‖2), being K =
H ◦ ψε .

In our exposition of these topics, we do not consider all the very interesting
mathematical work that has been done in the last fifty years in order to weaken the

3 Indeed, in order to satisfy the Diophantine inequality, it is essential that τ ≥ n − 1.
4 Although there exist formulations of the KAM theorem that are not dealing with action–angle
canonical coordinates (see, e.g., [12]), we stress that this is a rather natural framework to assume.
In fact, by definition a n–dimensional torus T

n is in a bijective correspondence with n angles,
denoted as (q1 , . . . , qn) in agreement with the text. Thus, they can be adopted as coordinates.
Let us recall that in Hamiltonian mechanics the product between each conjugate pair of canonical
variables has the physical dimension of an action, that is the same as an angular momentum.
Therefore, ∀ j = 1, . . . n, the conjugate momentum p j is an action, because ( p, q) are assumed
to be canonical coordinates.
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assumptions on the KAM theorem. We prefer to focus on what makes the theorem
suitable to apply to interesting physical problems. This is somehow hidden in the
thesis of the statement and, mainly, in the proof scheme. Let us highlight such a
content.

One can easily verify that, if the Hamiltonian is in the Kolmogorov normal
formK(P, Q) = ω · P + O(‖P‖2), then t �→ (P(t) = 0 , Q(t) = Q0 + ωt) is the
solution for the equations of motion (4) starting from the generic initial conditions
(P(0) , Q(0)) = (0 , Q0). Since the canonical transformations enjoy the property
of preserving solutions, this allows us to design the following integration scheme for
the equations of motion (3), when the generic Hamiltonian χ is replaced by H , that
describes the problem we are considering:

(
p(0), q(0)

) ψ−1
ε

−→ (P(0) , Q(0))
⏐⏐� Φ t

K

(
p(t), q(t)

) ψε

←− (P(t) , Q(t))

. (5)

In the scientific literature, this way to compute the motion law t �→ ( p(t) , q(t)) =
Φ t

H ( p(0) , q(0)) is often said to be semi-analytic. Such a name is due to the fact
that the schematic procedure above is usually performed after having determined the
Fourier expansions of the canonical transformation ψε , by using a software package
designed for doing computer algebra manipulations.

In spite of the fact that the very first version of the KAM theorem ensures the
existence of a single invariant torus, the statement can be extended so as to cover a
very generic situation. Indeed, in his very short but incredibly seminal article [22],
Kolmogorov recalled awell known result of number theory: almost all n–dimensional
vectors are Diophantine. This remark jointly with the uniform non-degeneracy of the
so called action-frequency map in the integrable approximation, i.e., p �→ ω( p) =(

∂ h
∂ pi

( p)
)

i=1,...,n , allowed him to state the following result in [22].

Corollary 1 (KAM, according to the version proved by Arnold) Consider a quasi-
integrable Hamiltonian depending on action–angle variables, i.e., H : A × T

n �→ R

(being A ⊆ R
n an open set) of the form H( p, q) = h( p) + ε f ( p, q). If we assume

the same hypotheses (b)–(d) of Theorem 1, then there is a set Sε that is made by
invariant tori and is such that its Lebesgue measure μ

(Sε

)
is positive. Moreover,

lim
ε→0

μ
((A × T

n
) \ Sε

)
= 0 .

Let us emphasize that this statement highlights one of the main merits of the KAM
theorem: it shows that there is a sort of continuity (in terms of the Lebesgue measure)
between integrable systems and quasi-integrable ones. From one hand, this sort of
intuitive concept was (and still is) considered to be extremely natural; on the other
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hand, at that epoch such an expectation was in contrast with the famous theorem by
Poincaré (that can be felt as somehow paradoxical, see [34]) on the non-existence of
integrals of motion apart from the energy for a generic quasi-integrable Hamiltonian
system.

Although the statement of the Corollary above can be easily deduced from the
original version of the KAM theorem that is due to Kolmogorov, the proof scheme
introduced by Arnold in [1] is extremely deep, because it provides a more global
picture of the dynamics. This approach has been further extended, for instance,
in [35], where it is proved that quasi-integrable Hamiltonian satisfying the usual
hypotheses (b)–(d) of Theorem 1 can be conjugated to integrable ones via a canonical
transformation that is not analytic, but it is C(∞).

2.3 Algorithmic Construction of the Kolmogorov Normal
Form

These notes are focusing more on the applications based on the KAM theory rather
than on the theory itself. Therefore, it is important to describe carefully the so
called formal algorithm constructing theKolmogorov normal form. The results about
the convergence of such a computational procedure are very well established (see,
e.g., [17]) and in the following we will just briefly recall them.

For the sake of definiteness, we need to introduce some notations. For a fixed
positive integer K we introduce the distinct classes of functions P�,sK , for all non-
negative indexes �, s ≥ 0 . Any generic function g ∈ P�,sK can be written as

g( p, q) =
∑

j∈Nn

| j |=�

∑

k∈Zn

|k|≤sK

c j ,k p j exp
(
ik · q) , (6)

where ( p, q) are action–angle canonical variables and the coefficients c j ,k ∈ C

satisfy the following relation: c j ,−k = c̄ j ,k so that g : R
n × T

n �→ R. Moreover,
in the previous formula, we have introduced the symbol | · | to denote the �1-
norm (i.e., |k| = |k1| + . . . + |kn|) and we have adopted the multi-index nota-
tion, i.e., p j = p j1

1 · . . . · p jn
n . In the following, we will adopt the usual notation

for the average of a function g with respect to the generic angles ϑ ∈ T
n , i.e.,

〈g〉ϑ = ∫
Tn dϑ1 . . . dϑn g/(2π)n .

We will start the formal algorithm from a Hamiltonian of the following type:

H (0)( p, q;ω(0)) = E (0) + ω(0) · p +
∑

s≥0

∑

�≥2

f (0, s)
� ( p, q;ω(0))

+
∑

s≥1

1∑

�=0

f (0, s)
� ( p, q;ω(0)) ,

(7)
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where f (0, s)
� ∈ P�,sK , being the first upper index related to the normalization step, and

E (0) ∈ P0,0 is a constant meaning the energy level of the torus
{
( p, q) : p = 0, q ∈

T
n
}
that is invariant in the integrable approximation. The occurrence of ω(0) at the

end of the list of the arguments emphasizes that those functions depend also on that
angular velocity vector in a parametric way.We also stress that the terms appearing in
the second row of formula (7) have to be considered as the small perturbation we aim
to remove in order to bring the Hamiltonian in Kolmogorov normal form. According
to the definition given by Poincaré (see [34]), the general problem of the dynamics
is described by a real analytic Hamiltonian of type H(I,ϕ; ε) = h(I) + ε f (I,ϕ),
being (I,ϕ) action–angle coordinates and ε a small parameter. It is well known that
such an Hamiltonian can be put in the form (7) provided that the Hessian of the
integrable part h is non-degenerate on its open domain, sayA ⊆ R

n . Indeed, it is just
matter of performing a canonical change of coordinates that translates the origin of
the actions in correspondence to I� ∈ A, because

∂h
(
I
)

∂ I j

∣∣∣∣
I=I�

= ∂h
(
I( p)

)

∂ p j

∣∣∣∣
p=0

= ω(0)
j ∀ j = 1, . . . , n ,

where I = p + I�. Obviously, the so called action–frequency map in the integrable
approximation, i.e., I� �→ ω(0), can be inverted because the Hessian of h is non-
degenerate. Therefore, the angular velocity vector ω(0) can be used instead of I�

in order to parameterize the whole Hamiltonian. Moreover the Fourier decay of the
coefficients with respect to the angles q = ϑ allows to perform the expansion (7)
in such a way that f (0, s)

� = O(εs). In other words, the positive integer parameter K
can be chosen in such a way that the superscript s refers at the same time to both
the order of magnitude and the trigonometric degree (being f (0, s)

� ∈ P�,sK ); more
details about that can be found in [17].

We are now ready for the description of the (generic) r -th step of the normal-
ization procedure, which defines the Hamiltonian H (r) starting from H (r−1), whose
expansion is written as follows:

H (r−1)( p, q) = E (r−1) + ω(r−1) · p +
∑

s≥0

∑

�≥2

f (r−1, s)
� ( p, q)

+
∑

s≥r

1∑

�=0

f (r−1, s)
� ( p, q) .

(8)

Hereafter, we omit the dependence of the function from the parameters, unless it has
some special meaning. Let us assume that some fundamental properties that hold true
for H (0) are satisfied also for the expansion above of H (r−1), i.e., f (r−1, s)

� ∈ P�,sK

and f (r−1, s)
� = O(εs). Since the r -th normalization step aims to remove themain per-

turbing terms, that are f (r−1, r)
0 and f (r−1, r)

1 , we introduce a first generating function
χ(r)
1 , that is determined by solving the following (first) homological equation:
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{
ω(r−1) · p, χ(r)

1

}
+ f (r−1, r)

0 (q) = 〈 f (r−1,r)
0 (q)〉q . (9)

Since f (r−1, r)
0 ∈ P0,r K , its expansion is written as

f (r−1, r)
0 (q) =

∑

|k|≤r K

ck exp
(
ik · q) ,

where the complex coefficients are such that c−k = c̄k . Therefore, one can easily
check that the first homological equation (9) is solved by putting 〈 f (r−1,r)

0 (q)〉q = c0
and

χ(r)
1 (q) =

∑

0<|k|≤r K

ck exp
(
ik · q)

ik · ω(r−1)
. (10)

In order to preserve the validity of the solution above, of course, we have to require
that none of the divisors can eventually vanish; thus we assume the following non-
resonance condition:

k · ω(r−1) 
= 0 ∀ 0 < k ≤ r K . (11)

The first half of the r -th normalization step is completed by introducing Ĥ (r) =
exp
(Lχ(r)

1

)
H (r−1). Such an intermediate Hamiltonian can be written in a form similar

to formula (8), i.e.,

Ĥ (r)( p, q) =E (r) + ω(r) · p +
∑

s≥0

∑

�≥2

f̂ (r, s)
� ( p, q) +

∑

s≥r

1∑

�=0

f̂ (r, s)
� ( p, q) , (12)

where the recursive definitions of the new summands f̂ (r, s)
� (in terms of f (r−1, s)

� ) can
be given by exploiting the linearity of the Lie series and by separating the functions
according to the different classes P�,sK they belong to. We think it is convenient
to formulate these definitions in a rather unconventional way, by using a notation
similar to that commonly used in the programming languages; in our opinion, such
a choice should make easier the translation of the formal algorithm in any code
to be executed in a computational environment. For this purpose, we first define5

f̂ (r, s)
� ( p, q) = f (r−1, s)

� ( p, q) ∀ � ≥ 0, s ≥ 0. Then, by abuse of notation, we update
�s/r� times the definition of the terms f̂ (r, s)

� appearing in the expansion of the new
Hamiltonian according to the following rule:

f̂ (r, s+ jr)

�− j ←↩
1

j !L
j

χ(r)
1

f (r−1, s)
� ∀ � ≥ 1, 1 ≤ j ≤ �, s ≥ 0 , (13)

5 We remark that f (r−1, s)
� do not enter in the expansion (8) if � = 0, 1 and s < r . The same applies to

the terms f̂ (r, s)
� that do not make part of the expression of Ĥ (r), which is written in (12). However,

the recursive definitions described in the present subsection are such that f (r−1, s)
� = f̂ (r, s)

� = 0
∀ 0 ≤ s < r when � = 0, 1.
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where with the notation a ←↩ b we mean that the quantity a is redefined so as to
be equal to a + b. Moreover, there is a last additional contribution that is due to the
application of the Lie series to the Hamiltonian H (r−1), and in order to take it into
account we write

f̂ (r, r)
0 ←↩ Lχ(r)

1
ω(r−1) · p . (14)

However, because of the homological equation (9), we can finally put f̂ (r, r)
0 = 0 and

update the constant energy value so that

E (r) = E (r−1) + 〈 f (r−1, r)
0 〉q . (15)

At this point, it is important to remark that the angular average of the remaining
perturbing term that is O(εr ), i.e., 〈 f̂ (r, r)

1 〉q is exactly of the same type as ω(r−1) · p
(this means that both of them are linear with respect to the actions and do not depend
on the angles). Therefore, it is useful to update also the angular velocity vector6 by
joining together these two terms. This can be done, by redefining

ω(r) · p = ω(r−1) · p + 〈 f̂ (r, r)
1 〉q (16)

and
f̂ (r, r)
1 = f̂ (r, r)

1 − 〈 f̂ (r, r)
1 〉q . (17)

Let us recall that all the terms f̂ (r, s)
� that appear in formula (12) are organized so

that they belong to different classes of functions. In order to prove that these structures
are suitably preserved by the normalization algorithm, the following statement is
essential.

