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Preface

This volume contains the detailed text of the major lectures delivered during the
I-CELMECH Training School 2020 held in Milan, whose aim was to present a
contemporary review of recent results in the field of Celestial Mechanics, with
special emphasis on theoretical aspects. In fact, themodern developments ofCelestial
Mechanics have their roots in the mathematics of Hamiltonian perturbation theory
and of the dynamical systems. It is remarkable how in the last decades, in parallel to
the celebrated theorems of these disciplines, constructive methods have been devel-
oped in order to tackle problemswith a long tradition, such as the stability of the Solar
System, the rotations of celestial bodies and orbit determination, as well as the novel
scientific needs raised by the discovery of exoplanetary systems, the management of
the space debris problem and the modern space mission design.

Celestial Mechanics training schools have a great tradition that dates back to 1981
with the school of the NATO Advanced Study Institute held at Cortina d’Ampezzo
and that is still going on with the recent summer school SDSM 2017 “Satellite
Dynamics and Space Missions: Theory and Applications of Celestial Mechanics”,
held in San Martino al Cimino.

Quoting the preface of the Proceedings of training school in Cortina d’Ampezzo
in 1981, where it all began, the Editors of the Proceedings were extremely fortunate
to have obtained the cooperation of outstanding lecturers who were clear, thorough,
understandable, patient to answer questions, but above all, had knowledge of the
most recent developments in our field of interest. This demonstrates a continuity
of tradition in our community of which we are extremely proud. This preface will
briefly review the content of the lectures.

The contribution byUgo Locatelli focuses on the explicit construction of invariant
tori exploiting suitableHamiltonian normal forms, with particular emphasis on appli-
cations to Celestial Mechanics. First, the algorithm constructing the Kolmogorov
normal form is described in detail. Then the extension to lower-dimensional elliptic
tori is provided. Both algorithms are then combined so as to accurately approximate
the long-term dynamics of the HD 4732 extrasolar system.

v



vi Preface

The contribution by Gabriella Pinzari presents a review of some results of their
research group, regarding the relation between some particular motions of the Three-
Body problem (3BP) and the motions of the so-called Euler (or two-centre) problem,
which is integrable. For the analysis of such relation, the authors make use of two
novel results: on one hand, the two-centre problem (2CP) bears a remarkable prop-
erty, here called renormalizable integrability, which states that the simple averaged
potential of the 2CP and the Euler integral are one function of the other; on the other
hand, the motions of the Euler integral are at least qualitatively explicit, and the aver-
aged Newtonian potential is a prominent part of the 3BP Hamiltonian. In previous
works, the authors give partial answers to the question whether the motions of the
Euler integral can be traced in the 3BP, here revisited.

The contribution byAlessandra Celletti deals with dissipative systems, a key topic
in Celestial Mechanics. In particular the problem of the existence of invariant tori for
conformally symplectic systems, which have the property to transform the symplectic
form into a multiple of itself, is studied. Two different models are presented: a
discrete system known as the standard map and a continuous system known as the
spin-orbit problem. In both cases, both the conservative and dissipative versions
are considered, in order to highlight the differences between the symplectic and
conformally symplectic dynamics. Finally, a short survey of the present state of
KAM (Kolmogorov-Arnold-Moser) estimates for the existence of invariant tori in
the conservative and dissipative standard maps and spin-orbit problems is provided.

The contribution by Gwenaël Boué provides basic tools to understand the rota-
tional dynamics of extended bodies which could be either rigid or deformable by
tides. The problem is described in a Lagrangian formalism as it was developed by
H. Poincaré in 1901. The case of rigid body is also presented in the corresponding
Hamiltonian formalism. The mathematical description of the deformation of the
extended body follows the approach used by C. Ragazzo and L. Ruiz in their two
papers of 2015, 2017 due to the compactness and clarity of their formalism. In this
Chapter, many applications to the rotation and the libration of celestial bodies are
illustrated.

The contributionbyChristosEfthymiopoulos concerns the phenomenonofArnold
diffusion. The authors beginwith the famous example given byArnold to describe the
slow diffusion taking place in the action-space in Hamiltonian nonlinear dynamical
systems with three or more degrees of freedom. The text introduces basic concepts
related to our current understanding of the mechanisms leading to Arnold diffu-
sion and at the same time performed a qualitative investigation of the phenomenon
of Arnold diffusion with many examples. The problem of the speed of diffusion
is investigated using methods of perturbation theory, with particular emphasis on
Nekhoroshev’s theorem. The choice of the authors of mixing the analytical and
numerical parts trying to explain in a very rigorous way numerical results makes the
paper self-consistent.

The contribution by Giovanni F. Gronchi deals with the problem of initial orbit
determination of a solar system body, i.e. the determination of a preliminary orbit
from observations collected for example by a telescope. The two methods that are
presented, named Link2 and Link3, try to link together two and three, respectively,
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short arcs of optical observations of the same object which can possibly be quite
far apart in time. The conservation laws of Kepler’s problem are used to derive a
polynomial equation of degree 9 (Link2) and 8 (Link3) for the distance of the
body from the observer. Some numerical examples show the performance of the two
linkage methods when they are applied to real observations of asteroids.

The contribution by Catalin Gales provides an overview of some recent devel-
opments in the study of dynamics of space debris with focus on specific resonant
interactions, in particular those related to the tesseral resonances. After an historical
introduction to the topic, the authors provide a long-term picture of the dynamics
that can help in the modeling and mitigation of the space debris problem, both in
term of Cartesian coordinates and in the Hamiltonian framework. Some key terms in
the perturbing functions are classified, while the effect of the dissipative force of the
atmospheric drag is also formulated. In the following sections, the authors describe
the effects of the tesseral resonances in the LEO, MEO and GEO regions. Finally,
the effect of lunisolar resonances in high-altitude orbits and future perspectives are
discussed.

The contribution by Antonio Giorgilli provides an answer to a simple question,
how did Kepler discover his celebrated laws?. The answer however is not that simple
and the present paper guides the reader by a short walk along the main works of
Kepler, notably the Astronomia Nova, trying to follow his search of the perfection
of the World till the discovery of his celebrated laws. At the end of the road, the
consciousness that the finish line had not yet been reached.

The I-CELMECH Training School was attended by 86 participants from all over
the world and it was made possible, thanks to the support of project MIUR-PRIN
20178CJA2B “New frontiers of Celestial Mechanics: theory and applications”, the
Department of Mathematics “Federigo Enriques” of the Università degli Studi di
Milano and the MusAB “Museo Astronomico di Brera”.

Pisa, Italy
Palermo, Italy
Cork, Ireland
Milan, Italy
Milan, Italy

Giulio Baù
Sara Di Ruzza

Rocío Isabel Páez
Tiziano Penati

Marco Sansottera



Contents

InvariantKAMTori: FromTheory toApplications toExoplanetary
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ugo Locatelli, Chiara Caracciolo, Marco Sansottera and Mara Volpi

A New Analysis of the Three-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Jérôme Daquin, Sara Di Ruzza and Gabriella Pinzari

KAM Theory for Some Dissipative Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Renato Calleja, Alessandra Celletti and Rafael de la Llave

Tidal Effects and Rotation of Extended Bodies . . . . . . . . . . . . . . . . . . . . . . . 123
Gwenaël Boué

Arnold Diffusion and Nekhoroshev Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Christos Efthymiopoulos and Rocío Isabel Paez

Orbit Determination with the Keplerian Integrals . . . . . . . . . . . . . . . . . . . . 209
Giovanni Federico Gronchi

Resonant Dynamics of Space Debris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Alessandra Celletti and Catalin Galeş
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Abstract We consider the classical problem of the construction of invariant tori
exploiting suitable Hamiltonian normal forms. This kind of approach can be trans-
lated by means of the Lie series method into explicit computational algorithms,
which are particularly suitable for applications in the field of Celestial Mechanics.
First, the algorithm constructing the Kolmogorov normal form is described in detail.
Then, the extension to lower-dimensional elliptic tori is provided.We adopt the same
formalism and notations in both cases, with the aim of making the latter easier to
understand. Finally, they are both used in a combined way in order to approximate
carefully the secular dynamics of the extrasolar system hosting two planets orbiting
around the HD 4732 star.
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1 Introduction

The birth of KAM1 theory was marked by a famous article written in 1954 by
A.N. Kolmogorov, i.e., [22]. At that epoch the great potential of KAM theorem in
order to solve interesting problems in the field of Celestial Mechanics was immedi-
ately understood. In fact, it was applied just a few years later in order to prove the
stability of the triangular Lagrangian points in the planar restricted problem of three
bodies for almost all admissible mass ratios (see [25]). Since then, several applica-
tions have ensured the existence of invariant tori in the context of other Hamiltonian
models that are of interest in Celestial Mechanics (see, e.g., [10]). Nevertheless, the
applications of KAM theory to physically realistic models have never been straight-
forward. This is mainly due to a few severe constraints that appear in the hypotheses
of KAM theorem (e.g., concerning the smallness on the parameter ruling the size of
the perturbation).

In the last few decades, the successful applications of KAM theory to Celestial
Mechanics introduced more and more refinements in the preliminary work to adapt
the Hamiltonian model in such a way to bypass the aforementioned difficulties (see,
e.g., [27, 28]). In someotherworks, the novelty concerns the designof a newapproach
strategy. In particular, this has been made by combining the results provided by two
different theorems; for instance, in [18, 20] the estimates à la Nekhoroshev have
been applied in the neighborhood of an invariant KAM torus, by following the proof
scheme described in [31]. This kind of strategy can be implemented in a natural way
by adopting an approach based on suitable normal forms. Indeed, different normal
form algorithms can be applied one after the other. This work has the ambitious
goal of fully explaining a very recent type of applications in the field of Celestial
Mechanics, where the computational procedure leading to the Kolmogorov normal
form is performed in the neighborhood of a periodic orbit. In turn, such an invariant
manifold is preliminarly located by a corresponding normal form for an elliptic torus.
The addition of this intermediate step is crucial in order to successfully apply our

1 It is worth to repeat, here and once again, the story explaining the choice of the acronym KAM. In
1954, during the International Congress of Mathematicians in Amsterdam, Kolmogorov presented
his version of the (KAM) theorem. In the same year, he also wrote the very short article [22],
where he provided just a scheme of the proof. According to a few direct witnesses, a few years later
Kolmogorov explained all the details of his proof in a cycle of lectures delivered at the Moscow
University. This was based on a sequence of canonical transformations coherently defined on a so
called scale of Banach spaces; a modern reformulation of the proof that should be very similar to
the original one is included in [11]. In 1963, V.I. Arnold (who had been a student of Kolmogorov)
published a complete proof of the theorem, based on a different approach able to ensure the exis-
tence of a Cantor set including many invariant tori and having positive Lebesgue measure (see the
statement of Corollary 1 and [1]). In the meantime, the german mathematician J. Moser developed
a completely independent version of the proof in the case of symplectic mappings (see [33]). Let
us also recall that at the beginning the correctness of the Kolmogorov’s approach was doubtful for
Moser. Indeed, also because of a famous sentence included in the report he wrote for Mathemati-
cal Reviews on the Kolmogorov’s article (see MR0097508, 20 n. 4066), for many years Arnold’s
approach was thought to be the only viable one, in order to prove KAM theorem for quasi-integrable
Hamiltonian systems.
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computational algorithm in its entirety to extrasolar planetary systems with rather
eccentric orbits (i.e., whose eccentricity values are significantly larger than those
observed for the gaseous planets of our Solar System).

The first theoretical results about the existence of elliptic tori go back to [13, 29,
36]. In the last two decades, similar statements have been proved also in the context
of Hamiltonian planetary systems (see [3, 4, 19]). In the present notes, we aim to
develop an approach that is far from being purely theoretical. Indeed, we will explain
how to extract from the proof schemes the information that is fundamental in order
to properly design a computational procedure, which allows to determine invariant
manifolds that are in good agreement with the orbital motions of extrasolar planets.

In the following, Sect. 2 contains a quick introduction of a few elementary notions
concerning the Hamiltonian perturbation theory and a careful description of the
normal form method constructing KAM tori. In Sect. 3, we show how that approach
can be adapted for the construction of lower-dimensional invariant manifolds of
elliptic type. In the final Sect. 4 our new application to an exoplanetary system is
explained in detail; this is designed by combining the two kind of normal forms
previously discussed, whose constructions are performed one after each other.

2 Basics of KAM Theory

2.1 Near to the Identity Canonical Transformations by Lie
Series

Let us consider two generic dynamical functions f = f ( p, q) andχ = χ( p, q), that
are defined on all the phase space endowed by n pairs of conjugate canonical variables
( p, q) = (p1 , . . . , pn , q1 , . . . , qn). It is well known that the time evolution of f
under the flow induced by χ is ruled by the Poisson bracket between these two
functions, i.e., ḟ = d

dt f ( p(t), q(t)) = { f,χ}, where

{ f , χ} =
n∑

j=1

∂ f

∂q j

∂χ

∂ p j
− ∂ f

∂ p j

∂χ

∂q j
(1)

and the flow ( p(t), q(t)) = Φ t
χ

(
p(0), q(0)

)
is defined by the solution of the corre-

sponding Hamilton equations

ṗ j = − ∂χ

∂q j
, q̇ j = ∂χ

∂ p j
, ∀ j = 1, . . . , n (2)

(being ( p(0), q(0)) regarded as initial conditions).
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Let us now focus on the Taylor expansion with respect to time of the generic
dynamical function f , i.e., f + t ḟ + t2

2
d
dt ḟ + . . . = f + t{ f,χ} + t2

2 {{ f,χ},χ} +
. . ., that can be reformulated in terms of Lie series. First, let us introduce the so called
Lie derivative operator:Lχ· = {·,χ}; in the present context, it is usual to refer to χ as
the generating function of the correspondingLie derivative. Thus, the previous Taylor
expansion in time can be expressed as exp

(
tLχ

)
f =∑∞

j=0
t j

j !L j
χ f . It is common to

define the Lie series operator just in the case with t = 1, i.e., it acts on the generic
dynamical function f in such a way that

exp
(Lχ

)
f =

∞∑

j=0

1

j !L
j
χ f ;

let us emphasize that this formula must be interpreted at a purely formal level, in the
sense that we do not wonder about the convergence of the series. However, it can be
ensured if the sup-norm of the generating function χ is small enough,2 as it is natural
to expect.

Since any single canonical coordinate can be seen as a particular dynamical func-
tion, we can express the Hamiltonian flow at time 1 in terms of Lie series in the
following way:

Φ1
χ( p, q) = exp

(Lχ

)
( p, q), (3)

where, for every pair of canonical variables (pi , qi ) (being i = 1, . . . , n), we put

Φ1
χ pi = exp

(Lχ

)
pi , Φ1

χqi = exp
(Lχ

)
qi .

It is well known that the Hamiltonian flow is canonical, then we readily obtain that
the map defined by the Lie series operator in the right hand side of (3) is canonical
as well. Moreover, such a change of coordinates is obviously close to the identity in
the limit of the generating functions shrinking to zero.

The canonical formalism makes very convenient the writing of the equations
of motion in the new variables. Let us assume that the evolution in the original
set of coordinates ( p, q) is ruled by a single function H = H( p, q) entering the
Hamilton equations (2) in place of χ; moreover, let ( p, q) = C(P, Q) be a canonical
transformation. Therefore, the new equations of motions can be written as follows:

Ṗj = − ∂K
∂Q j

, Q̇ j = ∂K
∂Pj

, ∀ j = 1, . . . , n, (4)

being K(P, Q) = H
(C(P, Q)

)
the new Hamiltonian function. In such a context,

the Lie series formalismmakes automatic (and, then, somehow easier) the procedure

2 The convergence of the Lie series is carefully discussed in [14, 15]; in particular, the explanatory
notes in [15] contains also a rather self-consistent introduction to the Lie series formalism in the
Hamiltonian framework.



Invariant KAM Tori: From Theory to Applications to Exoplanetary Systems 5

of substitution, because of the so called “exchange theorem” (see [14]). In fact, if χ
is a small enough generating function, the new Hamiltonian can be expressed as

K(P, Q) = exp
(Lχ

)
H
∣∣∣
( p,q)=(P,Q)

,

this means that we can apply the Lie series to the old Hamiltonian function so as to
rename the variables, only at the end. For more detailed explanations we defer to the
whole Sect. 4.1 of [15]. Of course, the same computational procedure holds also for
the corresponding canonical transformation, that is given by

( p, q) = C(P, Q) = exp
(Lχ

)
( p, q)

∣∣∣
( p,q)=(P,Q)

.

2.2 Statement(s) of KAM Theorem

First, let us recall the statement of KAM theorem as in its very first version introduced
by Kolmogorov (see [22]).

Theorem 1 (KAM, according to the version due to Kolmogorov) Consider a
Hamiltonian function H : A × T

n �→ R (being A ⊆ R
n an open set) of the form

H( p, q) = ω · p + h( p) + ε f ( p, q) where h is at least quadratic with respect to
the actions p, i.e., h( p) = O(‖ p‖2) for p → 0. Moreover, let us assume the follow-
ing hypotheses:

(a) ω is Diophantine; this means that there are two positive constants3 γ and τ such
that |k · ω| ≥ γ

|k|τ ∀ k ∈ Z
n \ {0};

(b) H is analytic on its action–angle4 domain of definition A × T
n;

(c) h( p) is non-degenerate, i.e., det
(

∂2 h
∂ pi ∂ p j

( p)
)

i, j 
= 0 ∀ p ∈ A;
(d) ε is a small enough parameter.

Therefore, there is a canonical transformation ( p, q) = ψε(P, Q), leading H in
the so called Kolmogorov normal form K(P, Q) = ω · P + O(‖P‖2), being K =
H ◦ ψε .

In our exposition of these topics, we do not consider all the very interesting
mathematical work that has been done in the last fifty years in order to weaken the

3 Indeed, in order to satisfy the Diophantine inequality, it is essential that τ ≥ n − 1.
4 Although there exist formulations of the KAM theorem that are not dealing with action–angle
canonical coordinates (see, e.g., [12]), we stress that this is a rather natural framework to assume.
In fact, by definition a n–dimensional torus T

n is in a bijective correspondence with n angles,
denoted as (q1 , . . . , qn) in agreement with the text. Thus, they can be adopted as coordinates.
Let us recall that in Hamiltonian mechanics the product between each conjugate pair of canonical
variables has the physical dimension of an action, that is the same as an angular momentum.
Therefore, ∀ j = 1, . . . n, the conjugate momentum p j is an action, because ( p, q) are assumed
to be canonical coordinates.
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assumptions on the KAM theorem. We prefer to focus on what makes the theorem
suitable to apply to interesting physical problems. This is somehow hidden in the
thesis of the statement and, mainly, in the proof scheme. Let us highlight such a
content.

One can easily verify that, if the Hamiltonian is in the Kolmogorov normal
formK(P, Q) = ω · P + O(‖P‖2), then t �→ (P(t) = 0 , Q(t) = Q0 + ωt) is the
solution for the equations of motion (4) starting from the generic initial conditions
(P(0) , Q(0)) = (0 , Q0). Since the canonical transformations enjoy the property
of preserving solutions, this allows us to design the following integration scheme for
the equations of motion (3), when the generic Hamiltonian χ is replaced by H , that
describes the problem we are considering:

(
p(0), q(0)

) ψ−1
ε

−→ (P(0) , Q(0))
⏐⏐� Φ t

K

(
p(t), q(t)

) ψε

←− (P(t) , Q(t))

. (5)

In the scientific literature, this way to compute the motion law t �→ ( p(t) , q(t)) =
Φ t

H ( p(0) , q(0)) is often said to be semi-analytic. Such a name is due to the fact
that the schematic procedure above is usually performed after having determined the
Fourier expansions of the canonical transformation ψε , by using a software package
designed for doing computer algebra manipulations.

In spite of the fact that the very first version of the KAM theorem ensures the
existence of a single invariant torus, the statement can be extended so as to cover a
very generic situation. Indeed, in his very short but incredibly seminal article [22],
Kolmogorov recalled awell known result of number theory: almost all n–dimensional
vectors are Diophantine. This remark jointly with the uniform non-degeneracy of the
so called action-frequency map in the integrable approximation, i.e., p �→ ω( p) =(

∂ h
∂ pi

( p)
)

i=1,...,n , allowed him to state the following result in [22].

Corollary 1 (KAM, according to the version proved by Arnold) Consider a quasi-
integrable Hamiltonian depending on action–angle variables, i.e., H : A × T

n �→ R

(being A ⊆ R
n an open set) of the form H( p, q) = h( p) + ε f ( p, q). If we assume

the same hypotheses (b)–(d) of Theorem 1, then there is a set Sε that is made by
invariant tori and is such that its Lebesgue measure μ

(Sε

)
is positive. Moreover,

lim
ε→0

μ
((A × T

n
) \ Sε

)
= 0 .

Let us emphasize that this statement highlights one of the main merits of the KAM
theorem: it shows that there is a sort of continuity (in terms of the Lebesgue measure)
between integrable systems and quasi-integrable ones. From one hand, this sort of
intuitive concept was (and still is) considered to be extremely natural; on the other
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hand, at that epoch such an expectation was in contrast with the famous theorem by
Poincaré (that can be felt as somehow paradoxical, see [34]) on the non-existence of
integrals of motion apart from the energy for a generic quasi-integrable Hamiltonian
system.

Although the statement of the Corollary above can be easily deduced from the
original version of the KAM theorem that is due to Kolmogorov, the proof scheme
introduced by Arnold in [1] is extremely deep, because it provides a more global
picture of the dynamics. This approach has been further extended, for instance,
in [35], where it is proved that quasi-integrable Hamiltonian satisfying the usual
hypotheses (b)–(d) of Theorem 1 can be conjugated to integrable ones via a canonical
transformation that is not analytic, but it is C(∞).

2.3 Algorithmic Construction of the Kolmogorov Normal
Form

These notes are focusing more on the applications based on the KAM theory rather
than on the theory itself. Therefore, it is important to describe carefully the so
called formal algorithm constructing theKolmogorov normal form. The results about
the convergence of such a computational procedure are very well established (see,
e.g., [17]) and in the following we will just briefly recall them.

For the sake of definiteness, we need to introduce some notations. For a fixed
positive integer K we introduce the distinct classes of functions P�,sK , for all non-
negative indexes �, s ≥ 0 . Any generic function g ∈ P�,sK can be written as

g( p, q) =
∑

j∈Nn

| j |=�

∑

k∈Zn

|k|≤sK

c j ,k p j exp
(
ik · q) , (6)

where ( p, q) are action–angle canonical variables and the coefficients c j ,k ∈ C

satisfy the following relation: c j ,−k = c̄ j ,k so that g : R
n × T

n �→ R. Moreover,
in the previous formula, we have introduced the symbol | · | to denote the �1-
norm (i.e., |k| = |k1| + . . . + |kn|) and we have adopted the multi-index nota-
tion, i.e., p j = p j1

1 · . . . · p jn
n . In the following, we will adopt the usual notation

for the average of a function g with respect to the generic angles ϑ ∈ T
n , i.e.,

〈g〉ϑ = ∫
Tn dϑ1 . . . dϑn g/(2π)n .

We will start the formal algorithm from a Hamiltonian of the following type:

H (0)( p, q;ω(0)) = E (0) + ω(0) · p +
∑

s≥0

∑

�≥2

f (0, s)
� ( p, q;ω(0))

+
∑

s≥1

1∑

�=0

f (0, s)
� ( p, q;ω(0)) ,

(7)
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where f (0, s)
� ∈ P�,sK , being the first upper index related to the normalization step, and

E (0) ∈ P0,0 is a constant meaning the energy level of the torus
{
( p, q) : p = 0, q ∈

T
n
}
that is invariant in the integrable approximation. The occurrence of ω(0) at the

end of the list of the arguments emphasizes that those functions depend also on that
angular velocity vector in a parametric way.We also stress that the terms appearing in
the second row of formula (7) have to be considered as the small perturbation we aim
to remove in order to bring the Hamiltonian in Kolmogorov normal form. According
to the definition given by Poincaré (see [34]), the general problem of the dynamics
is described by a real analytic Hamiltonian of type H(I,ϕ; ε) = h(I) + ε f (I,ϕ),
being (I,ϕ) action–angle coordinates and ε a small parameter. It is well known that
such an Hamiltonian can be put in the form (7) provided that the Hessian of the
integrable part h is non-degenerate on its open domain, sayA ⊆ R

n . Indeed, it is just
matter of performing a canonical change of coordinates that translates the origin of
the actions in correspondence to I� ∈ A, because

∂h
(
I
)

∂ I j

∣∣∣∣
I=I�

= ∂h
(
I( p)

)

∂ p j

∣∣∣∣
p=0

= ω(0)
j ∀ j = 1, . . . , n ,

where I = p + I�. Obviously, the so called action–frequency map in the integrable
approximation, i.e., I� �→ ω(0), can be inverted because the Hessian of h is non-
degenerate. Therefore, the angular velocity vector ω(0) can be used instead of I�

in order to parameterize the whole Hamiltonian. Moreover the Fourier decay of the
coefficients with respect to the angles q = ϑ allows to perform the expansion (7)
in such a way that f (0, s)

� = O(εs). In other words, the positive integer parameter K
can be chosen in such a way that the superscript s refers at the same time to both
the order of magnitude and the trigonometric degree (being f (0, s)

� ∈ P�,sK ); more
details about that can be found in [17].

We are now ready for the description of the (generic) r -th step of the normal-
ization procedure, which defines the Hamiltonian H (r) starting from H (r−1), whose
expansion is written as follows:

H (r−1)( p, q) = E (r−1) + ω(r−1) · p +
∑

s≥0

∑

�≥2

f (r−1, s)
� ( p, q)

+
∑

s≥r

1∑

�=0

f (r−1, s)
� ( p, q) .

(8)

Hereafter, we omit the dependence of the function from the parameters, unless it has
some special meaning. Let us assume that some fundamental properties that hold true
for H (0) are satisfied also for the expansion above of H (r−1), i.e., f (r−1, s)

� ∈ P�,sK

and f (r−1, s)
� = O(εs). Since the r -th normalization step aims to remove themain per-

turbing terms, that are f (r−1, r)
0 and f (r−1, r)

1 , we introduce a first generating function
χ(r)
1 , that is determined by solving the following (first) homological equation:
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{
ω(r−1) · p, χ(r)

1

}
+ f (r−1, r)

0 (q) = 〈 f (r−1,r)
0 (q)〉q . (9)

Since f (r−1, r)
0 ∈ P0,r K , its expansion is written as

f (r−1, r)
0 (q) =

∑

|k|≤r K

ck exp
(
ik · q) ,

where the complex coefficients are such that c−k = c̄k . Therefore, one can easily
check that the first homological equation (9) is solved by putting 〈 f (r−1,r)

0 (q)〉q = c0
and

χ(r)
1 (q) =

∑

0<|k|≤r K

ck exp
(
ik · q)

ik · ω(r−1)
. (10)

In order to preserve the validity of the solution above, of course, we have to require
that none of the divisors can eventually vanish; thus we assume the following non-
resonance condition:

k · ω(r−1) 
= 0 ∀ 0 < k ≤ r K . (11)

The first half of the r -th normalization step is completed by introducing Ĥ (r) =
exp
(Lχ(r)

1

)
H (r−1). Such an intermediate Hamiltonian can be written in a form similar

to formula (8), i.e.,

Ĥ (r)( p, q) =E (r) + ω(r) · p +
∑

s≥0

∑

�≥2

f̂ (r, s)
� ( p, q) +

∑

s≥r

1∑

�=0

f̂ (r, s)
� ( p, q) , (12)

where the recursive definitions of the new summands f̂ (r, s)
� (in terms of f (r−1, s)

� ) can
be given by exploiting the linearity of the Lie series and by separating the functions
according to the different classes P�,sK they belong to. We think it is convenient
to formulate these definitions in a rather unconventional way, by using a notation
similar to that commonly used in the programming languages; in our opinion, such
a choice should make easier the translation of the formal algorithm in any code
to be executed in a computational environment. For this purpose, we first define5

f̂ (r, s)
� ( p, q) = f (r−1, s)

� ( p, q) ∀ � ≥ 0, s ≥ 0. Then, by abuse of notation, we update
�s/r� times the definition of the terms f̂ (r, s)

� appearing in the expansion of the new
Hamiltonian according to the following rule:

f̂ (r, s+ jr)

�− j ←↩
1

j !L
j

χ(r)
1

f (r−1, s)
� ∀ � ≥ 1, 1 ≤ j ≤ �, s ≥ 0 , (13)

5 We remark that f (r−1, s)
� do not enter in the expansion (8) if � = 0, 1 and s < r . The same applies to

the terms f̂ (r, s)
� that do not make part of the expression of Ĥ (r), which is written in (12). However,

the recursive definitions described in the present subsection are such that f (r−1, s)
� = f̂ (r, s)

� = 0
∀ 0 ≤ s < r when � = 0, 1.
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where with the notation a ←↩ b we mean that the quantity a is redefined so as to
be equal to a + b. Moreover, there is a last additional contribution that is due to the
application of the Lie series to the Hamiltonian H (r−1), and in order to take it into
account we write

f̂ (r, r)
0 ←↩ Lχ(r)

1
ω(r−1) · p . (14)

However, because of the homological equation (9), we can finally put f̂ (r, r)
0 = 0 and

update the constant energy value so that

E (r) = E (r−1) + 〈 f (r−1, r)
0 〉q . (15)

At this point, it is important to remark that the angular average of the remaining
perturbing term that is O(εr ), i.e., 〈 f̂ (r, r)

1 〉q is exactly of the same type as ω(r−1) · p
(this means that both of them are linear with respect to the actions and do not depend
on the angles). Therefore, it is useful to update also the angular velocity vector6 by
joining together these two terms. This can be done, by redefining

ω(r) · p = ω(r−1) · p + 〈 f̂ (r, r)
1 〉q (16)

and
f̂ (r, r)
1 = f̂ (r, r)

1 − 〈 f̂ (r, r)
1 〉q . (17)

Let us recall that all the terms f̂ (r, s)
� that appear in formula (12) are organized so

that they belong to different classes of functions. In order to prove that these structures
are suitably preserved by the normalization algorithm, the following statement is
essential.

Lemma 1 Let us consider two generic functions g ∈ P�,sK and h ∈ Pm,r K , where
K is a fixed positive integer number. Then, the following inclusion property holds
true7: {

g, h
} = Lh g ∈ P�+m−1,(r+s)K ∀ �, m, r, s ∈ N .

The proof is omitted, because it can be obtained as a straightforward consequence of
the definition of the Poisson brackets. By applying repeatedly the lemma above and
a trivial induction argument to formulæ (13)–(17), one can easily prove that E (r) ∈
P0,0 and f̂ (r, s)

� ∈ P�,sK for all the terms of type f̂ (r, s)
� that appear in formula (12).

Moreover, it can be ensured that
∣∣E (r) − E (r−1)

∣∣ = O(εr ) and f̂ (r, s)
� = O(εs), if the

same relation is assumed to be true at the end of the previous normalization step, i.e.,
f (r−1, s)
� = O(εs).

6 We emphasize that this is one of the main differences with respect to the original proof scheme
designed by Kolmogorov, where the angular velocity vector is kept fixed at every normalization
step (see [5] for a fully consistent translation of such an approach, that is implemented by using the
Lie series technique).
7 The statement can be considered as valid also in the trivial case with � = m = 0, by enlarging the
definition of the classes of functions so that P−1,sK = {0} ∀ s ∈ N.
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In order to complete the r -th normalization step, we have to remove the remaining
perturbing term that isO(εr ) and appears in the expansion (12) of Hamiltonian Ĥ (r),
i.e., f̂ (r, r)

1 . For such a purpose, we determine a second generating function χ(r)
2 , by

solving the following (second) homological equation:

{
ω(r) · p, χ(r)

2

}
+ f̂ (r, r)

1 ( p, q) = 0 . (18)

We can deal with the equation above in a very similar way with respect to what has
been done for the first homological equation (9). In fact, the solution of (18) can be
written as follows:

χ(r)
2 ( p, q) =

∑

| j |=1

∑

0<|k|≤r K

c j ,k p j exp
(
ik · q)

ik · ω(r)
, (19)

where the expansion of the perturbing term f̂ (r, r)
1 ∈ P1,r K is of type

f̂ (r, r)
1 ( p, q) =

∑

| j |=1

∑

0<|k|≤r K

c j ,k p j exp
(
ik · q) .

Let us recall that the angular average of f̂ (r, r)
1 is equal to zero, because of the redefi-

nition (17). Of course, the solution written in (19) is valid provided that the following
non-resonance condition is satisfied:

k · ω(r) 
= 0 ∀ 0 < k ≤ r K . (20)

Finally, H (r) = exp
(Lχ(r)

2

)
Ĥ (r) is the new Hamiltonian that is defined by the canon-

ical transformation of coordinates that is introduced by the r -th normalization step.
Also the expansion of such a Hamiltonian can be written in a form similar to (8), i.e.,

H (r)( p, q) =E (r) + ω(r) · p +
∑

s≥0

∑

�≥2

f (r, s)
� ( p, q) +

∑

s≥r+1

1∑

�=0

f (r, s)
� ( p, q) . (21)

In this case too, the recursive definitions of the new summands f (r, s)
� can be given

by exploiting the linearity of the Lie series and by separating the functions according
to the different classes they belong to. Let us start by introducing f (r, s)

� ( p, q) =
f̂ (r, s)
� ( p, q) ∀ � ≥ 0, s ≥ 0. By a new abuse of notation, we update many times the

definition of the terms appearing in the expansion of Hamiltonian H (r) according to
the following rule:

f (r, s+ jr)

� ←↩
1

j !L
j

χ(r)
2

f̂ (r, s)
� ∀ � ≥ 2, j ≥ 1, s ≥ 0 or ∀ � = 0, 1, j ≥ 1, s > r .

(22)
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In order to take into account also the summands that are generated by the application
of the Lie series exp

(Lχ(r)
2

)
to both the terms ω(r) · p and f (r, r)

1 ( p, q), we add the
prescription

f (r, ( j+1)r)

1 ←↩
j

( j + 1)!L
j

χ(r)
2

f̂ (r, r)
� ∀ j ≥ 1 , (23)

where we make use of formula (18). Also the last redefinition, i.e.,

f (r,r)
1 = 0 , (24)

is a straightforward consequence of the second homological equation. By applying
again Lemma 1 and a trivial induction argument to formulæ (22)–(23), one can
easily prove that f (r, s)

� ∈ P�,sK for all the summands f (r, s)
� = O(εs) that appear in

formula (21).
This final remark ends the description of the r -th normalization step of the algo-

rithm that can be iterated so as to determine the next Hamiltonian H (r+1), starting
from H (r), and so on.

Let us add a few further comments about the algorithm constructing the Kol-
mogorov normal form in order to understand its applicability. In practice, one is
often interested in determining an approximation up to a fixed order, say RI ∈ N, of
the motions travelling an invariant KAM torus. For this purpose, starting from H (0),
one has to preliminarly compute the Taylor-Fourier truncated expansions of the fol-
lowing type, for all the Hamiltonian H (r) that are introduced by the normalization
algorithm with r = 1, . . . , RI :

H (r)( p, q) � E (r) + ω(r) · p +
RI∑

s=0

�max∑

�=0

f (r, s)
� ( p, q) , (25)

where all the terms that are o
(
εRI
)
or of polynomial degree larger than �max with

respect to the actions8 have been neglected. Let us recall that the algorithm works in
such a way to define f (r, s)

� = 0 ∀ � = 0, 1 , 0 ≤ s ≤ r . When the first RI normaliza-
tion steps are performed, all the generating functions χ(r)

1 and χ(r)
2 ∀ r = 1, . . . , RI

are fully determined. Their composition allows to compute the expansion of ψε that
enters in the definition of the semi-analytic scheme of integration (5) and is truncated,

8 In the practical applications, it is very common to truncate this kind of Taylor series expansions
up to a finite degree. In this framework, it is important to remark that the upper limit on the
degree in actions is preserved by the Lie series having χ

(r)
1 ∈ P0,r K and χ

(r)
2 ∈ P1,r K as generating

functions. This can be easily checked by applying repeatedly Lemma 1, that can be used also to
prove that just functions of type f (r, s)

� with � ≤ RI + 1 are involved in the definitions of χ
(r)
1 and

χ
(r)
2 ∀ r = 1, . . . , RI . In other terms, this means that the request of determining an approximation

up to a fixed order of magnitude O(εRI
)
(for what concerns the canonical transformation that

conjugates some orbits to an invariant torus) yields in a fully consistent way also a truncation limit
on the polynomial degree in the actions.
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once again, so as to neglect all the summands that are o
(
εRI
)
. Therefore, the wanted

approximation of the motions travelling an invariant KAM torus up to a fixed order
of magnitudeO(εRI

)
can be provided by the scheme (5) where also the normal form

HamiltonianK is replaced by H (RI), which requires �max
(
RI + 1)2 functions of type

f (r, s)
� ∈ P�,sK to be determined. Since their expansions in Taylor-Fourier series are

finite (recall definition (6)), all their coefficients are representable on a computer
(that is equipped with a large enough memory). Therefore, it is finite also the num-
ber of elementary operations that are defined by the Poisson brackets prescribed by
normalization algorithm. The same conclusion applies also for the aforementioned
expansion of the canonical transformation ψε . As a whole, we can conclude that the
wanted approximation of the motions travelling an invariant KAM torus is explicitly
computable, because the total amount of operations that are defined by the normal-
ization algorithm is finite.

2.4 On the Convergence of the Algorithm Constructing the
Kolmogorov Normal Form

In the present context, it is useful to introduce another version of the KAM theorem.

Proposition 1 Consider the family of Hamiltonians H (0)( p, q;ω(0)) of the type
described in (7). Those functions are defined so that H (0) : A × T

n × U �→ R, where
both A and U are open subsets of Rn, being 0 ∈ A and U bounded. Therefore,
( p, q) are action-angle canonical coordinates and the family of Hamiltonians is
parameterized with respect to ω(0) ∈ U . Let us also assume that for some fixed and
positive values of K ∈ N, ε ∈ R and E ∈ R, the following inequalities are satisfied
by the functions f (0,s)

� ∈ P�,sK :

sup
( p,q;ω(0))∈A×Tn×U

∣∣∣ f (0,s)
� ( p, q;ω(0))

∣∣∣ ≤ E εs (26)

∀ s ≥ 1, � ≥ 0 and ∀ � ≥ 2 when s = 0.
Then, there is a positive ε� such that for 0 ≤ ε < ε� the following statement holds

true: there exists a non-resonant set U (∞) ⊂ U such that the Lebesgue measure μ of
the complementary set U \ U (∞) goes to zero for ε → 0 and for each ω(0) ∈ U (∞)

there is an analytic canonical transformation ( p, q) = ψ(∞)

ε;ω(0) (P, Q) leading the
Hamiltonian to the normal form

H (∞)(P, Q;ω(0)) = E (∞) + ω(∞) · P +
∑

s≥0

∑

�≥2

f (∞, s)
� (P, Q;ω(0)) , (27)

where f (∞, s)
� ∈ P�,sK ∀ s ≥ 0, � ≥ 2 and E (∞) is a finite real value fixing the

constant energy level that corresponds to the invariant torus
{
(P = 0, Q ∈ T

n)
}

.
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Moreover, the canonical change of coordinates is close to the identity in the sense
that

∥∥ψ(∞)

ε;ω(0) (P, Q) − (P, Q)
∥∥ = O(ε) and the same applies also to both the energy

level and the detuning of the angular velocity vector (that are
∣∣E (∞) − E (0)

∣∣ = O(ε)
and

∥∥ω(∞) − ω(0)
∥∥ = O(ε), respectively).

The statement above is substantially equivalent to that claimed in theorem C of [36]
(which is considered as a classical versionof theKAMtheorem, in the veryownwords
of the Author, J. Pöschel). The proof of Proposition 1 can be obtained by adapting
the one described in [7] in such a way to prove the convergence of the normalization
algorithm described in the previous Sect. 2.3. Indeed, both articles [7, 36] deal only
with the more complicate proof of existence for invariant tori that are of dimension
smaller than the number n of degrees of freedom and have elliptic character in the
transverse directions. The construction of the normal form corresponding to such a
type of invariant manifolds will be widely discussed in the next Sect. 3. As a main
difference between the approaches developed in those twoworks, let us recall that the
proof adopted in [36] is based on a fast convergence scheme of quadratic type (a so
called Newton-like method, where perturbing terms of order of magnitude O(ε2r−1)

are removed during the r -th normalization step). Such a technique has been adopted
since the very first works in KAM theory, but the convergence of the normalization
algorithm described in Sect. 2.3 is of linear type (because perturbing terms of order
of magnitude O(εr

)
are removed during the r -th normalization step). The latter is

in a better position for the applications9 and a complete proof of the KAM theorem
adopting a convergence method of linear type is available since the last decade of
the past century (see [17]). Rather curiously, the best way to translate the algorithm
constructing the Kolmogorov normal form in a computer-assisted proof requires
to join the convergence scheme of linear type (in order to explicitly perform on a
computer the largest possible number RI of preliminary steps) with that of quadratic
type (that provides a statement of KAM theorem that is very suitable to rigorously
complete the proof). This is one of the main conclusions discussed in a recent work
(see [40]).

The statement of Proposition 1 highlights that we are forced to provide a result
which holds true with respect to the Lebesgue measure, because we have chosen
to adopt a version of the normalization algorithm where the angular velocity vector
is allowed to vary at each step (recall formula (16) that defines the detuning shift
ω(r) − ω(r−1)). This means that such a statement has to be understood in a prob-
abilistic sense, because we are not able to describe in detail the structure of the
non-resonant set U (∞). In particular, for a fixed initial value of the angular velocity
vector ω(0) we cannot establish whether the specific Hamiltonian H (0)( p, q;ω(0))

can be brought in Kolmogorov normal form or not. We can just claim that the nor-
malization algorithm can converge with a rate of success (i.e., μ

(U \ U (∞)
)
/μ(U))

that gets larger and larger when the small parameter ε which rules the size of the

9 This is the main reason why the present work is focusing on approaches based on a convergence
scheme of linear type. A very far from being exhaustive list of references to applications of KAM
theorem has been discussed in the Introduction.
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perturbation is decreasing. On the other hand, we can characterize very well the set of
the final values of the angular velocities, i.e.,

{
ω(∞)

(
ω(0)

) : ω(0) ∈ U (∞)
}
, because

they are Diophantine. In the recent work [37], the problem of the convergence of this
type of normalization algorithms is revisited so as to provide a KAM-like statement.
It is proved by fixing since the beginning the final value ω(∞) and its non-resonance
properties (that allow to explicitly solve the homological equations at every step of
the algorithm). Moreover, the total detuning ω(∞) − ω(0) is given in terms of series
whose coefficients are defined in a recursive way. Therefore, the convergence of the
normalization algorithm is ensured (provided that the perturbation is small enough),
the total detuning is estimated explicitly, while the exact location of ω(0) remains
partially unknown, because it can be determined just by iterating ad infinitum the
computational procedure.

3 Construction of Invariant Elliptic Tori by a Normal Form
Algorithm

Elliptic tori are compact invariant manifolds of dimension smaller than the maximal
one, that is equal to the number n of degrees of freedom. In order to better imagine
them, let us consider a phase space F that is endowed by the canonical coordi-
nates (P, Q, X,Y), where (P, Q) ∈ R

n1 × T
n1 are action-angle variables and also

(X,Y) ∈ R
n2 × R

n2 denote pairs of conjugate (momenta and) coordinates, while
n = n1 + n2 with both n1 and n2 positive integers. Let us consider a Hamiltonian of
the following type:

H(P, Q, X,Y) = ω · P +
n2∑

j=1

Ω j

2
(X2

j + Y 2
j ) + R(P, Q, X,Y) ,

where Ω ∈ R
n2 and the remainderR is an analytic function with respect to its argu-

ments and is such thatR(P, Q, X,Y) = o
(‖P‖ + ‖(X,Y)‖2), when (P, X,Y) →

(0, 0, 0). It is easy to check that

(P(t), Q(t), X(t),Y(t)) = (0, Q(0) + ωt, 0, 0
)

(28)

is a solution of Hamilton equations, since the function H, except for its main part,
contains terms of typeO(‖P‖2),O(‖P‖‖(X,Y)‖) andO(‖(X,Y)‖3) only. Because
of this remark, it is evident that the n1–dimensional manifold

{
(P, Q, X,Y) : P =

0, Q ∈ T
n1 , X = Y = 0

}
is invariant. The elliptical character is given by the fact

that, in the remaining n2 = n − n1 degrees of freedom, the dynamics that is trans-
verse with respect to such an invariant manifold is given by the composition of n2

oscillatory motions whose periods tend to the values 2π/Ω1 , . . . , 2π/Ωn2 , in the
limit of (P, X,Y) → (0, 0, 0). Of course, this is due to the occurrence of the term
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Q

P

X

Y

×

Fig. 1 Schematic representation of an elliptic torus. The orbit is given by the cartesian product of
the two invariant surfaces that are marked in red, that are a torus (in the left panel) and a stable
equilibrium point (on the right, resp.)

∑n2
j=1 Ω j (X2

j + Y 2
j )/2 which overwhelms the effect of the remainder R in the so

called limit of small oscillations.
The name of elliptic torus is well justified by all the remarks discussed since the

beginning of the present section. A schematic representation of such kind of invariant
manifolds is sketched in Fig. 1.

3.1 Algorithmic Construction of the Normal Form for
Elliptic Tori

Since we aim at introducing the algorithm constructing the normal form for invari-
ant elliptic tori in a way that is as much as possible coherent with what we have
already done in Sect. 2.3 for KAM tori, we prefer to not adopt canonical coordinates
( p, q, x, y) ∈ R

n1 × T
n1 × R

n2 × R
n2 that are substantially the ones considered in

the discussion at the beginning of the present section. Indeed, we think it is conve-
nient to introduce the so called action-angle coordinates for harmonic oscillators, in
order to replace the polynomial ones, that are (x, y) ∈ R

n2 × R
n2 ; this means that we

define (J,ϕ) ∈ (Rn2+ ∪ {0})× T
n2 so that x j = √2Jj cosϕ j and y j = √2Jj sinϕ j ,

where this change of coordinates is canonical ∀ j = 1, . . . , n2 .
We are now ready to introduce classes of functions depending on ( p, q, J,ϕ) ∈

R
n1 × T

n1 × (Rn2+ ∪ {0})× T
n2 in a very similar way to what has been previously

done. For some fixed positive integer K we introduce the distinct classes of func-
tions P̂m̂, �̂, sK , with integers m̂, �̂, s ≥ 0 ; any generic function g ∈ P̂m̂, �̂, sK can be
written as
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g ( p, q, J,ϕ) =
∑

m∈Nn1

|m|=m̂

∑

�∈Nn2

|�|=�̂

∑

k∈Zn1

|k|≤sK

∑

�̂ j =−� j ,−� j +2,..., � j
j=1, ... ,n2

cm,�,k,�̂ pm
(√

J
)�
exp
[
i(k · q + �̂ · ϕ)

]
,

(29)
where the complex coefficients are such that cm,�,−k,−�̂ = c̄m,�,k,�̂, then the codomain

of any g ∈ P̂m̂, �̂, sK is included in R. Let us emphasize that, in each term appear-
ing in the Taylor-Fourier expansion of a function belonging to a class of type
P̂m̂, �̂, sK , the indexes vector (�̂1 , . . . , �̂n2) are subject to special restrictions that
are inherited by the corresponding polynomial structure with respect to the variables
(x, y) = (√2J cosϕ,

√
2J sinϕ

)
. In fact, they are such that ∀ j = 1, . . . , n2 the

j-th component of the Fourier harmonic �̂ j must have the same parity with respect
to the corresponding degree � j of

√
Jj and also the inequality

∣∣�̂ j

∣∣ ≤ � j must be
satisfied.10 Furthermore, we will say that g ∈ P�,sK if

g ∈
⋃

m̂≥0,�̂≥0
2m̂+�̂=�

P̂m̂,�̂,sK . (30)

In other words, a function belonging to the class P�,sK depends on the actions so
as to be homogeneous polynomials of total degree � in the square roots of p and J ,
while its Fourier expansion contain harmonics of total trigonometric degree in q that
are not larger than sK .

In order to extend the approach described in Sect. 2.3 with the aim to design an
efficient algorithm constructing the normal form in the case of elliptic tori, we are
also forced to reformulate the Lemma 1 in a suitable version to describe the action
of the Poisson brackets on these new classes of functions, that are defined thanks to
formulæ (29)–(30). This is made as it follows.

Lemma 2 Let us consider two generic functions g ∈ P�,sK and h ∈ Pm,r K , where
K is a fixed positive integer number. Then,11

{
g, h
} = Lh g ∈ P�+m−2,(r+s)K ∀ �, m, r, s ∈ N .

10 When there are variables such that they appear in the Taylor-Fourier expansions of a function
so that they follow this kind of restrictions, then they are often said to be of D’Alembert type.
This name is given by analogy, because in Celestial Mechanics the secular part of the Hamiltonian
perturbing terms due to the interactions between planets shows the same kind of expansions, since
they satisfy the so called D’Alembert rules.
11 The statement can be considered as valid also in the trivial cases with � + m = 0, 1, by enlarging
the definition of the classes of functions so that P−2,sK = P−1,sK = {0} ∀ s ∈ N.
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Also in this case the proof is omitted, because it can be obtained by simply applying12

the definition of the Poisson brackets.
As an environment where it is natural to properly define the algorithm con-

structing the normal form for elliptic tori, let us start to consider a Hamiltonian
H(0)( p, q, J,ϕ) that can be written in the following way:

H(0)( p, q, J,ϕ) = E (0) + ω(0) · p + Ω (0) · J +
∑

s≥0

∑

�≥3

f (0, s)
� ( p, q, J,ϕ)

+
∑

s≥1

2∑

�=0

f (0, s)
� ( p, q, J,ϕ) ,

(31)

where E (0) ∈ P0,0 is a constant13 and f (0, s)
� ∈ P�,sK , being the first upper index

related to the normalization step. For instance, in [8] it is shown how to bring an FPU
chain of N + 1 particles in the form above, by following a procedure that is valid for
a generic Hamiltonian problem in the neighborhood of a stable equilibrium point. In
other words, the Hamiltonian describing that model can be expanded asH(0) in (31),
with f (0, s)

� = 0 when s ≥ 3 and f (0, 1)
� ∈ P�,K , f (0, 2)

� ∈ P�,2K ∀ � ≥ 0, being14

K = 2. This holds true, both for the so called α–model and the β one. Let us also
emphasize that the energy value E (0), the angular velocity vector Ω (0) ∈ R

n2 and all
the functions f (0, s)

� depend on ω(0) ∈ R
n1 in a parametric way. In order to keep the

notation so that it does not get too cumbersome, in the present subsection we do
not include ω(0) among the arguments of the terms appearing in the expansions of
the Hamiltonians. Moreover, for a generic problem in the neighborhood of a stable
equilibrium point one can also easily show that f (0, s)

� = O(εs), where ε is the natural

12 Actually, it looks natural to be doubtful about the fact that Poisson brackets always preserve
the restrictions on the Fourier harmonics that must be satisfied by variables of D’Alembert type.
However, one can immediately realize that the only tricky case occurs when the Poisson brackets
include also the following terms:

∂
(√

J j )
|�̂ j | exp(i�̂ j ϕ j )

∂ϕ j

∂
(√

J j )
|m̂ j | exp(im̂ j ϕ j )

∂ J j

−∂
(√

J j )
|�̂ j | exp(i�̂ j ϕ j )

∂ J j

∂
(√

J j )
|m̂ j | exp(im̂ j ϕ j )

∂ϕ j

= i

2

(
�̂ j |m̂ j | − m̂ j |�̂ j |

)(√
J j )

|�̂ j |+|m̂ j |−2 exp
(
i(�̂ j + m̂ j )ϕ j

)
.

However, if �̂ j and m̂ j have opposite signs then
∣∣�̂ j + m̂ j

∣∣ ≤ ∣∣�̂ j
∣∣+ ∣∣m̂ j

∣∣− 2 (let us remark that

the term above vanishes if �̂ j = 0 or m̂ j = 0). In the remaining case (i.e., �̂ j 
= 0 and m̂ j 
= 0 have
the same sign), the coefficient �̂ j |m̂ j | − m̂ j |�̂ j | is always equal to zero.
13 E(0) denotes the energy level of the elliptic torus that is invariant in the approximation given by
the angular average, i.e., when f (0, s)

� = 0 ∀ s > 0.
14 Setting K = 2 is quite natural for Hamiltonian systems close to stable equilibria, see, e.g., [20].
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small parameter for this kind of models, because it denotes the first approximation
of the distance (expressed in terms of the actions) between the wanted elliptic torus
and the stable equilibrium point.

In a strict analogy with what has been done to construct the Kolmogorov normal
form, here our main purpose is to eliminate from the Hamiltonian all the terms
having total degree less than three in the square root of the actions; by referring to
the paradigmatic form described in (31), the unwanted terms are appearing in its
last row. Actually, such a goal can be achieved by performing an infinite sequence
of canonical transformations, so as to bring the Hamiltonian to the following final
normal form:

H(∞)(P, Q, Ξ , Θ) = E(∞) + ω(∞) · p + Ω(∞) · Ξ +
∑

s≥0

∑

�≥3

f (∞, s)
�

(P, Q, Ξ , Θ) ,

(32)
with f (∞, s)

� ∈ P�,sK and E (∞) ∈ P0,0. The motion law (P(t), Q(t),Ξ(t),Θ(t)) =(
0, Q0 + ω(∞)t, 0,Θ

)
is a solution of the Hamilton equations related to the normal

formH(∞) and is equivalent15 to (28). Such a motion law is generated by the initial
condition (0, Q0, 0,Θ), is quasi-periodic with an angular velocity vector equal to
ω(∞) and the corresponding orbit lies on the n1−dimensional invariant torus P = 0,
Ξ = 0. The energy level of such a manifold is H (∞)(0, Q, 0,Θ) = E (∞). Moreover,
it is elliptic in the sense that the transverse dynamics in a neighborhoodof the invariant
torus itself is given by oscillations whose corresponding angular velocity vector is
approaching Ω (∞) in the limit of ‖(P,Ξ)‖ going to zero.

Also in the present case, that is concerning the elliptic tori, the formal algorithm
for the construction of the normal form is composed by a sequence of canonical
transformations, defined using the formalism of Lie series. We can summarize the
r -th normalization step, by giving the formula defining the canonical change of
coordinates that transforms the intermediate HamiltonianH(r−1) into the subsequent
H(r). The expansion of the former is of the following type:

H(r−1)( p, q, J,ϕ) =E(r−1) + ω(r−1) · p + Ω(r−1) · J +
∑

s≥0

∑

�≥3

f (r−1,s)
�

( p, q, J, ϕ)

+
∑

s≥r

2∑

�=0

f (r−1, s)
�

( p, q, J, ϕ) ,

(33)

15 We remark that Ṗ = {P , H(∞)
} = 0 and Ξ̇ = {Ξ , H(∞)} = 0 when P = 0 and Ξ =

0. Because of the well known degeneracy of the change of coordinates (X,Y) =(√
2Ξ cosΘ,

√
2Ξ sinΘ

)
, all the set

{(
Ξ = 0,Θ ∈ T

n2
)}

correspond to a single point
{
(X =

0,Y = 0)
}
of the reduced phase space that considers just the last n2 degrees of freedom. By the

way, we emphasize that such a degeneracy is completely harmless in the framework we have
adopted. In order to conclude the check of the solution of the Hamilton equations related to the
normal formH(∞) when P = 0 andΞ = 0, it is enough to remark that Q̇ = {Q , H(∞)

} = ω(∞).
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being f (r−1, s)
� ∈ P�,sK and E (r−1) ∈ P0,0 , i.e., it is a constant referring to the level

of the energy in the approximation that is valid up to termsO(εr
)
. Let us emphasize

that the starting HamiltonianH(0) written in Eq. (31) is exactly in the form (33) with
r = 1. The conjugacy relation which allows to write the Hamiltonian defined at the
end of the r -th normalization step as a function of the previous one is given by

H(r) = H(r−1) ◦ exp
(Lχ(r)

0

) ◦ exp
(Lχ(r)

1

) ◦ exp
(Lχ(r)

2

) ◦ D(r) , (34)

where the Lie series16 operator exp
(Lχ(r)

j

) · removes theHamiltonian termswith total

degree in the square root of the actions equal to j and with trigonometric degree in
the angles q up to r K . Moreover, by a linear canonical transformationD(r), the terms
that are quadratic in

√
J and do not depend on both the actions p and the angles

q are brought to a diagonal form. At the end of this r -th normalization step, the
ineliminable terms that are independent on the angles q and linear either in p or in J
are added to the normal form part. This requires to update the angular velocities from(
ω(r−1),Ω (r−1)) to

(
ω(r),Ω (r)

)
, that is why in (32) the Hamiltonian in Kolmogorov

normal form has new frequency vectors ω(∞) and Ω (∞).
All the details that properly define how the algorithm actually works are exhaus-

tively described in the following.

First Stage of the r-th Normalization Step
In the context of the r -th normalization step, the first stage aims to remove the terms
depending just on the angles q up to the trigonometrical degree r K , i.e. the terms
collected in f (r−1,r)

0 = O(εr ). We determine the generating function χ(r)
0 by solving

the homological equation

{
ω(r−1) · p, χ(r)

0

}
+ f (r−1, r)

0 (q) = 〈 f (r−1,r)
0 (q)〉q . (35)

Let us remark that the equation above is perfectly equivalent to that in formula (9),
because f (r−1, r)

0 ∈ P0,r K depends on q only and, therefore, f (r−1, r)
0 ∈ P0,r K =

P0,r K . Thus, we can write the solution of this new (first) homological equation (35)
exactly in the same way as we have done for what concerns (10), i.e., we put
〈 f (r−1,r)

0 (q)〉q = c0 and

χ(r)
0 (q) =

∑

0<|k|≤r K

ck exp
(
ik · q)

ik · ω(r−1)
, (36)

16 Because of the so called “exchange theorem” (see [14]), the new Hamiltonian H (r) is obtained
from the old one, by applying the Lie series to H (r−1) in reverse order with respect to what is
written in (34). This is consistent with the order of the discussion in the following subsections: the
first stage of the r -th normalization step deals with the canonical transformation generated by χ

(r)
0 ,

the second one with χ
(r)
1 and the last one with both χ

(r)
2 and D(r).
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being f (r−1, r)
0 (q) =∑|k|≤r K ck exp

(
ik · q). Of course, such a solution is certainly

valid provided the non-resonance condition (11) is satisfied.
Now, we apply the canonical transformation expLχ(r)

0
to the Hamiltonian which is

defined at the end of the r − 1-th normalization step. By the usual abuse of notation,
we choose to rename the new variables as the old ones. This allows to write the
transformed Hamiltonian H (I; r) = exp

(Lχ(r)
0

)
H (r−1) as follows:

H(I; r)( p, q, J,ϕ) =E (r) + ω(r−1) · p + Ω (r−1) · J +
∑

s≥0

∑

�≥3

f (I; r, s)
�

+
∑

s≥r

2∑

�=0

f (I; r, s)
� ,

(37)

where for the sake of brevity we have omitted to list the arguments of the functions
f (I; r, s)
� . Let us introduce them in the same unconventional way we have adopted in

Sect. 2.3 to describe the algorithm constructing the Kolmogorov normal form. First,
we define17 f (I; r, s)

� = f (r−1, s)
� ∀ � ≥ 0, s ≥ 0. By further abuses of notation, we

update many times the definition of the terms appearing in the expansion of the new
Hamiltonian according to the following rule:

f (I; r, s+ jr)

�−2i ←↩
1

j !L
j

χ(r)
0

f (r−1, s)
� ∀ � ≥ 0, 1 ≤ j ≤ ��/2�, s ≥ 0 . (38)

By applying repeatedly Lemma 2 and a trivial induction argument to the formula
above, one can easily prove that f (I; r, s)

� ∈ P�,sK ∀ � ≥ 0, s ≥ 0. In order to end
the description of the first stage of the r -th normalization step, we have to take
into account also the effects induced by the homological equation (35). For such a
purpose, we finally set f (I; r, r)

0 = 0 and we update the approximated value referring
to the energy of the wanted elliptic torus exactly in the same way we have done to
write formula (15), i.e., we put E (r) = E (r−1) + 〈 f (r−1, r)

0 〉q .
Second Stage of the r-th Normalization Step
The second stage of the r -th normalization step acts on the Hamiltonian that is
initially expanded as in (37), with the goal to remove the perturbing term which is
linear in

√
J and independent of p, i.e., f (I; r, r)

1 . Thus, we have to solve the following
homological equation:

{
ω(r−1) · p + Ω (r−1) · J, χ(r)

1

}
+ f (I; r, r)

1 (q, J,ϕ) = 0 . (39)

17 We remark that the terms f (r−1, s)
� do not enter in the expansion (33) when � = 0, 1, 2 and

s < r . However, the recursive definitions described in the present subsection are such that all those
functions are equal to zero. Keeping in mind this fact allows to write in a rather compact way both
formula (38) and the analogous ones in the following.
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Let us write the expansion of f (I; r, r)
1 (q, J,ϕ) as follows:

f (I; r, r)
1 (q, J,ϕ) =

∑

0≤k≤r K

n2∑

j=1

√
Jj

[
c(+)

k, j ei(k·q+ϕ j ) + c(−)

k, j ei(k·q−ϕ j )
]

, (40)

where every coefficients c(+)

k, j ∈ C is equal to the complex conjugate of c(−)

−k, j ∀ 0 ≤
k ≤ r K , 1 ≤ j ≤ n2 . Therefore, the generating function χ(r)

1 solving Eq. (39) is
determined in such a way that

χ(r)
1 (q, J,ϕ) =

∑

0≤k≤r K

n2∑

j=1

√
Jj

i

[
c(+)

k, j ei(k·q+ϕ j )

k · ω(r−1) + Ω
(r−1)
j

+ c(−)

k, j ei(k·q−ϕ j )

k · ω(r−1) − Ω
(r−1)
j

]
.

(41)
This expression is well-defined, provided that the frequency vector ω(r−1) satisfies
the so-called first Melnikov non-resonance condition up to order r K (see [29]), i.e.,

min
0<|k|≤r K ,

|�|=1

∣∣k · ω(r−1) + � · Ω (r−1)
∣∣ ≥ γ

(r K )τ
and min

|�|=1

∣∣� · Ω (r−1)
∣∣ ≥ γ , (42)

for some fixed values of both γ > 0 and τ > n1 − 1. By applying the Lie series
exp
(Lχ(r)

1

)
to the old Hamiltonian H (I; r), we have a new one, which we denote as

H (II; r) = exp
(Lχ(r)

1

)
H (I; r) and have the same structure as that described in (37), i.e.,

H(II; r)( p, q, J,ϕ) =E (r) + ω(r−1) · p + Ω (r−1) · J +
∑

s≥0

∑

�≥3

f (II; r, s)
�

+
∑

s≥r

2∑

�=0

f (II; r, s)
� ,

(43)

The functions f (II; r, s)
� that compose the new Hamiltonian can be determined with

calculations similar to those listed during the description of the first stage of normal-
ization. This means that we initially define f (II; r, s)

� = f (I; r, s)
� ∀ � ≥ 0, s ≥ 0. Then,

(by abuse of notation) we redefine themmany times according to the following rules:

f (II; r, s+ jr)

�− j ←↩
1

j !L
j

χ(r)
1

f (I; r, s)
� ∀ � ≥ 0 , 1 ≤ j ≤ � , s ≥ 0 ,

f (r, 2r)
0 ←↩

1

2
L2

χ(r)
1

(
ω(r) · p + Ω (r) · J) .

(44)

Because of the homological equation (39), we add also a further redefinition so
that f (II; r, r)

1 = 0. By applying Lemma 2 to formula (44), it is easy to check that
f (II; r, s)
� ∈ P�,sK ∀ � ≥ 0, s ≥ 0.
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Third Stage of the r-th Normalization Step
The third and last stage of normalization is more elaborated. It aims to remove terms
belonging to two different classes: first, those linear in p and independent of (J,ϕ),
moreover, other terms that are quadratic in

√
J and independent of p. Such a part

of the perturbation is removed by the composition of two canonical transformations
expressed by Lie series, being the corresponding generating functions X (r)

2 ( p, q) ∈
P̂1,0,r K and Y (r)

2 (q, J,ϕ) ∈ P̂0,2,r K , respectively. Moreover, the third stage is ended
by a linear canonical transformation D(r) that leaves the pair ( p, q) unchanged and
it aims to diagonalize the terms that are quadratic in

√
J and independent of the

angles q. Let us detail all these changes of coordinates, so that the algorithm will be
unambiguously defined at the end of our discussion.

The generating functions X (r)
2 is in charge to remove terms that are linear in p

and do depend on the angles q up to the trigonometric degree r K . Therefore, it is a
solution of the following homological equation:

{
ω(r−1) · p, X (r)

2

}
+ f (II; r, r)

2 ( p, q) − 〈 f (II; r, r)
2 ( p, q)〉q = 0 . (45)

Let us recall that f (II; r, r)
2 ∈ P2,r K = P̂1,0,r K ∪ P̂0,2,r K ; indeed, such a function

does depend on all the canonical variables, i.e., f (II; r, r)
2 = f (II; r, r)

2 ( p, q, J,ϕ).
Therefore, we denote with f (II; r, r)

2 ( p, q) the subpart of f (II; r, r)
2 that is depending just

on ( p, q). Analogously, in the following f (II; r, r)
2 (q, J,ϕ) will denote the subpart

of f (II; r, r)
2 that does depend on all the canonical variables but the actions p and so

on also for what concerns f (II; r, r)
2 (J,ϕ). For the sake of clarity, this highly non-

standard notation will be maintained up to the end of the present subsection. Let us
here emphasize that the term 〈 f (II; r, r)

2 ( p, q)〉q will be added to the part in normal
form, by updating the angular velocity vector ω, in agreement with what has been
done in the context of the construction of the Kolmogorov normal form. We can deal
with the homological equation (45) in the same way as for (18). Indeed, the solution
writes as

X (r)
2 ( p, q) =

∑

| j |=1

∑

0<|k|≤r K

c j ,k p j exp
(
ik · q)

ik · ω(r)
, (46)

where the expansion of the perturbing term f (II; r, r)
2 ( p, q) ∈ P̂1,0,r K is such that

f (II; r, r)
2 ( p, q) =∑| j |=1

∑
0<|k|≤r K c j ,k p j exp

(
ik · q). Once again, the solution

written in (46) is valid provided that the non-resonance condition (11) is satisfied.
The generating function Y (r)

2 aims to remove the part of the term of f (II; r, r)
2 that

is quadratic in
√
J and does depend on the angles q. Therefore, Y (r)

2 has to solve the
following homological equation:

{
ω(r−1) · p + Ω (r−1) · J, Y (r)

2

}
+ f (II; r, r)

2 (q, J,ϕ) − 〈 f (II; r, r)
2 (q, J,ϕ)〉q = 0 .

(47)
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In order to describe the solution of such an equation, it is convenient to write the
explicit expansion of the perturbing term f (II; r, r)

2 (q, J,ϕ). For instance, this can be
done in the following way:

f (II; r, r)
2 (q, J,ϕ) =

∑

0≤k≤r K

n2∑

i, j=1

c(±,±)

k, i, j

√
Ji J j exp

[
i(k · q ± ϕi ± ϕ j )

]
, (48)

where c(+,+)

k, i, j and c(+,−)

k, i, j are the coefficients referring to the Fourier harmonics k · q +
ϕi + ϕ j and k · q + ϕi − ϕ j , respectively, and so on. Thus, the generating function
Y (r)
2 is determined by Eq. (47) in such a way that

Y (r)
2 (q, J,ϕ) =

∑

0<k≤r K

n2∑

i, j=1

c(±,±)

k, i, j

√
Ji J j exp

[
i(k · q ± ϕi ± ϕ j )

]

i
(
k · ω(r−1) ± Ω

(r−1)
i ± Ω

(r−1)
j

) , (49)

which iswell definedprovided that the angular velocity vectorω(r−1) satisfies both the
already mentioned Diophantine inequality (11) and the so-called second Melnikov
non-resonance condition up to order r K (see [29]), i.e.,

min
0<|k|≤r K ,

|�|=2

∣∣k · ω(r−1) + � · Ω (r−1)
∣∣ ≥ γ

(r K )τ
(50)

with fixed values of both parameters γ > 0 and τ > n1 − 1.
After having performed these two changes of coordinates, we still may have terms

that do not depend on q and are either linear in p or quadratic in
√
J . The former

ones can be directly added to the part in normal form, whereas the latter have to
be preliminarily put in diagonal form. This can be done by means of a canonical
transformation D(r) such that

(
Ω (r−1) · J + f (II; r, r)

2 (J,ϕ)
) ∣∣∣∣

(J,ϕ)=D(r)( J̄,ϕ̄)

= Ω (r) · J̄ . (51)

Such an equation in the unknown transformation D(r) can be solved provided that

min
|�|=2

∣∣� · Ω (r−1)
∣∣ ≥ γ (52)

and f (II; r, r)
2 is small enough, as it is explained, e.g., in Sect. 7 of [16] (where this

problem is considered in the equivalent case dealing with polynomial canonical
coordinates). In practical implementations, such a change of coordinatesD(r) can be
conveniently defined by composing a subsequence of Lie series, each of them being
related to a quadratic generating function D(r; m)

2 (J,ϕ) ∈ P̂0,2,0 with m ∈ N \ {0}.
All these new generating functions can be determined by adopting the following
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computational (sub)procedure of iterative type. First, we introduce the new angular
velocity vector Ω (r; 0) so that

Ω (r; 0) · J = Ω (r−1) · J + 〈 f (II; r, r)
2 (J,ϕ)〉ϕ (53)

and the new function

g
(r; 0)
2 (J,ϕ) = f (II; r, r)

2 (J,ϕ) − 〈 f (II; r, r)
2 (J,ϕ)〉ϕ . (54)

The general m-th step of this iterative (sub)procedure starts by solving the following
homological equation:

{
Ω (r; m−1) · J, D(r; m)

2 (J,ϕ)
}

+ g
(r; m−1)
2 (J,ϕ) = 0 , (55)

where g
(r; m−1)
2 ∈ P̂0,2,0 is such that 〈g(r; m−1)

2 〉ϕ = 0 (and, therefore, also the new
generating function D(r; m)

2 is sharing these same properties with g
(r; m−1)
2 ). Let us

now initially introduce g(r; m)
2 = 0 and (by the usual abuse of notation) we redefine

it many times according to the following rule:

g
(r; m)
2 ←↩

j

( j + 1)!L
j

D(r; m)
2

g
(r; m−1)
2 ∀ j ≥ 1 . (56)

Actually, at this point one can easily check that

exp
(LD(r; m)

2

) (
Ω (r; m−1) · J + g

(r; m−1)
2

) = Ω (r; m−1) · J + g
(r; m)
2 ,

by using homological equation (55). Furthermore, we set

Ω (r; m) · J = Ω (r; m−1) · J + 〈g(r; m)
2 (J,ϕ)〉ϕ (57)

and we redefine one last time g(r; m)
2 so that

g
(r; m)
2 (J,ϕ) = g

(r; m)
2 (J,ϕ) − 〈g(r; m)

2 (J,ϕ)〉ϕ . (58)

By applying repeatedly Lemma 2 to formulæ (53)–(58), it is easy to check that both
functions D(r; m)

2 and g
(r; m)
2 belong to the class P̂0,2,0 (also because they depend on

neither p nor q) and their angular average is equal to zero. In principle, these remarks
would allow to iterate infinitely many times this computational (sub)procedure, that
we are using to solve Eq. (51). However, in practical implementations, we have to set
a criterion to stop the iterations so to ensure that the algorithm can be worked out in a
finite number of operations. This can be done, for instance, in such a way to end the
computationswhen the angular velocity vector does notmodify anymore. Thismeans
that the final value m̄ of the normalization step for this iterative (sub)procedure is such
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that the equationΩ (r; m̄) = Ω (r; m̄−1) holds true in the framework of the numbers that
are representable on a computer18 (for instance, the double precision type).
By settingΩ (r) = Ω (r; m̄) and the canonical transformationD(r) equal to composition
of all the Lie series generated by the finite sequence of functions

{D(r; m)
2

}m̄

m=1, we
determine a solution19 of (51) that is valid up to the numerical round-off errors.

