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Chapter 4
Correlation Is Not Causation, Yet… 
Matching and Weighting for Better 
Counterfactuals

Fedra Negri

Abstract  Anyone who has attended a statistics class has heard the old adage “cor-
relation does not imply causation,” usually followed by a series of hilarious graphs 
showing spurious correlations. Even if we strongly agree with it, this reminder has 
been taken a little too far: it is repeated like a mantra to criticize every observational 
study as being unable to detect causation behind statistical association. This chapter 
helps the reader go beyond the mantra, firstly, by explaining that “correlation does 
not imply causation” in observational studies because of selection bias (i.e. the com-
position of treatment and control groups follows a non-random selection) and para-
metric model dependence. Then, it introduces readers to weighting and matching 
techniques, smart statistical tools for reducing imbalance in the empirical distribu-
tion of pretreatment covariates between the treatment and control groups. Lastly, it 
provides an empirical illustration by focusing on two powerful algorithms: the 
entropy balancing (EB) and the coarsened exact matching (CEM). The chapter ends 
with caveats.

Learning Objectives
After studying this chapter, you should be able to:

•	 Understand under which assumptions correlation unveils causation in observa-
tional studies.

•	 Understand the inferential logic behind the commonest propensity score match-
ing procedures and their key implementation steps.

•	 Understand the logical and computational problems related to the so-called “pro-
pensity score tautology”.

•	 Grasp the theoretical and computational improvements introduced by entropy 
balancing and coarsened exact matching, respectively.
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•	 Generate well-balanced samples on the statistical software Stata through the 
ebalance and the cem algorithms.

•	 Openly discuss the necessary conditions for their inferences on observational 
data to justify a causal interpretation.

4.1 � Introduction

The very first notion almost everyone learns in their introductory statistics classes is 
that “correlation does not imply causation.” Usually, students are presented with 
several examples of spurious correlations to stress that just because two variables 
move in tandem, this does not necessarily signal a causal relationship between 
them. A typical example is the negative and statistically significant correlation 
between final college grades and the amount of time students spend studying 
(Atkinson et  al., 1996), and a number of funny graphs are available online (see: 
www.tylervigen.com).

Let us put it clearly: we strongly agree that “correlation does not imply causa-
tion.” However, we also think that in the everyday practice of statistics and espe-
cially statistics teaching, the message this sentence carries has been taken a little too 
far and beyond its scope. In fact, it is repeated like a mantra, to criticize every 
observational study as being unable to detect causation behind statistical associa-
tion. The warning “correlation does not imply causation” has made many social 
scientists feel so uncomfortable with causal inference that they even try to avoid 
causal language (King et al., 1994: 75–76). Terms such as “effect” or “impact” and 
verbs such as “to determine” or “to shape” are routinely avoided in scientific publi-
cations and replaced by the calculatedly ambiguous “association” and “link” and 
“to increase/to decrease” (Hernán, 2018).

Here, two related points should be stressed. First, while “correlation does not 
imply causation” for sure, “causation does imply correlation”: if two variables are 
causally related, a change in one has to trigger a change in the other (Cook & 
Campbell, 1979; Miles & Shevlin, 2001: 113). Second, even when a statistical asso-
ciation, such as a regression coefficient, supports our preexisting views, theoretical 
claims, or a scenario we wish to be true (the so-called confirmation bias), uncer-
tainty about causal inference will never be completely eliminated in observational 
studies. Thus, a statistical association is a non-sufficient, but still necessary, condi-
tion to make a causal claim. This means that we should not give up. Rather, we 
should provide the reader with the best and most honest estimate of the uncertainty 
of our causal claims (King et al., 1994: 75–76).

The chapter is structured as follows. Section 4.2 explains why “correlation does 
not imply causation” in observational studies, i.e.  because of selection bias and 
model dependence. Section 4.3 introduces the reader to matching procedures, smart 
statistical tools that adjust for composition to correct for selection bias due to 
observable characteristics (Chap. 3, Sect. 3.2.5 and 3.2.6, provides a more general 
discussion on selection bias given by unobservable factors). In detail, this section 
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reviews and simplifies for the reader the latest contributions in the matching litera-
ture to emphasize both strengths and limitations of these techniques. Section 4.4 
provides an application using the statistical software Stata by describing the algo-
rithms developed by Heinmueller (2012), Iacus et  al. (2009, 2011, 2012, 2019). 
Some caveats complete the chapter.

4.2 � Not Just a Mantra: Correlation Is Not 
Causation Because…

4.2.1 � Causal Inference Entails an Identification Problem

Causal inference (i.e. the process by which we make claims about causal relation-
ships) can be thought of as an identification problem. Informally, a parameter is 
identified in a model if it is theoretically possible to learn its true value with an 
infinite number of observations (Matzkin, 2007: section 3.1). An identification 
problem arises when we do not have enough information to learn the true value of 
that parameter even if the sample is infinite (Manski, 1995).