Lemma 1 Let us consider two generic functions g ∈ P�,sK and h ∈ Pm,r K , where
K is a fixed positive integer number. Then, the following inclusion property holds
true7: {

g, h
} = Lh g ∈ P�+m−1,(r+s)K ∀ �, m, r, s ∈ N .

The proof is omitted, because it can be obtained as a straightforward consequence of
the definition of the Poisson brackets. By applying repeatedly the lemma above and
a trivial induction argument to formulæ (13)–(17), one can easily prove that E (r) ∈
P0,0 and f̂ (r, s)

� ∈ P�,sK for all the terms of type f̂ (r, s)
� that appear in formula (12).

Moreover, it can be ensured that
∣∣E (r) − E (r−1)

∣∣ = O(εr ) and f̂ (r, s)
� = O(εs), if the

same relation is assumed to be true at the end of the previous normalization step, i.e.,
f (r−1, s)
� = O(εs).

6 We emphasize that this is one of the main differences with respect to the original proof scheme
designed by Kolmogorov, where the angular velocity vector is kept fixed at every normalization
step (see [5] for a fully consistent translation of such an approach, that is implemented by using the
Lie series technique).
7 The statement can be considered as valid also in the trivial case with � = m = 0, by enlarging the
definition of the classes of functions so that P−1,sK = {0} ∀ s ∈ N.
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In order to complete the r -th normalization step, we have to remove the remaining
perturbing term that isO(εr ) and appears in the expansion (12) of Hamiltonian Ĥ (r),
i.e., f̂ (r, r)

1 . For such a purpose, we determine a second generating function χ(r)
2 , by

solving the following (second) homological equation:

{
ω(r) · p, χ(r)

2

}
+ f̂ (r, r)

1 ( p, q) = 0 . (18)

We can deal with the equation above in a very similar way with respect to what has
been done for the first homological equation (9). In fact, the solution of (18) can be
written as follows:

χ(r)
2 ( p, q) =

∑

| j |=1

∑

0<|k|≤r K

c j ,k p j exp
(
ik · q)

ik · ω(r)
, (19)

where the expansion of the perturbing term f̂ (r, r)
1 ∈ P1,r K is of type

f̂ (r, r)
1 ( p, q) =

∑

| j |=1

∑

0<|k|≤r K

c j ,k p j exp
(
ik · q) .

Let us recall that the angular average of f̂ (r, r)
1 is equal to zero, because of the redefi-

nition (17). Of course, the solution written in (19) is valid provided that the following
non-resonance condition is satisfied:

k · ω(r) 
= 0 ∀ 0 < k ≤ r K . (20)

Finally, H (r) = exp
(Lχ(r)

2

)
Ĥ (r) is the new Hamiltonian that is defined by the canon-

ical transformation of coordinates that is introduced by the r -th normalization step.
Also the expansion of such a Hamiltonian can be written in a form similar to (8), i.e.,

H (r)( p, q) =E (r) + ω(r) · p +
∑

s≥0

∑

�≥2

f (r, s)
� ( p, q) +

∑

s≥r+1

1∑

�=0

f (r, s)
� ( p, q) . (21)

In this case too, the recursive definitions of the new summands f (r, s)
� can be given

by exploiting the linearity of the Lie series and by separating the functions according
to the different classes they belong to. Let us start by introducing f (r, s)

� ( p, q) =
f̂ (r, s)
� ( p, q) ∀ � ≥ 0, s ≥ 0. By a new abuse of notation, we update many times the

definition of the terms appearing in the expansion of Hamiltonian H (r) according to
the following rule:

f (r, s+ jr)

� ←↩
1

j !L
j

χ(r)
2

f̂ (r, s)
� ∀ � ≥ 2, j ≥ 1, s ≥ 0 or ∀ � = 0, 1, j ≥ 1, s > r .

(22)
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In order to take into account also the summands that are generated by the application
of the Lie series exp

(Lχ(r)
2

)
to both the terms ω(r) · p and f (r, r)

1 ( p, q), we add the
prescription

f (r, ( j+1)r)

1 ←↩
j

( j + 1)!L
j

χ(r)
2

f̂ (r, r)
� ∀ j ≥ 1 , (23)

where we make use of formula (18). Also the last redefinition, i.e.,

f (r,r)
1 = 0 , (24)

is a straightforward consequence of the second homological equation. By applying
again Lemma 1 and a trivial induction argument to formulæ (22)–(23), one can
easily prove that f (r, s)

� ∈ P�,sK for all the summands f (r, s)
� = O(εs) that appear in

formula (21).
This final remark ends the description of the r -th normalization step of the algo-

rithm that can be iterated so as to determine the next Hamiltonian H (r+1), starting
from H (r), and so on.

Let us add a few further comments about the algorithm constructing the Kol-
mogorov normal form in order to understand its applicability. In practice, one is
often interested in determining an approximation up to a fixed order, say RI ∈ N, of
the motions travelling an invariant KAM torus. For this purpose, starting from H (0),
one has to preliminarly compute the Taylor-Fourier truncated expansions of the fol-
lowing type, for all the Hamiltonian H (r) that are introduced by the normalization
algorithm with r = 1, . . . , RI :

H (r)( p, q) � E (r) + ω(r) · p +
RI∑

s=0

�max∑

�=0

f (r, s)
� ( p, q) , (25)

where all the terms that are o
(
εRI
)
or of polynomial degree larger than �max with

respect to the actions8 have been neglected. Let us recall that the algorithm works in
such a way to define f (r, s)

� = 0 ∀ � = 0, 1 , 0 ≤ s ≤ r . When the first RI normaliza-
tion steps are performed, all the generating functions χ(r)

1 and χ(r)
2 ∀ r = 1, . . . , RI

are fully determined. Their composition allows to compute the expansion of ψε that
enters in the definition of the semi-analytic scheme of integration (5) and is truncated,

8 In the practical applications, it is very common to truncate this kind of Taylor series expansions
up to a finite degree. In this framework, it is important to remark that the upper limit on the
degree in actions is preserved by the Lie series having χ

(r)
1 ∈ P0,r K and χ

(r)
2 ∈ P1,r K as generating

functions. This can be easily checked by applying repeatedly Lemma 1, that can be used also to
prove that just functions of type f (r, s)

� with � ≤ RI + 1 are involved in the definitions of χ
(r)
1 and

χ
(r)
2 ∀ r = 1, . . . , RI . In other terms, this means that the request of determining an approximation

up to a fixed order of magnitude O(εRI
)
(for what concerns the canonical transformation that

conjugates some orbits to an invariant torus) yields in a fully consistent way also a truncation limit
on the polynomial degree in the actions.
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once again, so as to neglect all the summands that are o
(
εRI
)
. Therefore, the wanted

approximation of the motions travelling an invariant KAM torus up to a fixed order
of magnitudeO(εRI

)
can be provided by the scheme (5) where also the normal form

HamiltonianK is replaced by H (RI), which requires �max
(
RI + 1)2 functions of type

f (r, s)
� ∈ P�,sK to be determined. Since their expansions in Taylor-Fourier series are

finite (recall definition (6)), all their coefficients are representable on a computer
(that is equipped with a large enough memory). Therefore, it is finite also the num-
ber of elementary operations that are defined by the Poisson brackets prescribed by
normalization algorithm. The same conclusion applies also for the aforementioned
expansion of the canonical transformation ψε . As a whole, we can conclude that the
wanted approximation of the motions travelling an invariant KAM torus is explicitly
computable, because the total amount of operations that are defined by the normal-
ization algorithm is finite.

2.4 On the Convergence of the Algorithm Constructing the
Kolmogorov Normal Form

In the present context, it is useful to introduce another version of the KAM theorem.

Proposition 1 Consider the family of Hamiltonians H (0)( p, q;ω(0)) of the type
described in (7). Those functions are defined so that H (0) : A × T

n × U �→ R, where
both A and U are open subsets of Rn, being 0 ∈ A and U bounded. Therefore,
( p, q) are action-angle canonical coordinates and the family of Hamiltonians is
parameterized with respect to ω(0) ∈ U . Let us also assume that for some fixed and
positive values of K ∈ N, ε ∈ R and E ∈ R, the following inequalities are satisfied
by the functions f (0,s)

� ∈ P�,sK :

sup
( p,q;ω(0))∈A×Tn×U

∣∣∣ f (0,s)
� ( p, q;ω(0))

∣∣∣ ≤ E εs (26)

∀ s ≥ 1, � ≥ 0 and ∀ � ≥ 2 when s = 0.
Then, there is a positive ε� such that for 0 ≤ ε < ε� the following statement holds

true: there exists a non-resonant set U (∞) ⊂ U such that the Lebesgue measure μ of
the complementary set U \ U (∞) goes to zero for ε → 0 and for each ω(0) ∈ U (∞)

there is an analytic canonical transformation ( p, q) = ψ(∞)

ε;ω(0) (P, Q) leading the
Hamiltonian to the normal form

H (∞)(P, Q;ω(0)) = E (∞) + ω(∞) · P +
∑

s≥0

∑

�≥2

f (∞, s)
� (P, Q;ω(0)) , (27)

where f (∞, s)
� ∈ P�,sK ∀ s ≥ 0, � ≥ 2 and E (∞) is a finite real value fixing the

constant energy level that corresponds to the invariant torus
{
(P = 0, Q ∈ T

n)
}

.
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Moreover, the canonical change of coordinates is close to the identity in the sense
that

∥∥ψ(∞)

ε;ω(0) (P, Q) − (P, Q)
∥∥ = O(ε) and the same applies also to both the energy

level and the detuning of the angular velocity vector (that are
∣∣E (∞) − E (0)

∣∣ = O(ε)
and

∥∥ω(∞) − ω(0)
∥∥ = O(ε), respectively).

The statement above is substantially equivalent to that claimed in theorem C of [36]
(which is considered as a classical versionof theKAMtheorem, in the veryownwords
of the Author, J. Pöschel). The proof of Proposition 1 can be obtained by adapting
the one described in [7] in such a way to prove the convergence of the normalization
algorithm described in the previous Sect. 2.3. Indeed, both articles [7, 36] deal only
with the more complicate proof of existence for invariant tori that are of dimension
smaller than the number n of degrees of freedom and have elliptic character in the
transverse directions. The construction of the normal form corresponding to such a
type of invariant manifolds will be widely discussed in the next Sect. 3. As a main
difference between the approaches developed in those twoworks, let us recall that the
proof adopted in [36] is based on a fast convergence scheme of quadratic type (a so
called Newton-like method, where perturbing terms of order of magnitude O(ε2r−1)

are removed during the r -th normalization step). Such a technique has been adopted
since the very first works in KAM theory, but the convergence of the normalization
algorithm described in Sect. 2.3 is of linear type (because perturbing terms of order
of magnitude O(εr

)
are removed during the r -th normalization step). The latter is

in a better position for the applications9 and a complete proof of the KAM theorem
adopting a convergence method of linear type is available since the last decade of
the past century (see [17]). Rather curiously, the best way to translate the algorithm
constructing the Kolmogorov normal form in a computer-assisted proof requires
to join the convergence scheme of linear type (in order to explicitly perform on a
computer the largest possible number RI of preliminary steps) with that of quadratic
type (that provides a statement of KAM theorem that is very suitable to rigorously
complete the proof). This is one of the main conclusions discussed in a recent work
(see [40]).

The statement of Proposition 1 highlights that we are forced to provide a result
which holds true with respect to the Lebesgue measure, because we have chosen
to adopt a version of the normalization algorithm where the angular velocity vector
is allowed to vary at each step (recall formula (16) that defines the detuning shift
ω(r) − ω(r−1)). This means that such a statement has to be understood in a prob-
abilistic sense, because we are not able to describe in detail the structure of the
non-resonant set U (∞). In particular, for a fixed initial value of the angular velocity
vector ω(0) we cannot establish whether the specific Hamiltonian H (0)( p, q;ω(0))

can be brought in Kolmogorov normal form or not. We can just claim that the nor-
malization algorithm can converge with a rate of success (i.e., μ

(U \ U (∞)
)
/μ(U))

that gets larger and larger when the small parameter ε which rules the size of the

9 This is the main reason why the present work is focusing on approaches based on a convergence
scheme of linear type. A very far from being exhaustive list of references to applications of KAM
theorem has been discussed in the Introduction.
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perturbation is decreasing. On the other hand, we can characterize very well the set of
the final values of the angular velocities, i.e.,

{
ω(∞)

(
ω(0)

) : ω(0) ∈ U (∞)
}
, because

they are Diophantine. In the recent work [37], the problem of the convergence of this
type of normalization algorithms is revisited so as to provide a KAM-like statement.
It is proved by fixing since the beginning the final value ω(∞) and its non-resonance
properties (that allow to explicitly solve the homological equations at every step of
the algorithm). Moreover, the total detuning ω(∞) − ω(0) is given in terms of series
whose coefficients are defined in a recursive way. Therefore, the convergence of the
normalization algorithm is ensured (provided that the perturbation is small enough),
the total detuning is estimated explicitly, while the exact location of ω(0) remains
partially unknown, because it can be determined just by iterating ad infinitum the
computational procedure.