Finally, we need to understand how all these generating functions (that have been
defined during the third stage of the r -th normalization step) give their contributions
to the Hamiltonian terms appearing in the following expansion:

H(r)( p, q, J,ϕ) =E (r) + ω(r) · p + Ω (r) · J +
∑

s≥0

∑

�≥3

f (r,s)
� ( p, q, J,ϕ)

+
∑

s≥r+1

2∑

�=0

f (r, s)
� ( p, q, J,ϕ) ,

(59)

where H(r) is defined in (34). In order to describe the definitions of those new
summands, it is convenient to introduce the intermediate functions g(r, s)

� , g′(r, s)
� in

the following way. First, we define g(r, s)
� = f (II; r, s)

� for all non-negative values of the
indexes � and s; then, we consider the effects induced by the application of the Lie
series with generating function X (r)

2 to the Hamiltonian. In order to do that, (by abuse
of notation) we redefine many times the new intermediate functions g(r, s)

� according
to the following rules:

g
(r, s+ jr)

� ←↩
1

j !L
j

X (r)
2

f (II; r, s)
� ∀ j ≥ 1, � ≥ 0, s ≥ 0 ,

g
(r, jr)

2 ←↩
1

j !L
j

X (r)
2

(
ω(r) · p + Ω (r) · J) ∀ j ≥ 1 .

(60)

As usual, the prescriptions above have been set so to gather the new terms generated
by the Lie series exp

(LX (r)
2

)
according to both their total degree in the square root

of the actions and the trigonometric degree in the angles. In analogous way, we first
introduce g′(r, s)

� = g′(r, s)
� ∀ � ≥ 0, s ≥ 0; then we apply many times the following

redefinitions:

g′(r, s+ jr)

� ←↩
1

j !L
j

Y (r)
2

g(r, s)
� ∀ j ≥ 1, � ≥ 0, s ≥ 0 ,

g′(r, jr)

2 ←↩
1

j !L
j

Y (r)
2

(
ω(r) · p + Ω (r) · J) ∀ j ≥ 1 .

(61)

18 A similar criterion is adopted to determine a maximum value of the index j at which the redefi-
nitions (56) must be stopped.
19 As an alternative computational method, when one is dealing with the estimates needed to prove
the convergence of the algorithm, in [19] the use of the Lie transforms (that are equivalent to the
composition of infinite sequences of Lie series) has been found to be very suitable.



Invariant KAM Tori: From Theory to Applications to Exoplanetary Systems 27

By applying Lemma 2 to formulæ (60)–(61), it is easy to check that g′(r, s)
� ∈ P�,sK

∀ � ≥ 0, s ≥ 0. Let us now remark that each class of type P�,sK is preserved20 by
the diagonalization transformationD(r), for all non-negative values of the indexes �

and s. Therefore, it is natural to put

f (r,s)
� = g′(r, s)

� ◦ D(r) . (62)

for all indexes � ≥ 0 and s ≥ 0.
At the end of the r -th normalization step, it is convenient that the terms linearly

depending just on p or J are included in the main part of the Hamiltonian, because
all of them belong to the same class of functions, i.e. P2,0. For this purpose, we
introduce the new angular velocity vector ω(r), in such a way that

ω(r) · p = ω(r−1) · p + f (II; r, 0)
2 ( p) , (63)

while the new values of the components of Ω (r) are defined by Eq. (51), that also
allows us to put f (r,r)

2 = 0. This ends the justification of the fact that the Hamiltonian
H(r) can be written as in formula (59) with new terms such that f (r, s)

� ∈ P�,sK and
E (r) ∈ P0,0 . Therefore,H(r) has the same structure ofH(r−1) in (33); this also mean
that the normalization algorithm can be iterated to the next (r + 1-th) step. As a final
comment ending the present subsection, let us also remark that the new perturbative
terms f (r,s)

� with � = 0, 1, 2 are expected to be smaller with respect to the previous
ones; this is because of the Fourier decay of the coefficients jointly with the fact that
we removed the part of perturbation up to the trigonometric degree r K .

3.2 On the Convergence of the Algorithm Constructing the
Normal Form for Elliptic Tori

As we have discussed since the introduction, in the present work we make the choice
of adopting the same approach to construct two different normal forms, that are
related to KAM invariant manifolds and elliptic tori, respectively. For what concerns
the analysis of the convergence, such a choice now allows us to use arguments that
are very similar to those described in the previous Sect. 2. In particular, also for
what concerns the motion on elliptic tori, we emphasize that it can be approximated
within a precision up to a fixed order of magnitude by using our procedure that is
explicitly computable, because the total amount of operations that are defined also
by this normalization algorithm is finite.

20 This statement can be justified, by referring also to the definition of the canonical transformation

D(r) as composition of all the Lie series generated by the set of functions
{D(r; m)

2

}m̄
m=1. In fact, it

can be easily done by applying Lemma 2 to all the contributions due to the repeated application of
the Lie derivative with generating functions D(r; m)

2 ∈ P2,0.
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The non-resonance conditions we have assumed in (11), (42), (50) and (52) can
be summarized in the following way:

min
0<|k|≤r K ,

0≤|�|≤2

∣∣k · ω(r−1) + � · Ω (r−1)
∣∣ ≥ γ

(r K )τ
and min

0<|�|≤2

∣∣� · Ω (r−1)
∣∣ ≥ γ , (64)

with γ > 0 and τ > n1 − 1. Let us here resume the parametric dependence of all the
Hamiltonian terms on the initial value of the angular velocity vector ω(0), as it has
been introduced at the beginning of the previous Sect. 3.1 (see the discussion follow-
ing the statement of Lemma 2). In particular, in the Diophantine inequalities reported
in (64) the angular velocity vectors at the r -th normalization step are functions of
ω(0), i.e., ω(r−1) = ω(r−1)(ω(0)) and Ω (r−1) = Ω (r−1)(ω(0)). Let us recall that we
do not try to keep a full control on the way for what concerns the angular velocity
vectors that are modified passing from the r − 1-th normalization step to the next
one. Therefore, let us recall also here that such an approach is in contrast with the
original proof scheme that was designed to construct the Kolmogorov normal form
for maximal invariant tori, where the angular velocities are kept fixed (see [22] or,
e.g., [17]), but it is somehow unavoidable because of the occurrence of the transver-
sal angular velocities Ω (r−1)(ω(0)) that in general cannot remain constant along the
normalization procedure. This seems to prevent the complete construction of the
normal form and so also for what concerns the proof of the existence of an elliptic
torus. Nevertheless, following the approach designed by Pöschel in [36], it can be
proved that the Lebesgue measure of the resonant regions where the Melnikov con-
ditions are not satisfied shrinks to zero with the size of the perturbation. Therefore,
the chances of success in constructing the normal form for elliptic tori are described
by the following statement.

Theorem 2 Consider the family of real Hamiltonians H(0)( p, q, J,ϕ;ω(0)) of the
type described in (31). Those functions are defined so that H(0) : O1 × T

n1 × O2 ×
T

n2 × U �→ R, with O1 and O2 open neighborhoods of the origin in R
n1 and R

n2+ ∪
{0}, respectively, while ω(0) ∈ U , being U an open subset of Rn1 . Moreover, let a
special class of functions include each of the terms that are of type f (0, s)

� and appear
in the expansion (31), in such a way that f (0, s)

� ∈ P�,sK for a fixed positive integer
K . We also assume that

(a) all the functions E (0) : U �→ R, Ω (0) : U �→ R
n1 and f (0, s)

� : O1 × T
n1 × O2 ×

T
n2 × U �→ R, appearing in (31), are analytic functions with respect to ω(0) ∈

U;
(b) Ω

(0)
i (ω(0)) 
= Ω

(0)
j (ω(0)) and Ω

(0)
i2

(ω(0)) 
= 0 for ω(0) ∈ U and 1 ≤ i < j ≤ n2,
1 ≤ i2 ≤ n2 ;

(c) for some fixed and positive values of ε and E, one has

sup
( p,q,J,ϕ;ω(0))∈O1×Tn1×O2×Tn2×U

∣∣∣ f (0,s)
� ( p, q, J,ϕ;ω(0))

∣∣∣ ≤ εs E (65)

∀ s ≥ 1, � ≥ 0 and ∀ � ≥ 3 when s = 0.
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Then, there is a positive ε� such that for 0 ≤ ε < ε� the following statement
holds true: there exists a non-resonant set U (∞) ⊂ U of positive Lebesgue mea-
sure and with the measure of U \ U (∞) tending to zero for ε → 0 for bounded
U , such that for each ω(0) ∈ U (∞) there exists an analytic canonical transforma-
tion ( p, q, J,ϕ) = ψ(∞)

ε;ω(0) (P, Q,Ξ ,Θ) leading the Hamiltonian to the normal

form written in (32), where E (∞)(ω(0)) is a finite real value fixing the constant
energy level that corresponds to the invariant elliptic torus

{
(P = 0, Q ∈ T

n1 ,Ξ =
0,Θ = 0)

}
. Moreover, the canonical change of coordinates is close to the iden-

tity in the sense that
∥∥ψ(∞)

ε;ω(0) (P, Q,Ξ ,Θ) − (P, Q,Ξ ,Θ)
∥∥ = O(ε) and the same

applies also to both the energy level and the detunings of the angular velocity vec-
tors (that are

∣∣E (∞)(ω(0)) − E (0)(ω(0))
∣∣ = O(ε),

∥∥ω(∞)(ω(0)) − ω(0)
∥∥ = O(ε) and∥∥Ω (∞)(ω(0)) − Ω (0)(ω(0))

∥∥ = O(ε), respectively).

The complete proof of theorem above is reported in [7], where it is ensured the
convergence of a normalization algorithm that is substantially the same with respect
to the one described in the previous Sect. 3.1 apart some very minor modifications.21

Therefore, the approach of that paper is based on a convergence scheme of linear
type. Nevertheless, the more geometrical part of that work (which deals with the
estimates of the volume covered by the resonant region) is borrowed from [36], where
a statement nearly equivalent to Theorem 2 is proved by adopting a fast convergence
scheme of quadratic type.

In the present case studying the elliptic tori, the choice to let the angular velocity
vectors change at every normalization step is somehow more natural with respect
to the original proof scheme designed by Kolmogorov. This is due to the fact that
here the procedure allowing to keep fixed the angular velocities is not complete,
because it involves less free parameters than the number of degrees of freedom. This
is a major difference with respect to the algorithm constructing the normal form for
KAM tori, where those two integer numbers are equal. For what concerns the case
of the elliptic tori too, some work22 is in progress in order to revisit the problem of
the convergence of this type of normalization algorithms so as to provide a statement
where the final result is not expressed in a probabilistic sense (i.e., by referring to the
Lebesgue measure). This can be done by fixing since the beginning the final value
of the angular velocity vectors

(
ω(∞),Ω (∞)

)
and their non-resonance properties; we

emphasize that this allow to explicitly solve all the homological equations that are
introduced at every step of the algorithm. Also here, the total detunings ω(∞) − ω(0)

and Ω (∞) − Ω (0) are given in terms of series whose coefficients are defined in a
recursive way. Such an approach is also inspired by the need to revisit what was
successfully done in order to show the existence of elliptic tori in PDEs problems
(see [6]).

21 For instance, in order to describe the transverse dynamics with respect to the elliptic tori, the
complex canonical coordinates (z, i z̄) instead of the action-angle ones are used, where z j = J j eiϕ j

∀ j = 1, . . . , n2 .
22 Danesi, V., Locatelli, U.: work in progress (2022).
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4 Construction of Invariant KAM Tori in Exoplanetary
Systems with Rather Eccentric Orbits

In order to properly introduce a Cauchy problem which includes the ordinary differ-
ential equations (ODE) for a planetary system, the initial conditions at a given time
are needed and so also for the positions and the velocities in an astrocentric frame.
It is well known that they can be replaced by the orbital elements

{(
a j , e j , ι j , M j , ω j , Ω j

) : ∀ j = 1, . . . , N
}

,

being N the number of the planets that are considered in the system. Orbital ele-
ments refer to the so called osculating Keplerian ellipse, which describes a fictitious
motion having the same instantaneous values of both position and velocity with
respect to the planet. For what concerns the Keplerian ellipse of the j-th planet,
the symbols a j , e j , ι j , M j , ω j , Ω j denote the semi-major axis, the eccentricity,
the inclination,23 the mean anomaly, the argument of the pericenter24 and the lon-
gitude of the ascending node, respectively. Of course, also the values of the masses
m j ∀ j = 0, 1, . . . , N (being m0 the stellar mass) are needed in order to properly
introduce the Cauchy problem for a planetary system, because they enter in the defi-
nitions of the momenta, the kinetic energy and the potential one. Unfortunately, none
of the detection methods that are nowadays available to discover extrasolar planets
is able to measure all the orbital elements and the masses that completely define the
ODE problem (see, e.g., [2]). For the sake of simplicity, instead of considering a
generic planetary problem with N + 1 bodies, let us focus on a specific case, i.e.,
the extrasolar system hosting two planets orbiting around the star named HD473225

(the value of its mass is reported in the caption of the following table). The values
of the known orbital elements of those exoplanets as they are given by the radial
velocity detection method are reported in Table 1. Let us recall that such a detection
technique is unable to provide a complete information about the mass of every j-th
planet; instead, it gives its minimum value m j sin(ι j ).

Let us now explain how we have decided to complete the initial conditions, by
also giving the motivations of our choice. Since we are interested in studying the
planetary dynamics of the HD4732 system in the framework of a secular model, we
expect that its dependence on the initial values of the mean anomalies is weak. We
emphasize that such an assumption does not hold true in general (see, e.g., [26]), but
it is rather natural in the case of the HD4732 planetary system because the revolution

23 ι j is the inclination of the Keplerian ellipse with respect to the plane orthogonal to the line of
sight (i.e., the direction pointing to the object one is observing), that is usually said to be “tangent
to the celestial sphere”.
24 Unfortunately, the same symbol (namely, ω) is used to denote both the angular velocity in KAM
theory and the pericenter argument in astronomy. Hereafter, when the symbol ω appears without
superscripts, it will refer just to the latter quantity.
25 Since the detection of a fainter stellar companion in 2019 (see [32]) HD4732 has been renamed
as HD4732A. For brevity, in the present paper we refer to such a star with the old name.
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Table 1 Known orbital elements and minimal masses of the detected exoplanets orbiting around
the HD4732 star, whose mass is 1.74 times bigger than the solar one. The following data are taken
from the central values of the ranges given in Table 5 of [39]. The corresponding units of measure
are reported in every column between pairs of square brackets; in particular, we recall that the
eccentricity of an ellipse is a pure number ranging in (0, 1) and MJup means “Jupiter mass”. Since
the initial time is irrelevant for an autonomous system, we have set it equal to zero in the parentheses
following the orbital elements

Planet name Planet index j a j (0)
[AU]

e j (0) ω j (0)
[◦]

m j sin
(
ι j (0)

)

[MJup]
HD4732b 1 1.19 0.13 85 2.37

HD4732c 2 4.60 0.23 118 2.37

periods are far frommean-motion resonances and they are much shorter with respect
to those corresponding to the remaining angles that appear in the orbital elements
list. Therefore, we simply set26

M1(0) = M2(0) = 0◦ . (66)

For what concerns the extrasolar system HD4732, we plan to start a study of the
dependence of its orbital dynamics on themutual inclination imut. The present section
deals with the beginning of such a research project, that will be extended in a forth-
coming work. For this purpose, it is convenient to consider orbital planes initially
located in such a way they are symmetric with respect to the line of sight that is also
orthogonal to their intersection. As an example of this particular configuration, we
can consider the case with ι1(0) = 89◦, ι2(0) = 91◦ and

Ω1(0) = Ω2(0) = 0◦ . (67)

In view of the general relation

cos imut = cos ι1 cos ι2 + sin ι1 sin ι2 cos(Ω1 − Ω2) ,

we readily obtain that imut = 2◦. More in general, we introduce the following set of
initial conditions

26 Since the times of passage at the pericenter are given by the radial velocity detection methods
and they are different, we stress that our choice of defining the initial values of the mean anomalies
so that M1(0) = M2(0) = 0◦ is not coherent with the observations about the two planets orbiting
around HD4732. However, we consider that this small inconsistency of our settings should be
harmless, just because of the expectation that its secular dynamics should be very weakly affected
by the initial values of the mean anomalies.
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Iimut(0) =
{(

a1(0) , a2(0) , e1(0) , e2(0) ,

ι1(0) = 90◦ − imut(0)

2
, ι2(0) = 90◦ + imut(0)

2
,

M1(0) , M2(0) ,ω1(0) , ω2(0) ,Ω1(0) ,Ω2(0)
)}

,

(68)

where the inclinations are parameterized with respect to imut(0), while the values of
all the remaining orbital elements are defined according to Table 1, jointly with for-
mulæ (66) and (67). Of course, the values of the planetary masses m1 and m2 can be
recovered multiplying the minimal masses (that appear in the last column of Table 1)
by the increasing factor 1

/
sin
(
ι j (0)

)
. This remark helps us to understand that all

the parameters and the initial conditions have been properly defined and they can
eventually depend just on the value of imut(0). This way to parameterize the model
has been introduced to better understand the properties of our (new) algorithm con-
structing invariant tori as a function of the mutual inclinations. A previous approach
to the same problem was described in [41] and it was shown to be successful just for
systems with rather small eccentricities of the exoplanets, being their initial values
less than 0.1 . This is not the case of the exoplanets in the system HD4732, because
both their initial values of the eccentricities (reported in Table 1) are larger than 0.1 .
We emphasize that this choice has been made with the purpose to show that our fol-
lowing new formulation of the constructing algorithms applies to a more extended
range of models with respect to the previous approach.

Let us also recall that, in a three-body planetary problem, the longitudes of the
nodes are always opposite, if they are measured with respect to the so called Laplace
plane, that is invariant because it is orthogonal to the total angular momentum, by
definition (see, e.g., Sect. 6.2 of [24]). Moreover, the Hamiltonian does not depend
on the sum ofΩ1 + Ω2 , because of the invariance with respect to the rotations. In the
following subsection, we will explain why it is preferable to consider expansions of
the Hamiltonian in a frame where the Laplace plane is the horizontal one. In Celes-
tial Mechanics the word “inclination” often refers to the angle (say, i j ∈ [0◦, 180◦])
between the angular momentum of the j-th planet and the total one. With this nota-
tion, the following relation holds true: imut = i1 + i2 .

4.1 Secular Model at Order Two in the Masses

In the present subsection, we are going to introduce a model describing the secular
dynamics of a planetary system, in a way that provides results more reliable with
respect to a simple average over the revolution angles (see, e.g., [38]). We emphasize
that we derive the secular model at order two in the masses, by applying an approach
inspired to the construction of the Kolmogorov normal form. This is a major dif-
ference with respect to other approaches providing the same level of accuracy for a
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secular model (see, e.g., [23] and references therein). Here, in order to introduce our
secular model, we will adopt the approach described in [41], that is summarized as
follows.

A three-bodyHamiltonian problem has nine degrees of freedom, but three of them
can be easily separated so as to describe the uniform motion of the center of mass
in an inertial frame. The untrivial part of the dynamics is represented in astrocentric
canonical coordinates and its degrees of freedom can be further reduced by two using
the conservation of the total angular momentum C. As it is shown in Sect. 6 of [24],
this allows us to write the Hamiltonian in Poincaré canonical variables, that are

Λ j = m0m j

m0 + m j

√
G(m0 + m j )a j , ξ j =√2Λ j

√
1 −

√
1 − e2j cos (ω j ) ,

λ j =M j + ω j , η j =−√2Λ j

√
1 −

√
1 − e2j sin (ω j ) .

(69)

The reduction of the total angular momentum makes implicit the dependence on the
inclinations i j and on the longitudes of the nodes Ω j . In the Laplace reference frame
the mutual inclination is the sum of the two inclinations and so is given by a rather
simple relation involving the Poincaré variables, i.e.,

imut = i1 + i2 = arccos

⎛

⎝C2 − Λ2
1(1 − e21) − Λ2

2(1 − e22)

2Λ1Λ2

√
1 − e21

√
1 − e22

⎞

⎠ , (70)

being C =∑2
k=1 Λk

√
1 − e2k cos ik , that is the (constant) module of the total angu-

lar momentum. Moreover, we introduce a translation L j = Λ j − Λ∗
j , where Λ∗

j is
defined in order to obtain that in theKeplerian approximation of themotion the values
of the semi-major axes are in agreementwith the observations. Indeed, the expansions
of a Hamiltonian representing a planetarymodel are usuallymade around the average
values of the semi-major axes or their initial values. For the sake of simplicity, we
will adopt this latter option. Such expansions are actually made with respect to these
Poincaré variables27 and the parameter D2, that measures the difference between the
total angular momentum of the system and the one of a similar system with circular
and coplanar orbits; i.e., it is defined as D2 = [(Λ∗

1 + Λ∗
2)

2 − C2
]/

(Λ∗
1Λ

∗
2); there-

fore, it is of the same order as e21 + i21 + e22 + i22 . Thus, we can write the Hamiltonian
of the three–body problem as

H3BP =
∞∑

j1=1

h(Kep)
j1,0 (L) + μ

∞∑

s=0

∞∑

j1=0

∞∑

j2=0

Ds
2 h(P)

s; j1, j2
(L,λ, ξ,η) (71)

27 The computation of the coefficients appearing in the expansion (71) is not straightforward. For
a detailed discussion of the method we have used for doing such a calculation we refer to [24].



34 U. Locatelli et al.

where μ = max{m1/m0, m2/m0}. Moreover,

• K(L) =∑∞
j1=1 h(Kep)

j1,0 (L) is the Keplerian part and h(Kep)
j1,0 is a homogeneous poly-

nomial of degree j1 in L; in particular, h(Kep)
1,0 = n∗ · L, where the components of

the angular velocity vector n∗ are defined by the third Kepler law;
• h(P)

s; j1, j2
is a homogeneous polynomial of degree j1 in L, degree j2 in (ξ,η) and

with coefficients that are trigonometric polynomials in λ and are related to the
term Ds

2 .

Clearly, in the applications we deal with finite expansions; the truncation parameters
will be discussed in the following.

The expression of the Hamiltonian of the three-body problem in (71) highlights
the distinction between the so called fast variables (L,λ) and the secular variables
(ξ,η). Indeed, if we consider the corresponding Hamilton equations, we have that
λ̇ = O(1). This means that the motion of the planet along the orbit, that is in first
approximation aKeplerian ellipse, has a different timescalewith respect to the secular
variables, whose variation is due to the interaction between the planets and, therefore,
is of O(μ). Since we are interested in the study of the long-time stability of the
system, a common procedure consists on considering just the evolution of the secular
variables, by averaging the Hamiltonian with respect to the fast angles λ. With a
simple average of H3BP we would obtain a secular approximation with terms of
order μ, namely at order 1 in the masses. Here, we consider terms up to order 2 in
the masses, averaging with a close to the identity canonical change of coordinates
inspired by the algorithm for the construction of the Kolmogorov normal form.
Indeed, we focus on the torus corresponding to L = 0. The first transformation of
coordinates that we define aims at removing the perturbative terms that depend on
the angles λ but do not depend on the actions L, being L̇ j = ∂H/∂λ j for j = 1, 2 .
This is done by using the term linear in the actions, i.e., n∗ · L, to define a generating
function χ(O2)

1 (λ) as the solution of the following homological equation:

{
χ(O2)
1 , n∗ · L

}
+ μ

∑

s=0 , j2=0
2s+ j2≤NS

⌈
Ds

2 h(P)

s;0, j2

⌉

λ:K F

= μ
∑

s=0 , j2=0
2s+ j2≤NS

Ds
2

〈
h(P)

s;0, j2

〉

λ
, (72)

being 〈·〉λ the average with respect to the angles λ, while with the notation �·�K F we
mean that the expansions are truncated at the trigonometrical degree KF in the angles
λ. Let us add a few comments about the truncations parameters KF and NS . The value
of KF is defined so as to take into account themainmean-motion quasi-resonances of
the system considered. For example, if the system is close to the resonance k∗

1 : k∗
2 ,

then KF is defined as KF ≥ |k∗
1 | + |k∗

2 |. In the same spirit, the value NS of the
truncation of the expansions in eccentricity and inclination is set in order to consider
the quasi-resonance. Let us assume that the quasi-resonant angular terms are of type
(k∗

1λ1 − k∗
2λ2), then in principle it would be convenient to consider expansions up to

an order in eccentricity and inclination such that NS ≥ 2(|k∗
1 | − |k∗

2 |), because of the
D’Alembert rules (see [24]). Therefore, in the specific case of the extrasolar system
HD4732, it is rather natural to set KF = 9, because the periods of the two planets
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are about 0.986 yr and 7.48yr, respectively. However, since the ratio of the angular
velocities n∗

1/n∗
2 is not so close to the resonance 7 : 1 or to 8 : 1 and the terms of

high degree in eccentricities are not so relevant, we have found convenient to limit
our expansions to NS = 8 , in order to reduce the computational cost of the whole
procedure.

Nowwe have to apply the transformation of coordinates defined by the application
of the Lie series operator exp(Lχ(O2)

1
) · =∑∞

j=0(1/j !)L j

χ(O2)
1

· to the Hamiltonian.

Recalling that in our secular model we will not consider terms depending on L or
of order greater than μ2, the only terms we need to compute are included in the
following expansion:

H̃ = H3BP + 1

2

{
χ(O2)
1 , Lχ(O2)

1
h(Kep)
2,0

}

L,λ

+μ
∑

s≥0 , j2≥0
2s+ j2≤NS

Ds
2

{
χ(O2)
1 , h(P)

s;1, j2

}

L,λ
+ μ

2

∑

s≥0 , j2≥0
2s+ j2≤NS

Ds
2

{
χ(O2)
1 , h(P)

s;0, j2

}

ξ,η
,

(73)

where {·, ·}L,λ and {·, ·}ξ,η are the terms of the Poisson bracket involving only the
derivatives with respect to the pairs of conjugate variables (L,λ) and (ξ,η), respec-
tively. Then, according to [27], we have that

〈H (O2)〉λ
∣∣∣
L=0

= 〈H̃ 〉λ
∣∣∣
L=0

+ O(μ3) ,

being H (O2) = exp(Lχ(O2)
1

)H3BP . Let us remark that for the definition of this model
it is not necessary to compute the effects induced by the second generating function
χ(O2)
2 (L,λ) for removing terms linear in L, because the additional terms due to the

application of such a Lie series operator are neglected in the secular approximation.
We can finally introduce our secular model up to order 2 in the masses by setting

H (sec)(D2, ξ,η) =
⌈

〈H̃ 〉λ
∣∣∣
L=0

⌉

NS

, (74)

i.e., we take the averaged expansion (over the fast angles λ) of the part of H̃ that is
both independent from the actions L and truncated up to a total order of magnitude
NS in eccentricity and inclination. Since D2 is O(e21 + i21 + e22 + i22

)
, this means

that we keep the Hamiltonian terms h(P)

s;0, j2
with 2s + j2 ≤ NS . From now on, the

parameter D2 is replaced by its explicit value that is calculated as a function of the
initial conditions; thus, we can write the Hamiltonian as follows:

H (sec)(ξ,η) =
NS/2∑

s=1

h(sec)
2s (ξ,η) , (75)

where h2s is an homogeneous polynomial of degree 2s. Thismeans that the expansion
contains just terms of even degree, as a further consequence of the well known
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D’Alembert rules. To fix the ideas, in the case of the extrasolar system HD4732
let us emphasize that our secular model at order two in the masses is defined by a
Hamiltonian H (sec) that is a simple (even) polynomial of maximal degree 8 in the
four canonical variables (ξ,η).

We have explicitly performed all the computations of Poisson brackets (required
by Lie series formalism to express canonical transformations) and all the expansions
described in the present subsection and in in the next one, by using X�óνoς . It is
a software package especially designed for doing computer algebra manipulations
into the framework of Hamiltonian perturbation theory (see [21] for an introduction
to its main concepts).

4.2 Semi-analytic Computations of Invariant Tori

In the framework of Hamiltonian theory for dynamical systems, often intuition can
be fruitfully helped by numerical investigations. In particular, in the case of the
extrasolar system HD4732, they allow to easily motivate the new approach that is
based on normal forms and we are going to describe. In the present section, we will
discuss some results provided by direct numerical integrations of the secular model
H (sec) that is defined in (75); all of them have been produced by simply applying the
RK4 method.

A few dynamical features of the Hamiltonian model defined by H (sec) are sum-
marized in the plots reported in Fig. 2. They refer, as an example, to the initial
conditions corresponding to the set of values I4◦ , defined in (68). The difference of
the arguments of the pericenters ω2 − ω1 is plotted in the bottom-right panel of such
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Fig. 2 On the left, Poincaré sections that are corresponding to the hyperplane η2 = 0 (with the
additional condition ξ2 > 0) and are generated by the flow of the Hamiltonian secular model H (sec),
which is given in (75) at order two in the masses for the exoplanetary system HD4732; the orbit
in red refers to the motion starting from the initial conditions corresponding to the set I4◦ , that is
described in (68). On the right, evolution of secular orbital elements: the eccentricities of both the
exoplanets (that are e1 and e2) and the difference of the arguments of the pericenters (i.e., ω2 − ω1)
are plotted on top and bottom, respectively
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a figure; then, we can easily appreciate that this angle is librating around 180◦. By
taking into account of the fact that the nodes are opposite in the Laplace frame, this
means that the pericenters of HD4732b and HD4732c are in the so called “apsidal
locking” regime in the vicinity of the alignment of the pericenters. This phenomenon
is expected to play a major role in making stable the orbits for systems where the
Keplerian part of the Hamiltonian is strongly affected by the interactions between
planets (see, e.g., [30] or [9]). The Poincaré sections of the motions starting from the
initial conditions corresponding to I4◦ are plotted in red in the panel on the left of
Fig. 2 and it is easy to remark that they are orbiting around a fixed point. Moreover,
it looks rather close to those sections marked in red, when their distance from such
a fixed point is compared with that from the orbits that are enclosing another fixed
point. Let us recall that all the Poincaré sections reported in Fig. 2 refer to the same
level of energy, say E , corresponding to the set of initial conditions I4◦ . Since H (sec)

is a two degrees of freedom Hamiltonian, the manifold labeled by such a value of the
energy will be three-dimensional; in other words, by plotting the Poincaré sections,
we automatically reduce by one the dimensions of the orbits. This is the reason why
a fixed point actually corresponds to a periodic orbit. Since the fixed point with neg-
ative value of the abscissa is surrounded by closed curves, then we can argue that
such a periodic orbit is linearly stable for what concerns the transverse dynamics.
This means that it is a one-dimensional elliptic torus, in the terminology we have
adopted in the present work. Therefore, we can conclude that the orbit generated by
the set I4◦ of initial conditions is winding around a linearly stable periodic orbit, by
remaining in its vicinity. This explains why we are going to adopt a strategy based on
two different algorithms: the first one refers to the elliptic torus (that corresponds to
a fixed point in the Poincaré sections) and provides a good enough approximation to
start the second computational procedure that constructs the final KAM torus (which
shall include also the points marked in red in Fig. 2).

Explicit Construction of the Normal Form for Elliptic Tori in the Case of the
Secular Model Representing the Planetary System HD4732
The discussion above has highlighted that it is convenient to adopt a suitable set of
coordinates including also a resonant angle, that is the difference of the arguments
of the pericenters. In view of such a target, we first introduce the set of action-angle
variables (J ,ψ) via the canonical transformation

ξ j = √2J j cosψ j , η j = √2J j sinψ j , ∀ j = 1, 2, (76)

being (ξ,η) the variables appearing as arguments of the secular Hamiltonian H (sec)

defined in (75). It is important to recall that the angles (ψ1,ψ2) associated to these
secular variables are nearly equal to the arguments of the pericenters (ω1,ω2), apart
from a small correction due to the transformation of coordinates induced by the
application of the Lie series expLχ(O2)

1
to theHamiltonian of the three-body planetary

problem. Then, it is convenient to introduce a new set of variables (I,ϑ) such that

ϑ1 = ψ1 − ψ2 , ϑ2 = ψ2 , I1 = J1 , I2 = J2 + J1 . (77)
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We now introduce the new canonical polynomial variables (x, y) defined as

x j = √2I j cosϑ j , y j = √2I j sin ϑ j , ∀ j = 1, 2 . (78)

Let us also remark that making Poincaré sections with respect to the hyperplane
η2 = 0, when ξ2 > 0 is equivalent to impose ψ2 = 0, because of the definitions
in (76). Therefore, looking at formulæ (77)–(78), one can easily realize that the
drawing in the left panel of Fig. 2 can be seen as a plot of the Poincaré sections
in coordinates (x1 , y1) with respect to y2 = 0 and with the additional condition
x2 > 0. Revisiting the plot in the bottom–right box of Fig. 2 in the context of the new
canonical variables is interesting, because it makes clear that ϑ1 is librating around
180◦. In fact, we have that ϑ1 = ψ1 − ψ2 � ω1 − ω2 , because the relation between
these differences of angles is given by the transformation induced by the application
of the Lie series expLχ(O2)

1
, that is close to the identity.

By a numerical method,28 we can easily determine the initial condition (x�, y�)

that is in correspondence with a Poincaré section and generates a periodic solution.
We can now subdivide the variables in two different couples. The first one is given by
(p, q) ∈ R × T, i.e., the action-angle couple describing the periodic motion. Thus,
we rename the angle ϕ2 as q, while the action is obtained by translating the origin of
I2 so that p = I2 − I �, where at the first trial29 the shift value I � is fixed so that I � =(
(x�

2)
2 + (y�

2)
2
)
/2. Forwhat concerns the second couple of canonical coordinates, we

start from the polynomial variables (x1, y1) in order to describe themotion transverse
to the periodic orbit. The last preliminary translation is on x1 , in order to have
expansions around the value x�

1 , given by the initial condition computed numerically.
Let us emphasize that, since the fixed point we are trying to approximate in Fig. 2
corresponds toϕ1 = 180◦, we have that y�

1 = 0 and here a translation is not needed. It
is now convenient to rescale the transverse variables (x̄1, y1), being x̄1 = x1 − x�

1 , in
such away that theHamiltonian partwhich is quadratic in the newvariables (x, y) and

28 Let us imagine to start from an initial condition denoted by (x̂, ŷ) that is close enough to the
periodic orbit generated by the wanted solution (x�, y�); typically, at the beginning one can put
(x̂, ŷ) equal to the values assumed by the canonical variables (x, y) in correspondence with the
set Iimut(0), defined in (68). During a long enough numerical integration of the Hamilton equations
related to H (sec), one can easily determine x̂1,− and x̂1,+ that are the minimum value assumed
by the variable x1 in correspondence with the Poincaré sections and the maximum one, resp. If
the difference x̂1,+ − x̂1,− is below a prescribed (small) threshold of tolerance, then we assume
to know the solution with a good enough level of approximation and we stop this computational
procedure by setting (x�, y�) = (x̂, ŷ). If such a “way out condition” is not satisfied, then we
define x�

1 = (x̂1,+ + x̂1,−)/2, y�
1 = 0, y�

2 = 0 and we determine the positive value of x�
2 so that

the energy level of this new approximation of the final solution, i.e., (x�, y�), is still equal to the
value E corresponding to the set Iimut(0). Let us remark that in the (re)definition of (x�, y�) we are
exploiting both the definition of the Poincaré sections and their symmetry with respect to the axis
of the abscissas. At this point, we put (x̂, ŷ) = (x�, y�) and we restart the computational procedure
by performing another numerical integration so to determine new values of x̂1,− and x̂1,+ and so
on, until the “way out condition” will be satisfied.
29 See the discussion about the solution of the implicit equation (79) by using the Newton method,
which is reported at the end of these explanations.
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does not depend on (p, q) is in the formΩ(0)(x2 + y2)/2. This rescaling can be done
by a canonical transformation as the quadratic part does not have anymixed term x̄1y1
and the coefficients of x̄2

1 and y21 have the same sign, because of the proximity to an
elliptic equilibrium point. Thus, since such a quadratic part is in the preliminary form

ax̄2
1 + by21 , it suffices to define the new variables (x, y) as x = 4

√ a
b x̄1, y = 4

√
b
a y1 .

Finally,we introduce the secondpair of canonical coordinates (J,ϕ) ∈ R+ ∪ {0} × T

so that x = √
2J cosϕ and y = √

2J sinϕ.
In the case of the secular dynamics of the planetary systemHD4732, starting from

H (sec) in (75), we have applied all the canonical transformations listed above and we
have expanded theHamiltonianH(0)(p, q, J,ϕ) up to degree 16 in the square roots of
the actions (p, J ). SinceH(0)(p, q, J,ϕ) is in a suitable form to apply the algorithm
fully described in Sect. 3.1 in the case with n1 = n2 = 1 (this is the reasonwhy all the
variables (p, q, J,ϕ) are here denoted as scalar quantities instead of vectorial ones),
we have applied such a computational procedure. We have performed 19 steps of the
normalization algorithm so producingH(19)(p, q, J,ϕ). During those computations,
the Fourier expansions inq of all theHamiltonians defined by the algorithmhave been
truncated at a maximal trigonometric degree equal to 40; since K = 2, this choice
allows to properly determine the generating functions for the first 20 normalization
steps. For the sake of brevity, we omit to report the graphs of the norms of all the
generating functions that are defined by the normalization procedure, also because
those plots are similar to the corresponding ones included in [8, 9]. Indeed, they
show that the convergence to the identity of the canonical transformations defined
at the r -th step of the algorithm is very fast with respect to r . This fact also allows
to iterate a few times all the normalization procedure constructing the normal form
for an elliptic torus with a computational cost which is not too expensive. We are
interested in doing that in order to refine the choice of the initial shift value I �.
Since all other canonical transformations are unambiguously defined, we have some
remaining arbitrariness just on the translation p = I2 − I �. We finally determine I �

in such a way that
E (19)

(
I �
) = E , (79)

where E is the energy level of the Poincaré sections and E (19)
(
I �
)
is the energy of

the elliptic torus in the approximation provided after 19 steps of normalization. The
implicit equation above can be numerically solved in the unknown I � by iterating a
few times the Newton method; this is done starting from the initial guess

(
(x�

2)
2 +

(y�
2)

2
)
/2, according with the discussion above.

For brevity, we omit also the tests showing that there is an excellent agreement
between the wanted periodic orbit and the nearly invariant curve, which is provided
by the last execution of the normalization algorithm, that is launched during the final
iteration of theNewtonmethod targeting the solution of (79). Actually, it corresponds
to the counter-image of the set (p = 0, q ∈ T, J = 0, ϕ = 0) and is expressed in the
coordinates (ξ,η), after having composed all the previous canonical transformations.
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Explicit Construction of the Normal Form for KAM Tori in the Case of the
Secular Model Representing the Planetary System HD4732
Since the Hamiltonian H(19)(p, q, J,ϕ) is very close to the normal form related to
the wanted elliptic torus, we use it as the starting point to construct a semi-analytic
solution that should provide a good approximation of the orbits generated by the
initial conditions corresponding to the set I4◦ . For such a purpose, first we translate
once again the coordinates. This is made in such a way that the new invariant torus
we are going to construct will be located in the proximity of these initial conditions;
therefore, we define two new pairs of action-angle coordinates ( p, q) ∈ R

2 × T
2. It

is convenient to set p2 = J − J �, being J � the value of the momentum J computed
in correspondence with the initial conditions related to the set I4◦ , that generate
the Poincaré sections marked in red in Fig. 2. We also introduce p1 = p − p�, with
p� = −(Ω(19)/ω(19)

)
J �, being 2π/ω(19) approximately equal to the period of the

motionon thepreviously determinedone-dimensional elliptic torus,while the angular
velocity of the transverse (small) oscillations in its vicinity is close toω(19). We recall
that the values of bothω(19) andΩ(19) appear in the expansion (59) of theHamiltonian
H(19), that is provided at the end of the previous normalization algorithm. Moreover,
we rename the angles (q,ϕ) as (q1, q2), respectively; then, we perform the two
translations described just above, by expanding the new Hamiltonian H (0)( p, q) up
to degree 8 in the actions p. By considering just the integrable approximations of
H(19) and H (0) (this means that the terms depending by the angles are temporarily
neglected), one can easily realize that the energy constant E (0) corresponding to the
newHamiltonian is such that E (0) � E , because of the equationω(19) p� + Ω(19) J � =
0 that is due to the definitions of the shift values

(
p�, J �

)
. Since H (0)( p, q) is in a

suitable form to apply the algorithm fully described inSect. 2.3,wehaveperformed19
steps of such a computational procedure too, so producing H (19)( p, q). During these
computations, the Fourier expansions in q of all the Hamiltonians defined by the
normalization algorithm have been truncated at a maximal trigonometric degree
equal to 40. This choice allows to properly determine the generating functions χ(r)

1

and χ(r)
2 for the first 20 normalization steps.

It is convenient to define the norms of the generating functions as the sum of the
absolute values of the coefficients appearing in their (finite) Taylor-Fourier expan-
sions. In the left panel of Fig. 3, we report the plot of

∥∥χ(r)
2

∥∥ in a semi-log scale and
as a function of the normalization step r , while we have decided to not include also∥∥χ(r)

1

∥∥, because for every r it is definitely smaller than
∥∥χ(r)

2

∥∥. One can appreciate
that the geometrical decrease of the generating functions is very sharp and regular;
therefore, this shows that the normalization algorithm constructing the Kolmogorov
normal form is convergent in a quite rapid way.

We can now check the quality of our results. Let us denote with C the canonical
transformation we obtain by composing all the changes of coordinates we have dis-
cussed in the present Sect. 4.2. Therefore, we have that (ξ,η) = C( p, q), where
(ξ,η) are the canonical coordinates referring to the Hamiltonian secular model
H (sec), that is defined in (75), while ( p, q) are the action-angle variables that are
introduced at the end of the previously described computational procedure. Inspired
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Fig. 3 On the left, study of the decrease of
∥∥χ(r)

2

∥∥ as a function of the normalization step r . On the
right, comparisons between the Poincaré sections generated by two different initial conditions, that
correspond to the set I4◦ and a point on the (nearly) invariant torus p = 0 related to the Hamiltonian
H (19), respectively. The former ones are marked in red as in the left panel of Fig. 2, while the latter
ones are in black. The Poincaré sections are defined in the same way as those reported in Fig. 2; in
particular, the dots plotted in blue there are located exactly in the same positions as those marked
in orange here. The blue symbol × refers to the motion on the elliptic torus corresponding to the
Hamiltonian H(19)

by the semi-analytic scheme (5), which provides a way to integrate the Hamilton
equations, we start by computing (ξ(0),η(0)) = C(0, 0). Since H (19) is very close
to be in Kolmogorov normal form and H (sec) � H (19)

(C( p, q)
)
(the discrepancies

are mainly due to the unavoidable truncations that are made on the expansions of the
Hamiltonians), then

(
ξ(t),η(t)

) = (C(0,ω(19)t)
)
provides a good approximation of

the flow induced by H (sec). We also recall that the values of the angular velocity
vector ω(19) appear in the expansion (21) of the Hamiltonian H (19). Computing the
Poincaré sections of the motion law

(C(0,ω(19)t)
)
is not very comfortable; there-

fore, it is convenient to refer to its approximation which is given by the numerical
solution of the Hamilton equations for H (sec) starting form the initial conditions
(ξ(0),η(0)) = C(0, 0). The Poincaré sections we have obtained in this way are plot-
ted in black on the right panel of Fig. 3. They are in good agreement with the the
Poincaré sections marked in red in both Figs. 2 and 3, that refer again to the flow
induced by H (sec), but starting from the initial conditions related to the set I4◦ . This
confirms that we are able to obtain reliable approximations of the secular motions
for extrasolar planetary systems, by using computational procedures based on the
construction of suitable (Kolmogorov-like) normal forms.

Final Comments About Our Semi-analytic Results
Looking closely at the right panel of Fig. 3, one can observe that the Poincaré sections
plotted in black goes from the part internal to the orbit in red to the external one
and vice versa. This provides a clear indication that the energy level of the final
KAM torus (that is � E (19)) is not very close to that of all the Poincaré sections
plotted in Fig. 2 (being E its value). Indeed, the relative error

∣∣E (19) − E
∣∣/|E | is

about 12%. The agreement between the results produced by the purely numerical
integrations or by adopting our semi-analytical approach can be strongly improved
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by a suitable further refinement of our computational procedure. The description of
such an extension goes beyond the scopes of the present work, but we stress that it
can be done so as to ensure also that the condition on the coherence with the energy
of the Poincaré sections, i.e.,

E (RI) = E , (80)

is satisfied within a tolerance range that is acceptable for a numerical solution of
the equation above, where RI is the number of steps that are explicitly performed
in order to construct the final Kolmogorov normal form. Here, we limit ourselves
to anticipate some of the results that can be obtained by implementing that further
refinement, in order to let the reader appreciate the power of this kind of methods. For
what concerns the planetary system HD4732 we already have studied the motions
starting from the following sets of initial conditions: I2◦ , I4◦ , I6◦ , . . . I40◦ . We can
construct invariant KAM tori well approximating the orbits for all these cases, except
those corresponding to the sets I32◦ and I34◦ . We emphasize that these limitations are
due to real dynamical phenomena. The Poincaré sections generated by those initial
conditions clearly shows that between 34◦ and 36◦ there is the transition from the
librations to the circulation regime, for what concerns the difference of the argument
of the pericenters. Moreover, this kind of orbits are observed in stable situations up
to initial values of the mutual inclinations that are about 40◦, while for even larger
angles there are robust configurations just inside the Lidov-Kozai resonance, which
has different dynamical features (see [42]). As we have already mentioned above,
we plan to describe these new results in a forthcoming work.

The evolution of the eccentricities plotted in the right panel of Fig. 2 clearly shows
that their average value is larger than 0.1 for both the exoplanets orbiting around
HD4732. Therefore, the new approach that we have introduced in the present work
behaves definitely betterwith respect to the previous one,whichwas described in [41]
and was shown to be successful just for systems with exoplanetary eccentricities
smaller than 0.1 . In our opinion the main source of improvement is due to the new
strategy, because it combines the preliminary construction of the normal form for a
suitable elliptic torus with the final one, which is performed in its vicinity for a KAM
torus whose shape is a good approximation of the secular orbits. In order to mention
another relevant success of our new approach, let us stress that in [9] we applied it
also to the delicate case of a system including both the two largest exoplanets orbiting
around υ Andromedæ A and the star itself.
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A New Analysis of the Three-Body
Problem

Jérôme Daquin, Sara Di Ruzza and Gabriella Pinzari

Abstract In the recent papers [5, 18], respectively, the existence of motions where
the perihelions afford periodic oscillations about certain equilibria and the onset of
a topological horseshoe have been proved. Such results have been obtained using,
as neighbouring integrable system, the so-called two-centre (or Euler) problem and
a suitable canonical setting proposed in [16, 17]. Here we review such results.

Keywords Two-centers problem · Three-body problem · Renormalizable
integrability · Perihelion librations · Chaos

1 Overview

In the recent papers [5, 18] the existence, in the three-body problem (3BP), ofmotions
which by no means can be regarded as “extending” in some way Keplerian motions
has been proved. Indeed, the motions found in those papers can be better under-
stood as continuations of the motions of the so-called two-centre problem (or Euler
problem; 2CP from now on).

The motivation that pushed such researches was a new analysis of 2CP carried
out in [17], combined with a remarkable property—which we called renormalizable
integrability—pointed out in [16]. It relates the “simply averaged Newtonian poten-
tial” (see the precise definition below) and the function, which in this paper we shall
refer to as Euler integral, that makes the 2CP integrable. Roughly, such property
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states that the averaged Newtonian potential and the Euler integral have the same
motions, as they are one a function of the other. As, on the other hand, the motions
of the Euler integral are, at least qualitatively, explicit, and the averaged Newtonian
potential is a prominent part of the 3BP Hamiltonian, the papers [5, 18] gave par-
tial answers to the natural question whether the motions of the Euler integral can
be traced in 3BP. Let us introduce some mathematical tools in order to make our
statements more precise.

In terms of Jacobi coordinates [10] the three-body problem Hamiltonian with
masses 1, μ, κ is the translation-free function

HJ = ‖y‖2
2

(
1 + 1

μ

)
+ ‖y′‖2

2

(
1

1 + μ
+ 1

κ

)
− μ

‖x‖ − μκ

‖x′ − 1
1+μ

x‖
− κ

‖x′ + μ
1+μ

x‖ .

Here, (y′, y, x′, x) ∈ (R3)4 (or (R2)4, in the planar case), ‖ · ‖ denotes Euclidean
norm and the gravity constant has been taken equal to one, by a proper choice of the
units system. We rescale impulses and positions

y → μ

1 + μ
y , x → (1 + μ)x , y′ → μβy′ , x′ → β−1x′, (1)

multiply the Hamiltonian by 1+μ
μ

(by a rescaling of time) and obtain

HJ = ‖y‖2
2

− 1

‖x‖ + γ

(
‖y′‖2
2

− β

β + β

1

‖x′ − βx‖ − β

β + β

1

‖x′ + βx‖

)
, (2)

with

γ = κ3(1 + μ)4

μ3(1 + μ + κ)
, β = κ2(1 + μ)2

μ2(1 + μ + κ)
, β = μβ . (3)

Likewise, one might consider the problem written in the so-called 1-centric coordi-
nates. In that case,

H0 = ‖y‖2
2

− 1

‖x‖ + γ

(
‖y′‖2
2

− β

β + β

1

‖x′‖ − β

β + β

1

‖x′ − (β + β)x‖

)

+β y′ · y, (4)

with γ, β and β analogous to (3), up to replace the factors (1 + μ + κ) with (1 + κ).
Note that we are not assuming μ, κ � 1 (in fact, in our applications, we shall make
different choices), which means that Jacobi or 1-centric coordinates above are not
necessarily centered at the most massive body. In order to simplify the analysis, we
introduce amain assumption. Both the Hamiltonians HJ and H0 in (2) and (4) include
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the Keplerian term

J0 := ‖y‖2
2

− 1

‖x‖ = − 1

2Λ2
. (5)

We assume that J0 is a “leading” term in such Hamiltonians. By averaging theory,
this assumption allows us to replace (at the cost of a small error) HJ and H0 with
their respective �-averages

Hi = − 1

2Λ2
+ γĤi (6)

with i = J, 0, where � is the mean anomaly associated to (5), and1

ĤJ := ‖y′‖2
2

− β

β + β
Uβ − β

β + β
U−β

Ĥ0 := ‖y′‖2
2

− β

β + β
Uβ+β − β

β + β

1

‖x′‖ (7)

with

Uβ := 1

2π

∫ 2π

0

d�

‖x′ − βx(�)‖ . (8)

In these formulae, the term− 1
2Λ2 will be referred to as “Keplerian term”, while terms

of the form − 1
‖x′−βx‖ will be called “Newtonian potentials”. Therefore, Uβ will be

called “averaged Newtonian potential”. What we want to underline in that respect
is that the averages (6) are “simple”, i.e., computed with respect to only one mean
anomaly. Most often, in the literature double averages are considered; e.g. [4, 7, 8,
11, 14, 15].

Whether and at which extent theHamiltonians (6) are good approximations of (2),
(4) is a demanding question, as, besides the mass parameters μ, κ, also the region of
phase spacewhich is being considered plays a crucial rôle.We limit ourselves to some
heuristics, focusing, in particular, on the case considered in [5]. Here theHamiltonian
(2) has been investigated, with μ = 1 � κ, or, equivalently, β = β � 1 (see (19) for
the precise values). Physically, this corresponds to a couple of asteroids with equal
mass interacting with a star, with x being the relative distance of the twin asteroids,
and x′ the distance of the star from their center of mass. In that case, the region of
phase space was chosen so that ‖x′‖ > β‖x‖, so that the two denominators of the
Newtonian potentials do not vanish. Expanding such Newtonian potentials in powers
of βa

r , where a = Λ2, r := ‖x′‖, one sees that the lowest order terms depending on

1 Remark that y(�) has vanishing �-average so that the last term in (4) does not survive.
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� have size γβa
r2 ∼ κ3a

r2 (as β ∼ κ, γ ∼ κ2). So, such terms are negligible compared

to the size 1
a of the Keplerian term, provided that κ3/2a

r � 1.
We now turn to describe the main features of the Hamiltonians (6). Neglecting

the Keplerian term, which is an inessential additive constant for Hi and reabsorbing
the constant γ with a time change, we are led to look at the Hamiltonians Ĥi in (7),
which, from now on, will be our object of study. Without loss2 of generality, we fix
the constant action Λ to 1.

For definiteness and simplicity, we describe the setting in the case of the planar
problem, in which case, after reducing the SO(2) symmetry, Ĥi have 2 degrees-of-
freedom; all the generalisations to the spatial problem being described in Sect. 2. To
describe the coordinates we used, we denote as E the Keplerian ellipse generated by
Hamiltonian (5), for negative values of the energy. Assume E is not a circle. Remark
that, as the mean anomaly � is averaged out, we loose any information concerning the
position of x on E, so we shall only need two couples of coordinates for determining
the shape of E and the vectors y′, x′. These are:

• the “Delaunay couple” (G, g), where G is the Euclidean length of x × y and g
detects the perihelion. We remark that g is measured with respect to x′ (instead of
with respect to a fixed direction), as the SO(2) reduction we use fixes a rotating
frame which moves with x′ (compare the formulae in (37));

• the “radial–polar couple”(R, r), where r := ‖x′‖ and R := y′ ·x′
‖x′‖ .

We now describe what we mean by renormalizable integrability [16]. Note first
that, in terms of the coordinates above, the functions Uβ(r,G, g) in (8) depend on
(r,G, g) and remark the homogeneity property

Uβ(r,G, g) = β−1U(β−1r,G, g) where U := U1 . (9)

By renormalizable integrability we mean that there exists a function F of two argu-
ments such that the function U in (9) verifies

U(r,G, g) = F(E0(r,G, g), r) , (10)

where

E0(r,G, g) = G2 + r
√
1 − G2 cos g . (11)

By (10), the level curves of E0 are also level curves of U. On the other hand, the
phase portrait of E0 in the plane (g,G)—i.e., the family of curves

E0(r,G, g) = G2 + r
√
1 − G2 cos g = E, (12)

2 We can do this as the Hamiltonians HJ and H0 rescale by a factor β−2 as (y′, y) → β−1(y′, y)

and (x′, x) → β2(x′, x).
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in theplane (g,G) accordingly to thedifferent values of r—is completely explicit [17].
For 0 < r < 1 or 1 < r < 2 it includes two minima (±π, 0) on the g-axis; two sym-
metric maxima on the G-axis and one saddle point at (0, 0). When r > 2 the saddle
point disappears and (0, 0) turns to be a maximum. The phase portrait includes two
separatrices in the case 0 < r < 2; one separatrix in the case r > 2. These are the level
set S0(r) through the saddle, corresponding to E = r, for 0 < r < 2, and the level
set S1(r) = {E = 1}, for any r. Rotational motions in between S0(r) and S1(r), do
exist only for 0 < r < 1. The minima and the maxima are surrounded by librational
motions and different motions (librations about different equilibria or rotations) are
separated by S0(r) and S1(r). The reader is referred to Fig. 1 for further qualitative
details about the portion of the phase space corresponding to [−π,π] × [−1, 1].

We call perihelion librations the librational motions about (±π, 0) or (0, 0). Their
physical meaning is that the perihelion of E affords oscillations while E, highly
eccentric anytime, periodically flattens to a segment in correspondence of the times
when G vanishes. After the flattening time, the sense of rotation on E is reversed
(as G changes its sign). We remark that (see the next section for a discussion) the
potential U is well defined along the level sets of E, with the exception of S0(r),
where U is singular. In particular, U remains regular for all r > 2.

Let 0 < β∗ ≤ β∗ be defined via

β∗ :=
⎧⎨
⎩

ββ

β + β
for HJ

β for H0

β∗ :=
{
max{β,β} for HJ

β + β for H0 .
(13)

De-homogeneizating via (9), we see that, if r > 2β∗, then we fall in the third panel
in Fig. 1 for any Uβ’s in (7) so that all of such potentials afford perihelion librations
about (0, 0) and (±π, 0). The works [5, 18] deal precisely with this situation.

Before (and in order to) describing the purposes of such works, we informally
discuss the rôle of the total angular momentum’s length C := ‖x × y + x′ × y′‖.
This quantity enters in (7) via kinetic term ‖y′‖2, according to

‖y′‖2 = R2 + (C − G)2

r2
, (14)

(as |C − G| is the Euclidean length of x′ × y′, assuming that x × y and x′ × y′ are
parallel). Combining (14) with an expansion

Uβ(r,G, g) = −1

r
+ 1

r

∑
k≥1

uκ(G, g)

(
β

r

)k

,

of the Uβ’s in (7) in powers of r−1, one can split the Hamiltonians ĤJ and Ĥ0 in (7)
in two parts, which we call, respectively, fast and slow:
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Hfast = R2

2
+ C2

2r2
− 1

r
, Hslow := Ũβ,β(r,G, g) + −2CG + G2

2r2
, (15)

where Ũβ,β collects terms of order β∗
r2 , or higher, hence, retains the symmetries and

the equilibria of the Uβ’s discussed above. We fix, in phase space, a region of initial
data where the terms in (15) verify (see [5] for an informal discussion)

‖Hfast‖ � ‖Ũβ,β‖ � ‖Hslow − Ũβ,β‖ . (16)

Fig. 1 Phase portraits of E0 given by (11) in the plane (g,G) for 0 < r < 1 (top left), 1 < r < 2 (top
right) and r > 2 (bottom). The points corresponding to minima of E0 are labeled in blue, maxima
appear in green and separatrices correspond to red curves
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Then, the motions of R and r, mainly ruled Hfast, are faster than the ones of G and g,
ruled by Hslow. If C = 0, the smallest term Hslow − Ũβ,β = G2

2r2 is even with respect to
G, so Hslow retains the symmetries and equilibria of Ũβ,β in Fig. 1, for the case r > 2.
However, in this case, Hfast is unbounded below, so nothing prevents r to decrease
below 2β∗ and the scenario rapidly changes from (c) to (b) or (a). In this case, one has
then to prove that perihelion librations occur in the full Hamiltonians (7) in such a
short time that it prevents the scenario to change. The following result was obtained:

Theorem 1 ([18]) Take, in (7), C = 0. Fix an arbitrary neighbourhood U0 of (0, 0)
or of (0,π) and an arbitrary neighbourhood V0 of an unperturbed curve γ0(t) =
(G0(t), g0(t)) ∈ U0 in Fig. 1. Then it is possible to find six numbers 0 < c < 1,
0 < β− < β+, 0 < α− < α+, T > 0, such that, for any β− < β∗ ≤ β∗ < β+ the
projections Γ0(t) = (G(t), g(t)) of all the orbits Γ (t) = (R(t),G(t), r(t), g(t)) of
H1,H2 with initial datum (R0, r0,G0, g0) ∈ [ 1√

cα+ , 1√
cα− ] × [cα−,α+] × U0 belong

to V0 for all 0 ≤ t ≤ T . Moreover, the angle γ(t) between the position ray of Γ0(t)
and the g-axis affords a variation larger than 2π during the time T .

The proof of Theorem 1 uses a new normal form theorem, together with the construc-
tion of a system of coordinates well adapted to perihelion librations, as reviewed in
Sect. 3.

If C = 0, Hfast is bounded below, attaining its minimum at

R0 = 0 , r0 = C2 . (17)

It is reasonable to expect that if the initial values of R and r are close to (17), they
will remain there for some time and the motions of G and g will be close to be ruled
by H0

slow := Hslow|r=r0 , which reads, to the lowest orders,

H0
slow(G, g) = −2CG + G2

2r20
−β2 (5 − 3G2)

8r30
−β2 15(1 − G2)

8r30
cos 2g

+O(r−5
0 ) . (18)

On the other hand, the equilibria of Ũ0
β,β

have some chance of surviving in H0
slow

for small values of |C|, but the symmetries of Ũ0
β,β

do not persist. As an example, in

Fig. 2, we report the phase portrait of H0
slow for ĤJ, with

C = 25 , β = β = 80 . (19)

We call unperturbed motions the motions obtained combining (17) with the motions
in Fig. 2. The natural question now is whether and at which extent the motions
of (7) may be regarded as perturbations of such unperturbed ones. The question was
considered in [5], from the numerical point of view. Namely, in [5] the full motions
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Fig. 2 Phase portrait of
H0
slow given in (18) with

C = 25, β = β̄ = 80

of ĤJ were analysed, with C, β and β chosen3 as in (19), and the initial values of R
and r close to (17). Numerical evidence of orbits continuing the unperturbed orbits
above, interposed with zones of chaos, was obtained.

The paper is organised as follows:

1. In Sect. 2, we review recent results on the two-centre problem. We discuss first
the existence of an invariant, referred as Euler integral, whose expression in the
asymmetric setting is also given. Taking advantages of canonical coordinates
lowering the number of degrees-of-freedom, coupled together with the renormal-
izable integrability property, the level sets of the averaged Newtonian potential
are discussed in the planar case.

2. In Sect. 3, we outline the proof of Theorem 1 following [18]. The proof relies
on normal form of Hamiltonians (7) free of small divisors, combined with an
expression of the Euler integral suited for large values of r.

3. In Sect. 4, we further complement the understanding of the dynamics in the regime
of large r: we retrace the steps of [5] in constructing explicitly an horseshoe orbit,
therefore introducing the existence of symbolic dynamics. Themethodology relies
essentially on the construction of “boxes” stretching across one another under the
action of a specific Poincaré mapping, and uses arguments of covering relations
as introduced in [20].

3 The quantities β, β, γ, y′, x′, y, x, R, r, G, g, C of the present paper are related to β, β, σ, y′,
x ′, y, x , R, r, G, g, C in [5] via the relations (with “here” , “there” standing for “in the present
paper” and “in [5]”, respectively)βhere = (1 + μ)βthere,βhere = (1 + μ)βthere,σ(1 + μ)2 = γ,y′ =

Λ
1+μ y

′, x′ = 1+μ
Λ2 x ′, y = Λy, x = x

Λ2 , Rhere = RthereΛ
(1+μ)

, rhere = rthere(1+μ)

Λ2 , Ghere = Gthere
Λ

, ghere =
gthere, Chere = Cthere

Λ
where Λ, μ were chosen, in [5], 3.099 and 1, respectively. Note also the

misprint in the definition of σ in [5, (1.4)], as the power of μ at the denominator should be 3 instead
of 2. This misprint is inessential, as the number σ plays no rôle in [5].
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2 Euler Problem Revisited

In this section we review the classical integration of the two-centre problem and
complement it with considerations that will be useful to us in the next. The 2CP is
the system, inR3 (orR2), of one particle interactingwith two fixedmasses viaNewton
Law. If ±v0 ∈ R3 are the position coordinates of the centers, m± their masses; v,
with v = ±v0, the position coordinate of the moving particle; u = v̇ its velocity, and
1 its mass, the Hamiltonian of the system (Euler Hamiltonian) is

J = ‖u‖2
2

− m+
‖v + v0‖ − m−

‖v − v0‖ . (20)

Euler showed [13] that J exhibits 2 independent first integrals, in involution. One of
these first integrals is the projection

Θ = M · v0
‖v0‖ (21)

of the angular momentum M = v × u of the particle along the direction v0. It is not
specifically due to the Newtonian potential, but, rather, to its invariance by rotations
around the axis v0. For example, it persists if the Newtonian potential is replacedwith
a α-homogeneous one. The existence of the following constant of motion, which we
shall refer to as Euler integral:

E = ‖v × u‖2 + (v0 · u)2 + 2v · v0

(
m+

‖v + v0‖ − m−
‖v − v0‖

)
(22)

is pretty specific of J. As observed in [3], in the limit of merging centers, i.e., v0 = 0,
J reduces to the Kepler Hamiltonian (5), and E to the squared length of the angular
momentum of the moving particle.

The formula in (22) is not easy4 to be found in the literature, so we briefly discuss
it.

After fixing a reference framewith the third axis in the direction of v0 and denoting
as (v1, v2, v3) the coordinates of v with respect to such frame, one introduces the
so-called “elliptic coordinates”

λ = 1

2

(
r+
r0

+ r−
r0

)
, β = 1

2

(
r+
r0

− r−
r0

)
, ω := arg (−v2, v1) , (23)

where we have let, for short,

r0 := ‖v0‖ , r± := ‖v ± v0‖ .

4 See however [6] for a formula related to (22).
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Regarding r0 as a fixed external parameter and calling pλ, pβ , pω the generalized
momenta associated to λ, β and ω, it turns out that the Hamiltonian (20), written in
the coordinates (pλ, pβ,λ,β) is independent of ω and has the expression

J(pλ, pβ, pω,λ,β, r0) = 1

λ2 − β2

[ p2λ(λ2 − 1)

2r20
+ p2β(1 − β2)

2r20
+ p2ω

2r20

(
1

1 − β2

+ 1

λ2 − 1

)
− (m+ + m−)λ

r20
+ (m+ − m−)β

r20

]
. (24)

It follows that the solution W of Hamilton–Jacobi equation

J(Wλ,Wβ, pω,λ,β, r0) = h (25)

can be searched of the form

W (λ,β, pω, r0, h) = W (1)(λ, pω, r0, h) + W (2)(β, pω, r0, h)

and (25) separates completely as

F (1)(W (1)
λ ,λ, pω, r0, h) + F (2)(W (2)

β ,β, pω, r0, h) = 0 (26)

with F (1), F (2) defined via (24)–(25).
The identity (26) implies that there must exist a function E, which we call Euler

integral, depending on (pω, r0, h) only, such that

F (1)(pλ,λ, pω, r0, h) = −F (2)(pβ,β, pω, r0, h) = E(pω, r0, h) ∀ (pλ, pβ,λ,β) .

After elementary computations, one find that, in terms of the initial position–impulse
coordinates, the Euler Integral

E = 1

2

(F (1) − F (2)
)

(27)

has the expression in (22), when written in the original coordinates.

The “asymmetric” case We are interested to find the expression of the Euler inte-
gral (22) when 2CP is written in the form

J = ‖y‖2
2

− 1

‖x‖ − M′

‖x′ − x‖ (28)
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namely, when the two centres are in “asymmetric positions”, 0, x′. As we shall see,
in that case we have

E = ‖M‖2 − x′ · L + M′ (x
′ − x) · x′

‖x′ − x‖ (29)

where

M := x × y , L := y × M − x
‖x‖ = eP (30)

are the angularmomentum and the eccentricity vector associated to theKeplerHamil-
tonian (5) with e and P being the eccentricity and the perihelion direction (‖P‖ = 1).
Notice that J reduces to a Kepler Hamiltonian in two cases: either for x′ = 0, in
which case, as in the symmetric case above, E reduces to ‖M‖2, or forM′ = 0. The
latter case is more interesting to us, as J and E become, respectively, J0 in (5) and

E0 = ‖M‖2 − x′ · L (31)

with E0 being—as well expected—a combination of first integrals of J0.
To prove (29)–(30), we change, canonically,

x′ = 2v0 , x = v0 + v , y′ = 1

2
(u0 − u) , y = u

(where y′, u0 denote the generalized impulses conjugated to x′, v0, respectively) we
reach the Hamiltonian J in (20), with m+ = 1, m− = M′. Turning back with the
transformations, one sees that the function E in (22) takes the expression

E :=
∥∥∥∥
(

x − x′

2

)
× y

∥∥∥∥
2

+ 1

4
(x′ · y)2 + x′ ·

(
x − x′

2

)(
1

‖x‖ − M′

‖x′ − x‖
)

.

and we rewrite it as

E = E0 + E1 + E2

with

E0 := ‖M‖2 − x′ · L , E1 := M′ (x
′ − x) · x′

‖x′ − x‖
E2 := ‖x′‖2

2

(‖y‖2
2

− 1

‖x‖ − M′

‖x′ − x‖
)

where M, L are as in (30). Since E2 is itself an integral for J, we can neglect it and
rename
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E := E0 + E1 (32)

the Euler integral to J. Namely,

{
J,E

}
= 0 . (33)

A set of canonical coordinates which lets J and E in 2 degrees-of-freedom We
describe a set of canonical coordinates, which we denote as K, which we shall use
for our analysis of the Euler Hamiltonian (28) and its integral E (32). This set of
coordinates puts J and E in two degrees-of-freedom (represented by the couples
(Λ, �), (G, g) below), precisely like the classical ellipsoidal coordinates (23) do,
both in the spatial and planar case.

We consider, in the region of (y, x) where J0 in (5) takes negative values and the
ellipse E(y, x) it generates starting from any initial datum (y, x) in this region is not
a circle. Denote as:

• a the semi-major axis;
• P, with ‖P‖ = 1, the direction of perihelion, assuming the ellipse is not a circle;
• �: the mean anomaly, defined, mod 2π, as the area of the elliptic sector spanned
by x from P, normalized to 2π.

Finally,

• given three vectors u, v and w, with u, v ⊥ w, we denote as αw(u, v) the oriented
angle from u to v relatively to the positive orientation established by w.

We fix an arbitrary (“inertial”) frame

F0 : i =
⎛
⎝1
0
0

⎞
⎠ , j =

⎛
⎝ 0
1
0

⎞
⎠ , k =

⎛
⎝0
0
1

⎞
⎠

in R3, and denote as

M = x × y , M′ = x′ × y′ , C = M′ + M ,

where “×” denotes skew-product in R3. Observe the following relations

x′ · C = x′ · (M + M′) = x′ · M , P · M = 0 , ‖P‖ = 1 . (34)

Assume that the “nodes”

n1 := k × C , n2 := C × x′ , n3 := x′ × M (35)

do not vanish. We define the coordinates

K = (Z,C,Θ,G,R,Λ, ζ, g,ϑ, g, r, �)
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via the following formulae.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z := C · k
C := ‖C‖
R := y′ · x′

‖x′‖
Λ = √

a
G := ‖M‖
Θ := M · x′

‖x′‖

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z := αk(i, n1)

g := αC(n1, n2)

r := ‖x′‖
� := meananomalyofx on E
g := αM(n3, M × P)

ϑ := αx′(n2, n3)

(36)

The canonical character of K has been discussed in [17]. In the planar case, the
coordinates (36) reduce to the 8 coordinates

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C = ‖x × y + x′ × y′‖
G = ‖x × y‖
R = y′ · x′

‖x′‖
Λ = √

a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ = αk(i, x′) + π

2
g = αk(x′, P) + π
r = ‖x′‖
� = mean anomaly of x in E

(37)

Using the formulae in the previous section, we provide the expressions of J in (28)
and E in (31) in terms of K:

J(Λ,G,Θ, r, �, g) = − 1

2Λ2
− M′√

r2 + 2ra
√
1 − Θ2

G2 p + a2�2

=: J0 + J1

E(Λ,G,Θ, r, �, g) = G2 + r

√
1 − Θ2

G2

√
1 − G2

Λ2
cos g

+ M′r
r + a

√
1 − Θ2

G2 p√
r2 + 2ra

√
1 − Θ2

G2 p + a2�2

=: E0 + E1 (38)

and, if ξ = ξ(Λ,G, �) is the eccentric anomaly, defined as the solution of Kepler
equation

ξ − e(Λ,G) sin ξ = � (39)

and a = a(Λ) the semi-major axis; e = e(Λ,G), the eccentricity of the ellipse,
� = �(Λ,G, �), p = p(Λ,G, �, g) are defined as
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a(Λ) = Λ2

e(Λ,G) :=
√
1 − G2

Λ2

�(Λ,G, �) := 1 − e(Λ,G) cos ξ(Λ,G, �)

p(Λ,G, �, g) := (cos ξ(Λ,G, �) − e(Λ,G)) cos g − G

Λ
sin ξ(Λ,G, �) sin g . (40)

The angle

ν(Λ,G, �) := arg

(
cos ξ(Λ,G, �) − e(Λ,G),

G

Λ
sin ξ(Λ,G, �)

)
(41)

is usually referred to as true anomaly, so one recognises that p(Λ,G, �, g) =
� cos(ν + g).

Observe that E and J in (38) do not depend on C, Z, ζ, γ, R, ϑ, while the Hamil-
tonians (7), do not depend on Z, ζ, γ, �.

The details on the derivation of the formulae in (38) may be found in [17].

Renormalizable integrability In this sectionwe review the property of renormalizable
integrability pointed out in [16].

We consider the function Uβ in (8) with β = 1, which is given by

U(r,Λ,Θ,G, g) = 1

2π

∫ 2π

0

d�√
r2 + 2ra

√
1 − Θ2

G2 p + a2�2
(42)

and the function

E0 = G2 + r

√
1 − Θ2

G2

√
1 − G2

Λ2
cos g

in (38). These two functions have the following remarkable properties:

(P1) they have one effective degree-of-freedom, as they depend on one conjugated
couple of coordinates: the couple (G, g);

(P2) they Poisson-commute:

{
U, E0

}
= 0 . (43)

Relation (43) can be proved taking the �-average of (33), and exploiting that J0
depends only on Λ; see [16]. The following definition relies precisely with this
situation.

