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Chapter 6
Role of Microbial Bioagents as Elicitors 
in Plant Defense Regulation

Mukesh Meena , Garima Yadav, Priyankaraj Sonigra, Adhishree Nagda, 
Tushar Mehta, Andleeb Zehra, and Prashant Swapnil

Abstract  Plants are constantly challenged by an array of potential pathogens like 
fungi, bacteria, viruses, insects, nematodes, etc., which lead to a significant loss to 
plant yield. Plants commonly overcome these phytopathogens by showing resis-
tance through plant defense mechanisms. Several general microbe elicitors allow 
plants to mitigate the harmful effects of pathogenic microbes by enhancing the 
capability of plants to identify anonymous pathogenic agents and act as surveillance 
systems for plants. Elicitors are small drug-like compounds released by pathogens 
that are composed of molecules like oligosaccharides, lipids, peptides, and proteins, 
and they activate various kinds of defense responses in plants. They deliver information 
to plants through perception and identification of signaling molecules by cell sur-
face-localized receptors, which is followed by the triggering of signal transmission 
pathways that commonly induces the synthesis of active oxygen species (AOS), 
phytoalexin production, production of defense enzymes, and the aggregation of 
pathogenesis-related (PR) proteins. This article chiefly highlights the role of micro-
bial elicitors in improving plant defense mechanisms as well as their modes of 
action that have been used to boost up the plant immune system.
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6.1 � Introduction

In the course of development, plants are systematically challenged by a broad range 
of biotic stresses in their natural habitat, such as fungi, bacteria, viruses, insects, 
nematodes, etc. There are numerous choices available for the plants to protect them-
selves from the disease (Abdul Malik et al. 2020). Plants usually overcome these 
biotic stresses by activating their separate defense pathways according to perceived 
signals from potential pathogens (Sarma et al. 2015; Barupal et al. 2020). There is 
an intricate type of defense mechanism employed by plants to detect microorgan-
isms based on elicitor molecules produced during plant–pathogen interaction. 
Numerous elicitors of microbial origin belonging to distinct chemical groups have 
been identified, i.e., glycopeptides, carbohydrate polymers, glycoproteins, and lip-
ids. This elicitor perception is followed by the stimulation of signal transmission 
pathways that commonly induces the synthesis of active oxygen species, production 
of phytoalexin, accumulation of pathogenesis-related proteins, deposition of cal-
lose, strengthening of the cell wall of plant cell related to phenyl propanoic com-
pounds, and production of defense enzymes (Van Loon and Van Strien 1999; Patel 
et al. 2019). Active oxygen species (AOS) induce localized or fast death of limited 
cells at the site of infection, which induces a hypersensitive response in host plants 
to restrict the growth of invading pathogens. Activation of hypersensitive response 
(HR) results in the development of resistance in uninfected distal parts of the host 
plant to upcoming infection, which is called systemic acquired resistance 
(SAR) (Thakur and Sohal 2013). Systemic acquired resistance is mainly relying up 
on salicylic acid, where the first set of reactions brings on a complex modification 
in gene expression, enzymatic action, and metabolic changes (Garcia-Brugger et al. 
2006; Barupal et al. 2019). Salicylic acid-dependent reaction is stimulated by bio-
trophic pathogens and distinct types of elicitors. Several microbial elicitors allow 
plants to mitigate the harmful effects of pathogenic microbes by enhancing the 
capability of plants to identify anonymous pathogenic agents and act as surveillance 
systems for plants (Newman et al. 2013). Elicitors are small drug-like compounds 
composed of molecules like oligosaccharides, lipids, peptides, and proteins, which 
activate various kinds of defense responses in plants. They are either secreted by 
pathogens or plants or pathogen cell walls by hydrolytic enzymes. Elicitor-activated 
signal transduction pathways bring on a hypersensitive response and systemic 
acquired resistance type of defense responses against a broad range of pathogens 
(Garcia-Brugger et al. 2006). Microbial biocontrol agents suppress the growth of 
phytopathogens through a wide array of distinct modes of actions. The most impor-
tant advantage of using microbial biocontrol agents is that they display specificity 
for a particular pathogen and are expected to be harmless to nontarget species 
(Hussain et al. 2020a, b). In the last few decades, many studies have been done on 
the broad range of applications of microbial biocontrol agents in the plant disease 
management data given in Table 6.1 (Kokalis-burelle et  al. 2002; Mavrodi et  al. 
2012; Singh et al. 2020). Environmentally friendly and sustainable attributes of bio-
control agents have driven profound investigation into the promising microbial 
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Table 6.1  Biocontrol agents and their target phytopathogens

