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7Molecular Mechanisms Underlying 
Vascular Disease in Diabetes
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7.1  Introduction

Diabetes mellitus is the heterogeneous derangement of metabolism characterized 
primarily by chronic hyperglycaemia and insulin resistance [1]. This is due to 
impaired insulin secretion and/or impaired insulin action [2]. Among all types of 
diabetes, type 2 diabetes, which was formally referred to as noninsulin-dependent 
diabetes or adult-onset diabetes, accounts for 90%–95% of all diabetes. Hypertension 
and type 2 diabetes are common comorbidities that are inextricably linked [3–5]. 
The former is twice as frequent in patients with diabetes compared with those who 
do not have diabetes. Patients with hypertension often exhibit insulin resistance and 
are at greater risk of developing diabetes than normotensive individuals [6]. As 
comorbidities, hypertension and diabetes correlate with worse outcomes and more 
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disability than in patients with only diabetes or hypertension [7]. Type 2 diabetes 
typically occurs in the setting of abdominal obesity, hypertension, hyperlipidaemia 
and increased coagulability, features that are also common in metabolic syndrome.

Many of the complications of diabetes are linked to vascular injury [8]. Vascular 
changes typically involve inflammation and prothrombotic processes that manifest as 
capillary basement membrane thickening, vascular fibrosis, microvascular calcifica-
tion and endothelial dysfunction [4, 8]. These vascular changes are amplified in obe-
sity and changes in the gut microbiome may be a trigger for metabolic inflammation 
in obesity and diabetes [9]. Molecular processes underlying these events include 
oxidative stress, immune responses, activation of the renin-angiotensin system and 
formation of advanced glycation end products (AGEs) [4, 10]. Recent data indicate 
an important role for microRNAs in the vasculopathy of diabetes [11]. Hypertension 
and obesity are important risk factors for diabetes-associated vascular complications, 
because these conditions are also associated with vascular dysfunction and injury.

This chapter provides a comprehensive update on vascular complications of dia-
betes and the molecular mechanisms that underlie the vasculopathy of diabetes. In 
particular, the role of advanced glycation end products (AGEs), oxidative stress and 
inflammation are highlighted.

7.2  Macrovascular and Microvascular Disease in Diabetes

Diabetes is associated with both macrovascular (large arteries) and microvascular 
disease (small arteries and capillaries). Macrovascular disease leads to myocardial 
infarction, stroke and peripheral artery disease, primarily due to atherosclerosis. 
The process of atherosclerosis is accelerated in diabetes [12–14]. Patients with type 
2 diabetes have poorer cardiovascular outcomes than patients without diabetes [15]. 
Diabetes is a frequent and strong risk factor for large artery disease and coronary 
artery calcification [16]. Individuals with diabetes consistently have higher levels of 
calcification than do those without diabetes [16]. Vascular calcification and athero-
sclerosis in diabetes contribute to increased risk of myocardial infarction. Type 2 
diabetes acts as an independent risk factor for the development of ischaemic dis-
ease. Major modifiable risk factors for macrovascular disease in diabetes are hyper-
tension, dyslipidaemia, obesity and cigarette smoking [17, 18]. Increased risk of 
cardiovascular disease starts during prediabetes in association with insulin resis-
tance and impaired glucose tolerance [19].