Definition 1 ([16]) Let h, g be two functions of the form

h(p, q, y, x) = ĥ(I(p, q), y, x) , g(p, q, y, x) = ĝ(I(p, q), y, x) (44)
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where

(p, q, y, x) ∈ D := B ×U (45)

with U ⊂ R2, B ⊂ R2n open and connected, (p, q) = (p1, · · · , pn , q1, · · · , qn)
conjugate coordinates with respect to the two-form ω = dy ∧ dx + ∑n

i=1 dpi ∧ dqi
and I(p, q) = (I1(p, q), · · · , In(p, q)), with

Ii : B → R , i = 1, · · · , n

pairwise Poisson commuting:

{
Ii , I j

} = 0 ∀ 1 ≤ i < j ≤ n i = 1, · · · , n . (46)

We say that h is renormalizably integrable via g if there exists a function

h̃ : I(B) × g(U ) → R ,

such that

h(p, q, y, x) = h̃(I(p, q), ĝ(I(p, q), y, x)) (47)

for all (p, q, y, x) ∈ D.

Proposition 1 ([16]) If h is renormalizably integrable via g, then:

(i) I1, · · · , In are first integrals to h and g;
(ii) h and g Poisson commute.

Proposition 2 ([16]) U is renormalizably integrable via E0. Namely, there exists a
function F such that

U(r,Λ,Θ,G, g) = F
(
r,Λ,Θ,E0(r,Λ,Θ,G, g)

)
.

The proof of Proposition 2 is based on P1 ÷ P2 above. Below, we list some
consequences.
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(i) If FE0 = 0, the time laws of (G, g) under U or E0 are basically (i.e., up to a
change of time) the same;

(ii) Motions of E0 corresponding to level sets for which FE0 = 0 are fixed points
curves to U (“frozen orbits”). In [16] we provided an example of frozen orbit
of U in the spatial case, for r � 1;

(iii) U and E0 have the same action–angle coordinates;
(iv) F may have several expressions, as well as U, which is defined via a quadrature.

Two different representation formulae have been proposed in [16, 18].

In the next section, we investigate the dynamical properties of E0 for the planar
case (Θ = 0).

The phase portrait of E0 in the planar caseHerewefixΛ = 1,Θ = 0. For r ∈ (0, 2),
the function E0(g,G) has a minimum, a saddle and a maximum, respectively at

P− = (±π, 0) , P0 = (0, 0) , P+ =
(
0,

√
1 − r2

4

)

where it takes the values, respectively,

E− = −r , E0 = r , E+ = 1 + r2

4
.

Thus, the level sets in (12) are non-empty only for

E ∈
[
−r, 1 + r2

4

]
. (48)

We denote as S0, the level set through the saddle P0. When G = 1, E0 takes the value
1 for all g and we denote as S1 the level curve with E = 1. The equations of S0, S1

are, respectively:

S0(r) =
{
(g,G) : G2 + r

√
1 − G2 cos g = r

}
,

S1(r) =
{
G = ±1

}
∪
{
G = ±√

1 − r2 cos2 g
}
. (49)

S1 is composed of two branches, which will be referred to as “horizontal”, “vertical”,
respectively, transversally intersecting at (±π

2 , 1), with g mod 2π. Note that, when
0 < r < 1, the vertical branch is defined for all g ∈ T; when r > 1, its domain in g
is made of two disjoint neighbourhoods of ±π

2 .
When r > 2, the saddle P0 and its manifold S0 do not exist, P− = (π, 0) is still

a minimum, while the maximum becomes P+ = (0, 0). The manifold S1 still exists,
with the vertical branch closer and closer, as r → +∞, to the portion of straight
g = ±π

2 in the strip −1 ≤ G ≤ 1. In this case the admissible values for E are
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E ∈ [−r, r] .

It is worth mentioning [17] that, when 0 < r < 2, the motions generated by E0 along
S0(r) can be explicitly computed, and are given by

⎧⎪⎪⎨
⎪⎪⎩

G(t) = σΛ
cosh σΛ(t−t0)

,

g(t) = ± cos−1
1 − α2

cosh2 σΛ(t−t0)√
1 − σ2

cosh2 σΛ(t−t0)

,

where
σ2 := r(2 − r) , α2 := 2 − r , r ∈ (0, 2) . (50)

These motions—which have a remarkable similitude with the separatrix motions of
the classical pendulum—are however meaningless for U, which is singular on S0(r).

The scenario is depicted in Fig. 1 to which we refer for further qualitative details.

3 Perihelion Librations in the Three-Body Problem

In this section we review the results of [16–18].
As mentioned in the introduction, the proof of Theorem 1 is based on two ingre-

dients: a normal form theory well designed around the Hamiltonians (7), where no
non-resonance condition is required, and a set of action–angle-like coordinateswhich
approximate well the natural action–angle coordinates of E0 when r is large. In this
section we briefly summarise the procedure. Full details may be found in [18].

A normal form theory without small divisors We describe a procedure for elimi-
nating the angles5 ϕ at high orders, given Hamiltonian of the form

H(I,ϕ, p, q, y, x) = h(I, J(p, q), y) + f (I,ϕ, p, q, y, x) (51)

which we assume to be holomorphic on the neighbourhood

Pρ,s,δ,r,ξ = Iρ × Tn
s × Bδ × Yr × Xξ ⊃ P = I × Tn × B × Y × X ,

for suitable ρ, s, δ, r , ξ > 0 and

J(p, q) = (p1q1, · · · , pmqm) .

5 Note that the procedure described in this section does not seem to be related to [2, Sect. 6.4.4],
for the lack of slow–fast couples.
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Here, I ⊂ Rn , B ⊂ R2m , Y ⊂ R, X ⊂ R are open and connected; T = R/(2πZ) is the
standard torus, and we have used the common notation Ar := ⋃

x∈A Br (x), where
Br (x) is the complex open ball centered in x with radius r .

We denote as Oρ,s,δ,r,ξ the set of complex holomorphic functions

φ : Pρ̂,ŝ,δ̂,r̂ ,ξ̂ → C

for some ρ̂ > ρ, ŝ > s, δ̂ > δ, r̂ > r , ξ̂ > ξ, equipped with the norm

‖φ‖ρ,s,δ,r,ξ :=
∑
k,h, j

‖φkh j‖ρ,r,ξe
s|k|δh+ j

where φkh j (I, y, x) are the coefficients of the Taylor–Fourier expansion6

φ =
∑
k,h, j

φkh j (I, y, x)eiksphq j , ‖φ‖ρ,r,ξ := sup
Iρ×Yr×Xξ

|φ(I, y, x)| .

If φ is independent of x , we simply write ‖φ‖ρ,r for ‖φ‖ρ,r,ξ . If φ ∈ Oρ,s,δ,r,ξ , we
define its “off-average” φ̃ and “average” φ as

φ̃ :=
∑
k,h, j :

(k,h− j)=(0,0)

φkh j (I, y, x)eiksphq j

φ := φ − φ̃ = 1

(2π)n

∫
[0,2π]n

Πpqφ(I,ϕ, J(p, q), y, x)dϕ ,

with

Πpqφ(I,ϕ, J(p, q), y, x) :=
∑
k,h

φkhh(I, y, x)eiksphqh

We decompose

Oρ,s,δ,r,ξ = Zρ,s,δ,r,ξ ⊕ Nρ,s,δ,r,ξ .

where Zρ,s,δ,r,ξ , Nρ,s,δ,r,ξ are the “zero-average” and the “normal” classes

Zρ,s,δ,r,ξ := {φ ∈ Oρ,s,δ,r,ξ : φ = φ̃} = {φ ∈ Oρ,s,δ,r,ξ : φ = 0} (52)

Nρ,s,δ,r,ξ := {φ ∈ Oρ,s,δ,r,ξ : φ = φ} = {φ ∈ Oρ,s,δ,r,ξ : φ̃ = 0} . (53)

respectively. We finally let ωy,I,J := ∂y,I,Jh.

6 We denote as xh := xh11 · · · xhnn , where x = (x1, · · · , xn) ∈ Rn and h = (h1, · · · , hn) ∈ Nn .
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In the following result, no non-resonance condition is required on the frequencies
ωI, which, as a matter of fact, might also be zero.

Theorem 2 ([18]) For any n, m, there exists a number cn,m ≥ 1 such that, for any
N ∈ N such that the following inequalities are satisfied

4NX
∥∥∥∥ Im ωI

ωy

∥∥∥∥
ρ,r

< s , 4NX
∥∥∥∥ωJ

ωy

∥∥∥∥
ρ,r

< 1

c̃n,mN
X
d

‖ f ‖ρ,s,δ,r,ξ

∥∥∥∥ 1

ωy

∥∥∥∥
ρ,s,δ,r,ξ

< 1 (54)

with d := min
{
ρs, rξ, δ2

}
, X := sup

{|x | : x ∈ Xξ

}
, one can find an operator

Ψ∗ : Oρ,s,δ,r,ξ → O1/3(ρ,s,δ,r,ξ) (55)

which carries H to

H∗ = h + g∗ + f∗

where g∗ ∈ N1/3(ρ,s,δ,r,ξ), f∗ ∈ O1/3(ρ,s,δ,r,ξ) and, moreover, the following inequalities
hold

‖g∗ − f ‖1/3(ρ,s,δ,r,ξ) ≤ 162̃cn,m
X
d

∥∥∥∥ f̃

ωy

∥∥∥∥
ρ,s,δ,r,ξ

‖ f ‖ρ,s,δ,r,ξ

‖ f∗‖1/3(ρ,s,δ,r,ξ) ≤ 1

2N+1
‖ f ‖ρ,s,δ,r,ξ . (56)

The transformation Ψ∗ can be obtained as a composition of time-one Hamiltonian
flows, and satisfies the following. If

(I,ϕ, p, q, y, x) := Ψ∗(I∗,ϕ∗, p∗, q∗,R∗, r∗)

the following uniform bounds hold:

dmax
{ |I − I∗|

ρ
,

|ϕ − ϕ∗|
s

,
|p − p∗|

δ
,

|q − q∗|
δ

,
|y − y∗|

r
,
|x − x∗|

ξ

}

≤ max
{
s|I − I∗|, ρ|ϕ − ϕ∗|, δ|p − p∗|, δ|q − q∗|, ξ|y − y∗|, r |x − x∗|

}

≤ 19X
∥∥∥∥ f

ωy

∥∥∥∥
ρ,s,δ,r,ξ

. (57)

Hints on the proof of Theorem 2 may be found in Appendix A.
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Asymptotic action–angle coordinates The explicit construction of the action–angle
coordinates for E0 for any value of r and Θ exhibits elliptic integrals. This is true
even in the case Θ = 0, in which the phase portrait is, as discussed, explicit. As
we are interested to the case that r is large, we adopt the “approximate” solution of
integrating only the leading part of E. Namely, we replace Eq. (12) with

√
1 − G2 cos g = Ẽ . (58)

We show that, for this case, the action–angle coordinates, denoted as (G, γ), are given
by

G = Ẽ , γ = τ (59)

where τ is the time the flows employs to reach the value (G, g) on the level set Ẽ ,
starting from (

√
1 − Ẽ2, 0) ((

√
1 − Ẽ2,π)). Namely, for the Hamiltonian (58), the

action–angle coordinates coincidewith the energy–time coordinates. Indeed, by (58),
the action variable can be taken to be

G(Ẽ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 + 1

π

∫ arccos |Ẽ|

− arccos |Ẽ|

√
1 − Ẽ2

cos2 g
dg − 1 < Ẽ < 0

1 − 1

π

∫ arccos Ẽ

− arccos Ẽ

√
1 − Ẽ2

cos2 g
dg 0 < Ẽ < 1 .

We have defined G(Ẽ) so that G(0) = 0. Then the period of the orbit is given by

T (Ẽ) = 2πGẼ(Ẽ) .

With the change of variable

w = |Ẽ |√
1 − Ẽ2

tan g , (60)

we obtain

T (Ẽ) = 4|Ẽ |
∫ arccos |Ẽ|

0

1

cos2 g

dg√
1 − Ẽ2

cos2 g

= 4
∫ 1

0

dw√
1 − w2

= 2π

which implies (59).
Looking at the (multi-valued) generating function
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S(G, g) =
∫ Pg(G)

P0(G)

√
1 − G2

cos2 g′ dg
′

(where, as it is standard to do [1], the integral is computed along the Gth level set,
from P0(G) := (− arccosG, 0) to a prefixed point Pg(G) = (g, ·) of the level set, so
as to make S(G, ·) continuous) we obtain the transformation of coordinates

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G =
√
1 − G2 cos γ

g = − tan−1

(
1

G
√
1 − G2 sin γ

)
+ kπ

with k =
{
0 if 0 < G < 1
1 if − 1 < G < 0 .

(61)

Then, using the coordinates (G, γ), one obtains the expression

E0 = G r + (1 − G2) cos2 γ

which will be used in the next section.
The proof of Theorem 1 is a direct application of Proposition 2. As such, a careful

evaluation of the involved quantities is needed. Those evaluations are completely
explicit in [18]. For the purpose of this review, we report below the main ideas while
we skip most of computational details. The reader who is interested in them might
consult [18].

Sketch of proof of Theorem 1 For definiteness, we sketch the proof of Theorem 1 for
(0, 0). The proof for (0,π) is similar. For the purposes of this proof, we let Ĥ1 := ĤJ

and Ĥ2 := Ĥ0, where ĤJ and ĤJ are as in (7). It is convenient to rewrite the functions
Ĥi as

Ĥ1(R,G, r, g) =
(
R2

2
− 1

r

)
+ G2

2r2
− β

β + β

1

r

(̂
Fβε(r)

(
Êβε(r)(G, g)

)
− 1

)

− β

β + β

1

r

(̂
F−βε(r)

(
Ê−βε(r)(G, g)

)
− 1

)

Ĥ2(R,G, r, g) =
(
R2

2
− 1

r

)
+ G2

2r2
− β

β + β

1

r

(̂
F(β+β)ε(r)

(
Ê(β+β)ε(r)(G, g)

)
− 1

)

where

ε(r) := 1

r
, Êε(G, g) := εE0(ε

−1,G, g) , F̂ε(t) := ε−1 F(ε−1, ε−1t) .

We next change coordinates via the canonical changes

C1 : (G, γ) → (G, g) , C2 : (y, x) → (R, r)
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where C1 is defined as in (61), with k = 0, while C2 is
⎧⎪⎨
⎪⎩
R(y, x) = 1

y

√
cos ξ′(x) + 1

1 − cos ξ′(x)
r(y, x) = y2(1 − cos ξ′(x))

(62)

where ξ′(x) solves

ξ′ − sin ξ′ = x . (63)

C2 has been chosen so that

(
R2

2
− 1

r

)
◦ C2 = − 1

2y2
.

Using the new coordinates, we have

Ĥ1 = − 1

2y2
+ 1

r(y, x)

(
ε(y, x)

(1 − G2)

2
cos2 γ − β

β + β

(̂
Fβε(y,x)

(
Êβε(y,x)(G, γ)

)
− 1

)

− β

β + β

(̂
F−βε(y,x)

(
Ê−βε(y,x)(G, γ)

)
− 1

))

Ĥ2 = − 1

2y2
+ 1

r(y, x)

(
ε(y, x)

(1 − G2)

2
cos2 γ

− β

β + β

1

r(y, x)

(̂
F(β+β)ε(y,x)

(
Ê(β+β)ε(y,x)(G, γ)

)
− 1

))

having abusively denoted as ε(y, x) := ε
(
r(y, x)

)
and

Êε(G, γ) := G + ε
(
1 − G2) cos2 γ . (64)

A domain where we shall check holomorphy for Ĥi is chosen as

Dδ,s0,
√

α−,
√

ε0 := Y√
α− × X√

ε0 × Gδ × Ts0 (65)

where

Y :=
{
y ∈ R : 2

√
α− < y <

√
α+

}
, X :=

{
x ∈ R : |x − π| ≤ π − 2

√
ε0

}

G :=
{
G ∈ R : 1 − δ < G < 1

}
(66)

where 0 < α− <
α+
4 , 0 < ε0 < π2

4 , 0 < δ < 1. If c0 > 0 is such that for any 0 <

ε0 < 1 and for any x ∈ X√
ε0 , Eq. (63) has a unique solution ξ′(x) which depends
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analytically on x and and verifies

|1 − cos ξ′(x)| ≥ c0ε0 (67)

(the existence of such a number c0 is well known) and if the following inequalities
are satisfied

0 < δ ≤ 1

4
, C∗(s0)δ < 1 C∗(s0) := 16

(
sup
Ts0

| sin γ|
)2

α−ε0 >
4β∗

c0
(68)

with β∗ as in (13), then Ĥi are holomorphic in the domain (65). The proof is based on
the explicit evaluation of the function F̂ε(t) for complex values of its arguments, the
accomplishment of which is obtained using the explicit expression of F̂ε(t): see [18,
Proposition 3.1 and Proposition 3.3].

We aim to apply Theorem 2, with I = G, ϕ = γ, (y, x) as in (62), h(y) = − 1
2y2

and, finally

f (G, γ, y, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r(y,x)

(
ε(y, x) (1−G2)

2 cos2 γ − β

β+β

(̂
Fβε(y,x)

(
Êβε(y,x)(G, γ)

)
− 1

)

− β

β+β

(̂
F−βε(y,x)

(
Ê−βε(y,x)(G, γ)

)
− 1

))
i = 1

1
r(y,x)

(
ε(y, x) (1−G2)

2 cos2 γ

− β

β+β
1

r(y,x)

(̂
F
(β+β)ε(y,x)

(
Ê

(β+β)ε(y,x)(G, γ)
)

− 1
))

i = 2

(69)

As h does not depend on G and the coordinates p, q do not exist, in order to apply
Theorem 2, only the last condition in (54) needs to be verified. Direct computations
show that such condition is verified provided that N = [N0] − 1, where

1

N0
:= C∗ max

⎧⎨
⎩

β∗
c20ε

2
0δs0

√
1

α−
,

β∗

c20ε
5
2
0

1

α−

⎫⎬
⎭

α
3/2
+

α
3/2
−

with β∗ as in (13) and C∗ is independent of s0. Assuming also that

N−1
0 <

c20ε
2
0α

2−
2α2+

(70)
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we have, in particular, N0 > 2. We denote as

Ĥ∗ = h(y∗) + g∗(y∗, x∗,G∗) + f∗(G∗, γ∗, y∗, x∗) (71)

the Hamiltonian obtained after the application of Theorem 2 where, g∗, f∗ satisfy
the following bounds:

‖g∗− f ‖ ≤ 2Δ, ‖g∗‖ ≤ 2−NΔ

with f (y∗, x∗,G∗) the γ∗-average of f (y∗, x∗,G∗, γ∗) and

Δ := C∗
m2

0aβ∗
c20ε

2
0α

2−

is an upper bound to ‖ f ‖ above. Let now Γ∗(t) = (G∗(t), γ∗(t), y∗(t), x∗(t)) be
a solution of Ĥ∗ with initial datum Γ∗(0) = (G∗(0), γ∗(0), y∗(0), x∗(0)) ∈ D and
verifying

|G∗(0) − 1| ≤ δ

2
, 2

√
m3

0α− ≤ |y∗(0)|≤
√
m3

0α− +
√
m3

0α+
2

x∗(0) = π . (72)

We look for a time T > 0 such that Γ∗(t) ∈ D for all 0 ≤ t ≤ T . Then T can be
taken to be

T = min

{√
α3− ,

√
α−ε0

Δ
, 2N0

s0δ

Δ

}
(73)

as this choice easily allows to check

|y∗(t) − y∗(0)| ≤ |y∗(0)| − √
α− , |G∗(t) − G∗(0)| ≤ 2−(N+1)Δt

s0
≤ δ

2
|x∗(t) − x∗(0)| ≤ π − √

ε0

for all |t | ≤ T . In addition, at the time t = T , one has

|γ∗(T ) − γ∗(0)| ≥ c◦ min

{
β∗

√
α3−
α4+

,
c20ε

5/2
0 α2−
α2+

√
α− ,

c20ε
2
0α

2−
α2+

2N0s0δ

}

=: 3π
η
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with c◦ independent of α−, α+, β, β, δ, ε0 and s0. We then see that |γ∗(T ) − γ∗(0)|
is lower bounded by 3π as soon as

η < 1 . (74)

The last step of the proof consists of proving that inequalities (68), (70) and (74)
may be simultaneously satisfied. This is discussed in [18, Remark 5.1]. �

4 Chaos in a Binary Asteroid System

This section describes the main steps of [5] in constructing explicitly a topological
horseshoe; henceforth providing evidences of the existence of symbolic dynamics.
The construction essentially relies on the introduction of a two-dimensional Poincaré
map from which invariants are computed. Following arguments presented in [20],
the introduction of ad hoc sets and the computation of their images provide the
self-covering relationships needed to conclude.

We fix β = β = 80, which corresponds to take μ = 1 and κ ∼ 40; see (3). We
interpret the Hamiltonian ĤJ with this choice of parameters as governing the (aver-
aged out after many periods of the reference asteroid) motions of a binary asteroid
system interacting with a massive body, with the Jacobi reduction referred at one
of the two twin asteroids. The parity triggered by the equality β = β reflects on the
Taylor–Fourier coefficients of the expansion

ĤJ(R,G, r, g) = R2

2
+ (C − G)2

2r2
− 1

r
+ 1

r

∞∑
ν=1

qν(G, g)

(
β

r

)ν

(75)

accordingly to

qν(G, g) =

⎧⎪⎪⎨
⎪⎪⎩

ν/2∑
p=0

q̃p(G) cos 2p g if ν is even

0 otherwise .

(76)

In our numeric implementations, we truncated the infinite sum in (75) up to a certain
order νmax, chosen so that the results did not vary increasing it again. Moreover,
as the coefficients qν(G, ·) in (76) are π-periodic, without loss of generality, we
restricted g ∈ T/2 ∼ [0,π). We describe the steps we followed in our numerical
analysis, recalling the reader to use Footnote 3 to relate the values in (77) and (78)
with the homonymous ones in [5].
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Construction of a 2-dimensional Poincaré map The motions of (75) evolve on 3-
dimensional manifoldsMc labeled by the constant value c of the energy. The struc-
ture of ĤJ allows to reduce the coordinate R after fixing c and hence to identifyMc as
the 3-dimensional space of triples {(r,G, g)}. The dimension can be further reduced
to 2 considering a plane Σ through a given P∗ = (r∗,G∗, g∗) and perpendicular to
the velocity vector V∗ = (v∗

r , v
∗
G, v∗

g) of the the orbit through P∗. This leads us to
construct a Poincaré map, which we define as follows.We start by defining two oper-
ators l and π consisting in “lifting” the initial two-dimensional seed z = (G, g) to the
four-dimensional space (R,G, r, g) and “projecting” it back to plan after the action
of the flow-map Φ t

ĤJ
during the first return time τ . The lift operator reconstructs the

four-dimensional state vector from a seed on D × T/2, where the domain D of the
variable G is a compact subset of the form [−1, 1]. For a suitable (A, A) ⊂ R2 × R2,
its definition reads

l : D × T/2 ⊃ A → D × T/2 × A

z �→ z̃ = l(z),

where z̃ = (G, g,R, r) satisfies the two following conditions:

1. Planarity condition. The triplet (r,G, g) belongs to the plane Σ , i.e. r solves the
algebraic condition v∗

r (r − r∗) + v∗
G(G − G∗) + v∗

g(g − g∗) = 0.
2. Energetic condition. The component R solves the energetic condition

ĤJ(R,G, r, g) = c.

The projector π is the projection onto the first two components of the vector,

π : D × T/2 × A → D × T/2

z̃ = (z1, z2, z3, z4) �→ π(z) = (z1, z2) .

The Poincaré mapping is therefore defined and constructed as

P : D × T/2 → D × T/2

z �→ z′ = P(z) = (
π ◦ Φ

τ (z)
ĤJ

◦ l)(z) .

The mapping is nothing else than a “snapshots” of the whole flow at specific return
time τ . It should be noted that the successive (first) return time is in general function
of the current seed (initial condition or current state), i.e.τ = τ (z̃), formally defined
(if it exists) as

τ (z) = inf
{
t ∈ R+,

(
r(t),G(t), g(t)

) ∈ Σ
}
,

where
(
r(t),G(t), g(t)

)
is obtained through the flow.
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With C = 24.394, we fixed the initial values

R∗ = −0.0060 , G∗ = −0.804 , r∗ = 652.256 , g∗ = 1.4524 rad (77)

and we obtained the results plotted in the first panel of Fig. 3. We invite the reader
to compare this figure with the unperturbed phase portrait of Fig. 2. In particular,
due to the non-integrability of the problem, chaotic zones appear, mostly distributed
for positive values of G. This chaos was the object of our next investigations, as
discussed below.
Hyperbolic fixed points and heteroclinic intersectionsEquilibrium points of themap-
ping P (i.e. periodic orbits of the Hamiltonian system (75)) have been found using
a Newton algorithm with initial guesses distributed on a resolved grid of initial
conditions in D × T/2. We found more than 20 fixed points x∗. The eigensystems
associated to the fixed points have been computed to determine the local stability
properties. The result of the analysis is displayed on Fig. 3 along with the following
convention: hyperbolic fixed points appear as red crosses, elliptical points aremarked
with blue circles.

The local stable manifold associated to an hyperbolic point x�,

Ws
loc.(x�) =

{
x | ‖Pn(x) − x�‖ → 0, n ∈ N+, n → ∞

}
,

can be grown by computing the images of a fundamental domain I ⊂ Es(x�), Es(x�)

being the stable eigenspace associated to the saddle point x�. The local unstable
manifoldsWu

loc.(x�)were similarly computed, but changing the sign of the time inte-
gration. See Fig. 3.

Covering relations Let us introduce some notations. Let N be a compact set con-
tained in R2 and u(N ) = s(N ) = 1 being, respectively, the exit and entry dimension
(two real numbers such that their sum is equal to the dimension of the space con-
taining N ); let cN : R2 → R2 be an homeomorphism such that cN (N ) = [−1, 1]2;
let Nc = [−1, 1]2, N−

c = {−1, 1} × [−1, 1], N+
c = [−1, 1] × {−1, 1}; then, the two

set N− = c−1
N (N−

c ) and N+ = c−1
N (N+

c ) are, respectively, the exit set and the entry
set. In the case of dimension 2, they are topologically a sum of two disjoint inter-
vals. The quadruple (N , u(N ), s(N ), cN ) is called a h-set and N is called sup-
port of the h-set. Finally, let S(N )lc = (−∞,−1) × R, S(N )rc = (1,∞) × R, and
S(N )l = c−1

N (S(N )lc), S(N )r = c−1
N (S(N )rc) be, respectively, the left and the right

side of N . The general definition of covering relation can be found in [9]. Here
we provide a simplified notion, suited to the case that N is two-dimensional, based
on [20, Theorem 16].
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Definition 2 Let f : R2 → R2 be a continuous map and N and M the supports of

two h-sets. We say that M f -covers N and we denote it by M
f=⇒ N if:

(1) ∃ q0 ∈ [−1, 1] such that f (cN ([−1, 1] × {q0})) ⊂ int(S(N )l
⋃

N
⋃

S(N )r ),
(2) f (M−)

⋂
N = ∅,

(3) f (M)
⋂

N+ = ∅.
Conditions (2) and (3) are called, respectively, exit and entry condition.

The notions of covering (including self-covering) relations are useful in defining
topological horseshoe [9, 20].

Definition 3 Let N1 and N2 be the supports of two disjoint h-sets inR2. A continuous
map f : R2 → R2 is said to be a topological horseshoe for N1 and N2 if

N1
f=⇒ N1 , N1

f=⇒ N2 , N2
f=⇒ N1 , N2

f=⇒ N2 .

Topological horseshoes are associated to symbolic dynamics as discussed in
[9, Theorem 2] and in [20, Theorem 18].

The topological horseshoe Based on the couple of hyperbolic fixed points

{
q1 = (g1,G1) = (0.203945459, 0.665706),

q2 = (g2,G2) = (0.278077917, 0.714484),
(78)

we define two sets N1, N2 ⊂ R2 which are supports of two h-sets as follows:

{
N1 = q1 + A1v

s
1 + B1v

u
1 ,

N2 = q2 + A2v
s
2 + B2v

u
2 ,

where vs
1, vu

1 , vs
2, vu

2 are the stable and the unstable eigenvectors related to q1, q2,
respectively, and the A1, A2, B1 and B2 are numbers suitably chosen in a grid of
values. Then the following covering relations are numerically detected

N1
P=⇒ N1 , N1

P=⇒ N2 , N2
P=⇒ N1 , N2

P=⇒ N2 ,

proving the numerical evidence of a topological horseshoe, i.e. , existence of sym-
bolic dynamics for P . The obtained horseshoe associated to q1 and q2 with the
aforementioned parameters is illustrated in Fig. 3.
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Fig. 3 Composite panels illustrating our main steps in constructing the topological horseshoe. (Top
left) The continuous flow is reduced to a 2-dimensional mapping by introducing a suitable Poincaré
map P . The phase space contains both elliptic (blue) and hyperbolic (red) fixed-points. (Top right)
Finite pieces of the stable and unstable manifolds might be constructed from the knowledge of the
eigensystem derived from the linearisation DP . (Bottom) Carefully chosen sets and their images
under P provide the covering relations and imply existence of symbolic dynamics. See text for
details



76 J. Daquin et al.

Acknowledgements The authors acknowledge the European Research Council (Grant 677793
Stable and Chaotic Motions in the Planetary Problem) for supporting them during the completion
of the results described in the paper; warmly thank the organisers of I-CELMECH Training School
that held in Milan in winter 2020 for their interest and especially U. Locatelli for a highlighting
discussion.

Appendix 1: Outline of the Proof of Theorem 2

In this section we provide some technical details of the proof of Theorem 2. For the
full proof we refer to [18].

The proof is by recursion. We assume that, at a certain step, we have a system of
the form

H(I,ϕ, J(p, q), y) = h(I, J(p, q), y) + g(I, J(p, q), y, x) + f (I,ϕ, J(p, q), y, x) (79)

where f ∈ Oρ,s,δ,r,ξ , g ∈ Nρ,s,δ,r,ξ . At the first step, just take g ≡ 0.
After splitting f on its Taylor–Fourier basis

f =
∑
k,h, j

fkh j (I, y, x)eik·ϕphq j .

one looks for a time-1 map

Φ = eLφ =
∞∑
k=0

Lk
φ

k! Lφ( f ) := {
φ, f

}

generated by a small Hamiltonian φ which will be taken in the classZρ,s,δ,r,ξ in (52).
Here,

{
φ, f

} :=
n∑

i=1

(∂Ii φ∂ϕi
f − ∂Ii f ∂ϕi

φ) +
m∑
i=1

(∂pi φ∂qi f − ∂pi f ∂qi φ)

+(∂yφ∂x f − ∂y f ∂xφ)

denotes the Poisson parentheses of φ and f . One lets

φ =
∑
(k,h, j):

(k,h− j)=(0,0)

φkh j (I, y, x)eik·ϕphq j . (80)

The operation

φ → {φ, h}
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acts diagonally on the monomials in the expansion (80), carrying

φkh j → −(
ωy∂xφkh j + λkh jφkh j

)
, with λkh j := (h − j) · ωJ + ik · ωI . (81)

Therefore, one defines

{φ, h} =: −Dωφ .

The formal application of Φ = eLφ yields:

eLφH = eLφ(h + g + f ) = h + g − Dωφ + f + Φ2(h) + Φ1(g) + Φ1( f )(82)

where the Φh := Φh := ∑
j≥h

L j
φ

j ! ’s are the tails of e
Lφ .

Next, one requires that the residual term −Dωφ + f lies in the class Nρ,s,δ,r,ξ

in (53)

(−Dωφ + f ) ∈ Nρ,s,δ,r,ξ (83)

for φ.
Since we have chosen φ ∈ Zρ,s,δ,r,ξ , by (81), we have that also Dωφ ∈ Zρ,s,δ,r,ξ .

So, Eq. (83) becomes

−Dωφ + f̃ = 0 .

In terms of the Taylor–Fourier modes, the equation becomes

ωy∂xφkh j + λkh jφkh j = fkh j ∀ (k, h, j) : (k, h − j) = (0, 0) . (84)

In the standard situation, one typically proceeds to solve such equation via Fourier
series:

fkh j (I, y, x) =
∑

�

fkh j�(I, y)ei�x , φkh j (I, y, x) =
∑

�

φkh j�(I, y)ei�x

so as to find φkh j� = fkh j�
μkh j�

with the usual denominators μkh j� := λkh j + i�ωy which

one requires not to vanish via, e.g., a “diophantine inequality” to be held for all
(k, h, j, �) with (k, h − j) = (0, 0). In this standard case, there is not much free-
dom in the choice of φ. In fact, such solution is determined up to solutions of the
homogenous equation

Dωφ0 = 0 (85)



78 J. Daquin et al.

which, in view of the Diophantine condition, has the only trivial solution φ0 ≡ 0.
The situation is different if f is not periodic in x , or φ is not needed so. In such a
case, it is possible to find a solution of (84), corresponding to a non-trivial solution
of (85), where small divisors do not appear. This is

φkh j (I, y, x) =
⎧⎨
⎩

1

ωy

∫ x

0
fkh j (I, y, τ )e

λkh j
ωy

(τ−x)dτ if (k, h − j) = (0, 0)

0 otherwise.
(86)

Multiplying by eikϕ and summing over k, h and j , we obtain

φ(I,ϕ, p, q, y, x) = 1

ωy

∫ x

0
f̃

(
I, ϕ + ωI

ωy
(τ − x), pe

ωJ
ωy

(τ−x)
, qe

− ωJ
ωy

(τ−x)
, y, τ

)
dτ .

In [18] it is proved that, under the assumptions (54), this function can be used to
obtain a convergent time-one map and that the construction can be iterated so as to
provide the proof of Theorem 2. The construction of the iterations and the proof of
its convergence is obtained adapting the techniques of [19] to the present case.

References

1. Arnold, V.I.:Methods,Mathematical, of ClassicalMechanics. Graduate Texts inMathematics.,
vol. 60, 2nd edn. Springer, New York (1989). Translated from the Russian by K. Vogtmann
and A. Weinstein

2. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial
mechanics. Encyclopaedia of Mathematical Sciences, vol. 3, 3rd edn. Springer, Berlin (2006).
[Dynamical systems. III], Translated from the Russian original by E. Khukhro

3. Bekov, A.A., Omarov, T.B.: Integrable cases of the Hamilton-Jacobi equation and some non-
steady problems of celestial mechanics. Sov. Astron. 22, 366–370 (1978)

4. Chierchia, L., Pinzari, G.: The planetary N -body problem: symplectic foliation, reductions and
invariant tori. Invent. Math. 186(1), 1–77 (2011)

5. Di Ruzza, S., Daquin, J., Pinzari, G.: Symbolic dynamics in a binary asteroid system. Commun.
Nonlinear Sci. Numer. Simul. 91, 105414 (2020)

6. Dullin, H.R., Montgomery, R.: Syzygies in the two center problem. Nonlinearity 29(4), 1212–
1237 (2016)

7. Féjoz, J.: Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après
Herman). Ergod. Theory Dynam. Syst. 24(5), 1521–1582 (2004)

8. Féjoz, J., Guardia,M.: Secular instability in the three-body problem. Arch. Ration.Mech. Anal.
221(1), 335–362 (2016)
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KAM Theory for Some Dissipative
Systems

Renato Calleja, Alessandra Celletti and Rafael de la Llave

Abstract Dissipative systems play a very important role in several physical models,
most notably in Celestial Mechanics, where the dissipation drives the motion of
natural and artificial satellites, leading them tomigration of orbits, resonant states, etc.
Hence, there is the need to develop theories that ensure the existence of structures such
as invariant tori or periodic orbits, and device efficient computational methods. In
this work we study the existence of invariant tori for those dissipative systems known
as conformally symplectic systems, which have the property that they transform the
symplectic form into a multiple of itself. To give explicit examples of conformally
symplectic systems, we will present two different models: a discrete system known
as the standard map and a continuous system known as the spin-orbit problem.
In both cases we will consider the conservative and dissipative versions, that will
help to highlight the differences between the symplectic and conformally symplectic
dynamics. For such dissipative systems we will present a KAM theorem in an a-
posteriori format, originally developed in [44] for the symplectic case: assume we
start with an approximate solution satisfying a suitable non-degeneracy condition,
then we can find a true solution nearby. The theorem does not assume that the system
is close to integrable. This method provides a very efficient algorithmwhich provides
rigorous estimates close to optimal. Indeed, the method gives a criterion (the Sobolev

R. Calleja (B)
Department of Mathematics and Mechanics, IIMAS, National Autonomous University of Mexico
(UNAM), Apdo. Postal 20-126, C.P., 04510 Mexico D.F., Mexico
e-mail: calleja@mym.iimas.unam.mx
URL: https://mym.iimas.unam.mx/renato

A. Celletti
Department of Mathematics, University of Roma Tor Vergata, Via della Ricerca Scientifica 1,
00133 Roma, Italy
e-mail: celletti@mat.uniroma2.it
URL: http://www.mat.uniroma2.it/celletti

R. de la Llave
School of Mathematics, Georgia Institute of Technology, 686 Cherry St.,
Atlanta, GA 30332-1160, USA
e-mail: rafael.delallave@math.gatech.edu
URL: https://people.math.gatech.edurll6

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Baù et al. (eds.), New Frontiers of Celestial Mechanics: Theory and Applications,
Springer Proceedings in Mathematics & Statistics 399,
https://doi.org/10.1007/978-3-031-13115-8_3

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13115-8_3&domain=pdf
mailto:calleja@mym.iimas.unam.mx
https://mym.iimas.unam.mx/renato
mailto:celletti@mat.uniroma2.it
http://www.mat.uniroma2.it/celletti
mailto:rafael.delallave@math.gatech.edu
https://people.math.gatech.edurll6
https://doi.org/10.1007/978-3-031-13115-8_3


82 R. Calleja et al.

blowup criterion) that allows to compute numerically the breakdown of invariant tori.
Wewill review thismethod aswell as an extension of J. Greene’smethod. Computing
close to the breakdown, allows to discover new mathematical phenomena, such as
the bundle collapse mechanism. We will also provide a short survey of the present
state of KAM estimates for the existence of invariant tori in the conservative and
dissipative standard maps and spin-orbit problems.

Keywords KAM theory · Invariant tori · Dissipative systems · Conformally
symplectic systems

1 Introduction

Dissipative dynamical systems play a fundamental role in shaping the motions of
physical problems. The role of dissipative forces in Celestial Mechanics is often of
less importance with respect to the conservative forces, which are mainly given by
the gravitational attraction between celestial bodies. Nevertheless dissipative forces
are present at any size and time scale and their effects accumulate over time, so that
even if some of them are negligible on a scale of centuries, they might be dominant
in a scale of a million of years.

A partial list of dissipative forces includes tidal forces, Stokes drag, Poynting-
Robertson effect, Yarkowski/YORP effects, atmospheric drag. These forces act on
bodies of different dimensions, namely planets, satellites, spacecraft, dust particles,
and in different epochs of the Solar system from the dynamics within the interplan-
etary nebula at the early stage of formation of the Solar system, to present times.
For example, the effect of the Earth’s atmosphere on the orbital lifetime of artifi-
cial satellites, happens in practical scales of time. It becomes therefore important to
understand invariant structures (e.g., periodic orbits and quasi-periodic motions on
invariant tori) in dissipative systems.

The definition of dissipative system is not uniform in the literature. Here we
will adopt that a dissipative system has the property that the phase space volume
contracts during the time evolution of the flow. In this work we will be concerned
with a special class of dissipative systems known as conformally symplectic systems,
see Definitions 1 and 2. These systems enjoy the property that the flow or the map
transform the symplectic form into a multiple of itself.

Conformally symplectic systems have appeared in many applications (see, e.g.,
[6, 18, 19, 28, 51, 115]) or have been studied because they are geometrically natural
objects [1, 5, 109].

For applications to Celestial Mechanics, an important source of conformally sym-
plectic systems is that of a mechanical systemwith friction proportional to the veloc-
ity. This is the case of the so-called spin-orbit problem in Celestial Mechanics [33,
34, 42, 114], which will be presented in Sect. 2.3. It describes the motion of an oblate
satellite around a central planet, under some simplifying assumptions like that the
orbit of the satellite is Keplerian and that the spin-axis is perpendicular to the orbital
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plane. When the satellite is assumed to be rigid, the problem is conservative, while
when the satellite is assumed to be non-rigid, the problem is affected by a tidal torque.
The dissipative part of the spin-orbit problem depends upon two parameters: the dis-
sipative constant, which is a function of the physical properties of the satellite, and
a drift term, which depends on the (Keplerian) eccentricity of the orbit. A discrete
analogue of the spin-orbit problem is the dissipative standard map [35]. In Sect. 2.1
we will review conservative and dissipative versions of the standard map.

Indeed, the presence of a drift term is fundamental in conformally symplectic
systems: while in the conservative case one can find an invariant torus with fixed
frequency by adjusting the initial conditions, in the dissipative case it is not possible to
just tune the initial conditions to obtain a quasi-periodic solution of a fixed frequency.
One needs to adjust a drift parameter to find an invariant torus with preassigned
frequency (for some appropriate choice of initial conditions).

We stress that adding a dissipation to a Hamiltonian system is a very singular per-
turbation: the Hamiltonian admits quasi-periodic solutions with many frequencies,
while a system with positive dissipation leads to attractors with only one quasi-
periodic solution. To obtain attractors with a fixed frequency, one needs to adjust the
drift parameters.

The existence of invariant tori is the subject of the celebrated Kolmogorov–
Arnold–Moser (KAM) theory ([2, 78, 90], see also [3, 43, 53, 65, 91, 96, 112])
which, in its original formulation, proved the persistence of invariant tori in nearly–
integrable Hamiltonian systems. The theory can be developed under two main
assumptions:

– the frequency vector must satisfy a Diophantine condition (to deal with the so-
called small divisors problem),

– a non–degeneracy condition must be satisfied (to ensure the solution of the coho-
mological equations providing the approximate solutions).

Also, geometric properties of the system play an important role. Notably, the
original results were developed for Hamiltonian systems, but this has been greatly
extended.

A KAM theory for non-Hamiltonian systems with adjustment of parameters was
developed in the remarkable and pioneer paper [92], and later in [10, 11, 41, 86, 101].
A KAM theory for conformally symplectic systems with adjustment of parameters
was developed in [21] using the so-called automatic reducibility method introduced
in [44]. The paper [21] produces an a-posteriori result. A-posteriori means that the
existence of an approximate solution, which satisfies an invariance equation up to
a small error, ensures the existence of a true solution of the invariance equation,
provided some non-degeneracy conditions and smallness conditions on parameters
are satisfied.

The automatic reducibility proofs of KAM theorem provide very efficient and
stable algorithms to construct invariant tori in the symplectic [56, 62, 63] and con-
formally symplectic [18, 19, 26, 28, 64] case. The a-posteriori format guarantees
that these solutions are correct. Indeed, it was proved that the algorithm leads to a
continuation method in parameters that, given enough resources, reaches arbitrarily
close the boundary of the set of parameters for which the solution exists. In [20] it



84 R. Calleja et al.

was found numerically that the tori—which are normally hyperbolic– break down
because the stable bundle becomes close to the tangent, even if the stable Lyapunov
exponent (which is given by the conformal symplectic constant) remains away from
zero.

1.1 Consequences of the A-Posteriori Method
for Conformally Symplectic Systems

The results presented in these notes are part of a more systematic program of pro-
viding KAM theorems in an a-posteriori format with many consequences that, for
completeness, we shortly review below.

• Regularity results.
The a-posteriori format, leads automatically to many regularity results: deducing

finitely differentiable results from analytic ones, bootstrap of regularity, Whitney
dependence on the frequency. We will not even mention these regularity results, but
we point that in the conformally symplectic case, we can obtain several rather striking
geometric results. The conformally symplectic systems are very rigid. A classic result
that plays a role is the paring rule of Lyapunov exponents. The conformal geometric
structure restricts severely the Lyapunov exponents that can appear [50, 115].

• Rigidity of neighborhoods of tori.
In [22] it is shown that the dynamics in a neighborbood of a Lagrangian torus is

conjugate to a rotation and a linear contraction. In particular, the only invariant in a
neighborhood is the rotation and all the tori with the same rotation are analytically
conjugate in a neighborbood.

• Greene’s method.
An analogue of Greene’s method ([59]) to compute the analyticity breakdown

is given in [27], which presents a partial justification of the method. It is proved
that when the invariant attractor exists, then one can predict the eigenvalues of the
periodic orbits approximating the torus for parameter values close to those of the
attractor.

• Whiskered tori.
In [24, 25] one can find a theory of whiskered tori in conformally symplectic

systems. This theory involves interactions of dynamics and geometry. The theory
allows—there are examples—that the stable and unstable bundles are trivial, but
somewhat surprisingly, concludes that the center bundles have to be trivial.

• The singular limit of zero dissipation.
We showed in [23] that, if one fixes the frequency ω, one can choose the drift

parameter μ as a function of the perturbation in a smooth way: μ = μ(ω, ε) ≡ με(ω).
Note however that μ0(ω) = 0, but for ε > 0, the function με is invertible so that the
function με(ω) is a smooth function with a limit as ε → 0. Nevertheless, the sets of
ω that appear have a complicated behaviour (devil’s staircase). Hence, the floating
frequency KAM methods, e.g. [2, 39, 95], have difficulty dealing with this limit.
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One of the advantages of the a-posteriori theorems is that they can validate approx-
imate solutions, no matter how they are obtained. We have already mentioned the
validation of numerical computations. It turns out that one can also validate formal
asymptotic expansions and obtain estimates on the domains of existence of the tori in
the singular limit [23]. This limit has also been studied numerically [12, 13], leading
to the conjecture that the Lindstedt series are Gevrey. A proof of the conjecture is
given in [14].

• Breakdown of the rotational tori.
One of the consequences of the conformal symplectic geometry is the “pairing

rule” for exponents [115]. Hence the tori, which have a dynamics which is a rotation,
must have normal exponents coinciding with λ. The tori are normally hyperbolic
attractors. Notice that the loss of hyperbolicity cannot happen because of the expo-
nents break down.This leads to themechanismof bundle collapse thatwas discovered
in [20] and will be discussed in more detail in Sect. 6.

1.2 Organization of the Paper

The work is organized as follows. In Sect. 2 we present the conservative and dis-
sipative standard maps and spin-orbit problems. Conformally symplectic systems
and Diophantine vectors are introduced in Sect. 3. The definition of invariant tori
and the statement of the KAM theorem for conformally symplectic systems is given
in Sect. 4. Two numerical methods for the computation of the breakdown thresh-
old of invariant attractors is presented in Sect. 5. The relation between the collision
of invariant bundles and the breakdown of the tori is described in Sect. 6. Applica-
tions of KAM estimates to the conservative/dissipative standard maps and spin-orbit
problems are briefly recalled in Sect. 7.

2 Conservative/Dissipative Standard Maps and Spin-Orbit
Problems

In this Section we present two models, a discrete and a continuous one, that will
help to have a qualitative understanding of the main features of conservative and
dissipative systems. The first example is a discrete model, known as the standard
map (see Sects. 2.1 and 2.2). The continuous example is a physical model, known as
the spin-orbit problem, which is closely related to the standard map (see Sect. 2.3).
In both cases we present their conservative and dissipative formulations.
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2.1 The Conservative Standard Map

The standard map is a discrete model introduced by Chirikov in [40], which has
been widely studied to understand several features of dynamical systems, such as
regular motions, chaotic dynamics, breakdown of invariant tori, existence of periodic
orbits, etc. The standard map is a 2-dimensional discrete system in the variables
(y, x) ∈ R × T, which is described by the formulas:

y′ = y + ε V (x)

x ′ = x + y′ , (1)

where ε > 0 is called the perturbing parameter and V = V (x) is an analytic function.
A wide number of articles and books in the literature (see, e.g., [60, 83]) deals

with the classical (Chirikov) standard map [40] obtained setting V (x) = sin x in (1).
Instead of (1) we can use an equivalent notation and write the standard map

assigning an integer index to each iterate:

y j+1 = y j + εV (x j )

x j+1 = x j + y j+1 = x j + y j + εV (x j ) for j ≥ 0 . (2)

We can easily verify that the standard map (2) satisfies the following properties,
that will be useful for further discussion.

(A) The standard map is integrable for ε = 0. In fact, for ε = 0 one gets the
formulas:

y j+1 = y j = y0
x j+1 = x j + y j+1 = x j + y j = x0 + j y0 for j ≥ 0 ,

which show that the mapping is integrable, since y j is constant and x j increases by
y0. For ε �= 0 but small, the map is nearly-integrable.

(B) The standard map is conservative, since the determinant of its Jacobian is
equal to one:

det

⎛
⎝

∂y j+1

∂y j

∂y j+1

∂x j

∂x j+1

∂y j

∂x j+1

∂x j

⎞
⎠ = det

(
1 εVx (x j )

1 1 + εVx (x j )

)
= 1 .

(C) The standard map satisfies the so-called twist property, which amounts to
requiring that for a constant c ∈ R, using the formulation (1):

∣∣∣∣
∂x ′

∂y

∣∣∣∣ ≥ c > 0
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for all (y, x) ∈ R × T. From (1) we have that the twist property is trivially satisfied,
since

∂x ′

∂y
= 1 .

The twist property is not satisfied when considering a slight modification of (1),
yielding a discrete system which is known as the non-twist standard map (see, e.g.,
[47, 48]). This mapping is described by the equations:

y′ = y + ε V (x) y ∈ R , x ∈ T

x ′ = x + a(1 − y′2)

with a ∈ R. In this case, the twist condition is violated along a curve in the (y, x)
plane.

Systems violating the twist condition appear in Celestial Mechanics, for example
in the critical inclination for the motion near an oblate planet [79]. One of the advan-
tages of the KAM results we will establish is that we do not need to assume global
non-degeneracy conditions on the map, but rather some properties of the approxi-
mate solution. We just need to assume that a d × d matrix is invertible. The matrix
is an explicit algebraic expression on derivatives of the approximate solution and
averages.

Figure1 shows the graph of the iterates of the standard map for several values of
the perturbing parameter and for several initial conditions in each plot.

From the upper left plot of Fig. 1, we see that for ε = 0 the system is integrable;
the initial conditions has been chosen to give rotational quasi–periodic curves (lying
on straight lines).

When we switch-on the perturbation, even for small values as ε = 0.1, the system
becomes non–integrable. It is easy to check that there exists a stable equilibrium
point at (π, 0) and an unstable one at (0, 0). The quasi–periodic (KAM) curves are
distorted with respect to the integrable case and the stable point (π, 0) is surrounded
by elliptic librational islands. The amplitude of the islands increases as ε gets larger,
as it is shown for ε = 0.4 where we also notice the appearance of minor resonances.
Chaotic dynamics is clearly present for ε = 0.7 around the unstable equilibrium
point, while the number of rotational quasi–periodic curves decreases when increas-
ing the perturbing parameter. In particular, for ε = 0.9we see large chaotic regions, a
few quasi–periodic curves, new islands around higher–order periodic orbits. Finally,
for ε = 1 we have only chaotic and librational motions, while quasi–periodic curves
disappear.

Aswewill mention in Sect. 7, there is awide literature onKAMapplications to the
standard map to prove the existence of invariant rotational tori with fixed frequency,
see [29, 46, 56].

The example we have presented in this Section shows a marked difference with
respect to themodel that will be presented in Sect. 2.2, thus witnessing the divergence
of the dynamical behaviour between conservative and dissipative dynamical systems.
This difference is clearly demonstratedby thedynamics associated to the conservative
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Fig. 1 Graphs of the conservative standard map for different values of the perturbing parameter
and different initial conditions
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and dissipative standard maps, as well as by that of more complex systems, like the
conservative and dissipative spin-orbit problems,whichwill be described in Sect. 2.3.

2.2 The Dissipative Standard Map

The dissipative standard map is obtained from (1) adding two parameters: a dissipa-
tive parameter 0 < λ < 1 and a drift parameter μ. For (y, x) ∈ R × T, the equations
describing the dissipative standard map are the following:

y′ = λy + μ + ε V (x)

x ′ = x + y′ , (3)

where λ, ε ∈ R+, μ ∈ R. We remark that we obtain the conservative standard map
when λ = 1 and μ = 0. We also remark that the Jacobian of the mapping (3) is
equal to λ, which gives a measure of the rate of contraction or expansion of the area
of the phase space. There are several results related to the existence of attractors
in the dissipative standard map; a partial list of papers is the following: [7, 8, 55,
70, 72, 104, 110, 113, 116]. Rigorous mathematical works on strange attractors for
dissipative 2-D maps with twist are [82, 84, 111].

It is also important to stress that for ε = 0 the trajectory {y ≡ μ
1−λ

} × T, or equiv-
alently {ω ≡ μ

1−λ
} × T, is invariant. In fact, for ε = 0we have y′ = λy + μ and since

we are looking for an invariant object, we need to have y′ = y. Hence, we must solve
the equation

y = λy + μ . (4)

On the other hand, the frequency ω associated to the standard map is, by definition,
given by

ω = lim
j→∞

x j

j
,

which yields ω = y. Combining this last result with (4), we obtain

ω = μ

1 − λ
,

showing the strong relation between the frequency and the drift, which cannot be
chosen independently. In particular, if we fix the frequency (as it will be required in
the KAM theorem of Sect. 4.2), then we need to tune properly the drift parameter
μ. This is a substantial difference with respect to the conservative case; dissipative
dynamical systems will require a procedure to prove KAM theory differently than
in the conservative case.
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Fig. 2 Left: Attractors for the dissipative standard map with ε = 0.9, λ = 0.91, μ = 2π(1 −
λ)(

√
5−1
2 ). Right: The corresponding basins of attraction using a color scale providing the fre-

quency

Thedynamics associated to the dissipative standardmap admits (seeFig. 2) attract-
ing periodic orbits and invariant curve attractors; for different parameters and initial
conditions, there appear also strange attractors which have an intricate geometrical
structure [83, 111]: introducing a suitable definition of dimension, the strange attrac-
tors are shown to have, for some parameter values, a non–integer dimension (namely
a fractal dimension). We will not consider these cases and concentrate on those in
which the attractor is a one-dimensional smooth torus and the motion is smoothly
conjugate to a rotation.

We remark that, due to the dissipative character of the map, there might exist at
most one invariant curve attractor, while there might be more coexisting periodic
orbits (see Fig. 2 and [55]) or strange attractors.

The existence and breakdown of smooth invariant tori in the dissipative standard
map have been recently studied in [26] (see also [20]).

Each of the attractors of Fig. 2 is characterized by an associated basin of attraction,
which is composed by the set of initial conditions (x0, y0) whose evolution ends on
the given attractor. Figure2, right, shows the basins of attraction for the case in Fig. 2,
left; they have been obtained taking a grid of 500 × 500 initial conditions and looking
at their evolution after having performed a number of preliminary iterations.

We want to stress that the role of the drift parameter μ is of paramount importance
in dissipative systems, since an inappropriate choice might prevent to find a specific
attractor. An example is given in Fig. 3, where we look for the torus with frequency
equal to the golden ratiomultiplied by the factor 2π, namelyω = 2π

√
5−1
2 
 3.8832,

for the dissipative standard map with ε = 0.1, λ = 0.9. The upper left panel shows
that taking μ = 0, the solution spirals on the point attractor at (π, 0); taking μ = 0.1
(Fig. 3, upper right panel) leads to an attractor which has frequency different than
ω, while the right choice corresponds to μ = 0.0617984 as in the left bottom panel
of Fig. 3. We present in Fig. 3, bottom right panel, the behaviour of the drift as a
function of the dissipative parameter λ, which shows that μ tends to zero in the limit
of the conservative case, as it is expected.
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Fig. 3 The dissipative standard map for different values of the drift: μ = 0 upper left, μ = 0.1
upper right, μ = 0.0617984 bottom left. Graph of μ versus λ, bottom right

The twist condition for the dissipative standard map is a condition that now
involves the parameters. A non-twist version of the dissipative standard map is the
following map,

y′ = λy + ε V (x)

x ′ = x + (y′ − a)2 + μ . (5)

In Fig. 4, we notice that this map has parameter values where the rotation number
does not change in a monotone direction when we change the parameter a. See [17]
for a study of the invariant circles of the map (5).

2.3 The Spin-Orbit Problems

An interesting example of a continuous system which shows the main dynamical
features of regular and chaotic invariant objects is the so-called spin-orbit problem
in Celestial Mechanics. The conservative version of the model is based upon the
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Fig. 4 Rotation number ρ in the map (5) w.r.t. the parameter a. Reproduced from [17]

Fig. 5 The spin-orbit problem

following assumptions.Weconsider a triaxial satellite, sayS, with principalmoments
of inertia I1 < I2 < I3.Weassume that the satellitemoves on aKeplerianorbit around
a central planet, say P , while it rotates around a spin–axis perpendicular to the orbit
plane and coinciding with its shortest physical axis.

We take a reference system centered in the planet and with the horizontal axis
coincidingwith the direction of the semimajor axis.We denote by r the orbital radius,
by f the true anomaly, while we denote by x the angle between the semimajor axis
and the direction of the longest axis of the ellipsoidal satellite (see Fig. 5).
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The equation of motion describing the conservative spin-orbit problem is

ẍ + ε
(a
r

)3
sin(2x − 2 f ) = 0 , (6)

where ε = 3
2
I2−I1
I3

is a parameter whichmeasures the equatorial flattening of the satel-
lite. Equation (6) is associated to the one-dimensional, time-dependent Hamiltonian
function:

H(y, x, t) = y2

2
− ε

2

( a

r(t)

)3
cos(2x − 2 f (t)) , (7)

where y = ẋ . Due to the assumptions of the model, the quantities r and f are known
functions of the time, being the solution of Kepler’s problem which determines the
elliptical orbit of the satellite. They depend on the orbital eccentricity, which plays
the role of an additional parameter.

It is important to observe that:

– the Hamiltonian (7) is integrable whenever ε = 0, namely the satellite has equa-
torial symmetry with I1 = I2;

– the Hamiltonian (7) is integrable when the eccentricity is equal to zero, since the
orbit becomes circular, namely r = a and f coincides with the mean anomaly,
which is proportional to time.

The existence and breakdown of invariant tori in the conservative spin-orbit prob-
lem have been investigated in [33, 34].

We remark that Hamilton’s equations associated to (7) are given by

ẋ = y

ẏ = −ε
( a

r(t)

)3
sin(2x − 2 f (t)) . (8)

Integrating (8) with a modified Euler’s method with time-step h, we obtain a discrete
systemwhich retains themany features of the conservative standardmapwhen taking
the solution on the Poincaré map at time intervals multiple of 2π:

yn+1 = yn − ε
( a

rn

)3
sin(2xn − 2 fn) h

xn+1 = xn + yn+1 h

tn+1 = tn + h ,

where rn = r(tn), fn = f (tn).
The dissipative spin-orbit problem is obtained by taking into account that the

satellite is non rigid and therefore it is subject to a tidal torque. The equation of
motion including a model for the tidal torque can be written as
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ẍ + ε
(a
r

)3
sin(2x − 2 f ) = −Kd [L(e, t)ẋ − N (e, t)] , (9)

where

L(e, t) = a6

r6
, N (e, t) = a6

r6
ḟ

(see, e.g., [35, 93]). The coefficient Kd is called the dissipative constant, and depends
on the physical and orbital features of the body:

Kd = 3n
k2
ξQ

(
Re

a

)3 M

m
,

where n is the mean motion, k2 is the so-called Love number (depending on the
structure of the satellite), Q is called the quality factor (it compares the frequency
of oscillation of the system to the rate of dissipation of the energy), ξ is a structure
constant such that I3 = ξmR2

e with Re the equatorial radius, M is the mass of the
planet, m is the mass of the satellite. For bodies like the Moon or Mercury, realistic
values are ε = 10−4 and Kd = 10−8.

The expression for the tidal torque can be simplified by assuming (as, e.g., in [42])
that the dynamics is ruled by the averages of L(e, t) and N (e, t) over one orbital
period. The averaged quantities are given by

L(e) = 1

(1 − e2)
9
2

(
1 + 3e2 + 3

8
e4

)
,

N (e) = 1

(1 − e2)6

(
1 + 15

2
e2 + 45

8
e4 + 5

16
e6

)
.

Hence, we obtain the following equation of motion in the averaged case:

ẍ + ε
(a
r

)3
sin(2x − 2 f ) = −Kd

(
L(e)ẋ − N (e)

)
. (10)

We can refer to the quantityλ = KdL(e) as the dissipative parameter and toμ = N (e)
L(e)

as the drift parameter.
Let us write (10) in canonical form as

ẋ = y

ẏ = −ε
( a

r(t)

)3
sin(2x − 2 f (t)) − λ(y − μ) . (11)

Similarly to the conservative case, the integration of (11) with a modified Euler’s
method with time-step h, leads to a discrete system similar to the dissipative standard
map with dissipative and drift parameters, when taking the solution on the Poincaré
map at time intervals multiple of 2π:
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yn+1 = (1 − λh)yn + λμ h − ε
( a

rn

)3
sin(2xn − 2 fn) h

xn+1 = xn + yn+1 h

tn+1 = tn + h .

As we will mention in Sect. 7, the existence and breakdown of invariant attractors
in the dissipative spin-orbit problem have been studied in [18, 19, 28] through an
application of KAM theory for conformally symplectic systems and through suitable
numerical methods.

3 Conformally Symplectic Systems and Diophantine
Vectors

In this Section we give the definition of conformally symplectic systems for maps
and flows (see Sect. 3.1) and we introduce the set of Diophantine vectors for discrete
and continuous systems (see Sect. 3.2).

3.1 Discrete and Continuous Conformally Symplectic
Systems

An important class of dissipative dynamical systems is given by the conformally
symplectic systems; the dissipative standard map is an example of a conformally
symplectic discrete system, while the dissipative spin-orbit problem is an example
of a conformally symplectic continuous system.

Before giving the formal definition, let us say that conformally symplectic systems
are characterized by the property that the map or the flow transforms the symplectic
form into a multiple of itself (see Definitions 1 and 2 below). Beside the examples
mentioned before, we stress that conformally symplectic models can be found in dif-
ferent fields, e.g. the Euler-Lagrange equations of exponentially discounted systems
([6], typically found in finance, when inflation is present and one needs to minimize
the cost in present money) or Gaussian thermostats ([51, 115], namely mechanical
systems with forcing and a thermostating term based on the Gauss Least Constraint
Principle for nonholonomic constraints).

Let us start to introduce the notion of 2n-dimensional conformally symplectic
maps. LetM = U × T

n be the phase space withU ⊆ R
n an open, simply connected

domain with smooth boundary; the phase space M is endowed with the standard
scalar product and a symplectic form Ω , represented by a matrix J at the point z
acting on vectors u, v ∈ R

n as Ω(u, v) = (u, J (z)v) with (·, ·) denoting the scalar
product. Note that the matrix J depends not only on the symplectic form but on the
metric considered.
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Definition 1 A diffeomorphism f on M is conformally symplectic, if there exists
a function λ : M → R such that, denoting by f ∗ the pull–back of f , we have:

f ∗Ω = λΩ . (12)

We remark that for n = 1 any diffeomorphism is conformally symplectic with λ
depending on the coordinates, namely one can take λ(x) = det (Df (x)) or λ(x) =
−det (Df (x)). Instead, for n ≥ 2 one obtains that λ is a constant. In fact, taking the
exterior derivative of f ∗Ω = λΩ , one obtains:

d( f ∗Ω) = f ∗ dΩ = 0 = dλ ∧ Ω + λ ∧ dΩ = dλ ∧ Ω ,

that gives dλ = 0; since the manifold is connected, then λ is equal to a constant.
We also remark that for λ = 1 in (12) we recover the symplectic case.
Let us give some explicit examples which might help to clarify the meaning of

Definition 1. First, we notice that we can re-formulate the notion of conformally
symplectic by saying that the diffeomorphism f is conformally symplectic if

Df T J D f = λ J , (13)

where the superscript T denotes transposition. In fact, from (12) we have:

f ∗Ω = λΩ ⇔ Ω(Df u, Df v) = λ Ω(u, v)

⇔ (Df u, J D f v) = λ (u, J v)

⇔ (u, Df T J D f v) = (u,λ J v)

⇔ Df T J D f = λ J .

An example of a conformally symplectic diffeomorphism is given by the dissipa-
tive standard map. Recalling (3), we have that (13) is satisfied, as shown below:

(
λ λ

εVx 1 + εVx

) (
0 1

−1 0

) (
λ εVx

λ 1 + εVx

)
=

(
0 λ

−λ 0

)
= λ J .

An example of amapwhich does not satisfy the conformally symplectic condition
(13) is given by the following 4-dimensional dissipative standardmapwith conformal
factors λ1, λ2 with λ1 �= λ2:

y′
1 = λ1y1 + μ1 + εV1(x1, x2)

y′
2 = λ2y2 + μ2 + εV2(x1, x2)

x ′
1 = x1 + y′

1

x ′
2 = x2 + y′

2 .
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In fact, even for ε = 0, we obtain that (13) is not satisfied:

Df T J D f =

⎛
⎜⎜⎝

0 0 λ1 0
0 0 0 λ2

−λ1 0 0 0
0 −λ2 0 0

⎞
⎟⎟⎠ �= λ

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ = λ J .

To conclude, we give the definition of conformally symplectic systems for con-
tinuous dynamical systems.

Definition 2 We say that a vector field X is a conformally symplectic flow if, denot-
ing by LX the Lie derivative, there exists a function λ : R2n → R such that

LXΩ = λΩ .

In analogy to the definition of conformally symplectic maps, we remark that the
time t-flow Φt satisfies the relation

(Φt )
∗Ω = eλtΩ .

3.2 Diophantine Vectors for Maps and Flows

In this section we give the definition of Diophantine vectors for maps and flows and
we briefly recall the main properties of Diophantine vectors. We start by giving the
definition for maps.

Definition 3 We say that the vector ω ∈ R
n satisfies the Diophantine condition, if

for a constant C > 0 and an exponent τ > 0, one has

∣∣∣∣
ω · q
2π

− p

∣∣∣∣
−1

≤ C |q|τ , p ∈ Z , q ∈ Z
n\{0} .

In the case of flows we have the following definition.

Definition 4 We say that the vector ω ∈ R
n satisfies the Diophantine condition, if

for a Diophantine constant C > 0 and a Diophantine exponent τ > 0, one has:

|ω · k|−1 ≤ C |k|τ , k ∈ Z
n\{0} .

We conclude this section by listing below some important properties of Diophan-
tine vectors.
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(i)Let us denote byD(C, τ ) the set ofDiophantine vectors satisfyingDefinition 4.
Then, the size of the set of Diophantine vectorsD(C, τ ) increases asC or τ increases.
The set of vectors that satisfy this condition for someC, τ is of full Lebesguemeasure
in Rn .

(i i) There are no Diophantine vectors in R
n with τ < n − 1.

(i i i) The set of Diophantine vectors with τ = n − 1 in R
n has zero Lebesgue

measure, but it is everywhere dense.
(iv) For τ > n − 1, almost every vector in R

n is τ -Diophantine, namely the
complement has zero Lebesgue measure, although it is everywhere dense.

4 Invariant Tori and KAM Theory for Conformally
Symplectic Systems

In this Section we provide the definition of KAM (rotational) invariant tori (for
maps and flows) (see Sect. 4.1); the statement of the KAM theorem for conformally
symplectic maps is given in Sect. 4.2, whose proof is briefly recalled in Sect. 4.3.
The proof can be translated into a very efficient KAM algorithm (see [21]), which
is at the basis of different results: the derivation of numerical methods to compute
the breakdown threshold (Sect. 5), the investigation of the breakdown mechanism
(Sect. 6), the implementations to specific models (see Sect. 7).

4.1 Invariant KAM Tori

Westart by giving the definition of conditionally periodic and quasi-periodicmotions.

Definition 5 A conditionally periodic motion is represented by a function t �→
f (ω1t, . . . ,ωnt), where f (x1, . . . , xn) is periodic in all variables; the vector ω =
(ω1, . . . ,ωn) is called frequency.

A quasi-periodicmotion is a conditionally periodicmotionwith incommensurable
frequencies.

Next we give the following definition of invariant torus.

Definition 6 An invariant torus is a manifold diffeomorphic to the standard torus
T
n , that gets mapped into itself by the evolution.

We remark that any trajectory on an invariant torus carrying quasi-periodic
motions is dense on the torus. We conclude by giving the definition of (rotational)
KAM torus for maps and flows. This definition is based on the invariance equation
(14) below, whose solution will be the centerpiece of the KAM theorem presented
in Sect. 4.2.
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Fig. 6 Geometric
interpretation of the
invariance equation
fμ ◦ K (θ) = K (θ + ω) in
the unknowns K , μ

Definition 7 LetM ⊆ R
n × T

n be a symplectic manifold and let f : M → M be
a symplectic map. A KAM torus with frequency ω ∈ D(C, τ ) is an n–dimensional
invariant torus described parametrically by an embedding K : Tn → M, which is
the solutions of the invariance equation:

f ◦ K (θ) = K (θ + ω) . (14)

For a family fμ of conformally symplectic diffeomorphisms depending on a real
parameter vector μ, a KAM attractor with frequency ω ∈ D(C, τ ) is an
n–dimensional invariant torus described parametrically by an embedding K : Tn →
M and a drift μ, which are the solutions of the invariance equation:

fμ ◦ K (θ) = K (θ + ω) . (15)

For conformally symplectic vector fields Xμ, the invariance equation is given by

Xμ ◦ K (θ) = (ω · ∂θ) K (θ) .

We remark that for symplectic systems the invariance equation (14) contains
as only unknown the embedding K , while for conformally symplectic systems the
invariance equation (15) contains as unknowns both the embedding K and the drift
term μ.

A graphical representation of the invariance equation (14) is given in Fig. 6.
Although the theory that will be presented in the next Sections apply both to maps

andflows, for simplicity of expositionwewill limit to the presentation ofKAMtheory
for maps. We refer to [21] for the details concerning continuous systems.

4.2 Conformally Symplectic KAM Theorem

We will try to answer a specific question, which is formulated below, by means
of a suitable statement of the KAM theorem; the question is motivated by many
applications in several models of Celestial Mechanics, which are often described by
nearly-integrable systems. This iswhywe set the following question in the framework
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of nearly-integrable systems, although the formulation of KAM theory does not need
that the system is close to integrable (compare with [44]).

Assume that a given integrable dynamical system admits an invariant torus run by
a quasi-periodic motion with frequency ω (e.g., think at Kepler’s 2-body problem).
Consider a perturbation of the integrable system (e.g., the restricted 3-body problem,
which is described by the 2-body problem with a perturbation proportional to the
primaries’ mass ratio). The main question that we want to raise in the framework
of KAM theory for nearly-integrable systems is the following: does the perturbed
system still admits an invariant torus run by a quasi-periodic motion with the same
frequency as the unperturbed system? The answer is given by the celebrated KAM
theory ([2, 78, 90]), which can be implemented under very general assumptions,
precisely a non-degeneracy condition of the unperturbed system and a Diophantine
condition on the frequency.

We remark that invariant tori are Lagrangian: if f is a symplectic map and K
satisfies the invariance Eq. (14), then

K ∗Ω = 0 .

The same holds for a conformally symplectic map fμ, when |λ| �= 1 and K sat-
isfies the invariance Eq. (15). If f is symplectic and ω is irrational, then the torus
is Lagrangian, i.e. with maximal dimension and isotropic (namely, the symplectic
form restricted on the manifold is zero, which implies that each tangent space is an
isotropic subspace of the ambient manifold’s tangent space).

Next step is to consider a nearly-integrable dynamical system affected by a dis-
sipative force, so that the overall system is conformally symplectic (an example is
given by the spin-orbit problem with tidal torque). We assume that the integrable
symplectic system admits an invariant torus with Diophantine frequency; the ques-
tion becomes whether the non-integrable system with dissipation still admits, for
suitable values of the drift parameter, an invariant attractor run by a quasi-periodic
motion with the same frequency of the unperturbed system. The answer is given by
the KAM theorem for conformally symplectic systems as given by Theorem 1 (see
[21]).

Since we will be interested to give explicit estimates in specific model problems,
we introduce the following norms for analytic and differentiable functions.

Definition 8 Analytic norm. Given ρ > 0, we define the complex extension of the
torus, say Tn

ρ, as the set

T
n
ρ = {θ ∈ C

n/(2πZ)n : Re(θ) ∈ T
n, |Im(θ j )| ≤ ρ , j = 1, ..., n} ;

we denote by Aρ the set of analytic functions in I nt (Tn
ρ) with the norm

‖ f ‖ρ = sup
θ∈Tn

ρ

| f (θ)| .
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Sobolev norm. For a function f = f (z) expanded in Fourier series as f (z) =∑
k∈Zn f̂k e2πik·z for an integer m > 0, we define the space Hm as

Hm =
{
f : Tn → C : ‖ f ‖2m ≡

∑
k∈Zn

| f̂k |2(1 + |k|2)m < ∞
}

.

Borrowing the statement from [21], we give below the formulation of the KAM
theorem for conformally symplectic systems (see [44] for the statement for symplec-
tic systems). We give the statement for maps, although the results can be formulated
also for systems with continuous time (flows). Indeed in [21] one can find a con-
struction that shows that the results for maps imply the results for flows as well as
direct proofs of the results for flows.