The potential outcomes framework (Rubin, 1974; Holland, 1986) formalizes the 
causal inference identification problem and labels it as the “fundamental problem of 
causal inference.” As discussed at length in Chap. 3 (see Sects. 3.2.2 and 3.2.3 for 
details), in the potential outcome framework, each unit i has two potential outcomes, 
Yi(1) if unit i is treated (Di = 1) and Yi(0) if unit i is untreated (Di = 0), but only one 
actual outcome, which depends on the actual treatment that unit i receives. Thus, the 
unit-level treatment effect, Δi = Yi(1) − Yi(0), is impossible to estimate because one 
of the two potential outcomes cannot be identified for each unit: for treated units, we 
observe Yi = Yi(1) only; for control units, we observe Yi = Yi(0) only.

Usually, we focus on the average treatment effect (ATE), which is the difference 
in the pair of potential outcomes averaged over the entire population of interest: 
ATE = E(Yi(1) − Yi(0)). Frequently, the ATE is defined for the subpopulation exposed 
to the treatment, the average treatment effect for the treated (ATT): 
ATT = E(Yi(1) − Yi(0)| Di = 1). Analogously, the average treatment effect for the 
non-treated (ATNT) is given by: ATNT = E(Yi(1) − Yi(0)| Di = 0).

However, moving from the unit-level treatment effect to the average treatment 
effects for the treated (ATT) or the non-treated (ATNT) does not solve our initial 
causal inference identification problem. Indeed, as regards the ATT, no additional 
amount of data will allow us to observe the average outcome under control for those 
units in the treatment condition, E(Yi(0)|Di = 1). Moving to the ATNT, no additional 
amount of data will allow us to observe the average outcome under treatment for 
those units in the control condition, E(Yi(1)| Di = 0). The advanced reader may find 
a more formalized discussion in Keele (2015: 314–318).

Thus, the potential outcomes framework helps us in understanding that causal 
inference entails an unavoidable identification problem. Since no additional data 
can help us in solving this problem, we need to find a credible identification strategy.
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4.2.2 � Each Identification Strategy Entails a Set of Assumptions

An identification strategy is a research design and entails a set of assumptions, 
whose plausibility critically depends on the empirical context and should be dis-
cussed on a case-by-case basis (Angrist & Pischke, 2009; Morgan & Winship, 
2014). The plausibility of some assumptions is testable. Think, for example, of the 
degree of compliance with the treatment assignment in a randomized experiment or 
to the first-stage requirement in a natural experiment with instrumental variation 
(see Chap. 3, Sect. 3.5.3.4, for details). Unfortunately, this is not always the case: 
untestable assumptions are unavoidable in causal inference. This is why reasoning 
about the plausibility of the assumptions entailed by the research design the 
researcher has chosen is a crucial preliminary step for social scientists aiming at 
detecting causal effects. This step precedes data collection and statistical analysis 
and often involves qualitative information about the institutional and empirical con-
text (Keele, 2015: 323–324).

In what follows, we summarize the assumptions needed for statistical estimates 
to be given a causal interpretation under different research designs. Chapter 3 has 
already described three common research designs: randomized experiments, where 
treatment assignment is random, and quasi-experiments providing convincing sub-
stitutes to randomization, namely, instrumental variation and regression discontinu-
ity designs (see Chap. 3, Sect. 3.5 and 3.6, for details).

Ideally, randomized experiments can achieve valid and relatively straightforward 
causal inferences if three requirements are met: (1) random selection of units to be 
observed from a given population, (2) random assignment of values of the treatment 
to each observed unit, and (3) large sample size. Random selection (1) avoids selec-
tion bias by guaranteeing that the probability of selection from a given population is 
related to the potential outcomes only by random chance. Combining random selec-
tion (1) with large sample size (3) guarantees that the chance that something will go 
wrong is extremely small. Random assignment (2) guarantees the absence of omit-
ted variable bias even without any control variables included. Here, too, random 
assignment (2) plus large sample size (3) minimizes the chance of omitted variable 
bias (Ho et al., 2007: 205–206; see also Chap. 3, Sect. 3.4, for details).

However, social science research usually uses observational data that do not 
meet all of the three requirements. For example, survey research guarantees large 
sample size (3), but it is becoming more and more difficult to randomly select 
respondents due to increasing nonresponse rates (1), and it is almost impossible to 
fulfil random assignment requirement (2).

When dealing with observational data, a key further assumption is needed for 
statistical estimates to be given a causal interpretation: the so-called “selection on 
observables” assumption (Barnow et al., 1980; Heckman & Robb, 1985). Informally, 
the researcher has to assume that there is a set of covariates Xi such that treatment 
assignment Di is random conditional on these covariates. This assumption is non-
refutable because it cannot be verified with observed data (Manski, 2007).
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This assumption has a number of different names. In econometrics, it is also 
known as “no omitted variable bias,” to emphasize that the model specification must 
include all the variables that are causally prior to the treatment assignment Di, that 
are empirically related to Di, and that affect the observed potential outcome Yi, con-
ditional on Di (Goldberger, 1991; King et al., 1994: 76–82). Remember that only 
random assignment guarantees that Di is independent of any Xi, whether measured 
or not, except by random chance (see Chap. 3, Sect. 3.4).