Biocontrol agents Crop Pathogen References

Bacillus polymyxa Rice (Oryza sativa) Rhizoctonia solani, 
Pyricularia grisea

Kavitha et al. 
(2005)

Trichoderma viride, 
Trichoderma harzianum, 
Pseudomonas fluorescens

Groundnut 
(Arachis hypogaea)

Macrophomina 
phaseolina

Karthikeyan 
et al. (2006)

Acremonium strictum, 
Trichoderma harzianum

Tomato (Solanum 
lycopersicum)

Meloidogyne incognita Goswami et al. 
(2008)

Trichoderma harzianum Tomato (Solanum 
lycopersicum)

Meloidogyne javanica Sahebani and 
Hadavi (2008)

Trichoderma viride Soybean (Glycine 
max)

Fusarium oxysporum f. 
sp. adzuki, Pythium 
arrenomanes

John et al. 
(2010)

Trichoderma harzianum, 
Pseudomonas fluorescens, 
Bacillus subtilis

Safflower 
(Carthamus 
tinctorius)

Macrophomina 
phaseolina (root rot 
disease)

Govindappa 
et al. (2010)

Paecilomyces lilacinus Tomato (Solanum 
lycopersicum)

Meloidogyne incognita Oclarit and 
Cumagun 
(2009)

Trichoderma asperellum Cocoyam 
(Xanthosoma 
sagittifolium)

Pythium myriotylum Mbarga et al. 
(2012)

Verticillium chlamydosporium, 
Photorhabdus luminescens

Cucumber 
(Cucumis sativus)

Meloidogyne incognita Zakaria et al. 
(2013)

Bacillus amyloliquefaciens Wheat (Triticum 
aestivum)

Fusarium graminearum 
(Gibberella zeae)

Dunlap et al. 
(2013)

Bacillus spp. Ginseng (Panax 
ginseng)

Fusarium c.f. 
incarnatum

Song et al. 
(2014)

Bacillus cereus Thale cress 
(Arabidopsis 
thaliana)

Pseudomonas syringae Chowdhury 
et al. (2015)

candidates for the production of elicitors. In this chapter, we address the role of 
microbial elicitors in improving plant defense mechanisms as well as their modes of 
action that have been used to boost up the plant immune system.

6.2 � Elicitors

Elicitors are small drug-like compounds composed of molecules like oligosaccha-
rides, lipids, peptides, and proteins, which activate various kinds of defense 
responses in plants. Elicitors produced by pathogenic agents can be classified into 
two groups: general elicitors and specific elicitors (Montesano et al. 2003). General 
elicitors are engaged in the conventional resistance, which has the capacity to trig-
ger defense reactions in both host and nonhost plants, whereas race-specific elicitors 
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are released by specialized pathogens involved in R gene-mediated signal transduc-
tion (Gowthami 2018). General elicitors have the capacity to trigger defense in both 
nonhost and host plants through the realized incidence of potential pathogens 
(Onaga and Wydra 2016). Commonly, general elicitors are found in the cell walls of 
pathogens as structural constituents, for example, glucan, flagellin, chitin, and lipo-
polysaccharides (LPS) (Abdul Malik et al. 2020). Elicitor molecules act as ligands 
and generally bind to the specific receptor proteins located on the surface of plant 
cell membranes. According to the molecular pattern of elicitors recognized by 
receptors, an intracellular defense signaling has been triggered, which is echoed by 
the synthesis of secondary metabolites (Gowthami 2018; Zehra et al. 2021). It has 
long been recognized that microbial elicitors can induce many cellular defense 
responses in plants. Currently, elicitors of microbial origin have also been stated as 
microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs). 
Following MAMP recognition, production of reactive nitrogen species, ion fluxes 
across the membrane, medium alkalinization, reactive oxygen species, and ethylene 
synthesis lead to activate plant pattern-triggered immunity (PTI) against broad 
range of microbial attack (Wu et  al. 2014). Newman et  al. (2013) stated that 
N-acetyl-chito-oligosaccharides, i.e., chitin oligomers, a fungal cell wall-derived 
elicitor molecule, can activate several defense responses in monocot as well as dicot 
plants. In recent years, numerous MAMPs and their corresponding PRRs have been 
recognized, such as flagellin, peptidoglycan, elongation factor (Tu), lipopolysac-
charides, β-glucans from oomycetes and Ax21, fungal chitin, etc. (Newman 
et al. 2013).