3 Construction of Invariant Elliptic Tori by a Normal Form
Algorithm

Elliptic tori are compact invariant manifolds of dimension smaller than the maximal
one, that is equal to the number n of degrees of freedom. In order to better imagine
them, let us consider a phase space F that is endowed by the canonical coordi-
nates (P, Q, X,Y), where (P, Q) ∈ R

n1 × T
n1 are action-angle variables and also

(X,Y) ∈ R
n2 × R

n2 denote pairs of conjugate (momenta and) coordinates, while
n = n1 + n2 with both n1 and n2 positive integers. Let us consider a Hamiltonian of
the following type:

H(P, Q, X,Y) = ω · P +
n2∑

j=1

Ω j

2
(X2

j + Y 2
j ) + R(P, Q, X,Y) ,

where Ω ∈ R
n2 and the remainderR is an analytic function with respect to its argu-

ments and is such thatR(P, Q, X,Y) = o
(‖P‖ + ‖(X,Y)‖2), when (P, X,Y) →

(0, 0, 0). It is easy to check that

(P(t), Q(t), X(t),Y(t)) = (0, Q(0) + ωt, 0, 0
)

(28)

is a solution of Hamilton equations, since the function H, except for its main part,
contains terms of typeO(‖P‖2),O(‖P‖‖(X,Y)‖) andO(‖(X,Y)‖3) only. Because
of this remark, it is evident that the n1–dimensional manifold

{
(P, Q, X,Y) : P =

0, Q ∈ T
n1 , X = Y = 0

}
is invariant. The elliptical character is given by the fact

that, in the remaining n2 = n − n1 degrees of freedom, the dynamics that is trans-
verse with respect to such an invariant manifold is given by the composition of n2

oscillatory motions whose periods tend to the values 2π/Ω1 , . . . , 2π/Ωn2 , in the
limit of (P, X,Y) → (0, 0, 0). Of course, this is due to the occurrence of the term
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Q

P

X

Y

×

Fig. 1 Schematic representation of an elliptic torus. The orbit is given by the cartesian product of
the two invariant surfaces that are marked in red, that are a torus (in the left panel) and a stable
equilibrium point (on the right, resp.)

∑n2
j=1 Ω j (X2

j + Y 2
j )/2 which overwhelms the effect of the remainder R in the so

called limit of small oscillations.
The name of elliptic torus is well justified by all the remarks discussed since the

beginning of the present section. A schematic representation of such kind of invariant
manifolds is sketched in Fig. 1.

3.1 Algorithmic Construction of the Normal Form for
Elliptic Tori

Since we aim at introducing the algorithm constructing the normal form for invari-
ant elliptic tori in a way that is as much as possible coherent with what we have
already done in Sect. 2.3 for KAM tori, we prefer to not adopt canonical coordinates
( p, q, x, y) ∈ R

n1 × T
n1 × R

n2 × R
n2 that are substantially the ones considered in

the discussion at the beginning of the present section. Indeed, we think it is conve-
nient to introduce the so called action-angle coordinates for harmonic oscillators, in
order to replace the polynomial ones, that are (x, y) ∈ R

n2 × R
n2 ; this means that we

define (J,ϕ) ∈ (Rn2+ ∪ {0})× T
n2 so that x j = √2Jj cosϕ j and y j = √2Jj sinϕ j ,

where this change of coordinates is canonical ∀ j = 1, . . . , n2 .
We are now ready to introduce classes of functions depending on ( p, q, J,ϕ) ∈

R
n1 × T

n1 × (Rn2+ ∪ {0})× T
n2 in a very similar way to what has been previously

done. For some fixed positive integer K we introduce the distinct classes of func-
tions P̂m̂, �̂, sK , with integers m̂, �̂, s ≥ 0 ; any generic function g ∈ P̂m̂, �̂, sK can be
written as
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g ( p, q, J,ϕ) =
∑

m∈Nn1

|m|=m̂

∑

�∈Nn2

|�|=�̂

∑

k∈Zn1

|k|≤sK

∑

�̂ j =−� j ,−� j +2,..., � j
j=1, ... ,n2

cm,�,k,�̂ pm
(√

J
)�
exp
[
i(k · q + �̂ · ϕ)

]
,

(29)
where the complex coefficients are such that cm,�,−k,−�̂ = c̄m,�,k,�̂, then the codomain

of any g ∈ P̂m̂, �̂, sK is included in R. Let us emphasize that, in each term appear-
ing in the Taylor-Fourier expansion of a function belonging to a class of type
P̂m̂, �̂, sK , the indexes vector (�̂1 , . . . , �̂n2) are subject to special restrictions that
are inherited by the corresponding polynomial structure with respect to the variables
(x, y) = (√2J cosϕ,

√
2J sinϕ

)
. In fact, they are such that ∀ j = 1, . . . , n2 the

j-th component of the Fourier harmonic �̂ j must have the same parity with respect
to the corresponding degree � j of

√
Jj and also the inequality

∣∣�̂ j

∣∣ ≤ � j must be
satisfied.10 Furthermore, we will say that g ∈ P�,sK if

g ∈
⋃

m̂≥0,�̂≥0
2m̂+�̂=�

P̂m̂,�̂,sK . (30)

In other words, a function belonging to the class P�,sK depends on the actions so
as to be homogeneous polynomials of total degree � in the square roots of p and J ,
while its Fourier expansion contain harmonics of total trigonometric degree in q that
are not larger than sK .

In order to extend the approach described in Sect. 2.3 with the aim to design an
efficient algorithm constructing the normal form in the case of elliptic tori, we are
also forced to reformulate the Lemma 1 in a suitable version to describe the action
of the Poisson brackets on these new classes of functions, that are defined thanks to
formulæ (29)–(30). This is made as it follows.

Lemma 2 Let us consider two generic functions g ∈ P�,sK and h ∈ Pm,r K , where
K is a fixed positive integer number. Then,11

{
g, h
} = Lh g ∈ P�+m−2,(r+s)K ∀ �, m, r, s ∈ N .

10 When there are variables such that they appear in the Taylor-Fourier expansions of a function
so that they follow this kind of restrictions, then they are often said to be of D’Alembert type.
This name is given by analogy, because in Celestial Mechanics the secular part of the Hamiltonian
perturbing terms due to the interactions between planets shows the same kind of expansions, since
they satisfy the so called D’Alembert rules.
11 The statement can be considered as valid also in the trivial cases with � + m = 0, 1, by enlarging
the definition of the classes of functions so that P−2,sK = P−1,sK = {0} ∀ s ∈ N.
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Also in this case the proof is omitted, because it can be obtained by simply applying12

the definition of the Poisson brackets.
As an environment where it is natural to properly define the algorithm con-

structing the normal form for elliptic tori, let us start to consider a Hamiltonian
H(0)( p, q, J,ϕ) that can be written in the following way:

H(0)( p, q, J,ϕ) = E (0) + ω(0) · p + Ω (0) · J +
∑

s≥0

∑

�≥3

f (0, s)
� ( p, q, J,ϕ)

+
∑

s≥1

2∑

�=0

f (0, s)
� ( p, q, J,ϕ) ,

(31)

where E (0) ∈ P0,0 is a constant13 and f (0, s)
� ∈ P�,sK , being the first upper index

related to the normalization step. For instance, in [8] it is shown how to bring an FPU
chain of N + 1 particles in the form above, by following a procedure that is valid for
a generic Hamiltonian problem in the neighborhood of a stable equilibrium point. In
other words, the Hamiltonian describing that model can be expanded asH(0) in (31),
with f (0, s)

� = 0 when s ≥ 3 and f (0, 1)
� ∈ P�,K , f (0, 2)

� ∈ P�,2K ∀ � ≥ 0, being14

K = 2. This holds true, both for the so called α–model and the β one. Let us also
emphasize that the energy value E (0), the angular velocity vector Ω (0) ∈ R

n2 and all
the functions f (0, s)

� depend on ω(0) ∈ R
n1 in a parametric way. In order to keep the

notation so that it does not get too cumbersome, in the present subsection we do
not include ω(0) among the arguments of the terms appearing in the expansions of
the Hamiltonians. Moreover, for a generic problem in the neighborhood of a stable
equilibrium point one can also easily show that f (0, s)

� = O(εs), where ε is the natural

12 Actually, it looks natural to be doubtful about the fact that Poisson brackets always preserve
the restrictions on the Fourier harmonics that must be satisfied by variables of D’Alembert type.
However, one can immediately realize that the only tricky case occurs when the Poisson brackets
include also the following terms:

∂
(√

J j )
|�̂ j | exp(i�̂ j ϕ j )

∂ϕ j

∂
(√

J j )
|m̂ j | exp(im̂ j ϕ j )

∂ J j

−∂
(√

J j )
|�̂ j | exp(i�̂ j ϕ j )

∂ J j

∂
(√

J j )
|m̂ j | exp(im̂ j ϕ j )

∂ϕ j

= i

2

(
�̂ j |m̂ j | − m̂ j |�̂ j |

)(√
J j )

|�̂ j |+|m̂ j |−2 exp
(
i(�̂ j + m̂ j )ϕ j

)
.

However, if �̂ j and m̂ j have opposite signs then
∣∣�̂ j + m̂ j

∣∣ ≤ ∣∣�̂ j
∣∣+ ∣∣m̂ j

∣∣− 2 (let us remark that

the term above vanishes if �̂ j = 0 or m̂ j = 0). In the remaining case (i.e., �̂ j 
= 0 and m̂ j 
= 0 have
the same sign), the coefficient �̂ j |m̂ j | − m̂ j |�̂ j | is always equal to zero.
13 E(0) denotes the energy level of the elliptic torus that is invariant in the approximation given by
the angular average, i.e., when f (0, s)

� = 0 ∀ s > 0.
14 Setting K = 2 is quite natural for Hamiltonian systems close to stable equilibria, see, e.g., [20].
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small parameter for this kind of models, because it denotes the first approximation
of the distance (expressed in terms of the actions) between the wanted elliptic torus
and the stable equilibrium point.

In a strict analogy with what has been done to construct the Kolmogorov normal
form, here our main purpose is to eliminate from the Hamiltonian all the terms
having total degree less than three in the square root of the actions; by referring to
the paradigmatic form described in (31), the unwanted terms are appearing in its
last row. Actually, such a goal can be achieved by performing an infinite sequence
of canonical transformations, so as to bring the Hamiltonian to the following final
normal form:

H(∞)(P, Q, Ξ , Θ) = E(∞) + ω(∞) · p + Ω(∞) · Ξ +
∑

s≥0

∑

�≥3

f (∞, s)
�

(P, Q, Ξ , Θ) ,

(32)
with f (∞, s)

� ∈ P�,sK and E (∞) ∈ P0,0. The motion law (P(t), Q(t),Ξ(t),Θ(t)) =(
0, Q0 + ω(∞)t, 0,Θ

)
is a solution of the Hamilton equations related to the normal

formH(∞) and is equivalent15 to (28). Such a motion law is generated by the initial
condition (0, Q0, 0,Θ), is quasi-periodic with an angular velocity vector equal to
ω(∞) and the corresponding orbit lies on the n1−dimensional invariant torus P = 0,
Ξ = 0. The energy level of such a manifold is H (∞)(0, Q, 0,Θ) = E (∞). Moreover,
it is elliptic in the sense that the transverse dynamics in a neighborhoodof the invariant
torus itself is given by oscillations whose corresponding angular velocity vector is
approaching Ω (∞) in the limit of ‖(P,Ξ)‖ going to zero.