Microvascular disease leads to retinopathy, nephropathy and neuropathy with target 
organ damage. These are the major causes of morbidity and mortality in patients with 
diabetes [20–22]. Microvascular dysfunction seems to precede structural vascular 
changes. During the early phases of diabetes and/or cardiometabolic disease, each can 
cause reversible microvascular damage with associated dysfunction. With time these 
changes may become irreversible leading to target organ damage and consequent 
vision loss, renal insufficiency and neuropathy [23]. Microvascular disease in diabetes 
can also cause heart failure, sarcopenia, cognitive decline and worsening of metabolic 
dysfunction [24]. Processes underlying microvascular injury include increased endo-
thelial permeability, inflammation and oxidative stress [10, 23]. Diabetic retinopathy is 
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the most common microvascular complication of diabetes often leading to blindness 
[4]. Diabetic nephropathy, characterized by microalbuminuria, is the leading cause of 
end-stage renal disease worldwide [25]. Microalbuminuria commonly coexists with 
hypertension and may reflect endothelial dysfunction in both conditions. Although the 
underlying cause of microalbuminuria is controversial, it is thought to be a renal mani-
festation of generalized vascular endothelial dysfunction and is strongly linked to 
increased cardiovascular risk [26]. Moreover, systemic inflammation precedes micro-
albuminuria in diabetes, suggesting that by the time microalbuminuria is detected, 
there is already evidence of vascular injury [26]. Accordingly, screening for microalbu-
minuria is important for the intervention and prevention of further complications such 
as end- stage renal disease and cardiovascular disease.

7.3  Pathophysiology of Vascular Disease in Diabetes

7.3.1  Insulin Resistance

Physiologically, insulin maintains glucose homeostasis by integrated actions on car-
bohydrate, protein and lipid metabolism [27]. These actions occur mainly in the liver, 
skeletal muscle and adipose tissue. Glucose can alter insulin sensitivity in muscle and 
fat, as well as decrease insulin secretion from β-cells of the pancreatic tissue. In patho-
logical conditions, hyperglycaemia promotes loss of sensitivity to insulin in insulin-
sensitive tissue resulting in insulin resistance, which is associated with type 2 diabetes, 
obesity, hypertension and other cardiometabolic diseases [28, 29]. Many factors play 
a role in insulin resistance including AGEs, which inhibit insulin signalling by increas-
ing Ser-307 phosphorylation of IRS-1 and forming methylglyoxal-IRS-1. In addition, 
in the context of obesity, adipocytes undergo hypertrophy and assume a pro-inflam-
matory phenotype, which contribute to vascular injury in diabetes [30, 31]. These 
changes have been shown to coincide with the onset of insulin resistance and provide 
a pathophysiological link between metabolic and vascular disease.

Activation of the renin-angiotensin system plays an important role in vascular 
inflammation and injury in diabetes and hypertension [32, 33]. Ang II opposes the 
actions of insulin to enhance glucose uptake in skeletal muscle and may lead to 
insulin resistance in the vasculature [34]. Important cross-talk between insulin and 
Ang II signalling has been demonstrated in VSMCs, where Ang II opposes the 
effects of insulin [35].

7.3.2  Endothelial Dysfunction

Endothelial dysfunction is a key feature in vascular disease and is typically observed 
in hypertension, diabetes and obesity [36, 37]. Impaired endothelial function is associ-
ated with reduced vasorelaxation, inflammation, prothrombotic state, increased per-
meability and increased production of vasoactive and mitogenic factors [38, 39]. 
Abnormal endothelium-dependent vasodilatation may also contribute to or exacerbate 
insulin resistance by reducing the delivery of glucose to target tissues [40].
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7.3.3  Vascular Remodeling

The vasculopathy of diabetes is associated not only with functional alterations, but 
with structural changes of small and large vessels [41]. Vascular smooth muscle 
cells (VSMCs) undergo dedifferentiation from a contractile phenotype to a pro- 
migratory and proliferative form [42]. In addition, they produce pro-inflammatory 
mediators and pro-fibrotic factors that contribute to chronic low-grade inflamma-
tion, vascular fibrosis and increased stiffness, which resemble processes that occur 
with ‘vascular ageing’ [43–45]. The vasculopathy of diabetes has been considered 
as a condition of ‘premature’ vascular ageing, similar to what has been described in 
hypertension, since the vascular changes observed in diabetes in young individuals 
is similar to that observed in non-diabetic elderly people [46].