6.2.1 � Microbial Agents as a Source of Elicitors

Induction of plant defense response is a crucial step during plant–pathogen interac-
tion via several factors. The first step of inducible response is carried out by the 
plant by the perception of molecules derived by microbes known as elicitors. While 
the plant percept these molecules, it results in a plant response that provides effec-
tive resistance toward pathogens; hence, they can be described as “defense elicitors” 
(Wiesel et al. 2014). These elicitors may be of proteinaceous, polysaccharide, lami-
narin, and other chemical nature. Apart from the pathogenic role of microbes, there 
are some beneficial microbes that live in plant tissue as endophytes, plant growth 
promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi (AMF), and some 
algae, oomycetes, and viruses also play a significant role in inducing resistance in 
plants (Siah et al. 2018; Yadav and Meena 2021). The primary work of these elici-
tors is to induce production of reactive oxygen species (ROS) or oxidative burst, 
which ultimately evokes plant defense responses like cross-linking of plant cell wall 
proteins, upregulation of defense-related genes, stimulation of synthesis of phenolic 
compounds (phytoalexins), and induction of hypersensitive response (Low and 
Merida 1996). The biological agents evoke plant defense via several modes like 
production of siderophores, antibiotic secretion, lytic enzyme production, 
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hyperparasitism, and inducing systemic response (ISR); all mechanisms are induced 
by secretion of elicitor molecules (Pieterse et al. 2014; Navarro et al. 2019; Singh 
et al. 2020).

6.2.2 � Some Potent Elicitor-Producing Microbial Agents

6.2.2.1 � Fungi

Fungal groups possess some cell wall breakdown products like chitin, β-glucans, 
and mannoproteins that act as potent elicitors and can evoke defense response; for 
example, yeast extract can be used widely for the study of defense response in 
plants via closing of stomata and peroxidase-mediated ROS production (Khokon 
et al. 2010). Sclerotinia culture filtrate elicitor1 (SCFE1) is a proteinaceous elicitor 
secreted by Sclerotinia sclerotiorum that induces BAK1-dependent PTI responses 
in A. thaliana (Zhang et al. 2013). Among fungal-derived elicitors, chitin and chito-
san (a deacetylated derivative of chitin) are potent elicitors that increase resistance 
in plants toward several fungal and bacterial pathogens (Hadrami et  al. 2010). 
Fungal cell wall polysaccharides, especially chitin and carboxymethyl cellulose, are 
active elicitors that stimulate synthesis and accumulation of a secondary metabolite 
tolytoxin (phytoalexin) in a cyanobacterium Scytonema ocellatum, which provides 
chemical defense against fungal pathogens (Patterson and Bolis 1997; Meena and 
Samal 2019). Transcription of retrotransposons is also carried out by some fungal 
genera to increase host defense; for example, application of crude extracts of 
Trichoderma viride induces transcription of Tnt1 gene, which accumulates capsid-
iol (a phytoalexin) in tobacco plants (Pouteau et  al. 1994; Meena and Swapnil 
2019). Some other examples also suggest transcription activation by fungal elicitors 
as it has been seen in Phaseolus vulgaris where plant cells show upregulation of 
genes related to phytoalexin metabolism such as phenylalanine ammonium lyase 
(PAL) and chalcone synthase (CHS) (Lawton and Lamb 1987). Some other species 
of Trichoderma like T. virens induce plant defense response by producing an elicitor 
named Sm1 (small protein 1), which triggers an increased production of reactive 
oxygen species in seedlings of monocot and dicot plants and proves as a potent 
elicitor in defense against foliar pathogen Colletotrichum sp. (Djonović et al. 2006). 
Trichoderma harzianum is also reported as an inducer of antioxidant defense sys-
tem in tomatoes against Fusarium wilt disease (Zehra et al. 2017a, b). It is reported 
that oxidative burst during plant defense is dependent on external calcium (Ca+2) 
and protein kinase activity (Schwacke and Hager 1992). Hypersensitive response is 
also stimulated by the same fungus in Vitis vinifera by increasing the level of endog-
enous H2O2, which ultimately activates oxidative phenolic metabolism in respective 
plants (Calderón et al. 1993). A proteinaceous elicitor PeaT1 produced by Alternaria 
tenuissima enhances plant defense response against tomato aphid (Myzus persicae), 
which is evidenced by accumulation of defense-related substances such as jasmonic 
acid (JA), salicylic acid (SA), and ethylene (ET) (Meena et al. 2017a, b; Basit et al. 
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2021). PeaT1 is also responsible for systemic acquired resistance (SAR) in tobacco 
plants (Mao et al. 2010). Other than the above described fungal genera, there are 
several fungi that are sources of potent elicitors and regulate plant defense responses 
as given in Table 6.2.