In statistics, the same assumption is known as “ignorability,” to underline that the 
treatment assignment Di  and the unobserved potential outcomes are independent 
after conditioning on a set of covariates Xi and the observed potential outcomes so 
that there are no unobserved factors capable of biasing our estimates (Rubin, 1978). 
Alternative labels are the “absence of unmeasured confounding” or “conditional 
independence assumption.”

Whatever the name, “selection on observables is a very strong assumption [...]. 
Generally, selection on observables needs to be combined with a number of differ-
ent design elements before it becomes credible” (Keele, 2015: 322). Indeed, even 
admitting that the researcher has in mind the list of “correct” covariates to be incor-
porated in the model specification to meet this assumption, (1) additional data col-
lection may be expensive and onerous, and (2) long model specifications increase 
the likelihood of incurring into over or bad control (Angrist & Pischke, 2009: 69). 
Problem (2) arises when we include in the model specification posttreatment covari-
ates. In an experimental setting, it is quite easy to identify pretreatment and post-
treatment covariates. With observational data, things get harder. Think, for example, 
about the items of a survey: if we exclude respondents’ exogenous characteristics 
such as age, gender, citizenship, or parental level of education, it may be hard to 
state for sure that a covariate is “truly” pretreatment, and thus, it is not a conse-
quence of Di. Note that a further complication, known as the “M-bias” (Pearl, 2009a, 
b) will be discussed at length in Chap. 6.

This section aims to make it clear that there is no easy way-out and there is no 
magic. The identification problem cannot be solved by simply looking at data. 
Rather, we need to resort to identification strategies and each of them rests on a 
series of assumptions. When the data are observational, a very strong assumption is 
added to the list: the “selection on observables” one. This is the reason why “cor-
relation [per se] does not imply causation.” However, this is not the end of the story: 
selection on observables can be combined with statistical tools to boost its credibil-
ity (Keele, 2015).

4.2.3 � Last but not Least: Model Dependence

Of course, any specific statistical tool we choose to boost the credibility of our iden-
tification strategy will make additional assumptions (Ho et al., 2007: 2010–2011).
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Let us be honest: as social and political scientists, we usually spend a con-
siderable amount of time in collecting, merging, cleaning, and recoding raw 
data. Then, we finally load our data set into our favorite statistical software 
and run several model specifications by using the parametric statistical tech-
nique that best fits our data (e.g., OLS, discrete choice models, duration mod-
els, etc.).

The main problem with this common procedure is that all parametric methods 
assume that we know the “right” model specification before looking at the esti-
mates. A model is “right” if it is (a really good approximation to) the data-generating 
process. Otherwise, the model will miss important aspects of reality and inference 
will be systematically wrong or overly precise.

Instead, what happens in everyday research is that we start from a generic model 
specification suggested by our theoretical framework, previous works, or common 
sense, and then, we modify it by adding or removing control variables and interac-
tion terms, changing the operationalization of some variables or the functional form, 
restricting the sample, etc.

Following this inductive procedure, we end up with several alternative estimates 
of the statistical relationship between our variable of interest and the dependent 
variable. However, to improve readability, we typically choose no more than ten 
model specifications to be included in our written work. This choice, made after 
looking at the estimates, entails methodological and ethical dilemmas. Moreover, it 
forces us to convince the readers (and the reviewers) that we have picked up the 
“right” specifications, not simply the ones that most supported our starting 
hypotheses.

Thus, even if rarely admitted, correlation also does not imply causation in obser-
vational studies because effect estimates may be model dependent, at least to some 
degree (Ho et al., 2007).

4.3 � Preprocessing Data with Matching to Improve 
the Credibility of the Estimates

Imagine we want to estimate the effect of a policy in situations when controlled 
randomization is unfeasible, unethical, or politically sensitive and there are no con-
vincing natural experiments providing a substitute for randomization such as the 
ones described in Chap. 3, Sects. 3.5 and 3.6 (i.e., instrumental variation and RDD). 
In these situations, matching may be a powerful non-parametric technique for 
boosting the credibility of the estimates. It is grounded on the idea that some serious 
statistical problems (i.e. model dependence, estimation error, and bias) can be 
downplayed by dropping heterogeneous observations from the raw data and thus 
limiting inferences to a carefully selected subsample.
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4.3.1 � No Magic: What Matching Can and Cannot Do

