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9Mechanisms of Diabetic Nephropathy 
in Humans and Experimental Animals

Charbel C. Khoury, Sheldon Chen, and Fuad N. Ziyadeh

9.1  Introduction

Diabetic kidney disease (DKD) remains one of the main causes of end-stage kidney 
disease (ESKD) in the industrialized world and many developing countries and is 
likely to continue increasing given the pandemic of diabetes and obesity. While still 
considered a microvascular complication of diabetes, nephropathy involves more 
than just kidney capillaries, extending its damage across the various kidney cells 
and associated extracellular structures. This chapter will provide a comprehensive 
review of our current understanding of the pathophysiology of DKD especially 
focusing on lessons learned from experimental animal models.

9.2  Pathology

Histopathological changes of DKD in humans and in experimental animals involve 
all compartments of the kidney and correlate with functional and clinical manifesta-
tions of the disease. One of the earliest quantifiable changes in DKD is thickening 
of the glomerular basement membrane (GBM), a predictor of renal survival in 
patients with DKD [1]. Increased synthesis of extracellular matrix (ECM) compo-
nents such as type IV collagen, laminins, and nidogen/entactin and decreased ECM 
degradation result in a near doubling of the GBM size [2]. More dramatic changes 
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to the GBM are noted by ultrastructural studies, including denudation, abnormal 
folding, and the presence of shallow craterlike cavities and tunnels in fragmented 
segments of the GBM. Concurrently, there is a change in the composition of the 
GBM due to increased synthesis of the α1 chain of collagen IV and of perlecan by 
endothelial cells usually seen during embryonic development, along with overpro-
duction of the mature GBM components (α3 and α5 chains of collagen IV and 
agrin) by podocytes [3, 4]. This transition, along with changes in nonenzymatic 
glycosylation, redistribution of GBM components, and nonspecific trapping of 
serum protein, likely affects the quality of the GBM and could explain, at least in 
part, the correlation of GBM thickness with its functional properties such as “leaki-
ness” of serum macromolecules or the magnitude of proteinuria [5].

Aside from the altered GBM structure and function, the cellular components of 
the glomerular filtration barrier, namely, the podocytes and the endothelial cells, are 
both compromised in diabetes. The podocytes undergo cytoskeletal rearrangement, 
dedifferentiation, and autophagy manifested by effacement of their foot processes 
and decrease in slit diaphragm length with downregulation of its core components, 
such as nephrin [6]. Importantly, reduction in podocyte density secondary to detach-
ment and dropout of the cells or apoptosis might be a useful predictor of DKD and 
its progression [7, 8]. On the other side of the GBM, the glomerular endothelium is 
a highly specialized, fenestrated layer coated by a negatively charged endothelial 
surface layer (ESL) with two components: the glycocalyx, which refers to 
membrane- bound proteoglycans (PG), and the endothelial cell coat that contains 
secreted PGs, negatively charged glycosaminoglycans (GAG), glycoproteins, and 
soluble proteins. Alteration of the composition and amount of PGs in the ESL leads 
to a reduced thickness of the ESL and decreased negative charge, but may also lead 
to disturbances in local signaling events [9, 10].

Another histopathologic hallmark of DKD is expansion of the mesangium. This 
is mostly due to increased deposition of extracellular mesangial matrix components 
and only minimally to mesangial cell hypertrophy and/or proliferation [11, 12]. 
Recent evidence suggests that mesangial expansion may also be due to, at least in 
part, overproduced GBM material that spreads into the mesangium. In general, 
mesangial expansion in DKD is diffusely uniform within the glomerulus [4]. As 
collagen deposition progresses with advanced nephropathy, diffuse diabetic glo-
merulosclerosis ensues and eventually leads to scarring of the glomeruli. Nodular 
glomerulosclerosis or the so-called Kimmelstiel–Wilson lesions may also be pres-
ent in up to 50% of diabetic patients. Kimmelstiel–Wilson lesions are usually focal, 
segmental, and only occasionally diffuse. These develop due to continued local 
expansion of the mesangial matrix, or more likely as a result of mesangiolysis, with 
separation of the glomerular capillary from the mesangium and the formation of 
capillary aneurysms. The new capillary space is subsequently filled with mesangial 
matrix [13].

As for the renal vasculature in diabetes, a common finding is the accumulation of 
periodic acid–Schiff (PAS)-positive material around both the afferent and efferent 
arterioles, referred to as arteriolar hyalinosis. Hyalinosis of both arterioles is typical 
of DKD.  The deposition of similar material in the subendothelial space of the 
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glomerular capillaries is referred to as a hyaline cap. These, together with capsular 
drops (hyaline material underneath the parietal epithelial cells of Bowman’s cap-
sule), constitute the exudative lesions of DKD.

Tubular basement membrane thickening develops in parallel with that of the 
GBM, and both correlate strongly with the degree of hyperglycemia in type 1 dia-
betes [6]. With progression of DKD, interstitial fibrosis and tubular atrophy develop 
and these changes correlate strongly with the progressive decline in kidney function 
as assessed by the glomerular filtration rate (GFR) [14–16]. This may be accompa-
nied by chronic inflammatory infiltrates composed chiefly of T lymphocytes and 
macrophages.