6.2.2.2 � Bacteria

In addition to fungal-derived elicitors, bacteria-derived elicitors have also been 
shown to regulate plant defense mechanisms and reduce pathogen infections in 
plants. There are several pieces of evidence that justify this statement, for example, 
Ralstonia solanacearum produce extracellular polysaccharides (EPS), which trig-
ger a defense response in tomato plants in the case of bacterial wilt (Milling et al. 
2011). Gram-negative bacteria-derived lipopolysaccharides (LPS)-mediated induc-
tion resistance is also shown in many crop plants (Erbs and Newman 2012). At 
concentrations of 1 g/ml, lipopolysaccharides from Xanthomonas campestris induce 
transcription of genes of β-1,3-glucanase, which ultimately shows defense responses 
in turnip (Newman et al. 1995). Cold shock protein (Csp)-related elicitor activity 
has been detected in bacterial extracts; there are many aromatic and basic side 
chains of csp domains that are necessary for elicitor activity; hence, RNA-binding 
motif RNP-1 of bacterial cold shock proteins that are highly conserved is recog-
nized as an elicitor signal in Nicotiana sylvestris plant (Felix and Boller 2003). The 
two bacterial microbe-associated molecular patterns (MAMPs) are flagellin and the 
elongation factor Tu (EF-Tu), which are recognized by a variety of plant species 
(Deslandes and Rivas 2012). Botrytis cinerea and Erwinia carotovora produce a 
wide array of elicitors that enhance the expression of conserved plant defense-
associated genes such as HrpN gene and show responses like shrinkage of cyto-
plasm, programmed cell death (PCD), etc. in Physcomitrella patens (de León et al. 
2007). Hrp genes are crucial for HR response in plants; Wei et al. (1992) reported 
that hrp genes (hrpN) of Erwinia amylovora encode harpin, a proteinaceous elicitor, 
which shows HR necrosis in respective plants. Surfactin lipopeptide is secreted by 
Bacillus sp., which triggers induced systemic response in host plants and defense 
responses like oxidative burst, etc. (Cawoy et al. 2014). In elicitation, not only free-
living or plant-associated bacteria but also animal-associated bacteria are also 
involved; for example, it is observed that insects named Helicoverpa zea, gut-
associated bacteria, induce defenses in tomatoes indirectly by secreting a salivary 
elicitor that induces expression of genes of defense-related enzymes like polyphe-
nol oxidase and jasmonic acid (JA) and suppression of pathogenesis-related genes 
of salicylic acid (SA) response (Wang et al. 2017). Twenty-three bacteria isolated 
from gut segments of Spodoptera exigua, Agrotis segetum, and Mamestra brassicae 
produce surfactants such as N-acylglutamine, which is recognized as a potent elici-
tor for plant defense response (Spiteller et al. 2000). There are several other bacte-
rial groups identified as sources of elicitors, which are mentioned in Table 6.2.
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Table 6.2  Table showing elicitor producing microbial agents, host, and their mode of plant 
defense regulation

Microbial agent Host
Mechanism of host 
defense regulation References

Fungi Trichoderma 
harzianum

Sunflower Induce resistance by 
increasing phenolics 
as well as stress 
enzymes

Singh et al. (2014), 
Swapnil et al. (2021)

Trichoderma 
harzianum T3

Grapevine Enhance expression 
of defense-related 
genes

Banani et al. 2015

Trichoderma viride Potato Increase total phenol 
content

Rosyidah et al. 
(2014), Meena et al. 
(2020)

Trichoderma viride Black gram Induction of defense 
enzymes and total 
phenolic content

Surekha et al. (2014)

Trichoderma 
asperellum

Onion Increase of glucanase, 
chitinase, and 
peroxidase activity

Guzmán-Valle et al. 
(2014)

Trichoderma 
asperelloides

Arabidopsis Suppress nitric oxide 
generation, elicited by 
pathogen

Gupta et al. 2014

Fusarium 
oxysporum Fo47

Pepper Production of caffeic, 
ferulic, and 
chlorogenic acids

Veloso et al. (2016)

Penicillium 
oxalicum

Pearl millet Increase peroxidase 
and chitinase activity

Murali and 
Amruthesh (2015)

Clonostachys rosea Canola Upregulation of host 
genes involved in 
biosynthesis of 
jasmonic acid, 
ethylene, and auxin

Lahlali et al. (2014)

Arbuscular 
mycorrhizal 
fungi (AMF)

Glomus 
fasciculatum

Tomato Higher expression of 
genes involved in 
jasmonic acid 
biosynthesis

Nair et al. (2015)

Funneliformis 
mosseae, 
Rhizophagus 
irregularis

Wheat Accumulation of 
polyphenolic 
compounds and 
reduction of pathogen 
conidia

Mustafa et al. (2016)

(continued)
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Table 6.2  (continued)