7.4  Molecular Mechanisms of Vascular Dysfunction 
and Damage During Diabetes

7.4.1  Advanced Glycation End Products (AGEs) and Activation 
of the AGE-Receptor AGE (RAGE) System

AGEs are a diverse group of macromolecules formed via the process of non- 
enzymatic glycation of proteins and lipids [47]. This process is accelerated during 
hyperglycaemia, oxidative stress, ageing, advanced renal disease and inflammation 
[48]. AGEs accumulate in the extracellular matrix of vessels and contribute to vas-
cular damage in diabetes [49]. AGEs interact with two main types of cell surface 
receptors: scavenger receptors, which remove and degrade AGEs, and receptors for 
AGEs (RAGE), which trigger specific cellular signalling responses on AGE binding 
[50]. AGEs stimulate the production of reactive oxygen species (ROS), which 
reversibly enhance AGE formation [51, 52]. AGEs are antigenic and induce immune 
and inflammatory responses [53]. RAGE is a receptor and member of the immuno-
globulin family and binds many ligands besides AGEs. AGE-RAGE signals through 
transforming growth factor (TGF)-b, NFκB, mitogen-activated protein kinases 
(MAPK; ERK1/2, p38MAPK) and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidases (Nox) and induces expression of vascular adhesion molecule 1, 
E-selectin, vascular endothelial growth factor and pro-inflammatory cytokines 
(IL-1b, IL-6, TNF-a) [54].

In diabetes, activation of AGE-RAGE signalling pathways is increased in VSMCs 
leading to inflammation, pro-thrombotic effects, fibrosis and calcification, which 
underlie diabetic nephropathy, retinopathy, neuropathy and atherosclerotic cardio-
vascular disease [55]. In the presence of hypertension these processes are amplified 
leading to accelerated vasculopathy in diabetes [56]. Patients with diabetes have 
increased tissue and circulating concentrations of AGEs and soluble RAGE, which 
predict cardiovascular events [57]. Accordingly urinary and plasma AGE levels and 
soluble RAGE have been considered as putative biomarkers for vascular disease in 
diabetes [58] (Fig. 7.1).
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Fig. 7.1 Schematic demonstrating vascular processes whereby diabetes predisposes to microvas-
cular and macrovascular disease, which leads to cardiovascular disease. Activation of AGE/RAGE 
signaling, oxidative stress, pro-inflammatory signaling and miRNAs lead to vascular injury and 
dysfunction that manifest as microvascular and macrovascular disease. AGEs Advanced glycation 
end products, RAGE Receptor AGE

7.4.2  Oxidative Stress and Vascular Injury in Diabetes

Oxidative stress (increased bioavailability of ROS) is a key mechanism of glucotox-
icity in diabetes, as evidenced by increased vascular ROS generation in response to 
hyperglycaemia and accumulation of oxidation by-products of lipids, proteins and 
nucleic acids [59, 60]. NADPH oxidases (Nox) and dysfunctional eNOS are princi-
pal sources of increased vascular ROS in diabetes [61, 62]. Diabetes-/hypertension- 
associated oxidative stress is caused by multiple processes that increase and decrease 
pro-oxidant and antioxidants, respectively [63]. Increased vascular oxidative stress 
in diabetes and hypertension promotes posttranslational oxidative modification of 
proteins, causing cellular damage, endothelial dysfunction and vascular inflamma-
tion and injury. Oxidative stress and activation of Noxs are increased in patients 
with diabetes and in preclinical models of diabetes and obesity [62, 64].

Of the seven Nox isoforms (Nox1–5, Duox1, Duox2), Nox1, Nox2, Nox4 and 
Nox5 have been implicated in cardiovascular and renal oxidative stress in diabetes 
[65–68]. Nox1 and Nox4 are important in renal injury and atherosclerosis in mouse 
models of diabetes [66–68]. Nox5 may also be important in diabetes-associated 
vascular injury and nephropathy [69, 70]. Renal Nox5 expression is increased in 
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patients with diabetic nephropathy [69]. In transgenic mice with podocyte-specific 
expression of human Nox5, renal injury was amplified by diabetes [71]. Similar 
findings were observed in mice expressing human Nox5 in a VSMC-specific man-
ner [72]. Vascular/mesangial cell Nox5 overexpression is associated with amplifica-
tion of atherosclerosis in mouse models of diabetes [73].