To help with the staging of DKD, the Renal Pathology Society introduced a clas-
sification of the pathology of DKD, based on the degree of glomerular pathology, 
with a separate scoring system for tubular and vascular lesions [17] (Table 9.1). 
However, the classic description of DKD is mostly based on the glomerular pathol-
ogy of kidneys in type 1 diabetes in humans (T1DKD). The pathognomonic glo-
merular changes are also identified in patients with type 2 diabetes and DKD 
(T2DKD) [18], but the overall pathological picture is more heterogeneous. Less 
than a third of T2DKD patients with microalbuminuria have the typical glomerular 
lesions expected in a similar stage of T1DKD [19, 20]. While there may be nuances 
in the pathogenesis of kidney disease in patients with type 1 compared with type 2 
diabetes, these differences in pathology are more likely due to variability in the 
duration of DKD and the presence of comorbidities such as hypertension, obesity, 
and aging that have independent effects on the kidney.

Table 9.1 Glomerular classification of DKD

Class Description Inclusion criteria
I Mild or nonspecific LM changes and 

EM-proven GBM thickening
Biopsy does not meet any of the criteria 
mentioned below for class II, III, or IV
GBM >395 nm in female and >430 nm in 
male individuals 9 years of age and older (a)

IIa Mild mesangial expansion Biopsy does not meet criteria for class III or 
IV
Mild mesangial expansion in >25% of the 
observed mesangium

IIb Severe mesangial expansion Biopsy does not meet criteria for class III or 
IV
Severe mesangial expansion in >25% of the 
observed mesangium

III Nodular sclerosis (Kimmelstiel–Wilson 
lesion)

Biopsy does not meet criteria for class IV
At least one convincing Kimmelstiel–Wilson 
lesion

IV Advanced diabetic glomerulosclerosis Global glomerular sclerosis in >50% of 
glomeruli
Lesions from classes I through III

Light microscopy (LM). (a) The basis of direct measurement of GBM width by EM, these indi-
vidual cutoff levels may be considered indicative when other GBM measurements are used
From Tervaert TWC et al. [17]
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9.3  Clinical Course

Tracking changes in GFR, urinary albumin excretion (UAE), and systemic arterial 
blood pressure, Mogensen and others classically described DKD to progress through 
distinct clinical stages (Fig. 9.1) [21]. In T1DKD these clinical stages correlate, in 
general, with the severity of renal pathology as described above. However, as with 
the kidney pathology, DKD in type 2 diabetes is a more heterogeneous disease, with 
variable degrees of glomerulosclerosis, tubulointerstitial fibrosis, and vasculopa-
thy [22].

9.3.1  Normoalbuminuria

The initial stage of DKD is characterized by normoalbuminuria with a normal or 
high GFR and is overall clinically silent. However, in about a third or more of type 
1 diabetes, a relatively large increase in GFR (greater than 150 mL/min/1.73 m2) 
occurs and seems to be positively associated with glycemic control [23, 24]. This 
hyperfiltration is less common or much more attenuated in type 2 diabetic 
patients [25].

Hyperfiltration has been hypothesized to contribute to the initiation of nephron 
damage and progression of kidney disease [24]. The evidence to support that is 
mostly preclinical or based on observational studies. In a meta-analysis of cohort 
studies in type 1 diabetes, the pooled odds for the development of at least microal-
buminuria was 2.71 (95% CI 1.20–6.11) in patients with hyperfiltration compared 
to those with normofiltration [26]. Similar findings were noted by the GFR study 
investigators [27]. In their longitudinal study of type 2 diabetic patients, the hazard 
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Fig. 9.1 Proposed model for clinicopathologic progression of diabetic kidney disease
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ratio for progression to a minimum of microalbuminuria was 2.16 (95% CI 
1.13–4.14). It was noted that 23.4% (11 of 47) of patients with persistent hyperfil-
tration progressed to micro- or macroalbuminuria compared to 10.6% (53 of 502) of 
patients who had hyperfiltration ameliorated at 6 months or who did not develop 
hyperfiltration since study inclusion. Dedicated prospective trials are needed to con-
firm whether targeting hyperfiltration improves clinically relevant end points (i.e., 
progressive GFR decline or incidence of ESKD). However, it remains the preferred 
mechanism proposed for the majority of the nephroprotective effects of drugs that 
intercept the renin–angiotensin–aldosterone (RAAS) system and the novel sodium–
glucose cotransporter 2 inhibitors (SGLT2i).

9.3.2  Microalbuminuria

Traditionally, microalbuminuria is defined as a UAE of 30–300 mg/d or 20–200 μg/
min, and it develops five years after the onset of type 1 diabetes in 20–40% of 
patients and can be present at the time of diagnosis of type 2 diabetes in 20–40% of 
patients. Hyperglycemia, hypertension, and elevated body mass index (BMI) are all 
independent risk factors for the development of microalbuminuria in type 1 and type 
2 diabetic patients [28]. Onset of albuminuria tends to correlate pathologically with 
continued thickening of the glomerular and tubular basement membranes and some 
degree of podocyte loss. Mesangial matrix expansion and diffuse glomerulosclero-
sis may also be noted.