Microbial agent Host
Mechanism of host 
defense regulation References

Bacteria Bacillus subtilis 
QST 713

Tomato Increase expression of 
Pin2 gene in host

Fousia et al. (2016)

Bacillus cereus 
AR156

Arabidopsis Activation of 
PAMP-triggered 
immunity and ISR 
through NPR1- and 
SA-dependent 
signaling pathway in 
host

Niu et al. (2016), 
Meena et al. (2019)

Bacillus 
amyloliquefaciens 
S13-3

Tomato Induction of ISR 
through antibiotic 
production

Yamamoto et al. 
(2015)

Bacillus oryzicola Rice Induced systemic 
response in host

Chung et al. (2015)

Paenibacillus 
polymyxa CF05

Tomato Induction of 
defense-related 
enzymes (PAL, SOD, 
and PPO) and 
accumulation of H2O2 
and phenolics in host 
plant

Mei et al. (2014)

Pseudomonas sp. 
LBUM223

Potato Induction of 
defense-related genes 
like LOX, PIN2, 
PAL-2, ERF3, ChtA, 
PR-1b, PR-2, and 
PR-5

Arseneault et al. 
(2014)

Streptomyces 
rochei A-1

Apple Increased activities of 
POD, CAT, SOD, 
PAL, β-1,3-glucanase, 
and chitinase, 
promoted H2O2 
generation, decreased 
lipid peroxidation, 
and upregulation of 
related genes

Zhang et al. (2016)

Brevibacterium 
iodinum 
KUDC1716

Pepper Elicit systemic 
acquired resistance 
(SAR)

Son et al. (2014)

Carnobacterium 
sp. SJ-5

Soybean Higher expression of 
defense-related 
proteins

Jain and Choudhary 
(2014)

(continued)
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6.2.2.3 � Oomycetes

Oomycetes are taxonomically and structurally different from plants and fungi. There 
are several plant pathogenic oomycetes known, but genera Phytophthora and 
Pythium show superiority in causing disease of crop plants. The cell walls of these 
groups consist of several elicitor factors such as cellulose, glycan, and 
hydroxyproline-rich proteins. Some potent elicitors reported from oomycetes are 
CBEL, cryptogein, eicosapentaenoic acid, Pep-13, and INF1 (Wiesel et al. 2014). 
Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) has been 
identified in dicot plants, which are associated with defense response in Arabidopsis 
thaliana (Qutob et al. 2006). In Nicotiana benthamiana, HR response is induced by 
INF1 elicitin of Phytophthora infestans (Kamoun et al. 1998). These responses are 
dependent on the receptor-like kinase SERK3/BAK1, required for multiple resis-
tance responses in plants (Heese et al. 2007). Pathogenic species of Phytophthora 
release some extracellular and intracellular effectors into plants encoding protease 
or glucanase inhibitors to suppress pattern-triggered immunity in plants (Hein et al. 
2009; Schornack et al. 2009). RXLR effector Avrblb2 of P. infestans prevents secre-
tion of an immune-associated protease (Bozkurt et al. 2011). An intracellular RXLR 
effector named Avr3a of P. infestans interacts with potato E3 ubiquitin ligase 
CMPG1 and stabilizes it, which results in perturbation in cell death response 
induced by INF1 (Bos et al. 2010). The other examples of oomycete elicitors and 
plant defense regulations are mentioned in Table 6.2.

6.2.2.4 � Virus

Among well-known elicitor-producing microbes like fungi, bacteria, and oomyce-
tes, some viruses are also known that immunize plants and regulate their defense 
response. Plant virus coat proteins (CPs) can act as elicitors that triggers R-gene-
mediated HR response (Moffett 2009). Several viral silencing suppressors 

Table 6.2  (continued)

Microbial agent Host
Mechanism of host 
defense regulation References

Oomycetes Pythium 
oligandrum

Grapevine Induction of genes 
related to 
phenylpropanoid 
pathways, PR 
proteins, oxylipins, 
and oxydo-reduction 
systems

Yacou et al. (2016)

Phytophthora 
parasitica

Tobacco Formation of physical 
barriers like phloem 
proteins, impregnation 
of pectin, etc. in the 
host plant

Lherminier et al. 
(2003)
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misregulate AUXIN RESPONSE FACTOR 8, which finally causes chlorotic symp-
toms in plants (García and Pallás 2015). Strain-specific P3 of Soybean Mosaic Virus 
G7 is identified as an elicitor for Rsv1 (a single dominant resistance gene)-mediated 
HR response (Hajimorad et  al. 2005). It is also observed that TMV replicase 
sequence of 126/183  kDa activates N-gene mediated hypersensitive response in 
tobacco plants (Padgett et al. 1997). BV1 protein of bean dwarf mosaic virus is also 
recognized as a determinant factor for the hypersensitive response and avirulence in 
French bean (Phaseolus vulgaris) (Garrido-Ramirez et al. 2000).