Also in the present case, that is concerning the elliptic tori, the formal algorithm
for the construction of the normal form is composed by a sequence of canonical
transformations, defined using the formalism of Lie series. We can summarize the
r -th normalization step, by giving the formula defining the canonical change of
coordinates that transforms the intermediate HamiltonianH(r−1) into the subsequent
H(r). The expansion of the former is of the following type:

H(r−1)( p, q, J,ϕ) =E(r−1) + ω(r−1) · p + Ω(r−1) · J +
∑

s≥0

∑

�≥3

f (r−1,s)
�

( p, q, J, ϕ)

+
∑

s≥r

2∑

�=0

f (r−1, s)
�

( p, q, J, ϕ) ,

(33)

15 We remark that Ṗ = {P , H(∞)
} = 0 and Ξ̇ = {Ξ , H(∞)} = 0 when P = 0 and Ξ =

0. Because of the well known degeneracy of the change of coordinates (X,Y) =(√
2Ξ cosΘ,

√
2Ξ sinΘ

)
, all the set

{(
Ξ = 0,Θ ∈ T

n2
)}

correspond to a single point
{
(X =

0,Y = 0)
}
of the reduced phase space that considers just the last n2 degrees of freedom. By the

way, we emphasize that such a degeneracy is completely harmless in the framework we have
adopted. In order to conclude the check of the solution of the Hamilton equations related to the
normal formH(∞) when P = 0 andΞ = 0, it is enough to remark that Q̇ = {Q , H(∞)

} = ω(∞).
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being f (r−1, s)
� ∈ P�,sK and E (r−1) ∈ P0,0 , i.e., it is a constant referring to the level

of the energy in the approximation that is valid up to termsO(εr
)
. Let us emphasize

that the starting HamiltonianH(0) written in Eq. (31) is exactly in the form (33) with
r = 1. The conjugacy relation which allows to write the Hamiltonian defined at the
end of the r -th normalization step as a function of the previous one is given by

H(r) = H(r−1) ◦ exp
(Lχ(r)

0

) ◦ exp
(Lχ(r)

1

) ◦ exp
(Lχ(r)

2

) ◦ D(r) , (34)

where the Lie series16 operator exp
(Lχ(r)

j

) · removes theHamiltonian termswith total

degree in the square root of the actions equal to j and with trigonometric degree in
the angles q up to r K . Moreover, by a linear canonical transformationD(r), the terms
that are quadratic in

√
J and do not depend on both the actions p and the angles

q are brought to a diagonal form. At the end of this r -th normalization step, the
ineliminable terms that are independent on the angles q and linear either in p or in J
are added to the normal form part. This requires to update the angular velocities from(
ω(r−1),Ω (r−1)) to

(
ω(r),Ω (r)

)
, that is why in (32) the Hamiltonian in Kolmogorov

normal form has new frequency vectors ω(∞) and Ω (∞).
All the details that properly define how the algorithm actually works are exhaus-

tively described in the following.

First Stage of the r-th Normalization Step
In the context of the r -th normalization step, the first stage aims to remove the terms
depending just on the angles q up to the trigonometrical degree r K , i.e. the terms
collected in f (r−1,r)

0 = O(εr ). We determine the generating function χ(r)
0 by solving

the homological equation

{
ω(r−1) · p, χ(r)

0

}
+ f (r−1, r)

0 (q) = 〈 f (r−1,r)
0 (q)〉q . (35)

Let us remark that the equation above is perfectly equivalent to that in formula (9),
because f (r−1, r)

0 ∈ P0,r K depends on q only and, therefore, f (r−1, r)
0 ∈ P0,r K =

P0,r K . Thus, we can write the solution of this new (first) homological equation (35)
exactly in the same way as we have done for what concerns (10), i.e., we put
〈 f (r−1,r)

0 (q)〉q = c0 and

χ(r)
0 (q) =

∑

0<|k|≤r K

ck exp
(
ik · q)

ik · ω(r−1)
, (36)

16 Because of the so called “exchange theorem” (see [14]), the new Hamiltonian H (r) is obtained
from the old one, by applying the Lie series to H (r−1) in reverse order with respect to what is
written in (34). This is consistent with the order of the discussion in the following subsections: the
first stage of the r -th normalization step deals with the canonical transformation generated by χ

(r)
0 ,

the second one with χ
(r)
1 and the last one with both χ

(r)
2 and D(r).
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being f (r−1, r)
0 (q) =∑|k|≤r K ck exp

(
ik · q). Of course, such a solution is certainly

valid provided the non-resonance condition (11) is satisfied.
Now, we apply the canonical transformation expLχ(r)

0
to the Hamiltonian which is

defined at the end of the r − 1-th normalization step. By the usual abuse of notation,
we choose to rename the new variables as the old ones. This allows to write the
transformed Hamiltonian H (I; r) = exp

(Lχ(r)
0

)
H (r−1) as follows:

H(I; r)( p, q, J,ϕ) =E (r) + ω(r−1) · p + Ω (r−1) · J +
∑

s≥0

∑

�≥3

f (I; r, s)
�

+
∑

s≥r

2∑

�=0

f (I; r, s)
� ,

(37)

where for the sake of brevity we have omitted to list the arguments of the functions
f (I; r, s)
� . Let us introduce them in the same unconventional way we have adopted in

Sect. 2.3 to describe the algorithm constructing the Kolmogorov normal form. First,
we define17 f (I; r, s)

� = f (r−1, s)
� ∀ � ≥ 0, s ≥ 0. By further abuses of notation, we

update many times the definition of the terms appearing in the expansion of the new
Hamiltonian according to the following rule:

f (I; r, s+ jr)

�−2i ←↩
1

j !L
j

χ(r)
0

f (r−1, s)
� ∀ � ≥ 0, 1 ≤ j ≤ ��/2�, s ≥ 0 . (38)

By applying repeatedly Lemma 2 and a trivial induction argument to the formula
above, one can easily prove that f (I; r, s)

� ∈ P�,sK ∀ � ≥ 0, s ≥ 0. In order to end
the description of the first stage of the r -th normalization step, we have to take
into account also the effects induced by the homological equation (35). For such a
purpose, we finally set f (I; r, r)

0 = 0 and we update the approximated value referring
to the energy of the wanted elliptic torus exactly in the same way we have done to
write formula (15), i.e., we put E (r) = E (r−1) + 〈 f (r−1, r)

0 〉q .
Second Stage of the r-th Normalization Step
The second stage of the r -th normalization step acts on the Hamiltonian that is
initially expanded as in (37), with the goal to remove the perturbing term which is
linear in

√
J and independent of p, i.e., f (I; r, r)

1 . Thus, we have to solve the following
homological equation:

{
ω(r−1) · p + Ω (r−1) · J, χ(r)

1

}
+ f (I; r, r)

1 (q, J,ϕ) = 0 . (39)

17 We remark that the terms f (r−1, s)
� do not enter in the expansion (33) when � = 0, 1, 2 and

s < r . However, the recursive definitions described in the present subsection are such that all those
functions are equal to zero. Keeping in mind this fact allows to write in a rather compact way both
formula (38) and the analogous ones in the following.
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Let us write the expansion of f (I; r, r)
1 (q, J,ϕ) as follows:

f (I; r, r)
1 (q, J,ϕ) =

∑

0≤k≤r K

n2∑

j=1

√
Jj

[
c(+)

k, j ei(k·q+ϕ j ) + c(−)

k, j ei(k·q−ϕ j )
]

, (40)

where every coefficients c(+)

k, j ∈ C is equal to the complex conjugate of c(−)

−k, j ∀ 0 ≤
k ≤ r K , 1 ≤ j ≤ n2 . Therefore, the generating function χ(r)

1 solving Eq. (39) is
determined in such a way that

χ(r)
1 (q, J,ϕ) =

∑

0≤k≤r K

n2∑

j=1

√
Jj

i

[
c(+)

k, j ei(k·q+ϕ j )

k · ω(r−1) + Ω
(r−1)
j

+ c(−)

k, j ei(k·q−ϕ j )

k · ω(r−1) − Ω
(r−1)
j

]
.

(41)
This expression is well-defined, provided that the frequency vector ω(r−1) satisfies
the so-called first Melnikov non-resonance condition up to order r K (see [29]), i.e.,

min
0<|k|≤r K ,

|�|=1

∣∣k · ω(r−1) + � · Ω (r−1)
∣∣ ≥ γ

(r K )τ
and min

|�|=1

∣∣� · Ω (r−1)
∣∣ ≥ γ , (42)

for some fixed values of both γ > 0 and τ > n1 − 1. By applying the Lie series
exp
(Lχ(r)

1

)
to the old Hamiltonian H (I; r), we have a new one, which we denote as

H (II; r) = exp
(Lχ(r)

1

)
H (I; r) and have the same structure as that described in (37), i.e.,

H(II; r)( p, q, J,ϕ) =E (r) + ω(r−1) · p + Ω (r−1) · J +
∑

s≥0

∑

�≥3

f (II; r, s)
�

+
∑

s≥r

2∑

�=0

f (II; r, s)
� ,

(43)

The functions f (II; r, s)
� that compose the new Hamiltonian can be determined with

calculations similar to those listed during the description of the first stage of normal-
ization. This means that we initially define f (II; r, s)

� = f (I; r, s)
� ∀ � ≥ 0, s ≥ 0. Then,

(by abuse of notation) we redefine themmany times according to the following rules:

f (II; r, s+ jr)

�− j ←↩
1

j !L
j

χ(r)
1

f (I; r, s)
� ∀ � ≥ 0 , 1 ≤ j ≤ � , s ≥ 0 ,

f (r, 2r)
0 ←↩

1

2
L2

χ(r)
1

(
ω(r) · p + Ω (r) · J) .

(44)

Because of the homological equation (39), we add also a further redefinition so
that f (II; r, r)

1 = 0. By applying Lemma 2 to formula (44), it is easy to check that
f (II; r, s)
� ∈ P�,sK ∀ � ≥ 0, s ≥ 0.



Invariant KAM Tori: From Theory to Applications to Exoplanetary Systems 23

Third Stage of the r-th Normalization Step
The third and last stage of normalization is more elaborated. It aims to remove terms
belonging to two different classes: first, those linear in p and independent of (J,ϕ),
moreover, other terms that are quadratic in

√
J and independent of p. Such a part

of the perturbation is removed by the composition of two canonical transformations
expressed by Lie series, being the corresponding generating functions X (r)

2 ( p, q) ∈
P̂1,0,r K and Y (r)

2 (q, J,ϕ) ∈ P̂0,2,r K , respectively. Moreover, the third stage is ended
by a linear canonical transformation D(r) that leaves the pair ( p, q) unchanged and
it aims to diagonalize the terms that are quadratic in

√
J and independent of the

angles q. Let us detail all these changes of coordinates, so that the algorithm will be
unambiguously defined at the end of our discussion.

The generating functions X (r)
2 is in charge to remove terms that are linear in p

and do depend on the angles q up to the trigonometric degree r K . Therefore, it is a
solution of the following homological equation:

{
ω(r−1) · p, X (r)

2

}
+ f (II; r, r)

2 ( p, q) − 〈 f (II; r, r)
2 ( p, q)〉q = 0 . (45)

Let us recall that f (II; r, r)
2 ∈ P2,r K = P̂1,0,r K ∪ P̂0,2,r K ; indeed, such a function

does depend on all the canonical variables, i.e., f (II; r, r)
2 = f (II; r, r)

2 ( p, q, J,ϕ).
Therefore, we denote with f (II; r, r)

2 ( p, q) the subpart of f (II; r, r)
2 that is depending just

on ( p, q). Analogously, in the following f (II; r, r)
2 (q, J,ϕ) will denote the subpart

of f (II; r, r)
2 that does depend on all the canonical variables but the actions p and so

on also for what concerns f (II; r, r)
2 (J,ϕ). For the sake of clarity, this highly non-

standard notation will be maintained up to the end of the present subsection. Let us
here emphasize that the term 〈 f (II; r, r)

2 ( p, q)〉q will be added to the part in normal
form, by updating the angular velocity vector ω, in agreement with what has been
done in the context of the construction of the Kolmogorov normal form. We can deal
with the homological equation (45) in the same way as for (18). Indeed, the solution
writes as

X (r)
2 ( p, q) =

∑

| j |=1

∑

0<|k|≤r K

c j ,k p j exp
(
ik · q)

ik · ω(r)
, (46)

where the expansion of the perturbing term f (II; r, r)
2 ( p, q) ∈ P̂1,0,r K is such that

f (II; r, r)
2 ( p, q) =∑| j |=1

∑
0<|k|≤r K c j ,k p j exp

(
ik · q). Once again, the solution

written in (46) is valid provided that the non-resonance condition (11) is satisfied.
The generating function Y (r)

2 aims to remove the part of the term of f (II; r, r)
2 that

is quadratic in
√
J and does depend on the angles q. Therefore, Y (r)

2 has to solve the
following homological equation:

{
ω(r−1) · p + Ω (r−1) · J, Y (r)

2

}
+ f (II; r, r)

2 (q, J,ϕ) − 〈 f (II; r, r)
2 (q, J,ϕ)〉q = 0 .