Longitudinal studies had previously suggested that approximately 80% of type 1 
diabetic patients progress from microalbuminuria to proteinuria over a period of 
6–14 years [29]. More recent studies suggest this could be closer to 40% [30]. While 
improved control of glycemia and hypertension over the years and the widespread 
use of RAAS blockers in microalbuminuric patients could explain these findings, it 
is also conceivable that microalbuminuria is not uniformly a predictor of macroal-
buminuria in all diabetic patients [31]. On the other hand, UAE has been repeatedly 
and strongly validated as a risk factor for cardiovascular disease, peripheral vascular 
disease, stroke, and mortality from coronary heart disease [32–35].

Within 1 or 2 years of the onset of microalbuminuria in type 1 diabetes, patients 
may develop hypertension. GFR remains normal or is slightly elevated in type 1 
diabetic patients with microalbuminuria [36]. On the other hand, GFR begins to 
normalize and then decline at rates approximating 3 to 4 mL/min/year in microalbu-
minuric type 2 diabetic patients [37].

9.3.3  Overt Nephropathy

With progressive podocyte loss and the onset of diffuse and/or nodular glomerulo-
sclerosis, overt proteinuria (total urinary protein excretion exceeding 500 mg/d) or 
macroalbuminuria (UAE exceeding 300 mg/d) develops (Fig. 9.1). This occurs after 
an average of 15 years of the diabetic state in type 1 diabetes. In parallel, 
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progressive mesangial expansion leads to a reduction in the glomerular surface area 
available for filtration and has been shown to inversely correlate with declining GFR 
[38]. Hypertension is almost always present at this stage, and its poor control starts 
contributing to disease progression. Proteinuria by itself is another independent risk 
factor for further worsening of renal damage [39].

Untreated patients may progress to nephrotic-range proteinuria, which could sig-
nal the onset of rapid decline in GFR at a mean rate of 1 mL/min/month (stage IV) 
until ESKD ensues (stage V). The average time from the initial diagnosis of type 1 
diabetes to ESKD is around 20–25 years. However, this time course is extremely 
variable among individual patients.

While this proposed staging system helps align the structure and function of the 
kidney in diabetes, growing evidence suggests that not all patients progress in a 
linear manner. Regression from micro- to normoalbuminuria and direct progression 
to ESKD have been reported in type 1 and type 2 diabetes [31, 40]. While the more 
frequent use of RAAS inhibitors may contribute to this trend, some studies have 
failed to confirm this correlation [41].

9.4  Metabolic Dysregulation of Diabetic Nephropathy

Hyperglycemia is the main driver for the pathophysiology and progression of 
DKD. In fact, glycemic control can slow the advancement of nephropathy and, at 
times, may reverse the original pathology [42–46]. As glucose accumulates intracel-
lularly to excess, there is increased flux through glycolysis and possibly through the 
tricarboxylic acid (TCA) cycle, with less efficient oxidative phosphorylation. 
Indeed, diabetic kidneys upregulate glucose transporters GLUT-1 and GLUT-4 in 
the glomeruli, as well as the glycolytic enzymes hexokinase and phosphofructoki-
nase, thus promoting flux into anaerobic glycolysis, in a manner reminiscent of the 
Warburg effect [47–51]. Growing evidence has implicated mitochondria in the met-
abolic dysregulation of diabetes. Increased mitochondrial fission and fragmentation 
as well as reduced levels of peroxisome proliferator-activated receptor-γ coactivator 
1α (PGC-1α) levels in the tubules, abnormalities in electron transport chain com-
plex assembly/activity, and increased expression of uncoupling protein UCP1 have 
been reported [51–53]. It remains unclear whether the altered glucose metabolism 
is the cause or a result of diseased mitochondria in diabetic kidneys and whether the 
mitochondria will make a meaningful target for disease control.

Evidence is emerging that lipid metabolism may also play a role in the progres-
sion of DKD. Kimmelstiel and Wilson noted significant intratubular lipid accumula-
tion in their seminal work on diabetic pathology [54]. Defective lipid metabolism 
likely contributes to lipid accumulation and may be associated with impaired mito-
chondrial function and the development of tubulointerstitial fibrosis [55]. 
Lipotoxicity can also manifest in the podocyte with intracellular accumulation of 
lipid droplets, abnormal glucose metabolism, inflammation, oxidative stress, endo-
plasmic reticulum stress, and actin cytoskeleton rearrangements [56].
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The change in glucose metabolism is also manifested as an increased flux into 
alternative pathways: the pentose phosphate pathway, sorbitol/polyol pathway, 
advanced glycation end-product pathway, protein kinase C (PKC) pathway, and 
hexosamine pathway. These metabolic pathways had long been thought to contrib-
ute to glucotoxicity in the kidney through various mechanisms. However, research 
from the Joslin Medalist Study suggests that increased glycolytic flux and sorbitol/
polyol pathway may protect from diabetic nephropathy by reducing the accumula-
tion of glucose toxic metabolites and improving mitochondrial function [57, 58].