Theorem 1 Letω ∈ D(C, τ ), fμ : Rn × T
n → R

n × T
n be a conformally symplec-

tic diffeomorphism, and let (K ,μ) be an approximate solution of the invariance
equation (15) with error term E:

fμ ◦ K (θ) − K (θ + ω) = E(θ) .

Let N be the quantity
N (θ) = (DK (θ)T DK (θ))−1 (16)

and let M(θ) be the 2n × 2n matrix defined by

M(θ) = [DK (θ) | J (K (θ))−1 DK (θ)N (θ)] .

Let P(θ) be defined as
P(θ) ≡ DK (θ)N (θ) ;

let A(θ) ≡ λ Id and let S(θ) be

S(θ) ≡ P(θ + ω)T D fμ ◦ K (θ)J−1 ◦ K (θ)P(θ) − N (θ + ω)T γ(θ + ω)N (θ + ω)A(θ)

(17)
with

γ(θ) ≡ DK (θ)T J−1 ◦ K (θ)DK (θ) .

Assume that the following non–degeneracy condition is satisfied:

det

( 〈S〉 〈SB0〉 + 〈 Ã1〉
(λ − 1)Id 〈 Ã2〉

)
�= 0 (18)

with Ã1, Ã2 the first and second n columns of Ã = M−1(θ + ω)Dμ fμ ◦ K, B0 =
B − 〈B〉 is the solution of λB0(θ) − B0(θ + ω) = −( Ã2)

0(θ).
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For ρ > 0, let 0 < δ <
ρ
2 ; if the solution is sufficiently approximate, namely

‖E‖ρ ≤ C3 C
−4 δ4τ

for a suitable constant C3 > 0, then there exists an exact solution (Ke,μe
), such that

‖Ke − K‖ρ−2δ ≤ C4 C
2 δ−2τ ‖E‖ρ , |μ

e
− μ| ≤ C5 ‖E‖ρ

with suitable constants C4,C5 > 0.

Remark 1 It is useful to make a remark on the non–degeneracy condition (18),
when applied to the conservative and dissipative standard maps ((1) and (3)). For the
conservative standard map, the non–degeneracy condition is typically the so-called
twist condition, which can be written as

∂x ′

∂y
�= 0 , (19)

implying that the lift of the map transforms any vertical line always on the same side.
Instead, for the dissipative standard map, that we modify adding a generic depen-

dence on the drift through a function p = p(μ), μ ∈ R, say

y′ = λy + p(μ) + ε V (x)

x ′ = x + y′ ,

then thenon–degeneracy condition involves the twist condition andanon–degeneracy
condition with respect to to the parameters, namely:

∂x ′

∂y
�= 0 ,

dp(μ)

dμ
�= 0 . (20)

We remark, however, that (19) and (20) involve global properties of the system,
while (18) is a condition involving just the approximate solution, so that (18) may
be applied in situations where (19) and (20) fail.

The proof of Theorem 1 is given in [21] through the a-posteriori approach devel-
oped in [44] and making use of an adjustment of parameters (see [9, 92]): assume we
can find an approximate solution (K ,μ) of the invariance equation, satisfying a non-
degeneracy condition, then we can find a true solution (Ke,μe

) close to (K ,μ), such
that ‖Ke − K‖, |μ

e
− μ| is small. A sketch of the proof of Theorem 1 is presented

in Sect. 4.3.
We conclude this Section by remarking that the a-posteriori approach presents

several advantages, among which:
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• (i) it can be developed in any coordinate frame and not necessarily in action-angle
variables. In many practical problems, the action-angle variables are difficult to
compute and involve complex singularities.
Of course, once we have the existence of the torus, we can construct action angle
variables. Hence, compared to more standard results, the accomplishment of the
method is that the existence of action variables and the quasi-integrability ismoved
from the hypothesis to the conclusions. This is useful in practice since the hypoth-
esis is hard to verify in applications.

• (i i) The system is not assumed to be nearly integrable.
• (i i i) Instead of constructing a sequence of coordinate transformations on shrinking
domains as in the perturbation approach, one computes suitable corrections to the
embedding and the drift.
The computation of the embeddings requires to work only with variables of n
dimensions whereas transformation theory requires to work with variables in 2n
dimensions. The complexity of representing functions grows exponentially – with
a large exponent – with the dimension. The composition of two functions has
rather awkward analytic and numerical properties.

• (iv) The non-degeneracy assumptions are not global properties of the map, but
are rather properties of the considered approximate solution.

• (v) One does not need to justify how the approximate solution was obtained. In
particular, one can take as approximate solution the result of numerical calculations
or a formal expansion.
Verifying the hypothesis in a numerical approximation requires just a finite number
of calculations. Even if this number is too large to do by hand, it could be moderate
to do with a computer (e.g., a few hours on a common laptop). If these can be done
taking care of roundoff and truncation errors, this may lead to a computer assisted
proof.
One can also verify the hypothesis easily in a numerical expansion.

4.3 A Sketch of the Proof of the KAM Theorem

The proof of Theorem 1 can be summarized as composed by five main steps:

• Step 1: starting from an approximate solution, write the linearization of the invari-
ance equation.

• Step 2: by a Newton’s method find a quadratically smaller approximation.
• Step 3: under a non–degeneracy condition, solve the cohomological equation that
allows to find the new approximation.

• Step 4: iterate the procedure and show its convergence.
• Step 5: prove that the solution is locally unique.

We briefly describe such steps as follows.
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4.3.1 Step 1: Approximate Solution and Linearization

Let (K ,μ) be an approximate solution satisfying

fμ ◦ K (θ) − K (θ + ω) = E(θ) . (21)

Using the Lagrangian property K ∗Ω = 0 written in coordinates, namely

DKT (θ) J ◦ K (θ) DK (θ) = 0 ,

we get that the tangent space is given by

Range
(
DK (θ)

)
⊕ Range

(
V (θ)

)
(22)

with N as in (16) and

V (θ) = J−1 ◦ K (θ) DK (θ)N (θ) .

Define the quantity
M(θ) = [DK (θ) | V (θ)] . (23)

Then, we have the following result.

Lemma 1 Up to a remainder R, we have the following relation:

D fμ ◦ K (θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) .

Proof Recalling the definition of M in (23), we have that taking the derivative of

fμ ◦ K (θ) = K (θ + ω) + E(θ) ,

one obtains the relation

Dfμ ◦ K (θ) DK (θ) = DK (θ + ω) + DE(θ) .

Due to (22), one obtains:

Dfμ ◦ K (θ) V (θ) = DK (θ + ω) S(θ) + V (θ + ω) λ Id + h.o.t.

with S as in (17).
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4.3.2 Step 2: Determine a New Approximation.

Let the new approximation (K ′,μ′) be defined as K ′ = K + MW , μ′ = μ + σ. Let
E ′ be the error associated to (K ′,μ′):

fμ′ ◦ K ′(θ) − K ′(θ + ω) = E ′(θ) . (24)

Expanding (24) in Taylor series, we get

fμ ◦ K (θ) + Dfμ ◦ K (θ) M(θ)W (θ) + Dμ fμ ◦ K (θ)σ

−K (θ + ω) − M(θ + ω) W (θ + ω) + h.o.t. = E ′(θ) .

Recalling (21), the new error E ′ is quadratically smaller provided the following
relation holds:

Dfμ ◦ K (θ) M(θ)W (θ) − M(θ + ω) W (θ + ω) + Dμ fμ ◦ K (θ)σ = −E(θ) .

(25)
Combining (25) and Lemma 1, we have:

Dfμ ◦ K (θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) .

This allows to get the following equations for W = (W1,W2) and σ

M(θ + ω)

(
Id S(θ
0 λId

)
W (θ) − M(θ + ω) W (θ + ω) = −E(θ) − Dμ fμ ◦ K (θ)σ

that we are going to make more explicit. Multiplying by M(θ + ω)−1 and writing
W = (W1,W2), one gets that the previous equation is equivalent to:

(
Id S(θ)
0 λId

) (
W1(θ)
W2(θ)

)
−

(
W1(θ + ω)

W2(θ + ω)

)
=

(−Ẽ1(θ) − Ã1(θ)σ

−Ẽ2(θ) − Ã2(θ)σ

)
(26)

with Ẽ j (θ) = −(M(θ + ω)−1E) j , Ã j (θ) = (M(θ + ω)−1Dμ fμ ◦ K ) j . Writing
(26) in components, we obtain:

W1(θ) − W1(θ + ω) = −Ẽ1(θ) − S(θ)W2(θ) − Ã1(θ)σ

λW2(θ) − W2(θ + ω) = −Ẽ2(θ) − Ã2(θ)σ . (27)

The cohomological equations (27) allow to find the corrections W1, W2 and σ, as
sketched in the next step.
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4.3.3 Step 3: Solve the Cohomological Equations

To determine the new approximation, we need to solve equations (27), which are
equations with constant coefficients for W1, W2 and σ for known S, Ẽ ≡ (Ẽ1, Ẽ2),
Ã ≡ [ Ã1| Ã2].

The first equation in (27) is a standard small divisor equation, which can be solved
under the Diophantine condition on the frequency, so to bound the small divisors.

For |λ| �= 1 and for all real vectors ω, it is possible to solve the second equation
in (27) by an elementary contraction mapping argument.

We remark that, using Cauchy estimates for the cohomological equations (27),
we can bound ‖W1‖ρ−δ and ‖W2‖ρ−δ by ‖E‖ρ.

To solve the cohomological equations, we proceed as follows. Take the averages
of each equation in (27) and use the non–degeneracy condition to determine 〈W2〉,
σ by solving the equation

( 〈S〉 〈SB0〉 + 〈 Ã1〉
(λ − 1)Id 〈 Ã2〉

) ( 〈W2〉
σ

)
=

(−〈SB̃0〉 − 〈Ẽ1〉
−〈Ẽ2〉

)
,

where we have split W2 as W2 = 〈W2〉 + B0 + B̃0σ.
Next, we need to solve the second equation in (27) for W2, which is an equation

of the form λW2(θ) − W2(θ + ω) = Q2(θ)with Q2 known. Such equation is always
solvable for any |λ| �= 1 by a contraction mapping argument, using that λW2(θ) −
W2(θ + ω) = ∑

k Ŵ2,k eik·θ(λ − eik·ω).
Finally, we solve the first equation in (27) for W1, which amounts to solving an

equation of the formW1(θ) − W1(θ + ω) = Q1(θ)with Q1 known. It involves small
(zero) divisors, since for k = 0 one has 1 − eik·ω = 0. The left hand side of the first
equation in (27) can be expanded as

W1(θ) − W1(θ + ω) =
∑

k∈Zn\{0}
Ŵ1,k e

ik·θ(1 − eik·ω) .

To get a bound for the solution of (27), we need the following result.

Proposition 1 Let Z = Z(θ) be a function with zero average and such that Z ∈ Aρ

or Z ∈ Hm. Let ω ∈ D(C, τ ). Assume that the function U = U (θ) satisfies

λU (θ) −U (θ + ω) = Z(θ) .

Then, if λ �= 1, |λ| ∈ [A, A−1] for 0 < A < 1, we have that

‖U (θ)‖ρ−δ ≤ Cδ−τ‖Z‖ρ .

We refer to [21, 102] for the proof of Proposition 1.
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4.3.4 Step 4: Convergence of the Iterative Step.

The solution described in Step 3, allows to state that the invariance equation is
satisfied with an error quadratically smaller, i.e.

‖E ′‖ρ−δ ≤ C8δ
−2τ‖E‖2ρ .

The procedure at Step 3 can be iterated to get a sequence of approximate solutions, say
{K j ,μ j

}. Its convergence is obtained through an abstract implicit function theorem,
alternating the iteration with carefully chosen smoothing operators defined in a scale
of Banach spaces (which can be either analytic functions or Sobolev spaces).

4.3.5 Step 5: Local Uniqueness

Under smallness conditions, one can prove that, if there exist two solutions (Ka,μa
),

(Kb,μb
), then there exists ψ ∈ R

n such that

Kb(θ) = Ka(θ + ψ) and μ
a

= μ
b
.

We remark that in the analytic case, the smoothing is obtained by rescaling the size
of the strip on which the analytic functions are defined at each step, given that the
domains where they are defined shrink by a given amount. Then, for the sequence
of solutions {K j ,μ j

}, one can take the analyticity domain parameters ρh and the
shrinking parameters δh as

ρ0 = ρ , δh = ρ0

2h+2
, ρh+1 = ρh − δh , h ≥ 0 .

Given that the error is quadratic, we can write for some a, b > 0 and a constant
CE > 0:

‖E(Kh+1,μh+1
)‖ρh+1 ≤ CE νaδbh ‖E(Kh,μh

)‖2ρh .

If the quantity ε0 ≡ ‖E(K0,μ0
)‖ρ0 is small enough, then one can prove that

‖Kh − K0‖ρh ≤ CK ε0 , |μ
h
− μ

0
| ≤ Cμε0

for some constants CK ,Cμ > 0. A finite number of conditions on parameters and
norms will imply the indefinite iterability of the procedure and its convergence.

The a-posteriori approach for conformally symplectic systems has a number of
consequences and further developments that we briefly summarize below, referring
to the cited literature for full details:

• the method provides an efficient algorithm to determine the breakdown threshold,
very suitable for computer implementations [15];
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• the a-posteriori method allows to find rigorous lower estimates of the breakdown
threshold [56, 97]. The rigorous lower estimates for symplectic maps in [56, 97]
are very close to to the rigorous upper estimates in [67]. In [26] one can find very
detailed estimates (they do not control completely the round off error, but they
control everything else), that are comparable with the best numerical estimates
computed by other methods;

• one gets that the local behavior near quasi–periodic solutions is given by a rotation
in the angles and a shrink in the actions [22];

• the method allows to obtain a partial justification of Greene’s criterion for the
computation of the breakdown threshold of invariant attractors [27];

• one obtains a bootstrap of regularity, which allows to state that all smooth enough
tori are analytic, whenever the map is analytic [21];

• one gets a characterization of the analyticity domains of the quasi–periodic attrac-
tors in the symplectic limit [23];

• one can prove the existence of whiskered tori for conformally symplectic systems
[24].

Concerning the first item above, we stress that the proof given in [21] leads to a
very efficientKAMalgorithm,which can be implemented numerically and it is shown
to work very close to the boundary of validity [26]. Indeed, all steps of the algorithm
involve diagonal operations in the Fourier space and/or diagonal operations in the real
space.Moreover, if we represent a function in discrete points or in Fourier space, then
we can compute the other functions by applying the Fast Fourier Transform (FFT).
Using N Fourier modes to discretize the function, then we need O(N ) storage and
O(N log N ) arithmetic operations. Note that all the steps in the algorithm can be
implemented in a few lines in a high level language so that the resulting algorithm is
not very hard to implement (about 200 lines in Octave, see [52], and about 2000
lines in C). Even if the above transcription of the algorithm works extremely well in
near integrable systems, when approaching the breakdown, one needs to take some
standard precautions (e.g. monitoring the size of the tails of Fourier series).

We also remark that theKAMproof requires a computer tomake very long compu-
tations, which are needed to determine, for example, the initial approximate solution
or to check the KAM algorithm. However, the computer introduces rounding-off and
propagation errors, which can be controlled through interval arithmetic for which
we refer to the specialized literature (see, e.g., [61, 74, 80, 89]).

5 Breakdown of Quasi–periodic Tori and Quasi–periodic
Attractors

The analytical estimates which can be obtained through the implementation of the
KAM theorem represent a rigorous lower bound of the breakdown threshold of
invariant tori. In problems with a well-defined physical meaning, one can compare
the KAM results with a measure of the parameter(s). For example in the restricted
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3-body problem, one aims to prove the theorem for the true value of the mass ratio
of the primaries. If we consider an asteroid under the gravitational attraction of
Jupiter and the Sun, then the mass ratio amounts to ε 
 10−3, which represents the
benchmark that one wants to reach through rigorous KAM estimates.

Model problems like the standard maps do not have a physical reference value;
therefore, one needs to apply numerical techniques that allow to determine the KAM
breakdown threshold. Among the others, we mention Greene’s technique [59], fre-
quency analysis [81], Sobolev’s method [15].

In the next Sections we review two methods for the numerical computation of
the breakdown threshold that have been successfully applied to the standard map
[15, 16, 59]: one is based on Sobolev’s method (Sect. 5.1) and the other is based
on Greene’s method (Sect. 5.2). The problem of breakdown of KAM tori has been
studied by many methods. The paper [16] contains a small survery and comparison
of several different methods, some of which we will not mention here.

5.1 Sobolev Breakdown Criterion

To illustrate the method, we focus on the specific examples of the conservative
and dissipative standard maps; hence we have a two-dimensional discrete system,
which can be parametrized by a one-dimensional variable θ ∈ T. In particular, in the
conservative case we write the invariance equation for K as

f ◦ K (θ) = K (θ + ω) ,

while in the dissipative case we write the invariance equation for (K ,μ) as

fμ ◦ K (θ) = K (θ + ω) . (28)

As shown rigorously in [16] for the conservative case and in [15] for the dissipa-
tive case, the continuation method based in the constructive Newton method can (if
given enough computer resources) reach arbitrarily close to the breakdown. Further-
more, the breakdown of analytic tori happens if and only if some Sobolev norm of
sufficiently high order blows up.

This rigorous result can, of course, be readily implemented. Today’s computers,
of course, do not have infinite resources, but they are fairly impressive for people who
started to work with a PDP-11 with 16K of RAM. Since the algorithms we describe
are based on computing Fourier series, one can get readily the Sobolev norms of the
embedding K and monitor their blow up.

The blow up of the Sobolev norm gives a clear indication that the torus is breaking
down. Note that, given the a-posteriori theorem, and the bootstrap of regularity
results, if the norm of the computed solution is not blowing up, it is a very clear
indication that the torus is there.
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Table 1 Breakdown values εcri t of the golden mean curve obtained implementing Sobolev’s
method for the conservative case (left column) and for the dissipative case (right column), the
latter one for two different values of the dissipative parameter

Conservative case Dissipative case

εcri t λ εcri t

0.9716 0.9 0.9721

0.5 0.9792
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Fig. 7 Existence domain for invariant circles of the dissipative standard map with potential (29).
Left: λ = 0.9. Right: λ = 0.1

Remark 2 Something that increases the possible effectiveness of this method is that
it has been found empirically that the blow up of Sobolev norms is given by power
laws whose exponents are universal. Even if this is mainly an empirical observation
(that needs to be somehow tone down since [16] contains several warnings for some
maps), it can improve dramatically the computation of breakdowns. Many of these
empirical results are organized using Renormalization Group methods [88, 98–100].
Even if some aspects of renormalization group have been made rigorous [73, 75–77,
107, 108], much more mathematical work seems to remain.

We implement the method for the conservative and dissipative standard maps (1)
and (3), computing in Table1 the value of εcri t for the frequency equal to the golden
ratio: ω = 2π

√
5−1
2 . The result in the conservative case is in full agreement with

the value which can be obtained by implementing Greene’s method (see [59]). The
values for the dissipative case given in Table1 will be compared in Sect. 5.2 to those
obtained implementing a version of Greene’s method for the dissipative standard
map.

In Fig. 7, we present the existence domain of the dissipative standard map (3) with
a two harmonic potential given by

V (x) = ε1 sin(x) + ε2 sin(2x) . (29)

We call attention to the fact that this region contains parts with smooth boundaries,
but–specially in the conservative case–it contains some parts of the boundary that
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are rather ragged. A tentative explanation ([85]) is that the smooth parts of the the
boundary of the region of existence are the intersection of the family considered with
the stable manifold of fixed point of renormalization. Even if this is not a completely
rigorous picture, there has been significant mathematical progress in verifying it in
an open set of families. We hope that, in the future, there could be more progress in
this area.

One important advantage of the Sobolev method is that it can be programmed
systematically and run unattended. The Greene’s method relies on periodic orbits
and one has to pay attention to making sure that the periodic orbits are continued
correctly. We also note that the Sobolev method works for models of long range
interaction in Statistical Mechanics without a dynamical interpretation.

5.2 Greene’s Method, Periodic Orbits and Arnold’s Tongues

The method by J. Greene, developed for the standard map in [59], is based on the
conjecture that the breakdown of an invariant curve with frequency ω, say C(ω),
is related to a change from stability to instability of the periodic orbits P(

p j

q j
) with

frequencies p j

q j
, j = 1, 2, ..., tending to ω. We observe that a standard procedure to

obtain the rational approximants of ω is to compute the successive truncations of the
continued fraction representation of ω.

Greene’s method has been successfully developed for the conservative standard
map for which a partial justification is given in [54, 85]. In the dissipative case, there
appears an extra difficulty due to the fact that the periodic orbits with frequency p j

q j

occur in a whole interval of the drift parameter. This phenomenon gives rise to the
appearance of the so-called Arnold tongues. Figure8, left panel, gives a graphical
representation of theArnold tongues; havingfixed a value of the dissipative parameter

Fig. 8 Left: Arnold’s tongues providing μ versus ε for three periodic orbits of the dissipative
standard map with periods 1/3, 1/2, 2/3. Right: periodic orbits of the dissipative standard map
approximating the golden mean curve
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Fig. 9 Left: periodic orbits with increasing periods, approximating the golden mean curve. Right:
the corresponding drift parameters with the successive periodic orbits labeled by integer numbers
on the x-axis
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ε, there is awhole interval of the drift parameterμwhich admits a periodic orbit of the
same period. The right panel of Fig. 8 shows several periodic orbits approaching the
torus with frequency equal to the golden mean; such periodic orbits have frequency
equal to the rational approximants which are given by the ratio of the Fibonacci
numbers.

A partial justification of an extension of Greene’s criterion in the conformally
symplectic case is presented in [27], where it is proved that if there exists a smooth
invariant attractor, one can predict the eigenvalues of the periodic orbits approximat-
ing the torus for parameters close to those of the attractor.

Figure9 shows some approximating periodic orbits (left panels) and the corre-
sponding behaviour of the drift parameter (right panels) that, in the limit, tends to
the value of the drift that corresponds to the golden mean torus.

We also call attention to [37] which contains tentative results on the non-existence
of invariant tori for the spin-orbit models. Even if the methods developed there are
not rigorous, they may present a counterpoint to the methods to study the existence.

6 Collision of Invariant Bundles of Quasi-periodic
Attractors

Quasi-periodic attractors of conformally symplectic maps are normally hyperbolic
invariant manifolds (NHIM). As developed in [20] for the dissipative standard map,
one can obtain the Lyapunov multipliers of the attractor from a simple computation.
We start from the invariance Eq. (28) for a pair (K ,μ). We then introduce a change of
variables to reduce the cocycle. Let M̃(θ) = [DK (θ) | Es(θ)], θ ∈ T, be the matrix
whose columns are the tangent and stable bundles of K = K (Tn):

Dfμ ◦ K (θ)M̃(θ) = M̃(θ + ω)

(
1 0
0 λ

)
. (30)

From Eq. (30) we can write the stable bundle as follows

Es(θ) = DK (θ)B(θ) + J−1DK (θ)N (θ) ,

where B(θ) is the function that satisfies

B(θ) − λB(θ + ω) = −S(θ) .

Indeed, after j iterates of the map we have that,

Df j
μ ◦ K (θ) = M̃(θ + ω)

(
1 0
0 λ j

)
M̃−1(θ) ,
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which shows that the tangent space of M at K (θ) is

TK (θ)M = Range(DK (θ)) ⊕ Es
K (θ) .

We can conclude that there exists a constant C such that

C−1λ j |v| ≤ |Df j
μ ◦ K (θ) v| ≤ Cλ j |v| , v ∈ Es

K (θ) ,

C−1 |v| ≤ |Df j
μ ◦ K (θ) v| ≤ C |v| , v ∈ Ec

K (θ) ,

showing that K = K (Tn) is a NHIM. Equation (30) also tells us that the Lyapunov
multipliers are constant along the family of quasi-periodic attractors for fixed Dio-
phantine vectors.

In the case of maps of the cylinder M = R × T, we know that the curve K is
Cr , one dimensional, and since ω satisfies the Diophantine condition, we know by
the results of [66, 68, 69, 71] that the map conjugating the dynamics in K to a rigid
rotation is in Cr−τ−δ for a small δ > 0. Therefore, by the bootstrap of regularity
results1, the conjugacy is analytic for analytic maps. Since the bundles depend on
the conjugacy, then the regularity of the manifold implies the analyticity of K and
the bundles up to the breakdown.

To investigate the breakdown of normal hyperbolicity, we note that, because of
the pairing rule of Lyapunov exponents [51, 115], since one Lyapunov multiplier
is 1—the one along the tangent directional (remember that the map on the torus is
smoothly conjugate to the torus)—the other one is precisely λ.

We recall that hyperbolicity is equivalent to the existence of transversal invariant
bundles with different rates. In our case, if the tori have to cease to be normally
hyperbolic, because the exponents remain constant, the only thing that can happen
is that the transversality of the bundles deteriorates.

What is found empirically is that the breakdown happens because at the same
time the regularity of the conjugacy deteriorates quantitatively (even if the conjugacy
remains analytic, some Sobolev norm blows up). See [20] for full details.

At the same parameter values, the breakdown of hyperbolicity happens via the
stable and tangent bundle collision. Even if the Lyapunov exponents remain safely
away, the transversality deteriorates and the tangent and stable bundles become close
to tangent.

In the case at hand, we can make a very detailed study: the bundles are one
dimensional and we compute a formula for the angle between the bundles for every
θ. In fact, let α(θ) be the angle between the stable and tangent bundles for every
θ ∈ T, then we have

α(θ) = arctan

(
1

B(θ)(DK (θ)T DK (θ))

)
.

1 i.e., all tori which are smooth enough are analytic if the map is analytic ([21]).
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Fig. 10 Invariant bundles close to their collision. Left: dissipative standard map. Right: dissipative
standard non-twist map. Reproduced from [17]

This formula says that the angle α(θ) goes to zero at points where the functions in
the denominator go to infinity.

We present figures (see Fig. 10) of the angle between the bundles close to the
breakdown.

Rather remarkably these two phenomena (the blow up of Sobolev norms and the
stable bundles and the tangent becoming parallel) happen at the same time and present
very unexpected regularities. There are scaling relations that seem to be independent
of the family considered and they happen in codimension 1 smooth submanifolds in
the space of maps. We think that this is a very interesting mathematical phenomenon
that deserves rigorous study. It seems quite unlikely that it would have been discov-
ered except for the very careful numerics that can explore with confidence close to
the breakdown. Such delicate numerics are only possible because of the rigorous
mathematical development.

7 Applications

In this Section we want to briefly review some constructive applications of KAM
theory for conservative and dissipative models. We will consider applications to the
standard map and to the spin-orbit problem, both in the conservative and dissipative
settings. Although we will not present other applications of KAM theory, it is worth
mentioning also the constructive KAM results to the N-body and planetary problems
in Celestial Mechanics ([94]); in this context, for results obtained in the conserva-
tive framework we refer the reader to [30–32, 58, 103] and to [38] for numerical
investigations including dissipative effects.
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7.1 Applications to the Standard Maps

The first applications of computer-assisted KAM proofs have been given for the
conservative standard map; these results show that the golden mean torus persists for
values of the perturbing parameter equal to 93% of the numerical breakdown value
(see [45, 46]); we also mention [29] which, at the same epoch but using a different
approach than [45, 46], reached 86% of the numerical breakdown value.

Rigorous estimates for the conservative standard map using the a-posteriori
method have been proved in the remarkable paper [56], where for the twist and
non-twist conservative standard maps the golden mean torus is proved to persist for
values of the perturbing parameter as high as 99.9% of the numerical breakdown
value.

For the dissipative standard map, the paper [26] analyzes the persistence of the
invariant attractorwith frequency equal to the goldenmean and for a fixed value of the
dissipative parameter (precisely λ = 0.9); such persistence is shown for values of the
perturbing parameter equal to 99.9% of the breakdown value, where the numerical
value has been obtained through the techniques presented in Sects. 5.1 and 5.2.

7.2 Applications to the Spin–Orbit Problems

The first application of KAM theory to the conservative spin-orbit problem is found
in [33, 34]. In those articles some satellites in synchronous spin-orbit resonance have
been considered; the synchronous or 1:1 spin-orbit resonance implies that the satellite
always points the same face to the host planet. In particular, the following satellites
have been considered: the Moon, and three satellites of Saturn, Rhea, Enceladus,
Dione. Being the normalized frequency (namely, the ratio between the rotational
and orbital frequency) equal to one, two Diophantine numbers bounding unity from
above and below have been considered. Through a computer-assisted KAM theorem,
the existence of invariant tori with frequency equal to the bounding numbers have
been established for the true values of the parameters of the satellites, namely the
eccentricity and the equatorial oblateness.

Such result guarantees the stability for infinite times in the sense of confinement
in the phase space. In fact, the phase space associated to the Hamiltonian describing
the conservative spin-orbit problem is 3-dimensional; since the KAM tori are 2-
dimensional, one gets a confinement of the motion between the bounding invariant
tori.

We remark that the confinement is no more valid for n > 2 degrees of freedom,
since the motion can diffuse through invariant tori, reaching arbitrarily far regions;
this phenomenon is known as Arnold’s diffusion [4] for which we refer to the exten-
sive literature on this topic (see, e.g., [49, 57] and references therein).

For the dissipative spin-orbit problem, we refer to [19, 36, 87, 105] for the devel-
opment of KAM theory for a model of spin-orbit interaction with tidal torque as
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in (11). Precisely, for λ0 ∈ R+ and ω Diophantine, it is proven that there exists
0 < ε0 < 1, such that for any ε ∈ [0, ε0] and any λ ∈ [−λ0,λ0] there exists a unique
function K = K (θ, t) and a drift term μ which is the solution of the invariance
equation for the dissipative spin-orbit model.

Explicit estimates for the dissipative spin-orbit problem, even in the more general
case with a time-dependent tidal torque as in (9), are given in [19] (see also [105]).
Here, the a-posteriori method is implemented to construct invariant attractors with
Diophantine frequency; the results are valid for values of the perturbing parameter
consistentwith the astronomical quantities andvery close to the numerical breakdown
threshold, which has been computed in [28] through Sobolev and Greene’s method
(see also [106]).
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Tidal Effects and Rotation of Extended
Bodies

Gwenaël Boué

Abstract These lecture notes provide basic tools to study the rotation of extended
bodies which are either rigid or deformable by tides. The problem is written in a
Lagrangian formalism using the “forme nouvelle des équations de la mécanique”
developed by H. Poincaré in 1901. In the rigid body case, the corresponding Hamil-
tonian formalism is also presented. When the deformation of the extended body is
taken into account, the mathematical description of the problem closely follows the
approach presented by C. Ragazzo and L. Ruiz in their first two papers (2015, 2017).
This choice ismotivated by the compactness and the clarity of the equations stemmed
from this formalism. These notes are illustrated with selected applications related to
the rotation and libration of celestial bodies.

Keywords Extended body · Tide · Rotation

1 Introduction

The aim of these lecture notes is to provide basic tools to study the rotation of
extended bodies which are either rigid or deformable by tides. The problem is written
in a Lagrangian formalism using the “forme nouvelle des équations de la mécanique”
developed by H. Poincaré in 1901 [30]. For the rigid body case, I also present the
corresponding Hamiltonian formalism. When the deformation of the extended body
is taken into account, I closely follow the approach presented by C. Ragazzo and L.
Ruiz in their first two papers [32, 33]. This choice is motivated by the compactness
and the clarity of the equations stemmed from this formalism.

These notes are illustrated with examples. Because it is not possible to be exhaus-
tive on this subject, I selected a few problems for which the formalism is well suited
and others presenting important dynamical features.
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The manuscript is organised as follows: the next three sections deal with the
rigid motion in a broad sense. I present a few coordinate systems, their respective
kinematic equations, and the derivation of the dynamical equations. The rotation of
a rigid celestial body on a Keplerian orbit is studied in Sects. 5 and 6. In the last two
sections, I describe tidal deformation and its consequence on the rotational motion
of a deformable celestial body.

2 Coordinate System

The physical space is represented by an Euclidean affine space E of dimension 3

whose associated vector space is denoted by
−→E . We attach to this space an inertial

Cartesian reference frameR0 = (O,
−→e1 ,

−→e2 ,
−→e3 ) in which Newton’s laws hold.

Let B be an extended rigid body. For instance, this can be a planet or a satellite
whose spatial extension is taken into account but not its ability of being deformed.
We assign to this body B, a so-called body-fixed frame in which the coordinates of
all points of B remain constant. We denote by R1 = (O′,

−→
f1 ,

−→
f2 ,

−→
f3 ) such a frame.

Usually O′ is the barycentre of B and (
−→
f1 ,

−→
f2 ,

−→
f3 ) its principal axes of inertia.

Obtaining the motion of B amounts to get the motion of the frame R1 with
respect to the frame R0. Therefore a rigid motion is, by definition, an Euclidean
transformation of E that preserves both the Euclidean distance between every pair
of points and the handedness. It consists of the identity, a translation, a rotation, or
a combination of them.

The set of rigid motions forms the so-called special Euclidean group denoted
by SE(3). This is a Lie group of dimension 6 which can be identified to the set
R

3 × SO(3). The element of R3 is either r0 or r1, namely the coordinates of the

radius vector
−−→
OO′ ∈ −→E in the frameR0 andR1, respectively; and R ∈ SO(3) is the

rotationmatrixwhose entries are the coordinates of (
−→
f1 ,

−→
f2 ,

−→
f3 ) in (

−→e1 ,
−→e2 ,

−→e3 ). The

coordinates of
−−→
OO′ are associated with the three degrees of freedom of translation

of B and R with its three degrees of freedom of rotation.
Let P ∈ E be a point belonging to B with coordinates x0 in R0 and x1 in R1. By

construction x1 remains constant for any time, whereas x0 varies as B moves inR0.
Hereafter, we highlight the dependency on time t of the coordinates of P in R0 by
writing x0(t). The mapping between these two sets of coordinates is given by

x0(t) = r0(t) + R(t)x1 , (1)

or equivalently, by
x0(t) = R(t)

(
r1(t) + x1

)
. (2)

The variables (r0, R) and (r1, R) are natural sets of coordinates to describe the
motion of a rigid body. In the following, we will use them as generalised coordinates
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in the Lagrangian formalism. However, although the set SO(3) is of dimension 3,
rotation matrices have 9 entries. To avoid such a redundancy, we briefly present a
few alternative parametrisations of SO(3).

2.1 The 3-1-3 Euler Angles

The 3-1-3 Euler angles (φ, θ,ψ), called precession angle, nutation angle and proper
rotation, are such that the basis (

−→
f1 ,

−→
f2 ,

−→
f3 ) is deduced from (

−→e1 ,
−→e2 ,

−→e3 ) by a
rotation of angle φ around the third axis followed by a rotation of angle θ around
the new first axis itself followed by a rotation of angle ψ around the final third
axis. Mathematically, this reads R = R3(φ)R1(θ)R3(ψ) where Rk(α), k = 1, 2, 3,
are elemental rotation matrices of angle α defined as

R1(α) =
⎡

⎣
1 0 0
0 cosα − sinα
0 sinα cosα

⎤

⎦ , R2(α) =
⎡

⎣
cosα 0 sinα
0 1 0

− sinα 0 cosα

⎤

⎦ ,

R3(α) =
⎡

⎣
cosα − sinα 0
sinα cosα 0
0 0 1

⎤

⎦ .

(3)

A direct calculation gives

R =
⎡

⎣
cosφ cosψ − sin φ cos θ sinψ − cosφ sinψ − sin φ cos θ cosψ sin φ sin θ
sin φ cosψ + cosφ cos θ sinψ cosφ cos θ cosψ − sin φ sinψ − cosφ sin θ

sin θ sinψ sin θ cosψ cos θ

⎤

⎦ . (4)

2.2 Unitary Quaternion

Aquaternionq ∈ H is a set of 4 coordinates (q0, q1, q2, q3)which can be decomposed
into a scalar part q0 ∈ R and a vector part q = (q1, q2, q3) ∈ R

3 with the following
formulas for the addition and the multiplication

(a1, v1) + (a2, v2) = (a1 + a2, v1 + v2) , (5)

(a1, v1)(a2, v2) = (a1a2 − v1 ·v2, a1v2 + a2v1 + v1×v2) . (6)

The set of quaternionsH possesses a conjugation relation such that the conjugate
of q = (q0,q) is q∗ = (q0,−q). This allows to construct the norm of a quaternion
defined as ‖q‖2 = qq∗ = q2

0 + q2
1 + q2

2 + q2
3 .



126 G. Boué

A rotation of angle α around an axis of unit vector n can be represented by
the quaternion q = (cos α

2 , sin α
2 n) of length 1 (by construction the set of unitary

quaternions is of dimension 3 like SO(3)). In terms of q = (q0, q1, q2, q3) the rotation
matrix reads

R =
⎡

⎣
q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)

2(q1q2 + q3q0) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) q2
0 + q2

3 − q2
1 − q2

2

⎤

⎦ . (7)

The image of a vector v by a rotation of quaternion q is given by Rv = qvq∗.
Here,we identify a quaternion q = (0,q) ∈ Hwhose scalar part is null with its vector
q ∈ R

3 and vice versa. The quaternion associated with the rotation R = R(qa)R(qb)

is thus q = qaqb.

2.3 Special Case: Axisymmetric Body

When the body B is axisymmetric, any dynamical problem involving B is invariant
by rotation of B around its axis of symmetry. Let

−→
f3 be a unit vector along this axis.

The kinetic energy and the potential energy shall not depend on the other vectors
(
−→
f1 ,

−→
f2 ) of the base frame ofR1. Therefore, the direction of

−→
f3 is enough to describe

the orientation of B. In that case, only two degrees of freedom of rotation are left

since the set {−→f3 ∈ −→E , ‖−→f3 ‖ = 1} is of dimension 2. Indeed, among all three possible
rotations, we have discarded that around the vector

−→
f3 .

3 Generalised Velocity and Kinematic Equation

To describe the evolution of the configuration of B with respect to R0, it is natural
to introduce the translation rate, i.e. the linear velocity −→v of the origin O′, and
the rotation rate, namely the angular velocity −→ω . More specifically, we use their
coordinates (v0,ω0) in the frameR0 or (v1,ω1) in the frameR1. These velocities are
related to the generalised coordinates described above through differential equations
called kinematic equations. In the standard Lagrangian formalism,where coordinates
are denoted by q and velocities q̇, kinematic equations are simply dq/dt = q̇. In our
problem, the same relation holds for the translation motion between r and v as we
do have by definition dr0/dt = v0 and dr1/dt = v1. This is nevertheless not the case
with the rotation motion and the associated kinematic equations have to be adapted
to the chosen coordinate system.
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3.1 Kinematic Equation Satisfied by the Rotation Matrix

To get the kinematic equation satisfied by the rotation matrix R, we consider a vector
−→u ∈ −→E attached to B (practically, −→u = −→

PP′ where P and P′ are two points of B).
Its coordinates u1 in R1 are constant while its coordinates u0 in R0 vary in time
according to

u0(t) = R(t)u1 . (8)

The time derivative of this equality gives

u̇0(t) = Ṙ(t)u1 = Ṙ(t)R(t)�u0(t) . (9)

Byconstruction Ṙ(t)R�(t)belongs to the set skew(3)of antisymmetricmatrices. This
set of degree 3 is in bijection withR3. Among the bijections from R

3 to skew(3), we
choose the one—which we refer to as the hat operator : a ∈ R

3 �→ â ∈ skew(3)—
such that for any two vectors a,b ∈ R

3, â b = a × b. The hat operator is defined for
any vector a ∈ R

3 as

a =
⎛

⎝
a1

a2

a3

⎞

⎠ �→ â =
⎡

⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦ . (10)

By definition, the angular velocity ω0 is the vector of R3 such that u̇0(t) = ω0(t) ×
u0(t). Therefore, ω̂0 = ṘR� and the kinematic equation associated with the rotation
motion reads in R0 as

Ṙ = ω̂0 R . (11)

In the frame R1 we have ω1 = R�ω0, or equivalently, ω̂1 = R�ω̂0 R. By conse-
quence, ω̂1 = R�Ṙ and the kinematic equation written inR1 is

Ṙ = R ω̂1
. (12)

3.2 Kinematic Equation Satisfied by the 3-1-3 Euler Angles

Let us represent the three rotations associated with the three Euler angles as in Fig. 1.
The expression of the angular velocity −→ω can then be read directly from the figure,
namely,

−→ω = φ̇ −→e3 + θ̇ −→e1 ′ + ψ̇
−→
f3

= (θ̇ cosφ + ψ̇ sin θ sin φ)
−→e1 + (θ̇ sin φ − ψ̇ sin θ cosφ)

−→e2 + (φ̇ + ψ̇ cos θ)−→e3
= (φ̇ sin θ sinψ + θ̇ cosψ)

−→
f1 + (φ̇ sin θ cosψ − θ̇ sinψ)

−→
f2 + (φ̇ cos θ + ψ̇)

−→
f3 .

(13)
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Fig. 1 Three Euler rotations: (
−→e1 ,

−→e2 ,
−→e3 )

R3(φ)−→ (
−→e1 ′,−→e2 ′,−→e3 ′) R1(θ)−→ (

−→
f1 ′,−→f2 ′,−→f3 ′) R3(ψ)−→

(
−→
f1 ,

−→
f2 ,

−→
f3 )

Thecomponents along (
−→e1 ,

−→e2 ,
−→e3 )of−→ω are linear combinations of (φ̇, θ̇, ψ̇). Invert-

ing these relations, we get the desired kinematic equations in terms of the coordinates
ω0:

d

dt

⎛

⎝
φ
θ
ψ

⎞

⎠ =
⎡

⎣
− cot θ sin φ cot θ cosφ 1

cosφ sin φ 0
csc θ sin φ − csc θ cosφ 0

⎤

⎦

⎛

⎝
ω0
1

ω0
2

ω0
3

⎞

⎠ . (14)

Using the decomposition of −→ω into (
−→
f1 ,

−→
f2 ,

−→
f3 ), one gets the equivalent kinematic

equations in terms of the coordinates ω1:

d

dt

⎛

⎝
φ
θ
ψ

⎞

⎠ =
⎡

⎣
csc θ sinψ csc θ cosψ 0
cosψ − sinψ 0

− cot θ sinψ − cot θ cosψ 1

⎤

⎦

⎛

⎜
⎝

ω1
1

ω1
2

ω1
3

⎞

⎟
⎠ . (15)

3.3 Kinematic Equation Satisfied by Unitary Quaternions

As said in Sect. 2.2, the rotation of a vector can be written in terms of quaternion
products. For our purpose, if qt denotes the quaternion associated withR(t), we have
u0(t) = qt u1 q∗

t . Taking the time derivative of this expression, we get

u̇0(t) = q̇t u1 q∗
t + qt u1 q̇∗

t = q̇t q
∗
t u

0(t) + u0(t) qt q̇
∗
t . (16)

We shall now remember that qt is unitary, therefore qt q∗
t = 1 which leads to qt q̇∗

t =
−q̇t q∗

t . Hence,

u̇0(t) = [q̇t q
∗
t ,u0(t)] = (q̇t q

∗
t )u0(t) − u0(t)(q̇t q

∗
t ) . (17)

A direct calculation shows that the scalar part of q̇t q∗
t is null, therefore q̇t q∗

t can be
considered as a vector ofR3. Moreover the commutator of two vectors assimilated to
their quaternion counterparts is equal to twice their vector product: [a,b] = 2 (a × b)

which means that q̇t q∗
t is equal to 1

2ω
0. Therefore, the kinematic equation in these

variables simply is
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q̇t = 1

2
ω0 qt . (18)

Moreover, substitutingω0 for qt ω1 q∗
t in the previous equation, one get the kinematic

equation written in the body frame (
−→
f1 ,

−→
f2 ,

−→
f3 ), namely,

q̇t = 1

2
qt ω1 . (19)

3.4 Kinematic Equation Satisfied by a Unit Vector
of the Figure Axis

In the case of an axisymmetric body, the rotation is parameterised by the unit vector−→
f3 along the figure axis. Given that

−→
f3 belongs to B, its evolution with respect to

(
−→e1 ,

−→e2 ,
−→e3 ) is, by definition of the angular velocity,

ḟ03 = ω0 × f03 , (20)

where f03 are the coordinates of
−→
f3 in (

−→e1 ,
−→e2 ,

−→e3 ).

4 Least Action Principle and Dynamical Equations

Let us consider the Lagrangian L(rα, R, vα,ωα), with α ∈ {0, 1}, describing the
evolution of a rigid body. Here the matrix R is written as a variable of the Lagrangian
to recall that the problem depends on the rotation of B. But as explained above,
the rotation can be parameterised by other variables and the Lagrangian itself does
not necessarily depend explicitly on R. Our purpose in this section is to derive the
dynamical equations of the system—because calculations are very similar in both
frames R0 and R1, we only explicit the method in R0. In the standard Lagrangian
formalism L(q, q̇) these are the well-known Euler-Lagrange equations given by
dt∂q̇L = ∂qL. Rotations modify the structure of these equations which are then
called Poincaré-Lagrange equations after [30]. As we will see, one does not need
to know in which coordinates the Lagrangian is written to derive the dynamical
equations of our problem.
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4.1 Parametrisation of the Tangent Space

We introduce a path γ : R → R
3 × SO(3) which assigns to a time t an element

(r0(t), R(t)) of the Euclidean group. As previously seen, there exist two vectors
v0(t) and ω0(t) of R3 such that the time derivative of γ(t) is given by

ṙ0(t) = v0(t) , Ṙ(t) = ω̂0
(t)R(t) . (21)

It is thus natural to parameterise an infinitesimal displacement δγ(t) on the tangent
space of the Euclidean group by two vectors δr0(t) and δθ0(t) of R3 such that

δγ(t) = ( δr0(t) , δθ̂
0
(t)R(t) ) . (22)

We now impose that the infinitesimal variation of γ̇ (Eq. 21) is equal to the time
derivative of the infinitesimal displacement δγ (Eq. 22). This step allows to relate the
variation of the velocities (δv0(t), δω0(t)) to the evolution rate of the displacement

vectors (δṙ0(t), δθ̇
0
(t)). We get

δv0(t) = δṙ0(t) , δω0(t) = δθ̇
0
(t) + δθ0(t) × ω0(t) . (23)

4.2 Variation of the Action

Wenoware in position to differentiate the actionS(γ) associatedwith the Lagrangian
L. The action reads

S(γ) =
∫ t1

t0

L(γ, γ̇) dt . (24)

Its variation δS(γ) = S(γ + δγ) − S(γ) in the vicinity of γ is

δS(γ) =
∫ t1

t0

(
∂L
∂v0

· δv0 + ∂L
∂r0

· δr0 + ∂L
∂ω0 · δω0 + ∂L

∂θ0
· δθ0

)
dt

=
∫ t1

t0

(
∂L
∂v0

· δṙ0 + ∂L
∂r0

· δr0 + ∂L
∂ω0 · (δθ̇

0 + δθ0 × ω0) + ∂L
∂θ0

· δθ0
)

dt .

(25)

After an integration by part to remove δṙ0 and δθ̇
0
and a circular permutation in the

triple product ∂ω0L · (δθ0 × ω0), we obtain
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δS(γ) =
[

∂L
∂v0

· δr0 + ∂L
∂ω0 · δθ0

]t1

t0

−
∫ t1

t0

[(
d

dt

∂L
∂v0

− ∂L
∂r0

)
· δr0 +

(
d

dt

∂L
∂ω0 − ω × ∂L

∂ω0 − ∂L
∂θ0

)
· δθ0

]
dt .

(26)

4.3 Dynamical Equations

The principle of least action tells us that the path t �→ γ(t) effectively followed by
the system is the one satisfying δS(γ) = 0 for any infinitesimal displacement δγ with
δγ(t0) = δγ(t1) = 0. Therefore, the equations of motion deduced from (26) are

d

dt

∂L
∂v0

= ∂L
∂r0

, (27)

d

dt

∂L
∂ω0

= ω0 × ∂L
∂ω0

+ ∂L
∂θ0 . (28)

The first of these two equations is the common Euler-Lagrange equation. It relates
the evolution rate of the linear momentum p0 = ∂v0L to the forceF0 equal to the vari-
ation of the Lagrangian under an infinitesimal translation ∂r0L. The second is called
Poincaré-Lagrange equation after Poincaré’s 1901 article “Sur une forme nouvelle
des équations de la Mécanique” [30] (see also Sect. 2 of [5]). It links the evolution rate
of the angular momentum π0 = ∂ω0L to the torque T0 which is the variation of the
Lagrangian under an infinitesimal rotation ∂θ0L. The Poincaré-Lagrange equation
also contains an inertial torque of the form ω0 × ∂ω0L = ω0 × π0.

Were the dynamical equations derived in the body-fixed frameR1, we would have
reached

d

dt

∂L
∂v1

= ∂L
∂r1

, (29)

d

dt

∂L
∂ω1

= ∂L
∂ω1

× ω1 + ∂L
∂θ1 . (30)

4.4 Rayleigh Dissipation Function

Dissipative systems can be studied within the Lagrangian formalism. Let L(q, q̇)

be a Lagrangian written in terms of standard coordinates and velocities. Dissipation
is modelled by a function D called Rayleigh dissipation function of the form D =
1
2η‖q̇‖2. The associated equations of motion are
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d

dt

∂L
∂q̇

= ∂L
∂q

− ∂D
∂q̇

. (31)

4.5 Spin Operator

The operators ∂θ0 and ∂θ1 are well-known in quantum theory of angular momentum.
These are the spin operator, usually denoted by Ŝ or Ĵ , with ∂θ0 being expressed
in the inertial frame R0 and ∂θ1 in the rotated frame R1. In particular, its action
on Wigner’s D-matrices (used to rotate spherical harmonics) is described in many
textbooks such as [36]. This can be particularly useful for studying the evolution of
binary asteroids with highly non-spherical shapes (e.g., [4]). In this course we limit
ourselves to simple problems for which ∂θL can easily be computed. All calculations
are based on the proposition that under an infinitesimal rotation of angle δθ a vector
v is transformed into a vector v + δv with δv = δθ × v.

4.6 Hamiltonian Formalism

For conservative systems, such as in the rigid body case, it can be convenient to
switch to the Hamiltonian formalism. In that case, we define the linear momentum
p0 and the angular momentum π0 inR0 as follows

p0 = ∂L
∂v0

, π0 = ∂L
∂ω0

. (32)

The HamiltonianH is then obtained by a Legendre transformation of the Lagrangian
H = p0 · v0 + π0 · ω0 − L. Taking into account the definition of p0 and π0, the
infinitesimal variation of H reads

δH = v0 · δp0 + ω0 · δπ0 − ∂L
∂r0

· δr0 − ∂L
∂θ0 · δθ0 . (33)

The Hamiltonian is thus a function of (p0,π0, r0, R) whose variation is

δH = ∂H
∂p0

· δp0 + ∂H
∂π0

· δπ0 + ∂H
∂r0

· δr0 + ∂H
∂θ0 · δθ0 . (34)

Identifying the two expressions, we get

v0 = ∂H
∂p0

, ω0 = ∂H
∂π0

,
∂L
∂r0

= −∂H
∂r0

,
∂L
∂θ0 = − ∂H

∂θ0 . (35)
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Fig. 2 Gyroscope of mass m
rotating at the angular speed
ω around its figure axis K of
maximum inertia J . Its
barycentre is at G. The
gyroscope, subject to the
uniform gravity field g, is
free to rotate about the
attachment point O . The
distance OG is denoted by �

Substituting these formulas in the kinematic and dynamical equations, we obtain the
Poincaré-Hamilton equations

ṙ0 = ∂H
∂p0

, ṗ0 = −∂H
∂r0

, Ṙ =
ˆ(

∂H
∂π0

)
R , π̇0 = ∂H

∂π0
× π0 − ∂H

∂θ0 .

(36)
For completeness, we provide the same equations written in the body-fixed frame
R1

ṙ1 = ∂H
∂p1

, ṗ1 = −∂H
∂r1

, Ṙ = R
ˆ(

∂H
∂π1

)
, π̇1 = π1 × ∂H

∂π1
− ∂H

∂θ1 .

(37)

4.7 Example: The Gyroscope

We consider the gyroscope drawn in Fig. 2. It is assumed to rotate rapidly around
its axis of maximum inertia K (here all vectors are written in the inertial frameR0).
We denote by ω = ωK its angular velocity and by J its moment of inertia along K.
Let m be its mass centred on the barycentre G shifted from the attachment point O
by a distance � along the figure axis. We set � = �K. The gyroscope evolves in the
gravity field g of the Earth. For this system, the Lagrangian reads

L = 1

2
Jω2 + m g · � .

The angular momentum is π = ∂ωL = Jω. To get the action of the spin operator ∂θ

on the LagrangianLwe compute its variation under an infinitesimal rotation of vector
δθ. Under this transformation only � evolves and becomes � + δθ × �. Therefore

δL = m g · δ� = m g · (δθ × �) = m (� × g) · δθ ⇒ ∂L
∂θ

= m (� × g) .
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Moreover, ω and π being colinear, their product ω × π is null. Then the Poincaré-
Lagrange equations (28) give

π̇ = m (� × g) = −ω p × π ,

where ω p = m�g/(Jω). This is the well-known equation of motion for a gyroscope
with ω p being the precession frequency.

5 Lagrangian of a Rigid Body Interacting with a Point
Mass

Here we consider a rigid body B of mass m interacting with a mass m0. We wish to
follow the evolution of the system with respect to the inertial frame R0 of origin O
and basis (

−→e1 ,
−→e2 ,

−→e3 ). As above, we attach to B a frameR1 centred on O′ with unit
vectors (

−→
f1 ,

−→
f2 ,

−→
f3 ). We denote by M the position of the mass m0. Here again, we

choose to study the problem inR0, therefore all vectors are written in this frame, but
for clarity we drop the index 0.

5.1 Kinematic Energy

By definition, the kinematic energy T of thewhole system is the sum of the individual
kinematic energies of each mass element. Therefore,

T = 1

2
m0v

2
M +

∫

B

1

2
v2
P dm(P) . (38)

Moreover, if we set vO′ = dOO′/dt and denote by ω the angular velocity of B, the
velocity of a point P ∈ B with respect toR0 is

vP = vO′ + ω × O′P . (39)

Substituting the expression of vP in that of the kinematic energy T , we get

T = 1

2
m0v

2
M + 1

2
mv2

O′ + vO′ ·
(

ω ×
∫

B
O′P dm(P)

)
+ 1

2

∫

B
‖ω × O′P‖2 dm(P) .

(40)
The integral of O′P dm(P) vanishes when O′ is chosen to be the barycentre ofB. This
indeed is a common practice for this kind of problem because it is a natural choice
and it simplifies computations. But one could choose the geometric centre instead
and keep this term. In our case, we hereafter assume that O′ is the barycentre of B.
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For the last integral of (40), we use ‖ω × O′P‖2 = ω2‖O′P‖2 − (ω · O′P)2. Then

T = 1

2
m0v

2
M + 1

2
mv2

O′ + 1

2
ω · I′ω , (41)

where I′ is the inertia matrix of B written in the frame (
−→e1 ,

−→e2 ,
−→e3 ) and whose

expression is

I′ =
∫

B

(‖O′P‖2 I − O′P ⊗ O′P
)
dm(P)

=
⎡

⎣

∫
(y2 + z2) dm − ∫

xy dm − ∫
xz dm

− ∫
xy dm

∫
(x2 + z2) dm − ∫

yz dm
− ∫

xz dm − ∫
yz dm

∫
(x2 + y2) dm

⎤

⎦ ,

(42)

with (x, y, z) the coordinates of O′P in R0. This matrix is symmetric. Usually, the
basis vectors (

−→
f1 ,

−→
f2 ,

−→
f3 ) of the frameR1 are chosen so as to diagonalise the inertia

matrix. In that case,
−→
f1 ,

−→
f2 and

−→
f3 are called the principal axes of inertia of B and

the diagonal terms its principal moments of inertia. Let us denote by I the inertia
matrix written in (

−→
f1 ,

−→
f2 ,

−→
f3 ). We have I′ = R I R�.

Regarding the translationalmotion representedby thevectorsvM andvO′ , it is often
more convenient to express it in terms of the velocity vG = (m0vM + mvO′)/(m +
m0) of the system barycentre G and of the relative velocity v = vM − vO′ . We get

T = 1

2
(m0 + m)v2

G + 1

2
βv2 + 1

2
ω · I′ω , (43)

where β = m0m/(m0 + m) is the reduced mass.

5.2 Potential Energy

We only consider the Newtonian interaction between B and the mass m0. Therefore,
the potential energy U reads

U = −Gm0

∫

B

dm(P)

‖MP‖ , (44)

where G = 6.6743 × 10−11 m3 · kg−1 · s−2 is the gravitational constant. Let r be the
vector O′M expressed in (

−→e1 ,
−→e2 ,

−→e3 ) and whose time derivative is ṙ = v. We still
use the vector y = O′P written in the same basis. In terms of these two vectors MP =
y − r.We now assume that the distance r between the two objects is much larger than
the size max(y) of B and perform a Taylor expansion of U in the small parameter
y/r . Let us introduce Legendre polynomials Pn(X) such that for all x, y ∈ R

3 with
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y < x and x · y = xy cos S,

1

‖x − y‖ =
∞∑

n=0

yn

xn+1
Pn(cos S) . (45)

The first polynomials are

P0(X) = 1 , P1(X) = X , P2(X) = 1

2
(3X2 − 1) , P3(X) = 1

2
(5X3 − 3X) .

(46)
Here, we limit the expansion to degrees n ≤ 2 which is referred to as the quadrupole
approximation. Under this simplification, the potential energy becomes

U = −Gmm0

r
− Gm0

r3

(
r ·

∫

B
y dm(P)

)
− Gm0

2r5

(
r ·

∫

B

(
3 y ⊗ y − y2 I

)
dm(P) r

)
.

(47)
As in the previous section, O′ is supposed to be the barycentre of B, therefore the
first integral vanishes. The second integral can be expressed in terms of the inertia
matrix I′. We get

U = −Gmm0

r
+ 3

2

Gm0

r5
r ·

(
I′ − Tr(I′)

3
I

)
r . (48)

In this expression, the first term is the usual gravitational interaction between two
point masses. The second term represents the effect of the triaxiality ofB and couples
the orbit r to the spin through the rotation matrix in I′ = R I R�.

5.3 Lagrangian and Hamiltonian of the System

The Lagrangian L = T − U of the system reads

L = 1

2
(m0 + m)v2

G + 1

2
βv2 + 1

2
ω · I′ω + Gmm0

r
− 3

2

Gm0

r5
r ·

(
I′ − Tr(I′)

3
I

)
r .

(49)
As expected, the system being isolated, the Lagrangian is independent of the coor-
dinates rG of the barycentre G. The variable rG is said to be cyclic. The associated
momentum ∂vGL = (m0 + m)vG is conserved. Hereafter we discard this degree of
freedom or, equivalently, we assume that vG = 0 and consider L as being only a
function of (r, v, R,ω). We thus write

L(r, v, R,ω) = 1

2
βv2 + 1

2
ω · I′ω + Gmm0

r
− 3

2

Gm0

r5
r ·

(
I′ − Tr(I′)

3
I

)
r . (50)
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In this course, we shall eventually neglect the effect of the quadrupole on the orbit
to focus on the rotation motion of B. The orbital evolution is studied in, e.g., [18]
(see also [6]). Neglecting the perturbation on the orbit remains valid whenever the
angular momentum of rotation π = ‖I′ω‖ is much smaller than the orbital angular
momentum β‖r × v‖. This is particularly true when B is a moon orbiting a planet
or a planet orbiting a star. In that case the position vector r can be seen as a function
of time r(t). Furthermore, the orbit might not even be Keplerian due to interactions
with other bodies not accounted for in (50), e.g., other moons or other planets. In
this situation, the Lagrangian becomes non-autonomous and reads

L(R,ω, t) = 1

2
ω · I′ω − 3

2

Gm0

r5
r · I′r . (51)

For the sake of conciseness, we dropped the time t and wrote r instead of r(t). The
corresponding Hamiltonian written in terms of π = I′ω is

H(R,π, t) = 1

2
π · I′−1π + 3

2

Gm0

r5
r · I′r . (52)

5.4 Equations of Motion

To get the Poincaré-Lagrange equations for the Lagrangian (51) (or the Poincaré-
Hamilton equations for the Hamiltonian (52)), we shall first notice that the variation
of I′ = R I R� under an infinitesimal rotation of vector δθ is1

δI′ = [δθ̂, I′] := δθ̂ I′ − I′ δθ̂ , (53)

with δθ̂ the image of δθ by the hat operator (10). Furthermore, for any vector x ∈ R
3,

we have
x · [δθ̂, I′] x = 2δθ · (I′x × x) , (54)

implying ∂θ(x · I′x) = 2(I′x × x). Therefore, the equations of motion are

1 Let us detail the calculation. Under any rotation of B, the matrix of inertia I expressed in the body
frame R1 remains constant. Therefore,

δI′ = δR I R� + R I δR�

= δR R� R I R� + R I R� R δR�

= (δR R�) I′ + I′(δR R�)
�

.

By definition, δθ̂ := δR R� is skew symmetric, hence the result

δI′ = δθ̂ I′ − I′ δθ̂ .

.
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π̇ = −3
Gm0

r5
(I′r) × r , Ṙ = ω̂R (55)

with π = ∂ωL = I′ω. In practice, in numerical integrations, the state vector is com-
posed of the rotation matrix R (or any equivalent representation of SO(3)) and the
angular momentumπ. At each time step the inertia matrix I′ is computed fromR I R�
and ω is given by I′−1π.

6 Libration in the Vicinity of the Synchronous State

In this section,we assume thatB is close to the 1:1 spin-orbit resonance state such that
ω ≈ n where n is the orbital mean motion. The orbit is represented by its elliptical
elements a, e, i , λ, �, � which are respectively the semimajor axis, the eccentricity,
the inclination with respect toR0, the mean longitude, the longitude of the periapsis,
and the longitude of the ascending node.We allow the angles� and� to vary linearly
with time (due to the flattening of the central body m0 or to the presence of additional
bodies in the system). The mean longitude λ is also assumed to vary linearly with
time. Here we define the orbital mean motion as n = λ̇ but we also use Kepler’s
third law n2a3 = G(m + m0) to approximate its value (the two definitions are not
equivalent).Moreover, we further assume thatm0 � m such that n2a3 ≈ Gm0. These
two simplifications aremadewith the sole purpose to avoid cumbersome expressions.

6.1 Rotating Frame

To study this specific problem, we place ourselves in a new reference frame R′
0 of

basis (
−→e1 ′,−→e2 ′,−→e3 ′) rotating at the angular velocity ωR′

0
= n−→e3 with respect to the

inertial frame (
−→e1 ,

−→e2 ,
−→e3 ). For conciseness, we keep the same notation as above

although the meaning of the variables has changed. The matrix R now represents the
rotation of R1 relative to R′

0 and ω is the angular velocity of B with respect to R′
0,

i.e., ω is still defined by the equality ṘR� = ω̂. The inertia matrix I′ = R I R� and
the position vector r are now written in R′

0. The rotation speed of B relative to R0

is then ωR′
0
+ ω. In this new reference frame, the Lagrangian is thus

L = 1

2
(ωR′

0
+ ω) · I′(ωR′

0
+ ω) − 3

2

Gm0

r5
r · I′r . (56)

According to (54) we have

∂L
∂θ

= I′(ωR′
0
+ ω) × (ωR′

0
+ ω) − 3

Gm0

r5
(I′r) × r . (57)
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This equation will be used to infer the Poincaré-Lagrange equation (28), which here
reads as π̇ = ∂L

∂θ
+ ω × ∂L

∂ω
. As for the kinematic equation, let us consider I′ as our

generalised coordinate instead of R. We get

π̇ = −ωR′
0
× π − 3

Gm0

r5
(I′r) × r , İ′ = [ω̂, I′] , (58)

with

π := ∂L
∂ω

= I′(ωR′
0
+ ω) ⇒ ω = −ωR′

0
+ I′−1π . (59)

In the following, we assume the orbit to be almost circular with low inclination
with respect to the reference plane defined by −→e1 and −→e2 . In the rotated frame, we
thus have r(t) = r0 + r1(t) with r0 = a e′

1 and ‖r1(t)‖ � ‖r0‖.

6.2 Equilibrium State in the Case of a Circular Orbit with No
Inclination

In this subsection, we neglect r1(t) and look for a fixed point (π0, I′0) of the problem
described by the Lagrangian (56). The evolution rate of π becomes

π̇ = −ωR′
0
× π − 3 n2 (I′e′

1) × e′
1 . (60)

For any point P ∈ B to be at rest inR′
0, ω must be equal to ω0 = 0. Hence, Eq. (59)

leads toπ0 = I′0 ωR′
0
. SubstitutingωR′

0
by its expressionn−→e3 andπ by its equilibrium

value π0 = I′0 ωR′
0
in (60), and exploiting the equality e3 = e′

3, we find that the
following condition must be fulfilled at equilibrium

e′
3 × (I′0e

′
3) + 3 (I′0e

′
1) × e′

1 = 0 . (61)

For the relation (61) to be satisfied, the symmetric matrix I′0 has to be diagonal in the
frameR′

0. Therefore, B is at rest in the rotating frameR′
0 if and only if its principal

axes of inertia coincide with the base frame vectors (
−→e1 ′,−→e2 ′,−→e3 ′). We denote by A,

B, C its principal moments of inertia such that I′0 = diag(A, B, C) in this frame.

6.3 Eigenfrequencies

We still discard the perturbation r1(t) and look at the motion in the vicinity of the
fixed point (π0, I′0) found above. For this purpose, we expand π and I′ to first order
of a small parameter ε � 1 as π = π0 + επ1 and I′ = I′0 + εI′1. In order to remain
in the tangent space of the phase space of the problem, we parameterise I′1 by the
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vector θ1 ∈ R
3 such that

I′1 = [θ̂1, I′0] . (62)

In the tangent space, the variables used to describe the system are thus (π1,θ1) ∈
R

3 × R
3. We also expand the angular velocity asω = ω0 + εω1 withω0 = 0. From

Eq. (59), we get
ω1 = I′−1

0 (π1 − θ1 × π0) + θ1 × ωR′
0
. (63)

The identification of the time derivative of (62) with the kinematic equation İ′1 =
[ω̂1, I′0] shows that θ̇1 = ω1. Therefore at first order in ε, the kinematic equation
reads

θ̇1 = I′−1
0 π1 + (

I′−1
0 π̂0 − ω̂R′

0

)
θ1 . (64)

As for the dynamical equation, the expansion of (60) gives

π̇1 = −ω̂R′
0
π1 + 3n2 [

(e′
1 · I′0e

′
1)I − I′0e

′
1 ⊗ e′

1 + ê′
1I

′
0ê

′
1

]
θ1 . (65)

Hence, the linearised system of differential equations is

d

dt

(
π1

θ1

)
= A

(
π1

θ1

)
, (66)

with

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

0 n 0 0 0 0
−n 0 0 0 3n2(A − C) 0
0 0 0 0 0 3n2(A − B)

1/A 0 0 0 n(A − C)/A 0
0 1/B 0 n(C − B)/B 0 0
0 0 1/C 0 0 0

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

. (67)

Because of the three degrees of freedom of rotation of B, we shall expect three
eigenmodes (also called proper modes). A quick inspection of the matrix A shows
that the motion involving the third components of π1 and θ1, called libration in
longitude, is decoupled from those involving the first two components of the same
vectors, called libration in latitude andwobble.When A ≤ B ≤ C all the eigenvalues
of A are imaginary and equal to ±iν1, ±iν2 and ±iν3 where ν1, ν2 and ν3 are the
eigenfrequencies given by
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(libration in longitude) ν1 = n
√
3γ ,

(libration in latitude) ν2 = n

√
(1 + αβ + 3β) + √

�

2
,

(wobble) ν3 = n

√
(1 + αβ + 3β) − √

�

2
,

(68)

with � = (1 + αβ + 3β)2 − 16αβ. Here we have introduced the relative moments
of inertia

α = C − B

A
, β = C − A

B
, γ = B − A

C
. (69)

The three proper motions are represented in Fig. 3.

6.4 Driven Solution

The perturbation r1(t) imposes a driven rotationmotion ofB. At first order in inclina-
tion and eccentricity the coordinates (x1, y1, z1) of r1(t) in the frame (

−→e1 ′,−→e2 ′,−→e3 ′)
are

⎛

⎝
x1
y1
z1

⎞

⎠ = R3(� − λ)R1(i)R3(� − �)

⎛

⎝
r cos v

r sin v

0

⎞

⎠ −
⎛

⎝
a
0
0

⎞

⎠ ≈ a

⎛

⎝
−e cos(λ − �)

2e sin(λ − �)

sin i sin(λ − �)

⎞

⎠ .

(70)
In the following, we consider a fixed eccentricity e and a fixed inclination i with
respect to the (

−→e1 ,
−→e2 ) plane that we call invariant plane. This departure from a cir-

cular and coplanar orbit introduces an additional torque T1 in the Poincaré-Lagrange
equation (60). Its expression is given by a first order expansion in r1 of the torque
T = −3(Gm0/r5) (I′r) × r taken from (58). We have

T1 = −3
n2

a

[
(I′0r1) × e′

1 + (I′0e
′
1) × r1

] = −3n2

⎛

⎝
0

(C − A)z1
(A − B)y1

⎞

⎠

=
⎛

⎝
0

−3n2(C − A) sin i sin(λ − �)

6n2(B − A)e sin(λ − �)

⎞

⎠ .

(71)

The new linearised equations of motion become

d

dt

(
π1

θ1

)
= A

(
π1

θ1

)
+

(
T1

0

)
. (72)
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Fig. 3 Proper motions of the rigid body. Positions at constant time intervals over a full libration

period of the principal axes (
−→
f1 ,

−→
f2 ,

−→
f3 ) are depicted by black dots. Empty circles indicate the

initial condition. Intersections of the dotted great circles of the unit sphere represent the base frame
vectors (

−→e1 ′,−→e2 ′,−→e3 ′)

6.4.1 Libration in Longitude

The libration in longitude, involving the third components (π1z, θ1z) of π1 and θ1

respectively, is driven by the eccentricity e of the orbit present in T1z . From the
expression (67) of the matrix A, we get the differential equation satisfied by θ1z ,
namely,

θ̈1z + 3n2γ θ1z = 6n2γe sin(λ − �). (73)

For |�̇| � n and γ � 1, the forced solution of this equation is
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θ1z = −6γe sin(λ − �) , (74)

which means that B librates in longitude with an amplitude equal to 6γe. Hence,
measuring this amplitude allows to estimate the equatorial flatteningγ = (B − A)/C
of B.

6.4.2 Libration in Latitude

The libration in latitude is a precession of the angular momentum π around the
invariant vector e3 = e′

3. This motion is excited by the inclination i of the orbit
which appears in the expression of T1y . Assuming �̇ � n and α,β � 1, the driven
solution of (72) when T1z is set to zero reads

⎧
⎨

⎩

π1x = −ϑπ0 sin(λ − �) ,

π1y = −ϑπ0 cos(λ − �) ,

π1z = 0 ,

⎧
⎨

⎩

θ1x = ϑ cos(λ − �) ,

θ1y = −ϑ sin(λ − �) ,

θ1z = 0 ,

(75)

with

ϑ = 3βn sin i

2�̇ + 3βn
. (76)

The solution (75) is expressed in the rotating frame (
−→e1 ′,−→e2 ′,−→e3 ′). In this frame,

the coordinates of the orbit normal
−→
N are

N = R3(� − λ)R1(i)

⎛

⎝
0
0
1

⎞

⎠ =
⎛

⎝
sin i sin(� − λ)

− sin i cos(� − λ)

cos i

⎞

⎠ . (77)

The orbit normal
−→
N , the angular momentum −→π = −→π0 + −→π1 , the rotation vector−→

θ = −→
θ1 and the spin axis

−→
f3 = −→e3 ′ + −→

θ1 × −→e3 ′ are displayed in Fig. 4. In this driven
solution, the pole of the invariant plane −→e3 , the orbit normal

−→
N and the angular

momentum −→π remain coplanar. Such a configuration is called a Cassini state [7].
This motion is characterised by, e.g., the tilt angle ε between −→π and the orbit pole−→
N . This angle, called obliquity, is equal to2

ε = i − ϑ ≈ �̇

�̇ + 3
2βn

sin i . (78)

2 By definition, the obliquity is a positive angle between 0 and 180 degrees. But in the particular

case of a Cassini state where
−→
N , −→e3 ′ and −→

f3 ′ are coplanar, an orientation is defined by −→
N and −→e3 ′.

Here, we follow the convention defined in [28] (this convention yields a positive obliquity for the
Moon).
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Fig. 4 Forced libration in latitude seen in the (
−→e1 ′,−→e2 ′,−→e3 ′) rotating plane. The orbit normal

−→
N ,

the normal to the Laplace plane −→e3 ′, the body spin axis
−→
f3 and its angular momentum −→π are all

coplanar.
−→
f3 is deduced from −→e3 ′ by the rotation of vector −→

θ . The same relation holds between −→π0
and −→π

It should be stressed that �̇ is usually negative and can eventually be equal to− 3
2βn.