(47)
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In order to describe the solution of such an equation, it is convenient to write the
explicit expansion of the perturbing term f (II; r, r)

2 (q, J,ϕ). For instance, this can be
done in the following way:

f (II; r, r)
2 (q, J,ϕ) =

∑

0≤k≤r K

n2∑

i, j=1

c(±,±)

k, i, j

√
Ji J j exp

[
i(k · q ± ϕi ± ϕ j )

]
, (48)

where c(+,+)

k, i, j and c(+,−)

k, i, j are the coefficients referring to the Fourier harmonics k · q +
ϕi + ϕ j and k · q + ϕi − ϕ j , respectively, and so on. Thus, the generating function
Y (r)
2 is determined by Eq. (47) in such a way that

Y (r)
2 (q, J,ϕ) =

∑

0<k≤r K

n2∑

i, j=1

c(±,±)

k, i, j

√
Ji J j exp

[
i(k · q ± ϕi ± ϕ j )

]

i
(
k · ω(r−1) ± Ω

(r−1)
i ± Ω

(r−1)
j

) , (49)

which iswell definedprovided that the angular velocity vectorω(r−1) satisfies both the
already mentioned Diophantine inequality (11) and the so-called second Melnikov
non-resonance condition up to order r K (see [29]), i.e.,

min
0<|k|≤r K ,

|�|=2

∣∣k · ω(r−1) + � · Ω (r−1)
∣∣ ≥ γ

(r K )τ
(50)

with fixed values of both parameters γ > 0 and τ > n1 − 1.
After having performed these two changes of coordinates, we still may have terms

that do not depend on q and are either linear in p or quadratic in
√
J . The former

ones can be directly added to the part in normal form, whereas the latter have to
be preliminarily put in diagonal form. This can be done by means of a canonical
transformation D(r) such that

(
Ω (r−1) · J + f (II; r, r)

2 (J,ϕ)
) ∣∣∣∣

(J,ϕ)=D(r)( J̄,ϕ̄)

= Ω (r) · J̄ . (51)

Such an equation in the unknown transformation D(r) can be solved provided that

min
|�|=2

∣∣� · Ω (r−1)
∣∣ ≥ γ (52)

and f (II; r, r)
2 is small enough, as it is explained, e.g., in Sect. 7 of [16] (where this

problem is considered in the equivalent case dealing with polynomial canonical
coordinates). In practical implementations, such a change of coordinatesD(r) can be
conveniently defined by composing a subsequence of Lie series, each of them being
related to a quadratic generating function D(r; m)

2 (J,ϕ) ∈ P̂0,2,0 with m ∈ N \ {0}.
All these new generating functions can be determined by adopting the following
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computational (sub)procedure of iterative type. First, we introduce the new angular
velocity vector Ω (r; 0) so that

Ω (r; 0) · J = Ω (r−1) · J + 〈 f (II; r, r)
2 (J,ϕ)〉ϕ (53)

and the new function

g
(r; 0)
2 (J,ϕ) = f (II; r, r)

2 (J,ϕ) − 〈 f (II; r, r)
2 (J,ϕ)〉ϕ . (54)

The general m-th step of this iterative (sub)procedure starts by solving the following
homological equation:

{
Ω (r; m−1) · J, D(r; m)

2 (J,ϕ)
}

+ g
(r; m−1)
2 (J,ϕ) = 0 , (55)

where g
(r; m−1)
2 ∈ P̂0,2,0 is such that 〈g(r; m−1)

2 〉ϕ = 0 (and, therefore, also the new
generating function D(r; m)

2 is sharing these same properties with g
(r; m−1)
2 ). Let us

now initially introduce g(r; m)
2 = 0 and (by the usual abuse of notation) we redefine

it many times according to the following rule:

g
(r; m)
2 ←↩

j

( j + 1)!L
j

D(r; m)
2

g
(r; m−1)
2 ∀ j ≥ 1 . (56)

Actually, at this point one can easily check that

exp
(LD(r; m)

2

) (
Ω (r; m−1) · J + g

(r; m−1)
2

) = Ω (r; m−1) · J + g
(r; m)
2 ,

by using homological equation (55). Furthermore, we set

Ω (r; m) · J = Ω (r; m−1) · J + 〈g(r; m)
2 (J,ϕ)〉ϕ (57)

and we redefine one last time g(r; m)
2 so that

g
(r; m)
2 (J,ϕ) = g

(r; m)
2 (J,ϕ) − 〈g(r; m)

2 (J,ϕ)〉ϕ . (58)

By applying repeatedly Lemma 2 to formulæ (53)–(58), it is easy to check that both
functions D(r; m)

2 and g
(r; m)
2 belong to the class P̂0,2,0 (also because they depend on

neither p nor q) and their angular average is equal to zero. In principle, these remarks
would allow to iterate infinitely many times this computational (sub)procedure, that
we are using to solve Eq. (51). However, in practical implementations, we have to set
a criterion to stop the iterations so to ensure that the algorithm can be worked out in a
finite number of operations. This can be done, for instance, in such a way to end the
computationswhen the angular velocity vector does notmodify anymore. Thismeans
that the final value m̄ of the normalization step for this iterative (sub)procedure is such
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that the equationΩ (r; m̄) = Ω (r; m̄−1) holds true in the framework of the numbers that
are representable on a computer18 (for instance, the double precision type).
By settingΩ (r) = Ω (r; m̄) and the canonical transformationD(r) equal to composition
of all the Lie series generated by the finite sequence of functions

{D(r; m)
2

}m̄

m=1, we
determine a solution19 of (51) that is valid up to the numerical round-off errors.

Finally, we need to understand how all these generating functions (that have been
defined during the third stage of the r -th normalization step) give their contributions
to the Hamiltonian terms appearing in the following expansion:

H(r)( p, q, J,ϕ) =E (r) + ω(r) · p + Ω (r) · J +
∑

s≥0

∑

�≥3

f (r,s)
� ( p, q, J,ϕ)

+
∑

s≥r+1

2∑

�=0

f (r, s)
� ( p, q, J,ϕ) ,

(59)

where H(r) is defined in (34). In order to describe the definitions of those new
summands, it is convenient to introduce the intermediate functions g(r, s)

� , g′(r, s)
� in

the following way. First, we define g(r, s)
� = f (II; r, s)

� for all non-negative values of the
indexes � and s; then, we consider the effects induced by the application of the Lie
series with generating function X (r)

2 to the Hamiltonian. In order to do that, (by abuse
of notation) we redefine many times the new intermediate functions g(r, s)

� according
to the following rules:

g
(r, s+ jr)

� ←↩
1

j !L
j

X (r)
2

f (II; r, s)
� ∀ j ≥ 1, � ≥ 0, s ≥ 0 ,

g
(r, jr)

2 ←↩
1

j !L
j

X (r)
2

(
ω(r) · p + Ω (r) · J) ∀ j ≥ 1 .

(60)

As usual, the prescriptions above have been set so to gather the new terms generated
by the Lie series exp

(LX (r)
2

)
according to both their total degree in the square root

of the actions and the trigonometric degree in the angles. In analogous way, we first
introduce g′(r, s)

� = g′(r, s)
� ∀ � ≥ 0, s ≥ 0; then we apply many times the following

redefinitions:

g′(r, s+ jr)

� ←↩
1

j !L
j

Y (r)
2

g(r, s)
� ∀ j ≥ 1, � ≥ 0, s ≥ 0 ,

g′(r, jr)

2 ←↩
1

j !L
j

Y (r)
2

(
ω(r) · p + Ω (r) · J) ∀ j ≥ 1 .

(61)

18 A similar criterion is adopted to determine a maximum value of the index j at which the redefi-
nitions (56) must be stopped.
19 As an alternative computational method, when one is dealing with the estimates needed to prove
the convergence of the algorithm, in [19] the use of the Lie transforms (that are equivalent to the
composition of infinite sequences of Lie series) has been found to be very suitable.
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By applying Lemma 2 to formulæ (60)–(61), it is easy to check that g′(r, s)
� ∈ P�,sK

∀ � ≥ 0, s ≥ 0. Let us now remark that each class of type P�,sK is preserved20 by
the diagonalization transformationD(r), for all non-negative values of the indexes �

and s. Therefore, it is natural to put

f (r,s)
� = g′(r, s)

� ◦ D(r) . (62)

for all indexes � ≥ 0 and s ≥ 0.
At the end of the r -th normalization step, it is convenient that the terms linearly

depending just on p or J are included in the main part of the Hamiltonian, because
all of them belong to the same class of functions, i.e. P2,0. For this purpose, we
introduce the new angular velocity vector ω(r), in such a way that

ω(r) · p = ω(r−1) · p + f (II; r, 0)
2 ( p) , (63)

while the new values of the components of Ω (r) are defined by Eq. (51), that also
allows us to put f (r,r)

2 = 0. This ends the justification of the fact that the Hamiltonian
H(r) can be written as in formula (59) with new terms such that f (r, s)

� ∈ P�,sK and
E (r) ∈ P0,0 . Therefore,H(r) has the same structure ofH(r−1) in (33); this also mean
that the normalization algorithm can be iterated to the next (r + 1-th) step. As a final
comment ending the present subsection, let us also remark that the new perturbative
terms f (r,s)

� with � = 0, 1, 2 are expected to be smaller with respect to the previous
ones; this is because of the Fourier decay of the coefficients jointly with the fact that
we removed the part of perturbation up to the trigonometric degree r K .

3.2 On the Convergence of the Algorithm Constructing the
Normal Form for Elliptic Tori

As we have discussed since the introduction, in the present work we make the choice
of adopting the same approach to construct two different normal forms, that are
related to KAM invariant manifolds and elliptic tori, respectively. For what concerns
the analysis of the convergence, such a choice now allows us to use arguments that
are very similar to those described in the previous Sect. 2. In particular, also for
what concerns the motion on elliptic tori, we emphasize that it can be approximated
within a precision up to a fixed order of magnitude by using our procedure that is
explicitly computable, because the total amount of operations that are defined also
by this normalization algorithm is finite.

20 This statement can be justified, by referring also to the definition of the canonical transformation

D(r) as composition of all the Lie series generated by the set of functions
{D(r; m)

2

}m̄
m=1. In fact, it

can be easily done by applying Lemma 2 to all the contributions due to the repeated application of
the Lie derivative with generating functions D(r; m)

2 ∈ P2,0.
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The non-resonance conditions we have assumed in (11), (42), (50) and (52) can
be summarized in the following way:

min
0<|k|≤r K ,

0≤|�|≤2

∣∣k · ω(r−1) + � · Ω (r−1)
∣∣ ≥ γ

(r K )τ
and min

0<|�|≤2

∣∣� · Ω (r−1)
∣∣ ≥ γ , (64)

with γ > 0 and τ > n1 − 1. Let us here resume the parametric dependence of all the
Hamiltonian terms on the initial value of the angular velocity vector ω(0), as it has
been introduced at the beginning of the previous Sect. 3.1 (see the discussion follow-
ing the statement of Lemma 2). In particular, in the Diophantine inequalities reported
in (64) the angular velocity vectors at the r -th normalization step are functions of
ω(0), i.e., ω(r−1) = ω(r−1)(ω(0)) and Ω (r−1) = Ω (r−1)(ω(0)). Let us recall that we
do not try to keep a full control on the way for what concerns the angular velocity
vectors that are modified passing from the r − 1-th normalization step to the next
one. Therefore, let us recall also here that such an approach is in contrast with the
original proof scheme that was designed to construct the Kolmogorov normal form
for maximal invariant tori, where the angular velocities are kept fixed (see [22] or,
e.g., [17]), but it is somehow unavoidable because of the occurrence of the transver-
sal angular velocities Ω (r−1)(ω(0)) that in general cannot remain constant along the
normalization procedure. This seems to prevent the complete construction of the
normal form and so also for what concerns the proof of the existence of an elliptic
torus. Nevertheless, following the approach designed by Pöschel in [36], it can be
proved that the Lebesgue measure of the resonant regions where the Melnikov con-
ditions are not satisfied shrinks to zero with the size of the perturbation. Therefore,
the chances of success in constructing the normal form for elliptic tori are described
by the following statement.

Theorem 2 Consider the family of real Hamiltonians H(0)( p, q, J,ϕ;ω(0)) of the
type described in (31). Those functions are defined so that H(0) : O1 × T

n1 × O2 ×
T

n2 × U �→ R, with O1 and O2 open neighborhoods of the origin in R
n1 and R

n2+ ∪
{0}, respectively, while ω(0) ∈ U , being U an open subset of Rn1 . Moreover, let a
special class of functions include each of the terms that are of type f (0, s)

� and appear
in the expansion (31), in such a way that f (0, s)

� ∈ P�,sK for a fixed positive integer
K . We also assume that

(a) all the functions E (0) : U �→ R, Ω (0) : U �→ R
n1 and f (0, s)

� : O1 × T
n1 × O2 ×

T
n2 × U �→ R, appearing in (31), are analytic functions with respect to ω(0) ∈

U;
(b) Ω

(0)
i (ω(0)) 
= Ω

(0)
j (ω(0)) and Ω

(0)
i2

(ω(0)) 
= 0 for ω(0) ∈ U and 1 ≤ i < j ≤ n2,
1 ≤ i2 ≤ n2 ;

(c) for some fixed and positive values of ε and E, one has

sup
( p,q,J,ϕ;ω(0))∈O1×Tn1×O2×Tn2×U

∣∣∣ f (0,s)
� ( p, q, J,ϕ;ω(0))

∣∣∣ ≤ εs E (65)

∀ s ≥ 1, � ≥ 0 and ∀ � ≥ 3 when s = 0.
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Then, there is a positive ε� such that for 0 ≤ ε < ε� the following statement
holds true: there exists a non-resonant set U (∞) ⊂ U of positive Lebesgue mea-
sure and with the measure of U \ U (∞) tending to zero for ε → 0 for bounded
U , such that for each ω(0) ∈ U (∞) there exists an analytic canonical transforma-
tion ( p, q, J,ϕ) = ψ(∞)

ε;ω(0) (P, Q,Ξ ,Θ) leading the Hamiltonian to the normal

form written in (32), where E (∞)(ω(0)) is a finite real value fixing the constant
energy level that corresponds to the invariant elliptic torus

{
(P = 0, Q ∈ T

n1 ,Ξ =
0,Θ = 0)

}
. Moreover, the canonical change of coordinates is close to the iden-

tity in the sense that
∥∥ψ(∞)

ε;ω(0) (P, Q,Ξ ,Θ) − (P, Q,Ξ ,Θ)
∥∥ = O(ε) and the same

applies also to both the energy level and the detunings of the angular velocity vec-
tors (that are

∣∣E (∞)(ω(0)) − E (0)(ω(0))
∣∣ = O(ε),

∥∥ω(∞)(ω(0)) − ω(0)
∥∥ = O(ε) and∥∥Ω (∞)(ω(0)) − Ω (0)(ω(0))

∥∥ = O(ε), respectively).