9.4.1  Advanced Glycation Reactions

Advanced glycation end products (AGEs) are proteins, lipids, or nucleic acids that 
are irreversibly cross-linked with reducing sugars. AGEs accumulate in both glo-
merular and tubular cells in experimental and human DKD [59, 60]. As renal func-
tion declines, higher concentrations of these products are retained in the plasma 
[61]. Experimental evidence shows that infusion of AGEs into normal rodents leads 
to the increased glomerular volume, accumulation of PAS-positive deposits, base-
ment membrane widening, mesangial matrix expansion, and glomerulosclerosis 
[62]. Concurrently, inhibition of AGEs in experimental animal models of diabetes 
ameliorates albuminuria and glomerulosclerosis [63].

AGEs contribute to DKD injury by altering the function of the glycated proteins. 
ECM proteins, like in collagen, may become less susceptible to enzymatic hydroly-
sis by matrix metalloproteinases (MMPs), facilitating their accumulation in the 
extracellular space [64]. Glycation of sulfated proteoglycans modifies the charge- 
selective properties of the basement membrane and contributes to the development 
of microalbuminuria [65]. Concomitantly, AGEs act as signaling molecules either 
by acting intracellularly or by interacting with their receptor for advanced glycation 
end products (RAGE) that is expressed on the surfaces of podocytes and tubular 
epithelia. AGEs induce intracellular oxidant stress and activate NF-κB by redox- 
sensitive signaling pathways. They also activate PKC and regulate the expression of 
diverse growth factors and cytokines such as angiotensin II (Ang II) and transform-
ing growth factor-beta1 (TGF-β1) [66, 67].

9.4.2  Protein Kinase C Signaling

As glycolytic metabolites react with glycerol phosphate, diacylglycerol (DAG), the 
major endogenous activator of PKC, is formed [68]. Other by-products of glucotox-
icity such the polyol metabolites, AGE accumulation, RAGE activation, production 
of reactive oxygen species (ROS), and Ang II further activate PKC [69]. On the 
other hand, altered lipid metabolism and particularly the imbalance between lipid 
delivery and intracellular oxidation of fatty acids could lead to the accumulation of 
DAG [70].
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PKC isoforms cooperate in the pathogenesis of DKD. While PKC-beta can lead 
to renal hypertrophy and glomerulosclerosis, PKC-alpha appears to contribute pri-
marily to diabetic albuminuria by acting through vascular endothelial growth factor 
(VEGF) and by affecting nephrin expression [71]. Animal experiments with double 
knockouts of PKC-alpha and PKC-beta or the administration of an inhibitor of both 
PKC isoforms confirmed this hypothesis [71]. However, the PKC-beta inhibitor, 
ruboxistaurin, did not show a significant reduction in albumin/creatinine ratios 
when evaluated in a randomized clinical trial in patients [72].

9.4.3  Oxidative Stress

Oxidative stress has long been considered an integral pathogenic mechanism in the 
metabolic dysregulations of hyperglycemia [73]. Superoxide, hydroxyl radicals, 
hydrogen peroxide, and peroxynitrite, all commonly referred to as ROS, are 
increased in a diabetic kidney. These species, along with the oxidized proteins, lip-
ids, nucleic acids, and the carbohydrates they produce, contribute to glomerular 
hypertrophy, cause injury to the podocyte, and promote fibrogenesis in the glomer-
uli and tubules [74, 75].

The notable sources of ROS production in the diabetic kidney are the mitochon-
dria, the cytosolic NADPH oxidase (NOX), nitric oxide synthases, xanthine oxidase, 
and lipoxygenase [70, 76]. The prevailing hypothesis was that altered glucose metab-
olism increased mitochondrial electron transport chain activity, resulting in a high 
proton gradient, and high electrochemical potential differences led to the enhanced 
generation of mitochondrial superoxide [73]. However, measuring mitochondrial 
superoxide is difficult and has yielded inconsistent conclusions, with some groups 
finding a decrease in mitochondrial ROS [53, 70, 76, 77]. In fact, some level of mito-
chondrial superoxide may be beneficial and may retard organ dysfunction [76, 77]. 
With improved tools and real-time imaging, more sensitive spatiotemporal ROS mea-
surements are being pursued to elucidate the role of mitochondrial ROS in DKD.

Meanwhile, NOX4, another notable source of ROS, has been consistently shown 
to be upregulated in animal models of diabetic kidney disease [68]. Its activity or 
expression appears to be influenced by various mediators of the diabetic milieu, 
including hyperglycemia, Ang II, TGF-β, AGEs, VEGF, endothelin, and aldoste-
rone [74]. NOX4-mediated stimulation of PKC-alpha may contribute to many of the 
NOX4-dependent effects in DKD [78]. Moreover, NOX4 can inhibit fumarate 
hydratase, leading to the accumulation of fumarate, a TCA cycle metabolite with 
oncogenic properties that has been linked to the stimulation of hypoxia-inducible 
factor 1-alpha (HIF1α), TGF-β, and other matrix genes promoting fibrosis [79].