Before addressing any technicality, we want to stress a key point about matching. It 
is not a method of estimation of causal effects, it is “only” a non-parametric statisti-
cal tool for preprocessing raw data so that the treatment group becomes as similar 
as possible to the control group on a set of covariates chosen by the researcher 
(Arceneaux et al., 2006; Sekhon, 2009). Once treated units have been matched with 
control ones according to one among the available matching procedures, some 
method of estimation is needed to obtain an estimate of the causal effect. If the treat-
ment and control groups are exactly balanced on the set of covariates chosen by the 
researcher (i.e. if the treatment and control covariate distributions are the same), 
then the method of estimation can credibly be a simple difference in means between 
the outcomes of the two groups. However, if the two groups are not exactly balanced 
(i.e. if there are still systematic differences between them, as usually happens), then 
the researcher has to further adjust the matched sample by using the parametric 
model they would have used anyway (e.g., Ho et al., 2007; Iacus et al., 2019). Thus, 
matching is just a convincing way to select the observations on which some meth-
ods of estimation should be later applied (with their own additional assumptions).

Exactly as when we interpret the coefficient of a multivariate regression model 
as a causal effect, matching procedures are grounded on the strong assumption of 
selection on observables. This means that it should be theoretically plausible that 
selection into treatment is completely determined by a set of covariates Xi that can 
be observed by the researcher such that conditioning on Xi, the assignment to treat-
ment is as good as random. To put it differently, it should be theoretically plausible 
that there are not additional unobservable variables capable of pushing units into 
treatment.1

1 Given that both matching and regression are based on the selection on observables assumption, 
the reader may wonder whether matching is really different from a regression with properly identi-
fied control variables. This question is the object of a heated debate among methodologists. Some 
maintained that both regression and matching are control strategies, and therefore, the differences 
between the two are unlikely to be of major empirical importance (Angrist & Pischke, 2009: sec-
tion 3.3.1). Others have pointed out shortcomings of regression relative to matching: Dehejia and 
Wahba (1999), for example, found that propensity score matching procedures have more closely 
approximate results from a randomized experiment than regression alone. Further, some have 
underlined that regression is a parametric approach imposing a global linear relationship between 
Xs and Y and that it uses all the available observations, thereby involving a certain amount of 
extrapolation, while matching is a non-parametric approach that discards observations for which a 
reasonably close match cannot be found (Martini & Sisti, 2009: 221–225). Others have stated that 
matching involves several choices in its implementation, which could lead to subjectivity in the 
results. According to Imbens and Wooldridge, “the best practice is to combine linear regression 
with either propensity score or matching methods” (2008: 19–20) as in this way, the estimated 
effect will explicitly rely on local, rather than global, linear approximations to the regression func-
tion. Even though adjudicating between these views is beyond the scope of this chapter, the appli-
cation discussed in Sect. 4.4 embraces this last suggestion and thus combines the CEM algorithm 
with OLS regression.
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However, compared to regression, preprocessing raw data with matching elimi-
nates, or at least reduces, the selection bias due to the set of covariates chosen by the 
researcher, which renders any subsequent parametric adjustment either irrelevant (if 
balance is fully achieved) or less important (if balance is partially achieved). To put 
it simply, given the plausibility of the selection on observables assumption, prepro-
cessing data with matching makes causal effect estimates based on the subsequent 
parametric analyses far less dependent on modeling choices and specifications. 
Quoting Ho et al. (2007: 233): “Analysts using preprocessing have two chances to 
get their analyses right, in that if either the matching procedure or the subsequent 
parametric analysis is specified correctly (and even if one of the two is incorrectly 
specified), causal estimates will still be consistent” (on this, see also Robins & 
Rotnitzky, 2001). Moreover, it has been proved that when matching is applied care-
fully so that n is not much smaller in the matched sample than in the original sam-
ple, it leads to a reduction in both bias and variance of estimates from subsequent 
parametric analyses (Rubin & Thomas, 1996; Imai & van Dyk, 2004).

4.3.2 � Useful Starting Point: Exact Matching

Let us formalize the selection on observables assumption. Remember that we aim to 
estimate the average treatment effect for the treated: ATT = E(Yi(1) − Yi(0)| Di = 1). 
Unfortunately, we do not observe the average outcome under control for those units 
in the treatment condition, E(Yi(0)|Di = 1). Instead, we observe the average outcome 
under control for those units in the control condition, E(Yi(0)|Di = 0). As discussed 
in Chap. 3, Sect. 3.2.3, a naive comparison of outcomes by treatment status provides 
a biased estimate of the ATT:

	

E Y D E Y D

E Y Y D E Y D
i i i i

i i i i i

1 1 0 0

1 0 1 0

� � �� � � � �� � �
� � � � �� � � � � �

| |

| |

–

– 11 0 0� � � � �� ��� ��– E Y Di i|
	

The first term on the right-hand side of the equation is the ATT (the quantity we are 
interested in); the second term is the sample selection bias that accounts for the dif-
ferences in outcome under control between treated and control units. We already 
know that only if the three requirements of an ideal RCT are met (i.e. (1) random 
selection, (2) random treatment assignment, and (3) large sample size), the sample 
selection bias is zero, and thus, the naive comparison of outcomes by treatment 
status provides an unbiased estimate of the ATT.