The equality between these two terms corresponds to a resonance between the pre-
cession of the orbit and the free libration in latitude. In that case Eq. (78) is no more
valid and non-linearities have to be taken into account (see, e.g., [34]).

7 Tidal Deformation

Although at first approximation celestial bodies can be considered perfectly rigid,
important behaviours referred to as tidal effects require to model them as dissipative
deformable extended bodies. The shape of a body B is subject to deformation as
long as it evolves in a varying non-uniform gravity field with respect to its body-
fixed frame. This is particularly the case when B orbits a point mass if its orbit is not
circular or if its rotation is not synchronous. Sufficiently massive bodies are expected
to be spherical when they are at rest (i.e., isolated without proper rotation) because
their figure is controlled by gravity and for a given volume the sphere minimises
the potential energy. But due to their proper rotation, celestial bodies are flatten at
the poles and the presence of a massive companion produces two additional bulges
approximately aligned with the neighbour (one at the front and the other at the far
side). The redistribution of mass associated with the bulges induces friction and
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Fig. 5 The upper diagram represents tidal deformation with no friction: the bulges are aligned with
the companion. When friction is added (lower diagram), there is a delay between the high tides
and the direction of the companion. In this figure, the spin rate is assumed to be faster than the
revolution frequency. The resulting orientation of the tidal bulges leads to a deceleration of the spin
velocity and an acceleration of the orbital motion [23]

dissipation within the body and the slight misalignment with the direction of the
companion introduces a torque affecting the rotation (see Fig. 5).

7.1 Inertia Matrix and Stokes Coefficients

Because of its deformation, the inertia matrix I of B changes with time. At each
instant we could choose to write I in a frame where it is diagonal but even in that
case, the diagonal elements would vary. As discussed in the next subsection, it is
more convenient to consider another frame attached to B in which all entries of I
can eventually oscillate. Here we only consider cases where B’s shape is almost
spherical and I almost proportional to the identity matrix. Let I◦ be the mean moment
of inertia defined as I◦ = 1

3 Tr I. We then follow Ragazzo & Ruiz [32, 33] approach
and define the traceless symmetric matrix B by I = I◦(I − B). This matrix is related
to the second order Stokes coefficients Clm and Slm (which are commonly used to
parameterise the gravity field of an extended body [20]) through

B = 2

3

m R2

I◦

⎡

⎣
3C22 − 1

2C20 3S22
3
2C21

3S22 −3C22 − 1
2C20

3
2 S21

3
2C21

3
2 S21 C20

⎤

⎦ . (79)
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For a homogeneous body, the matrixB is also related to the displacement field (strain
deformation) of the material within the body. Indeed, if P ∈ B is a mass element
initially at the position y = O′P when B is spherical, under deformation it moves to
the position y + By.

7.2 Tisserand Frame

Considering B as a deformable body raises the question of the definition of a refer-
ence frame R1 attached to the body. Observationally, the rotation of a solid body is
deduced from the motion of surface features. Using Jupiter’s red spot and character-
istic patterns at the surface of Mars, Jean-Dominique Cassini managed to visually
estimate the rotation rate of these planets since the years 1664–1666 [11]. Now,
more precise measurements are obtained using radar signals [29]. But in both cases,
observations give access to the rotation of the surface only.

In dynamical studies it is more convenient to choose R1 as the Tisserand frame
defined as the frame in whichB has no angular momentum. Let y0 be the coordinates

of
−→
O′P inR0 and y1 the coordinates of the same vector inR1. The angular momentum

� of B with respect to its barycentre O′ and relative to the inertial frame R0 is, by
definition,

� =
∫

B
y0 × ẏ0 dm(P) (80)

with
y0 = Ry1 ⇒ ẏ0 = Ṙy1 + Rẏ1 . (81)

We recall that B being deformable, y1 is not constant anymore. Let us introduce
the angular velocity ω1 written in the frame R1, i.e., ω1 = R�ω0 such that ẏ0 =
R(ω1 × y1 + ẏ1). We have then

� = R
∫

B
y1 × (ω1 × y1 + ẏ1) dm(P)

= R
(∫

B
((y1)2 I − y1 ⊗ y1) dm(P)

)
ω1 + R

∫

B
y1 × ẏ1 dm(P)

= R
(

I ω1 +
∫

B
y1 × ẏ1 dm(P)

)
.

(82)

By construction, the Tisserand frame is chosen so that the last integral vanishes.
Therefore, the angular momentum is simply given by � = RI ω1 = I′ω0.
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7.3 Lagrangian of the Problem

Given that the elements of the matrix B are allowed to vary, they can be considered
as new generalised coordinates of the problem [32, 33]. For that purpose, one shall
add the contribution of Ḃ to the kinetic energy of the system, include the potential
energy associatedwith the auto-gravity ofB and the eventual elasticity of itsmaterial,
and complete the Lagrangian with a dissipation function. Nevertheless, the inertia
of deformation is usually negligible [8] and we will discard the increment of kinetic
energy induced by Ḃ.

From now on, since we work with matrices, we introduce a new scalar product
and its related norm. For any two matrices A and B we define A · B = 1

2 Tr(A
�B)

and ‖A‖2 = A · A = 1
2 Tr(A

�A).
At the lowest order in ‖B‖, the gravitational potential energy Ug and the elastic

potential energy Uel of an isotropic body3 are of the form

Ug = 1

2
gI◦‖B‖2 , Uel = 1

2
μI◦‖B‖2 , (83)

where g and μ are two coefficients to be determined. To model the viscosity of the
material, we add the Rayleigh dissipation function

D = 1

2
ηI◦‖Ḃ‖2 , (84)

where η is another physical parameter of B. It should be stressed that for an isotropic
body, the potential energy and the dissipation function have to be invariant by rotation
as are ‖B‖2 and ‖Ḃ‖2.More specifically, for an isotropic homogeneous body of radius
R at rest,

g = 4

5

Gm

R3
, μ = 40π

3

R

m
μ0 , η = 40π

3

R

m
η0 , (85)

where μ0 and η0 are effective microscopic shear modulus and shear viscosity of the
material, respectively. The equations presented here are those for a visco-elastic body
with a Kelvin-Voigt rheology. They can easily be generalised to any rheology [33].

Assuming as above that B is orbiting a point mass m0, the Lagrangian of the
system reads

L = I◦
2

(‖ω‖2 − ω · B′ω
) − I◦

2
g‖B‖2 − I◦

2
μ‖B‖2 + 3

2

Gm0I◦
r5

r · B′r , (86)

where B′ = RBR� is the matrix B expressed in the inertial frameR0. The equations
of motion (31) become

3 An isotropic body is a body which tends to be spherical when tidal and rotation perturbations are
artificially set to zero. In this asymptotic form, all physical variables (density, elasticity, viscosity,
etc.) are radially distributed but not necessarily uniform throughout the body.
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ηḂ + (g + μ)B = F , (87)

π̇ = −3
Gm0I◦

r5
(B′r) × r , (88)

Ṙ = ω̂R , (89)

where π = ∂ωL = I◦(ω − B′ω) and F = RF′R� with4

F′ = −ω ⊗ ω + 1

3
ω2

I + 3
Gm0

r5

(
r ⊗ r − 1

3
r2I

)
. (90)

7.4 Love Number

In good approximation, tidal deformation is the linear response of an extended body
to a perturbing potential (B is proportional to F). This behaviour can be interpreted
as a transfer function between the tidal potential W and the gravitational potential
V ′ induced by the mass redistribution within B. This problem has been studied by
Augustus Edward Hough Love [22] after whom Love numbers have been named.
Let P ∈ ∂B be a point at the surface of B of coordinate y1 in R1 (i.e., such that
‖y1‖ = R). In the Fourier domain, we define the complex Love number k2(ν) at the
frequency ν as

V̂ ′(y1, ν) = k2(ν)Ŵ (y1, ν) . (91)

From the expression of V ′ and W , namely,

V ′(y1, t) = −3

2

GI◦
R5

y1 · B(t)y1 and W (y1, t) = −1

2
y1 · F(t)y1 , (92)

we deduce that

B̂(ν) = K 2(ν)F̂(ν) , k2(ν) = 3GI◦
R5

K 2(ν) . (93)

By identification with (87), we see that in the above model

K 2(ν) = Kel

1 + iτν
, Kel = 1

g + μ
, τ = η

g + μ
, (94)

where the constant τ represents a viscous timescale. From the formulae (93) and
(94), one can derive the elastic Love number kel = (3GI◦/R5) Kel. In the case of a
fluid material, μ = 0, we obtain the so-called fluid Love number kf = (3GI◦/R5) Kf

4 In the calculation ofF − (g + μ)B = 1/I◦ ∂BL, we recall thatB is traceless symmetric. Therefore,
∂BL is, by definition, the only traceless symmetric matrix such that dL = ∂BL · dB. Let K be the
matrix with entries Ki j = ∂L/∂Bi j , then ∂BL = K − 1

3 Tr (K)I.
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with Kf = 1/g. In particular, for a homogeneous body, using (85), one gets5

kf = 3

2
kel = kf

1 + 25
2

μ0

ρgR

kvisc = kf

1 + 25
2

iην
ρgR

, (95)

where ρ = 3m/(4πR3) is the mean density and g = Gm/R2 the surface gravity. The
viscous Love number kvisc corresponds to the case μ = 0 and η �= 0. The (macro-
scopic) rheology described by (94) is that of a Kelvin-Voigt material with rigidity
g + μ and viscosity η. Nevertheless, one can plug any arbitrary rheology in (93) and
use it as a substitute of Eq. (87).

7.5 Constant Deformation

As we have seen, the deformation matrix B of the body B is proportional to the force
F given in Eq. (90). Here we focus on the constant part F̄ of the force which governs
the permanent deformation B̄ of B. The other harmonics introduce small oscillating
deviations that we discard for the moment. In addition, we assume that B is in a p :1
spin-orbit resonance, i.e., ω = pn where p is a half-integer, and that its spin axis
is orthogonal to the orbit plane (planar case). The spatial case is treated in [10]. To
simplify the expression, we also assume that m0 � m such that n2a3 ≈ Gm0. Within
these hypotheses,

F =p2n2

⎡

⎣
1/3 0 0
0 1/3 0
0 0 −2/3

⎤

⎦

+ 3 n2
( a

r

)3
⎡

⎣
cos2(v − pnt) − 1/3 cos(v − pnt) sin(v − pnt) 0

cos(v − pnt) sin(v − pnt) sin2(v − pnt) − 1/3 0
0 0 −1/3

⎤

⎦ ,

(96)

where v is the true anomaly. Therefore,

5 Let us stress that the formulae (95) show a coefficient 25/2 in their denominator whereas “exact”
expressions have a coefficient 19/2 (as obtained in 1863 by [35], see also Chap.V of [22]). This
discrepancy comes from the homogeneous-deformation assumption in [32, 33]. In ibid., the vis-
coelastic deformation is computed in absence of gravity, which naturally leads to a homothetic
transformation of the whole body. The effect of gravity field is only added afterwards. Viscoelas-
ticity and gravity have to be treated jointly to retrieve the correct factor 19/2. Nevertheless, bodies
are never strictly homogeneous. Therefore the small error 25/2 instead of 19/2 pertaining to the
homogeneous-deformation approximation remains negligible. The advantage of the formalism used
here is to provide a pedagogical interpretation of the effect of the gravity field.
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F̄ =p2n2

⎡

⎣
1/3 0 0
0 1/3 0
0 0 −2/3

⎤

⎦

+ 3 n2

⎡

⎢
⎣

1
6 X−3,0

0 (e) + 1
2 X−3,2

2p (e) 0 0

0 1
6 X−3,0

0 (e) − 1
2 X−3,2

2p (e) 0

0 0 − 1
3 X−3,0

0 (e)

⎤

⎥
⎦ ,

(97)

where we have introduced Hansen coefficients Xn,m
k (e) [15]. These are functions of

the orbital eccentricity e defined as

( r

a

)n
exp(imv) =

∞∑

k=−∞
Xn,m

k (e) exp(ik M) , (98)

where M = nt is the mean anomaly, or alternatively as

Xn,m
k (e) = 1

2π

∫ 2π

0
(cos E − e + i

√
1 − e2 sin E)m(1 − e cos E)n−m+1

× exp[−ik(E − e sin E)] dE .

(99)

SolvingEq. (93) and using the expression ofB in terms of Stokes coefficients (Eq.79),
we see that J̄2 = −C̄20 and C̄22 are the only non-zero coefficients. We have

J̄2 = I◦
m R2

n2Kel

(
p2 + 3

2
X−3,0
0 (e)

)
, C̄22 = I◦

m R2
n2Kel

3

4
X−3,2
2p (e) . (100)

Quite remarkably, their ratio is independent of the physical properties of B. Indeed,

C̄22

J̄2
= 3X−3,2

2p (e)

4p2 + 6X−3,0
0 (e)

. (101)

For 2p = 1, .., 5, the relevant Hansen coefficients are

X−3,0
0 (e) = (1 − e2)−3/2 , (102)

X−3,2
1 (e) = −1

2
e + 1

16
e3 − 5

384
e5 − 143

18432
e7 − 9097

1474560
e9 + O(e11) , (103)

X−3,2
2 (e) = 1 − 5

2
e2 + 13

16
e4 − 35

288
e6 − 5

576
e8 − 49

3600
e10 + O(e12) , (104)

X−3,2
3 (e) = 7

2
e − 123

16
e3 + 489

128
e5 − 1763

2048
e7 + 13527

163840
e9 + O(e11) , (105)

X−3,2
4 (e) = 17

2
e2 − 115

6
e4 + 601

48
e6 − 1423

360
e8 + 48619

69120
e10 + O(e12) , (106)

X−3,2
5 (e) = 845

48
e3 − 32525

768
e5 + 208225

6144
e7 − 6122725

442368
e9 + O(e11) . (107)
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Fig. 6 Ratio of the equilibrium C22 over the equilibrium J2 of a deformable body in different
spin-orbit resonances as a function of the orbital eccentricity

In the case of the 1:2 spin-orbit resonance, C̄22 given by Eq. (100) is negative. This
means that at pericentre the shortest equatorial axis points towards the central body.
But for all the other spin-orbit resonances considered here, C̄22 > 0, meaning that
this is the long axis that lines up with the direction of the central body at pericentre.

The equilibrium shapes for different spin-orbit resonances are displayed as a
function of the eccentricity in Fig. 6. In particular, for a synchronous object in circular
orbit, we expect the ratio of its Stokes coefficients to be C̄22/ J̄2 = 0.3.

These coefficients can be estimated from the analysis of the trajectory of a particle
in the gravityfield of the extendedbody.They are known for all the planets and for sev-
eral satellites of the solar system, a few of which are displayed in Table1. According
to the principle of parsimony, without additional information, synchronous satellites
satisfying the condition C̄22/ J̄2 = 0.3 are commonly believed to be in hydrostatic
equilibrium. In Table1, all satellites but the Moon6 are likely in hydrostatic equilib-
rium. Under this assumption, one can infer their mean moment of inertia I◦ thanks to
Clairaut’s equation [31]. In turn, the mean moment of inertia constrains their internal
mass distribution. Alternatively, the mean moment of inertia can be inferred from
libration amplitudes (see Sect. 6.4).7

6 The origin of the Moon’s excess deformation is attributed to a fossil figure acquired when it was
closer to the Earth and to the subsequent formation of the South Pole-Aitken Basin [19].
7 In Sect. 6.4, it is shown that the amplitude of libration in longitude is proportional to γ while the
amplitude of libration in latitude is a function of β. Both quantities are related to the mean moment
of inertia as follows:

γ = 4C22

I◦
, β = J2 + 2C22

I◦
.

.
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Table 1 Gravity field coefficients J2 and C22 of synchronous satellites

Planet Satellite J2 × 106 C22 × 106 C22/J2 References

Earth Moona 203.22 22.38 0.1101 [14, 21]

Jupiter Io 1845.9 ± 4.2 553.7 ± 1.2 0.300 ± 0.001 [3]

Europa 437.59 ± 77.47 138.62 ± 2.44 0.31 ± 0.06 [13]

Ganymedeb 127.27 ± 2.90 38.18 ± 0.87 0.3 (imposed) [2]

Callisto 32.7 ± 0.8 10.2 ± 0.3 0.31 ± 0.01 [1]

Saturn Titan 33.599 ± 0.332 10.121 ± 0.029 0.301 ± 0.003 [16]
a The uncertainties on the gravity field coefficients of the Moon are not given in this table because
they are much smaller than the significant digits written in this table. J2 is precise at 10−11 and C22
at 10−12.
b The value of Ganymede’s coefficient J2 has not been fitted to the observational data in [2]. Under
the hydrostatic hypothesis, it has been set equal to C22/0.3

7.6 Maximal Triaxiality

Some celestial bodies of the solar system show clear departure from hydrostatic
equilibrium. For instance, Mercury’s triaxiality is more than one order of magnitude
greater than expected from the simple model of Sect. 7.5 (a discussion of the origin
of Mercury’s strong departure from hydrostaticity is given in [26]). These bodies
behave like a spring whose “relaxed” shape is not the sphere. In that case, the elastic
potential energy Uel given in Eq. (83) has to be upgraded to incorporate a relaxed
shape B0, viz.,

Uel = 1

2
μI◦‖B − B0‖2 . (108)

In absence of viscosity, the expression of the equilibrium shape Beq (given by ∂BL =
0) becomes (see Eq. (87))

Beq = 1

g + μ
(F + μB0) = Kel(F + μB0) . (109)

The term μB0 can be interpreted as a prestress modifying the equilibrium figure of
B. It should be noticed that a solid material cannot be stretched indefinitely. Above a
given threshold, defined by the yield criterion [17], the material begins to plastically
deform or fracture. The typical critical strain ucrit of the Earth’s lithosphere is in the
range 10−5–10−3. Therefore, the eigenvalues of �B = B − B0 cannot exceed ucrit .
Let Bel = KelF be the elastic deformation in absence of prestress. At equilibrium,
when B = Beq and �B = Beq − B0, we have

Beq − Bel = μ

g
(Bel − �B) =

(
kf
kel

− 1

)
(Bel − �B) . (110)
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The permanent shape of a body which is not in spin-orbit resonance, like the Earth,
departs from the sphere only through a flattening of the poles due to the proper
rotation. Such a body is indeed expected to be axisymmetric because in that case
both F and Bel are invariant by rotation around the spin axis. Therefore, an eventual
triaxiality γeq = (Beq − Aeq)/Ceq of the equilibrium shape can only be the outcome
of a non-axisymmetric prestress μB0. We can thus infer from Eq. (110) an upper
bound on the permanent triaxiality given by

Beq − Aeq

Ceq
<

(
kf
kel

− 1

)
ucrit . (111)

We notice that the maximal triaxiality γmax = ( kf
kel

− 1)ucrit is a function of the ratio
between the fluid Love number kf and the elastic Love number kel. With the simple
approach of Sect. 7.3, for a homogeneous body we get

γmax = 25

2

μ0

ρḡR
ucrit , (112)

where ρ = 3
4π

m
R3 is the mean density and ḡ = Gm

R2 the surface gravity. We stress that
a similar study [37] performed with a different mathematical approach leads to a
similar expression where the numerical factor 25/2 is replaced by 7.9. Nevertheless,
this difference is not significant as the main goal of Eq. (112) is to estimate the order
of magnitude of the admissible triaxiality of a given celestial body for which we
have very few information, such as an exoplanet. In the case of the Earth, we obtain
γmax ≈ 3.5 × 10−5 while the observed value is γ = 1.5 × 10−5.

8 Tidal Evolution

This section is dedicated to the rotation evolution of B due to tides. We assume the
orbit to be Keplerian and unperturbed by the rotation. Moreover, to avoid tedious
calculation, we here only consider the planar case where B rotates around its axis
of maximum inertia which itself is orthogonal to the orbit plane. For this simplified
problem, we slightly modify the notation used so far. The rotation matrixR is param-
eterised by a single angle which we denote θ such that R = R3(θ). The origin of θ is
the direction of the periapsis that is supposed to be fixed. We set � = θ̇ as the angu-
lar speed8 and we denote by ω any arbitrary frequency. Eventually, we approximate
Kepler’s third law by n2a3 = Gm0.

8 The symbol� enters in conflict with that of the longitude of the ascending node defined in Sect. 6.
Nevertheless, � is a standard notation for spin rates and, because the problem remains planar, the
longitude of the ascending node never appears in this whole section. Therefore, we do not expect
any confusion.
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8.1 Equations of Motion

In the planar case, and in terms of Stokes coefficients (see Sect. 7.1), the set of
Eqs. (88)–(89) reads

d

dt
(C θ̇) = −6

Gmm0R2

r3
[C22 sin 2(θ − v) + S22 cos 2(θ − v)] , (113)

where C itself is a function of the Stokes coefficient J2, viz.,

C = 2

3
m R2 J2 + I◦ . (114)

We decompose each Stokes coefficient Z ∈ {J2, C22, S22} into a constant part Z0

induced by an eventual prestress μB0 (see Sect. 7.6) and a tidal component ZTID

satisfying the tidal equation (87). In the Fourier domain, we have

ẐTID(ω) = k2(ω)ẐEXT(ω) , (115)

with ZEXT the external perturbation deduced from the decomposition of the matrix
F (90) in spherical harmonics [9]:

J2,EXT(t) = �2R3

3Gm
+ 1

2

m0

m

(
R

r

)3

, (116)

C22,EXT(t) = 1

4

m0

m

(
R

r

)3

cos 2(θ − v) , (117)

S22,EXT(t) = −1

4

m0

m

(
R

r

)3

sin 2(θ − v) . (118)

Hereafter, the reference meridian of B is chosen such that S22,0 = 0.

8.2 Secular Tidal Torque Out of Spin-Orbit Resonances

To solve (115), we make the hypothesis that the rotation is almost uniform such that
� can be approximated by a constant. The expansion of the ZEXT in Fourier series
gives
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J2,EXT(t) = �2R3

3Gm
+ 1

2

m0

m

(
R

a

)3 ∞∑

k=−∞
X−3,0

k (e) cos(k M) , (119)

C22,EXT(t) = 1

4

m0

m

(
R

a

)3 ∞∑

k=−∞
X−3,2

k (e) cos(2θ − k M) , (120)

S22,EXT(t) = −1

4

m0

m

(
R

a

)3 ∞∑

k=−∞
X−3,2

k (e) sin(2θ − k M) . (121)

It is customary to decompose the complexLovenumber as k2(ω) = k2(ω)[cos ε(ω) −
i sin ε(ω)] where the modulus k2(ω) is an even function ω and the phase lag ε(ω) an
odd function of ω. With this notation, the solution of (115) is

J2,TID(t) = k2(0)
�2R3

3Gm
+ 1

2

m0

m

(
R

a

)3 ∞∑

k=−∞
k2(kn) X−3,0

k (e) cos[k M − ε(kn)] ,

(122)

C22,TID(t) = 1

4

m0

m

(
R

a

)3 ∞∑

k=−∞
k2(2� − kn) X−3,2

k (e) cos[2θ − k M − ε(2� − kn)] ,

(123)

S22,TID(t) = −1

4

m0

m

(
R

a

)3 ∞∑

k=−∞
k2(2� − kn)X−3,2

k (e) sin[2θ − k M − ε(2� − kn)] .

(124)

Substituting these formulae in the right-hand side of (113), we get the tidal torque

TTID := −6
Gmm0R2

r3
[
C22,TID cos 2(θ − v) + S22,TID sin 2(θ − v)

]

= −3

2

Gm2
0

R

(
R

a

)6

×
∞∑

k=−∞

∞∑

j=−∞
k2(2� − kn)X−3,2

k (e)X−3,2
j (e) sin[(k − j)M + ε(2� − kn)] .

(125)
Often, the average of this torque over the mean anomaly M is sufficient to describe
the evolution of the system. Doing so, we impose j = k and obtain the secular tidal
torque provided in [9], namely,

〈TTID〉M = −3

2

Gm2
0

R

(
R

a

)6 ∞∑

k=−∞

(
X−3,2

k (e)
)2

k2(2� − kn) sin ε(2� − kn) .

(126)
This torque, seen as a function of the rotation frequency �, is, up to the con-
stant normalisation factor 3

2Gm2
0R5/a6, a sum of elementary torques T1(x) =



156 G. Boué

Fig. 7 Normalised typical elementary tidal torque T1(x) associated with one single harmonic of
the Fourier decomposition of the orbit (cf. main text)

−k2(2x) sin ε(2x), called kink, weighted by the square of the Hansen coefficient
X−3,2

k (e) and translated by kn/2 along the x-axis. For standard rheologies, T1(x) is
an odd function of x , negative for x > 0, whose absolute value decreases to zero as
x → ∞. The typical shape of an individual kink T1 is displayed in Fig. 7 and the
overall tidal torque in Fig. 8. Depending on the rate at which T1(x) goes to zero as
x → ∞, TTID can have one or several zeros located in the vicinity of k :2 spin-orbit
resonances,9 i.e., where 2� ≈ kn.

8.3 Secular Evolution Out of Spin-Orbit Resonances

To get the secular evolution of the system, we take the average of both sides of (113).
In the right-hand side, to the tidal torque, we shall add the torque TTRI, sometimes
referred to as the triaxial torque, induced by the permanent deformation C22,0.10

Namely,
d

dt
(C�) = TTRI + TTID , (127)

with TTID given in (125) and

9 It must be stressed that due to the vertical displacement of each kink imposed by its neighbours
the total tidal torque does not cancel exactly at k :2 spin-orbit resonant states [25]. Exact resonances
would only occur if the slope between the two extrema of individual kinks were infinite.
10 We recall that C22 = C22,0 + C22,TID and S22 = S22,0 + S22,TID with S22,0 = 0 because the
body-fixed frame of B is chosen such that B0 is diagonal.
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Fig. 8 Normalised typical tidal torque 〈TTID〉M as a function of the deformable body’s spin rate
� divided by the orbital mean motion n. A few spin-orbit resonances are represented by vertical
lines. The three stable equilibria, defined by 〈TTID〉M = 0 and ∂〈TTID〉M/∂� < 0, are highlighted
by red points

TTRI = −6
Gmm0R2

r3
C22,0 cos 2(θ − v). (128)

The calculation of the torque TTRI is presented in [12]. Its expansion in Fourier series
gives

TTRI = −6
Gmm0

R

(
R

a

)3

C22,0

∞∑

k=−∞
X−3,2

k (e) sin(2θ − k M) . (129)

We see that out of spin-orbit resonances this torque does not contain any constant
term, therefore its average is nil: 〈TTRI〉M = 0. Let us now develop the left-hand side
of (127). We have

d

dt
(C�) = C�̇ + Ċ� . (130)

The value of the moment of inertia C is dominated by I◦ and can safely be replaced
by its constant part in C�̇. However, because of the time derivative of C , the term
Ċ� is of the same order of magnitude as TTID and shall not be excluded a priori.
Nevertheless, using (114) and (122), we get

Ċ� = −1

3
m0R2n�

(
R

a

)3 ∞∑

k=−∞
k2(kn) k X−3,0

k (e) sin[k M − ε(kn)] (131)
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goes to zero when averaged over the mean anomaly. Finally, the secular evolution of
B’s rotation out of spin-orbit resonance is only governed by the tidal torque 〈TTID〉M

through

�̇ = 〈TTID〉M

C
= 3

2

Gm2
0

C R

(
R

a

)6 ∞∑

k=−∞

(
X−3,2

k (e)
)2

T1(� − kn/2) . (132)

If the rotation speed � is initially greater than the synchronous frequency n, then,
according to Fig. 8 it decreases until it reaches a k :2 spin-orbit resonance. At this
stage, B can either remain captured in the resonant state or escape toward the next
(k − 1) :2 spin-orbit resonance. Whether the capture takes place actually depends on
the orientation of the triaxial body at the pericentre [24].

8.4 Libration in the Vicinity of the Synchronous Rotation

In the vicinity of the 1 :1 synchronous rotation� ≈ n, it is instructive to compute the
constant part of the Stokes coefficients induced by tides J2,TID, C22,TID and S22,TID
[27]. From (122), (123) and (124), we have

( J̄2,TID)1:1 := 〈
J2,TID

〉
�=n

= k2(0)

(
�2R3

3Gm
+ 1

2

m0

m

(
R

a

)3
)

X−3,0
0 (e) , (133)

(C̄22,TID)1:1 := 〈
C22,TID

〉
�=n = k2(0)

1

4

m0

m

(
R

a

)3

X−3,2
2 (e) , (134)

(S̄22,TID)1:1 := 〈
S22,TID

〉
�=n = 0 . (135)

Let us now determine the dominant terms in the expression of TTID (125) in the
vicinity of the synchronous rotation.Hansen coefficients have the property Xn,m

k (e) =
O(e|m−k|). Therefore, one can expect the dominant term to be that with k = j = 2.
But the phase lag ε would be evaluated at the frequency 2� − 2n = 0 and ε(0) =
0. Hence the dominant terms are those with (k, j) ∈ {(2, 1), (2, 3), (1, 2), (3, 2)}.
Taking into account the parity of k2(x) and ε(x), we get

(TTID)1:1 ≈3

2

Gm2
0

R

(
R

a

)6

k2(0)
(

X−3,2
3 (e) − X−3,2

1 (e)
)

X−3,2
2 (e)

×
(
sin M − k2(n)

k2(0)
sin

(
M − ε(n)

))
.

(136)

Using Kepler’s third law, the expansion of the Hansen coefficients (103)–(105),
the expression of (C̄22,TID)1:1 (134) and the definition C22 = (B − A)/(4m R2), we
obtain
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(TTID)1:1 ≈ 6 n2 e (B̄TID − ĀTID)

(
sin M − k2(n)

k2(0)
sin

(
M − ε(n)

))
. (137)

In this equation, as for the Stockes coefficients J2, C22 and S22, we split the moments
of inertia A, B and C into their permanent component A0, B0 and C0 and their tidal
deformation ATID, BTID, CTID using

A0

m R2
= I◦

m R2
− 1

3
J2,0 − 2C22,0 ,

B0

m R2
= I◦

m R2
− 1

2
J2,0 + 2C22,0 ,

C0

m R2
= I◦

m R2
+ 2

3
J2,0 ,

(138)

and

ATID

m R2
= −1

3
J2,TID − 2C22,TID ,

BTID

m R2
= −1

3
J2,TID + 2C22,TID ,

CTID

m R2
= 2

3
J2,TID .

(139)

Moreover, to simplify the notation, instead of writting ( ĀTID)1:1, we simply write
ĀTID. Idem for B̄TID and C̄TID.

Regarding the triaxial torque TTRI (129), when applying the same method, we get
at first order in eccentricity

(TTRI)
1:1 ≈ 6 n2 e (B0 − A0) sin M . (140)

For the expansion of Ċ� (131), we use X−3,0
1 (e) ∼ 3

2e and get

Ċ� = − n2 e (B̄TID − ĀTID)
k2(n)

k2(0)
sin(M − ε(n)) . (141)

Finally, if we call Ā = A0 + ĀTID, B̄ = B0 + B̄TID and C̄ = C0 + C̄TID, the equation
of motion (113) becomes

θ̈ = 6 n2 e

(
B̄ − Ā

C̄
sin M − 5

6

B̄TID − ĀTID

C̄

k2(n)

k2(0)
sin

(
M − ε(n)

))
. (142)

Therefore, B librates with an amplitude �elast given by (see also [27])

�elast = 6 e
B̄ − Ā

C̄

√

1 − 5

3

B̄TID − ĀTID

B̄ − Ā

k2(n)

k2(0)
cos ε(n) +

(
5

6

B̄TID − ĀTID

B̄ − Ā

k2(n)

k2(0)

)2

. (143)

Alternative expressions exist in the literature, see [27] for a comparison. It should be
stressed that even in absence of permanent triaxiality (B0 − A0)/C0, the thenceforth
viscous body still librates with an amplitude



160 G. Boué

�visc = 6 e
B̄TID − ĀTID

C̄TID

√

1 − 5

3

k2(n)

k2(0)
cos ε(n) +

(
5

6

k2(n)

k2(0)

)2

, (144)

which means that B behaves like a rigid body even though it has no elasticity. More-
over, for a perfect fluid body, k2(n) = k2(0) = k f and ε(n) = 0, i.e., there is no lag
between the tidal bulge and the perturbing body and the amplitude is frequency inde-
pendent. In that case also B is librating although with an amplitude �fluid reduced
by a factor 6 with respect to the rigid case (74), viz.,

�fluid = e
B̄TID − ĀTID

C̄TID
. (145)

In the fluid case, the tidal torque is nil because the bulge is aligned with the direction
of the external body. The libration of θ is actually due to the variation of the moment
of inertia C(t) which has to be compensated to keep a constant angular momentum
C θ̇.

9 Conclusion

These lecture notes present a Lagrangian formalism of the rotation and tidal deforma-
tion of an extended body.After a general introduction to the topic of rotationalmotion
describing different sets of coordinates and their associated equations of motion, the
rotation and the deformation of a celestial body on a Keplerian orbit are studied. In
particular, we determine the free librationmodes (path and frequency) of a rigid body
in the synchronous rotation state. Given that this problem possesses three degrees
of freedom of rotation, it also has three eigenmodes respectively called libration in
longitude, libration in latitude and wobble. For each of them, we calculate the proper
frequency and the path in the configuration space. When the problem is driven by a
periodic perturbation of the Keplerian orbit, we also compute the amplitude of the
so-called “forced solution”. In the case of the libration in latitude, we thereby retrieve
the linear approximation of the Cassini state dynamics.

In a subsequent section, we allow for tidal deformation. This improvement of the
model is made at the cost of additional generalised coordinates. Nevertheless, thanks
to the matrix formulation of the problem, expressions remain relatively compact.
In this part, we recall the definition of a Tisserand frame generalising the body-
fixed frame concept to deformable bodies. We compute the equilibrium dynamical
triaxiality of a fluid extended body in spin-orbit resonance, i.e., the mean of its
moments of inertia (or of a combination of them) over time. These averagedmoments
of inertia allow in turn to compute themean gravity field generated by the deformable
body. Moreover, the comparison of a measured triaxiality with the equilibrium one
tells us if a body can be in hydrostatic equilibrium or not. In the case where the
body is in hydrostatic equilibrium, one can then infer its internal mass distribution.
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In this section, we also discuss permanent triaxiality, representing departure from
hydrostaticity, and the maximal amplitude it can reached before the body’s material
starts to fracture under the high pressure exerted by the deformation. In a last section,
we analyse the long term evolution of a body’s rotation speed under tidal torque. In
particular, we revisit the libration in longitude problem, generalising the rigid body
case treated beforehand. This full expression of the libration in longitude, compared
with observations, provides insights on celestial body’s Love numbers.

As a concluding remark, I would like to stress that these lecture notes were not
intended to present new results nor to be exhaustive on the literature existing on this
subject. The purpose was to present the Lagrangian formalism and its applications
to classical problems encountered in the field. Moreover, often the geometry of the
problems has been chosen as simple as possible to avoid cumbersome calculations
althoughmore general problems have already been solved in the literature. Neverthe-
less, I believe that these notes will allow the reader to face more general yet unsolved
situations in a simple manner using the present formalism.
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Abstract Starting with Arnold’s pioneering work [2], the term “Arnold diffusion”
has been used to describe the slow diffusion taking place in the space of the actions
in Hamiltonian nonlinear dynamical systems with three or more degrees of free-
dom. The present text is an elaborated transcript of the introductory course given
in the Milano I-CELMECH school on the topic of Arnold diffusion and its relation
to Nekhoroshev theory. The course introduces basic concepts related to our current
understanding of the mechanisms leading to Arnold diffusion. Emphasis is placed
upon the identification of those invariant objects in phase space which drive chaotic
diffusion, such as the stable and unstablemanifolds emanating from (partially) hyper-
bolic invariant objects. Besides a qualitative understanding of the diffusion mecha-
nisms, a precise quantification of the speed of Arnold diffusion can be achieved by
methods based on canonical perturbation theory, i.e. by the construction of a suit-
able normal form at optimal order. As an example of such methods, we discuss the
(quasi-)stationary-phase approximation for the selection of remainder terms acting
as driving terms for the diffusion. Finally, we discuss the efficiency of such methods
through numerical examples in which the optimal normal form is determined by a
computer-algebraic implementation of a normalization algorithm.
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1 Introduction

In some introductory texts (see, for example, [17, 46, 58]), the topic of Arnold
diffusion is introduced by a simplified topological argument, related to a differ-
ence between the cases of invariant tori in Hamiltonian systems with n = 2 and
with n ≥ 3 degrees of freedom. Consider a n-degrees of freedom Hamiltonian
system H(q, p), q ∈ R

n , p ∈ R
n , whose phase space contains a large measure

of n-dimensional Kolmogorov–Arnold–Moser (KAM) tori [1, 43, 51]. Any orbit
(q(t), p(t)) with initial conditions (q0, p0) on a KAM torus remains forever con-
fined to the torus. Any orbit with initial conditions (q0, p0) belonging to the com-
plement, in phase space, with respect to the set of all KAM tori, remains con-
fined to the (2n − 1)-dimensional manifold defined by the orbit’s constant energy
value ME := {(q, p) ∈ R

2n : H(q, p) = E = H(q0, p0)}. Take first n = 2. Thus,
dim (ME ) = 3. Suppose there is a KAM torus T embedded in the same energyman-
ifold. We have dim (T ) = 2. Since the torus’s dimension differs just by one from
the dimension of the energy manifold, T divides ME into two parts, which can be
called the ‘interior’ and the ‘exterior’ of the torus. Furthermore, since H(q, p) is
autonomous, there can be no trajectory going from the interior to the exterior of
the torus; such a trajectory would necessarily have to cross transversally the torus
at a point (q(tc), p(tc)) ∈ T at some time tc, but this is impossible since the flow
on the torus is invariant, i.e., the initial condition q = q(tc), p = p(tc) would lead
necessarily to a trajectory confined on the torus. We roughly refer to this as the
‘dividing property’ of KAM tori in systems with n = 2 degrees of freedom. On the
other hand, there is no dividing property of the KAM tori when n ≥ 3, since, in that
case dim (ME ) − dim (T ) ≥ 2. For example, when n = 3 we have dim(M) = 5,
and dim(T ) = 3, thus T cannot divide M into disconnected sets. To visualize this
just lower all dimensions in the above examples by one: hence, a circle (dimension
1) divides a plane (dimension 2) to the interior and the exterior of the circle, while
a circle embedded in Euclidean space (dimension 3) cannot divide the latter into
disconnected sets.

The non-existence of topological barriers when n ≥ 3 renders a priori possible
to have long excursions of the chaotic orbits throughout the whole constant energy
manifold. However, two questions become immediately relevant: (i) can we prove
that the chaotic orbits do really undergo those (topologically allowed) arbitrarily
long chaotic excursions? (ii) is the timescale involved short enough to make the
phenomenon relevant and worth of further study as regards applications in physical
systems (including, for the purposes of the present course, systems of interest in
celestial mechanics or astrodynamics)?

We refer to question (i) above as the problem of the existence of Arnold diffusion.
In the words of Lochak’s influential review [49], it is the problem of demonstrating
that “topological transitivity on the energy surface generically takes place”.We refer,
instead, to question (ii) as the problem of how to quantitatively estimate the speed
of Arnold diffusion. Addressing this question in the context of particular problems
encountered in physics and astronomy requires a (partly heuristic) use of compu-
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tational techniques, as discussed in detail, for example, in a well known review by
Chirikov [13]. It is worth mentioning that, after about 60 years of research, only par-
tial answers are available today regarding both questions. In particular, the existence
of Arnold diffusion has been rigorously established in various cases of so-called a
priori unstable systems (see [10, 11, 22, 32]). Instead, it remains an open problem
in the far more difficult case of a priori stable systems (see Sect. 3 for definitions).
In the latter case, we avail, however, ample numerical evidence of the global drift
of the trajectories within the so-called Arnold’s web of resonances, as visualized in
a series of beautiful numerical studies ([30, 37, 38, 44]; see [45] for a review). In
fact, the visualization of the Arnold web in a priori stable systems was made possible
by the use of techniques allowing to carefully choose initial conditions along the
thin resonance layers in phase space marked by the web of resonances. The Fast
Lyapunov Indicator (FLI, [28]) is an example of such technique.

As emphasized by Lochak [49], a demonstration that the Arnold diffusion really
takes place requires establishing the existence of a mechanism of transport for the
weakly chaotic orbits within the Arnold web. Arnold’s original example [2] actually
describes such a mechanism. This is based on proving the existence of heteroclinic
intersections between the stable and unstable manifolds emanating from a set of
nearby partially hyperbolic low-dimensional tori arranged in a so-called ‘transition
chain’. One initially demonstrates that two nearby tori, of a small distance, say,O(δ),
where δ is a small parameter, exhibit a ‘splitting of the separatrices’ (their stable and
unstable manifolds) such that these manifolds develop heteroclinic intersections. Let
τi , i = 1, 2, . . . be a sequence of tori, τi being neighbor to τi−1, τi+1. Assume we
know that the unstable manifold emanating from τi has a heteroclinic intersection
with the stable manifold ending at τi+1. Then, there is a ‘doubly asymptotic’ orbit
which tends to τi as t → −∞, while it tends to τi+1 forward in time as t → ∞.
Such orbits can be established for any pair τi , τi+1, i = 1, 2, . . ., but of course they
cannot themselves be the orbits of Arnold diffusion, since they never go very far
either from τi or τi+1. On the other hand, invoking a so-called ‘shadowing lemma’
(see [20] for a review), one demonstrates that there are true orbits of the systemwhich
shadow the whole chain of heteroclinic orbits established in the above way. Thus,
these shadowing orbits undergo Arnold diffusion. A quick estimate of the speed
of diffusion is obtained as follows: upon completion of one cycle of the transition
mechanism, the trajectory has traveled a distance S = O(δ) in a time Ti,i+1 ≈ Ts ,
which roughly coincides with the time required to cover one homoclinic loop close to
the separatrix of the resonance associated with the unstable tori τi (see Sect. 2 below).
Hence, the local speed of Arnold diffusion is VAD ≈ δ/Ts , where both parameters δ
and Ts depend on the small parameters of the problem under study. Of course, this is
an oversimplified estimate. Estimates of practical interest are rather hard to obtain,
as explained in the sections to follow. On the other hand, the topic of how to describe
itself the one-step transition of the chaotic trajectories far from, and then back to the
asymptotic ends of the intersecting manifolds has been developed substantially in
recent years, leading to the concept of the so-called ‘scattering map’ (see [19, 21]).
Applications of the scattering map technique in Celestial Mechanics are discussed,
in particular, by [6] (see also [8] and references therein).
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Regarding numerical investigations of Arnold diffusion, since this is a slow phe-
nomenon its revelation requires a rather high computing power and the capacity to
numerical propagate large sets of trajectories over long integration times. Owing
to its complexity, the numerical investigation of the weakly chaotic diffusion has
so far been limited to few DOF dynamical systems, including several systems of
particular interest for dynamical astronomy (see an extensive, but only indicative,
list of references in Sect. 4 of [25]). However, it is unclear whether the notion of
Arnold diffusion can be useful for the analysis of the diffusive processes in all those
models. On the other hand, there are cases, in particular around normally hyperbolic
invariant objects in the restricted three-body problem, where Arnold diffusion has
been explicitly demonstrated to apply (see, for example, [6–8, 27, 52]).

The present tutorial is organized as follows: Sect. 2 presents in some detail the
original example discussed in [2], serving to introduce most elements of the con-
ceptual framework for the discussion of Arnold diffusion. Section3 deals with the
case of a priori stable systems and with the connection of Arnold diffusion with
Nekhoroshev theory. Finally, Sect. 4 discusses various semi-analytical approaches to
the quantification of the speed of Arnold diffusion.

2 Arnold’s Example

The Hamiltonian model presented by Arnold in [2] is

H(q,φ1, t, p, J1) = 1

2
p2 + 1

2
J 2
1 + ε (cos q − 1) (1 + μ (sin φ1 + cos t)) , (1)

It is a model of a pendulum (variables (q, p)) coupled with a rotator (variables
(φ1, J1)) via the time-dependent term εμ cos q cos t . Wewill assume ε > 0 and fixed,
while varying μ, with |μ| << ε. The Hamiltonian can be formally extended to 3DOF
autonomous by introducing the angle φ2 = t conjugated to a dummy action J2:

H → H(q,φ1,φ2, p, J1, J2) = 1

2
p2 + 1

2
J 2
1 + J2 + ε (cos q − 1) (1 + μ (sin φ1 + cosφ2)) .

(2)

For μ = 0, we have J̇1 = J̇2 = 0, thus the actions remain invariant along the
trajectories. For any values (J1, J2), the anglesφ1,φ2 evolve linearlywith frequencies
ω1 = J1,ω2 = 1. Thus, changing the value of J1, we can obtain any desired frequency
ratio ω1/ω2 = J1 (the dummy action J2 can be set initially to any value (e.g. J2(0) =
0) without consequences for the dynamics).
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Consider now the case μ �= 0. For generic trajectories, we obtain J̇1 �= 0, J̇2 �= 0.
However, there is a particular set of initial conditions for which the trajectories
preserve the actions:

τ (J1, J2) = {
q = p = 0, J1 = const, J2 = const, (φ1,φ2) ∈ T

2} . (3)

Taking Hamilton’s equations for the complete system:

q̇ = p, ṗ = −ε sin q(1 + μ(sin φ1 + cosφ2))

φ̇1 = J1, J̇1 = εμ(cos q − 1) cosφ1

φ̇2 = 1, J̇2 = −εμ(cos q − 1) sin φ2

(4)

we immediately find that any initial condition in the set τ (J1, J2) leads to q̇ = ṗ =
0 = J̇1 = J̇2 = 0, while φ̇1 = J1(t) = const , φ̇2 = J2(t) = const . Thus, τ (J1, J2)
is invariant under the flow and homeomorphic to the 2D-torus (φ1,φ2) ∈ T

2. We
will denote by T the invariant set formed by the family of all the tori τ (J1, J2)
(J1, J2) ∈ R

2.
The invariance of the tori τ (J1, J2) crucially relies on having set (q, p) as (q, p) =

(0, 0). We now wish to explore what will happen if, instead, we choose the initial
condition (q0, p0) close to, but not equal to (0, 0). For example, we can set q0 =
0, p0 �= 0, with |p0| < D and D small, and (J1,0, J2,0,φ1,0,φ2,0) chosen at will. We
then want to understand the future evolution, in particular of the actions J1(t), J2(t),
as a consequence of choosing initial conditions in the neighborhoodof, but not exactly
on the torus τ (J10, J20). Addressing this question requires the use of a mixture of
analytical as well as geometric arguments. Let us summarize some basic ones:

2.1 Existence of KAM Tori

We can demonstrate the existence of Kolmogorov–Arnold–Moser (KAM) tori for
a Cantor set (of non-zero measure) of initial conditions p0 along the line q = 0.
Decomposing the Hamiltonian as:

H(q,φ1,φ2, p, J1, J2) = H0(p, J1, J2) + εH1(q,φ1,φ2, p, J1, J2;μ) (5)

where H0 = 1
2 (p2 + J 2

1 ) + J2, H1 = ε (cos q − 1) (1 + μ (sin φ1 + cosφ2)), the
Hamiltonian H0 satisfies the iso-energetic non-degeneracy condition:

det

(
Hess(H0) ∇I (H0)

(∇I (H0))
T 0

)
= 0 (6)

where Hess(H0) is the 3 × 3 Hessian matrix of H0 with respect to I ≡ (p, J1, J2).
Thus, the necessary conditions for the Kolmogorov theorem [43] hold, namely:
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Theorem (Kolmogorov 1954) There exist positive constants ε0, γ, τ such that, for
|ε| < ε0, and (p0, J10) such that the frequenciesωp = (∂H0/∂ p)p=p0 = p0,ω1 = J1,
ω2 = 1 satisfy the Diophantine condition

|kpωp + k1ω1 + k2ω2| >
γ

kτ
(7)

where k = |kp| + |k1| + |k2|, the trajectory with initial conditions p(0) = p0,
J1(0) = J10), q(0) = 0, J2(0) = J20 ∈ R, as well as (φ1(0),φ2(0)) ∈ T

2 lies
in a three-dimensional torus, where all phase-space co-ordinates evolve
quasi-periodically with the frequencies (ωp,ω1,ω2).

The above theorem can be proven by the construction of the so-calledKolmogorov
normal form in the neighborhood of the chosen initial conditions. The value of γ
restricts the measure of initial conditions satisfying the Diophantine condition. By
number-theoretical arguments we find |p0| > D = O(γ), hence motions very close
to p0 = 0 cannot be quasi-periodic.

2.2 Semi-analytical (‘Melnikov’) Approach

In order to deal with non-quasiperiodic motions, very close to the torus p0 = 0, we
can try to approximate the evolution of the variables (φ1,φ2, J1, J2) by a model in
which the evolution in the variables (q(t), p(t)) is a priori modeled via some ‘near-
separatrix’ analytical approximation (qs(t; εs), ps(t; εs)) based on the pendulum
model (or, in general, the model of resonance giving rise to a particular form of the
separatrix). This strategy is explored heuristically in a well known review on Arnold
diffusion by Chirikov [13] and set in a rigorous base in [42]. It is based on the remark
that choosing (q0, p0) very close to the values (0, 0) leads to amotion in the variables
(q(t), p(t)) which can be modeled as a sequence of stochastic alterations between
pendulum librations or rotations, each with nearly conserved pendulum energy

hs(q, p) = εs = 1

2
p2 + ε(cos q − 1) (8)

with εs ≈ εs,0 = 0 (corresponding to the invariant torus (q, p) = (0, 0)). Figure1
exemplifies this approach. The figure shows the evolution of the trajectory with ini-
tial conditions q(0) = 0, φ1(0) = 0, φ2(0) = 0, p(0) = 5 × 10−5, J1(0) = 0.3

√
2,

J2 = 0, under the complete flow (2), with ε = 0.03 and μ = 0.01. Since the coupling
term between pendulum and the rest of the system has sizeO(με), withμ = 0.01 this
term is two orders of magnitude smaller than the ε cos q term defining the pendulum
separatrix. As a consequence, the ‘splitting’ of the separatrix will be quite small.
This means that there will be only a small error in approximating the evolution of
(q(t), p(t)) as if it was governed only by the pendulum Hamiltonian hs(q, p) (Eq.
(8)). Figure1 indicates that this is essentially correct. Denote by R(+), R(−) a pen-
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Fig. 1 Evolution of the orbit with initial conditions φ1(0) = 0, φ2(0) = 0, p(0) = 5 × 10−5,
J1(0) = 0.3

√
2, J2 = 1, under the flow of the Hamiltonian (2) with ε = 0.03 and μ = 0.01: p(t)

versus q(t) in panel (a) and (b), q(t) in panel (c),p(t) in panel (d), J1(t) in panel (e), in the time
interval t ∈ [0, 700]. f Evolution of the pendulum energy εs for the same orbit. In a the angle q(t)
is shown modulo 2π. The two red vertical lines in panels (c) to (f) are helping guides to the eye:
they indicate two different moments where the trajectory passes from the uppermost point of the
separatrix. All jumps in J1(t) occur at such passages

dulum rotation with the Hamiltonian hs(q, p) and with p > 0 or p < 0 respectively,
and by L(+), L(−) the upper and lower parts (again p > 0 or p < 0) of a librational
curve in the same Hamiltonian. Then, the evolution of p(t), q(t) in Fig. 1 can be
represented as a sequence of segments of pendulum librational or rotational curves.
Up to t = 700 we have

R(+), L(−), L(+), L(−), L(+), R(−), R(−), L(+), L(−), L(+), L(−), R(+), R(+), . . .

Denoting by Ts,i , i = 1, 2, . . . the time it takes to accomplish one segment, the times
Ts,i can be estimated as the times between two successive local extrema in Fig. 1c.
We find that Ts,i has value nearly always around Ts � 100. Also, using the values
q(ti ), p(ti ) at the times ti of the local extrema of the curve q(t), we can compute a
sequence of corresponding pendulum energies εi = hs(q(ti ), p(ti )) characteristic of
each segment.

Chirikov [13] proposed a model to study the qualitative properties of the mapping
(q(ti ), p(ti )) → (q(ti+1), p(ti+1)), or, equivalently, εi → εi+1, ti → ti+1, called, by
him the whisker mapping (‘whiskers’ meaning the separatrices of the torus (q, p) =
(0, 0)). Figure1f shows the first few transitions in the energy values εs . In every
step, εs(t) takes nearly constant value in a ‘plateau’, separated from the next plateau
by a rapid oscillation. These oscillations take place mid-way along each homoclinic
transition far from and back to the neighborhood of the torus (q, p) = (0, 0).

We now discuss how to exploit the above empirical information in order to model
the evolution in the remaining variables J1, J2, φ1, φ2 along such homoclinic tran-
sitions. The so-called ‘Melnikov approach’ consists essentially of the following
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Fig. 2 Evolution of the pendulum solution a qs(t), b ps(t), for the same initial condition as in
Fig. 1, namely qs(0) = 0, ps(0) = 5 × 10−5, but following the pendulum equations (Eq. (10)). c
Evolution of the action J1(t) under the equations of the Melnikov approximation (Eq. (9)). We
observe that J1(t) exhibits jumps in time which are qualitatively similar as those of the complete
model, shown in panel (e) of Fig. 1

approximation: in the interval ti < t < ti+1, we will evolve the remaining variables
according to the approximate system

φ̇1 = J1, J̇1 = εμ(cos qs(t) − 1) cosφ1

φ̇2 = 1, J̇2 = −εμ(cos qs(t) − 1) sin φ2
(9)

which is the same as the original system but with q(t), p(t) substituted with by the
solutions qs(t), ps(t) of the pendulum equations

q̇s = ps, ṗs = −ε sin qs (10)

with initial conditions qs = q(ti ), ps = p(ti ).
Figure2 shows the evolution under the approximate Eqs. (10) and (9), startingwith

the same initial condition as in Fig. 1, which belongs to the upper rotation domain
of the pendulum (q(0) = 0, p(0) > 0). Since we now integrate the exact pendulum
equations we obtain a periodic evolution of the angle q completing a circle at the
period T (εs) given by

Ts(εs) �
∫ 2π

0

dq√
2 (εs − ε(cos q − 1))

= 32√
ε
ln

( |εs |
ε

)
. (11)

However, the action variable J1(t) (Fig. 2c) undergoes abrupt jumps of size 10−3

every time when the pendulum variables are mid-way along accomplishing one
homoclinic transition.

The jumps in Fig. 2c are qualitatively quite similar to the jumps seen in the real
orbit (Fig. 1e). In fact, the real jumps can be easily modeled by one further simplifi-
cation: since all along the depicted solution J1(t) undergoes only a small (O(10−3))
variation around the initial value J10 = 0.3

√
2, we can approximate the solution of

the angular equation φ̇1(t) = J1(t) by φ1(t) = φ1,0 + J10(t − t0), where φ1,0 is the
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value of the angle φ1 at the starting time t0 of one homoclinic transition. We also
approximate the solution qs(t) by the one holding along the pendulum separatrix:

qs(t) ≈ 4 arctan
(

e
√

ε(t−t0−Ts/2)
)

, (12)

with Ts still given by Eq. (11) (this last approximation is not really needed, but makes
the computation easier with respect to the pendulum solution for the exact initial
conditions given in terms of elliptic functions). As shown in Fig. 3a, the separatrix
solution (12) fits the evolution of q(t) along the first homoclinic transition as obtained
numerically by the complete model (4) up to a time t ≈ 80, where the real orbit starts
its second homoclinic transition.Using the above approximations, all quantities in the
r.h.s. of the differential equation for J1 in the system (9) becomes explicit functions
of the time t . Then, the approximative solution J1(t) can be obtained by quadratures:

J (M)
1 (t) = J1(0) + εμ

∫ t

0

(
cos(4 arctan(exp(

√
ε(t ′ − Ts/2)))) − 1

)
cos(φ10 + J10t ′)dt ′

(13)
An integral of the form (13) is called a ‘Melnikov integral’. It has the distinguishing
feature that the integrand contains trigonometric functions cosφ, with φ = mqq +
m1φ1 + m1φ2, (mq , m1, m2) ∈ Z

3, for some of which the evolution is not linear in
time, as for example, the angleq which follows the near-separatrix pendulum solution
(13). Figure3b shows the comparison between the ‘Melnikov’ model J (M)

1 (t) and
the real evolution of the same variable up to the end of the first homoclinic transition,
showing an excellent fit for the observed jump of the action J1(t).

How can we understand this success of the ‘Melnikov approximation’? Of course
the answer is hidden in the properties of the quadrature (13). As a coarse remark,
by the equation for J̇1(t) in (9)), the evolution of J1(t) is determined by the
terms cos(q + φ1), cos(q − φ1) and cosφ1. We saw that φ1 evolves nearly linearly
φ1(t) ≈ φ1(0) + J10t , so the integral

∫ t
0 cos(φ1(t ′))dt ′ ≈ 1

J10
sin(φ1(0) + J10t) will

only produce some rapid oscillation in the evolution of J1(t). The remaining terms,
however, cos(q + φ1), cos(q − φ1) depend on the angle q, which evolves approxi-
mately by the pendulum trajectory of Eq. (12) (as shown in Fig. 3a). Now, the pen-
dulum trajectory spends most of the time near the unstable origin, hence we have
q̇ ≈ 0 there. On the other hand the speed q̇ in the middle of the homoclinic transition
can be estimated as q̇(t) ≈ 2

√
ε (equal to q̇s(t = Ts/2) in Eq. (12)). Thus, the curve

q(t) consists, essentially, of three parts, marked in Fig. 3a by A, B, and C respec-
tively. In the domains A,C the curve is nearly horizontal, and cos(q ± φ1) � cos(φ1),
thus the integrals

∫
cos(q ± φ) yield essentially the same oscillatory behavior as for

the integral cosφ1 alone. In the domain B, instead, we have a slower evolution of
the angle q − φ1: in our example we have q̇ − φ̇1 � 2

√
ε − J10 = −0.07785 . . . in

B, compared to q̇ − φ̇1 � √
2ε = 0.34 . . ., J10 = 0.4242 . . . in A or C. As a con-

sequence, the curve cos(q(t) − φ1(t)) develops an approximate ‘plateau’ near the
time t = Ts/2 � 59 (Fig. 3c). Since the integrand of the Melnikov integral in (13)
temporarily stabilizes to a constant value, the integral will give a locally linear evo-
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Fig. 3 a The evolution of the variable q(t) along the first homoclinic transition, as obtained by
numerical integration in the completemodel (4) (points), andwith themodel ofEq. (12) (solid curve).
b The first observed numerical jump in J1(t) (points) against the prediction of the model of Eq. (13).
cThe curve cos(q(t) − φ1(t)) in the time interval corresponding to the first jump.dLeft axis: several
jumps in the variable J1(t) comparedwith (right axis) the evolution of cos(q(t) − φ1(t)). The jumps
take place at precisely those points where the phase q − φ1 forms a local plateau, departing from a
pure oscillation

lution of J1(t), thus causing a quick jump, lasting roughly as the time duration of B.
After exit from B, the J1(t) returns to an oscillatory evolution, which keeps up to the
next homoclinic transition. More jumps then occur at each successive homoclinic
transition, as shown in Fig. 3d.

Comparing the above picture with Fig. 1e, we do now interpret qualitatively the
nature of the jumps, butwe still need to understandwhy the jumps differ in size and/or
sign. The sequences of times where jumps occur can be estimated by ti+1 − ti ≈
Ts(εs,i ), with Ts given by Eq. (11). These times are of similar order, but different one
from the other even for a small change in εs (compare the times Ts when εs = 10−5

or 10−3). As a consequence, at the starting point of each homoclinic transition, the
orbit is at a different value of the starting angle φ1,0. However, as shown in Fig. 4,
according to the value ofφ1,0(ti )wecanobtain jumps in J1 of various sizes, positive or
negative. Under the assumption that the sequence φ1,0(ti ) is random (‘random phase
approximation’), this leads to a random walk model for the variations of J1(t). In
reality, long correlations can survive in the sequenceφ1,0(ti ), and the diffusion in J1(t)
can partly loose its normal character (typically the dynamics becomes sub-diffusive,
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Fig. 4 Left: the jumps in the variable J1 obtained through formula (13) by changing the initial
angle φ0 according to the values indicated in the figure. Right: The jump in the pendulum energy
εs = p2/2 + ε(cos q − 1) as computed for the numerical orbit in the complete model (points) and
with the ‘Melnikov model’ of Eq. (14)

see [50]). Also, using the Melnikov approach, we may compute a continuous in time
approximation for the evolution of the energy εs(t)

εs = ε − 1

2
(J (M)

1 )(t))2 − J (M)
2 (t) − εμ (cos(qs(t)) − 1) (sin(φ10 + J10t) + cos(φ20 + t)) ,

(14)
where J (M)

2 (t) is the ‘Melnikov’ model for the evolution of the action J2, analogous
to the model (13) for the action J1. The right panel in Fig. 4 shows the evolution of
the pendulum energy εs(t) for the first jump in the real orbit and as obtained by the
model (14), showing again a good fit. Then using all the above approximations, we
can arrive at a heuristic model for Chirikov’s ‘whisker map’. While deterministic, in
practice this model leads to nearly random sequences εi , φ1,i , that is, to a stochastic
process for the evolution of the orbit in the action space. Estimating the value of
the diffusion coefficient relies on some semi-analytical approaches, as discussed in
Sects. 3 and 4 below.

As a final comment, one can remark that the ‘plateaus’ of the curve cos(q − φ1),
responsible for the jumps Fig. 3d, are due to the tuning of the values of q̇ and φ̇1 � J10
at region B of Fig. 3. This tuning is rather exceptional, and was essentially imposed
for illustration purposes by the choice of the initial condition J10. Generic initial
conditions instead (as, for example, choosing J10 one order of magnitude larger)
will destroy such tuning. Does this imply that there is no more drift in action space
by jumps as the above? As will be discussed in Sect. 4, we can make a number of
steps of perturbation theory, seeking to eliminate altogether the now useless combi-
nations cos(q − φ1), cos(q + φ) and prove perpetual stability for the actions J1 and
J2. However, doing so generates new ‘dangerous’ harmonics along the normaliza-
tion process (see, for example, [53]). As higher order harmonics cos(mqq + m1φ1)

are generated by the normalization, there will eventually appear some harmonics
causing important jumps. Recalling that the jumps always take place in the domain
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B of Fig. 3a, where the condition q̇ ≈ 2
√

ε should hold, the tuning occurs for a har-
monic satisfying 2mq

√
ε + m1 J10 ≈ 0. This implies a ratio |m1|/|mq | = O(1/

√
ε).

In Arnold’s model, such a harmonics will be generated for the first time at the nor-
malization order s0 = |m1| + |mq | = O(1/

√
ε). Then, it turns out that there is an

optimal normalization order beyond which the critical harmonic can no longer be
removed from the Hamiltonian. Usual normal form estimates (see Sect. 4) lead to
sopt = O(1/μb), for a positive exponent b. The size of the harmonic at optimal order
will be O(exp(1/μb)), i.e., exponentially small in 1/μ. This, yields, in general, an
exponentially small drift velocity in action space.

An important remark regarding the precise estimates on the speed of Arnold
diffusion is that the latter depend crucially on whether a system is a priori stable or
a priori unstable (see also Sect. 3 below). This distinction has been emphasized in a
central paper on the subject by [11] (hereafter CG). That paper provides a rigorous
proof of the occurrence ofArnold diffusion in a priori unstable systems and also along
the simple resonances of a priori stable systems. It also discusses lower bounds on
the times necessary for making O(1) excursions in action space. These bounds are
estimated as exponentially small in 1/μ2.1

2.3 Geometric Approach

The arguments exposed so far justify local variations in the values of the actions J1
and J2, but provide no theory for the long (O(1)) excursions of the trajectories in the
action space. Demonstration that such excursions are possible requires, instead, the
use of some geometric method. A standard method relies on the existence of orbits
shadowing the heteroclinic intersections between the stable and unstable invariant
manifolds emanating from the family of hyperbolic tori lying in the phase space of
the system under study.

In Arnold’s example, these are the tori τ (J1, J2) defined in Eq. (3), which are quite
distinct from the 3-dimensional KAM tori referred to Sect. 2.1. In particular, along
the tori τ (J1, J2) we always have the invariance q(t) = p(t) = 0, corresponding to
the hyperbolic fixed point of the pendulum. However, contrary to what we saw in the
previous subsection, in the geometric method we seek to characterize the motions
in the neighborhood of a hyperbolic torus τ (J1, J2) via the study of the invariant
asymptotic manifolds emanating from the torus.

Consider first the case μ = 0.We define the stable and unstable manifolds,WU
(0,0),

W S
(0,0) of the unstable fixed point of the pendulum as the set of all initial condi-

1 Despite the appearances, the paper by CG contains several parts accessible to physicists and
astrodynamicists. As an exercise, readers are invited to study the analogy between several rigorous
definitions given in CG and the corresponding heuristic definitions given in [13], which is addressed
to physicists. For example, pendulummotions close to the upper and lower branches of the pendulum
separatrix correspond to the ‘separatrix swings’ in CG, the region B where the jumps occur is called
‘origin of the separatrix’, the phase sequences φ1,i , i = 1, 2, . . . of the whisker map are called
‘phase shifts’ (CG Sect. 4, etc.).
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tions (q0, p0)whose time evolution leads to orbits (q(t; q0, p0), p(t; q0, p0) tending
asymptotically to the unstable point (0, 0) as t → −∞ (for the unstable manifold)
or t → ∞ (for the stable manifold):

WU
(0,0) =

{
(q0, p0) ∈ T × R : lim

t→−∞(q(t; q0, p0), p(t; q0, p0)) = (0, 0)

}
(15)

W S
(0,0) =

{
(q0, p0) ∈ T × R : lim

t→∞(q(t; q0, p0), p(t; q0, p0)) = (0, 0)
}

.

For μ = 0 the setsWU
(0,0),W S

(0,0) coincide, as they both correspond to the pendulum
separatrix. Consider, now, the following set of initial conditions of the full problem:

Q0 : J1(0) = J10, J2(0) = J20, φ1(0) = φ10, φ2(0) = φ20

(q(0) = q0, p(0) = p0) ∈ W S
(0,0) .

(16)

Since μ = 0 the variables (q, p) evolve independently from the variables (φ, J ).
Since (q0, p0) ∈ W S

(0,0), (q(t), p(t)) will tend to (0, 0) as t → ∞, while (φ, J ) will
have an identical evolution as in the torus τ (J1, J2). Hence, the trajectory tends to
the torus τ (J10, J20) as t → ∞. We then define the stable and unstable manifolds of
a torus τ (J1, J2) as:

WU
τ (J1,J2) =

{
Q0 ∈ T

3 × R
3 : lim

t→−∞ dist (Q(t;Q0), τ (J1, J2)) = 0

}
(17)

W S
τ (J1,J2) =

{
Q0 ∈ T

3 × R
3 : lim

t→∞ dist (Q(t;Q0), τ (J1, J2)) = 0
}

whereQ(t;Q0) ∈ T × R
3 denotes the trajectory (in all six variables) corresponding

to the initial condition Q0.
We saw that the invariant tori τ (J1, J2) (with q = p = 0) continue to exist when

μ �= 0. Is it, however, possible to find initial conditions Q0 satisfying the definition
of the stable and unstable manifoldsW S

τ (J1,J2)
,WU

τ (J1,J2)
when μ �= 0? The answer to

this question is affirmative. In fact, a local normal form around the torus τ (J1, J2)
allows to give in parametric form initial conditions in the neighborhood of the torus
which satisfy themanifold definition. Then, propagating these local initial conditions
backwards of forwards in time, respectively, we can unfold the whole set of initial
conditions belonging to the manifolds W S

τ (J1,J2)
, WU

τ (J1,J2)
in the perturbed case as

well.However, as arguedbyArnold ([2]; see also [11]), themanifolds emanating from
different tori in the perturbed system μ �= 0 have a property not holding when μ = 0,
namely, manifolds of tori corresponding to the same energy but being sufficiently
close to each other can intersect heteroclinically, i.e. the unstable manifold of one
torus can interest with the stable manifold of a nearby torus and vice versa. Figure5
shows schematicallywhat happenswith themanifolds of the tori τ (J1, J2) inArnold’s
model (2): Consider a fixed value of the energy E . On one such torus we have
q = p = 0, thus E = J 2

1 /2 + J2. For every initial condition with J1 = J1,0 we can
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Fig. 5 Schematic representation of Arnold’s mechanism: Top: When μ = 0, the ‘whiskers’ (stable
and unstablemanifolds) of three nearby hyperbolic 2D tori labeled by the actions J10, J ′

10 and J ′′
10 are

joined smoothly as pendulum separatrices. Middle: For μ �= 0, the unstable manifolds (red) of one
torus intersect heteroclinically with the stable manifolds (blue) of a nearby torus. This establishes
a ‘chain’ of heteroclinic connections. Bottom: There is a true orbit (purple) ‘shadowing’ the above
chain, that is, undergoing Arnold diffusion
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specify J2 = E − J 2
1 /2, and thus define the torus τ (J1 = J10, J2 = E − J 2

1 /2. In
reality, since J2 is a dummy action variable measuring the change of energy in the
non-autonomous system (1), which is equivalent to the system (2), only the action J10
truly labels different tori. Hence, for different values of J10 we obtain a family of tori,
denoted by τ (J10, 0), for different values of the constant J10. The top panel of Fig. 5
shows three such tori, τ (J10, 0), τ (J ′

10, 0), τ (J ′′
10, 0), corresponding to three points on

the axis J1 of the figure. In reality, the tori are not points, but they are parameterized
by the angles φ1,φ2 given by all possible trajectories φ1(t) = φ10 + J10t , φ2 = t .
These angular variables are not included in the schematic Fig. 5.

Now, from every torus τ (J10, 0) emanate the stable and unstable manifolds
W S

τ (J10,0)
, WU

τ (J10,0)
. In the case μ = 0, we saw that these manifolds join each other

smoothly, as they actually coincide with the pendulum separatrix. Hence, as shown
in the top panel of Fig. 5, themanifolds of different tori cannot intersect, i.e.,WU

τ (J10,0)

cannot intersect withW S
τ (J ′

10,0)
,WU

τ (J ′
10,0)

cannot intersect withW S
τ (J ′′

10,0)
, etc., no mat-

ter how close the tori τ (J10, 0), τ (J ′
10, 0), τ (J ′′

10, 0) are one to the other. However,
this changes when μ �= 0, and it can be demonstrated that if τ (J10, 0) is taken suf-
ficiently close to τ (J ′

10, 0), the manifolds WU
τ (J10,0)

and W S
τ (J ′

10,0)
can intersect. The

middle panel of Fig. 5 shows such an intersection, at the point H, called a heteroclinic
point. The sequence of the heteroclinic points H, H’, H” of the middle panel of Fig. 5
will be called a ‘heteroclinic chain’. The sequence of tori whose manifolds yield
the points H, H’, H” are known with various names, namely, the Arnold chain of
‘whiskered tori’ (the manifolds are the ‘whiskers’), or the ‘diffusion path’ (see [11]).

Consider, finally, the past and future trajectories with initial conditions corre-
sponding to the points H, H’, H”, etc. The trajectory from H belongs to both the
invariant manifolds WU

τ (J10,0)
and W S

τ (J ′
10,0)

. Thus, in the limit t → ∞ the trajectory
tends to the torus τ (J10, 0), while, in the limit t → ∞ the trajectory tends to the
torus τ (J ′

10, 0). This implies that this particular trajectory undergoes no large excur-
sion in the action space, since its past and future is confined between two nearby
asymptotic limits. Similarly, the past and future from the heteroclinic point H’ con-
nect the tori τ (J ′

10, 0) with τ (J ′′
10, 0), those from the heteroclinic point H” connect

the tori τ (J ′′
10, 0) with τ (J ′′′

10, 0), etc., but the corresponding trajectories make only
bounded excursions in the action space. However, employing a so-called shadowing
lemma, it is possible to demonstrate that there is one continuous in time trajec-
tory of the system which remains piece-wise close (i.e. ‘shadows’) any one of the
distinct heteroclinic trajectories from the points H , H ′, H ′′,…Such a trajectory is
shown schematically in the last panel of Fig. 5. It is precisely this trajectory which
materializes the ‘Arnold’s mechanism’ referred to in the introduction. Extending the
heteroclinic chain H, H ′, H ′′, . . . , H (n), . . . to include more heteroclinic points, one
can find a trajectory connecting the neighborhoods of the initial torus τ (J10, 0) and
another torus τ (J (n)

10 , 0) located at arbitrarily large distance from τ (J10, 0) (possibly
limited only by the requirement of the two tori being isoenergetic).