The complete proof of theorem above is reported in [7], where it is ensured the
convergence of a normalization algorithm that is substantially the same with respect
to the one described in the previous Sect. 3.1 apart some very minor modifications.21

Therefore, the approach of that paper is based on a convergence scheme of linear
type. Nevertheless, the more geometrical part of that work (which deals with the
estimates of the volume covered by the resonant region) is borrowed from [36], where
a statement nearly equivalent to Theorem 2 is proved by adopting a fast convergence
scheme of quadratic type.

In the present case studying the elliptic tori, the choice to let the angular velocity
vectors change at every normalization step is somehow more natural with respect
to the original proof scheme designed by Kolmogorov. This is due to the fact that
here the procedure allowing to keep fixed the angular velocities is not complete,
because it involves less free parameters than the number of degrees of freedom. This
is a major difference with respect to the algorithm constructing the normal form for
KAM tori, where those two integer numbers are equal. For what concerns the case
of the elliptic tori too, some work22 is in progress in order to revisit the problem of
the convergence of this type of normalization algorithms so as to provide a statement
where the final result is not expressed in a probabilistic sense (i.e., by referring to the
Lebesgue measure). This can be done by fixing since the beginning the final value
of the angular velocity vectors

(
ω(∞),Ω (∞)

)
and their non-resonance properties; we

emphasize that this allow to explicitly solve all the homological equations that are
introduced at every step of the algorithm. Also here, the total detunings ω(∞) − ω(0)

and Ω (∞) − Ω (0) are given in terms of series whose coefficients are defined in a
recursive way. Such an approach is also inspired by the need to revisit what was
successfully done in order to show the existence of elliptic tori in PDEs problems
(see [6]).

21 For instance, in order to describe the transverse dynamics with respect to the elliptic tori, the
complex canonical coordinates (z, i z̄) instead of the action-angle ones are used, where z j = J j eiϕ j

∀ j = 1, . . . , n2 .
22 Danesi, V., Locatelli, U.: work in progress (2022).
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4 Construction of Invariant KAM Tori in Exoplanetary
Systems with Rather Eccentric Orbits

In order to properly introduce a Cauchy problem which includes the ordinary differ-
ential equations (ODE) for a planetary system, the initial conditions at a given time
are needed and so also for the positions and the velocities in an astrocentric frame.
It is well known that they can be replaced by the orbital elements

{(
a j , e j , ι j , M j , ω j , Ω j

) : ∀ j = 1, . . . , N
}

,

being N the number of the planets that are considered in the system. Orbital ele-
ments refer to the so called osculating Keplerian ellipse, which describes a fictitious
motion having the same instantaneous values of both position and velocity with
respect to the planet. For what concerns the Keplerian ellipse of the j-th planet,
the symbols a j , e j , ι j , M j , ω j , Ω j denote the semi-major axis, the eccentricity,
the inclination,23 the mean anomaly, the argument of the pericenter24 and the lon-
gitude of the ascending node, respectively. Of course, also the values of the masses
m j ∀ j = 0, 1, . . . , N (being m0 the stellar mass) are needed in order to properly
introduce the Cauchy problem for a planetary system, because they enter in the defi-
nitions of the momenta, the kinetic energy and the potential one. Unfortunately, none
of the detection methods that are nowadays available to discover extrasolar planets
is able to measure all the orbital elements and the masses that completely define the
ODE problem (see, e.g., [2]). For the sake of simplicity, instead of considering a
generic planetary problem with N + 1 bodies, let us focus on a specific case, i.e.,
the extrasolar system hosting two planets orbiting around the star named HD473225

(the value of its mass is reported in the caption of the following table). The values
of the known orbital elements of those exoplanets as they are given by the radial
velocity detection method are reported in Table 1. Let us recall that such a detection
technique is unable to provide a complete information about the mass of every j-th
planet; instead, it gives its minimum value m j sin(ι j ).

Let us now explain how we have decided to complete the initial conditions, by
also giving the motivations of our choice. Since we are interested in studying the
planetary dynamics of the HD4732 system in the framework of a secular model, we
expect that its dependence on the initial values of the mean anomalies is weak. We
emphasize that such an assumption does not hold true in general (see, e.g., [26]), but
it is rather natural in the case of the HD4732 planetary system because the revolution

23 ι j is the inclination of the Keplerian ellipse with respect to the plane orthogonal to the line of
sight (i.e., the direction pointing to the object one is observing), that is usually said to be “tangent
to the celestial sphere”.
24 Unfortunately, the same symbol (namely, ω) is used to denote both the angular velocity in KAM
theory and the pericenter argument in astronomy. Hereafter, when the symbol ω appears without
superscripts, it will refer just to the latter quantity.
25 Since the detection of a fainter stellar companion in 2019 (see [32]) HD4732 has been renamed
as HD4732A. For brevity, in the present paper we refer to such a star with the old name.
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Table 1 Known orbital elements and minimal masses of the detected exoplanets orbiting around
the HD4732 star, whose mass is 1.74 times bigger than the solar one. The following data are taken
from the central values of the ranges given in Table 5 of [39]. The corresponding units of measure
are reported in every column between pairs of square brackets; in particular, we recall that the
eccentricity of an ellipse is a pure number ranging in (0, 1) and MJup means “Jupiter mass”. Since
the initial time is irrelevant for an autonomous system, we have set it equal to zero in the parentheses
following the orbital elements

Planet name Planet index j a j (0)
[AU]

e j (0) ω j (0)
[◦]

m j sin
(
ι j (0)

)

[MJup]
HD4732b 1 1.19 0.13 85 2.37

HD4732c 2 4.60 0.23 118 2.37

periods are far frommean-motion resonances and they are much shorter with respect
to those corresponding to the remaining angles that appear in the orbital elements
list. Therefore, we simply set26

M1(0) = M2(0) = 0◦ . (66)

For what concerns the extrasolar system HD4732, we plan to start a study of the
dependence of its orbital dynamics on themutual inclination imut. The present section
deals with the beginning of such a research project, that will be extended in a forth-
coming work. For this purpose, it is convenient to consider orbital planes initially
located in such a way they are symmetric with respect to the line of sight that is also
orthogonal to their intersection. As an example of this particular configuration, we
can consider the case with ι1(0) = 89◦, ι2(0) = 91◦ and

Ω1(0) = Ω2(0) = 0◦ . (67)

In view of the general relation

cos imut = cos ι1 cos ι2 + sin ι1 sin ι2 cos(Ω1 − Ω2) ,

we readily obtain that imut = 2◦. More in general, we introduce the following set of
initial conditions

26 Since the times of passage at the pericenter are given by the radial velocity detection methods
and they are different, we stress that our choice of defining the initial values of the mean anomalies
so that M1(0) = M2(0) = 0◦ is not coherent with the observations about the two planets orbiting
around HD4732. However, we consider that this small inconsistency of our settings should be
harmless, just because of the expectation that its secular dynamics should be very weakly affected
by the initial values of the mean anomalies.
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Iimut(0) =
{(

a1(0) , a2(0) , e1(0) , e2(0) ,

ι1(0) = 90◦ − imut(0)

2
, ι2(0) = 90◦ + imut(0)

2
,

M1(0) , M2(0) ,ω1(0) , ω2(0) ,Ω1(0) ,Ω2(0)
)}

,

(68)

where the inclinations are parameterized with respect to imut(0), while the values of
all the remaining orbital elements are defined according to Table 1, jointly with for-
mulæ (66) and (67). Of course, the values of the planetary masses m1 and m2 can be
recovered multiplying the minimal masses (that appear in the last column of Table 1)
by the increasing factor 1

/
sin
(
ι j (0)

)
. This remark helps us to understand that all

the parameters and the initial conditions have been properly defined and they can
eventually depend just on the value of imut(0). This way to parameterize the model
has been introduced to better understand the properties of our (new) algorithm con-
structing invariant tori as a function of the mutual inclinations. A previous approach
to the same problem was described in [41] and it was shown to be successful just for
systems with rather small eccentricities of the exoplanets, being their initial values
less than 0.1 . This is not the case of the exoplanets in the system HD4732, because
both their initial values of the eccentricities (reported in Table 1) are larger than 0.1 .
We emphasize that this choice has been made with the purpose to show that our fol-
lowing new formulation of the constructing algorithms applies to a more extended
range of models with respect to the previous approach.

Let us also recall that, in a three-body planetary problem, the longitudes of the
nodes are always opposite, if they are measured with respect to the so called Laplace
plane, that is invariant because it is orthogonal to the total angular momentum, by
definition (see, e.g., Sect. 6.2 of [24]). Moreover, the Hamiltonian does not depend
on the sum ofΩ1 + Ω2 , because of the invariance with respect to the rotations. In the
following subsection, we will explain why it is preferable to consider expansions of
the Hamiltonian in a frame where the Laplace plane is the horizontal one. In Celes-
tial Mechanics the word “inclination” often refers to the angle (say, i j ∈ [0◦, 180◦])
between the angular momentum of the j-th planet and the total one. With this nota-
tion, the following relation holds true: imut = i1 + i2 .

4.1 Secular Model at Order Two in the Masses

In the present subsection, we are going to introduce a model describing the secular
dynamics of a planetary system, in a way that provides results more reliable with
respect to a simple average over the revolution angles (see, e.g., [38]). We emphasize
that we derive the secular model at order two in the masses, by applying an approach
inspired to the construction of the Kolmogorov normal form. This is a major dif-
ference with respect to other approaches providing the same level of accuracy for a
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secular model (see, e.g., [23] and references therein). Here, in order to introduce our
secular model, we will adopt the approach described in [41], that is summarized as
follows.

A three-bodyHamiltonian problem has nine degrees of freedom, but three of them
can be easily separated so as to describe the uniform motion of the center of mass
in an inertial frame. The untrivial part of the dynamics is represented in astrocentric
canonical coordinates and its degrees of freedom can be further reduced by two using
the conservation of the total angular momentum C. As it is shown in Sect. 6 of [24],
this allows us to write the Hamiltonian in Poincaré canonical variables, that are

Λ j = m0m j

m0 + m j

√
G(m0 + m j )a j , ξ j =√2Λ j

√
1 −

√
1 − e2j cos (ω j ) ,

λ j =M j + ω j , η j =−√2Λ j

√
1 −

√
1 − e2j sin (ω j ) .

(69)

The reduction of the total angular momentum makes implicit the dependence on the
inclinations i j and on the longitudes of the nodes Ω j . In the Laplace reference frame
the mutual inclination is the sum of the two inclinations and so is given by a rather
simple relation involving the Poincaré variables, i.e.,

imut = i1 + i2 = arccos

⎛

⎝C2 − Λ2
1(1 − e21) − Λ2

2(1 − e22)

2Λ1Λ2

√
1 − e21

√
1 − e22

⎞

⎠ , (70)

being C =∑2
k=1 Λk

√
1 − e2k cos ik , that is the (constant) module of the total angu-

lar momentum. Moreover, we introduce a translation L j = Λ j − Λ∗
j , where Λ∗

j is
defined in order to obtain that in theKeplerian approximation of themotion the values
of the semi-major axes are in agreementwith the observations. Indeed, the expansions
of a Hamiltonian representing a planetarymodel are usuallymade around the average
values of the semi-major axes or their initial values. For the sake of simplicity, we
will adopt this latter option. Such expansions are actually made with respect to these
Poincaré variables27 and the parameter D2, that measures the difference between the
total angular momentum of the system and the one of a similar system with circular
and coplanar orbits; i.e., it is defined as D2 = [(Λ∗

1 + Λ∗
2)

2 − C2
]/

(Λ∗
1Λ

∗
2); there-

fore, it is of the same order as e21 + i21 + e22 + i22 . Thus, we can write the Hamiltonian
of the three–body problem as

H3BP =
∞∑

j1=1

h(Kep)
j1,0 (L) + μ

∞∑

s=0

∞∑

j1=0

∞∑

j2=0

Ds
2 h(P)

s; j1, j2
(L,λ, ξ,η) (71)

27 The computation of the coefficients appearing in the expansion (71) is not straightforward. For
a detailed discussion of the method we have used for doing such a calculation we refer to [24].
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where μ = max{m1/m0, m2/m0}. Moreover,

• K(L) =∑∞
j1=1 h(Kep)

j1,0 (L) is the Keplerian part and h(Kep)
j1,0 is a homogeneous poly-

nomial of degree j1 in L; in particular, h(Kep)
1,0 = n∗ · L, where the components of

the angular velocity vector n∗ are defined by the third Kepler law;
• h(P)

s; j1, j2
is a homogeneous polynomial of degree j1 in L, degree j2 in (ξ,η) and

with coefficients that are trigonometric polynomials in λ and are related to the
term Ds

2 .