9.5  Glomerular Hemodynamics

As hyperfiltration is one of the earliest pathophysiologic features of DKD, it has 
been the target of many therapeutic interventions. Physiologically, four factors 
determine the GFR: (a) the glomerular plasma flow, (b) the systemic oncotic 
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pressure, (c) the glomerular transcapillary hydraulic pressure difference, and (d) the 
glomerular ultrafiltration (permeability) coefficient, Kf. These factors are affected in 
diabetes, resulting in hyperfiltration. First, diabetic glomeruli become hypertro-
phied and then filtration surface area increases, leading to an increased ultrafiltra-
tion coefficient [80]. Second, and more importantly, abnormal vascular control in 
diabetic nephropathy leads to differential reduction in afferent glomerular arteriolar 
resistance and a net increase in efferent arteriolar resistance. This results in increased 
renal blood flow and glomerular capillary hypertension, all resulting in an elevated 
single-nephron GFR [81]. This change in intraglomerular hemodynamics occurs in 
response to an imbalance of a variety of vasoactive substances and growth factors 
including the RAAS, atrial natriuretic peptide, insulin-like growth factor-1, endo-
thelin, prostanoids, eicosanoids, and the nitric oxide (NO) system secondary to 
endothelial dysfunction [82, 83]. The rise in glomerular capillary pressure promotes 
the production of various mediators of DKD [84]. Angiotensin-converting enzyme 
inhibitors (ACEi) and angiotensin receptor blockers (ARB) lower glomerular pres-
sure and limit hyperfiltration by blocking the effect of Ang II on the efferent arteri-
ole [85–88].

The impressive results from recent SGLT2i studies have shed light on the prior 
proposed mechanisms of glomerular hyperfiltration involving increased proximal 
tubular reabsorption of glucose and sodium (Na) [89]. In diabetes, hyperglycemia, 
tubular hypertrophy, and augmented SGLT2 expression in the proximal tubule con-
tribute to increased Na/glucose reabsorption via SGLT2 and SGLT1, as well as 
increased Na reabsorption via NHE3 [90]. As a result, less sodium is delivered to 
the macula densa, thus attenuating tubuloglomerular feedback. This results in facili-
tated dilation of the afferent arteriole. Indeed, glomerular hyperfiltration is blunted 
in diabetic mice deficient in the adenosine receptor A1, which lack the tubuloglo-
merular feedback mechanism [91]. However, there have been conflicting results 
using this mouse model [92]. In addition, the decreased distal delivery lowers the 
tubular back pressure in Bowman space, which increases the effective glomerular 
filtration pressure and may explain a significant portion of diabetic hyperfiltration 
[93, 94]. Gene-targeted SGLT2 knockout and pharmacologic inhibition of SGLT2 
prevent glomerular hyperfiltration in animal models of diabetes [95]. Treatment of 
type 1 and type 2 diabetic patients with the SGLT2i empagliflozin has been shown 
to attenuate renal hyperfiltration, as reflected by the estimated GFR (eGFR) [96, 
97]. This effect appears to be independent of lowering blood glucose [98, 99].

After an SGLT2i was consistently observed to have excellent secondary kidney 
outcomes in a cardiovascular trial in patients with type 2 diabetes (as in the 
Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus 
Patients—EMPA-REG OUTCOME), other dedicated kidney outcome trials have 
been completed with other SGLT2i agents such as canagliflozin and dapagliflozin, 
all demonstrating robust benefits on primary kidney outcomes. CREDENCE 
(Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical 
Evaluation) was a randomized, double-blind, placebo-controlled, multicenter clini-
cal trial of patients with type 2 diabetes and albuminuric chronic kidney disease 
[100]. It showed that the SGLT2i was able to prevent ESKD (dialysis, transplanta-
tion, or sustained eGFR <15 mL/min/1.73m2), doubling of serum creatinine, or 
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death from renal causes, with a hazard ratio (HR) of 0.70 (0.59–0.82). Similarly, the 
DAPA-CKD (Dapagliflozin and Prevention of Adverse Outcomes in Chronic 
Kidney Disease) trial studied dapagliflozin in patients with chronic kidney disease, 
with or without type 2 diabetes. It showed significant prevention of renal outcomes 
(≥50% decrease in eGFR, ESKD, or death from renal or cardiovascular causes) 
with an HR of 0.61 (0.51–0.72). This effect appears to be additive to ACEi and 
ARBs. It appears that renoprotection is a consistent feature across the class 
of SGLT2i.

9.6  Cellular and Molecular Mechanisms of Glomerulopathy

Hyperfiltration and intraglomerular hypertension are transduced as a biomechanical 
stress on the endothelial cells, the mesangial cells, and the podocytes, resulting in 
activation of molecular signaling pathways. As such, endothelial cells have increased 
nitric oxide synthase (eNOS) dysfunction initiated by hyperglycemia and metabolic 
dysregulation [101]. Moreover, mesangial cells respond to increased mechanical 
stretch by upregulating GLUT-1, ECM protein accumulation, and TGF-β1 activity 
[102, 103].