6.2.3 � Mode of Action by Which Microbial Bioagents Bring 
About Plant Defense

The microbial bioagents show antagonism, competition, and parasitism against dif-
ferent pathogenic microbes. These activities of microbial bioagents provide defense 
to plants directly or indirectly, such as plant defense response stimulation. These 
mechanisms include antimicrobial compound production, competition for niches 
and nutrients, elicitation of plant defenses, etc. (Jamalizadeh et al. 2011; Compant 
et al. 2013; Hussain et al. 2020a). Different mechanisms of biocontrol agents, which 
have been shown in Fig. 6.1, are described in the following sections.

6.2.3.1 � Antagonisms

In antagonism, actions of one organism inhibit or obstruct the normal growth and 
development of other organisms appearing in its near vicinity. If these types of 
organisms inhibit phytopathogens, they can be used as biocontrol agents against 
pests and pathogens (Heydari and Pessarakli 2010). According to Shoda (2000), 
microorganisms that have capability to multiply in the rhizospheres are regarded as 
ideal biocontrol agents. Microorganisms colonize in the root of the host, produce 
some metabolites, and secrete into the root system, which are toxic to pathogens and 
directly suppress the pathogen growth. These metabolites directly offer protection 
to the host or sometimes trigger defense in the host plant (Nihorimbere et al. 2012; 
Chandran et al. 2020). The elicitation of the host plant defense system by microbial 
bioagents is known as direct antagonism (Ab Rahman et al. 2018).

6.2.3.2 � Parasitism

In parasitism, one microorganism is ubiquitous for another. The microbial bioagents 
produce lytic enzymes like glucosaminidases and chitinases, which lead to the deg-
radation of the cell wall of phytopathogens (Guigón-López et  al. 2015). Urbina 
et  al. (2016) investigated the role of enzymes synthesized by Candida oleophila 
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Fig. 6.1  Diagrammatic representation of different antagonistic action and plant defense inducted 
by microbial bio-agents

(extracellular 3-glucanase exo-β-1) in biocontrol of Penicillium expansum causing 
apple spoilage. Moreover, many researchers reported different antagonistic micro-
bial species (Meena et al. 2017c, d). Jeffries (1995) reported that Rhizoctonia solani 
could be controlled using 30 different hyperparasitic species belonging to 16 gen-
era. Powdery mildew, which is caused by an obligate biotrophic pathogen, was con-
trolled with eight hyperparasites by Hijmegen and Buchenauer (Hijwegen and 
Buchenauer 1984). In a study, it was observed that Pseudomonas flocculosa release 
some cell wall lytic enzymes, which cause cell collapse in powdery mildew cells 
(Bélanger et al. 2012). Some fungi release protease enzymes such as Pochonia chla-
mydosporia, which causes infection in eggs of the nematodes (Escudero et al. 2016). 
Rust pathogens Puccinia violae and Puccinia striiformis f. sp. tritici were tested 
with more than 30 hyperparasitic fungal species, including Cladosporium uredini-
cola and Alternaria alternata, respectively, and positive results were obtained 
(Zheng et al. 2017). Köhl et al. (2019) reviewed that Alternaria alternata had the 
capability to penetrate the urediniospore of wheat rust fungus by germ tubes; the 
urediniospores were completely collapsed and lost their ability to germinate. In an 
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experiment, it was reported that the urediniospores treated with A. alternata pus-
tules had reduced ability to germinate up to 25% as compared to untreated uredin-
iospores pustules (80%) (Zheng et  al. 2017). In Trichoderma, parasitism was 
observed most frequently against Pythium myriotylum and Macrophomina phaseo-
lina (Kubicek et  al. 2001). Trichoderma and Clonostachy are the most studied 
mycoparasites, and members belonging to these genera have a wide and varied plant 
pathogenic host range. These antagonistic isolates form different structures by 
which they attach to the host and cause infection and death of their hosts by produc-
ing cell wall degrading enzymes (Karlsson et al. 2017; Nygren et al. 2018). The 
synthesis of cell wall degrading substances is not constitutive. The synthesis of 
enzymes is triggered upon host recognition. Host contain some specific types of 
molecules on their surface (lectins or secondary metabolites), and these molecules 
trigger specific types of signaling pathways (G-protein signaling cAMP pathway, 
and MAPK cascades) (Zhai et al. 2017; Karlsson et al. 2017; Zehra et al. 2015; 
Meena et al. 2017e, f). Signaling pathways lead to upregulation and transcription of 
certain genes known as “molecular weapons” including lytic enzymes, which attack 
and cause lysis of the host. In Trichoderma, there are two types of mycoparasitism-
related gene families, namely ech42 and prb1, which are overexpressed throughout 
mycoparasitism (Barbara et al. 2011). Mycoparasitics (Trichoderma) first release 
lytic enzymes; as a result, some oligosaccharides are secreted from the host that are 
identified by receptors and trigger increased synthesis of lytic enzymes (Karlsson 
et al. 2017; Meena et al. 2016a, b). This increased level of lytic enzymes results in 
increased permeability, degradation, and death of the host plant. These types of col-
laborative transcriptional results were also reported by Reithner et  al. (2011) in 
Trichoderma atroviride in response to B. cinerea and Phytophthora capsici. In 
Metschnikowia fructicola, induced chitinase activity was observed to be regulated 
by MfChi gene due to close contact with the cell wall of yeast Monilinia fructicola 
(Banani et al. 2015). The same type of result was also observed with Pichia pastoris 
when used against Monilinia fructicola and Monilinia laxa that cause postharvest 
disease in peach fruits (Dukare et al. 2019).