Does the ‘Arnold mechanism’ interpret the long-term evolution of the numerical
trajectory used in our example in the previous subsection? Figure6 suggests this to be
so, provided that the trajectory is integrated for timesmuch longer than those referred
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Fig. 6 Left: Real (non-schematic) orbit shadowing the intersecting manifolds of nearby tori in
Arnold’s model, obtained by plotting in the (p, q) × J1 space the same orbit as in Fig. 1, for the
integration time t = 700. Center and Right: the projection of the orbit on the (φ1, J1) plane at two
different integration times, t = 700 and t = 150000

to in the previous subsection. The left panel shows how the trajectory produced by
integration of the complete model (2), and with the same initial conditions as in
Fig. 1 shadows the whiskers of nearby tori τ (J1, J2). The middle and right panels
show the projection of the trajectory in the plane (φ1, J1). Clearly, the trajectory
remains piece-wise close to various rotational tori (corresponding to different values
of J1), however, as the integration time extends from t = 700 to t = 1.5 × 105 the
excursion in J1 extends from a total size ∼10−2 to nearly ∼10−1. Note that as the
trajectory reaches domains further and further away from this particularly selected
initial condition, the drift in action space actually gets slower (see last paragraph of
Sect. 2.2).

As a final remark, the above geometric picture of intersecting manifolds can be
extended, from the chain of nearby tori, to include thewhole invariant set T of the tori
τ (J1, J2). This is a four-dimensional subset ofR2 × T

2,which isnormally hyperbolic
(see [21] for definitions). Normal hyperbolicity implies the existence of a stable and
unstable manifold for the whole invariant set T . Since, in Arnold’s example, T is
just foliated by the tori τ (J1, J2), the manifolds WU

T , W S
T are just the union of the

unstable and stable manifolds of all the tori. Homoclinic orbits can then be described
by a ‘scattering map’ indicating how a point on T is mapped asymptotically in time
to another point on T via a doubly-asymptotic orbit.

3 A Priori Stable Systems—Nekhoroshev Theory

Consider the following Hamiltonian in action-angle variables, which, according to
Poincaré [56], represents the “fundamental problem of dynamics”:

H(φ, I ) = H0(I ) + εH1(φ, I ) (18)

with φ ∈ T
n , I ∈ R

n .
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For ε = 0 the system is integrable H = H0(I ) and the phase space is foliated
by invariant tori labeled by the constant actions I . On each torus the angles evolve
linearly with the frequencies ω(I ) = ∇I H0(I ). Periodic orbits, or, in general, tori of
dimensionn′ < n correspond to values of the actions I forwhich the frequenciesω(I )
satisfy n − n′ commensurability conditions. However, all these low-dimensional
objects are neutral in stability, and there are no separatrices or any other type of
asymptotic manifolds (‘whiskers’) associated to them. In other words, there is no
in-built hyperbolicity in the Hamiltonian H0(I ). Hence, invariant objects of (par-
tially) hyperbolic character can only be born by setting ε �= 0. Such systems were
thus called (by CG) ‘a priori stable’.

The lack of invariant phase space objects with inherent hyperbolicity generates
several challenging new questions regarding Arnold diffusion. We now summarize
some of these questions as well as known results related to Arnold diffusion in a
priori stable systems.

3.1 Nekhoroshev Theory and Exponential Stability

Whatever the mechanism possible to cause Arnold diffusion in an a priori stable
system, the speed of the drift in action space in such a system is bounded before all
by the Nekhoroshev theorem [3, 4, 48, 55, 57]:

Nekhoroshev theorem: Assume a Hamiltonian of the form (18) with ε > 0, with H
analytic in a complex extension D of the set D × T

n , where D ⊂ R
n is open, and

H1 bounded. Assume that H0 satisfies suitable steepness conditions. Then, there are
positive constants a, b, ε0 such that, for ε < ε0 and for all initial conditions in D,
under the flow of the Hamiltonian H we have:

|J (t) − J (0)| < εa for all times t < TN with TN = O
(ε0

ε
exp((ε0/ε)

b)
)

(19)

We refer to TN as the ‘Nekhoroshev time’. A detailed discussion of the meaning and
importance of ‘steepness’ in the above theorem is made in [12, 39, 60]. We briefly
refer to steepness in Sect. 3.2 below.

Demonstration of the Nekhoroshev Theorem (see [34] for a tutorial) requires
combining an analytical with a geometric part. The analytical part deals with the
local construction of a ‘Nekhoroshev normal form’, whose remainder at the optimal
normalization order turns to be exponentially small. On the other hand, the geometric
part deals with the construction of a set of subdomains D1, D2, . . . ⊂ D defined so
that: (i) a different local normal form with exponentially small remainder can be
constructed in each domain, and (ii) the union of all domains provides a covering
of D. The structure of resonant manifolds (see below), depending on the form of
the integrable part H0(I ) of the Hamiltonian, as well as the size of the analytic-
ity domain around each manifold, determined by the form of H1(φ, I ), are crucial
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factors in the appropriate definition of the domains Di . In particular, the domains
Di must have size depending algebraically on ε, i.e. diam(Di ) = O(εai ), ai > 0.
One then demonstrates that this dependence allows to obtain a covering of D by
combining many such domains when ε is arbitrarily small (see [54] for a heuristic
argument). Now, the size of the optimal remainder of each local normal form scales
as ||R|| = O

(− exp((ε0,i/ε)bi )
)
, for some positive constant ε0,i and positive expo-

nent bi . Choosing the worst possible combination ai , bi and εi,0 from those holding
in each domain allows to arrive at the global bound (19). In practice, locally we
can obtain better bounds using the local parameters ai , bi , ε0,i . It turns out that the
exponents a, b depend on (i) the number of degrees of freedom n, (ii) the so-called
steepness indices holding within the domain (see [39] for definitions) and, finally,
(iii) the multiplicity of the local resonance considered (see below).

It is noteworthy that, while in the proof of the theorem the analytical part plays a
minimal role, the actual construction of the Nekhoroshev normal form in any explicit
application implies reaching a very high order of normalization, involving typically
millions of operations that can only be carried outwith the aid of a computer-algebraic
program. Starting from the sixties [15, 16, 35, 36], such programs dealt first with
the simpler case of systems with elliptic equilibria, such as the celebrated Hénon-
Heiles system [41]. In such systems, exponential estimates can be obtained without
the need of a geometric construction as the one of the Nekhoroshev theorem. Well
known applications in Celestial Mechanics have been given, referring, for example,
to the long term stability of the Trojan asteroids of Jupiter [9, 23, 33, 47], the spin-
orbit problem [59], and the J2 problem of satellite motions [18, 61]. On the other
hand, computing the optimal Nekhoroshev normal form in a generic Hamiltonian of
the form (18) has been possible so far only in simple models with n = 3 degrees of
freedom [14, 24, 26, 40]. Such computations allow for a direct comparison between
‘semi-analytical’ (i.e. by the remainder of theNekhoroshev normal form) and numer-
ical results on the speed of Arnold diffusion, as well as on the adiabatic evolution
of the action variables in a priori stable systems. Most notable among the numerical
experiments are those carried over the years by the group of Froeschlé, Guzzo and
Lega [30, 37, 39, 44], which have given clear evidence of the occurrence of Arnold
diffusion in a priori stable systems. A comparison of the exponents a, b found by
the Nekhoroshev normal form construction and by the numerical experiments has
shown a very good agreement. This has extended also to estimates on the coefficient
of Arnold diffusion as well as to the modeling of the jumps carried by the adiabatic
action variables along the heteroclinic transitions taking place in single resonance
domains. In the sequel we give a summary of the above results with the help (as in the
previous section) of a simple example of a priori stable system with n = 3 degrees
of freedom.



Arnold Diffusion and Nekhoroshev Theory 181

3.2 A Simple Example

Consider the 3DOF Hamiltonian in action-angle variables:

H = H0 + εH1 = I 21
2

− I 22
2

+ I 32
3π

+ 2π I3 + ε

4 + cosφ1 + cosφ2 + cosφ3
. (20)

The Hamiltonian (20) has been used in [40] in the study of the evolution of the
adiabatic action variables. An analogous 4D symplectic mapping was used in [39]
for the study of the effects of steepness on the stability of the orbits.

The flow corresponding to the integrable part of (20)

H0 = I 21
2

− I 22
2

+ I 32
3π

+ 2π I3 . (21)

is given by İi = 0, i = 1, 2, 3 and φ̇1 = ω0,1 = I1, φ̇2 = ω0,2 = −I2 + 1
π

I 22 , φ̇3 =
ω0,3 = 2π. Thus, all trajectories lie on invariant tori labeled by the actions Ii or the
corresponding frequencies ω0,i .

Let k ≡ (k1, k2, k3) ∈ Z
3. We call resonant manifold RM(k1, k2, k3) associated

to the Hamiltonian H0 the two-dimensional manifold

RM(k1, k2, k3) :=
{
(I1, I2, I3) ∈ R

3 : (22)

k · ω0(I ) = k1 I1 + k2(−I2 + 1

π
I 22 ) + k3 2π = 0

}
.

We call energy manifold E(E) the two-dimensional manifold

E(E) :=
{
(I1, I2, I3) ∈ R

3 : H0(I ) = 1

2
(I 21 − I 22 ) + I 32

3π
+ 2π I3 = E

}
. (23)

Figure7a shows a part of the energy manifold E(E) for E = 1 as well as parts
of the two resonant manifolds RM(1, 1, 0) and RM(4,−1,−1). The set of all
curves formed by the intersection of all resonant manifoldsRM(k), k ∈ Z

3, |k| �= 0
with the energy manifold E(E) is called the Arnold web (or ‘web of resonances’). In
our example, the definition of the resonant manifolds via Eq. (22) does not depend
on I3. Thus all resonant manifolds intersect normally the plane (I1, I2) at curves
given by Eq. (22). Figure7b shows some of these resonant curves marked with the
corresponding integers (k1, k2, k3).

The set of the resonant curves defined by all possible (k1, k2, k3) ∈ Z
3, |k| �= 0

is dense in the square S(I1, I2) depicted in Fig. 7b: for any open, small whatsoever,
neighborhood Si ⊂ S(I1, I2) there exist integers(k1, k2, k3) such that the correspond-
ing resonant curve crosses Si . However, not all these resonances are equally important
for dynamics. This is evidenced by computing a stability map in the same square
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Fig. 7 a Part of the energymanifold E(E) in themodel (21) for E = 1 (yellow), intersected by parts
of the resonant manifolds RM(1, 1, 0) and RM(4,−1,−1) (orange). b Projection of the Arnold
web of resonances on the (I1, I2) plane. For the resonance (1, 1, 0) the corresponding separatrix
borders are also displayed as computed theoretically for ε = 0.05 (see text). c FLI stability map
for the Hamiltonian (20) with ε = 0.05. The web of resonances is visualized through the detection
of weakly chaotic orbits at the borders of each resonance. d and e Details of figure (c) around
the resonance junctions A and B, respectively, where the resonant manifolds RM(1, 3, 0) and
RM(3, 0,−1) intersect

S(I1, I2)via the use of a chaotic indicator. Figure7c shows the stabilitymapcomputed
by the Fast Lyapunov Indicator (FLI, [28]) in a grid of initial conditions for (I1, I2),
setting initially I3 = φ1 = φ2 = φ3 = 0, and for an integration time t = 1000. We
immediately note that the FLI map in Fig. 7c is able to depict the structure of the
Arnold web in great detail. This fact, first found in [29] has played a crucial role in
the numerical study of Arnold diffusion in a priori stable systems.

In Fig. 7c we see that the most prominent structures are related to low order
resonances (|k| = |k1| + |k2| + |k3| small). Also, we notice that, for some resonances
(e.g. (1, 1, 0)), the FLI map shows a double set of curves going nearly parallel one to
the other along the resonance, with a blue zone between the curves. Other resonances,
instead, are identified by a single line (yellow). This distinction depends on the sign
of the Fourier coefficient of the corresponding resonant harmonics in the function
H1 of Eq. (20). We have:
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1

4 + cosφ1 + cosφ2 + cosφ3
=

∞∑

k1,k2,k3=−∞
hk1,k2,k3 cos(k1φ1 + k2 cosφ2 + k3φ3)

where hk1,k2,k3 can be easily computed expanding the denominator in Taylor series
and using the trigonometric reduction formulas. Consider a toyHamiltonian inwhich
only one harmonic is isolated:

Hres = I 21
2

− I 22
2

+ I 32
3π

+ 2π I3 + εhk1,k2,k3 cos(k1φ1 + k2 cosφ2 + k3φ3) . (24)

Such a model will be obtained by just performing one step of perturbation the-
ory eliminating from the Hamiltonian (20) all other harmonics except for the res-
onant one (see Sect. 4). Now, the Hamiltonian (24) is integrable. To show this,
assume (without loss of generality) k1 �= 0. Consider two linearly independent inte-
ger vectors m, n ∈ Z

3 such that m · k = n · k = 0 (for example m = (k2,−k1, 0),
n = (k3, 0,−k1)). Consider the canonical transformation (φ1,φ2,φ3, I1, I2, I3) →
(φR,φF1,φF2, IR, IF1, IF2) defined by

φR = k · φ,φF1 = m · φ,φF2 = n · φ ,

as well as the inverse of the equations

I1 = k1 IR + m1 IF1 + n1 IF2,

I2 = k2 IR + m2 IF1 + n2 IF2, (25)

I3 = k3 IR + m3 IF1 + n3 IF2 .

Substituting these expressions into (24) we arrive at:

Hres = H0(IR, IF1, IF2) + εhk1,k2,k3 cos(φR) . (26)

Since the angles φF1,φF2 are ignorable, the above model has two integrals of motion
IF1, IF2 besides the energy. We are interested in studying the behavior of the model
Hres in a neighborhood around values (I1∗, I2∗, I3∗) which satisfy the resonance
exactly. Setting Ii = Ii∗ + Ji , i = 1, 2, 3 and substituting into (24) we arrive at:

H0(J ) = H0(I∗) + ∇I H0(I∗) · J + 1

2

3∑

i=1

3∑

j=1

∂2H0(I∗)
∂ Ii∂ I j

Ji J j (27)

+ 1

6

3∑

i=1

3∑

j=1

3∑

l=1

∂3H0(I∗)
∂ Ii∂ I j∂ Il

Ji J j Jl + · · · .

The constant term H0(I∗) can be omitted. The term ∇I H0(I∗) · J has the form
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∇I H0(I∗) · J = (k · ω∗)JR + (m · ω∗)JF1 + (n · ω∗)JF2 = (m · ω∗)JF1 + (n · ω∗)JF2 .

where ω∗ denotes the vector of the resonant frequencies ωi∗ = ωi (I∗), and the vari-
ables JR, JF1, JF2 are defined as JR = IR − IR∗, JF1 = IF1 − IF1∗, JF2 = IF2 −
IF2∗ with ⎛

⎝
IR∗
IF1∗
IF2∗

⎞

⎠ =
⎛

⎝
k1 m1 n1

k2 m2 n2

k3 m3 n3

⎞

⎠

−1 ⎛

⎝
I1∗
I2∗
I3∗

⎞

⎠

The frequencies ω∗ satisfy k · ω∗ = 0, hence the transformed Hamiltonian contains
linear terms only for the ‘fast’ action variables JF1, JF2. Instead, the resonant action
JR appears in the Hamiltonian only in quadratic terms (or of higher degree) in the
actions. Setting the integrals as JF1 = 0, JF2 = 0 implies the relations IF1 = IF1∗,
IF2 = IF2∗, that is:

I1 = k1 IR + m1 IF1∗ + n1 IF2∗
I2 = k2 IR + m2 IF1∗ + n2 IF2∗ (28)

I3 = k3 IR + m3 IF1∗ + n3 IF2∗

Thus, themotion in all three action variables under the flow of themodel Hamiltonian
(24) is determined by the only evolving action, namely IR , and it is confined along a
line L(I∗) in the space (I1, I2, I3) defined parametrically by Eq. (28). The projection
of the line L(I∗) on the plane (I1, I2) is given by

I2 = 1

k1
(−k2 II + (k2m1 − k1m2)IF1∗ + (k2n1 − k1n2)IF2∗) (29)

Also, the only non-ignorable angle in the model Hamiltonian of the resonance is
φR ∈ T. The set PF (I∗) = L(I∗) × T is called plane of fast drift. On this plane the
motion is described by a pendulum-like Hamiltonian in the local variables (φR, JR).
The Eqs. (28) imply JR = (k · J )/(k · k). Then, the quadratic term in the actions in
(27) takes the form:

1

2

3∑

i=1

3∑

j=1

∂2H0(I∗)
∂ Ii∂ I j

Ji J j = 1

2
β(I∗)J 2

R with β(I∗) = 1

k2
(M(I∗)k) · k (30)

where M(I∗) is the 3 × 3 Hessian of the Hamiltonian H0 calculated at the point I∗

Mi j (I∗) =
(

∂2H0

∂ Ii∂ I j

)

I=I∗

Similarly, the cubic term in the actions takes the form (1/3)γ(I∗)J 3
R with
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γ(I∗) = 1

2|k|3/2
3∑

i=1

3∑

j=1

3∑

l=1

(
∂3H0(I∗)
∂ Ii∂ I j∂ Il

)

I=I∗
ki k j kl (31)

Hence, apart from constants we have

Hres = 1

2
β(I∗)J 2

R + 1

3
γ(I∗)J 3

R + εhk cos(φR) (32)

where, in the model (21) we get:

β(I∗) = k2
1 + k2

2

(
2I2∗
π

− 1

)
, γ(I∗) = k3

2

π
(33)

Except for the case k1 = k2 and I2∗ → 0, the coefficient β(I∗) is in general a O(1)
quantity. Then, taking JR in a domain of size O(ε1/2), the term 1

2β(I∗)J 2
R is more

important than the term 1
3γ(I∗)J 3

R in Hres . This means that Hres (ignoring cubic
terms) becomes a pendulum Hamiltonian with separatrices extending in a domain
JR,min ≤ JR ≤ JR,max estimated by:

JR,min � −2

(
ε

|β(I∗)|
)1/2

, JR,max � 2

(
ε

|β(I∗)|
)1/2

. (34)

In reality, the motion very close to the separatrix will be weakly chaotic, due to the
fact that, as discussed below, the remaining resonances can be eliminated only up
to an exponentially small remainder, and hence there is some degree of chaos due
to the interaction of these resonances with the principal one (k1, k2, k3). The motion
along the separatrix-like thin chaotic layer of the resonance can be projected also on
the plane (I1, I2). The projection is constrained in a segment along the line L(I∗),
which represents the intersection of the plane of fast drift with the plane (I1, I2). In
particular, the motion along the separatrix layer projects to a linear segment given by
Eq. (28), setting IR = IR∗ + JR , and varying JR in the limits JR,min ≤ JR ≤ JR,max .

We are now able to understand the structure of the FLI map shown in Fig. 7c. Let
I∗ be one point along the resonance (k1, k2, k3). Since in the computation of the FLI
we have set the initial conditions φi = 0, i = 1, 2, 3, the FLI map intersects the plane
of fast drift crossing the point I∗ at the valueφR = 0.Whenever the coefficients β(I∗)
and hk1,k2,k3 have the same sign, the pointφR represents the unstable equilibriumpoint
of theHamiltonian Hres . One has JR = 0 there, thus, byEq. (28)we get a unique point
on the FLImap, given by I1 = I1∗, I2 = I2∗. On the contrary, when β(I∗) and hk1,k2,k3
have opposite signs, the point φR corresponds to the stable equilibrium point of the
Hamiltonian Hres . Then, the line φR = 0 on the fast drift plane crosses the separatrix
layer approximately at the values JR = JR,min and JR = JR,max . Thus, by Eq. (28)we
get two point on the FLI map, given by I1 = I1∗ + k1 JR,min , I2 = I2∗ + k2 JR,min ,
and I1 = I1∗ + k1 JR,max , I2 = I2∗ + k2 JR,max . Joining the two families of points
representing the separatrices for different points I∗ along the same resonance yields
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two curves on the plane (I1, I2) which follow nearly parallelly the curve of the
resonance, having between themselves a O(ε1/2) distance. Figure7 shows the two
curves marking the borders of the resonance (1, 1, 0), as computed by the above
formulas. This fits very well the borders found by the FLI map of Fig. 7c. The blue
zone between the two borders corresponds to regular orbits, which are the libration
orbits of the pendulum for initial conditions inside the separatrices.

In general, fixing a certain model H0, we have sign[β(I∗)] = sign[(M(I∗)k) · k].
When the quadratic form (M(I∗)k) · k is positive definite, β(I∗) has always the same
sign, independently of the resonant vector k. In this case, whether the separatrices
intersect with the chosen section at a single or double curve depends only on the
sign of the coefficient hk of the Fourier harmonic cos(k · φ) in H1. On the contrary,
if the Hessian matrix M(I∗) is not positive definite, the sign of β(I∗) depends on the
value of I∗ and on the choice of resonance, i.e., of the vector k. In the model (21), we
readily find that M(I∗) is positive definite in the semi-plane I2∗ > π/2, while it is not
in the semi-plane I2∗ < π/2. In the latter one, the sign of β depends on the particular
choice of resonance. For example, for the resonance k = (1, 1, 0) there is no change
of sign of β(I∗) across the two semi-planes. For all other resonances k = (1, k2, 0),
k2 > 1, β(I∗) changes sign, instead, at the value I2∗ = (π/2)(1 − k2

2/k2
1), a fact

easily verified by carefully inspecting the FLI map of Fig. 7.
Besides graphical consequences for the FLI maps, positive-definiteness (or not)

of the Hessian matrix M(I∗) affects several aspects of the dynamics: an important
aspect regards the dynamics around resonance junctions. In the case with n = 3
DOF, we consider points I∗ for which there exist two linearly independent non-zero
integer vectors k(1), k(2) satisfying:

k(1) · ω(I∗) = 0, k(2) · ω(I∗) = 0 . (35)

Such points I∗ are said to belong to resonant junctions ofmultiplicity 2: this is a curve,
in the 3D action space, where all resonant manifolds RM(λ1k(1) + λ2k(2)) defined
by the two linearly independent vectors k(1), k(2) and by λ1,λ2 ∈ Z intersect each
other. For n = 3 a resonant junction can only be of multiplicity 2. For n > 3, instead,
resonance junctions can be ofmultiplicity 2 ≤ mult ≤ n − 1), and the corresponding
resonant junctions are manifolds of dimension n − mult .

Figure7d and e show the FLI maps around the resonance junctions formed by
the crossing of the resonances (1, 3, 0) and (3, 0,−1) at the points A and B. We
immediately notice the difference in structure of the resonance crossings at these
two points. Briefly, this can be understood as follows (see [25] for details): let I∗ be
a doubly resonant point. Define the vector m = k(1) × k(2) as well as the canonical
transformation:

Ji = k(1)
i JR1 + k(2)

i JR2 + mi JF , i = 1, 2, 3

φR1 = k(1) · φ, φR2 = k(2) · φ, φF = m · φ (36)
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where, as before, Ji = Ii − Ii∗. By Eq. (27) up to quadratic terms we now get (apart
from a constant)

H0 = ωF JF (37)

+ 1

2

3∑

i=1

3∑

j=1

Mi j (I∗)(k(1)
i JR1 + k(2)

i JR2 + mi JF )(k(1)
j JR1 + k(2)

j JR2 + m j JF )

The frequency ωF = m · ω yields the rate of change of the unique ‘fast angle’ of
the problem φF = m · φ (conjugate to JF ). As before, we can assume comput-
ing a resonant normal form which eliminates all harmonics in the problem except
cos((λ1k1 + λ2k(2)) · φ). Thus, an appropriate toy model for the double resonance is

Hdoubleres = H0(JF1, JF2, JF ) + ε
∑

l1,l2

gl1,l2 cos(l1φR1 + l2φR2) . (38)

The coefficients gl1,l2 are expressed in terms of the original Fourier coefficients hk .
Now, contrary to the case of single resonance, Hdoubleres has only one ignorable angle
(φF ), hence, besides the energy, only the action JF is integral ofmotion. Then, consid-
ering JF as a parameter, the dynamics of Hdoubleres corresponds to a non-integrable
system with two degrees of freedom. This is a general property of multiple reso-
nances, for which the Nekhoroshev normal form induces a non-integrable dynamics.
Availing no other restrictions than those imposed by energy conservation, the dynam-
ics near the junction can be very chaotic (see, for example, [26, 31]). However, as
discussed in [4, 57], energy conservation can still be used in many cases to constrain
the orbits consistently with the Nekhoroshev theorem. As in the case of simple reso-
nance, consider, without loss of generality, the normal form dynamics induced by the
Hamiltonian Eq. (38) for (constant) JF = 0. The normal form energy E = Hdoubleres

is a constant of motion. Thus, the quantity H0(JR1, JR2, 0) can only undergo O(ε)
oscillations around the value E = H0(JR1, JR2, 0). We then seek for conditions on
H0 such that the manifold E = H0(JR1, JR2, 0) be bounded, i.e. that none of JR1,
JR2 can take O(1) values while the energy E = H0(JR1, JR2, 0) still remains in
the interval E − Oε < H0 < E + O(ε). Subtracting an irrelevant constant, consider
values of the energy E = O(ε). We have (for JF = 0):

E = 1

2

3∑

i=1

3∑

j=1

Mi j (I∗)(k(1)
i JR1 + k(2)

i JR2)(k
(1)
i JR1 + k(2)

i JR2)

= ζ2 = (JR1, JR2)Y (JR1, JR2)
T (39)

where Y is the 2 × 2 matrix

Y = k(1,2)M(I∗)(k(1,2))T

with
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k1,2 =
(

k(1)
1 k(1)

2 k(1)
3

k(2)
1 k(2)

2 k(2)
3

)

The quadratic form (39) is positive definite when M(I∗) has three non-zero eigen-
values of equal sign, or two eigenvalues of equal sign and one equal to zero. In the
first case, the Hamiltonian H0 will be called convex, and in the second quasi-convex.
In general, we give the following definitions:

Convexity:The n-degrees of freedomHamiltonian H0 is convex at the point I∗ if there
is a positive constant M such that for any x ∈ Rn , x �= 0wehave |(M(I∗)x) · x | ≥ M .

Quasi-convexity: The Hamiltonian H0 is quasi-convex at the point I∗ if ω(I∗) �= 0
and the only solution to the system ω(I∗) · x = 0 and (M(I∗)x) · x = 0 is x = 0.

We leave to the reader as an exercise to demonstrate that when H0 is (quasi)convex
at the point I∗, the 2 × 2 matrix Y of Eq. (39) is positive definite (see also equation
(171) in [25]). Then, the equation ζ2(JR1, JR2) = E is the equation of an ellipse.
For fixed value of E = O(ε), both actions JR1, JR2 are bounded by the fixed size
(say, the semi-major axis) of the ellipse. The latter is of order

√
ε, hence the actions

JR1, JR2 are bounded in a domain of size O(
√

ε). On the contrary, at points I∗
where (quasi-)convexity is not satisfied, the matrix Y can be positive-definite or not,
depending on the particular resonant vectors k(1), k(2). Correspondingly, the equation
ζ2(JR1, JR2) = E gives either an ellipse or a hyperbola. At those junctions where
we have hyperbolas, the actions JR1, JR2 are unbounded along the asymptotes of the
hyperbolas.2

In this case, however, a bound for the actions JR1, JR2 via the requirement
|H0(JR1, JR2, 0)| < O(ε) can still be obtained using the cubic terms in the formula
for H0 (Eq. (27)). Without entering into details, we only mention that such a bound
exists when the Hamiltonian H0 satisfies the three-jet condition:

Three-jet: at the point I∗ we have ω(I∗) �= 0 and the only solution to the system
of equations

ω(I∗) · x = 0, (M(I∗)x) · x = 0,
n∑

i=1

n∑

j=1

n∑

l=1

(
∂3H0

∂ Ii∂ I j∂ Il

)

I=I∗
xi x j xl = 0

(40)

2 For example: H0 = (I 21 − I 22 )/2 + I3. Then, ω1 = I1,ω2 = −I2,ω3 = 1, and (Mk) · k = k21 −
k22 which is not positive definite. Take the point I∗ = (1, 1, 0) corresponding to the double reso-
nance k(1) = (1, 1, 0), k(2) = (1, 0,−1). We obtain J1 = JR1 + JR2 − JF , J2 = JR1 + JF , J3 =
−JR2 − JF , implying H0 = JR1 JR2 + J 2

R2
. Then, the equation E = JR1 JR2 + J 2

R2
= 1

2 (JR1 +
JR2)

2 − J 2
R1 represents hyperbolas with the asymptotes JR2 = 0 and JR2 = −2JR1. Thus, even

with energy E = 0, the actions can move freely along the asymptotes without violating the constant
energy condition.
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Fig. 8 a Left: Arnold diffusion along a simple resonance in the model (20) for ε = 0.1 (see text).
Center: Diffusion around the resonance junction A (quasi-convex domain). The ellipse represents
the constant energy condition of Eq. (39). Right: Same as previously, but for the resonant junction
B (non-convex, steep). The constant energy condition (39) now yields hyperbolas

is x = 0. In the case n = 3 the three-jet condition is generically satisfied, as only
coincidentally we can find a model H0 in which all three Eqs. (40) be satisfied for
some x �= 0. However, when n > 3 the fulfillment of the condition depends on the
choice of H0 has to be checked case by case (see [60]).

Returning to the example of Fig. 7d, e, we can easily check the above condi-
tions at the junctions A, B. We have A = (I∗1, I∗2, I∗3) = (2π/3, 2π/3, 0), B =
(I∗1, I∗2, I∗3) = (2π/3,π/3, 0). We saw already that The Hessian matrix of H0 is
positive definite if I∗2 ≥ π/2. Thus H0 is convex in the case A. At B, instead, we
have k1 = (3, 1, 0), k2 = (3, 0,−1), thus

YB =
(−2 3

3 9

)

with opposite sign eigenvalues λ1,2 = 1
2 (7 ± √

157). This means that the quadratic
form of Eq. (39) yields hyperbolas (see Fig. 8).

3.3 Diffusion in the Web of Resonances

We mentioned in Sect. 2 that it is possible to prove the existence of Arnold diffusion
along the simple resonances of a priori stable systems (see CG). The first numerical
example of Arnold diffusion in an a priori stable system similar to the one treated
in the examples above (but with H0 = (I 21 + I 22 ) + I3 satisfying everywhere the
quasi-convexity condition) was provided by [44]. Several more examples, including
a spectacular demonstration of the drift of the trajectories throughout the entire
Arnold web, were provided in [37].

Figure8 (left) gives an example of the slow drift along the resonance (1, 1, 0) in
themodel (20) around the point I∗ with I1∗ = 0.77211 . . ., I2∗ = 1.3665, I3∗ = 0, for
ε = 0.1. Using the FLI map, we first compute the borders of the resonance (yellow).
We then compute the plane of fast drift crossing the chosen point I∗ (Eq. (29), thin
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line in Fig. 8). Computing the FLI (for t = 1000) for initial conditions along this
line, we obtain two points (on each separatrix layer) where the FLI has a local
maximum. The point of maximum on the top right of the figure has co-ordinates
I1 = 0.87166, I2 = 1.466054. Taking trajectories in a very small square (of size
10−5 in our case) around this point, and forward propagating these trajectories, allows
to observe their slow drift along the separatrix layers of the resonance. The points
in black in Fig. 8 correspond to only four such trajectories, integrated up to a time
t = 109. The trajectories are shown only when returning to the same angular section
(φ1 + φ2) mod 2π = 0, and φ3 mod 2π = 0 as the one for which the FLI was
computed (with a numerical tolerance 10−2). We notice that the trajectories make
an overall excursion in the action space of length ∼0.5 after this long integration
time. Due to the selected section, the trajectories yield points near the extrema of
both branches of the theoretical separatrix of the resonance (see previous subsection),
corresponding to the left and right groups of points in Fig. 8, which are both produced
by the same trajectories. Besides the fast change in the resonant action IR (Eq. (25)),
we observe that the trajectories undergo a slow change of the value of the adiabatic
actions IF1, IF2, a fact making them to jump from one to a nearby plane of fast drift,
with all these planes parallel to the one shown in Fig. 8. How to quantify these jumps
will be discussed in the next section.

The center and right panels of Fig. 8 refer now to chaotic trajectories around
the resonant junctions A and B. We saw that the quadratic form of the constant
energy condition of Eq. (39) yields ellipses in the case of the point A, while it yields
hyperbolas in the case of the point B. Clearly, the chaotic trajectories around the
junction are governed by this difference. In the case of the junctionA, the normal form
dynamics impedes the chaotic trajectories to move beyond a layer of thicknessO(e)
around each ellipse. In the case of the junction B, instead, the chaotic trajectories can
have larger excursions by following a path close to the asymptotes of the hyperbolas.
In that case, the trajectories are still limited around the resonant junction due to the
cubic terms in the Hamiltonian (21).

On the other hand, all predictions made by the normal formmodels are valid up to
an error determined by the exponentially small remainder of the normal form. More
specifically, the Nekhoroshev normal form has the form:

HN = Z N + RN (41)

where Z N is the normal form part and RN the remainder, with

||RN || = O (
exp((ε0/ε)

b)
)

.

Let IFi (the ‘adiabatic actions’) be the integrals of Z N (in the 3DOF case, i = 1, 2 in
the case of a simple resonance, and i = 1 in the case of the double resonance). We
have

İFi = −∂RN /∂φFi , i = 1, 2 (42)
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For the derivatives we have the estimate || İFi || = O (
exp((ε0/ε)b)

)
. From this, we

can conclude that, although the actions IFi cease to be integrals of motion in the
complete Hamiltonian, up to a given time t the actions IFi can have excursions of
length bounded from above by ΔIFi < O (

t exp((ε0/ε)b)
)
. This estimate yields the

local speed of Arnold diffusion, which can hence bemeasured using the norm ||RN ||.
Another numerical test regards the comparison between the numerically computed
(by ensembles of trajectories) value of the diffusion coefficient D, and the size of
the remainder ||RN ||. Empirical fitting has given the law D ∼ ||RN ||3 in the case of
simple resonances, and D ∼ ||RN ||2 in the case of double resonances. Implement-
ing the theory of Chirikov, instead, leads to the estimate D ∝ ||RN ||2+α, where the
correction 0 < α < 1 depends locally (in a simply-resonant domain) on the detailed
structure of the ‘layer resonances’ determining the remainder of the local Nekhoro-
shev normal form [14].

To unveil the detailed evolution of the variables IF,i (t) for any trajectory one
needs to solve the initial value problem for the differential equations (41) up to
any desired time t . It turns out that, even availing the explicit expressions for a
high order truncation of the remainder RN , in practice it is hard to try to integrate
the differential equations (42) directly in the computer. A good number of reasons
impede us on this task, starting from the fact that the remainder RN is actually a
series, whose representation in the computer is given by a truncated trigonometric
polynomial typically containing millions of terms. This is an expression hard to
deal with not only numerically, but also in any theoretical attempt to establish the
existence of phase space objects (e.g. manifolds like the ones of Fig. 5) having the
role of drivers of Arnold diffusion.3

On the other hand, we can always attempt to model the dynamics of itself the
remainder RN . As discussed in the sequel, such a modeling is possible and leads
to a way more tractable expression R(model)

N . Using R(model)
N we can then probe and

visualize most phenomena related to Arnold diffusion. In particular, we can unravel
the ‘jumps’ in action space (similar as in Fig. 1d) undergone by the weakly chaotic
trajectories within the layers of a selected resonance. We can also predict and model
the size of these jumps. Finally, we can identify the fastest drifting trajectories and
monitor how close their speed is to the theoretical upper bound provided by the
Nekhoroshev theorem ΔIFi (max) = t supD∗ |∂RN /∂φFi | (see examples in the next
section).

3 While drifting along a simple resonance, a chaotic trajectory will eventually reach a multiple
resonance domain. For some time, the trajectory then behaves as shown in the middle and right
panels of Fig. 8. To demonstrate Arnold diffusion requires, however, showing that the trajectory
will eventually exit from the multiple resonance, continuing to drift along the same exit simple
resonance as the entry one, or choosing a different exit resonance. The lack of proof, in a priori
stable systems, of the existence of a mechanism guaranteeing that these transitions will take place,
is known as the ‘large gap problem’ [19, 22]. The existence of orbits undergoing long excursions
in a priori stable systems, but far from double resonances, is demonstrated in [5].
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4 Construction of the Nekhoroshev Normal Form:
Semi-analytical Estimates

4.1 Construction of the Nekhoroshev Normal Form

It was mentioned before that most semi-analytical results on the quantification of the
Arnold diffusion follow after the appropriate construction of a local Nekhoroshev
normal form in a selected domainD∗ around some point I∗ ∈ R

n of the action space
of the problem. We here summarize the method implemented in [14, 24, 26, 40],
for an efficient computation of the Nekhoroshev normal form. We assume a n-DOF
system with Hamiltonian

H(I,φ) = H0(I ) + εH1(I,φ) , (43)

satisfying the properties enumerated below.

4.1.1 Analyticity

Weassume that there is an open domainI ⊂ R
3 and real constants ρ > 0,σ > 0 such

that for all points I∗ ∈ I and all complex quantities Ji ∈ C, i = 1, . . . n satisfying
|Ji | < ρ the following properties hold true:

(i) the function H0 can be expanded as a convergent Taylor series

H0 = H0∗ + ω∗ · J + 1

2

n∑

i=1

n∑

j=1

Mi j∗ Ji J j + · · · (44)

where ω∗ = ∇I H0(I∗) and Mi j∗ are the elements of the Hessian matrix of H0 at I∗,
denoted by M∗.

(ii) For all I∗ ∈ I, H1 admits a Fourier expansion

H1 =
∑

k

hk(I∗ + J ) exp(ik · φ) (45)

analytic in the domain

D(I∗) = {Ii = Ii∗ + Ji , |Ji | < ρ,�(φi ) ∈ T, |�(φi )| < σ, i = 1, . . . n} . (46)

The analyticity of the function H1 in the domain D implies that all the coefficients
hk can be expanded in convergent Taylor series around I∗ as

hk = hk∗ + ∇I∗ hk · J + 1

2

n∑

i=1

n∑

j=1

hk,i j∗ Ji J j + · · · (47)
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4.1.2 Book-Keeping

Due to the analyticity of H1, the Fourier coefficients hk in the domain D(I∗) decay
exponentially, that is, there are positive constants A, σ such that

sup
D∗

|hk(I )| < Ae−|k|σ (48)

Taking the exponential decay into account, we then split the Fourier harmonics in
groups with the wave number satisfying (s − 1) ≤ |k| < sK − 1, s = 1, 2, . . ., and

K = − 1

σ
log(ρ0) , (49)

where ρ0 is the size of the domain around the point I∗ where the normal form is
to be computed, i.e., |Ji | < ρ0. For resonant constructions of any multiplicity it
is convenient to take ρ0 = O(

√
ε). Introducing a ‘book-keeping’ symbol λ, with

numerical value λ = 1, the Hamiltonian can then be split in ascending powers of λ:

H = H (0)(J,φ) = Z0 +
∞∑

s=1

λs H (0)
s (J,φ; ε) (50)

where
Z0 = ω∗ · J

and

H (0)
s =

s∑

μ=1

K ′(s−μ+1)−1∑

k=K ′(s−μ)

H (0)
μ,k(J ) exp(ik · φ) (51)

where H (0)
μ,k(J ) are polynomials containing terms of degree μ − 1 or μ in the action

variables J . In the n = 3 cases dealt with in the numerical examples of this article,
we have, in particular:

H (0)
μ,k(J ) = ε

μ−1∑

μ1=0

μ−1−μ1∑

μ2=0

μ−1−μ1−μ2∑

μ3=0

1

μ1!μ2!μ3!
∂μ−1h1,k(I∗)

∂μ1 I1∂μ2 I2∂μ3 I3
Jμ1
1 Jμ2

2 Jμ3
3

if |k| > 0, or

H (0)
μ,k(J ) =

μ∑

μ1=0

μ−μ1∑

μ2=0

μ−μ1−μ2∑

μ3=0

1

μ1!μ2!μ3!
∂μ H0(I∗)

∂μ1 I1∂μ2 I2∂μ3 I3
Jμ1
1 Jμ2

2 Jμ3
3

+ ε

μ−1∑

μ1=0

μ−1−μ1∑

μ2=0

μ−1−μ1−μ2∑

μ3=0

1

μ1!μ2!μ3!
∂μ−1h1,0(I∗)

∂μ1 I1∂μ2 I2∂μ3 I3
Jμ1
1 Jμ2

2 Jμ3
3
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if k = 0. In all the above expressions, the superscript (0) means ‘the starting Hamil-
tonian of the iterative normalization process’. This is simply the original Hamiltonian
re-organized in powers of the book-keeping symbol λ. Subscripts (as e.g. s in the
functions H (0)

s (J,φ; ε)) mean terms book-kept with the power λs . In physical terms,
this can be interpreted as ‘terms of the sth order of smallness’. All expressions in the
initial and in subsequent normalization steps are finite, i.e., they are trigonometric
polynomials easily represented in the computer’s memory via an indexing function.
The maximum ‘book-keeping’ order Ntr adopted in the normalization algorithm is
called the truncation order.

4.1.3 Resonant Module

Following the definitions given in Sect. 4.2, the point I∗, and its corresponding fre-
quency vector ω∗ = ω(I∗), are called ‘M-tuple resonant’ (with 0 ≤ M ≤ n − 1) if
there can be found M linearly independent non-zero integer vectors k(i), i = 1, . . . M
such that k(i) · ω∗ = k(i) · ω(I∗) = 0 for all i = 1, . . . , M .When a point I∗ is M-tuple
resonant, there are many harmonics cos(k · φ)with |k| �= 0 in the Hamiltonian which
cannot be normalized since their elimination would involve a divisor exactly equal to
zero. The set of all possible wavevectors k such that k · ω∗ = 0 is called the resonant
module at the point I∗. Since checking numerically the condition k · ω∗ = 0, with
ω∗ ∈ R

n , is sensitive to round-off errors, a convenient way to define the resonant
module, which involves only operations among integer numbers, is by use of the
concept of ‘pseudo-frequency’ vector. This is defined as follows: if ω∗ is M-tuple
resonant with M ≥ 1, choose M non-zero linearly independent integer vectors k(i),
i = 1, . . . , M such that k(i) · ω(I∗) = 0. Then, there exist n − M non-zero integer
vectors m( j), j = 1, . . . , n − M such that k(i) · m( j) = 0 for all possible pairs i, j .
To define these vectors, solve the n − M systems of linear equations given by

k(1)
1 q( j)

1 + k(1)
2 q( j)

2 + · · · + k(1)
M q( j)

M = −k(1)
M+ j

k(2)
1 q( j)

1 + k(2)
2 q( j)

2 + · · · + k(2)
M q( j)

M = −k(2)
M+ j (52)

. . .

k(M)
1 q( j)

1 + k(M)
2 q( j)

2 + · · · + k(M)
M q( j)

M = −k(M)
M+ j

for j = 1, . . . , n − M . The solutions give vectors q( j) = (q( j)
1 , . . . , q( j)

M ,

δM+1,M+ j , . . . , δn,M+ j ) with rational components. Multiplying the vector q( j) with
the maximal common divisor of all its components yields the jth pseudo-frequency
vector m( j).

We can now determine which harmonics cos(k · φ) to be excluded from the nor-
malization process. The set of all integer vectors k corresponding to the excluded
harmonics is called the resonant module M(k(1), . . . , k(M)) defined as:
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M(k(1), . . . , k(M)) =
{ {k = (0, 0, . . . , 0)} if M = 0

{k ∈ Z
n : k · m( j) = 0 for all j = 1, . . . , n − M} if M > 0

(53)
wherem( j), j = 1, . . . , n − M are the pseudo-frequency vectors determined through
Eq. (52).

Note that, even when the origin of the expansion I∗ is non-resonant, i.e., when
M = 0, arbitrarily close to it there can be found M-tuple resonant points of any
multiplicity M > 0. This is a consequence of the fact that resonances are dense in
the action space (see the examples in [25]). Whenever the non-resonant vector ω∗
is ‘close’ to a low-order M-tuple resonant vector Ω , in the sense that |ω∗ − Ω| < α
with α small, and the wavevectors k satisfying k · Ω are of order |k| smaller than the
‘cut-off’ order (see below), we say to be in a ‘near-resonance’ case. In this case too,
we may wish to avoid the presence in the series of those divisors k · ω∗ for which
k · Ω = 0. We then define the resonant module as above, but using Ω in the place
of ω∗.

4.1.4 Hamiltonian Normalization

We consider a sequence of normalizing canonical transformations

(φ, J ) ≡ (φ(0), J (0)) → (φ(1), J (1)) → (φ(2), J (2)) → · · ·

leading to re-express the Hamiltonian, after r normalization steps, in new canonical
variables (φ(r), J (r)) such that

H(φ((φ(r), J (r))) = Z (r)((φ(r), J (r));λ, ε) + R(r)(φ(r), J (r);λ, ε) . (54)

The functions Z (r)(J (r),φ(r);λ, ε) and R(r)(J (r),φ(r);λ, ε) are called the normal
form and the remainder respectively. The normal form is a finite expression which
contains terms up to order r in the book-keeping parameter λ. By definition, these are
termsbelonging to the resonantmoduleM(k(1), . . . , k(M)). The remainder, instead, is
a convergent series containing terms of order λr+1, including all possible harmonics.

To compute the normalizing transformation, we use the composition of Lie series
with generating functions χ1, . . . ,χr . Denote Q = (φ, J ) ≡ Q(0). The normalizing
transformation is:

Q(r) = exp(−Lχ1) exp(−Lχ2) . . . exp(−Lχr )Q (55)

The generating functions are determined recursively, by solving, for nr = 0, . . . , r −
1 the homological equations:

{ω∗ · J (nr +1),χnr +1} + λnr +1 H̃ (nr )
nr +1(J (nr +1),φ(nr +1)) = 0 (56)
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where
H (nr ) = exp(Lχnr

)H (nr −1) . (57)

4.1.5 Optimal Remainder

Basic normal form theory (see [25]) establishes that the above normalization process
has an asymptotic character. Namely, (i) the domain of convergence of the remainder
series R(r) shrinks as the normalization order r increases, and (ii) the size ||R(r)|| of
R(r),where || · || is a properly definednorm in the spaceof trigonometric polynomials,
initially decreases, as r increases, up to an optimal order ropt beyond which ||R(r)||
increases with r . In the Nekhoroshev regime, one has ||Z (ropt )|| >> ||R(ropt )||. Hence,
the normal form obtained at the order ropt best unravels the dynamics, which is
given essentially by the Hamiltonian flow of Z (ropt ) slightly perturbed by R(ropt ).
Furthermore, the optimal normalization order ropt depends on ε via an inverse power-
law [24, 26], namely

ropt ∼ ε−a , (58)

for some positive exponent a depending on the multiplicity of the resonance around
which the normal form is computed. The leading terms in the optimal remainder
function are O(λropt +1). Due to the book-keeping relation (49), the terms of order
λropt have size estimated as e−σKopt , where

Kopt (ε) = K ′ropt (ε) (59)

is called the Nekhoroshev cut-off order. Then, Kopt ∼ K ′ε−a , implying:

||R(ropt )|| ∼ ε1/2 exp

(−K ′σ
εa

)
(60)

i.e., the remainder at the optimal normalization order is exponentially small in 1/ε.
In practice, to specify the optimal normalization order, after performing all the

above symbolic computations with the aid of a computer program, we proceed as
follows: we set the truncation order Nt to be several orders larger than the maximum
reached normalization order r . Then, we compute the truncated-norm estimates

||R(r)||W (r) =
Nt∑

s=r+1

∑

m

sup |R(r)
s |W (r) (61)

where sup |R(r)
s | means the sup norm of the sth book-keeping term of the truncated

remainder over a domain of interest Q(r) ∈ W (r) where the rth step canonical vari-
ables. To this end,wefirst probe numerically thatW (r) is smaller than the convergence
domain for the rth step normalization. We then verify the asymptotic character of the
sequence ||R(r)||W (r) , for r = 1, 2, 3, . . .. That is, for ε sufficiently small, initially (at
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Fig. 9 Size of the remainder
as a function of the
normalization order r for
various values of ε. The
value of r at the minimum of
each curve corresponds to
the optimal normalization
order. Note that the optimal
order is higher than 20 in the
case ε = 0.0001

low orders) ||R(r)||W (r) decreases as r increases, up to the optimal order ropt at which
||R(ropt )||W (ropt ) reaches a minimum. Then, for r > ropt , ||R(r)||W (r) increases with r .
This behavior is exemplified in Fig. 9, referring to the normal form computed for the
data of the simple resonance corresponding to the left panel of Fig. 8.

4.2 Removal of Deformation Effects

We have seen that, at the optimal order, the adiabatic actions I
(ropt )

Fi are integrals of
the normal form dynamics, while in the full Hamiltonian they undergo exponentially
small time variations due to the exponentially small optimal remainder. One impor-
tant effect, which impedes to measure the real speed of the variations of the adiabatic
action variables is deformation. Consider the inverse of the transformation (55) at
optimal order:

Q = exp(Lχr ) exp(Lχr−1) . . . exp(Lχ1)Q(ropt ) (62)

Due to the relation exp(Lχ1)Q(ropt ) = Q(ropt ) + {Q(ropt ),χ1} + · · · , as well as the fact
that χs = O(ρs

0), we have that

Q = Q(ropt ) + O(ρ0) (63)

Furthermore, for resonant normal forms, we saw that ρ0 = O(ε1/2). Thus, we find
that evenwhile the adiabatic actions I

(ropt )

Fi undergo a very slow time variation (includ-
ing drift), in the original variables this variation is completely hidden in a O(ε1/2)
oscillation, due entirely to the canonical transformation linking old with new vari-
ables. Since, without knowledge of the normalizing transformation, we are forced
to deduce all the information on the behavior of the system by numerical experi-
ments performed using the original variables, this implies that we have to recover
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Fig. 10 Evolution of the adiabatic action JF along a simple resonance in the model (20). Left:

numerical trajectory. Right: the same trajectory, but plotted in the optimal canonical variable J
(ropt )

F
(see text)

the drift by removing all the noise induced by these large amplitude, but irrelevant
for dynamics, oscillations.

Being able to compute the optimal normalizing transformation, allows, instead
to spectacularly remove the deformation effect and easily obtain (and measure) the
underlying drift of the adiabatic action variables. Figure10 shows the removal of
the deformation in the case of a trajectory undergoing Arnold diffusion in the model
(20) and with initial condition as in Fig. 8. Recall that to visualize the drift using the
original variables in that case has required an extremely long integration time t = 109.
For quite shorter times, instead, (t = 104 in Fig. 10) the drift of the unique adiabatic
action of the problem, measured by ΔF, 1 = IF (t) − IF (0) is completely hidden in
a oscillation of size 0.2 (Fig. 10, left), and thus impossible tomeasure with numerical
experiments up to the time t = 104. If, instead, we pass all the numerical data Q(t) of
the trajectory through the optimal normalizing transformation (Eq. (55)), we obtain
the evolution of the optimal variable ΔF, 1(ropt ) = I

(ropt )

F (t) − I
(ropt )

F (0), shown in
Fig. 10, right. Now, the drift is clearly demonstrated, and its local velocity can be
measured by a simple fitting to the data. In fact, as discussed in the next subsection, the
drift in the action space is not necessarily monotone, and ΔF, 1(ropt )(t) may exhibit
both an increase or decrease at different intervals of time. At any rate, the ability to
remove the deformation effect can be exploited in the modeling of the evolution of
the adiabatic action variables, as discussed in the next subsection.

4.3 Modeling the Jumps in the Adiabatic Action Variables

We have mentioned that it is possible to prove the occurrence of the Arnold mecha-
nism in a priori stable systems only in the case of simple resonances (CG). We will
now discuss how to model the evolution of the adiabatic action variables, including
the jumps similar in nature as those of the original Arnold model, using, however,
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the information encapsulated in the remainder at the optimal normalization order.
Consider an optimal Hamiltonian of the form (54) obtained by normalization around
a simply-resonant point I∗.

Following [40], to simplify all notations, denote as H N (the ‘Nekhoroshev normal
form’) the Hamiltonian H (ropt ), depending on the resonant action-angle variables

(S,σ) ≡
(

J
(ropt )

R ,φ
(ropt )

R

)
and the n − 1 adiabatic action variables conjugate to fast

angles (F,φ) ≡
(

J
(ropt )

F ,φ
(ropt )

F

)
(see Sect. 3). With the new notation, we have

H N = h(F, S) + ε f N (F, S,σ) + r N (F, S,σ,φ) . (64)

The (simply-resonant) normal form is

H
N = h(F, S) + ε f N (F, S,σ) . (65)

The remainder r N is provided as a Taylor-Fourier series:

r N =
∑

m≥0

∑

ν∈Zd

∑

k∈Zn−d

rm
ν,k(F)(S − S∗)meiν·σ+ik·φ (66)

expanded at a suitable S∗, with computer-evaluated truncations involving a large
number (typically 107 to 108) terms.

To define the resonant normal form dynamics, as in Sect. 3 we first expand H
N
at

the values of the actions (F∗, S∗) identifying the center of the resonance, where

∂h

∂S
(S∗, F∗) = 0. (67)

Then

H = H 0 + · · · , H 0 = ω∗ · F̂ + A

2
Ŝ2 + ŜB · F̂ + 1

2
C F̂ · F̂ + εv(σ) (68)

where F̂ = F − F∗, Ŝ = S − S∗, A ∈ R, ω∗, B ∈ R
n−1, C is a (n − 1) × (n − 1)

square matrix and v(σ) is a trigonometric function depending parametrically on
S∗(I∗), F∗(I∗). The actions F̂ are the constants of motion for the Hamiltonian flow
of H 0.

Consider, now, the family of curves Ŝ(u;α), for different a, given by

Ŝ = √
εsα(σ) = ±√

ε

√
2

|A| (M(1 + α) − v(σ)) (69)

where M = maxσ∈[0,2π] v(σ), and α is the energy of the pendulum Hamiltonian
(equal to H 0 for F̂ = 0):
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a = A

2
Ŝ2 + εv(σ) = εM(1 + α) . (70)

Since H 0 has the structure of a pendulumHamiltonian, we can attempt to implement
the Melnikov approximation, introduced in Sect. 2, in order to compute the jumps
in the variables F over one complete homoclinic transition of the variables (Ŝ,σ),
assigning to the remainder r N (Eq. (66)) the role of the coupling term between the
resonant variables (S,σ) and the remaining variables (F,φ). Since Ḟj = −∂r N /∂φ j ,
the Melnikov approximation will then consist of estimating the variation ΔFj (T ) =
Fj (t) − Fj (0) after a time T via the integral

ΔFj (T ) = −
∑

m,ν,k

∫ T

0
ik jr

m
ν,k(F(t))Ŝ(t)meiνσ(t)+ik·φ(t)dt :=

∑

m,ν,k

ΔFm,ν,k
j,T . (71)

where the true solution (F(t), S(t),σ(t),φ(t)) in the r.h.s of the integrals (71) will
be substituted by the approximate solution under the flow of the normal form H 0

(F∗, S0(t),σ0(t),φ0(t)) = (F∗, S∗, 0, 0) + (0, Ŝ0(t),σ0(t),φ0(t))

where (0, Ŝ0(t),σ0(t),φ0(t)) is a solution of Hamilton’s equations of H 0.
Contrary to the simple model of Sect. 2, it is important to recall that the number

of Melnikov integrals to compute in (71) are of the same order as the number of
remainder terms (107 to 108), thus the computation is hardly tractable in practice.
However, we get an enormous simplification of the problem noticing that, out of all
these integrals, only few (∼103) really contribute to the result. To this end, we first
observe that representing Ŝ0(t) parametrically as a function of σ0(t), for fixed α,
allows to change the integration variable in (71) from t to σ:

ΔFm,ν,k
j,T (T ) � Δ0Fm,ν,k

j,T (T )= −ik j
rm
ν,k(F∗)ε

m−1
2

A
eik·φ(0)

∫ σ0(T )

0
[sα(σ)]m−1eiθ(σ)dσ (72)

where the phase θ(σ) is defined by:

θ(σ) = Nσ + Ω

A
√

ε

∫ σ

0

dx

sα(x)

with
N = ν + k · B/A, Ω = k · ω∗ . (73)

Then, invoking the principle of stationary phase, it is clear that only integrals involv-
ing a slow variation of the phase θ(σ) over a time Tα, representing the period of
one homoclinic transition, will be important in the computation of the jumps via the
Eq. (72).
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To make this argument more explicit, assume that the lowermost order terms in
the resonant normal form (for F̂ = 0) have the form of the pendulum Hamiltonian:

Hpend = |A|
2

Ŝ2 + εβ cosσ + · · · (74)

where, for simplicity, we set ε,β > 0. Consider a remainder term labeled by the
integers (m, ν, k) in Eq. (72). Using the approximation (74), and setting α = 0 (sep-
aratrix solution), the function θ(σ) for the term in question can be approximated
by:

θ(σ) ≈ θ0 + Nσ + W ln tan(σ/4), W = Ω√|A|βε
. (75)

where N and Ω are given by Eq. (73), hence, they depend only on the term labels
ν, k. From Eq. (75), we obtain

θ′(σ) ≈ N + W
2

1

sin(σ/2)
(76)

Therefore, one has limσ→0 Wθ′(σ) = limσ→2π Wθ′(σ) = +∞, and since θ′(σ) is
a function symmetric with respect to π and monotonically decreasing (increas-
ing) in [0,π) ((π, 2π]), there exists a minimum of the function at σ = π of value
θ′(σ) = N + W/2. Thus, θ′(σ) has zeroes (stationary points) σc = π ± Δσc, with
0 < Δσc < π, if and only if the minimum value θ′(π) is negative. This lead to the
following condition:

The term defined by (m, ν, k) is stationary ⇐⇒ N · W < 0 and |N | >
|W|
2
(77)

In case the condition (77) is not satisfied, we still have to check for the existence
of terms (m, ν, k) which, albeit non-stationary, exhibit only a small variation of
the phase θ(σ) over the period of the homoclinic transition. Such terms will be
called quasi-stationary and they can be selected from the remainder by the following
procedure: neglecting the slowly varying factor [sa(σ)]m−1 in Eq. (72), and factoring
out a constant phase ei(θ0+Nπ), important quasi-stationary terms are those for which
the integral

ΔI =
∫ 2π

0
cos (N (σ − π) + W ln tan(σ/4)) (78)

has absolute value above a small (arbitrarily chosen) threshold μ0. Consider for
a moment the approximation W � const.. Since the inspected term is assumed
not to be stationary (not selected by the condition (77)), we have that N varies
according to N ≥ −W/2 for W > 0, or N ≤ −W/2 for W < 0. Different values
of N generate different behaviors for θ(σ), symmetric with respect to σ = π, as
shown in Fig. 11a. Figure11b shows the functions cos (N (σ − π) + W ln tan(σ/4)),
for the same frequencies σ of panel (a). From the comparison of the two plots, we



202 C. Efthymiopoulos and R. I. Paez

see that the nearly flat domains of the curve θ(σ) near σ = π, along with the sigmoid
variations at the two ends (in panel (a)) imply the formation of a plateau of the curves
in (b) accompanied by fast lopsided oscillations, which nearly cancel each other in
the integral (78). The flatter the function θ(σ) in the vicinity of σ = π, the wider
is the plateau of cos(θ(σ)). Since the dominant contribution in ΔI comes from the
central plateau of cos(θ(σ)), the maximum absolute value of ΔI occurs when the
slope θ′(σ) becomes zero at σ = π. Hence, fromEq. (76), themaximum occurs when
N = −W/2. The length of the plateau is given by Δσp = 2σp, where θ(π ± σp) =
π/2. From Eq. (75), we find σp � (24π/W)1/3, and hence ΔIN=−W/2 ∝ W−1/3,
an estimate verified numerically (Fig. 11e).

On the other hand, if N is ‘detuned’ from the maximum value −W/2, the asso-
ciated plateaus attenuate, leading to a decrease of ΔI. Yet, some of these con-
tributions can be larger than minimum threshold considered for Eq. (78). Setting
N = (δ − 1)W/2, Fig. 11f shows the attenuation as function of the detuning δ for
fixed W . For small δ, the attenuation is nearly a linear function of δ with negative
slope, ΔI ∝ Δσp ≈ (24π)1/3W−1/3 − (64/3π)1/3W1/3δ. If we extend the straight
line with negative slope in Fig. 11f up to the point where the line intersects the
axis ΔI = 0 we find a critical detuning δc ≈ (3π/2

√
2)2/3W−2/3 beyond which the

term can no longer be characterized as quasi-stationary. Actually, δc computed as
above underestimates the true value of the detuning, since (i) the curve ΔI has a tail
extending only asymptotically to zero (i.e. as small as it may be, the contribution of a
quasi-stationary terms is never exactly zero) and (ii) the slope found by linear fitting
of the left part of the curvesΔI versus δ for various values ofW shows that the power
law estimate of the slope ∝ W p yields an exponent substantially larger than 1/3 for
values of W well below unity (Fig. 11g). On the other hand, a numerical evaluation
of the dependence of the critical detuning δc as function ofW (Fig. 11h) yields a law
δc ∝ W−q , with q ≈ 0.8, i.e., slightly larger than the theoretical estimate q = 2/3.
Taking into account all these considerations, we formulate a heuristic criterion for
quasi-stationarity, namely:

The term defined by (m, ν, k) is quasi − stationary

⇐⇒ N · W < 0 and |N | < (1 − δc)
|W|
2

(79)

with δc = δc0|W|−0.8, where, by numerical fitting, δc0 � 3 for an adopted attenuation
factor 0.1, or δc0 = 4.2 for an adopted attenuation factor ∼0.01.

The conditions (77) and (79) are derived by considering the upper branch of
the separatrix solution θ(σ). For the lower branch we have, instead, θ(σ) = Nσ −
W ln tan(σ/4), henceweobtain the same conditions for stationary of quasi-stationary
terms, but with the inequality N · W > 0 instead of N · W < 0. Also, the above
analysis, based solely on the behavior of the phase θ(σ), allows to identify stationary
or quasi-stationary terms for |W| arbitrarily large. It is important to recognize that
the quantity Ω = k.ω∗ = W(|A|βε)1/2, represents the divisor associated with the
remainder term (m, ν, k). Thus, we may further restrict the selection of remainder
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Fig. 11 a The function θ(σ) (Eq.75) written as θ(σ) = W[0.5(1 − δ)](σ − π) + ln tan(σ/4)) for
W = 1 and δ = 0 (thick blue), δ = 1 (dashed green), or δ = 2 (thin red). The corresponding curves
cos(θ(σ)) are shown in (b). The extent of the ‘plateau’ is reduced for larger δ. Similar curves are
shown in c and d for W = 10, and δ = 0, 0.1 and 0.5. e, the integral ΔI (Eq.78) for δ = 0, as
a function of |W|. (f) The attenuation of the integral ΔI with respect to its value for δ = 0 as δ
increases, for fixed W = 10. The linear part of the curve, for small δ can be fitted with a line of
negative slope Qδ . (g) The slope |Qδ | as a function of |W|. (h) The critical value δc for which the
integral ΔI attenuates to 10% its value at δ = 0, as a function of |W|

terms by retaining only those passing the stationary or quasi-stationary criterion, and
simultaneously satisfying an upper threshold for the divisor value, say |Ω| < 1.

Figure12 shows the main result obtained by selecting only the few terms (∼1000)
of the remainder passing the criteria of stationarity or quasi-stationarity. Swarms of
100 trajectories with initial conditions very close to the hyperbolic torus at the simply
resonant point I∗ same as in Fig. 8, but for ε = 0.003 (top left) or ε = 0.01 (top right)
for a very small time (T = 1200 and T = 700 respectively), corresponding to the
time required for the orbits to complete the first homoclinic transition along the
pendulum, according to the approximative formula:

Tα = 1√
Aεβ

ln(32Aεβ/||Ropt ||) (80)

This formula is the same as Eq. (11) used in Sect. 2, setting the pendulum energy as
ε = Aεβ, with the coefficients A and β obtained from the simply-resonant normal
form (Sect. 3). As discussed before, showing numerically computed original values
of the adiabatic action JF (t) for these trajectories provides no information, due to the
deformation effect. Showing, however, the same variable at optimal order by use of
the transformation (55) makes clear the jumps along homoclinic transitions exhibited
by these trajectories. In particular, we distinguish how the random distribution of the
initial phases results in a stochastic spreading of the actions F1(t) = J

(ropt )

F (t) (with
ropt = 10 in the left panel, and ropt = 7 in the right panel), in a way qualitatively
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Fig. 12 Top: Evolution of F1(t) for a swarm of 100 trajectories with initial conditions very close
to the hyperbolic torus at the simply resonant point I∗ same as in Fig. 8, but for ε = 0.003 (left) or
ε = 0.01 (right). The blue curves show the fitting to one trajectory of the swarm using the Melnikov
integrals (71) for only those remainder terms selected as stationary or quasi-stationary. Bottom: A
ballistic orbit, drifting continuously in the same direction along the resonance, as depicted for the
evolution F1(t) (left) or F1× the pendulum variables S,σ (right)

similar to the one observed at Fig. 4 in Arnold’s model. The bottom left panel extends
the calculation in the case ε = 0.01 up to a time t = 9000. At this time the trajec-
tories have undergone 13 transitions. The jump ΔF1 in every transition shows the
behavior of a random walk with size 10−7. Thus, most trajectories spread over an
interval (−(13)1/210−7, (13)1/210−7). However, we distinguish also rare trajectories
which move in ‘ballistic’ motion, i.e., drifting systematically in the same direction.
These are the fastest moving trajectories, with speed bounded by an estimate which
is the closest possible to the absolute bound provided by the Nekhoroshev theorem.4

Note, finally, the excellent representation of the jumps by the semi-analytical (Mel-
nikov) approximation (blue curves) using only the remainder terms selected by the
stationarity or quasi-stationarity criteria.

For more rigorous statements on the (quasi-)stationary phase approximation
method see [40].

4 A variational method to compute such fastest drifting trajectories in a priori unstable systems is
proposed in [62].
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Orbit Determination with the Keplerian
Integrals

Giovanni Federico Gronchi

dedicated to Prof. Andrea Milani

Abstract We review two initial orbit determination methods for too short arcs
(TSAs) of optical observations of a solar system body. These methods employ the
conservation laws of Kepler’s problem, and allow to attempt the linkage of TSAs
referring to quite far epochs, differing by even more than one orbital period of the
observed object. The first method (Link2) concerns the linkage of 2 TSAs, and
leads to a univariate polynomial equation of degree 9. An optimal property of this
polynomial is proved using Gröbner bases theory. The second method (Link3) is
thought for the linkage of 3 TSAs, and leads to a univariate polynomial equation of
degree 8. A numerical test is shown for both algorithms.

Keywords Orbit determination · Algebraic methods

1 Introduction

Modern telescopes collect a very large number of optical observations of solar system
bodies, that can be usually grouped in very short arcs (VSAs), see [10]. A VSA is
a set

{(αi , δi ), i = 1 . . .m}, m ≥ 2

of pairs of values of right ascension and declination of the same celestial body,
referring to epochs ti , and covering a very short path in the sky. Usually the data
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contained in a VSA do not allow to compute a least squares orbit: in this case we
speak of a too short arc (TSA). Given a TSA, we can compute an attributable

A = (α, δ, α̇, δ̇)

at themean epoch t̄ = 1
m

∑
i ti of the observations by a linear or quadratic fit, see [10].

Given an attributable, the radial distance ρ and the radial velocity ρ̇ of the observed
body remain completely unknown. However, given two attributables referring to the
same celestial body, we can try to put them together with the aim of computing an
orbit that fits all the data. This operation is called linkage in the orbit determination
literature, and it is often challenging: an orbit produced by linking together two
TSAs usually needs a confirmation with additional data to be considered reliable.
Moreover, we cannot know a priori that two TSAs refer to the same observed body,
and to perform an efficient selection of pairs of TSAs to be passed to a linkage
algorithm is a critical issue.

In this paper we review two recent initial orbit determination methods, intro-
duced in [4, 5], for the linkage of two or three TSAs. These are called Link2 and
Link3, respectively. Some interesting algebraic aspects of these algorithms are also
discussed, and a numerical test is shown for both.

2 Linkage with the Keplerian Integrals

The first integrals of Kepler’s motion can be used to write polynomial equations for
the linkage of 2 TSAs. The conservation laws of angular momentum and energy
were proposed for the linkage problem already in [11–13]: here the authors observed
that the equations could be put in polynomial form but did not use this form. A
polynomial formulation of the linkage problem was considered later in a series of
papers [4, 7, 8]. In [7] the angular momentum and energy conservation laws are
used, as in [12]: a polynomial is obtained by squaring twice the equation of the
energy conservation. After elimination of variables we get a univariate equation of
degree 48 in the radial distance ρ2. In [8] the degree is reduced to 20 by using the
Laplace-Lenz vector projected along a suitable direction in place of the energy. In
[4] all the algebraic conservation laws are combined so that the degree is reduced to
9: this is the algorithm that we recall here.

Remark 1 Classical preliminary orbit determination methods, e.g. the ones by
Gauss, Laplace, Mossotti [1, 3, 6, 9] use the equations of motion, and Taylor series
expansions around a central time of the observational arc, thus the observations must
necessarily be close enough in time. We observe that using conservation laws this
constraint on the time is not required.



Orbit Determination with the Keplerian Integrals 211

2.1 Kepler’s Problem and Its First Integrals

The equation of motion of Kepler’s problem is

r̈ = −μ
r

|r|3 , (1)

where r ∈ R
3 is the unknown position vector andμ is a positive constant. The dynam-

ics defined by (1) has the following conserved quantities:

c = r × ṙ, angular momentum

E = 1

2
|ṙ|2 − μ

|r| , energy

L = 1

μ
ṙ × c − r

|r| , Laplace-Lenz vector.

We call these quantities the Keplerian integrals. Since c and L have 3 components
we get 7 scalar conserved quantities: among them only 5 are independent, in fact

c · L = 0, 2|c|2E + μ2(1 − |L|2) = 0.

Given an attributable A at the epoch t̄ , we write below the Keplerian integrals as
functions of the unknown radial distance and velocity ρ, ρ̇. We start by writing

r = q + ρ eρ,

ṙ = q̇ + ρ̇ eρ + ρ(α̇ cos δeα + δ̇eδ),

where q, q̇ are the position and velocity of the observer at time t̄ ,

eρ = (cos δ cosα, cos δ sinα, sin δ)

gives the line of sight, and

eα = (cos δ)−1 ∂eρ

∂α
, eδ = ∂eρ

∂δ
.

The angular momentum vector can be expressed as

c(ρ, ρ̇) = r × ṙ = Dρ̇ + Eρ2 + Fρ + G.

The vectors D,E,F,G depend only on the attributable A and on q, q̇:
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D = q × eρ,

E = α̇ cos δeρ × eα + δ̇eρ × eδ = α̇ cos δeδ − δ̇eα,

F = α̇ cos δq × eα + δ̇q × eδ + eρ × q̇,

G = q × q̇.

(2)

The energy can be written as

E = 1

2
|ṙ|2 − μ

|r| ,

where
|r| =

√
ρ2 + 2(q · eρ)ρ + |q|2,

and

|ṙ|2 = ρ̇2 + (α̇2 cos2 δ + δ̇2)ρ2 + 2q̇ · eρρ̇ + 2q̇ · (α̇ cos δeα + δ̇eδ)ρ + |q̇|2.

Finally, the Laplace-Lenz vector L is given by

μL(ρ, ρ̇) =
(
|ṙ|2 − μ

|r|
)
r − (ṙ · r)ṙ,

where

ṙ · r = ρρ̇ + q · eρρ̇ + (q̇ · eρ + q · eαα̇ cos δ + q · eδδ̇)ρ + q̇ · q.

Remark 2 The expressions of E and L are algebraic but not polynomial, due to the
presence of the term μ/|r|. If we consider the auxiliary variable z defined by relation

|r|z = μ, (3)

then the Keplerian integrals can be viewed as polynomials in the variables ρ, ρ̇, z by
writing z in place of μ/|r|. In this way, we obtain

Ẽ = 1

2
|ṙ|2 − z, μL̃ = (|ṙ|2 − z)r − (ṙ · r)ṙ.

The relation between ρ and z can be taken into account through the polynomial
equation

|r|2z2 = μ2. (4)

Moreover, the following relations hold:

c · L̃ = 0, 2|c|2Ẽ + μ2(1 − |L̃|2) = 0.
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2.2 Polynomial Equations for the Linkage

Given two attributablesA1,A2 at the epochs t̄1, t̄2, referring to the same solar system
body, we consider the system

c1 = c2, L1 = L2, E1 = E2, (5)

of 7 algebraic (but not polynomial) equations in the 4 unknowns ρ1, ρ2, ρ̇1, ρ̇2. System
(5) depends on the vector of known parameters

(A1,A2,q1,q2, q̇1, q̇2),

and is overdetermined.
If we assume that the two-body dynamics is perfectly respected, and no error

occurs in the coefficients, then the set of solutions of (5) in the complex field C

(but also in R) is not empty. More realistically, since these assumptions cannot hold
exactly, system (5) is generically1 inconsistent.