Regarding the podocyte, complex interactions between their intricate actin-based 
cytoskeleton, cell–cell, and cell–matrix contact proteins allow them to maintain the 
glomerular filtration barrier in the face of mechanical challenges resulting from the 
filtration of a pulsatile blood flow [104, 105]. The morphologic and functional 
changes of diabetes such as glomerular hypertrophy, thickening and stiffening of 
the GBM, and glomerular hyperfiltration and hypertension all result in shear and 
tensile stresses on the podocyte that challenge the cell’s attachment to the GBM 
[104]. Meanwhile, the metabolic dysregulation in diabetes further compromises the 
cytoskeletal architecture of the podocytes. Glucotoxicity, Ang II, TGF-β, VEGF, 
and other signaling pathways result in the downregulation of the expression of 
nephrin, a key protein of the slit diaphragm and of cytoskeletal function in podo-
cytes [6]. Furthermore, hyperglycemia, AGEs, ROS, and others result in dysregula-
tion of the Rho family of GTPases, key regulators of the actin cytoskeleton [6]. 
Lastly, studies have shown that podocyte integrin expression is decreased in diabe-
tes, compromising cell–matrix interactions [6]. Altogether, these stressors result in 
effacement of the foot processes, detachment, and the loss of a number of podocytes 
and their shedding into the urinary space. Other podocytes succumb to apoptosis 
under the effect of hyperglycemia, ROS, and activation of the TGF-β pathway [106]. 
The remaining podocytes attempt to cover the newly denuded GBM by hypertro-
phy, with activation of the mammalian target of rapamycin (mTOR) [107]. However, 
once podocyte loss reaches 20%, glomerulosclerosis develops [108].

In sum, the metabolic and hemodynamic dysregulations in DKD converge and 
activate second messenger signaling pathways, transcription factors, and cytokines, 
including the RAAS, TGF-β, VEGF, and others, all of which contribute to the devel-
opment of albuminuria and glomerulosclerosis, characteristic features of estab-
lished diabetic nephropathy.
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The RAAS is one of the most important pathways in DKD pathophysiology. 
Along with the systemic RAAS activation, renal cells such as mesangial cells, 
podocytes, and even tubular cells synthesize Ang II and express its receptors, which 
may contribute to the regional activation of RAAS [102, 109]. Indeed, hyperglyce-
mia directly, and via ROS and AGEs, upregulates the expression of renin and angio-
tensinogen [81, 110, 111]. The RAAS drives the hemodynamic changes of DKD but 
also independently activates a multitude of cytokines such as TGF-β, connective 
tissue growth factor (CTGF), interleukin-6, monocyte chemoattractant protein-1 
(MCP-1), and VEGF-A. Accordingly, high levels of Ang II can contribute to the 
early hyperplasia and hypertrophy of the renal cells observed in diabetes and can 
modulate glomerular ECM deposition in the later stages of diabetes [112]. In addi-
tion to the classical ACE/Ang II/AT1R axis, the RAAS comprises another important 
axis, the ACE2/Ang-(1–7)/Mas receptor, considered the counterregulatory axis of 
ACE/Ang II/AT1R. Indeed, an imbalance between the Ang II and Ang-(1–7) sys-
tems is associated with vascular dysfunction, inflammation, and fibrosis, making 
the ACE2/Ang-(1–7)/Mas receptor a potential ameliorating and therapeutic target in 
DKD [113].

RAAS blockers in clinical use may not be sufficient to fully arrest the activation 
of this system due to “aldosterone breakthrough,” the increase of plasma aldoste-
rone to basal levels after several weeks of ACEi or ARB administration. The miner-
alocorticoid receptor is also expressed in kidney cells outside of the 
aldosterone-sensitive distal nephron, such as vascular cells, podocytes, fibroblasts, 
and inflammatory cells. Activation of the mineralocorticoid receptor in those cells 
has been associated with activation of inflammatory and fibrotic pathways in the 
kidney, and this has deleterious effects on podocytes and mesangial cells [114]. 
Clinical studies show that steroidal mineralocorticoid receptor antagonists (MRAs) 
have an anti-albuminuric effect in diabetic kidney disease. Finerenone is a novel, 
nonsteroidal MRA with a better therapeutic index than the steroidal MRAs such as 
spironolactone and eplerenone. In the FIDELIO-DKD trial, finerenone reduced 
CKD progression and improved cardiovascular outcomes compared with placebo 
when added to an optimized regimen of renin–angiotensin–aldosterone system 
inhibitors. Plus, the incidence of hyperkalemia was manageably low [115].

VEGF is one of the key signaling pathways of the crosstalk between glomerular 
endothelium and podocytes. Healthy podocytes produce VEGF-A which helps 
maintain the endothelial cell’s structure and function upon binding to vascular 
endothelial growth factor receptor 2 (VEGFR2) [116]. Targeted genetic deletion of 
all VEGF-A isoforms from podocytes leads to glomerular disease in healthy mice 
[117]. The role of VEGF signaling in diabetes was difficult to decipher initially. 
Some studies reported increased VEGF-A activity in diabetic glomeruli, with 
improvement of DKD upon inhibition of VEGF-A or VEGFR2 [118–121]. Other 
research showed that total glomerular VEGF-A levels decreased as diabetic 
nephropathy progressed and that targeted genetic deletion of all VEGF-A isoforms 
from podocytes accelerated nephropathy in diabetic animals [119]. More likely, the 
glomerular cells tightly control a state of delicate VEGF balance, and too much or 
too little can be pathogenic [122]. More recent evidence has also shown that the 
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different isoforms of VEGF-A may confer additional nuances of signaling. VEGF- 
A165a is a potent vasoactive agent, increasing vasodilation, vascular permeability, 
and angiogenesis [123]. Meanwhile, VEGF-A165b is a protective factor in diabetic 
nephropathy[124]. In diabetic mice, podocyte-specific VEGF165b overexpression or 
VEGF165b administration maintained the glycocalyx and prevented endothelial and 
podocyte cell death, resulting in reduced albuminuria [124].