6.2.3.3 � Competition

Competition is a mechanism in which two or more organisms utilize the same type 
of nutrition or space or both for their survival; therefore, the interaction becomes 
competitive. The microbial bioagents exploit the nutrients, prevent the pathogen 
growth and proliferation, and reduce the virulence of the pathogen. For a microbe to 
thrive in the phyllosphere or rhizosphere, it must be able to make use of accessible 
nutrients in the form of leachates and exudates or senescent tissue. In rhizosphere, 
plants release different photosynthates, which are a great source of nutrients (spe-
cific sugars, organic acids, and amino acids) for microbes; therefore, the rhizosphere 
works as a niche. High availability of carbon (40%) around the root surface attracts 
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different microbes. Microbial bioagents compete with pathogens for nutrients and 
protect the host from disease occurrence (Degenhardt et  al. 2003). This type of 
approach has been observed in different pathogens such as Pythium and Fusarium; 
these are soil-borne pathogens and cause infection by mycelial penetration. 
Enterobacter cloacae act as a microbial bioagent against Pythium ultimum by 
increasing catabolism of nutrients (van Dijk and Nelson 2000; Kageyama and 
Nelson 2003). Some microbial bioagents, namely Pseudomonas fluorescence, che-
late iron, which is essential for Fusarium oxysporum, whereas Chryseobacterium 
sp. WR21 exploits root exudates and competes with Ralstonia solanacearum 
(Huang et al. 2017). Moreover, antagonistic fungus Pichia guilliermondii was found 
to show competition against certain known pathogenic fungi isolated from wounds 
of fruit such as apple, namely Penicillium expansum, Penicillium digitatum, 
Colletotrichum spp. or B. cinerea, and Aureobasidium pullulans (Spadaro and 
Droby 2016). It was reported that microbes compete for nitrogen sources in a 
carbohydrate-rich environment. Besides nitrogen, they also compete for iron 
because it is a limiting factor for microbial growth and also has low solubility, thus 
playing a vital role in antagonistic activity such as competition (Spadaro and Droby 
2016). Microorganisms have the ability to produce a variety of siderophores, which 
are low-molecular-weight chelating compounds with a great affinity for iron (van 
Loon 2000). Pathogenic strains use the chelating compounds to accumulate the 
ions, and they can be used as microbial bioagents for disease suppression through 
competition with pathogenic strains that produce siderophores but with low affinity 
(van Loon 2000; Lugtenberg and Kamilova 2009). Pseudomonas spp. have shown 
siderophore-facilitated iron competition with pathogenic populations present in rhi-
zospheres and reduced their number in soil (Raaijmakers et al. 1995). Fungal antag-
onists such as Trichoderma asperellum and Metschnikowia pulcherrima produce 
iron-binding siderophores and control the growth of Fusarium and A. alternata, 
B. cinerea, and P. expansum, respectively (Saravanakumar et  al. 2008; Segarra 
et al. 2010).