Now, let Xi be a set of pretreatment covariates. The selection of the set of covari-
ates Xi by the researcher is a critical step. According to the usual rules for avoiding 
omitted variable bias, Xi should include all variables that affect both the treatment 
assignment Di and, controlling for the treatment, the dependent variable Yi (this does 
not mean that every available pretreatment variable should be included in Xi because 
it will reduce efficiency). However, to avoid a “posttreatment bias” (King & Zeng, 
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2007), variables that may be even remotely consequences of the treatment variable 
should never be included in Xi (Cox, 1958: section 4.2; Rosenbaum, 1984; 
Rosenbaum, 2002: 73–4).

According to the selection on observables assumption, once we condition on Xi, 
assignment to treatment Di is independent from the unobserved potential outcomes 
Yi(0) and Yi(1):

	
Y Y D Xi i i i1 0� � � � �,

	

Under this assumption, conditioning on Xi, the average outcome under control for 
those units in the control condition is equal to the average outcome under control for 
those units in the treatment condition:

	
E Y D X E Y D X E Y Xi i i i i i i i0 0 0 1 0� � �� � � � � �� � � � �� �| , | , |

	

Similarly, conditioning on Xi, the average outcome under treatment for those units 
in the control condition is equal to the average outcome under treatment for those 
units in the treatment condition:

	
E Y D X E Y D X E Y Xi i i i i i i i1 0 1 1 1� � �� � � � � �� � � � �� �| , | , |

	

Thus, the expected value of Yi is independent from Di, given Xi. Using the Law of 
Iterated Expectations, the ATT is given by:

	

ATT E Y Y D E E Y Y D X Di i i i i i i i� � � � � ��� �� � � � � � ��� �� ���1 0 1 1 0 1 1– –| | , | ���
� � � ��� �� � � ��� �� ��� ��E E Y D X E Y D X Di i i i i i i1 1 0 1 1| , | , |–

	

The term E [ Yi(0)| Di = 1, Xi] is counterfactual, but under the selection on observ-
ables assumption, we have:

	
ATT E E Y D X E Y D X Di i i i i i i� � � ��� �� � � ��� �� ��� ��1 1 0 0 1| , | , |–

	

We can rewrite it as:

	
ATT E Dx i� �� �� | 1

	

where δx is the difference in means by treatment status at each value of Xi.

	
� x i i i i i iE Y D X E Y D X� � � ��� �� � � ��� ��1 1 0 0| , | ,–

	

This is the identification strategy employed by the so-called “exact matching.” 
Informally, it suggests preprocessing the data so that each treated unit is matched 
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with all the available control units that have exactly the same covariates values (do 
not confuse the exact matching with the one-to-one exact matching, which is more 
limited because it uses only one control unit for each treated unit). If, after exact 
matching, a large number of treated units are exactly matched with one or more 
control units, then we have an exact balance with little inefficiency. This means that 
a (weighted) difference between the average outcomes of matched treated and con-
trol units is sufficient to obtain an unbiased estimate of the ATT.  We added 
“weighted” in parentheses because, since each treated unit can be matched with 
more than one control unit, a weighted difference in means across exactly matched 
subclasses is suggested to account for the difference in the number of treated and 
control units. Beware that if some treated units cannot be matched because there is 
not at least one control unit with exactly the same covariates values, the exact 
matching procedure drops these treated units. By dropping some treated units, we 
alter the estimand: it is no longer the ATT, but a more local version of it (Crump 
et al., 2009; Rubin, 2010). As discussed in Chap. 3, Sect. 3.3.3, this may weaken the 
external validity of the estimates. This choice is reasonable as long as the researcher 
is transparent about it and its consequences in terms of the new set of treated units 
over which the causal effect is defined (Iacus et al., 2012: 5).

If an insufficient number of exact matches are found, and thus, many treated 
units have to be discarded, the researcher has to switch to other matching proce-
dures that preprocess the data so that each treated unit is matched with all the avail-
able control units that have approximately the same covariates values.

4.3.3 � Propensity Score Tautology

The best practice for approximate matching procedures involves two steps. The first 
step drops treated and control units outside the so-called “common support” of both 
groups. Informally, the common support assumption requires that for any treated 
unit with given covariate values, it is also possible to observe a control unit with the 
same (or approximately the same) covariate values. Thus, ensuring common sup-
port requires the researcher to drop observations where the empirical density of 
treated and control units does not overlap since including these observations would 
require extrapolation from the data, which can generate considerable model 
dependence.