Other paracrine signals such as NO and angiopoietins can also feed into this 
crosstalk and tip the balance toward pathogenesis. New insights have revealed that 
endothelin-1 (ET-1), an endothelial-derived vasoconstrictor, can signal to the podo-
cyte and then back to the endothelial cell [125]. Atrasentan, an ET-1 receptor antag-
onist, has been shown clinically to ameliorate early microalbuminuric diabetic 
kidney disease [126].

TGF-β appears to be a common pathway that leads to hypertrophic changes early 
on and then promotes fibrosis and sclerosis in the later stages of diabetic kidney 
disease [127, 128]. Under the impact of metabolic and hemodynamic forces in 
DKD, multiple mediators converge upon the activation of the TGF-β system. These 
include high glucose concentration [129], AGE-modified proteins [130], ROS [73], 
cyclical stretch/relaxation of mesangial cells in culture [131], PKC activation [132], 
and Ang II [133]. TGF-β has been shown to stimulate the synthesis of type I colla-
gen, type IV collagen, fibronectin, and laminin. Further, TGF-β inhibits matrix 
metalloproteinases and can also stimulate the inhibitors of proteases, thus prevent-
ing the degradation of ECM proteins and leading to their deposition and accumula-
tion [134]. Blocking TGF-β upstream of its receptor or downstream in the 
intracellular signaling cascade results in marked improvement in glomerulosclero-
sis, ECM deposition, GBM thickening, and other histological and molecular param-
eters of diabetic renal disease [82, 121, 135, 136]. This provides proof of the 
cytokine’s central role in DKD pathophysiology.

9.7  Tubulopathy in Diabetes

Along with glomerulopathy, tubular damage plays a significant role in the pathogen-
esis of DKD [137]. Growing clinical and pathological data confirm that elevated base-
line plasma biomarkers of tubular injury such as KIM-1 have been significantly 
associated with the risk of early decline of kidney function, independent of albumin-
uria [138]. Tubular dysfunction as well as tubulointerstitial fibrosis are known to cor-
relate significantly with the decline in GFR and the progression of kidney disease.

Various mechanisms come into play in diabetic tubulopathy [139]. First, the 
increased metabolic stress in diabetes promotes a hypoxic environment for the prox-
imal tubule. As SGLT2 and NHE3 increase their reabsorptive capacity, there is a 
commensurate increase in the demand for ATP to maintain the crucial activity of 
Na+/K+-ATPase to support ion transport [139]. Moreover, proximal tubular epithe-
lial cells increase gluconeogenesis in the setting of diabetes [139]. However, because 
of mitochondrial injury and metabolic dysfunction, the proximal tubular cells con-
sume more O2 for each molecule of ATP generated. This increased demand and 
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inefficient utilization of O2 are met with reduced blood supply due to concomitant 
endothelial injury, intrinsic capillary loss within the affected tubulointerstitium, and 
glomerular capillary occlusion, resulting in significant hypoxia [139].

Hypoxic proximal tubular epithelial cells undergo apoptosis but also promote 
tubulointerstitial fibrosis via TGF-β and other mechanisms [139]. The expansion of 
the extracellular matrix further exacerbates hypoxia and microvascular rarefaction, 
starting the spiral of fibrosis and chronic kidney injury.

Several other pathomechanisms target the proximal tubule in DKD.  These 
include the RAAS as well as the toxic effects of leaked albumin and albumin-bound 
fatty acids into the tubular lumen due to albuminuria, among others [139, 140].

With their advent, the new single-cell modalities such as transcriptomics, epi-
genetics, metabolomics, and proteomics are starting to show the effect of diabetes 
on various tubular segments. For instance, a recent single-nucleus RNA sequencing 
(snRNA-seq) on cryopreserved human diabetic kidney samples showed that the dia-
betic thick ascending limb, late distal convoluted tubule, and principal cells of the 
collecting ducts all adopt a gene expression signature consistent with increased 
potassium secretion, including alterations in Na+/K+-ATPase, WNK1, mineralocor-
ticoid receptor, and NEDD4L expression, as well as decreased paracellular calcium 
and magnesium reabsorption [141].

Furthermore, there is evidence of retrograde crosstalk between the proximal 
tubules and the podocytes. Indeed, recent animal studies have shown that selective 
proximal tubular injury can lead to podocytopathy and extensive glomerular injury 
reminiscent of diabetes [142]. Tubular epithelial cells can protect against albumin-
uria in diabetes by maintaining nicotinamide mononucleotide concentrations around 
glomeruli and by influencing podocyte function [143].