6.2.3.4 � Production of Antimicrobial Compounds

Active microbes and the produced allelochemicals as secondary metabolites are 
potent options for treating plant diseases (Puopolo et al. 2018; Zhao et al. 2021). 
The most common mechanism associated with biocontrol activity is the production 
of antibiotics. Besides that, many biocontrol strains produce antifungal enzymes 
like β-1,3-glucanases, chitinases, proteases, or lipases that are involved in fungal 
cell wall lysis, produce siderophores, and chelate iron in the rhizosphere, thus inhib-
iting the proliferation of pathogens (Bais et al. 2004; Latz et al. 2018; Köhl et al. 
2019; Pirttilä et al. 2021).
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6.2.3.5 � Antibiotics

Antibiotics are small, heterogenous molecular compounds, which can inhibit the 
growth of pathogens at low concentrations (Huang et al. 2021). The general mecha-
nism of antibiotic action is cell wall synthesis inhibition, disruption of cell mem-
brane structure and function, nucleic acids structure and function inhibition, and 
blocking of key metabolic pathways (Wu et al. 2021). Some antibiotic-producing 
strains among rhizobacteria are Bacillus sp. producing surfactin and iturin A, 
Pseudomonas spp. producing phenazine derivatives, Erwinia sp. producing herbi-
colin A, Agrobacterium sp. producing agrocin 84, etc. (Viswanathan and 
Samiyappan 1999; Compant et al. 2005a, b; Sonigra and Meena 2021).

6.2.3.6 � Siderophores

Iron is a trace element that affects the growth, germination, and virulence of a 
pathogen and hence the development of the pathogen (Spadaro and Droby 2016; 
Chen et al. 2020; Huang et al. 2021). The bacterial siderophores compete for zinc, 
copper, manganese, and most importantly iron. These BCA limit the availability of 
iron in the soil by solubilization and the competitive acquisition of Fe3+ and subse-
quently inhibit the plant pathogen by limiting their growth (Leong 1986; Loper and 
Henkels 1997; Chin-A-Woeng et  al. 2003; Haas and Défago 2005; Ab Rahman 
et al. 2018). Bacteria produce many types of siderophores, for example, catecholate, 
carboxylate, hydroxamate, and salicylate (Rajkumar et  al. 2010; Kumari et  al. 
2018a, b). Dual inoculation of Pseudomonas koreensis and B. subtilis strains have 
been proved to have antagonistic activity and produce siderophore in controlling 
Cephalosporium maydis in maize plants (Ghazy and El-Nahrawy 2021). 
Paenibacillus polymyxa, a siderophore producer, has been proved as a growth pro-
moter of Lilium lancifolium and showed antifungal activity against Botryosphaeria 
dothidea, F. oxysporum, Fusarium fujikuroi, and B. cinerea (Khan et al. 2020).

6.2.3.7 � Volatile Organic Compounds (VOCs)

VOCs are low-molecular-weight compounds that, under low normal atmospheric 
temperature and pressure, can evaporate below 300 Da (Vespermann et al. 2007). 
The main composition of VOC mixture is alcohols, esters, aldehydes, terpenes, ali-
phatic and aromatic hydrocarbons, nitrides, and sulfides, which exhibit strong anti-
microbial effects (Strobel 2011; Lemfack et al. 2018; Huang et al. 2021). Delgado 
et  al. (2021) developed a new consortium PUCV-VBL, composed of 
Hanseniaspora osmophila and Gluconobacter cerinus, to control fungal rots in the 
grapes. The VOCs produced by this consortium showed 86% mycelial inhibition 
against B. cinerea.
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6.2.3.8 � Lytic Enzymes

Microbial enzymes assist microbes in reproducing in a particular niche and function 
as biocatalysts for key biochemical reactions (Chaudhari and Patel 2021). The 
microbes extracellularly produce hydrolytic enzymes to prevent potential plant 
pathogens (Umer et  al. 2021). The antagonists release various enzymes, such as 
lipase, cellulases, chitinases, xylanases, mannanases, laminarinase, chitosanase, 
glucose oxidase, protease, and betaglucosidases for biocontrol activity (Picard et al. 
2000). Two novel Bacillus strains (simplex and subtilis species) have been found to 
produce lytic enzymes (protease and β-glucanase), which aided in the biofungicidal 
activity against Zymoseptoria tritici causing Septoria tritici blotch of wheat (Allioui 
et al. 2021).

6.3 � Conclusion

During the past few years, beneficial plant microbes have received attention as a 
substitute for chemical fertilizers because of their sustainable plant protection prop-
erty. The microbial bioagents produce different elicitors and MAMPs, which trigger 
induced systemic resistance. A distinctive feature of ISR-eliciting microbial bioag-
ents is local suppression of root immune response in a cell-type specific manner. 
The studies of root cell-type-specific metabolome and transcriptome profiles in 
response to microbial bioagents will aid in providing information to develop consis-
tent and reliable methods of crop production. Agrochemicals pose a danger to the 
health of living beings and the environment due to their toxicity, while elicitors have 
no adverse effects and leave no residues. The isolation of novel microbial bioagents 
with high effectiveness against plant pathogens is important and essential. The 
microbial bioagents with synergistic action against plant pathogens may provide 
desirable results.
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