To accomplish this first step, King and Zeng (2007) suggest pruning observations 
from the control group that are outside of the “convex hull” of the treatment group. 
Informally, with one pretreatment covariate X, the convex hull of the treatment 
group is the range of the subset of observations of X that are in the treatment group 
so that control units with values of X greater than max(X|T  =  1) or lower than 
min(X|T = 1) are discarded. Similarly, if any treated units fall outside the convex hull 
of the control units, these are also discarded (see also Iacus & Porro, 2009 for 
another conservative way of identifying common support). Remember once more 
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that dropping treated units changes the estimand: it is no longer the ATT, but a more 
local version of it.

The second step matches treated units with control units so that they are as close 
as possible according to some metric. However, as anticipated, establishing on 
which dimensions the degree of closeness between treated and control units has to 
be evaluated (i.e. selecting the pretreatment covariates to be included into Xi) is not 
easy: the researcher might be willing to include a large set of covariates, many of 
them multivalued or continuous. This problem is known as “the curse of 
dimensionality.”

Rosembaum and Rubin (1983) addressed this problem by developing a matching 
procedure based on the propensity score, defined as the conditional probability of 
receiving the treatment given the pretreatment covariates selected by the researcher. 
They start from the usual selection on observables assumption: once we condition 
on Xi, the average potential outcome under control for those units in the treatment 
condition should be equal to the average potential outcome under control for those 
units in the control condition. Thus, once we condition on Xi, the average potential 
outcome under control should be the same irrespective of the treatment condition:

	
E Y D X E Y D X E Y Xi i i i i i i i0 1 0 0 0� � �� � � � � �� � � � �� �| , | , |

	

They move on by demonstrating that if potential outcomes are independent of treat-
ment status conditional on the set of covariates Xi, then potential outcomes are also 
independent of treatment status conditional on a scalar function of the same covari-
ates Xi, labelled “propensity score.” They collapsed the set of covariates Xi into a 
monodimensional variable that measures, for each unit i, the probability of receiv-
ing treatment given the values of its set of covariates Xi, P(Di = 1| Xi). Usually, it is 
estimated through a logit or a probit function, which regresses Di on a constant term 
and the set of covariates Xi chosen by the researcher, without looking at Yi:

	
E Y D P X E Y D P X E Y P Xi i i i i i i i0 1 0 0 0� � � � �� � � � � � � �� � � � � � �� �| , | , |

	

Approximate matching methods based on the propensity score tend to skip the first 
step and to check for common support only after having estimated the propensity 
score for each observation i. Indeed, they drop control units that have a propensity 
score lower than the minimum or higher than the maximum of the propensity score 
of the treated units (Khandker et al., 2010).

However, the reader may have already realized that the propensity score solution 
by Rosembaum and Rubin (1983) is a tautology. The propensity score has been 
developed to solve the course of dimensionality problem (i.e. too many dimensions 
to be controlled for to match treated and control units). However, since we do not 
know the “true” propensity score, it has to be estimated through a probability model 
that adds the same dimensions as independent variables. Moreover, the only way to 
check the validity of the specification of the estimated propensity score (i.e. to check 
whether the estimated propensity score is a consistent estimate of the “true” 
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propensity score) is to stratify the sample over small propensity score intervals and 
then, for each covariate in each interval, test whether the means of the treated and 
control units are not statistically different. If this is not the case, the researcher has 
to improve the specification of the probit or logit function he/she used to estimate 
the propensity score and start again (Dehejia & Wahba, 1999; Becker & Ichino, 
2002). Unfortunately, there is no way out from the propensity score tautology: “[I]t 
works when it works [when matching on the propensity score balances the raw 
covariates], and when it does not work, it does not work (and when it does not work, 
keep working at it)” (Ho et al., 2007: 219).

4.3.4 � How to Choose Among Matching Procedures?

Once the researcher has estimated the propensity score for each unit i, they have to 
choose a metric to match treated and control units. Several metrics are available: 
they vary in the strategy they follow to select the matches and in the weight they 
associate with each match. Table 4.1 lists the most widely used approximate match-
ing procedures based on the propensity score and provides references for further 
readings (see also Caliendo & Kopeinig, 2008).

Given this long and non-exhaustive list of approximate matching procedures, 
how can we choose among them? The methodological literature does not provide a 
clear-cut answer. Since the main diagnostics of success in matching are balance (i.e. 
the degree to which the treatment and the control group covariate distributions 
resemble each other) and the number of observations remaining after preprocessing 

Table 4.1  Commonest approximate matching techniques based on the propensity score

Technique Description
Further 
readings

Nearest 
neighbor 
matching

For each treated unit, the algorithm finds the control unit with 
the nearest propensity score. This can be done with or without 
replacement. In the former case, an untreated unit can be used 
more than once as a match. In the latter case, if the nearest 
control unit has already been matched to another treated unit, 
the algorithm does not consider it and searches for a new one.