9.8  Inflammation

Metabolic and hemodynamic abnormalities, including hyperglycemia, AGEs, ROS, 
Ang II, and TGF-β, have been shown to promote a proinflammatory state [144]. The 
immune system is involved in the pathophysiology of DKD at multiple levels [145]. 
First, from an innate immunity standpoint, mononuclear phagocytic cells that reside 
in the kidney are activated in diabetes and are joined by renal cells in the release of 
proinflammatory cytokines and paracrine signals [146]. Subsequently, additional 
monocytes and macrophages are recruited into the kidney, further amplifying cyto-
kine and chemokine release from the kidney [147, 148]. The mast cell is another 
innate immune cell that infiltrates the tubulointerstitium in DKD. Its degranulation 
releases inflammatory mediators such as TGF-β and proteolytic enzymes, the most 
notable of which is chymase [145]. Mast cell chymase is 40 times more potent than 
ACE at converting Ang I to Ang II [149, 150].

Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and 
nucleotide-binding oligomerization domain-like receptors (NOD-like receptors or 
NLRs) are essential to the proper function of the innate immune system. PRRs are 
upregulated in mononuclear phagocytic cells as well as in endothelial cells and 
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podocytes [145]. They recognize pathogen-associated molecular patterns (PAMPs) 
and endogenous stress signals or damage-associated molecular patterns (DAMPs) 
that indicate cellular stress and injury, including uric acid, extracellular ATP, as well 
as glucose and ROS. Upon sensitization of PRRs, there is activation of the inflam-
masome and, among other effects, release of inflammatory cytokines.

Numerous interleukin cytokines have been implicated in the pathogenesis of 
DKD.  For instance, IL-1, IL-6, and IL-18 have been linked with morphological 
changes of DKD, such as GBM thickening, as well as functional changes, such as 
albuminuria and loss of GFR [145]. Early in diabetes, both glomerular and tubular 
cells increase expression of TNF-α [151]. This cytokine is cytotoxic to glomerular 
mesangial and epithelial cells and has been demonstrated to increase vascular endo-
thelial permeability, induce oxidative stress, and affect glomerular hemodynamics 
and GFR [152, 153]. Its receptors, TNFR1 and TNFR2, are candidate biomarkers of 
DKD. The serum level of TNFR1 was a predictor of ESKD, even after adjustment 
for clinical covariates in a cohort of type 1 diabetes [154].

Chemokines mediate the migration of monocytes and macrophages into kidney 
tissue and are also upregulated in DKD. Of particular interest is the CC chemokine 
ligand 2 (CCL2, also known as MCP-1). Its expression is upregulated in response to 
the metabolic and hemodynamic features of the diabetic milieu, including Ang II 
[155]. In the kidney, its receptor CCR2 is also expressed on podocytes, extending its 
role beyond the recruitment of macrophages to the tubulointerstitium [156]. Several 
studies have implicated CCR2 in the effacement of foot processes, podocytopenia, 
and damage to the slit diaphragm, leading to albuminuria [157]. CCR2 inhibitors 
are being evaluated for the management of DKD [158].

Another therapeutic target in DKD is the Janus kinase–signal transducer and activa-
tor of transcription (JAK-STAT) pathway. This pathway transduces inflammatory sig-
nals from cytokines and chemokines as well as AGEs and growth factors/hormones 
[159]. The JAK-STAT pathway has been shown to be upregulated in DKD, including 
in intrinsic renal cells. Baricitinib, an oral, reversible, selective inhibitor of JAK1 and 
JAK2, has shown promise as an intervention to slow the progression of DKD [159].

Overall, resident immune cells, infiltrating cells, and resident renal cells con-
verge to activate the innate immune system in DKD. Renal cells produce cytokines 
and chemokines and increase the expression of adhesion molecules that facilitate 
adhesion of the inflammatory cells [144, 145]. Eventually, the adaptive immune 
system is also involved in diabetes, as T cells infiltrate the kidney in DKD, albeit not 
as prominently as macrophages [145]. The T helper phenotype in DKD appears to 
be shifted toward Th1/Th17 cells rather than regulatory T cell, Tregs [145, 160]. 
This promotes further macrophage-induced injury rather than repair of the kidney. 
There is limited evidence for the involvement of B cells in DKD.

9.9  Conclusion

The pathophysiology of DKD is complex (Fig. 9.2) and most of these pathways 
were the fruit of deploying various experimental animal models to elucidate mecha-
nisms of injury at the cellular and molecular level and to inform clinical and 
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pathological studies in humans. Glucotoxicity and glomerular hypertension plus 
deleterious combinations of toxic metabolites, growth factors, and cytokines pro-
mote injury in the various compartments of the kidney, leading to albuminuria and 
progressive fibrosis and loss of renal function. While the treatment and prevention 
of DKD in clinical practice had long been dependent on ACEi and ARBs as well as 
the control of systemic hypertension and hyperglycemia, recent clinical studies 
have brought new options for the management of this disease. The SGLT2i and 
MRAs currently offer hope for additional nephroprotective effects. By further elu-
cidating the pathophysiology of DKD, we expect that newer and more effective 
therapies will be on the horizon.
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