Clearly, in the applications we deal with finite expansions; the truncation parameters
will be discussed in the following.

The expression of the Hamiltonian of the three-body problem in (71) highlights
the distinction between the so called fast variables (L,λ) and the secular variables
(ξ,η). Indeed, if we consider the corresponding Hamilton equations, we have that
λ̇ = O(1). This means that the motion of the planet along the orbit, that is in first
approximation aKeplerian ellipse, has a different timescalewith respect to the secular
variables, whose variation is due to the interaction between the planets and, therefore,
is of O(μ). Since we are interested in the study of the long-time stability of the
system, a common procedure consists on considering just the evolution of the secular
variables, by averaging the Hamiltonian with respect to the fast angles λ. With a
simple average of H3BP we would obtain a secular approximation with terms of
order μ, namely at order 1 in the masses. Here, we consider terms up to order 2 in
the masses, averaging with a close to the identity canonical change of coordinates
inspired by the algorithm for the construction of the Kolmogorov normal form.
Indeed, we focus on the torus corresponding to L = 0. The first transformation of
coordinates that we define aims at removing the perturbative terms that depend on
the angles λ but do not depend on the actions L, being L̇ j = ∂H/∂λ j for j = 1, 2 .
This is done by using the term linear in the actions, i.e., n∗ · L, to define a generating
function χ(O2)

1 (λ) as the solution of the following homological equation:

{
χ(O2)
1 , n∗ · L

}
+ μ

∑

s=0 , j2=0
2s+ j2≤NS

⌈
Ds

2 h(P)

s;0, j2

⌉

λ:K F

= μ
∑

s=0 , j2=0
2s+ j2≤NS

Ds
2

〈
h(P)

s;0, j2

〉

λ
, (72)

being 〈·〉λ the average with respect to the angles λ, while with the notation �·�K F we
mean that the expansions are truncated at the trigonometrical degree KF in the angles
λ. Let us add a few comments about the truncations parameters KF and NS . The value
of KF is defined so as to take into account themainmean-motion quasi-resonances of
the system considered. For example, if the system is close to the resonance k∗

1 : k∗
2 ,

then KF is defined as KF ≥ |k∗
1 | + |k∗

2 |. In the same spirit, the value NS of the
truncation of the expansions in eccentricity and inclination is set in order to consider
the quasi-resonance. Let us assume that the quasi-resonant angular terms are of type
(k∗

1λ1 − k∗
2λ2), then in principle it would be convenient to consider expansions up to

an order in eccentricity and inclination such that NS ≥ 2(|k∗
1 | − |k∗

2 |), because of the
D’Alembert rules (see [24]). Therefore, in the specific case of the extrasolar system
HD4732, it is rather natural to set KF = 9, because the periods of the two planets
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are about 0.986 yr and 7.48yr, respectively. However, since the ratio of the angular
velocities n∗

1/n∗
2 is not so close to the resonance 7 : 1 or to 8 : 1 and the terms of

high degree in eccentricities are not so relevant, we have found convenient to limit
our expansions to NS = 8 , in order to reduce the computational cost of the whole
procedure.

Nowwe have to apply the transformation of coordinates defined by the application
of the Lie series operator exp(Lχ(O2)

1
) · =∑∞

j=0(1/j !)L j

χ(O2)
1

· to the Hamiltonian.

Recalling that in our secular model we will not consider terms depending on L or
of order greater than μ2, the only terms we need to compute are included in the
following expansion:

H̃ = H3BP + 1

2

{
χ(O2)
1 , Lχ(O2)

1
h(Kep)
2,0

}

L,λ

+μ
∑

s≥0 , j2≥0
2s+ j2≤NS

Ds
2

{
χ(O2)
1 , h(P)

s;1, j2

}

L,λ
+ μ

2

∑

s≥0 , j2≥0
2s+ j2≤NS

Ds
2

{
χ(O2)
1 , h(P)

s;0, j2

}

ξ,η
,

(73)

where {·, ·}L,λ and {·, ·}ξ,η are the terms of the Poisson bracket involving only the
derivatives with respect to the pairs of conjugate variables (L,λ) and (ξ,η), respec-
tively. Then, according to [27], we have that

〈H (O2)〉λ
∣∣∣
L=0

= 〈H̃ 〉λ
∣∣∣
L=0

+ O(μ3) ,

being H (O2) = exp(Lχ(O2)
1

)H3BP . Let us remark that for the definition of this model
it is not necessary to compute the effects induced by the second generating function
χ(O2)
2 (L,λ) for removing terms linear in L, because the additional terms due to the

application of such a Lie series operator are neglected in the secular approximation.
We can finally introduce our secular model up to order 2 in the masses by setting

H (sec)(D2, ξ,η) =
⌈

〈H̃ 〉λ
∣∣∣
L=0

⌉

NS

, (74)

i.e., we take the averaged expansion (over the fast angles λ) of the part of H̃ that is
both independent from the actions L and truncated up to a total order of magnitude
NS in eccentricity and inclination. Since D2 is O(e21 + i21 + e22 + i22

)
, this means

that we keep the Hamiltonian terms h(P)

s;0, j2
with 2s + j2 ≤ NS . From now on, the

parameter D2 is replaced by its explicit value that is calculated as a function of the
initial conditions; thus, we can write the Hamiltonian as follows:

H (sec)(ξ,η) =
NS/2∑

s=1

h(sec)
2s (ξ,η) , (75)

where h2s is an homogeneous polynomial of degree 2s. Thismeans that the expansion
contains just terms of even degree, as a further consequence of the well known



36 U. Locatelli et al.

D’Alembert rules. To fix the ideas, in the case of the extrasolar system HD4732
let us emphasize that our secular model at order two in the masses is defined by a
Hamiltonian H (sec) that is a simple (even) polynomial of maximal degree 8 in the
four canonical variables (ξ,η).

We have explicitly performed all the computations of Poisson brackets (required
by Lie series formalism to express canonical transformations) and all the expansions
described in the present subsection and in in the next one, by using X�óνoς . It is
a software package especially designed for doing computer algebra manipulations
into the framework of Hamiltonian perturbation theory (see [21] for an introduction
to its main concepts).

4.2 Semi-analytic Computations of Invariant Tori

In the framework of Hamiltonian theory for dynamical systems, often intuition can
be fruitfully helped by numerical investigations. In particular, in the case of the
extrasolar system HD4732, they allow to easily motivate the new approach that is
based on normal forms and we are going to describe. In the present section, we will
discuss some results provided by direct numerical integrations of the secular model
H (sec) that is defined in (75); all of them have been produced by simply applying the
RK4 method.

A few dynamical features of the Hamiltonian model defined by H (sec) are sum-
marized in the plots reported in Fig. 2. They refer, as an example, to the initial
conditions corresponding to the set of values I4◦ , defined in (68). The difference of
the arguments of the pericenters ω2 − ω1 is plotted in the bottom-right panel of such
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Fig. 2 On the left, Poincaré sections that are corresponding to the hyperplane η2 = 0 (with the
additional condition ξ2 > 0) and are generated by the flow of the Hamiltonian secular model H (sec),
which is given in (75) at order two in the masses for the exoplanetary system HD4732; the orbit
in red refers to the motion starting from the initial conditions corresponding to the set I4◦ , that is
described in (68). On the right, evolution of secular orbital elements: the eccentricities of both the
exoplanets (that are e1 and e2) and the difference of the arguments of the pericenters (i.e., ω2 − ω1)
are plotted on top and bottom, respectively
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a figure; then, we can easily appreciate that this angle is librating around 180◦. By
taking into account of the fact that the nodes are opposite in the Laplace frame, this
means that the pericenters of HD4732b and HD4732c are in the so called “apsidal
locking” regime in the vicinity of the alignment of the pericenters. This phenomenon
is expected to play a major role in making stable the orbits for systems where the
Keplerian part of the Hamiltonian is strongly affected by the interactions between
planets (see, e.g., [30] or [9]). The Poincaré sections of the motions starting from the
initial conditions corresponding to I4◦ are plotted in red in the panel on the left of
Fig. 2 and it is easy to remark that they are orbiting around a fixed point. Moreover,
it looks rather close to those sections marked in red, when their distance from such
a fixed point is compared with that from the orbits that are enclosing another fixed
point. Let us recall that all the Poincaré sections reported in Fig. 2 refer to the same
level of energy, say E , corresponding to the set of initial conditions I4◦ . Since H (sec)

is a two degrees of freedom Hamiltonian, the manifold labeled by such a value of the
energy will be three-dimensional; in other words, by plotting the Poincaré sections,
we automatically reduce by one the dimensions of the orbits. This is the reason why
a fixed point actually corresponds to a periodic orbit. Since the fixed point with neg-
ative value of the abscissa is surrounded by closed curves, then we can argue that
such a periodic orbit is linearly stable for what concerns the transverse dynamics.
This means that it is a one-dimensional elliptic torus, in the terminology we have
adopted in the present work. Therefore, we can conclude that the orbit generated by
the set I4◦ of initial conditions is winding around a linearly stable periodic orbit, by
remaining in its vicinity. This explains why we are going to adopt a strategy based on
two different algorithms: the first one refers to the elliptic torus (that corresponds to
a fixed point in the Poincaré sections) and provides a good enough approximation to
start the second computational procedure that constructs the final KAM torus (which
shall include also the points marked in red in Fig. 2).

Explicit Construction of the Normal Form for Elliptic Tori in the Case of the
Secular Model Representing the Planetary System HD4732
The discussion above has highlighted that it is convenient to adopt a suitable set of
coordinates including also a resonant angle, that is the difference of the arguments
of the pericenters. In view of such a target, we first introduce the set of action-angle
variables (J ,ψ) via the canonical transformation

ξ j = √2J j cosψ j , η j = √2J j sinψ j , ∀ j = 1, 2, (76)

being (ξ,η) the variables appearing as arguments of the secular Hamiltonian H (sec)

defined in (75). It is important to recall that the angles (ψ1,ψ2) associated to these
secular variables are nearly equal to the arguments of the pericenters (ω1,ω2), apart
from a small correction due to the transformation of coordinates induced by the
application of the Lie series expLχ(O2)

1
to theHamiltonian of the three-body planetary

problem. Then, it is convenient to introduce a new set of variables (I,ϑ) such that

ϑ1 = ψ1 − ψ2 , ϑ2 = ψ2 , I1 = J1 , I2 = J2 + J1 . (77)
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We now introduce the new canonical polynomial variables (x, y) defined as

x j = √2I j cosϑ j , y j = √2I j sin ϑ j , ∀ j = 1, 2 . (78)

Let us also remark that making Poincaré sections with respect to the hyperplane
η2 = 0, when ξ2 > 0 is equivalent to impose ψ2 = 0, because of the definitions
in (76). Therefore, looking at formulæ (77)–(78), one can easily realize that the
drawing in the left panel of Fig. 2 can be seen as a plot of the Poincaré sections
in coordinates (x1 , y1) with respect to y2 = 0 and with the additional condition
x2 > 0. Revisiting the plot in the bottom–right box of Fig. 2 in the context of the new
canonical variables is interesting, because it makes clear that ϑ1 is librating around
180◦. In fact, we have that ϑ1 = ψ1 − ψ2 � ω1 − ω2 , because the relation between
these differences of angles is given by the transformation induced by the application
of the Lie series expLχ(O2)

1
, that is close to the identity.