Targeting Noxs has been considered a promising strategy to ameliorate the vas-
culopathy and nephropathy associated with diabetes. While extensive experimental 
evidence showed a renoprotective effect of Nox1/4 inhibition in preclinical models 
of diabetes, clinical studies have been less positive [74, 75]. A clinical trial using 
GKT137831, a Nox1/4 inhibitor, failed to show improvement in renal function in 
patients with diabetic nephropathy [76]. Whether targeting Nox5 may have better 
clinical outcomes is unclear. Ongoing clinical studies are addressing this and the 
results are awaited.

7.4.3  Hyperglycaemia and Vascular Signalling

In diabetes, hyperglycaemia stimulates mitochondrial respiration and induces endo-
plasmic reticulum (ER) stress [77]. It also decreases vascular antioxidant capacity, 
reduces activity of the transcription factor nuclear factor-erythroid 2-related factor 
(Nrf-2) and promotes activation of vascular Nox isoforms leading to oxidative stress 
in diabetes [63, 68]. Oxidative stress is also associated with reduced bioavailability 
of the vasodilator nitric oxide (NO) and increased production of injurious peroxyni-
trite, causing endothelial dysfunction and inflammation [78]. At the molecular level 
hyperglycaemia induces activation of redox-sensitive protein kinase C (PKC), 
MAPKs, calcium channels, pro-inflammatory genes and polyol and hexosamine 
pathways, further contributing to mitochondrial dysfunction, oxidative stress, ER 
stress and consequent vascular inflammation and damage [62, 79].

7.4.4  Inflammation and Vascular Injury in Diabetes

It is well established that inflammatory polarization of immune cells occurs in many 
tissues, including adipose tissue, heart, kidney, skeletal muscle, liver, gut and ves-
sels [80]. Subclinical inflammation contributes to obesity-linked metabolic dys-
functions, leading to insulin resistance and type 2 diabetes mellitus. Obesity triggers 
metabolically activated immune cells thereby contributing to the adverse regulation 
of adipocyte metabolism and adipose tissue remodelling [81]. These processes 
involve activation of many signalling pathways including upregulation of transcrip-
tion factors such as hypoxia-inducible factor (HIF1α) [82]. Activation of HIF1α 
induces adipocyte expression of chemokines such as MCP-1, which contributes to 
adipocyte inflammation through pathways involving the JAK1/JAK2/STAT1 path-
way [83]. Circulating and locally produced effector cytokines such as TNF-α, 
interferon- gamma (IFN-γ), IL-1β and IL-12 [84, 85] may influence the insulin sen-
sitivity of peripheral tissues and, in the pancreatic islets, can modulate insulin 
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release [86, 87]. Increased glucotoxicity and lipotoxicity have been associated with 
immune cell infiltration of target tissues, thereby affecting diabetes-associated tar-
get organ damage and cardiovascular complications [87–89].

Epigenetics is another mechanism that may influence inflammation and immu-
nometabolism in diabetes [90]. Histone deacetylase (HDAC) inhibitors cause NFκB 
inhibition through acetylation of the p65 subunit. ITF2357, an orally active HDAC 
inhibitor, has been shown to prevent the development of diabetes [91]. Similarly, 
activation of sirtuin1 (Sirt1), involved in inflammation, metabolism and ageing, has 
been shown to have anti-inflammatory properties in diabetes [92].

Extensive experimental evidence has shown a close association between vascular 
inflammation, diabetes and cardiovascular morbidity [90, 93]. This is already evi-
dent in prediabetes [94]. Clinical studies also support the role of inflammation in 
cardiovascular complications of diabetes. Patients with type 2 diabetes have 
increased total leukocyte counts, particularly neutrophils and lymphocytes, that cor-
relate with insulin sensitivity [58], and inflammatory changes of adipose tissue 
[95–97]. The link between inflammation, insulin resistance and type 2 diabetes is 
further supported by genetic studies and clinical trials showing the protective effects 
of immune-targeted therapies and anti-inflammatory actions of classical anti- 
diabetic drugs [98].