Combining the equations in (5) we can obtain an overdetermined polynomial sys-
temwhich is consistent and can be reduced by elimination to a univariate polynomial
u of degree 9 in one of the radial distance, e.g. ρ2, as will be shown below.

The conservation of the angular momentum c1 = c2 can be written as

D1ρ̇1 − D2ρ̇2 = J(ρ1, ρ2), (6)

where
J(ρ1, ρ2) = E2ρ

2
2 − E1ρ

2
1 + F2ρ2 − F1ρ1 + G2 − G1, (7)

andD j ,E j ,F j ,G j are given by relations (2) at times t̄ j . Projecting Eqs. (6) onto the
vectors

D1 × D2, D2 × (D1 × D2), D1 × (D1 × D2),

where
D j = q j × eρ

j ,

we get

J(ρ1, ρ2) · (D1 × D2) = 0,

|D1 × D2|2ρ̇1 − J(ρ1, ρ2) · D2 × (D1 × D2) = 0, (8)

|D1 × D2|2ρ̇2 − J(ρ1, ρ2) · D1 × (D1 × D2) = 0. (9)

We set

1 i.e. such property can not be violated in a non-empty open subset of the data set q j , q̇ j ,A j ,
j = 1, 2.



214 G. F. Gronchi

q(ρ1, ρ2) = J(ρ1, ρ2) · (D1 × D2).

This is a quadratic polynomial, that can be written as

q(ρ1, ρ2) = q2,0ρ
2
1 + q1,0ρ1 + q0,2ρ

2
2 + q0,1ρ2 + q0,0, (10)

with
q2,0 = −E1 · D1 × D2,

q1,0 = −F1 · D1 × D2,

q0,2 = E2 · D1 × D2,

q0,1 = F2 · D1 × D2,

q0,0 = (G2 − G1) · D1 × D2.

Remark 3 Using Eqs. (8), (9) we can write ρ̇1, ρ̇2 as quadratic polynomials in the
variables ρ1, ρ2. This corresponds to using conservation of angular momentum in
the plane orthogonal to D1 × D2.

The equations
L1 = L2, E1 = E2 (11)

are algebraic but not polynomial, due to the terms μ/|r j |. We consider the equation

ξ = 0, (12)

with

ξ = [μ(L1 − L2) − (E1r1 − E2r2)] × (r1 − r2) (13)

= 1

2
(|ṙ2|2 − |ṙ1|2)r1 × r2 − (ṙ1 · r1)ṙ1 × (r1 − r2) + (ṙ2 · r2)ṙ2 × (r1 − r2).

Note that in Eq. (12), which is a consequence of (11), the dependence on μ/|r j | has
been canceled.

After eliminating ρ̇1, ρ̇2 by (8), (9), ξ becomes a bivariate vector polynomial with
total degree 6, that we still denote by ξ. In the following, we consider the bivariate
polynomial system

q = 0, ξ = 0, (14)

which is a consequence of (5).

Remark 4 Themonomials of ξwith the highest degree are all multiplied by eρ
1 × eρ

2.
Therefore, the two projections

p1 = ξ · eρ
1, p2 = ξ · eρ

2 (15)

lower the degree, and give two polynomials with total degree 5.
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2.3 Consistency of Eqs. (14)

We sketch the proof of the following result: full details are given in [4].

Theorem 1 For generic values of the data, the bivariate and overdetermined poly-
nomial system

q = 0, ξ = 0

is consistent. Moreover, it can be reduced by elimination to a system of two univariate
polynomials of degree 10,

u1 = u2 = 0, (16)

such that
u = gcd(u1, u2)

has degree 9.

Sketch of the proof. Generically, relation

(q1 − q2) · eρ
1 × eρ

2 �= 0

holds, so that, from

ξ · (r1 − r2) = 0 and r j = q j + ρ je
ρ
j ( j = 1, 2),

we obtain
ξ = 0 if and only if ξ · eρ

1 = ξ · eρ
2 = 0.

Thus, in place of (14) we can consider the bivariate and still overdetermined system

q = p1 = p2 = 0. (17)

We note that, if (ρ1, ρ2) fulfills q = 0, the vectors r1, r2, ṙ1, ṙ2 all lie in the same
plane. This remark leads to the following geometrical fact:

Property 1 For (ρ1, ρ2) fulfilling q = 0 the vector ξ is parallel to the common value
c = c1 = c2 of the angular momentum.

Each projection
p j = ξ · eρ

j , j = 1, 2

vanishes either if ξ = 0, or if ξ is orthogonal to eρ
j . By Property 1, when q = 0

relation ξ · eρ
j = 0 can be checked using the angular momentum in place of ξ. For

this purpose we introduce the projections

ci j = ci · eρ
j , i, j = 1, 2.
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Fig. 1 Curves given by
q = 0, ci j = 0

ρ1

ρ2 c11 = 0

c22 = 0

c12 = 0

q = 0

c21 = 0

C

P1ρ′
2

ρ′′
2 P2

ρ′
1 ρ′′

1

The equations
c11(ρ1, ρ2) = 0, c22(ρ1, ρ2) = 0

define straight lines, while

c12(ρ1, ρ2) = 0, c21(ρ1, ρ2) = 0

define conic sections, see Fig. 1.
Set

P1 = (ρ′′
1, ρ

′
2), P2 = (ρ′

1, ρ
′′
2), C = (ρ′′

1, ρ
′′
2),

where

ρ′
1 = q1 × q2 · eρ

2

eρ
1 × eρ

2 · q2 , ρ′
2 = q1 × q2 · eρ

1

eρ
1 × eρ

2 · q1 , (18)

ρ′′
1 = q1 × q̇1 · eρ

1

eρ
1 × e⊥

1 · q1 , ρ′′
2 = q2 × q̇2 · eρ

2

eρ
2 × e⊥

2 · q2 , (19)

with
e⊥
j = α̇ j cos δ jeα

j + δ̇ jeδ
j , j = 1, 2.

These points fulfill the relations

c11(P1) = q(P1) = 0,

c22(P2) = q(P2) = 0,

c11(C) = c22(C) = q(C) = 0.

We use the following results, that hold generically, see [4].
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Lemma 1 The point C = (ρ′′
1, ρ

′′
2) satisfies

c1(C) = c2(C) = 0

and C is the unique point in the plane ρ1ρ2 where both angular momenta vanish.

Lemma 2 In C we have ξ · eρ
1 �= 0 and ξ · eρ

2 �= 0.

Lemma 3 Assume q = 0. Then ξ = 0 is equivalent to

{
ξ · eρ

1 = 0
c · eρ

1 �= 0
or

{
ξ · eρ

2 = 0
c · eρ

2 �= 0
. (20)

Using these lemmas, first we show that system (17) has at least 9 solutions (in the
complex field C). By Lemma 3, system (17) is generically equivalent to

{
q = p1 = 0
c11 �= 0

or

{
q = p2 = 0
c22 �= 0

. (21)

Both systems q = p1 = 0 and q = p2 = 0 generically define 10 points inC2. More-
over, for q = 0, relation c11 �= 0 discards the points P1,C , while relation c22 �= 0
discards P2,C . In any case, by Lemma 2, C generically neither belongs to the curve
p1 = 0, nor to the curve p2 = 0.

On the other hand, we can prove that

p1(P1) = p2(P2) = 0.

Let us show only that
p1(P1) = 0,

the proof of p2(P2) = 0 being similar. If ξ(P1) = 0, then the result holds trivially.
Assume ξ(P1) �= 0. We have q(P1) = 0, therefore c1(P1) = c2(P1) =: c(P1). Since
generically P1 �= C , by Lemma 1 we have c(P1) �= 0, and c(P1) is parallel to ξ(P1)
by Property 1. From c11(P1) = 0 we conclude that p1(P1) = 0 because c11, p1 are
the projections of c, ξ onto eρ

1.
Then, we are left with 9 solutions for both systems in (21), implying a lower

bound of 9 solutions for (14).
Now we show that (17) has exactly 9 solutions. By Bezout’s theorem we know

that it has at most 10 solutions, because both systems p1 = q = 0 and p2 = q = 0
have 10 solutions each. Moreover, generically we have

p1(P2) �= 0, p2(P1) �= 0. (22)

Using
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p1(P1) = q(P1) = 0, p2(P2) = q(P2) = 0

and the lower bound above, we conclude that (17) has generically 9 solutions, and
the two systems in (21) share the same solutions.

Consider the univariate polynomials

u1 = res(p1, q, ρ1), u2 = res(p2, q, ρ1)

given by the resultant of the pairs (p j , q)with respect to ρ1, see [2]. The quantities ρ′
2

and ρ′′
2 are roots of u1(ρ2) and u2(ρ2) respectively, because they are theρ2 components

of P1 and P2. Generically we have

u1(ρ
′′
2) �= 0, u2(ρ

′
2) �= 0,

therefore ρ′
2 and ρ′′

2 do not solve (16). Then, we consider

ũ1 = u1

ρ2 − ρ′
2

, ũ2 = u2

ρ2 − ρ′′
2

.

By the previous discussion we must have

ũ1 = cũ2,

with c a non-zero constant, so that the univariate polynomial

u = gcd(u1, u2) (23)

has degree 9 and has the same roots as ũ1 and ũ2. This completes the proof of the
theorem. �

3 An Optimal Property of the Polynomial u

In Remark 2 we observed that the Keplerian integrals can be viewed as polynomials
in the variables ρ, ρ̇, z by writing z in place of μ/|r|. Therefore, we can consider the
polynomial system

c1 = c2, μL̃1 = μL̃2, Ẽ1 = Ẽ2, z21|r1|2 = μ2, z22|r2|2 = μ2, (24)

of 9 equations in the 6 unknowns

ρ1, ρ2, ρ̇1, ρ̇2, z1, z2.
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In the next section we prove that dropping the last two equations in (24) we obtain
a consistent polynomial system:

c1 = c2, μL̃1 = μL̃2, Ẽ1 = Ẽ2. (25)

As a consequence of the proof we shall obtain that the univariate polynomial

u = gcd(u1, u2)

of degree 9 has the minimum degree among the polynomials in ρ1 or ρ2 contained in
the ideal

I = 〈c1 − c2, μ(L̃1 − L̃2), Ẽ1 − Ẽ2〉 ⊆ R[ρ1, ρ2, ρ̇1, ρ̇2, z1, z2].

3.1 A Gröbner Basis for the Ideal I

The following result holds true.

Theorem 2 For generic dataA j ,q j , q̇ j , j = 1, 2, we can find a set of polynomials

{g1, . . . , g6} ⊂ R[ρ1, ρ2, ρ̇1, ρ̇2, z1, z2]

that is a Gröbner basis of the ideal I for the lexicographic order with

ρ̇1 � ρ̇2 � z1 � z2 � ρ1 � ρ2, (26)

and such that
g6 = u.

We recall the following definition.

Definition 1 A set {g1, . . . , gn}, with n ∈ N, is a Gröbner basis of a polynomial
ideal I for a fixed monomial order � if and only if the leading term (for that order)
of any element of I is divisible by the leading term of one g j .

Proof For a generic choice of the data we consider the following set of generators
of I :
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q1 = (c1 − c2) · D1 × D2,

q2 = (c1 − c2) · D2 × (D1 × D2),

q3 = (c1 − c2) · D1 × (D1 × D2),

q4 = μ(L̃1 − L̃2) · eρ
1 × eρ

2,

q5 = μ(L̃1 − L̃2) · D2,

q6 = μ(L̃1 − L̃2) · D1,

q7 = Ẽ1 − Ẽ2.

The first three polynomials have the form

q1 = q,

q2 = |D1 × D2|2ρ̇1 − J · D2 × (D1 × D2),

q3 = |D1 × D2|2ρ̇2 − J · D1 × (D1 × D2),

where q and J are defined in (10) and (7). The other generators of I can be written
as

q4 = −(D1 · eρ
2)z1 − (D2 · eρ

1)z2 + f4,

q5 = −(D2 · r1)z1 + f5,

q6 = (D1 · r2)z2 + f6,

q7 = −z1 + z2 + f7,

for some polynomials f j = f j (ρ1, ρ2, ρ̇1, ρ̇2). We can substitute q4, . . . , q7 with

p4 = −(D2 · eρ
1)q7 − q4 = Az1 + a1,

p5 = (D1 · eρ
2)q7 − q4 = Az2 + a2,

p6 = (D1 · r2)p5 − Aq6,

p7 = (D2 · r1)p4 + Aq5,

where
A = D1 · eρ

2 + D2 · eρ
1 = (q1 − q2) · eρ

1 × eρ
2,

for some polynomials a j = a j (ρ1, ρ2, ρ̇1, ρ̇2). The monomials containing z1, z2 can-
cel out in p6, p7.

Using q2 = q3 = 0, we eliminate ρ̇1, ρ̇2 from p4, . . . , p7: we call p̂4, . . . , p̂7 the
polynomials obtained in this way. It can be shown that

p̂6 = −(D1 · eρ
2)p1, p̂7 = (D2 · eρ

1)p2, (27)

where p1, p2 are the bivariate polynomials defined in (15).
Therefore, the elimination ideal
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J := I ∩ R[ρ1, ρ2]

is generated by q, p1, p2:
J = 〈q, p1, p2〉.

Let us write

q(ρ1, ρ2) =
2∑

h=0

bh(ρ2)ρ
h
1,

with
b0(ρ2) = q0,2ρ

2
2 + q0,1ρ2 + q0,0, b1 = q1,0, b2 = q2,0.

Assuming q2,0 �= 0, that generically holds, let us set

β1 = 1, β2 = −b1
b2

, γ2 = −b0
b2

,

βh+1 = βhβ2 + γh, γh+1 = βhγ2, h = 2, 3, 4.
(28)

Moreover, we introduce the polynomials

ηh(ρ1) = 1

b2

h−1∑

j=0

βh− jρ
j
1, h = 1, . . . , 4. (29)

With this notation we have

ρh+1
1 = ηhq + βh+1ρ1 + γh+1, h = 1, . . . , 4. (30)

The generators p1, p2 can be written as

p1(ρ1, ρ2) =
4∑

h=0

a1,h(ρ2)ρ
h
1, p2(ρ1, ρ2) =

5∑

h=0

a2,h(ρ2)ρ
h
1,

for some polynomials ai, j , so that

p̃1 = p1 − q
3∑

j=1

a1, j+1η j , p̃2 = p2 − q
4∑

j=1

a2, j+1η j

belong to the ideal J and can be written as

p̃1 = ã1,1(ρ2)ρ1 + ã1,0(ρ2), p̃2 = ã2,1(ρ2)ρ1 + ã2,0(ρ2),

with
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ã1,1 = a1,1 +
4∑

h=2

a1,hβh, ã1,0 = a1,0 +
4∑

h=2

a1,hγh,

ã2,1 = a2,1 +
5∑

h=2

a2,hβh, ã2,0 = a2,0 +
5∑

h=2

a2,hγh .

Then, we have
J = 〈q, p̃1, p̃2〉.

Now we set
J1 = 〈 p̃1, p̃2〉

and prove that
J = J1,

that is, we can generate J with two polynomials only. First we show that

V (J1) = V (J ), (31)

where the variety V (K ) of a polynomial ideal K ⊆ R[ρ1, ρ2] is the set

V (K ) = {(ρ1, ρ2) ∈ C
2 : p(ρ1, ρ2) = 0, ∀p ∈ K }.

From J1 ⊆ J we have
V (J1) ⊇ V (J ). (32)

To prove the opposite inclusion, we introduce the univariate polynomial

v = res( p̃1, p̃2, ρ1) = ã1,1ã2,0 − ã1,0ã2,1 (33)

in the variable ρ2. It turns out that v has degree 9. We need the following results, that
hold for a generic choice of the data:

(i) u and v, defined in (23) and (33) respectively, have 9 distinct solutions in C (i.e.
they are square-free),

(ii) ã1,1 and ã2,1 are relatively prime, i.e.

gcd(ã1,1, ã2,1) = 1. (34)

The proof of these results is in [5]. By (34) we can find two univariate polynomials
β, γ in the variable ρ2 such that

βã1,1 + γã2,1 = 1. (35)

Let us introduce
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w = β p̃1 + γ p̃2 = ρ1 + z(ρ2), (36)

where
z = βã1,0 + γã2,0.

We show that
J1 = 〈w, v〉. (37)

In fact
v = ã1,1 p̃2 − ã2,1 p̃1, (38)

because

ã1,1 p̃2 − ã2,1 p̃1 = ã1,1(ã2,1ρ1 + ã2,0) − ã2,1(ã1,1ρ1 + ã1,0) = ã1,1ã2,0 − ã2,1ã1,0.

Relations (36), (38) show thatw, v ∈ J1. On the other hand, inverting these relations
we also obtain

p̃1 = ã1,1w − γv,

p̃2 = ã2,1w + βv,

that is p̃1, p̃2 belong to the ideal generated by w, v.
Property (37) implies that V (J1) has 9 distinct points. In fact, for each root ρ2 of

v, which are all distinct because v is square-free, we find fromw = 0 a unique value
of ρ1 such that (ρ1, ρ2) ∈ V (J1).

On the other hand, generically V (J ) has 9 distinct points too. This can be shown
using Theorem 1 and the fact that also u is square-free (see [5]). Then, from (32) we
have2

V (J1) = V (J ). (39)

In particular, the polynomials v and u coincide up to a non-zero constant factor c:

v = cu,

because their (complex) roots have the same 9 values.
Now we prove that indeed the two ideals are the same:

J1 = J. (40)

We only need to show the inclusion J ⊆ J1. Assume the lexicographic order with

ρ1 � ρ2

2 Hint: the fact that the variety of two ideals is the same does not mean that the two ideals are
necessarily the same, see Hilbert’s nullstellensatz in [2].
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for the monomials in J and take any polynomial h in J . Dividing byw = ρ1 + z(ρ2)
we obtain

h(ρ1, ρ2) = h1(ρ1, ρ2)w(ρ1, ρ2) + r(ρ2) (41)

for some polynomials h1, r. The remainder r depends only on ρ2 because of the
particular form of w, whose leading term is ρ1. From w ∈ J1 ⊆ J and (41) we have
that r ∈ J , so that the roots of r must contain all the ρ2 coordinates of the points in
V (J ).

Using the fact that v = cu is square-free we obtain that vmust divide r, i.e. r = dv
for some polynomal d(ρ2), which together with (41) yields

h = h1w + dv ∈ J1.

We conclude that (40) holds.
The polynomials g1, . . . , g6, with

g1 = q2, g2 = q3, g3 = p̂4, g4 = p̂5, g5 = w, g6 = u,

form a Gröbner basis of the ideal I for the lexicographic order (26). To show this,
we can simply check that the leading monomials of each pair (gi , g j ), with 1 ≤ i <

j ≤ 6, are relatively prime. This concludes the proof of the theorem. �

Remark 5 The proof above yields a normalized Gröbner basis for the ideal J . In
fact, we can rescale by constant factors the polynomials of the basis and consider

g1 = ρ̇1 + h1(ρ1, ρ2),

g2 = ρ̇2 + h2(ρ1, ρ2),

g3 = z1 + h3(ρ1, ρ2),

g4 = z2 + h4(ρ1, ρ2),

g5 = ρ1 + z(ρ2),

g6 = u(ρ2),

with

h1 = J · D2 × (D1 × D2)

|D1 × D2|2 , h2 = J · D1 × (D1 × D2)

|D1 × D2|2 , h3 = a1

A
, h4 = a2

A
.

As a consequence of Theorem 2, we obtain

Corollary 1 The polynomial u has the minimum degree among the univariate poly-
nomials in the variable ρ2 belonging to the ideal I .



Orbit Determination with the Keplerian Integrals 225

3.2 Selecting the Solutions

Given A = (A1,A2) with covariance matrix

ΓA =
[

ΓA1 0
0 ΓA2

]

,

let

R = R(A) = (R1(A),R2(A)), Ri = (ρi , ρ̇i ), i = 1, 2

be a solution of

Φ(R;A) =
(
c1 − c2
ξ · eρ

1

)

= 0, (42)

where ξ is defined in (13), and can also be written as

ξ = [μ(L1 − L2) − (E1 − E2)r1] × (r1 − r2). (43)

If both (A1,R1(A)), (A2,R2(A)) give bounded orbits at epochs

t̃i = t̃i (A) = t̄i − ρi (A)

c
, i = 1, 2, (44)

where aberration of light with velocity c is taken into account, then we can compute
the corresponding Keplerian elements. We introduce the vector

Δa,� = (Δa,Δ�),

representing the difference in semimajor axis and mean anomaly of the two orbits,
comparing the anomalies at the same time t̃1:

Δa = a1 − a2, Δ� = �1 − �2 − n(a2)(t̃1 − t̃2),

where n(a) = √
μa−3/2 is the mean motion. We consider the map

(A1,A2) = A �→ Ψ (A) = (A1,R1,Δa,�

)
,

giving the orbit (A1,R1(A)) in attributable coordinates at epoch t̃1, together with
the vector Δa,�(A).

We map the covariance matrix ΓA of A into the covariance matrix of Ψ (A) by

ΓΨ (A) = ∂Ψ

∂A
ΓA

[
∂Ψ

∂A

]T

.
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We can consider different ways to select the solutions. Two of them are the fol-
lowing.

CompatibilityConditions.Wecheckwhether the considered solution of (42) fulfills
the relation

Δa,� = 0

within a threshold defined by ΓA. More precisely, consider the marginal covariance
matrix

ΓΔa,�
= ∂Δa,�

∂A
ΓA

[
∂Δa,�

∂A

]T

of the vector Δa,�. The inverse matrix

CΔa,� = Γ −1
Δa,�

defines a norm ‖ · ‖� allowing to test the identification of A1,A2:

‖Δa,�‖2� = Δa,�C
Δa,�ΔT

a,� ≤ χ2
max ,

where χmax is a control parameter, that needs to be seleceted on the basis of simula-
tions and practical tests with real data.

The orbits computed with the method of Sect. 2 are such that

I1 = I2, Ω1 = Ω2, a1(1 − e21) = a2(1 − e22) (45)

because they fulfill c1 = c2. Assuming a1 = a2 we get e1 = e2 from the third relation
in (45). Since a1 = a2 corresponds to E1 = E2, from ξ = 0 we also obtain

μ(L1 − L2) × (r1 − r2) = 0. (46)

The vectors L1,L2 have the same size because e1 = e2. Since it is quite unlikely that
these vector differences are parallel, generically relation (46) implies

ω1 = ω2.

Attribution. We can try to attribute the data of A2 to each considered solution
x1 = (A1,R1(A)) of (42), which has the covariance matrix

Γx1 =
[

ΓA1 ΓA1,R1

ΓR1,A1 ΓR1

]

,

with

ΓA1 = ∂A1

∂A
ΓA

[
∂A1

∂A

]T

, ΓR1 = ∂R1

∂A
ΓA

[
∂R1

∂A

]T

,
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ΓA1,R1 = ΓA1

[
∂R1

∂A1

]T

, ΓR1,A1 = Γ T
A1,R1

.

We recall here the attribution algorithm. Assume that we have

(i) a least squares orbit x1 obtained fromm1 observations, with mean epoch t̄1, with
covariance and normal matrices Γx1 ,Cx1 ;

(ii) an attributable A2 obtained from m2 observations, with mean epoch t̄2, with
covariance and normal matrices ΓA2 ,CA2 .

Assume that
x �→ A = G(x)

maps orbital elements to attributables and define the prediction function

F(x; t0, t) = G ◦ Φ t
t0(x),

where Φ t
t0(x) is the integral flow of the Kepler problem. The covariance and normal

matrices of A are given by

ΓA =
[
∂F

∂x

]

Γx

[
∂F

∂x

]T

, CA = Γ −1
A ,

where Γx is the covariance matrix of x.
LetA2 be an attributable and C2 its 4 × 4 normal matrix. LetAp be the predicted

attributable at time t̄2, computed from the least squares orbit x1, and Γp,Cp its
covariance and normal matrices.

The formulae for linear attribution in the 4-D space are the following (see [10]):

C0 = C2 + Cp, Γ0 = C−1
0 ,

x0 = Γ0
[
C2A2 + CpAp

]
,

K4 = (Ap − A2) · [C2 − C2 Γ0 C2] (Ap − A2).

The values of the attribution penalty K4/m, with m = m1 + m2, is used to filter out
the pairs orbit-attributable which cannot belong to the same object.

3.3 Numerical Test with Link2

We show an application of the Link2 algorithm using 4 observations of asteroid
(4542) Mossotti made on April 28, 2011 and 4 observations of the same asteroid
made on November 4, 2013. These data have been collected by the telescope Pan-
STARRS1, mount Hakeakala, Hawaii, and are displayed in Table1. For simplicity,
only a few digits are reported here.
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Table 1 Values of right ascension (α) and declination (δ) used for the linkage

α (rad) δ (rad) t (MJD)

4.127300 −0.094246 55679.51169

4.127261 −0.094238 55679.52398

4.127221 −0.094230 55679.53664

4.127188 −0.094223 55679.54709

0.896220 0.078635 56600.43378

0.896168 0.078626 56600.44773

0.896119 0.078617 56600.46130

0.896069 0.078608 56600.47489

Table 2 Pair of preliminary orbits computed with Link2. The epoch t̃ has been corrected by
aberration, see (44) in Sect. 3.2. The angles I,Ω,ω, � are given in degrees

a (au) e I Ω ω � t̃ (MJD)

3.03055 0.06436 11.22246 104.80204 117.44122 5.63111 55679.51899

3.02287 0.04015 11.22246 104.80204 114.03999 188.86754 56600.44185

From these observations we computed the attributables

A1 = (4.127242,−0.094234,−0.00316982, 0.00064761),

A2 = (0.896144, 0.078622,−0.00364403,−0.00065882),

at themean epochs t̄1 = 55679.52985MJD, t̄2 = 56600.45442MJD. In the attributa-
bles A1, A2 the angles α, δ are given in radians and the angular rates α̇, δ̇ are given
in radians/day.

After discarding solutions with non-real or non-positive values of ρ, and
unbounded solutions, we are left with the radial distance pair

(ρ1, ρ2) = (1.8802, 2.1774) au,

leading to the pair of preliminary orbits given in Table2.
The intersection of the curves defined by p1 = p2 = q = 0 is shown in Fig. 2.
Then we computed the rms of the preliminary orbits in Table2 with respect to

a pure Keplerian motion and selected the first orbit as the best (the one with the
least rms). We propagated this orbit at the mean epoch of the observations, which
is t̄ = 56139.99213, applied differential corrections and computed a least squares
orbit. This orbit is shown in Table3, togetherwith the known orbit at the same epoch.3

3 Data from AstDyS-2 (https://newton.spacedys.com/astdys/), orbit propagation with the OrbFit
software (http://adams.dm.unipi.it/orbfit/).

https://newton.spacedys.com/astdys/
http://adams.dm.unipi.it/orbfit/
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Fig. 2 Intersections of the curves p1 = 0 (red), p2 = 0 (blue), q = 0 (black) in the ρ1ρ2 plane

Table 3 Orbital elements of the least squares solution (LS) and of the known orbit. The angles
I,Ω,ω, � are given in degrees

a (au) e I Ω ω �

LS 3.01802 0.05755 11.32849 104.37041 146.76038 66.54688

Known 3.00997 0.05614 11.30734 104.41991 144.01204 69.25283

4 Joining Three TSAs

Given three TSAs with attributables A1,A2,A3 at mean epochs t̄1, t̄2, t̄3, setting
the conservation of angular momentum is enough to obtain a finite number of
orbits. We review the following result, presented in [5]. Here the subscripts in
ci , ρi , ρ̇i ,Di ,Ei ,Fi ,Gi refer to the three epochs.

Proposition 1 Assume
D1 × D2 · D3 �= 0. (47)

Then the polynomial system
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(c1 − c2) · D1 × D2 = 0, (48a)

(c1 − c2) · D1 × (D1 × D2) = 0, (48b)

(c2 − c3) · D2 × D3 = 0, (48c)

(c2 − c3) · D2 × (D2 × D3) = 0, (48d)

(c3 − c1) · D3 × D1 = 0, (48e)

(c3 − c1) · D3 × (D3 × D1) = 0 (48f)

in the 6 unknowns
ρ1, ρ̇1, ρ2, ρ̇2, ρ3, ρ̇3

is equivalent to the redundant system

c1 = c2, c2 = c3, c3 = c1. (49)

Proof System (49) trivially implies (48). Assume now that system (48) holds. Using
relations (48e), (48f), to prove that c3 = c1 we only need to show that

(c3 − c1) · v = 0 (50)

for some vector v that does not belong to the linear space generated by D3 × D1 and
D3 × (D3 × D1). Indeed we show that we can choose

v = D1 × D2.

Note that
(D1 × D2) · (D2 × D3) × (

D2 × (D2 × D3)
) = 0,

that is, the vector D1 × D2 belongs to the linear space generated by D2 × D3 and
D2 × (D2 × D3). Moreover, D1 × D2 is not generated by D3 × D1 and D3 × (D3 ×
D1), in fact by (47) we have

(D1 × D2) · (D3 × D1) × (
D3 × (D3 × D1)

) = |D3 × D1|2D1 × D2 · D3 �= 0.

Setting
v = D1 × D2,

from (48a), (48c), (48d)we obtain (c1 − c2) · v = (c2 − c3) · v = 0,which yield (50)
and therefore we obtain c3 = c1. In a similar way we can prove that c1 = c2, c2 = c3,
provided that system (48) holds.

�
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Equations (49) can be written as

D1ρ̇1 − D2ρ̇2 = J12(ρ1, ρ2),

D2ρ̇2 − D3ρ̇3 = J23(ρ2, ρ3),

D3ρ̇3 − D1ρ̇1 = J31(ρ3, ρ1),

where

J12(ρ1, ρ2) = E2ρ
2
2 − E1ρ

2
1 + F2ρ2 − F1ρ1 + G2 − G1,

J23(ρ2, ρ3) = E3ρ
2
3 − E2ρ

2
2 + F3ρ3 − F2ρ2 + G3 − G2,

J31(ρ3, ρ1) = E1ρ
2
1 − E3ρ

2
3 + F1ρ1 − F3ρ3 + G1 − G3.

Equations (48a), (48c), (48e) depend only on the radial distances. In fact, they
correspond to the system

J12 · D1 × D2 = 0, J23 · D2 × D3 = 0, J31 · D3 × D1 = 0, (51)

which can be written as

q3 = a3ρ
2
2 + b3ρ

2
1 + c3ρ2 + d3ρ1 + e3 = 0, (52)

q1 = a1ρ
2
3 + b1ρ

2
2 + c1ρ3 + d1ρ2 + e1 = 0, (53)

q2 = a2ρ
2
1 + b2ρ

2
3 + c2ρ1 + d2ρ3 + e2 = 0, (54)

where

a3 = E2 · D1 × D2, b3 = −E1 · D1 × D2,

c3 = F2 · D1 × D2, d3 = −F1 · D1 × D2,

e3 = (G2 − G1) · D1 × D2,

and the other coefficients a j , b j , c j , d j , e j , for j = 1, 2, have similar expressions,
obtained by cycling the indexes.

To eliminate ρ1, ρ3 from (51) we can first compute the resultant

r = res(q3, q2, ρ1),

which depends only on ρ2, ρ3, and then the resultant

q = res(r, q1, ρ3),

which is a univariate polynomial of degree 8 in the variable ρ2.
Therefore, provided that (47) holds, to get the solutions of (49) we search for

the roots ρ̄2 of q(ρ2), compute the corresponding values ρ̄3 of ρ3 from r(ρ3, ρ̄2) =
q1(ρ3, ρ̄2) = 0, and the values of ρ1 from q3(ρ1, ρ̄2) = q2(ρ̄3, ρ1) = 0.
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From Eqs. (48b), (48d), (48f) we can write the radial velocities ρ̇ j as functions of
pairs of radial distances:

ρ̇2 = J12(ρ1, ρ2) · D1 × (D1 × D2)

|D1 × D2|2 ,

ρ̇3 = J23(ρ2, ρ3) · D2 × (D2 × D3)

|D2 × D3|2 ,

ρ̇1 = J31(ρ3, ρ1) · D3 × (D3 × D1)

|D3 × D1|2 .

From these data we can reconstruct the orbital elements.

4.1 Straight Line Solutions

A particular solution of system (49) can be obtained by searching for values of ρ j , ρ̇ j

such that
c j (ρ j , ρ̇ j ) = 0, j = 1, 2, 3.

Let us drop the index j . Relation r × ṙ = 0 implies that there exists λ ∈ R such that

ρ̇eρ + ρη + q̇ = λ(ρeρ + q), (55)

with η = α̇ cos δeα + δ̇eδ . Setting σ = ρ̇ − λρ we can write (55) as

σeρ + ρη − λq = −q̇. (56)

We introduce the vector

u = q − (q · eρ)eρ − 1

η2
(q · η)η,

which is orthogonal to both eρ and η, where η = |η|.
Thus, we can write (56) as

[σ − λ(q · eρ)]eρ +
[
ρ − λ

η2
(q · η)

]
η − λu = −q̇.

Since {eρ,η,u} is generically an orthogonal basis of R3, we find

λ = 1

|u|2 (q̇ · u), ρ = 1

η2
(λq − q̇) · η, ρ̇ = λρ + (λq − q̇) · eρ.
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In particular, we obtain the value

ρ = 1

η2

( 1

|u|2 (q̇ · u)(q · η) − q̇ · η
)

for the radial distance, corresponding to a solution with zero angular momentum.

4.2 Selecting the Solutions

Given A = (A1,A2,A3) with covariance matrices ΓA1 , ΓA2 , ΓA3 , let

R = R(A) = (R1(A),R2(A),R3(A)
)
, Ri = (ρi , ρ̇i ), i = 1, 2, 3

be a solution of
Φ(R;A) = 0, (57)

with

Φ(R;A) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(c1 − c2) · D1 × (D1 × D2)

(c1 − c2) · D1 × D2

(c2 − c3) · D2 × (D2 × D3)

(c2 − c3) · D2 × D3

(c3 − c1) · D3 × (D3 × D1)

(c3 − c1) · D3 × D1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If (A1,R1(A)), (A2,R2(A)), and (A3,R3(A)) give bounded orbits at epochs

t̃i = t̄i − ρi (A)

c
, i = 1, 2, 3,

then we compute the corresponding Keplerian elements. We introduce the difference
vectors

Δ12 = (
a1 − a2,ω1 − ω2, �1 − �2 − n(a2)(t̃1 − t̃2)

)
,

Δ32 = (
a3 − a2,ω3 − ω2, �3 − �2 − n(a2)(t̃3 − t̃2)

)
,

where n(a) = √
μa−3/2 is the mean motion. We consider map

(A1,A2,A3) = A �→ Ψ (A) = (A2,R2,Δ12,Δ32) ,

giving the orbit (A2,R2) in attributable coordinates at epoch t̃2 together with the
vectors Δ12, Δ32, which are not constrained by the angular momentum integrals.
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We map the covariance matrix

ΓA =
⎡

⎣
ΓA1 0 0
0 ΓA2 0
0 0 ΓA3

⎤

⎦

of A into the covariance matrix of Ψ (A) by the covariance propagation rule:

ΓΨ (A) = ∂Ψ

∂A
ΓA

[
∂Ψ

∂A

]T

,

We can check whether the considered solution of (57) fulfills the compatibility
conditions

Δ12 = Δ32 = 0

within a threshold defined by ΓA. More precisely, consider the marginal covariance
matrix ΓΔ of the vector

Δ = (Δ12,Δ32).

The inverse matrix CΔ = Γ −1
Δ defines a norm ‖ · ‖� allowing us to test an identifi-

cation between the attributables A1,A2,A3: we check whether

‖Δ‖2� = ΔCΔΔT ≤ χ2
max , (58)

where χmax is a control parameter.

4.3 Numerical Test with Link3

We show an application of the Link3 algorithm using three TSAs of observations
of asteroid (4628) Laplace, listed in Table4. From these observations we computed
the three attributables

A1 = (5.497266,−0.067965,−0.00379969,−0.00072536),

A2 = (0.715891, 0.542071,−0.00422693,−0.00136864),

A3 = (0.831367, 0.390747, 0.00622482, 0.00054073),

at the mean epochs t̄1 = 55794.36935, t̄2 = 56226.53746, t̄3 = 56358.24760, given
in MJD. In the attributables A j the angles are given in radians and the angular rates
in radians/day. After discarding the straight-line solution, the solutions with negative
values of ρ, and the unbounded ones, we are left with the radial distance triplets
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Table 4 Values of right ascension (α) and declination (δ) of asteroid (4628) Laplace collected by
the Pan-STARRS1 telescope

α (rad) δ (rad) t (MJD)

5.497381 −0.067942 55794.33902

5.497339 −0.067950 55794.35011

5.497195 −0.067978 55794.38807

5.497148 −0.067987 55794.40021

0.715965 0.542095 56226.52009

0.715918 0.542080 56226.53117

0.715867 0.542063 56226.54334

0.715816 0.542047 56226.55525

0.831317 0.390743 56358.23971

0.831350 0.390746 56358.24497

0.831383 0.390749 56358.25023

0.831416 0.390751 56358.25550

Table 5 Triplets of preliminary orbits computed with Link3. The angles I,Ω,ω, � are given in
degrees

a (au) e I Ω ω � t̃ (MJD)

1 2.86808 0.30942 12.13274 274.68641 172.31982 266.26844 55794.35667

2.64520 0.13981 12.13274 274.68641 258.53770 242.07553 56226.52647

2.59619 0.03219 12.13274 274.68641 290.50786 228.16130 56358.23074

2 2.64614 0.11646 11.78916 275.69255 249.45265 149.80066 55794.35816

2.64562 0.11562 11.78916 275.69255 248.51598 249.78277 56226.52691

2.64427 0.11343 11.78916 275.69255 247.58320 280.66987 56358.23093

(ρ1, ρ2, ρ3) = (2.1955, 1.9028, 2.9200) au,

(ρ1, ρ2, ρ3) = (1.9379, 1.8279, 2.8870) au,

leading to the triplets of preliminary orbits displayed in Table5.
Based on the norm ‖Δ‖�, we selected the second triplet. Checking the rms of

these orbits with respect to a pure Keplerian motion we selected the first orbit of
this triplet. We propagated this orbit at the mean epoch of the 12 observations in
Table4, which is t̄ = 56126.38480, applied differential corrections and computed a
least squares orbit. This orbit is shown in Table6, toghether with the known orbit at
the same epoch.
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Table 6 Orbital elements of the least squares solution (LS) and of the known orbit. The angles
I,Ω,ω, � are given in degrees

a (au) e I Ω ω �

LS 2.64443 0.11729 11.79295 275.66956 248.45817 227.09536

Known 2.64441 0.11730 11.79294 275.66961 248.46069 227.09295

5 Conclusions and Future Work

Wereviewed two initial orbit determinationmethods for TSAs of optical observations
employing the conservation laws of Kepler’s problem. Some algebraic properties of
these algorithms have also been discussed and a simple test case has been presented
for both. Being based on conservation laws, these methods are suitable to link TSAs
quite far apart in time, even differing by more than one orbital period of the observed
body. Moreover, these algorithms are very fast, because they are based on a polyno-
mial formulation with low degree (9 for Link2, 8 for Link3). The sensitivity of
these algorithms to astrometric errors is an important feature to be investigated: in
fact it seems that some orbital elements are more sensitive to these errors. Moreover,
it would be important to find efficient filters to discard a priori pairs of TSAs that are
not likely to belong to the same observed object. Indeed, even if some filters have
been proposed in [4, 7], a satisfactory solution to this problem is still missing. The
mentioned problems are currently under investigation.
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Resonant Dynamics of Space Debris

Alessandra Celletti and Catalin Galeş

Abstract Since the launch of the Sputink 1 in 1957, a number of debris accumulated
and now populates the circumterrestrial environment. These objects are found from
Low Earth Orbits at altitudes of a few hundreds of kilometers to the Geostationary
Earth Orbit, a region located at 42164km from the center of the Earth. The size
of the debris runs from submillimeters to a few meters, but in view of their high
velocities, they pose a serious threat for current and future satellites and are a source
of hazard for human spaceflights. The sustainability of future space activities is
definitely a priority for the current science and technology. In this context, it is of
paramount importance to make a thorough study of the dynamics of space debris,
especially in view of determining regular and chaotic stability properties. In this work
we illustrate the models that can describe the dynamics at different altitudes; such
models strongly depend on the location of the debris, since at low altitudes one needs
to consider the Earth’s atmosphere, while lunisolar effects becomemore important at
higher altitudes. After having introduced the equations of motion both in Cartesian
and Hamiltonian formalism, we analyze the dynamics of different resonances, most
notably the geosynchronous and semi-synchronous resonances.We also review some
results about the study of the orbits in the LEO region.
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1 Introduction

Space debris are artificial (non-operational or defunct) objects that orbit at different
altitudes around the Earth. These objects are remnants of space missions, like rocket
stages, old satellites, fragments from disintegrations, lost equipment, bolts, paint
flakes, batteries, etc. The oldest space debris still in orbit is the satellite Vanguard 1.
It was launched on an elliptic orbit on 17 March 1958 and has an orbital lifetime of
about 240 years. As the number of launches continues to grow, much space junks
have been produced in about 60 years of the exploration and exploitation of the
circumterrestrial space. Nowadays, the Space Launch Report archive (see [94]) lists
more than 6000 launches since the Sputnik 1 on 4th October 1957, which deployed
more than 10600 spacecraft and satellites. The total mass of all space objects in
Earth’s orbit is estimated at 9200 tonnes. Currently, about 6250 satellites are still
in space and about 3600 are still functioning. A large portion of space debris are
due to catastrophic events, either explosions or collisions, which have dramatically
increased the number of objects in orbit.

ESA estimates that (as of October 2022) there are more than 36500 debris objects
with size larger than 10 cm in the Earth’s orbit, about 28000 objects being regularly
tracked by the U.S. Space Surveillance Network (see [93]). Moreover, around the
Earth there are about 1 million objects between 1 and 10 cm and about 1.3 · 108
objects between 1 mm and 1 cm. One has to bear in mind that in the LEO region a
collision with a 10cm object would entail a catastrophic fragmentation of a typical
satellite, a collision with a 1cm object would most likely disable a spacecraft, a
collision with a 1mm object could lead to destroy on board sub-systems.

Figure1 shows the spatial density of objects as a function of the altitude, where
the following terminology has been adopted:

– LEO stands for Low-Earth-Orbit ranging up to 2000km of altitude,
– MEOstands forMedium–Earth–Orbit with altitudes between 2000 and 35786km,
– GEO is short for Geostationary–Earth–Orbit at an altitude close to 35786km.

Since the beginning of the space age, ESA estimates that more than 550 break-ups
(explosions, collisions, or anomalous events resulting in fragmentations) have been
occurred.

The first explosion in space happened on 29 June 1961: the Thor-Able upper stage
exploded two hours after the separation from the Transit 4A navigation satellite;
the number of fragments tracked from the ground was about 294. The first known
accidental collision in space occurred on 24 July 1996: the 50kgmicrosatellite Cerise
was hit by the explosion of the rocket Ariane. Dramatic breakup events occurred in
2007 with the collision of the satellite Fengyun–1C with an anti-satellite missile;
the collision generated more than 3000 fragments. In 2009, the collision of the
Cosmos 2251 and the Iridium 33 spacecraft generated more than 1700 fragments.
The proliferation of this population of space debris is a source of hazard for space
assets and human operated missions. An analysis of the collision risk against space
debris is described in [66, 82, 83].
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Fig. 1 Spatial density of objects as a function of the altitude for three different size thresholds:
objects with diameter larger than 1mm (red line), 1 cm (green line) and 10cm (blue line) (from
http://www.scholarpedia.org/article/Spacedebris)

The scientific community is aware that the so-called Kessler syndrome [64],
according to which the density of objects is high enough that collisions between
objects lead to a cascade effect, has already begun in LEO. In this region, the growth
of space debris cannot be stopped, but only controlled. The Inter-Agency Space
Debris Coordination Committee (IADC), founded in 1993, is an international forum
of governmental bodies for the coordination of activities related to the issues of man-
made and natural debris in space with the following aims: exchange information on
space debris research activities between member space agencies, facilitate oppor-
tunities for co-operation in space debris research, review the progress of ongoing
co-operative activities, identify debris mitigation options. The latter point calls in
action the capability to understand the orbital evolution of space debris to devise
maintenance, control strategies and mitigation. In particular, end-of-life disposal
strategies consist in the transfer of still-operational spacecraft into graveyard orbits
or rather could be obtained by provoking an eccentricity growth to cause an atmo-
spheric re-entry.

With this in mind, it will be important to pursue the following aims:

– seek stability regions, to minimize the eccentricity growth and future interactions
with operational spacecraft in that region;

– take advantage of the natural dynamics, to aim at re-enter into the atmosphere or
to move into a graveyard orbit at the end of the operational life.

A successful strategy will require to understand the resonances, to locate regular
dynamics, to study the mechanisms for the onset of chaos (see [11]). To this end, we
need to distinguish between the different regions. Precisely, in MEO and GEO we
have a conservative dynamics mainly affected by the monopole term of the Earth’s
attraction, Earth’s oblateness, the attraction of the Moon, the influence of the Sun
and the effect of Solar radiation pressure (hereafter SRP); in LEO we need to take

http://www.scholarpedia.org/article/Space


242 A. Celletti and C. Galeş
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Fig. 2 Orders of magnitude of various perturbations of a debris orbit. The vertical dashed lines
correspond to main tesseral resonances in MEO, GEO and outside the geostationary ring

into account the dissipative effects provoked by the atmospheric drag. The orders of
magnitude of the different perturbations on a debris orbit are shown in Fig. 2.

We remark that recent results concerning the computation of proper elements
have been obtained in [21] (see also [27, 77]), while perturbative methods and
Nekhoroshev-like techniques have been implemented in [12, 29]. We also men-
tion that the dynamics of space debris can be connected to the theory of normally
hyperbolic invariant manifolds (NHIMs); a short suggestion is given in [18] and
numerical results are available in [43].

A key role is played by resonances, that we classify as:

– tesseral and gravitational resonances, whenever there is a commensurability
between the orbital period of the debris and the period of Earth’s rotation (see
[7–9, 13–15, 42, 70, 85, 88, 90, 91]);

– lunisolar resonances, which involve commensurabilities between the slow angles,
i.e. the argument of perigee, the longitude of the ascending node or the mean
anomaly of Moon and Sun (see [2, 8, 16, 18, 28, 54, 55, 76, 78]).

Another key role is played by the solar radiation pressure, which influences the
orbits of high area-to-mass ratio objects (HAMR) (see [39, 89, 90]). We refer to [1,
10, 25, 30, 73, 79] for studies of the solar radiation pressure effects on the long–term
evolution of space debris, to [34, 38, 53] for a description of the Earth’s shadowing
influence on circumterrestrial orbits and to [69] for secondary resonances involving
the Sun’s longitude.

In LEO one needs to include the dissipation due to the atmospheric drag (see [6,
40, 74]) and higher order harmonics (see [49]). The combined effect of air drag and
resonances (tesseral or lunisolar) has been recently addressed in [3, 17, 86].

To stabilize the space debris population growth, IADC (see [57]) adopted a set of
guidelines which are based on the following general principles:
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– preventing on-orbit break-ups;
– removing spacecraft and orbital stages that have reached the end of their mission
operations from densely populated orbit regions;

– limiting the objects released during normal operations.

Two protected regions about the Earth have been identified:

– Region A, the Low Earth Orbit (LEO) protected region,
– Region B, the Geosynchronous Protected Region, a segment of a spherical shell
that includes the geosynchronous orbit (GEO) (see [57]).

For these regions, the mitigation measures proposed by IADC are able to reduce
strongly the growth of the number of objects. In LEO, the orbital lifetime could
vary from months to centuries. For an object with a large ballistic coefficient, say
B = 200 cm2/kg, the orbital lifetime is 1month at 300km, 1year at 400km, while
it amounts to decades at 600–700km and centuries at altitudes larger than 900km
(see [58]). As for mitigation strategies in LEO, the space systems interfering with
the LEO region should be de-orbited, or manoeuvred into an orbit with a reduced
lifetime. The post-mission orbit lifetime is officially stated to be no longer than 25
years.

Another strategy for ensuring the LEO’s resilience involves the implementation
of debris active removal concepts (see [56]). Nowadays, comprehensive surveys,
pursuing the research and development of technologies and techniques with the
potential of removing either small or large debris, are strategic actions for the industry
and space agencies.However, such concepts are not likely to be operational very soon.
In the case of Region B, spacecraft at their end-of-life should be moved to a disposal
orbit with the perigee higher than the geostationary altitude by an amount �H (km)
given by

�H = 235 + Cr 1000 A/m ,

where A/m is the area–to–mass ratio, while Cr is radiation pressure coefficient,
typically between 1 and 2, which specifies the amount of solar radiation transmitted,
absorbed and reflected by the spacecraft. The GEO and near-GEO regimes, including
the orbital debris flux, the current operations, the end–of–life disposal of satellites,
and transfer orbits, are described in [4, 36, 44, 60, 61, 67, 80, 87]. At present, there
are no internationally agreed mitigation guidelines in MEO.

In the light of the panorama presented before, it is extremely important to address
some questions on the dynamics of the space debris: where are the regular regions
where the debris can be safely located? what is the effect of chaotic diffusion in the
Earth’s environment? which is the role of the different resonances that can occur due
to Earth, Sun and Moon? In the following sections we will try to give some results
by introducing different models and several kinds of resonances, providing some
details mainly based on our past works on these subjects. In particular, in Sect. 2 we
describe the equations of motion using the Cartesian and Hamiltonian approaches.
In Sect. 3 we describe the resonances in MEO and GEO, while in Sect. 4 we give
some details on the dynamics in LEO. Secular resonances are the content of Sect. 5.
Conclusions and perspectives are presented in Sect. 6.
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2 Equations of Motion and Resonances

In the following sections we will introduce the formulation of the problem using
the Cartesian formalism (Sect. 2.1) and the Hamiltonian formalism (Sect. 2.2). The
main term of the expansion of the geopotential, called the J2 term, is introduced
in Sect. 2.3. Once we have written the different contributions of the Hamiltonian,
we analyze their expansion, which leads to the classification of the terms according
to whether they contain fast or slow angles (Sect. 2.4). As a consequence, we will
introduce different definitions of resonances. In Sect. 2.5 we introduce the effect of
the atmospheric drag, which is effective at low altitudes.

2.1 Cartesian Equations of Motion

Weconsider a quasi-inertial reference framewith origin in the barycenter of the Earth
and axes parallel to an inertial frame. Later, it will be convenient to introduce also a
synodic reference frame with origin in the barycenter of our planet and rotating with
the angular velocity of the Earth.

We consider the effects of the geopotential, the gravitational attractions of Sun
and Moon, and the effect of solar radiation pressure. In the quasi-inertial frame, the
equations of motion of a small object whose position is denoted by r is given by

r̈ = R3(−θ) ∇V (r) − GmS

( r − rS
|r − rS|3 + rS

|rS|3
)

− GmM

( r − rM
|r − rM |3 + rM

|rM |3
)

+ Cr Pr a
2
S (

A

m
)

r − rS
|r − rS|3 + ang , (1)

where G is the gravitational constant, θ is the sidereal time, R3 denotes a rotation
about the vertical axis of angle −θ, V is the geopotential, rS and rM are the position
vectors of Sun andMoon; the last but one term describes the solar radiation pressure,
which is due to the absorption/reflection of photons by the surface of the body, and
it depends on the area-to-mass ratio A/m, the reflectivity coefficient Cr (fixed to 1
in simulations), the radiation pressure Pr = 4.56 · 10−6 [N/m2] at aS = 1 AU ; the
last term ang stands for the acceleration induced by other non-gravitational effects.

In terms of spherical harmonics, the Earth’s gravity potential can be expanded as
[62, 63]

V (r,φ,λ) = −
∞∑
n=0

n∑
m=0

Vnm

= GME

r

∞∑
n=0

n∑
m=0

( RE

r

)n
Pnm(sin φ) Jnm cos(mλ − λnm) ,
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Table 1 The coefficients Jnm (in units of 10−6) and the constants λnm up to degree and order 5;
values computed from [33] (see also [22])

n m Jnm λnm

2 0 1082.6261 0

2 1 0.001807 −81◦· 5116
2 2 1.81559 75◦· 0715
3 0 −2.53241 0

3 1 2.20947 186◦· 9692
3 2 0.37445 72◦· 8111
4 0 −1.619331 0

4 1 0.67864 41◦· 4529
4 2 0.16759 121◦· 0589
4 3 0.060421 56◦· 1784

where (r,φ,λ) are the spherical coordinates in the Earth-centered synodic frame,
ME is the mass of the Earth, r = |r|, Pnm are the Legendre polynomials, Jnm are the
harmonic coefficients, λnm are constants.

It is important to stress that J2 = J20 is the largest coefficient in the expansion,
since it is about 500 times larger than any other coefficient Jnm . Values of the coef-
ficients Jnm and of the constants λnm are given in Table1.

The sizes of the different contributions on an object orbiting around the Earth
are given in Fig. 2, which compares different effects in terms of the distance from
the center of the Earth. The Keplerian part is dominant at all distances. In LEO, the
atmospheric drag is very important. The effects of J2, Sun andMoon are all extremely
relevant, but it is worth noticing that above a certain distance (around 40000km) the
contribution of the Moon (and later of the Sun) becomes more important than the J2
effect.

2.2 Hamiltonian Equations of Motion

To introduce the equations of motion using the Hamiltonian formalism, it is con-
venient to use the action–angle Delaunay variables denoted as (L ,G, H, M,ω,Ω).
The actions are related to the orbital elements (a, e, i), standing for semimajor axis,
eccentricity, inclination, by the following formulae:

L = √
μEa , G = L

√
1 − e2 , H = G cos i .

The angle variables (M,ω,Ω) are, respectively, the mean anomaly, the argument of
perigee and the longitude of the ascending node, while μE = G ME . The equations
of motion are given by
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Ṁ = ∂H
∂L

, ω̇ = ∂H
∂G

, Ω̇ = ∂H
∂H

L̇ = − ∂H
∂M

, Ġ = −∂H
∂ω

, Ḣ = −∂H
∂Ω

, (2)

where the Hamiltonian can be written as the sum of different contributions:

H = − μ2
E

2L2
+ HEarth(a, e, i, M,ω,Ω, θ) + HMoon(a, e, i, M,ω,Ω,ΛM )

+ HSun(a, e, i, M,ω,Ω,ΛS) + HSRP(a, e, i, M,ω,Ω,ΛS) , (3)

with θ the sidereal time, ΛM = (aM , eM , iM , MM ,ωM ,ΩM) denotes the orbital
elements of the Moon with respect to the ecliptic, ΛS = (aS, eS, iS, MS,ωS,ΩS)

denotes the orbital elements of the Sun with respect to the celestial equator. We
stress that the elements of the Moon are referred to ecliptic plane, since for this
choice the inclination iM of the Moon is nearly constant, while the rate of variation
of the argument of perihelion ωM of the Moon and that of the lunar longitude of the
ascending node ΩM are nearly linear, which is not the case of the Moon’s elements
with respect to the celestial equator as they vary nonlinearly in time. The Hamilto-
nian (3) is the sum of the Keplerian part, the effect of the geopotential HEarth , the
contributions ofMoonHMoon and SunHSun , the effect of the solar radiation pressure
HSRP .

The term HEarth can be expanded in Fourier series as

HEarth = μE

a

∞∑
n=2

n∑
m=0

( RE

a

)n
Jnm

n∑
p=0

Fnmp(i)
∞∑

q=−∞
Gnpq (e) csnm

(
Ψnmpq (M,ω,Ω, θ)

)

where RE is the radius of the Earth, Jnm are the harmonic coefficients, Fnmp, Gnpq

are the inclination and eccentricity functions [22, 63], csnm is the cosine function if
n − m is even and the sine function if n − m is odd, and

Ψnmpq(M,ω,Ω, θ) = (n − 2p)ω + (n − 2p + q)M + m(Ω − θ) − mλnm

for some constants λnm as in Table1.
The secular part of the geopotential, limited to the contributions of first order in

J2, J3, J4, can be written as
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Rsec
earth

∼= μE R2
E J2

a3

(3
4
sin2 i − 1

2

)
(1 − e2)−3/2

+ 2μE R3
E J3

a4

(15
16

sin3 i − 3

4
sin i

)
e(1 − e2)−5/2 sinω

+ μE R4
E J4

a5

[(
−35

32
sin4 i + 15

16
sin2 i

)3e2
2

(1 − e2)−7/2 cos(2ω)

+
(105
64

sin4 i − 15

8
sin2 i + 3

8

) (
1 + 3e2

2

)
(1 − e2)−7/2

]
. (4)

The disturbing functions due to the Sun, Moon and solar radiation pressure can
be expanded in Fourier series as [20, 63, 68]:

Hb =
∑

ASun/Moon/SRP
k1k2k3k4k5k6

(a, e, i, ab, eb, ib) cos(k1M + k2Mb + k3ω + k4ωb + k5Ω + k6Ωb),

where k j are integers and b stands for ‘Sun’, ‘Moon’ or ‘SRP’, andwith the additional
convention that whenever b is ‘SRP’ in the left hand side, then b is ‘Sun’ in the right
hand side.

2.3 Effects of J2

In this section we focus on the effect of J2 [62, 63, 65]. We approximateHEarth with
the J2 term only, again averaged over the fast variables, say

HEarth � R2
E J2μ

4
E

4

1

L3G3

(
1 − 3

H 2

G2

)
,

and then we consider the Hamiltonian given by the Keplerian part and the J2 effect:

HKepler+J2 = − μ2
E

2 L2
+ R2

E J2μ
4
E

4

1

L3G3

(
1 − 3

H 2

G2

)
. (5)

Since HKepler+J2 depends only on the actions, then the quantities L , G and H (or
equivalently a, e and i) are constant, while the Delaunay angles M , ω and Ω vary
linearly in time with rates

Ṁ � 6135.7
( RE

a

)3/2 − 4.98
( RE

a

)7/2
(1 − e2)−3/2(1 − 3 cos2 i) o/day

ω̇ � 4.98
( RE

a

)7/2
(1 − e2)−2(5 cos2 i − 1) o/day

Ω̇ � −9.97
( RE

a

)7/2
(1 − e2)−2 cos i o/day .
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As a consequence of the above formulae, we may summarize as follows the main
effects of J2: a slow change of the rate of the mean anomaly, a precession of the
perigee and a secular regression of the orbital node. We also notice that, when we
use the Hamiltonian (5), we obtain that

ω̇ = ∂HKepler+J2

∂G
= −3

4

R2
E J2μ

4
E

L3G4

(
1 − 5

H 2

G2

)
,

so that ω̇ = 0 for 1 − 5 H 2

G2 = 0. Since H = G cos i , we obtain that ω̇ = 0 when the
inclination is equal to the critical values

ic = 63.43o , ic = 116.56o .

2.4 Classification of the Arguments in the Disturbing
Functions

With reference to the Hamiltonian (3), the Fourier expansions of HEarth , HSun and
HMoon contain infinite number of terms of the following form (see [20, 46, 54, 68]
for explicit formulas of these terms):

AEarth
k1k2k3k4

(a, e, i) cos(k1M + k2θ + k3ω + k4Ω)

ASun/SRP
k1k2k3k4k5k6

(a, e, i, aS, eS, iS) cos(k1M + k2MS + k3ω + k4ωS + k5Ω + k6ΩS)

AMoon
k1k2k3k4k5k6

(a, e, i, aM , eM , iM ) cos(k1M + k2MM + k3ω + k4ωM + k5Ω + k6ΩM ) ,

(6)

where k1, k2, k3, k4, k5, k6 are integers. The angles involved in the expansions in (6)
can be classified as follows:

– fast angles: M and θ, since Ṁ > 360◦/day and θ̇ = 360◦/day;
– semi–fast angles: MS and MM , since ṀS � 1◦/day and ṀM � 13.06◦/day;
– slow angles: ω, Ω , ωM , ΩM , since ω̇ and Ω̇ can be approximated as described in
Sect. 2.3, ωS and ΩS are constant, ω̇M � 0.164◦/day and Ω̇M � −0.053◦/day.

It is convenient to adopt the following classification of the terms of the expansions:

(1) short periodic terms: the arguments involve the fast angles (M or θ), and θ̇ and
Ṁ are not commensurable;

(2) resonant terms: the arguments involve the fast angles (M or θ), and there is a
commensurability between θ̇, Ṁ , as well as the much smaller frequencies ω̇, Ω̇;

(3) semi–secular terms: the cosine arguments are independent of the fast angles θ
and M , but depend on either MS or MM ;
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(4) secular terms: the cosine arguments are independent of the sidereal time θ and
the mean anomalies M , MS and MM .

As a consequence, we have the following types of resonances:
(i) tesseral resonances, whenever the orbital period of the debris, the rotation of

the Earth, the periods of the argument of perigee and that of the longitude of the
ascending node satisfy a commensurability condition of the form �Ṁ − j θ̇ +
jΩ̇ + �Ω̇ = 0, �, j ∈ N. As effect of tesseral resonances, the semi–major axis
varies on a time scale of the order of hundred of days;

(i i) lunisolar resonances, involving a third–body (Sun-Moon) perturber and further
split as
– secular resonances, if k1ω̇ + k2Ω̇ + k3ω̇b + k4Ω̇b = 0 for (k1, k2, k3, k4) ∈
Z
4, b = S, M ; secular resonances provoke long-term variations of eccentricity

and inclination on time scales of the order of tens (or hundreds) of years;
– semi–secular resonances, which involve the mean anomaly of the Sun or of
the Moon; these resonances mostly take place in the LEO region;
– mean motion resonances between the mean motion of the debris and Sun/
Moon, which never occur in LEO, MEO and GEO.

2.5 Dissipative Effects: The Atmospheric Drag

At low altitudes, say less than 2000km, we need to modify Hamilton’s equations (2)
to take into account the atmospheric drag as

Ṁ = ∂H
∂L

, ω̇ = ∂H
∂G

, Ω̇ = ∂H
∂H

L̇ = − ∂H
∂M

+ FL , Ġ = −∂H
∂ω

+ FG , Ḣ = −∂H
∂Ω

+ FH ,

where FL , FG , FH are the components of the contribution due to the atmospheric
drag. The effects of the atmospheric drag on the orbital elements are described by
the averaged equations as formulated in [71] (see also [22]):

da

dt
= 1

2π

∫ 2π

0
B ρF (a)(a, e, i, M) dM

de

dt
= 1

2π

∫ 2π

0
B ρF (e)(a, e, i, M) dM

di

dt
= 0 ,

where B is the ballistic coefficient and ρ(h) is the atmospheric density depending
on the altitude h and for which there are density models as in [50, 51, 59]. We are
assuming a non-rotating atmosphere, which leads to di

dt = 0.
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For the local density we use the barometric formula given by

ρ(h) = ρ0 exp

(
−h − h0

H0

)
,

where ρ0 is the (minimum, mean or maximum) density, estimated for (minimum,
mean or maximum) solar activity at the reference altitude h0, while H0 is the scaling
height at h0 (see [50]). Using the expressions

L̇ = ∂L

∂a
ȧ , Ġ = L̇

√
1 − e2 + ∂G

∂e
ė , Ḣ = Ġ cos i − G sin i

di

dt
,

we can derive an explicit formula for FL , FG and FH , which characterize the air drag
in the dynamical equations (7).

3 Tesseral Resonances in GEO and MEO Regions

We remind that tesseral resonances occur when a relation of the form �Ṁ − j θ̇ +
jΩ̇ + (� − q)Ω̇ = 0, �, j ∈ N, q ∈ N, is satisfied (see [19]).

When J2 = 0, then Ω̇ = Ω̇ = 0 and therefore the tesseral resonance reduces to a
commensurability between the orbital period of the debris and the sidereal rotation of
the Earth: �Ṁ − j θ̇ = 0 for �, j ∈ N. In this case, wewill speak of j : � gravitational
resonances.

By using Kepler’s third law, it follows that a j : � gravitational resonance corre-
sponds to a semimajor axis equal to a j :� = ( j/�)−2/3 ageo, where ageo = 42 164.1696
km is the semimajor axis of the geosynchronous orbit. We remark that the value of
ageo is the semimajor axis of a Keplerian orbit around a spherical object with themass
of the Earth and with orbital period equal to the Earth’s rotational period. Table2
gives the semimajor axis of the resonances, for several values of � and j .

For a specific resonance, we can approximateHEarth as the sum of the secular and
resonant parts,which are obtained averaging over the short-period terms and retaining
the resonant contributions of the angles; the variation of the orbital elements ismainly

Table 2 Value of the semimajor axis for different resonances

j : � a in km j : � a in km

1:1 42164.2 4:3 34805.8

2:1 26561.8 5:1 14419.9

3:1 20270.4 5:2 22890.2

3:2 32177.3 5:3 29994.7

4:1 16732.9 5:4 36336
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governed by the secular and resonant parts. This leads to consider the following
Hamiltonian:

HEarth
∼= Hsec

Earth(L ,G, H,ω) + Hres j :�
Earth (L ,G, H, �M − jθ,ω,Ω) , (7)

and we can provide explicit analytical expressions for Hsec
Earth , Hres j :�

Earth .
The Hamiltonian (7) is simple enough to allow for explicit computations, though

still retaining the essential features of the dynamics. In [13–19], we have used it for
the followings tasks:

– expand the Hamiltonian (7) around the resonant value Lres and retain only the
largest term; after some canonical transformations, we get a pendulum-like Hamil-
tonian fromwhich one can give an estimate of the amplitude around the resonance;

– analyze the dominant terms, namely the terms prevailing in specific regions of the
parameter space;

– compute the location of the equilibria, the splitting or overlapping of the resonant
islands, the occurrence of bifurcations.

In this Section we will review some results associated to the 1:1 and 2:1 tesseral
resonances (see, respectively, Sects. 3.1 and 3.2), while we will discuss in Sect. 4
tesseral resonances occurring in the LEO region.

3.1 The 1:1 Resonance

For the 1:1 resonance, the expression of the resonant Hamiltonian is given by

Rres1:1Earth
∼= μE R2

E J22
a3

{ 3
4
(1 + cos i)2(1 − 5

2
e2) cos[2(M − θ + ω + Ω − λ22)]

+ 27

8
e2 sin2 i cos[2(M − θ + Ω − λ22)]

}

+ μE R2
E J21

a3

{ 3
4
sin i(1 + cos i)(− e

2
) sin(M − θ + 2ω + Ω − λ21)

+ 3

2
e(− 3

2
sin i cos i) sin[M − θ + Ω − λ21]

}

+ μE R3
E J31

a4

{
− 15

16
sin2 i(1 + cos i)

e2

8
cos(M − θ + 3ω + Ω − λ31)

+
( 15
16

sin2 i(1 + 3 cos i) − 3

4
(1 + cos i)

)
(1 + 2e2) cos(M − θ + ω + Ω − λ31)

+
( 15
16

sin2 i(1 − 3 cos i) − 3

4
(1 − cos i)

) 11e2
8

cos(M − θ − ω + Ω − λ31)
}

+ μE R3
E J32

a4

{
− 15

8
sin i(1 + cos i)2e sin(2M − 2θ + 3ω + 2Ω − 2λ32)

+ + 45

8
sin i(1 − 2 cos i − 3 cos2 i)e sin(2M − 2θ + ω + 2Ω − 2λ32)

}
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+ μE R3
E J33

a4

{15
8

(1 + cos i)3(1 − 6e2) cos[3(M − θ + ω + Ω − λ33)]

+ 45

8
sin2 i(1 + cos i)

53e2

8
cos(3M − 3θ + ω + 3Ω − 3λ33)

}

+ μE R4
E J41

a5

{( 35
16

sin3 i(1 + 2 cos i) − 15

8
(1 + cos i) sin i

) e

2
sin(M − θ + 2ω + Ω − λ41)

+ cos i
( 15
4

sin i − 105

16
sin3 i

)5e
2

sin(M − θ + Ω − λ41)
}

+ μE R4
E J42

a5

{
− 105

32
sin2 i(1 + cos i)2

e2

2
cos[2(M − θ + 2ω + Ω − λ42)]

+
( 105

8
sin2 i cos i(1 + cos i) − 15

8
(1 + cos i)2

)
(1 + e2) cos[2(M − θ + ω + Ω − λ42)]

+
( 105
16

sin2 i(1 − 3 cos2 i) − 15

4
sin2 i

)
5e2 cos[2(M − θ + Ω − λ42)]

}

+ μE R4
E J43

a5

{105
16

sin i(1 + cos i)3
(
− 3e

2

)
sin(3M − 3θ + 4ω + 3Ω − 3λ43)

+ 105

8
sin i(1 − 3 cos2 i − 2 cos3 i)

( 9e
2

)
sin(3M − 3θ + 2ω + 3Ω − 3λ43)

}

+ μE R4
E J44

a5

{ 105
16

(1 + cos i)4
(
1 − 11e2

)
cos[4(M − θ + ω + Ω − λ44)]

+ 105

4
sin2 i(1 + cos i)2

(53e2
4

)
cos(4M − 4θ + 2ω + 4Ω − 4λ44)

}
.

We consider a Hamiltonian function composed by the Keplerian part, the secu-
lar contribution and the resonant part. In Fig. 3 we analyze several models obtained
taking approximations at different orders of the 1:1 resonant Hamiltonian, precisely
at degrees and orders n = m = 2, n = m = 3 and n = m = 4, respectively. We plot
the semimajor axis a versus the stroboscopic mean node λ, which is defined for the
1:1 resonance as λ = M − θ + ω + Ω; the color scale gives the FLI computed as
in the Appendix (see [37], compare also with [41]). The figure shows some differ-
ences between the plots at orders 2 and 3, while those at orders 3 and 4 are quite
similar, thus indicating that for these values of the parameters the order 3 is already a
good approximation of the expansion. Finally, we validate the Hamiltonian model by
comparing it with the results obtained integrating the Cartesian equations of motion;
the bottom–right panel of Fig. 3 shows the results obtained by integrating the Carte-
sian equations of motion, considering the expansion of the Earth’ geopotential up to
degree and order n = m = 3 and the influence of the Moon, Sun and solar radiation
pressure with A/m = 0.1 [m2/kg].

The cartographic study based on the FLI (or any other chaos indicator) can be used
to get much information on themodels and the dynamics. For example, the top panels
of Fig. 4 are obtained using the same model, but taking different inclinations, thus
showing how the amplitude of libration around the 1:1 resonance varies as a function
of the orbital inclination. The lower panels of Fig. 4 are obtained by integrating
the Cartesian equations of motion, using only an expansion to third order of the
geopotential and adding also the effects of Sun, Moon and solar radiation pressure.
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Fig. 3 FLI for the 1:1 resonance for e = 0.01, i = 5o, ω = Ω = 0o: Hamilton’s equations with
HEarth approximated to degree and order n = m = 2 (top left), n = m = 3 (top right), and n =
m = 4 (bottom left) and Cartesian equations for n = m = 3 and adding the influence of the Moon,
Sun and SRP with A/m = 0.1[m2/kg] (bottom right)

3.2 The 2:1 Resonance

For the 2:1 resonance, the expression of the resonant Hamiltonian is given by1

Rres2:1
Earth

∼= μE R2
E J22

a3

{ 3
4
(1 + cos i)2

(
− e

2
+ e3

16

)
cos(M − 2θ + 2ω + 2Ω − 2λ22)

+ 3

2
sin2 i

( 3
2
e + 27

16
e3

)
cos(M − 2θ + 2� − 2λ22)

+ 1

64
(1 − cos i)2e3 cos(M − 2θ − 2ω + 2� − 2λ22)

}

+ μE R3
E J32

a4

{ 15
8

sin i(1 + cos i)2
( e2
8

+ e4

48

)
sin(M − 2θ + 3ω + 2� − 2λ32)

+ 15

8
sin i(1 − 2 cos i − 3 cos2 i)

(
1 + 2e2 + 239e4

64

)
sin(M − 2θ + ω + 2� − 2λ32)

− 15

8
sin i(1 + 2 cos i − 3 cos2 i)

( 11e2
8

+ 49e4

16

)
sin(M − 2θ − ω + 2� − 2λ32)

− 5

1024
sin i(1 − cos i)2e4 sin(M − 2θ − 3ω + 2� − 2λ32)

}

1 Notice that three coefficients in [13] were not correct and we take the opportunity to provide here
the correct expansion.
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Fig. 4 1:1 resonance for e = 0.1, ω = Ω = 0o and inclination i = 20o (left panels), respectively
i = 40o (right panels). Top panels: Hamilton’s equations for n = m = 4. Bottom panels: Cartesian
equations for n = m = 3, adding the influence of theMoon, Sun and SRPwith A/m = 0.1[m2/kg]

+ μE R4
E J42

a5

{ 35

512
sin2 i(1 + cos i)2e3 cos(M − 2θ + 4ω + 2� − 2λ42)

+
( 105

8
sin2 i cos i(1 + cos i) − 15

8
(1 + cos i)2

)( e

2
+ 33e3

16

)
cos(M − 2θ + 2ω + 2� − 2λ42)

+
( 105
16

sin2 i(1 − 3 cos2 i) − 15

4
sin2 i

)( 5e
2

+ 135e3

16

)
cos(M − 2θ + 2� − 2λ42)

−
( 105

8
sin2 i cos i(1 − cos i) + 15

8
(1 − cos i)2

) 49e3
48

cos(M − 2θ − 2ω + 2� − 2λ42)
}

+ μE R4
E J44

a5

{ 105
16

(1 + cos i)4
( e2
2

− e4

3

)
cos[2(M − 2θ + 2ω + 2� − 2λ44)]

+ 105

4
sin2 i(1 + cos i)2

(
1 + e2 + 65e4

16

)
cos[2(M − 2θ + ω + 2� − 2λ44)]

+ 315

8
sin4 i

(
5e2 + 155e4

12

)
cos[2(M − 2θ + 2� − 2λ44)]

+ 105

4
sin2 i(1 − cos i)2

67e4

48
cos[2(M − 2θ − ω + 2� − 2λ44)]

}
.