Smith (1997), 
Smith and 
Todd (2005)

Caliper and 
radius 
matching

For each treated unit, the caliper matching algorithm finds the 
closest control unit whose propensity score falls within a 
radius r chosen by the researcher. The radius version matches 
each treated unit with all the control units within the radius r.

Smith and 
Todd (2005), 
Dehejia and 
Wahba (2002)

Stratification 
matching

The algorithm partitions the sample into a set of intervals 
(strata) so that in each stratum, the propensity score of treated 
and control units have the same mean value.

Imbens (2004)

Kernel 
matching

The algorithm matches every treated unit with a weighted 
average of (nearly) all control units with weights that are 
inversely proportional to the distance between the propensity 
scores.

Heckman et al. 
(1997, 1998)
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the raw data, a rule of thumb is to preprocess raw data by running as many approxi-
mate matching procedures as possible. To avoid any confirmation bias, it is crucial 
that the researcher performs this comparison without consulting Y. Then, they have 
to choose the procedure that maximizes balance while keeping n as large as possible 
(Ho et al., 2007). As the reader may have foreseen, this search for the matching 
procedure that maximizes balance and the number of observations may be tedious 
as the researcher has to manually iterate between the available algorithms (Ho et al., 
2007; Iacus et al., 2009; Heinmueller, 2012; King & Nielsen, 2019). Section 4.4 
describes two techniques that address this problem.

To assess balance, Ho et  al. (2007: 221) suggest the following options: first, 
comparing the mean of each variable Xi in the treatment group with the mean of 
each variable in the control group (if one or more of these differences differ by more 
than a quarter of a standard deviation of the respective Xi variable, a better balance 
is needed) (Cochran, 1968); second, comparing treatment and control histograms 
one variable at a time; third, using a quantile–quantile plot (QQ plot) for each vari-
able to compare the full empirical distributions of each variable for the treatment 
and control groups; and lastly, the same QQ plot can be used for the propensity 
scores of the treatment and control groups. Even if tautological (it relies on the pro-
pensity score as a summary of the data to check whether the chosen propensity 
score matching is adequate), it may be a good low-dimensional summary (Ho et al., 
2007: 221–223; see also Rubin, 2001; Austin & Mamdani, 2006; Imai et al., 2008).

One might object that increasing balance by throwing away unmatched observa-
tions will reduce statistical efficiency (i.e. the mean squared error of the estimated 
effect might increase). However, “efficiency should be a secondary concern for 
observational students” (Keele, 2015: 325). In a randomized experiment, where 
selection bias is known to be zero, adding observations simply increases power. On 
the other hand, in an observational study, increasing the sample size may shrink the 
confidence intervals to a point that excludes the “true” treatment effect point esti-
mate (Cochran & Chambers, 1965). Moreover, Rosenbaum (2004, 2005) demon-
strated that in observational studies, reducing unit heterogeneity reduces both 
sampling variability and sensitivity to bias from unobserved covariates. Thus, as a 
rule of thumb, there are reasons for preprocessing raw data through matching pro-
cedures in order to reduce heterogeneity between the treatment and control groups 
according to a set of observable covariates (for theoretical and simulation results, 
see also Rubin & Thomas, 1992, 1996; Imai & Van Dyk, 2004; Imbens, 2004; 
Morgan & Winship, 2014; Stuart, 2010).

4.3.5 � The End: The Parametric Outcome Analysis

Having selected the matching algorithm that maximizes balance while keeping n as 
large as possible, the researcher has to move to the usual parametric analysis to 
obtain a causal effect estimate. Indeed, matching is just a non-parametric statistic 
tool for reweighting or simply discarding units in the raw data so that the treatment 
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and control groups become as similar as possible on a set of observable covariates 
or, to put it differently, so that the treatment variable becomes as close as possible to 
being independent of the background characteristics.

The causal effect can be estimated through a simple (weighted) difference in 
means between the observed outcomes of the treatment and control groups only if 
they are exactly balanced. Indeed, the difference in means is equivalent to regress-
ing Yi on Di without any control variables, thus assuming that Di and Xi are unre-
lated. This assumption is plausible only if exact matching has been achieved for the 
treated units, which is very unlikely. By computing a simple difference in means on 
a preprocessed sample where there is some remaining imbalance between the treat-
ment and the control groups, we would certainly incur in an omitted variable bias.

Thus, whenever the treatment and control groups are not exactly balanced, the 
researcher is better off using the same parametric model he/she would have also 
used on the raw data without preprocessing. Preprocessing data with matching 
makes causal effect estimates based on the subsequent parametric analyses far less 
dependent on modeling choices and specifications (Ho et  al., 2007; (Iacus 
et al., 2019).