To further support the notion that inflammation and activation of the immune 
system are involved in the pathophysiology of diabetes and its vascular complica-
tions, studies integrating metabochip approaches with GWAS have shown that clas-
sical immunometabolic genes including JNK signalling pathways, NFκB regulators 
(MACROD1), inflammasome activators (NRF3) and interferon gamma receptor 
genes associate with type 2 diabetes [99, 100]. This also corresponds to results of 
GWAS that identified genes related to macrophage function and antigen presenta-
tion. Inflammation and oxidative stress are thus key elements underlying vascular 
disease and cardiovascular complications in diabetes [101].

7.5  MicroRNAs, Diabetes and Vascular Complications

MicroRNAs (miRNAs) are a group of small, single-stranded, 22–25-nucleotide- 
long, non-coding RNAs that are multifunctional [102]. They normally bind to the 3′ 
untranslated region of their target mRNA, leading to translational inhibition and/or 
mRNA degradation. miRNAs regulate over 90% of all protein-encoding mRNAs 
and their biological events [103]. They are detected in blood serum/plasma as well 
as in urine, saliva, tears and breast milk. Over 1000 miRNAs discovered in the 
human genome have been recognized to be useful diagnostic indicators. They fine- 
tune gene expression and have been implicated in various pathological processes 
including diabetes, insulin resistance and cardiovascular disease.

Normally, miRNAs are essential in maintaining physiological homeostasis, 
metabolism and energy balance. With respect to insulin biology, they control β-cell 
genesis, β-cell death (miR-21), insulin production (miR-30d, miR-204, and 
miR- 124a) and α/β-cell mass balance (miR-375) [104, 105]. miRNAs are crucial in 
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regulating adipogenesis (formation of adipocytes), metabolic homeostasis and 
endocrine functions of adipocytes [106]. Many miRNAs have been identified to be 
differentially regulated during adipogenesis, including let-7c, miR-143, miR-210, 
miR-221, miR-27 and miR-30a-e [106, 107]. In obesity, the expression of miR-132 
is downregulated and its expression level is related to the activation of NFκB signal-
ling and transcription of MCP-1 and IL-8. Expressions of miR-132 and miR-155 are 
also associated with macrophage infiltration in adipose tissue [106, 107].

In pathological conditions such as diabetes mellitus and cardiovascular disor-
ders, miRs are differentially expressed [108]. Pancreatic β-cell-specific miRNAs, 
including miR-375, miR-124a, miR-96, miR-7a, miR7a2, miR-30d, miR-9, 
miR-200, miR-184 and let-7 are dysregulated in diabetes [109]. Differential miRNA 
signatures have been identified in prediabetic individuals, diabetic patients and 
patients with diabetes and vascular complications, suggesting that miRNAs may be 
novel biomarkers [110]. Diabetic cardiovascular complications are associated with 
increased levels of miR-223, miR-320, miR-501, miR504 and miR1 and decreased 
levels of miR-16, miR-133, miR-492 and miR-373 [110, 111]. Detection of deregu-
lated miRNA profile in circulating peripheral blood cells or vascular cells may 
potentially be associated with diabetes-associated vascular disease.

7.6  Conclusions

Diabetes is associated with an increased risk of cardiovascular disease, which is 
exaggerated with coexistent hypertension and obesity. Many of the underlying 
molecular mechanisms, including oxidative stress, inflammation and fibrosis, caus-
ing microvascular and macrovascular complications in diabetes, also cause vascular 
remodelling and dysfunction in hypertension. Preventing vascular injury and 
inflammation in diabetes may protect against the devastating complications associ-
ated with retinopathy, nephropathy and neuropathy. Some of the newer anti-diabetic 
drugs seem to have vasoprotective effects.
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