Denoting by σ the angle σ = M + ω − 2(θ − �), let us approximate the 2:1
resonant Hamiltonian as the sum of three terms, t1, t2, t3, defined as

t1 = μE R2
E J22

a3

{3
4
(1 + cos i)2

(
− e

2

)}
cos(σ + ω − 2λ22)
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t2 = μE R2
E J22

a3

{3
2
sin2 i

(3
2
e
)}

cos(σ − ω − 2λ22)

t3 = μE R3
E J32

a4

{15
8

sin i(1 − 2 cos i − 3 cos2 i)
(
1 + 2e2

)}
sin(σ − 2λ32) . (8)

These terms are dominant in various regions of the phase space (see [13]). Hence,
we consider the Hamiltonian

K(L ,G, H,σ,ω,�) = − μ2
E

2L2
− 2θ̇L + Rsec

earth + t1 + t2 + t3 , (9)

where the secular part is given by

Rsec
earth

∼= μE R2
E J2

a3

(3
4
sin2 i − 1

2

)
(1 − e2)−3/2 .

We notice that the three terms in (9) contain different combinations of the angles,
precisely σ, σ + ω, σ − ω. When integrating Hamilton’s equations associated to (9)
with t2 = t3 = 0, we obtain a pendulum like structure as in the upper-left panel of
Fig. 5; the same happens in the upper-right and lower-left panels of Fig. 5, which
are obtained, respectively, setting t1 = t3 = 0 and t1 = t2 = 0. Indeed, the angle� is
cyclic and it does not influence the location of the equilibria. On the contrary, ω plays
an important role, since there are comparable terms for σ ± ω − 2λ22 and σ − 2λ32,
thus showing that the location of the equilibria and the pattern of the resonances
are strongly affected by ω. When considering all terms, there is a superposition of
the resonances associated to the different terms, which generates chaos as in the
lower-right panel of Fig. 5.

The overlap of resonances as a mechanism for the onset of chaos was already
discussed in [24]; in a nutshell, with reference to Fig. 6, the left plot shows two
islands around two different equilibria, such that the distance between the equilibria
(dashed line) is greater than the sum of the semi-amplitudes of the resonant islands
(dotted lines); in the right panel, instead, the distance between the equilibria is smaller
than the sumof the semi-amplitudes, which is the situation inwhich chaos can appear.

An interesting phenomenon associated to the 2:1 resonance is that of transcritical
bifurcations. We notice that the term t3 in (8) contains the following function

f : [0o, 90o] −→ R , f (i) = − sin i(1 − 2 cos i − 3 cos2 i) , (10)

which changes sign at i = 70.53o. Precisely, for small eccentricities and for i <

70.53o the stable point is at about σ � 55o and the unstable equilibrium is located at
σ � 235o. For i > 70.53o the situation is opposite: the unstable point is at σ � 55o,
while the stable equilibrium is located at σ � 235o. This shows that at i = 70.53o

we have the occurrence of a transcritical bifurcation (Fig. 7).
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Fig. 5 FLI plots associated to (9) for e = 0.15, i = 15o, ω = � = 0 with t2 = t3 = 0 (upper-left
panel), t1 = t3 = 0 (upper-right panel), t1 = t2 = 0 (lower-left panel), all terms considered (lower-
right panel)

Fig. 6 Non-overlapping resonances (left panel), overlapping resonances (right panel)

4 Tesseral Resonances in the LEO Region

In this Section we concentrate on tesseral resonances occurring in the LEO region.
Following [17], we consider the resonances of order 11 : 1, 12 : 1, 13 : 1, 14 : 1,
which occur between about 880 and 2146km, as shown in Table3, which provides
also the altitudes at perigee and apogee for an object with eccentricity equal to
0.02. The 15 : 1 resonance has been investigated in [35]. The values from Table3
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Fig. 7 A transcritical bifurcation for the 2:1 resonance for e = 0.01, ω = 0, � = 0: i = 60o (left
panel), i = 85o (right panel)

are computed by using Kepler’s third law. However, as discussed in [17], the exact
altitude of each resonance depends also on the value of the inclination.

For each resonance, we approximate the Hamiltonian HEarth as the sum of the
secular and resonant parts:

HEarth
∼= Hsec

Earth + Hres m:1
Earth .

We denote the resonant angle by σm1 = M − mθ + ω + m�. In [17] we introduced
three different models, with increasing difficulty, apt to study the dynamics in LEO.
Their definition is the following:


Model 1 (or the toy model): a 1 d.o.f. problem which considers the effects of the
Keplerian part, a J2 approximation for the secular part, the resonant part containing
just the five most important terms, the dissipative part characterized by the function
FL ; the effect of the solar cycle is disregarded. The toy model is described by the
following equations:

σ̇m1 = h(m)
,L (L ,G, H) + εA(m)

,L (L ,G, H) cos(σm1 − ϕ(m)) ,

L̇ = εA(m)(L ,G, H) sin(σm1 − ϕ(m)) − ηD(m)

L
(L ,G, H) ,

Table 3 The semimajor axis and the altitude corresponding to some resonances of order m : 1, as
well as the perigee and apogee altitudes of a resonant elliptic orbit with e = 0.02. The altitudes are
computed by considering the reference value RE = 6378.14 [km] for the Earth’s radius
m : 1 a (km) Altitude (km) Perigee altitude

for e = 0.02 (km)
Apogee altitude
for e = 0.02 (km)

11:1 8524.75 2146.61 1976.25 2317.25

12:1 8044.32 1666.18 1505.43 1827.21

13:1 7626.31 1248.17 1095.78 1400.84

14:1 7258.69 880.55 735.52 1025.86
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where the actionsG and H are constants, ε is a small parameter (of the order of 10−9),
artificially introduced so that the functions h(m), A(m) and D(m)

L
have comparable

magnitudes, and η = Bρ is the dissipative parameter. We refer to [15] for the explicit
form of the functions h(m),A(m), D(m)

L and the derivative h(m)
,L ,A(m)

,L of the functions
h(m), A(m) with respect to L .


 Model 2 (or the dissipative model of LEO resonances (DMLR)): a 3 d.o.f.
problem described in terms of the Keplerian part, the disturbing function due to the
Earth HEarth , the dissipative functions FL , FG , FH ; the effect of the solar cycle is
disregarded.


Model 3 (or the full model): including theKeplerian part, the disturbing function
due to the Earth HEarth , the dissipative functions FL , FG , FH , the solar cycle, and
the influence of the Moon and Sun.

The following result, borrowed from [17], provides the existence of equilibrium
points in Model 1.

Theorem 1 Let us take eccentricity and inclination in the intervals e ∈ [0, 0.02] and
i ∈ [0o, 120o]. Let (σ(0)

m1, L0) be an equilibrium point for the conservative version of
Model 1. Assume that the parameters η, ε satisfy the following inequalities:

∣∣∣∣∣
ηD(m)

L
(L0,G0, H0)

εA(m)(L0,G0, H0)

∣∣∣∣∣ ≤ 1 − δ , γ1ε + γ2η + γ3ε
2 < δ

for some positive real constants δ, γ1, γ2 and γ3.
Then, the dissipative version of Model 1 admits equilibrium points (σ(1)

m1, L1)

which, at first order in η, are defined by the following expressions:

σ(1)
m1 = σ(0)

m1 + D(m)
L

(L0,G0, H0)

εA(m)(L0,G0, H0) cos(σ0
m1 − ϕ(m))

η , L1 = L0 .

As shown in [17], if (σ(0)
m1, L0) is a center (saddle) for the conservative toy model,

then (σ(1)
m1, L1) is an unstable spiral (saddle) for the dissipative toy model. Beside,

in [17] a thorough analysis of the location of the equilibrium points is performed,
together with a study of the position of the equilibria as a function of η. Moreover,
[17] provides numerical evidence that the results for Model 1 are valid also for
Models 2 and 3.

Let us now considerModel 3. Figure8 shows the typical phenomena of temporary
capture into resonance and passage through resonance. The behavior in the neigh-
borhood of a resonance has a strongly stochastic feature, since a small change in the
initial conditions, or a small perturbation, leads to a drastically different scenario.
The curves depicted in Fig. 8 describe the evolution of three orbits in the vicinity of
the 14:1 resonance, derived for the same ballistic coefficient and initial conditions,
but the initial value of the critical angle σ14 1. The capture time depends on various
factors such as the value of the ballistic coefficient, the density of the atmosphere,
the initial conditions.
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Fig. 8 The 14:1 resonance:
temporary capture into
resonance (green and red
curves) and passage through
the resonance (black line),
under the Model 3. The
ballistic coefficient and
initial conditions for the
three orbits are
B = 50 [cm2/kg],
e = 0.005, i = 65◦,
ω = � = 0◦ and
respectively σ14 1 = 35◦
(red), σ14 1 = 40◦ (green),
σ14 1 = 100◦ (black)  7210
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5 Secular Resonances

With the aim of studying the dynamics in a MEO region which does not belong
to the libration regions of tesseral resonances, then one can reduce to consider the
following Hamiltonian:

Hsec = Hsec
Earth + Hsec

Sun + Hsec
Moon ,

where

Hsec
Earth = R2

E J2μ
4
E

4

1

L3G3

(
1 − 3

H 2

G2

)
,

that is, we consider only the most important contribution corresponding to the J2
gravity coefficient of the Earth’s perturbation.

The terms Hsec
Sun and Hsec

Moon are defined by averaging HSun and HMoon over both
the mean anomaly M of the debris and the mean anomaly Mb of the perturbing body,
as well as by truncating the series expansions up to the second order in the ratio
a/ab with b = S, M ; we will refer to this truncation as the quadrupolar approxima-
tion. Notice that we neglected the Keplerian part, since the mean anomaly M is an
ignorable variable and therefore L is constant. Moreover,Hsec depends on time only
through �M , which varies linearly with rate �̇M � −0.053◦/day. In conclusion,
the Hamiltonian Hsec is a two degrees of freedom non-autonomous Hamiltonian,
depending on the parameter L .

Figure9 shows a validation of the Hamiltonian approach by comparing two dif-
ferent orbits with the results obtained integrating the Cartesian equations of motion.
There is a very good overlap for a very long time interval. It is worth noticing that the
integration of Hamilton’s equations takes a few seconds, while that of the Cartesian
equations takes tens of minutes.
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Fig. 9 Integration of the two orbits for which a = 26 700 [km], e(0) = 0.066, i(0) = 56.6o,
�(0) = 100o, and ω(0) = 30o (top panels), respectively, ω(0) = 105o (bottom plots). Green
color—Hamiltonian formulation, black color—Cartesian model. Red line—the eccentricity value
leading to re-entry

5.1 Types of Secular Resonances

The secular parts Hsec
Sun and Hsec

Moon have the form [20, 28, 62, 68]

Hsec
Sun =

2∑
m=0

2∑
p=0

ASun
mp (a, aS, e, eS, i, iS) cos

(
(2 − 2p)ω + m(� − �S)

)
,

and

Hsec
Moon =

2∑
m=0

2∑
s=0

2∑
p=0

AMoon
msp (a, aM , e, eM , i, iM) cos

(
(2 − 2p)ω + m� ± s�M

)

for suitable coefficients ASun
mp and AMoon

msp . In the MEO region two types of secular
resonances are possible:

(i) the ones that do not involve the rate �̇M , namely

(2 − 2p)�̇ + m�̇ = 0 ,

called also resonances depending only on inclination;
(ii) the resonances that satisfy a relation of the following form:

(2 − 2p)�̇ + m�̇ + κ�̇M = 0, κ �= 0 .
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Thefirst set of resonances does not depend on the semi-major axis and eccentricity,
because using

ω̇ � 4.98
( RE

a

)7/2
(1 − e2)−2(5 cos2 i − 1) o/day ,

�̇ � −9.97
( RE

a

)7/2
(1 − e2)−2 cos i o/day ,

then the condition (2 − 2p)�̇ + m�̇ = 0 gives a relation that depends only on the
inclination. Such resonances have the following locations:

�̇ = 0 at 90◦ ,

ω̇ + �̇ = 0 at 46.4◦ or 106.9◦ ,

−ω̇ + �̇ = 0 at 73.2◦ or 133.6◦ ,

−2ω̇ + �̇ = 0 at 69.0◦ or 123.9◦ ,

2ω̇ + �̇ = 0 at 56.1◦ or 111.0◦ .

The resonances involving the lunar ascending node �M are responsible for the
existence of a web–like structure of resonances in the phase space [28, 32, 76].
Figure10 shows the web structure of the resonances in the plane (G, H). The units
of length and time are normalized so that the geostationary distance is unity (it
amounts to 42 164.1696 km) and that the period of the Earth’s rotation is equal to
2π.

5.2 Effects of Secular Resonances

In contrast with tesseral resonances, whose main effect is a variation of the semi-
major axis on a time scale of the order of hundreds of days, secular resonances
influence the evolution of eccentricity and inclination on time scales of the order of
tens (or hundreds) of years. Although lunar and solar perturbations are investigated
since the beginning of space age [26, 54, 55, 72], recent qualitative and quantitative
studies [2, 16, 18–20, 23, 28, 31, 45, 48, 75, 81, 84, 92] show that the dynamics
of secular resonances is very complex. Several mathematical models [16, 18, 20]
introduced to get better insights into the dynamics of secular resonances reveal that,
in many cases, a specific resonance cannot be modeled by a pendulum–type system,
but one should use extended fundamental models, as described in [8, 52]. Besides,
the web structure of lunisolar secular resonances, revealed by the two degrees of
freedom non–autonomous Hamiltonian Hsec and depicted in Fig. 10, is responsible
for intricate interactions that lead to a plethora of dynamical phenomena. Depending
on the region explored, one can find bifurcation of equilibria [16, 18]; libration
regions leading to large as well as to small excursions in eccentricity; overlapping
of resonances and the onset of chaos [32, 76]; transport in the phase space [28]. The
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 a=15000 [km]

–0.4 –0.2 0.0 0.2 0.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

H

G

 a=15000 [km]

–0.4 –0.2 0.0 0.2 0.4

0.50

0.52

0.54

0.56

0.58

H

G

a=26700 [km]

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

H

G

a=26700 [km]

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6

0.55

0.60

0.65

0.70

0.75

0.80

H

G
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practical implications of these phenomena are closely connected with the design
of disposal orbits of non-operative satellites and the population of space debris. For
instance, the long–term growth in eccentricity, observed for disposal orbits of various
satellites, such as GPS, GLONASS, and GALILEO (see [23]) may be viewed as an
effect of the lunisolar resonances and their complex interactions.

As a final remark of this Section, we mention that the two orbits shown in Fig. 9
are both located inside the libration regions of the resonance 2ω̇ + �̇ = 0. Indeed,
the right panels of Fig. 9 show that the critical angle 2ω + � librates. The orbit whose
evolution is depicted in the top panels of Fig. 9 is located inside a libration region
leading to small excursions in eccentricity, while the other one is a colliding orbit.
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6 Conclusions and Perspectives

The powerful tool offered by the Hamiltonian formulation of the equations of motion
of space debris allows us to get important information about the dynamics of the mil-
lions of objects that populate the sky around our planet. In particular, we have been
able to make an accurate study of tesseral, gravitational and lunisolar secular res-
onances, using both numerical and analytical tools. We have noticed that tesseral
resonances induce variations of the semi-major axis, while lunisolar secular res-
onances provoke variations of the eccentricity and inclination. Besides, lunisolar
secular resonances provoke transcritical bifurcations and overlapping of resonances
that give rise to chaotic motions.

The numerical and analytical studies of the LEO tesseral resonances highlighted
an orbital decay caused by the air drag, which can be (temporarily) balanced by
resonant effects, although such phenomenon depends on a large class of values of
dynamic parameters (ballistic coefficient, inclination, eccentricity, etc.). Indeed, in
LEO we have observed several different behaviors, among which temporary capture
or passage through a resonance, trapped motions, escape motions, shift of equilibria
along some axes, bifurcations.

The study of the dynamics of space debris can be continued in several directions,
amongwhich amore detailed analysis of the LEO resonance to discriminate between
the possibility of parking satellites in the close vicinity of the equilibrium points,
or, on the contrary, to avoid such zones due to a possible accumulation of a large
number of space debris in these regions. We believe and hope that such tools might
be used to design suitable disposal orbits that could help to solve the problem of the
sustainability of the Earth’s environment.
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Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006, MIUR-
PRIN 20178CJA2B “New Frontiers of Celestial Mechanics: theory and Applications”. A.C. and
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Appendix: FLI

In this Appendix, we briefly review the definition of Fast Lyapunov Indicators (here-
after FLI) for which we refer the reader to [37] (see also [47]). Details on Lyapunov
exponents are provided in [5].

Given a vector field F = F(X, t) for X ∈ R
n , t ∈ R, we consider the equations of

motion and the associated variational equations defined as

dX
dt

= F(X, t) ,
dV
dt

= ∂F
∂X

(X, t)V .

For an initial condition X(0), the FLI at a given time t = T is defined as
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FLI(X(0),V(0), T ) ≡ sup
0<t≤T

log ‖V(t)‖ .

We remark that the FLI provides much information on the dynamics, among which
the regular or chaotic character of the dynamics, the location of the equilibrium
points, the role of higher degree harmonic terms.
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The Unaccomplished Perfection
of Kepler’s World

Antonio Giorgilli

Abstract A short walk trough the main works of Kepler, notably the Astronomia
Nova, trying to follow his search of the perfection of the World till the discovery of
his celebrated laws. At the end of the road, the consciousness that the finish line had
not yet been reached.

Keywords Celestial mechanics · Kepler’s laws

1 Apology

It may be suprising to read a contributed paper like the present one among the
proceedings of a school on contemporarymethods ofCelestialMechanics. It provides
an answer to a question that happened to me to ask myself after many years spent
in teaching Mechanics to students, and in doing theoretical research on Dynamical
Systems, including Classical and Celestial Mechanics:

How did Kepler discover his celebrated laws?

The question is quite simple; the answer is not that simple. One can hardly find a
page in Kepler’s works were the laws are stated together in a compact formulation,
similar to what one can find in treatises or textbooks on Mechanics since at least a
couple of centuries.

I felt embarrassed, and, si parva licet componere magnis, I could not resist the
temptation to quote the incipit of the introduction of Astronomia Nova.
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Durissima est hodie conditio scribendi
libros Mathematicos, præcipue Astro-
nomicos. Nisi enim servaveris genuinam
subtilitatem propositionum, instructionum,
demonstrationum, conclusionum, liber non
erit Mathematicus: sin autem servaveris,
lectio efficitur morosissima, præsertim in
Latina lingua, quæ caret articulis, & illa
gratia quam habet græca, cum per signa
literaria loquitur.

Very painful nowadays is the condition of
writing mathematical books, particularly
astronomical. For unless you maintain the
innate rigor of propositions, constructions,
proofs and conclusions then the book will
not be mathematical; but if you respect that
sequence then reading will be most labo-
rious, especially in Latin language which
lacks the articles and that gracefulness pos-
sessed by Greek when you communicate
through written symbols.

The point is that I had many doubts on how to present the matter. The topic falls
within the field of the history of science, and there are books devoted to the work of
Kepler; e.g., the reader may see the comprehensive work of Julian B. Barbour [1],
where he or she will find many further references. The problem is that I’m not an
historian: I had to make a remarkable effort to read Kepler, and it took a long. I
should warmly thank N. Swerdlow for directing me to Refs. [16] and [17], for kindly
replying to my mails and also for sending me some preliminary work: without his
help, I probably wouldn’t have been able to find at least a partial answer to my
question. Themost natural thing to dowould be to address the reader to the references
above. But I hope that the present short exposition will be useful for people who are
interested in the same question, but do not have enough time (may be not enough
patience) to read long and exhaustive books.

Therefore I eventually decided to write the present note. It is nothing special, and
I apologize in advance if the reader will find it scarcely useful. It is only a quick and
dirty trace that may help as an introduction to the work of Kepler. I also present my
apologies to true historians for this intrusion in their field. My only justification is
that this note may satisfy or possibly awaken the curiosity of some of my friends
astronomers.

2 Before Kepler

Astronomia Nova is written in a style that is definitely uncommon in mathematical
books. It seems to be organized as a thorough time reconstruction of the long journey
of Kepler through the lands of Astronomy. He mixes autobiographical pages with
mathematical ones and with physical considerations that may appear bizarre to our
eyes. Far frommaking a synthetic and organized exposition of his results, he describes
all his attempts with plenty of details, including partial achievements, failures and
moments of enthusiasm or frustration. It seems that, being aware of the definite
revolutionary character of his discoveries, he wanted to make any effort in order to
convince his contemporaries that his view was the right one.1

1 This aspect is widely discussed by Stephenson [16].
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Therefore it is convenient to proceed step by step by recapitulating the state of
the art at the beginning of Kepler’s work. This means that we should briefly recall
the models of Ptolemæus, Copernicus and Tycho Brahe.

2.1 The Universe of Nicolaus Copernicus (1473–1543)
Compared to Claudius Ptolemæus (c. 100–170)

There is no need here to devote a long discussion to the model of Ptolemæus. The
model is a Geocentric one, with an elegant geometric arrangement. The Universe is
composed by material spheres that enclose the Earth. The Earth remains fixed, and
the spheres rotate around it with different velocities. The most external sphere is that
of the fixed stars, which revolves with the highest velocity performing a complete
revolution in a little less than one solar day. Inside the sphere of the fixed stars
one finds the spheres of Saturn, Jupiter, Mars, Sun, Mercury, Venus and the Moon,
which revolve with decreasing velocity. According to Copernicus there are different
opinions concerning the order of Mercury and Venus, but this is not so relevant here.

The geometrical tools used by Ptolemæus are more relevant. The basic motion is
the rotation of the spheres, because the circle is the perfect geometrical figure and the
uniform rotation on a circle is the perfect natural motion of the heavens, according to
the Aristotelian theory. The inequalities of the motion of the Planets are accounted
for with three geometrical tools.

i. The eccentric: the center of the sphere is displaced with respect to the position
of the Earth. This accounts partially for the non uniform angular motion of the
Planet, in particular of the Sun.

ii. The epicycle: the Planet moves on a secondary sphere (the epicycle) that has its
center on the primary sphere (the deferent). This accounts in particular for the
retrograde motion of the Planets.

iii. The equant point: a point symmetric to the Earth’s position with respect to the
center. The motion of the Planet around that point appears to be uniform. Every
Planet but the Earth have an equant point; more on this later.

The new model of Copernicus is developed in his main treatise De revolutionibus
orbium cœlestium. As it is well known, the great novelty with respect to Ptolemæus
is the rediscovery of the Heliocentric model that had been imagined by the Greek
astronomers Philolaus of Croton (c. 470–385 BC) and Aristarchus of Samos (c. 310–
230 BC), but had been abandoned. No original writings on that matter have been
preserved. Copernicus knew about Aristarchus’ theory thanks to some references
found in writings of the biographer Plutarch (c. 46–119 AD) and of the philosopher
Sextus Empiricus (c. 160–210 AD). Therefore Copernicus elaborated the geometric
scheme of his model from scratch.

The plan of Copernicus is clearly made in seven petitiones that are declared
in the Commentariolus, an unpublished manuscript that circulated among a few
astronomers at that time. It is worth to look at them.
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Prima petitio:
Omnium orbium cælestium sive sphaerarum
unum centrum non esse.

A unique common centre of all the celestial
orbs or spheres does not exist.

Secunda petitio:
Centrum terrae non esse centrum mundi, sed
tantum gravitatis et orbis Lunaris.

The centre of the Earth is not the centre of the
world, but only the centre of gravity and of the
sphere of the Moon.

Tertia petitio:
Omnes orbes ambire Solem, tamquam in medio
omnium existentem, ideoque circa Solem esse
centrum mundi.

All the spheres encircle the Sun, which appears
to be in themiddle of themall, so that the centre
of the world is near the Sun.

Quarta petitio:
Minorem esse comparationem distantiarum
Solis et terrae ad altitudinem firmamenti, quam
semidimetientis terrae ad distantiam Solis,
adeo ut sit ad summitatem firmamenti insen-
sibilis.

The ratio of the Earth–Sun distance to the
height of the firmament is much smaller than
the ratio of the Earth’s radius to the Earth–Sun
distance, to such a degree that the Earth-Sun
distance is imperceptible compared with the
height of the firmament.

Quinta petitio:
Quicquid ex motu apparet in firmamento, non
esse ex parte ipsius, sed terrae. Terra igitur
cum proximis elementis motu diurno tota con-
vertitur in polis suis invariabilibus firmamento
immobili permanente ac ultimo caelo.

Whatever motion appears to be in the firma-
ment is not a property of it, but of the Earth.
Thus the whole Earth together with the ele-
ments close to it revolves around its fixed poles
in a day–long revolution, while the firmament
remains fixed, being the highest heaven.

Sexta petitio:
Quicquid nobis ex motibus circa Solem
apparet, non esse occasione ipsius, sed telluris
et nostri orbis, cum quo circa Solem volvimur
ceu aliquo alio sidere, sicque terram pluribus
motibus ferri.

Whatever motion we observe in the Sun is due,
not to its motion, but to the motion of the Earth
and of our sphere, withwhichwe revolve about
the Sun, as any other Planet, and so the Earth
undergoes many motions.

Septima petitio:
Quod apparet in erraticis retrocessio ac pro-
gressus, non esse ex parte ipsarum sed telluris.
Huius igitur solius motus tot apparentibus in
caelo diversitatibus sufficit.

What appears in the Planets as retrograde and
direct motion is due, not to their motion, but to
the Earth’s. Thus the motion of the Earth alone
suffices to explain all apparent irregularities in
the heaven.

The three first petitions make explicit the basic idea of Copernicus that the Earth
is one of the Planets that revolve around the Sun, what everybody now knows (except
for a few bizarre people who are still convinced that a flat Earth is the centre of the
Universe). However the nowadays common belief that Copernicus places the Sun at
the centre of the world is not quite correct: as stated by third petition the Sun is near
the centre. The problem of the eccentricity of the orbits is still there, and Copernicus
places the centre of the sphere of a Planet in the mean Sun, not the true Sun.

The fourth petition addresses the problem that had perhapsmotivated the rejection
of the heliocentric system by ancient astronomers: if the Earth revolves in an orbit
around the Sun then we should observe the effect of that motion in the sky, i.e., the
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Fig. 1 The heliocentric model of Copernicus

phenomenon that we call parallax. The answer of Copernicus may appear obvious to
us, but it was not so at his time: we can not observe the parallax because the radius of
the sphere of fixed stars is exceedingly large with respect to the radius of the Earth’s
orbit. The parallax was indeed observed by Friedrich Bessel in 1838 [2], about three
centuries later, using a heliometer.

The remaining three petitions claim that all inequalities that we observe in the
sky, such as the annual motion of the Sun and the retrograde motion of the external
Planets, are due to the motion of the Earth. Thus the celestial spheres are rearranged
in a different order, as represented in Fig. 1, so as to put the Sun close to the centre.
The Earth is placed between Venus and Mars, and the sphere of the Moon encircles
the Earth. The highest sphere of stars is fixed, and the order of the planetary spheres
is determined by the angular velocity of the revolution around the Sun: Saturn is the
slowest one, Mercury the fastest. Thus the order of velocities is reversed with respect
to the model of Ptolemæus.

Concerning the Earth, it is subject to three movements.

i. Rotation: explains the daily rotation of the Sun and of the stars.
ii. Revolution: explains the annual motion of the Sun with respect to the stars.
iii. Declination: an annual motion of the rotational axis of the Earth that explains

the alternation of seasons.
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The motion of declination may raise some perplexities: we never found it mentioned
in our textbooks. The point is that Copernicus keeps the material spheres. Thus
the Earth, as well as the other Planets, is fastened to a sphere that revolves with
a period of one year. This causes the axis of rotation of the Earth to remain fixed
with respect to the surface of the sphere, so that no change of season could occur.
Therefore Copernicus introduces a motion of declination, namely a rotation of the
axis of the Earth around the perpendicular to ecliptic with a period close to one
year. This reminds the motion of the axis of the Earth that causes the precession
of equinoxes, a phenomenon that had been discovered a long before by Hipparchus
(c. 190–120 BC). The latter phenomenon may be justified in Copernicus’ system by
accepting a small difference between the period of revolution and that of declination.
It was Galileo who pointed out that if the material spheres are removed and the
rotation axis of the Earth is kept fixed but inclined with respect to the perpendicular
to ecliptic then the alternation of the seasons is a straightforward consequence of the
motion of revolution [5]. This is indeed what we read in nowadays textbooks.

The system of Copernicus differs from the ancient one also in two more points
that are relevant for our discussion. The problem is to explain two main inequalities,
namely: (i) the non uniform angular motion of the Planets with respect to the Sun,
and (ii) the retrograde motion of the external Planets as seen from the Earth. As
we have seen, the first problem is solved by Ptolemæus by introducing the equant
point. Copernicus rejects that method, because he does not attribute any acceptable
meaning to the equant. He rather introduces a pair of epicycles that produce the same
effect. The second problem disappears by taking into account the revolution of the
Earth: the retrograde motion occurs when the Sun and the Planet are in opposition,
and is due to the angular velocity of the Earth being bigger than that of the external
Planet. This fact is well illustrated in an image due to Galileo, Fig. 2.

2.2 The Universe of Tycho Brahe (1546–1601)

The model of Tycho Brahe, represented in Fig. 3, may be considered as the simplest
one that represents the motion of the Planets as they are seen from the Earth. He
refuses the heliocentric model of Copernicus, that he considers as an absurdity, as he
claims in his inscription at the top of the figure. His simple but effective remark may
be so stated: exchanging the deferent with the epicycle in the model of Ptolemæus
makes things simpler, for the epicycle of Ptolemæus is nothing but the orbit of the
Sun. Thus he claims that the Sun and the Moon revolve around the Earth, while all
the other Planets revolve around the Sun.

His model has a main trouble: it conflicts with the existence of material spheres,
because the sphere of Mars should intersect that of the Sun, as the figure clearly
shows. Tycho rejects the spheres mainly on the basis of two arguments.

The first argument is concerned with the orbit of a great comet observed in 1577.
With careful observations Tycho concluded that the comet was beyond the sphere of
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Fig. 2 The retrograde
motion of the external
Planets illustrated by Galileo
([5], giornata terza). Moving
from the Sun at the centre
one finds the orbit of the
Earth, the orbit of the Planet
and the fixed stars. When the
Planet is close to opposition
the projection of different
position of the Planet on the
sky as seen from the Earth
appears as a retrograde
motion

the Moon, and that the orbit had crossed the sphere of Venus. As to the first point we
should not forget that in the representation of the world due to Aristotle the sphere
of the Moon separates the lower region of the world from the upper one; the perfect
motion of Sun, Planets and stars characterizes the upper region, while irregular
motions and changing phenomena are bounded to the lower one. The comets are
clearly changing objects, so they should be located inside the sphere of the Moon.2

On the basis of his observations Tycho concluded not only that the comet was in the
upper region, but also that the orbit was incompatible with the material nature of the
sphere of Venus.

2 It is mandatory here to recall the contributions of Galileo [5]. With his observations of the Moon
and the discovery of satellites of Jupiter he had produced substantial support to his thesis that the
Mechanics and the Physics of the Universe is the same as the Mechanics and the Physics on the
Earth; an idea that was far for being accepted at his time and provided a basis for the achievements
of Newton. The long discussion devoted by Galileo to the problem of the location of comets in
“giornata terza” of the Dialogo is a direct consequence of his thesis.
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Fig. 3 The model of Tycho Brahe. The inscription on the top of the image says: New hypothesis
for the system of the world, recently proposed by the author, by which the old redundancy and
inelegance of Ptolemæus and the recent absurdity of Copernicus concerning the motion of the
Earth are excluded, and which is in excellent agreement with the Celestial Appearance. (Figure
from De mundi ætherei recentioribus phænomenis)

The second argument is concerned precisely with the sphere of Mars. Again,
Tycho makes accurate observations in order to determine the distance of Mars from
the Earth at opposition with the Sun. In 1582 he makes the conclusion that Mars
at opposition is closer to the Earth than the Sun, while the opposite must obviously
occur at conjunction. Thus he rejects the hypothesis that the spheres are material
objects.

The major impact of the astronomical work of Tycho Brahe is connected both
with observations and with the compilation of new astronomical tables. The extraor-
dinary ability of Tycho in constructing new instruments for determining the position
of celestial objects produced a substantial improvement of astronomical data. Visual
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observations were affected by an error that may be evaluated in 10′. Tycho could
reduce the error to 1′ or 2′: such an improvement had a crucial impact on the calcula-
tions of Kepler. Moreover in 1600 Tycho Brahe convinced Kepler to move to Prague
in order to collaborate to the compilation of the new tables. Kepler had initially the
assignment of working on the orbit of Mars, that Plinius had named “inobservabile
sidus” (the star impossible to trace). This, as narrated by Kepler himself in chapter
VII of Astronomia Nova, is the first act in the long standing war of Kepler with
Mars—the god of war, indeed.

3 The Discovery of Kepler’s Laws

The guiding idea of most of the work of Johannes Kepler (1571–1630) is identified
in an ambitious, deep question that he raises:

To discover the plan of God when He created the Universe.

The first attempt is found in the first great treatise Mysterium Cosmographicum
(1596), but it was only some twenty years later that Kepler could reach a conclusion;
we read it in Harmonice Mundi (1619). The treatise Astronomia Nova (1609) is
placed in between.

Kepler’s laws that are the central subject of the present note are to be found
in Astronomia Nova (first and second law) and in Harmonice Mundi (third law).
However, in order to understand the revolutionary work performed by Kepler it is
convenient to spend a few words on the first part of Astronomia Nova. Already in the
title Kepler emphasizes his intention to investigate the causes of the motions of the
Planets on the basis of a physical model (see Fig. 4).

3.1 Ad Imitationem Veterum

The first part of Astronomia nova fixes the model used by Kepler. For physical
reasons the heliocentric model of Copernicus in preferred, but Kepler introduces
some relevant differences.

The first point is that from a geometric viewpoint the three previous models of
Ptolemæus, Copernicus and Tycho Brahe can be considered as equivalent. We may
say that Kepler combines elements from the three models in a way to construct a
more satisfactory basis.

Kepler, in agreement with Tycho Brahe, rejects the existence of solid spheres.
Thus all ancient models are deprived of physical meaning: the Planets move in the
ethereal space, but there is no physical reason that justifies the complicated geometric
combinations of eccentrics, epicycles and equants. The intuition of Kepler is that the
sole object that may offer a physical interpretation is the Sun.
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Fig. 4 The front page of Astronomia nova. The title puts the accent on the search of the author for
the causes (a„tiologhtÒj), namely for a physical astronomy (physica cœlestis)

Here comes the first successful conclusion: using the Sun as reference point the
orbits of all Planets turn out to be planar, and all planes have a common point in the
Sun. This is also the first main difference with respect to the Copernican system.

The second point is that Kepler proceeds ad imitationem veterum (imitating the
ancients) by restoring the equant point in place of the double epicycle of Copernicus.
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Both are geometrically equivalent, and both are unacceptable in a physical scheme,
but using the equant makes things easier. Anyway both the equant and the epicycle
remain a mere geometrical artifice.

After the first attempts to calculate the orbit of Mars with the ancient methods
Kepler reverts to consider the motion of the Earth (equivalently: the motion of the
Sun with respect to the Earth). Assuming the orbit to be circular, which is perfectly
reasonable in view of the low eccentricity, he uses a clever choice of the observations
of Mars by Tycho in order to calculate the orbit of the Earth with good precision.
Doing so, he realizes that also the Earth should be assigned an equant, contrary
to the models of Ptolemæus (for the Sun) and Copernicus. Here the problem of
bisection of eccentricity shows up. In order to agree with the geometry of Ptolemæus
the centre of the eccentric circle of the orbit of a Planet should be placed halfway
between the equant and the Sun; this produces a satisfactory description of the non
uniform motion on the deferent. Among his attempts Kepler also tries to replace the
criterion of bisection with what he calls a vicarious hypothesis: he introduces a ratio
8 : 5 between the distances of the centre from the equant and the Sun. After a lot
of calculations he concludes that the bisection of eccentricity reproduces the correct
form of the orbit, hence it is the preferable one. On the other hand the vicarious
hypothesis produces correct angles, but wrong distances. Hence he provisionally
adopts the vicarious hypothesis as a useful tool for calculating the angles.

3.2 Towards the “Law of Areas”

Still focusing attention on Earth’s orbit Kepler comes to amore accurate investigation
of the observed fact that the velocity at perihelion is larger than at aphelion. His
starting point is so stated.

Primum fit inductio: omnes in omnino
Planetas uti Æquante circulo, seu bisec-
tione Eccentricitatis puncti Æquatorii.

First the following precept is made: all
Planets possess an equant circle, namely
the bisection of the eccentricity of the
equalizing point.

However, as we have seen, he does not attribute any physical meaning to the
equant point. Here comes the first claim that Kepler recognizes as a milestone. He
puts strong emphasis on the physical meaning of his principle.
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Super hoc principium Geometrica demon-
stratione instruitur universale hoc, Moras
Planetæ in æqualibus arcubus Eccen-
trici proportionari cum discessu Planetæ
a puncto, unde consurgit Eccentricitas.
Arrigite aures Physici, hic enim deliber-
atio suscipitur de impressione in vestram
provinciam facienda.

On this precept the following universal
principle is stated, through a geometrical
demonstration: the time spent by the Planet
on equal arcs is proportional to the dis-
tance of the Planet from the point where the
eccentricity arises. Please keep wide open
your ears, you Physicists, because here is
the origin of the initiative to make an intru-
sion into your area.

Finally themain statement is declared, thus referring the origin of the non uniform
angular velocity only to the Sun, with no need of the equant point.

Primum sciat in omni hypothesi Ptole-
maica hac forma instructa, quantacunque
eccentricitas fuerit, celeritatem in perihe-
lio & tarditatem in aphelio proportionari
quam proxime lineis ex centro mundi educ-
tis in Planetam.

First, [the reader] should know that inwhat-
ever hypothesis that agrees with this Ptole-
maic form, independently of the eccentric-
ity, the rapidity at perihelion and the slow-
ness at aphelion exhibit quam proxime a
proportion with the lines drawn from the
centre of the world to the Planet.

It must be stressed that no reference to areas is made here: only the distance from
the Sun matters.

It may be interesting to briefly follow the proof of Kepler ([8], Chap. XXXII):
this will provide an idea of the methods and of the language of Astronomia Nova.
Let us make reference to Fig. 6, which is a simplified version of the original image
Fig. 5. We consider two opposite arcs AB and C D of the orbit that are seen from the
Sun under the same angle, and have initial point on the aphelion and the perihelion,
respectively. The time spent on the arcs (called mora by Kepler) is represented by
the arcs FG and H K , respectively. Assuming that the arcs AB and C D are small we
approximate them with segments orthogonal to the line of apsides C F , and do the
same for the arcs FG and H K . Then the sector S AB is similar to SC D, the sector
E AB is similar to E FG, and the sector E H K is similar to EC D. By Euclidean
geometry we get the relations

|AB|
|FG| = |E A|

|E F | ,
|H K |
|C D| = |E H |

|EC | . (1)

Notice that the right members contain only points on the line of apsides; therefore
the quantities on the left do not depend on the choice of the points B and D, and
moreover the initial choice that the arcs AB and C D are seen from the Sun under
the same angle is not necessary.
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Fig. 5 The image of Kepler illustrating his discovery that the time spent by the Planet on equal
arcs is proportional to the distance of the Planet from the Sun

Now, Kepler wants to prove that the relations

|AB|
|FG| � |O A|

|S A| ,
|H K |
|C D| � |SC |

|OC | (2)

hold true quam proxime, i.e., in good approximation. Remark that the latter rela-
tions allow us to focus attention on the distances |S A| and |SC | from the Sun, thus
forgetting the distances from the equant point. Comparing the right members of
Eqs. (1) and (2) and in view of |O A| = |EG| = |OC | = |E H | we see that Kepler’s
relation (2) is true provided the relation

|O A|2 � |E A| |S A| , |OC |2 � |EC | |SC | , (3)
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Fig. 6 Illustrating the proof
of the inverse proportionality
between the distance from
the Sun and the time spent in
an arc of the orbit. The labels
of the relevant points are: S,
Sun; E , Equant; O , centre of
the eccentric orbit; C F , line
of apsides. The eccentricity
is e = |SO|/r , where
r = |O A| is the radius of the
eccentric circle. Some
obvious relations are |O A| =
|OC | = |E F | = |E H | = r ,
|E A| = |O H | = |SC | =
r(1 − e) , and |S A| =
|EC | = |O F | = r(1 + e)
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holds true, i.e., that the radius |O A| = |OC | of the eccentric circle is the geometric
mean between the segments on the right hand side of the equalities. This is untrue,
because from the figure we get only the equalities between the arithmetic means

|O A| = |E A| + |S A|
2

, |OC | = |EC | + |SC |
2

. (4)

Here Kepler proposes a clever approximation. His remark is that if the difference
between the segments |E A| and |S A| (|EC | and |SC | respectively) is small then the
difference between the arithmetic and the geometric means becomes negligible. If
we do the calculations with algebra (that was not known to Kepler) we say the same
by remarking that the arithmetic mean between 1 + e and 1 − e (where e is the small
eccentricity) is well approximated by the geometric mean

√
1 − e2 � 1 − e2/2 � 1

with an error O(e2). Therefore we may consider the relations (2) as true, and by
multiplication we get

|AB|
|C D| · |H K |

|FG| = |SC |
|S A| .
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Finally, by recalling that the choice of the points B and D is arbitrary we may set
|AB| = |C D|, so as to obtain the really interesting relation

|H K |
|FG| = |SC |

|S A| ,

namely that the mora on the arcs is proportional quam proxime to the distance from
the Sun, as Kepler wanted to prove. For instance, let us consider the case of the Earth.
Based on Tycho’s observations the eccentricity is evaluated to be e ∼ 1.8 × 10−2.
If the difference is estimated to be e2 we get an error ∼3.24 × 10−4, a very small
quantity; actually the evaluation of the next section shows that we could divide the
difference by a further factor 4.

The argument of Kepler is not fully rigorous: it does not apply directly to any
point of the orbit, because the arc is no more orthogonal to the diameter of the circle.
Kepler is well aware of this fact, but he says that tenuissima apparet diversitas (the
difference is clearly very small), with some elaborated justifications.

We could merely conclude that what Kepler has actually seen is that the uniform
motion with respect to the equant point is quam proxime equivalent to the claim
that the mora on small arcs is proportional to the distance from the Sun. But we
should consider the question from Kepler’s viewpoint: he looks for a model that has
a physical meaning. Now, the equant point is merely a useful geometric artifice: there
is nothing there that can exert a physical action on a Planet. On the other hand there
is no a priori justification for using the equant: there is only a long standing tradition
and a general agreement among astronomers for using it. We may instead attribute
the Sun the ability of exerting a physical action. This was a challenging question for
Kepler. In rough terms, what he imagines is that the Sun rotates around its axis, and
drags the Planets around the orbit by exerting an action that maintains the motion;
he was unaware of the principle of inertia.3 Therefore Kepler considers his principle
as preferable with respect to the use of an equant.

The problem now is: to calculate the time spent on an arc using the principle
established by Kepler. This is a difficult matter: we could say that as a geometrical
method the equant is easier to use. Kepler’s idea is that we may consider an arc
as composed by a sequence of small arcs to which the principle can be applied;
an attempt that he works out with a lot of patience, because the actual calculation
turns out to be very hard. We should not forget that Kepler could not rely on integral
calculus, not yet invented. But he introduces a further ingenious idea: by a rather
elaborated argument he gets convinced that the sum on infinitely many distances
may be replaced by the area of the sector filled in by the distances. This is essentially
the seed of the second Kepler’s law, though till nowKepler seems to consider also the
area as a geometrical tool: his point remains that the relevant fact is the proportionality
between the time and the radius, as stated at the beginning of the present section.

3 As to the physical nature of the action of the Sun, in Chap. XXXIII Kepler makes a long discussion
invoking, e.g., a magnetic force that propagates in a similar way to light.
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Our usual statement of the law of areas, that we call second Kepler’s law, has been
enunciated by Newton (Principia [15], Sect. II, Proposition I theorema I).

3.3 Kepler’s Principle Revisited

The geometric argument of Kepler, as we see, is ingenious, but perhaps unfamiliar for
us. We may reexamine it forcing the use of areas and exploiting differential calculus,
just in order to see how the calculation can be simplified by our formalism (and
perhaps to understand it better).

Let us refer to Fig. 7. Consider the arcs A′ A′′ and P ′ P ′′ seen from the equant point
under the same angle δθ . Then the length of the arcs is

|A′ A′′| = (1 − e)aδθ , |P ′ P ′′| = (1 + e)aδθ ,

respectively. Consider now the sectors S A′ A′′ and S P ′ P ′′ with vertex in the Sun. We
have

area(S P ′ P ′′) = 1

2
|P ′ P ′′| · |S P|

area(S A′ A′′) = 1

2
|A′ A′′| · |S A|

⎫
⎪⎬

⎪⎭
= 1

2
(1 − e)(1 + e)a2δθ.

Fig. 7 Revisiting Kepler’s
proof in terms of areas. The
labels of the relevant points
are: S, Sun; E , Equant; O ,
centre of the eccentric orbit;
P , perihelion; A, aphelion;
AP , line of apsides. The
relevant quantities are
|O A| = |O P| = a, the
semimajor axis;
|O S| = |O E | = ea;
|S P| = |E A| = (1 − e)a;
|S A| = |E P| = (1 + e)a
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Denoting now by δϕ the angle of either arc AB or C D as seen from the Sun and by
r the distance from the Sun we may write the length of the arc as δs = r δϕ; thus we
recover the claim of Kepler in either form

δs

δt
= 1

r
or δt = r δs .

The argument reproduces that of Kepler in the previous section, including its defect:
it is perfect for apsides; only approximate for all other points. So let us recast it in a
more general form, using nothing more than Euclidean geometry.

Let us refer to Fig. 8. The angle θ taken from the equant evolves uniformly,
and determines the line E P that gives the position P of the Planet on the circle with

Fig. 8 Comparing the uniform motion around the equant point and the law of areas. The labels of
the relevant points are: S, Sun; E , Equant; O , centre of the eccentric orbit; A, perihelion; u, eccentric
anomaly; ψ , true anomaly. θ is the angle measured from the equant, which evolves uniformly in
time according to Ptolemæus
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centre O (upper left panel). Translate the angle θ so that its vertex is in O (upper right
panel). Then the area of the sector QO A evolves uniformly in time, thus replacing
the angle θ . Taking the Sun as the reference point we look instead to the area of the
sector P S A (middle left panel) which is swept by the radius joining the Sun with the
Planet. We want to compare the areas of the two sectors, and show that they are quam
proxime equal. Let us superimpose the two areas (middle right panel); forgetting the
common part ASDQ, we should compare the areas of the triangles O DS and P DQ.

Drawing the line PC parallel to O A (lower left panel) we construct the trian-
gle P DC , whose area is clearly equal to the area of the triangle O DS; this is just
Euclidean geometry. Therefore the difference between the areas is the small curvilin-
ear triangle P QC . The latter triangle is enlarged in the lower right panel, and the line
P Q′ is drawn orthogonal to QC . The resulting right triangle has sides |PC | = e,
|P Q′| = e sin θ and |Q′C | = e cos θ ; hence we get area(DSO) − area(D P Q) ∼
e2 sin 2θ

4 . We conclude

∣
∣
∣
∣area(S AP) − area(O AQ)

∣
∣
∣
∣ ∼ e2 sin 2θ

4
.

This shows that for small eccentricity the uniform motion around the equant and the
uniform evolution of the area swept by the radius from the sun are quam proxime
equivalent, with a difference not exceeding e2/4.

3.4 The Elliptic Orbit of Mars, the Inobservabile Sidus

Coming to Mars, a careful examination of the observational data convinces Kepler
that the method of equants produces the correct angles with respect to the centre of
the orbit, but fails to produce the correct distances. This is a major trouble, widely
narrated in part IV of Astronomia Nova, starting with Chap. XLI.

After a long examination Kepler finds that the orbit exhibits an oval shape, rep-
resented by the dashed curve on the left side of Fig. 9. The true orbit and the circle
differ by a lunula (tiny moon) that appears as generated by an oscillation along the
diameter of an epicycle, in a direction orthogonal to the line of apsides; the epicicle
is represented in the lower part of Fig. 10. The latter fact conflicts with any physical
interpretation. The hard problem for Kepler is to justify the existence and the width
of that lunula. He seems to suspect that the true shape could be an ellipse, but lacks
a convincing justification for such a claim.

After many attempts, the breakthrough is reached in Chap. LVI. Here the descrip-
tion takes on an enthusiastic tone. Kepler’s considerations refer to Fig. 10.
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Cum igitur duobus argumentis (. . .) non
obscure colligerem, lunulæ illius latitu-
dinem dimidiam tantum assumendam, scil-
icet 429, correctius 432, (. . .); cœpi de
causis & modo cogitare, quibus tantæ lati-
tudinis lunula rescinderetur.

Thus, having clearly concluded, from two
different arguments, (. . .) that the width of
that lunula should be halved, i.e., 429, or
more correct 432, (. . .); I began to thor-
oughly investigate how and why such a
wide lunula should be subtracted.

Qua in cogitatione dum versor anxie, . . .

forte fortuito incido in secantem anguli
5◦18′ quæ est mensura æquationis Opticæ
maximæ. Quem cum viderem esse 100429,
hic quasi e somno expergefactus, & novam
lucem intuitus, sic cœpi ratiocinari.

While reflecting with anxiety, by fortuitous
chance I fall on the secant of the angle
5◦18′, which is the maximal amplitude of
the optical equation. When I saw it to be
100429, it was like being suddenly awak-
ened from sleep, and seeing a new light.
Then I began to argue as follows.

Fig. 9 The image of Kepler showing the deviation of the orbit of Mars from a circle: the lunula
between the circle and the observed orbit
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Fig. 10 The image by which Kepler illustrates his discovery of the true shape of the orbit, as
quoted in the text. Figure 11 provides a simplified version. The lower part of the figure represents
the epicycle that is conjectured to provide the width of the lunula, taking the projection on the
horizontal diameter

As a personal note, I felt impressed by the strength of Kepler’s expressions. “Forte
fortuito” stresses the quite unexpected casualty of the crucial lucky event; “quasi e
somno expergefactus” puts a strong accent on the surprise that strikes the mind of
Kepler, like a thunderbolt.
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In longitudinibus mediis, æquationis pars
Optica fit maxima. In longitudinibus mediis
lunula seu curtatio distantiarum est max-
ima, etque tanta, quantus est exces-
sus secantis æquationis opticæ maximæ
100429 supra radium 100000. Ergo si pro
secante usurpetur radius in longitudine
media, efficitur id, quod suadent observa-
tiones.

Close to the average value of the longi-
tude the optical equation is close to a max-
imum. The amplitude of the lunula takes
a maximum there, and is the same as the
excess of the secant of the optical equation,
namely 100429 over the radius 100000.
Therefore, if for the mean longitude you
replace the secant with the radius the result
of the observations will be recovered.

Et in schemate cap. XL conclusi genera-
liter, si pro H A usurpes H R, pro V A vero
V R, & pro E A substituas E B, & sic in
omnibus, fiet idem in locis cæteris eccen-
trici, quod hic factum est in longitudinibus
mediis.

According to the scheme of Chap. XL, I
made the general conclusion that if you
replace H A with H R, V A with V R and
E A with E B, and similarly for all points,
the same that occurred for average longi-
tude will happen at any point of the eccen-
tric circle.

Fig. 11 A simplified drawing of Kepler’s Fig. 10, illustrating the deduction of the equation of an
ellipse. The labels of the relevant points are: S, Sun; O , centre of the eccentric orbit; A, perihelion;
u, eccentric anomaly (here of M ′); ψ , true anomaly (here of Q)
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It may be useful to add a few comments, with the help of Fig. 11. The optical
equation is the angle θ = ̂O Q′S or ̂O M ′S; roughly, it is the difference between the
true anomaly ψ and the eccentric anomaly u. It is clearly close to a maximum when
u = 90◦; according to Kepler, for Mars that angle is evaluated as θ � 5◦18′. Still
with u = 90◦ Kepler evaluates the distance δ = |Q Q′|, which is the width of the
lunula, as δ � 0.00429 when using the radius of the circular orbit as unit of length.
That quantity is precisely sec θ − 1, i.e., the excess of the secant over the radius: this
is what strikes Kepler. His final argument is that for a generic point M ′ on the circle
with eccentric anomaly u he should recalculate the distance from the Sun the same
way, i.e., taking the projection of the segment SQ′ on the line O Q′. For u = 90◦ this
turns out to be precisely the radius. For a generic point M ′ on the circle we should
project the segment SM ′ on the line O M ′, thus getting the segment DM ′, and take
the length of the projection as the distance from the Sun; i.e., we find the true position
M of the Planet by setting |SM | = |DM ′|. That way he obtains the arc with radius
SM in the figure, which fits the observations. The position M of the planet is at the
intersection of the arc with the line from M ′ orthogonal to the line AP of apsides.

Now the road is traced. In the next Chaps.LVII–LIX Kepler exploits his intuition,
and proves that the orbit so obtained is a perfect ellipse. With his Euclidean methods
the construction is rather elaborated: it takes several pages. So let us make it simpler
with our methods of analytical geometry, again with the help of Fig. 11. Taking O
as the origin, the line of apsides AP as x axis and setting for a moment |O A| =
1 we find that SM ′ = (cos u − e, sin u) and O M ′ = (cos u, sin u). The projection
|DM ′| = 1 − e cos u is calculated by a scalar product. Let us now rescale all the
distances by restoring a = |O A|, the radius of the eccentric circle. Following the
trace suggested by Kepler we readily get

r = a(1 − e cos u) ;

this is the equation of an ellipse with semimajor axis a and eccentricity e, written in
terms of the distance r from the focus S and of the eccentric anomaly u.

The elliptic form of the orbit has been thus discovered, which establishes the first
Kepler’s law.4

3.5 Kepler’s Equation

Having determined the shape of the orbit, in Chap. LX Kepler comes to the prob-
lem of calculating the position of the Planet on its orbit at any given time. Again,
his construction using Euclidean methods is rather elaborated, and we are able to
simplify it.

The problem is to find a mean anomaly �, namely a quantity (or possibly an
angle) that evolves uniformly in time. The method is based on the principle that we

4 Remark that the orbit is planar, as determined in advance, see Sect. 3.1.
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Fig. 12 Illustrating the deduction of Kepler’s equation. The labels of the relevant points are: S, Sun;
O , centre of the eccentric orbit; A, perihelion; a, semimajor axis; b semiminor axis; u, eccentric
anomaly; ψ , true anomaly

have seen established in Sect. 3.2, using again the idea of evaluating the sum of the
distances from the Sun through the area swept by the radius joining the Planet with
the Sun, namely of the elliptic sector S P M . A direct calculation of that area is a hard
task, but Kepler uses the ingenious method represented in Fig. 12. Assuming that
the Planet is in M draw the line RQ orthogonal to the line of apsides, with Q on the
circle of radius a. Then we easily calculate

areaS P M = b

a

(
area(O P Q) − area(O SQ)

) = b

a

(
1

2
a2u − 1

2
a2e sin u

)

.

The area evolves uniformly as πab
T t ; hence the mean anomaly � at time t is

� = nt with n = 2π

T
,

where n is the mean motion, T is the period, and the relation between � and the
eccentric anomaly u is given by the celebrated Kepler’s equation

u − e sin u = � .
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The final problem is to calculate the eccentric anomaly u for any given value of
�, since � is easily calculated. Kepler could not find a solution of his equation: it can
not be solved by the methods of Euclidean geometry, indeed. Thus Kepler closes
Chap. LX with a question to geometers:

Data area partis semicirculi, datoque
puncto diametri, invenire arcum, & angu-
lum ad illud punctum: cujus anguli
cruribus, & quo arcu, data area compre-
henditur. Vel: Aream semicirculi ex quo-
cunque puncto diametri in data ratione
secare.

Let the area of a part of a semicircle and a
point on the diameter be given; to find the
arc and the angle at that point, such that the
sides of that angle and that arc enclose the
given area. Or, similarly: to divide the area
of a semicircle in a given ratio from any
given point on the diameter.

Mihi sufficit credere, solvi a priori non
posse propter arcus & sinus ˜terogšneian.
Erranti mihi, quicumque viam mon-
straverit, is erit mihi magnus Apollonius.

I think that a priori it can not be solved,
for the arc and the sine are heterogeneous
quantities. I’m wandering here, and if any-
one will show me the way, he will be for
me a great Apollonius.

A solution by series (that now we call Bessel functions) has been published in
1771 by Lagrange [12, 13].

3.6 The Perfection of the World

The third Kepler’s law seems to represent the conclusion of a continuous and per-
severant reflection that had started with Mysterium Cosmographicum [7], and had
continued for more than twenty years: Kepler was obsessed with the pursuit of the
world’s perfection.

The main thesis of Mysterium Cosmographicum is that the architecture of the
world is deeply connected with the existence of five regular polyhedra. The scheme
is represented in Fig. 13, a beautiful and famous image. Kepler distinguishes two
different regions, separated byEarth. The external spheres andpolyhedra are arranged
as

Saturn — Cube — Jupiter — Tetrahedron —Mars
The separating sphere is that of the Earth and theMoon, enclosed inside two polyedra
in the order

Dodecahedron — Earth and Moon — Icosahedron
The internal region is arranged as

Venus — Octahedron —Mercury
One can hardly expect that the dimensions of the polyhedra fit exactly with the
spheres; but Kepler makes a strong effort in order to account also for the epicycles
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Fig. 13 A famous image from Mysterium Cosmographicum of Kepler, drawn by Georg Gruppen-
bach. The title says: “The sizes of the orbits of the Planets, exhibiting the distances ruled by five
regular polyedra.” The inscription on the left lower corner says: “Here you will admire, specta-
tor, the work of the Olimpian Kepler, an image that you never saw before. Indeed the five solids
of Euclid rule the distance between the orbs. The author’s work now reveals how good was the
doctrine transmitted to us by Copernicus”

of the Planets. Moreover, he adds plenty of reasons, based on geometrical and arith-
metical considerations close to the border of mysticism (or even beyond), in order
to establish that the order of polyhedra can not be different from the actual one;
consequently, the same applies for the order of the Planets. Anyway, he comes to the
conclusion that there are six Planets because there are five regular polyhedra, and
that the order of Planets and polyhedra reflects a necessary and perfect plan.
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The geometry of polyhedra is widely revisited in Harmonice Mundi. Moreover in
Liber III Kepler comes to establish a connection between the motions of the Planets
and the rules of musical harmonics. What he wants to discover is the music played
by Planets in honor of the Creator. Figure 14 is such an example.

The perfectmusical harmony of the Planets leadsKepler to reconsider the problem
of finding a relation between the radii of the orbits and the periods of revolution.
He had already raised the question in Mysterium Cosmographicum, but without
being able to reach a conclusion. The question is achieved in Liber V, Chap. III of
Harmonice mundi.

Hactenus egimus de diversis moris vel
arcubus unius et eiusdem Planetæ. Jam
etiam de binorum Planetarum motibus
inter se comparatis agendum. (. . .)

So far we have considered either time inter-
vals or arcs of one and the same Planet.
Now we should consider the motions of
pairs of Planets, compared with each other.
(. . .)

Rursum igitur hic aliqua pars mei Mys-
terii Cosmographici, suspensa ante 22
annos, quia nondum liquebat, absolvenda
et huc inferenda est. Inventis enim veris
orbium intervallis per observationes Bra-
hei, plurimi temporis labore continuo, tan-
dem, tandem genuina proportio temporum
periodicorum at proportionem orbium—

Therefore I may achieve another part of my
Mysterium Cosmographicum, suspended
twenty-two years ago, because it was not
yet clear enough. For having calculated the
distances of the orbits, thanks to Brahe’s
observations, and having spent a great
amount of timeworking hard, at last!, at last
the true proportion of the periodic times to
the orbits —

sera quidem respexit inertem,
Respexit tamen et

longo post tempore venit;

late she saw me, lying helpless,
yet she came and gazed at me

after a long time;

eaquem si temporis articulos petis,
8 Mart. hujus anni millesimi sexcente-
simi decimi octavi animo concepta, sed
infeliciter ad calculos vocata, eoque pro
falsa rejecta, denique 15 Maji reversa,
novo capto impetu expugnavit mentis meae
tenebras, tanta comprobatione et laboris
mei septendecennalis in observationibus
Braheanis et meditationis hujus in unum
conspirantibus, ut somniare me et præ-
sumere quæsitum inter principia primo
crederem.

and if you want to know the precise
moment, the first idea came across me on 8
March of this year 1618; but it was rejected
as false, due to inappropriate reduction to
calculation. But later it fell again upon me
on 15 May, and conquered with outstand-
ing power the darkness of my mind, thanks
to the alliance between this idea and my
seventeen years labour on Brahe’s observa-
tions. I thought I was dreaming, and even-
tually I took my result for granted in my
first assumptions.

I can not refrain from adding a further personal remark. I felt again impressed by
the attitude of Kepler. With the verses in the middle, taken from Vergilius (Bucolica,
Ecloga I), he fully expresses all his relief, almost a sense of liberation from an
obsession that has dogged him for so many years. At the same time he adds an
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Fig. 14 The music played by Planets in honor of their Creator. Image from Harmonice Mundi

utterance that is almost a confession: it is not Kepler who catches the truth; it is the
truth who catches Kepler. I never found anything similar in a book of Analysis.

But let us come to the conclusion of Kepler.

Sed res est certissima exactissimaque,
quod proportio quæ est inter bino-
rum quorumcunque Planetarum tem-
pora periodica, sit præcise sesquialtera
proportionismediarumdistantiarum, id
est orbium ipsorum; attento tamen hoc,
quod medium arithmeticum inter utramque
diametrum ellipticæ orbitæ sit paulo minus
longiore diametro. Itaque si quis ex peri-
odo, verbi causa Telluris, quæ est annus
unus, et ex periodo Saturni triginta anno-
rum, sumserit tertiam proportionis partem,
id est, radices cubicas, et huius proportio-
nis duplum fecerit, radicibus quadrate mul-
tiplicatis, is habet in prodeuntibus numeris
intervallorum Terræ et Saturni a Sole
mediorum proportionem justissimam. Nam
cubica radix de 1 est 1, ejus quadratum 1.
Et cubica radix de 30 est major quam 3, eius
igitur quadratum majus quam 9. Et Satur-
nus mediocriter distans a Sole, paulo altior
est noneuplo mediocris distantiæ Telluris a
Sole.

For it is a definitely certain and abso-
lutely exact truth that the actual propor-
tion between the periodic times of any
two Planets is precisely the sesquial-
tera proportion of the mean distances
of the orbits, themselves; this taking into
account that the arithmetic mean between
the two diameters of the elliptic orbit is a
little less than the longer diameter. Thus if
one considers, e.g., the period of the Earth,
which is 1 year, and the thirty years period
of Saturn, and takes one third of the pro-
portions, that is the cubic roots, and dou-
bles that proportion, making the square of
the roots, he will get from the resulting
numbers the correct proportion of themean
distances of the Earth and of Saturn from
the Sun. For the cubic root of 1 is 1, and
its square is 1; and the cubic root of 30 is
greater than 3, and its square greater than 9.
Indeed the average distance of Saturn from
the Sun is a little bigger than nine times the
average distance of the Earth from the Sun.

This is the third Kepler’s law: the sole part of Harmonice Mundi that has survived in
our Astronomy. Anyway now Kepler can finally claim that:

The world is perfect. The plan of God has been unveiled.

But . . . is it really so?
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4 The “Tabulæ Rudolphinæ”

In 1564 Tycho Brahe (17 years old) conceived the project of compiling new astro-
nomical tables that should replace the old and obsolete Alphonsine ones. The work
was undertaken in 1572, and in 1600 Kepler initiated his collaboration for work-
ing out all the necessary calculations. After Tycho’s death in 1601 Kepler took the
job of completing the compilation, a work that continued for several years and was
terminated in 1623. The new tables, called Rudolphinæ, were published in 1627 [4].

Kepler was very proud of his work. In the præfatio he writes [11]:

Et de certitudine quidem calculi testabun-
tur observationes præsentium temporum,
imprimis Braheanæ; de futuris vero tem-
poribus plura præsumere non possumus,
quam vel observationes veterum, quibus
usus sum, vel ipsa motuum mediorum
conditio, nondum penitus explorata, con-
cursusque causarum physicarum præstare
possunt, cum observationes Regiomontani
et Waltheri testentur, omnino de æquationi-
bus secularibus esse cogitandum, ut sin-
gulari libello reddam demonstratum suo
tempore; quæ tamen æquationes quales
et quantæ sint, ante plurimum sæculorum
decursum observationesque eorum, a gente
humana definiri nequaquam possunt.

And the reliability of our calculations will
be proved by the observations made in our
epoch, in particular byBrahe.Yet, concern-
ing the future we can not expect so much.
The validity may be questioned by ancient
observations, that I’m well aware of, by
the knowledge of the mean motions, that
have not yet been fully explored, and by the
concurrence of physical actions. The obser-
vations of Regiomontanus and Walther do
indeed show that we should definitely think
about secular equations, as I will explain
in a specially devoted booklet. Which and
how many equations we need, humanity
will be unable to decide it beforemany cen-
turies of observations have been accumu-
lated.

4.1 The Need for “Secular Equations”

The booklet promised by Kepler remained an unpublished manuscript for more than
two centuries. Very little was known about it, becauseKepler had only communicated
in a few letters to friends that he had discovered an inequality in the motions of the
Planets, in particular of Jupiter and Saturn: Jupiter seems to accelerate, Saturn to slow
down. Kepler’s manuscript was published in the complete collection of the works of
Kepler in 1860 [10].

In his manuscript Kepler compares the results of his calculations with a series of
observations collected between 1461 and 1504 by Johannes Müller der Könisberg
(1436–1476), also named Regiomontanus, and BernardWalther (1430–1504). A few
ancient observations reported by Ptolemæus are also included. A report on Kepler’s
manuscript may be found in [6]; here is a short summary of the main points.

A comparison between the observed longitudes of Jupiter and Saturn and the
predicted ones through Rudolphinæ tables is reported in Fig. 15. The dispersion of
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Fig. 15 Difference between the observed and calculated longitude of Jupiter and Saturn, according
to Kepler [10]

data is quite big, but we should keep in mind that they come from visual observations
or atmost using armillæ, that could not assure a very high precision.Nevertheless, it is
evident that there is a systematic deviation: Jupiter is always in advance with respect
to the predictions; Saturn is always delayed. This is the deviation mentioned by
Kepler in the passage quoted above. Kepler’s note includes data also for Mars, Venus
and Mercury, but the corresponding plot does not suggest a systematic deviation,
though Kepler inclines to admit it (see [6]).

It took quite a long for Kepler to get convinced that there was some unaccounted
phenomenon that could not be explained on the sole basis of the elliptic shape of the
orbits. He refers that he eventually got convinced of the necessity of accepting the
existence of inequalities when he went to examine the event of a great conjunction
observed by Walther on 24 May 1504: the calculation had produced a discrepancy
of 58′. Thus Kepler writes:

Et hic dissensus calculi in Jupiter and Sa-
turn, excurrens ad integrum gradum, est
remora illa, quæ me, plurima perplexitate
circumventum, per solidos quinque menses
in observationibus Waltherianis exercuit
tandemque ad nova consilia circa motuum
mediorum speculationem adegit, depre-
hensa manifesta inæequalitate motuum
seculari. (Absolvi hucusque 18 Junii 1624.)

And this discrepancy in the calculation for
Jupiter and Saturn, which amounts to a
whole degree, is such a hindrance that it
caused me to be assailed by many perplex-
ities, and for five solid months I have been
troubled until I eventually changed my
advice concerning averagemotions, having
accepted the manifest secular inequality of
the motions. (I concluded this on 18 June
1624.)
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The expression “secular inequality” coined here by Kepler means that he is forced
to admit that the orbital elementsmaybe subject to a slowchange that becomes visible
after centuries. Thus he begins to look for a secular equation to be included in his
calculation in order to cover that phenomenon. He tries to adjust the position of
the perihelion, assuming that the orbit of the Earth remains uniform and refusing
to modify the eccentricities, accurately determined by Tycho Brahe. He reaches a
partial success by fitting the observations of Ptolemæus, but he fails to fit them also
with the data of Regiomontanus andWalther. Amore detailed explanation ofKepler’s
attempts would take too much space here; the interested reader may want to look
at [6].

As to the nature of the secular equations to be included Kepler is not very explicit,
but reading his note I got convinced that he was trying to introduce periodic correc-
tions. That is, to reintroduce the epicycles that he had successfully removed.

The final conclusion of Kepler that we read in the preface to Tabulæ Rudolphinæ
is that he could only leave the problem for the future of astronomy, perhaps after
many centuries of systematic observations. Such a claim is fully justified in the
framework of ancient Astronomy, including Copernicus and Kepler: the sole way
for determining the periodic motions was to observe them over many periods. A
dynamical model was not available.

4.2 After Kepler

The problem pointed out by Kepler received increasing attention during the XVII
and XVIII centuries. A first step was made by Halley in 1700 with the publication of
tables that included secular corrections linear in time. Thiswas a pragmatic approach,
actually an interpolation, that inHalley’s intentions could produce correct predictions
over 6000 years before and after 1700. After Halley the expression “secular terms”
began to identify non periodic terms in perturbation expansions.

As we all know, Newton’s gravitational theory suggested the possibility that
the secular inequalities observed by Kepler could be explained as the effect of
gravitational interactions among the Planets. This has been indeed the job under-
taken by great mathematicians and astronomers of the XVIII century, among them
D’Alembert, Clairaut, Lalande, Euler, Boskovich, Lagrange and Laplace. A report
about the progress of the problem raised by Kepler paying particular attention to the
work of Lagrange and Laplacemay be found in [14]. The remarkable outcome of that
effort has been the birth of perturbation theory as was later developed, and still is in
use. The XIX century Astronomy (or Celestial Mechanics, as we may prefer to call
it) has seen a strong development of perturbation methods (and an accumulation of
troubles due to resonances), culminating with the discovery of chaos in the problem
of three bodies, by Poincaré.

In the second half of the past century the availability of computers and the begin-
ning of the exploration of space, togetherwith the announcement of strong theoretical
results by Kolmogorov, Arnold, Moser and Nekhoroshev, launched the development
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of new methods and results that is still in progress. A detailed exposition of the mat-
ters listed in this section exceeds both the limits and the scope of the present note.
Thus we should stop here.

4.3 A Final, Strictly Personal Remark

The discovery of chaos may appear as the downfall of Kepler’s dream that the per-
fection of the Universe could be discovered. In this sense his project should be
considered as unaccomplished. But there are many ways of looking at that question.

We know that onMay 29, 1919, FrankWatson Dyson and Arthur Stanley Edding-
ton observed the deflection of light by the Sun during an eclipse as predicted by
Einstein some years before. It is reported that when Albert Einstein was informed
of that result, he replied that had the experiment failed: “Then I would feel sorry for
the dear Lord. The theory is correct anyway”. We may want to rephrase the sentence
by saying:

“The theory is perfect. The world is wrong.”
But a quite different attitude may be possibly taken. We could say as well:

“The world is perfect. What is wrong is our idea of perfection.”

Oscar Wilde said that sunsets were not valued because we
could not pay for sunsets.
But Oscar Wilde was wrong; we can pay for sunsets.
We can pay for them by not being Oscar Wilde.

(G. K. Chesterton.)
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