By a numerical method,28 we can easily determine the initial condition (x�, y�)

that is in correspondence with a Poincaré section and generates a periodic solution.
We can now subdivide the variables in two different couples. The first one is given by
(p, q) ∈ R × T, i.e., the action-angle couple describing the periodic motion. Thus,
we rename the angle ϕ2 as q, while the action is obtained by translating the origin of
I2 so that p = I2 − I �, where at the first trial29 the shift value I � is fixed so that I � =(
(x�

2)
2 + (y�

2)
2
)
/2. Forwhat concerns the second couple of canonical coordinates, we

start from the polynomial variables (x1, y1) in order to describe themotion transverse
to the periodic orbit. The last preliminary translation is on x1 , in order to have
expansions around the value x�

1 , given by the initial condition computed numerically.
Let us emphasize that, since the fixed point we are trying to approximate in Fig. 2
corresponds toϕ1 = 180◦, we have that y�

1 = 0 and here a translation is not needed. It
is now convenient to rescale the transverse variables (x̄1, y1), being x̄1 = x1 − x�

1 , in
such away that theHamiltonian partwhich is quadratic in the newvariables (x, y) and

28 Let us imagine to start from an initial condition denoted by (x̂, ŷ) that is close enough to the
periodic orbit generated by the wanted solution (x�, y�); typically, at the beginning one can put
(x̂, ŷ) equal to the values assumed by the canonical variables (x, y) in correspondence with the
set Iimut(0), defined in (68). During a long enough numerical integration of the Hamilton equations
related to H (sec), one can easily determine x̂1,− and x̂1,+ that are the minimum value assumed
by the variable x1 in correspondence with the Poincaré sections and the maximum one, resp. If
the difference x̂1,+ − x̂1,− is below a prescribed (small) threshold of tolerance, then we assume
to know the solution with a good enough level of approximation and we stop this computational
procedure by setting (x�, y�) = (x̂, ŷ). If such a “way out condition” is not satisfied, then we
define x�

1 = (x̂1,+ + x̂1,−)/2, y�
1 = 0, y�

2 = 0 and we determine the positive value of x�
2 so that

the energy level of this new approximation of the final solution, i.e., (x�, y�), is still equal to the
value E corresponding to the set Iimut(0). Let us remark that in the (re)definition of (x�, y�) we are
exploiting both the definition of the Poincaré sections and their symmetry with respect to the axis
of the abscissas. At this point, we put (x̂, ŷ) = (x�, y�) and we restart the computational procedure
by performing another numerical integration so to determine new values of x̂1,− and x̂1,+ and so
on, until the “way out condition” will be satisfied.
29 See the discussion about the solution of the implicit equation (79) by using the Newton method,
which is reported at the end of these explanations.
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does not depend on (p, q) is in the formΩ(0)(x2 + y2)/2. This rescaling can be done
by a canonical transformation as the quadratic part does not have anymixed term x̄1y1
and the coefficients of x̄2

1 and y21 have the same sign, because of the proximity to an
elliptic equilibrium point. Thus, since such a quadratic part is in the preliminary form

ax̄2
1 + by21 , it suffices to define the new variables (x, y) as x = 4

√ a
b x̄1, y = 4

√
b
a y1 .

Finally,we introduce the secondpair of canonical coordinates (J,ϕ) ∈ R+ ∪ {0} × T

so that x = √
2J cosϕ and y = √

2J sinϕ.
In the case of the secular dynamics of the planetary systemHD4732, starting from

H (sec) in (75), we have applied all the canonical transformations listed above and we
have expanded theHamiltonianH(0)(p, q, J,ϕ) up to degree 16 in the square roots of
the actions (p, J ). SinceH(0)(p, q, J,ϕ) is in a suitable form to apply the algorithm
fully described in Sect. 3.1 in the case with n1 = n2 = 1 (this is the reasonwhy all the
variables (p, q, J,ϕ) are here denoted as scalar quantities instead of vectorial ones),
we have applied such a computational procedure. We have performed 19 steps of the
normalization algorithm so producingH(19)(p, q, J,ϕ). During those computations,
the Fourier expansions inq of all theHamiltonians defined by the algorithmhave been
truncated at a maximal trigonometric degree equal to 40; since K = 2, this choice
allows to properly determine the generating functions for the first 20 normalization
steps. For the sake of brevity, we omit to report the graphs of the norms of all the
generating functions that are defined by the normalization procedure, also because
those plots are similar to the corresponding ones included in [8, 9]. Indeed, they
show that the convergence to the identity of the canonical transformations defined
at the r -th step of the algorithm is very fast with respect to r . This fact also allows
to iterate a few times all the normalization procedure constructing the normal form
for an elliptic torus with a computational cost which is not too expensive. We are
interested in doing that in order to refine the choice of the initial shift value I �.
Since all other canonical transformations are unambiguously defined, we have some
remaining arbitrariness just on the translation p = I2 − I �. We finally determine I �

in such a way that
E (19)

(
I �
) = E , (79)

where E is the energy level of the Poincaré sections and E (19)
(
I �
)
is the energy of

the elliptic torus in the approximation provided after 19 steps of normalization. The
implicit equation above can be numerically solved in the unknown I � by iterating a
few times the Newton method; this is done starting from the initial guess

(
(x�

2)
2 +

(y�
2)

2
)
/2, according with the discussion above.

For brevity, we omit also the tests showing that there is an excellent agreement
between the wanted periodic orbit and the nearly invariant curve, which is provided
by the last execution of the normalization algorithm, that is launched during the final
iteration of theNewtonmethod targeting the solution of (79). Actually, it corresponds
to the counter-image of the set (p = 0, q ∈ T, J = 0, ϕ = 0) and is expressed in the
coordinates (ξ,η), after having composed all the previous canonical transformations.



40 U. Locatelli et al.

Explicit Construction of the Normal Form for KAM Tori in the Case of the
Secular Model Representing the Planetary System HD4732
Since the Hamiltonian H(19)(p, q, J,ϕ) is very close to the normal form related to
the wanted elliptic torus, we use it as the starting point to construct a semi-analytic
solution that should provide a good approximation of the orbits generated by the
initial conditions corresponding to the set I4◦ . For such a purpose, first we translate
once again the coordinates. This is made in such a way that the new invariant torus
we are going to construct will be located in the proximity of these initial conditions;
therefore, we define two new pairs of action-angle coordinates ( p, q) ∈ R

2 × T
2. It

is convenient to set p2 = J − J �, being J � the value of the momentum J computed
in correspondence with the initial conditions related to the set I4◦ , that generate
the Poincaré sections marked in red in Fig. 2. We also introduce p1 = p − p�, with
p� = −(Ω(19)/ω(19)

)
J �, being 2π/ω(19) approximately equal to the period of the

motionon thepreviously determinedone-dimensional elliptic torus,while the angular
velocity of the transverse (small) oscillations in its vicinity is close toω(19). We recall
that the values of bothω(19) andΩ(19) appear in the expansion (59) of theHamiltonian
H(19), that is provided at the end of the previous normalization algorithm. Moreover,
we rename the angles (q,ϕ) as (q1, q2), respectively; then, we perform the two
translations described just above, by expanding the new Hamiltonian H (0)( p, q) up
to degree 8 in the actions p. By considering just the integrable approximations of
H(19) and H (0) (this means that the terms depending by the angles are temporarily
neglected), one can easily realize that the energy constant E (0) corresponding to the
newHamiltonian is such that E (0) � E , because of the equationω(19) p� + Ω(19) J � =
0 that is due to the definitions of the shift values

(
p�, J �

)
. Since H (0)( p, q) is in a

suitable form to apply the algorithm fully described inSect. 2.3,wehaveperformed19
steps of such a computational procedure too, so producing H (19)( p, q). During these
computations, the Fourier expansions in q of all the Hamiltonians defined by the
normalization algorithm have been truncated at a maximal trigonometric degree
equal to 40. This choice allows to properly determine the generating functions χ(r)

1

and χ(r)
2 for the first 20 normalization steps.

It is convenient to define the norms of the generating functions as the sum of the
absolute values of the coefficients appearing in their (finite) Taylor-Fourier expan-
sions. In the left panel of Fig. 3, we report the plot of

∥∥χ(r)
2

∥∥ in a semi-log scale and
as a function of the normalization step r , while we have decided to not include also∥∥χ(r)

1

∥∥, because for every r it is definitely smaller than
∥∥χ(r)

2

∥∥. One can appreciate
that the geometrical decrease of the generating functions is very sharp and regular;
therefore, this shows that the normalization algorithm constructing the Kolmogorov
normal form is convergent in a quite rapid way.

We can now check the quality of our results. Let us denote with C the canonical
transformation we obtain by composing all the changes of coordinates we have dis-
cussed in the present Sect. 4.2. Therefore, we have that (ξ,η) = C( p, q), where
(ξ,η) are the canonical coordinates referring to the Hamiltonian secular model
H (sec), that is defined in (75), while ( p, q) are the action-angle variables that are
introduced at the end of the previously described computational procedure. Inspired
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Fig. 3 On the left, study of the decrease of
∥∥χ(r)

2

∥∥ as a function of the normalization step r . On the
right, comparisons between the Poincaré sections generated by two different initial conditions, that
correspond to the set I4◦ and a point on the (nearly) invariant torus p = 0 related to the Hamiltonian
H (19), respectively. The former ones are marked in red as in the left panel of Fig. 2, while the latter
ones are in black. The Poincaré sections are defined in the same way as those reported in Fig. 2; in
particular, the dots plotted in blue there are located exactly in the same positions as those marked
in orange here. The blue symbol × refers to the motion on the elliptic torus corresponding to the
Hamiltonian H(19)

by the semi-analytic scheme (5), which provides a way to integrate the Hamilton
equations, we start by computing (ξ(0),η(0)) = C(0, 0). Since H (19) is very close
to be in Kolmogorov normal form and H (sec) � H (19)

(C( p, q)
)
(the discrepancies

are mainly due to the unavoidable truncations that are made on the expansions of the
Hamiltonians), then

(
ξ(t),η(t)

) = (C(0,ω(19)t)
)
provides a good approximation of

the flow induced by H (sec). We also recall that the values of the angular velocity
vector ω(19) appear in the expansion (21) of the Hamiltonian H (19). Computing the
Poincaré sections of the motion law

(C(0,ω(19)t)
)
is not very comfortable; there-

fore, it is convenient to refer to its approximation which is given by the numerical
solution of the Hamilton equations for H (sec) starting form the initial conditions
(ξ(0),η(0)) = C(0, 0). The Poincaré sections we have obtained in this way are plot-
ted in black on the right panel of Fig. 3. They are in good agreement with the the
Poincaré sections marked in red in both Figs. 2 and 3, that refer again to the flow
induced by H (sec), but starting from the initial conditions related to the set I4◦ . This
confirms that we are able to obtain reliable approximations of the secular motions
for extrasolar planetary systems, by using computational procedures based on the
construction of suitable (Kolmogorov-like) normal forms.

Final Comments About Our Semi-analytic Results
Looking closely at the right panel of Fig. 3, one can observe that the Poincaré sections
plotted in black goes from the part internal to the orbit in red to the external one
and vice versa. This provides a clear indication that the energy level of the final
KAM torus (that is � E (19)) is not very close to that of all the Poincaré sections
plotted in Fig. 2 (being E its value). Indeed, the relative error

∣∣E (19) − E
∣∣/|E | is

about 12%. The agreement between the results produced by the purely numerical
integrations or by adopting our semi-analytical approach can be strongly improved
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by a suitable further refinement of our computational procedure. The description of
such an extension goes beyond the scopes of the present work, but we stress that it
can be done so as to ensure also that the condition on the coherence with the energy
of the Poincaré sections, i.e.,

E (RI) = E , (80)

is satisfied within a tolerance range that is acceptable for a numerical solution of
the equation above, where RI is the number of steps that are explicitly performed
in order to construct the final Kolmogorov normal form. Here, we limit ourselves
to anticipate some of the results that can be obtained by implementing that further
refinement, in order to let the reader appreciate the power of this kind of methods. For
what concerns the planetary system HD4732 we already have studied the motions
starting from the following sets of initial conditions: I2◦ , I4◦ , I6◦ , . . . I40◦ . We can
construct invariant KAM tori well approximating the orbits for all these cases, except
those corresponding to the sets I32◦ and I34◦ . We emphasize that these limitations are
due to real dynamical phenomena. The Poincaré sections generated by those initial
conditions clearly shows that between 34◦ and 36◦ there is the transition from the
librations to the circulation regime, for what concerns the difference of the argument
of the pericenters. Moreover, this kind of orbits are observed in stable situations up
to initial values of the mutual inclinations that are about 40◦, while for even larger
angles there are robust configurations just inside the Lidov-Kozai resonance, which
has different dynamical features (see [42]). As we have already mentioned above,
we plan to describe these new results in a forthcoming work.

The evolution of the eccentricities plotted in the right panel of Fig. 2 clearly shows
that their average value is larger than 0.1 for both the exoplanets orbiting around
HD4732. Therefore, the new approach that we have introduced in the present work
behaves definitely betterwith respect to the previous one,whichwas described in [41]
and was shown to be successful just for systems with exoplanetary eccentricities
smaller than 0.1 . In our opinion the main source of improvement is due to the new
strategy, because it combines the preliminary construction of the normal form for a
suitable elliptic torus with the final one, which is performed in its vicinity for a KAM
torus whose shape is a good approximation of the secular orbits. In order to mention
another relevant success of our new approach, let us stress that in [9] we applied it
also to the delicate case of a system including both the two largest exoplanets orbiting
around υ Andromedæ A and the star itself.
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