4.4 � Empirical Illustration

LaLonde (1986) was the first to assess the performance of several non-experimental 
estimators by using experimental data as a benchmark. His experimental data came 
from the National Supported Work Demonstration (NSWD), a subsidized work 
experience program that took place in 1975–1976 in the United States. The program 
consisted into providing trainees with work in a sheltered training environment and 
then assisting them in finding regular jobs. To take part in the NSWD, potential 
participants had to satisfy a set of eligibility criteria intended to identify individuals 
with significant barriers to employment. Then, actual treatment (i.e. the subsidized 
work experience) was randomized among applicants meeting the eligibility criteria.

Using a simple difference in means between the observed post-intervention earn-
ings of the treatment and control groups, LaLonde (1986) obtained an unbiased 
estimate of the effect of the subsidized work experience: the program was estimated 
to increase post-intervention earnings by $1,794 with a 95% confidence interval of 
[551; 3,038]. Thus, according to this experimental result, the program was success-
ful. Then, he compared this experimental result to those obtained from several non-
experimental estimators applied to the NSWD observations that received training 
(treated units only) and a set of control observations constructed ex post from two 
standard population survey data sets (i.e. CPS and PSID). His findings show that 
alternative non-experimental estimators produce very different estimates, most of 
which deviate substantially from the experimental benchmark.

Several subsequent studies have reanalyzed LaLonde’s results, using more recent 
statistical procedures (e.g., Dehejia & Wahba, 1999; Becker & Ichino, 2002; Smith 
& Todd, 2005; Iacus et al., 2009, 2012, 2019). Notably, Dehejia and Wahba (1999) 
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restricted LaLonde’s data set to individuals from whom data on previous earnings 
were available in 1974 and compared several matching estimations to a fully satu-
rated in X OLS regression (original samples and replication materials are available 
on Dehejia’s page: https://users.nber.org/~rdehejia/nswdata2.html). They concluded 
that matching procedures dominated fully saturated in X regression. However, 
Smith and Todd (2005) showed that Dehejia and Wahba’s findings came from the 
specific sample chosen by the authors, but they did not hold on other samples. Thus, 
they argued that estimating the causal effect by simply preprocessing data with 
matching and then computing a (weighted) difference in mean between the treat-
ment and control groups seems not to perform better than a fully saturated in X OLS 
regression. Thus, as explained in the Sect. 4.3.5, after having preprocessed data with 
the matching procedure that maximizes balance while saving enough of n, a method 
of estimation should be applied. Smith and Todd (2005), for example, found that a 
combination of matching and difference-in-differences performs the best.

This section summarizes and simplifies for the reader the very latest contribution 
in this long querelle about LaLonde results and matching procedures. Indeed, we 
focus on the theoretical refinements by Heinmueller (2012) and Iacus et al. (2019) and 
on the algorithms they, respectively, developed: entropy balancing (EB; Heinmueller 
& Xu, 2013) and coarsened exact matching (CEM; Blackwell et al., 2009).

EB and CEM are similar from several points of view. Both of these techniques 
are used in observational studies to preprocess the raw data prior to the estimation 
of a binary treatment effect under the assumption of selection on observables, and 
both of them are aimed at improving the covariate balance between the treatment 
and control groups. Moreover, both techniques overcome the propensity score tau-
tology by requiring the researcher to establish the desired degree of covariate bal-
ance before the preprocessing adjustment. Lastly, both of them are computationally 
efficient and have been proved to reduce model dependence for the subsequent esti-
mation of the treatment effect via parametric outcome analysis.

However, they also differ in important ways. As explained below, CEM coarsens 
each covariate into substantively meaningful categories identified ex ante by the 
researcher and then matches units exactly on this coarsened scale. Treated and con-
trol units that cannot be exactly matched are discarded. As the reader already knows, 
by discarding treated units, CEM changes the estimand from the ATT to a more 
local treatment effect for the remaining treated units (see Iacus et al., 2009 for rea-
sons for why this can be beneficial). On the other hand, EB leaves the estimand 
unchanged because it does not discard treated units. Sections 4.4.1 and 4.4.2. assist 
readers in getting familiar with these two algorithms.

4.4.1 � Entropy Balancing

EB is a data preprocessing method proposed by Heinmueller (2012). Crudely put, 
the algorithm works as follows. As usual, the researcher has to identify a set of pre-
treatment covariates according to his/her substantive knowledge, previous studies, 
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and data availability. Then, for each covariate, the researcher has to pre-specify a 
potential large set of balance constraints to equate the moments of the covariate 
distribution between the treatment and the control groups. The moments refer to the 
mean (first moment), the variance (second moment), and the skewness (third 
moment). For example, the researcher can request that the mean values (first 
moments) of a set of covariates in the control group exactly equate to the mean 
values of the same set of covariates in the treatment group. Moreover, they can also 
include interaction terms such that, for example, the mean of one covariate is bal-
anced across subgroups of another covariate. Lastly, the algorithm searches for a set 
of entropy weights to satisfy the balance constraints imposed by the researcher, 
while remaining as close as possible to the uniformly distributed base weights to 
prevent loss of information.

EB has several attractive features. Its reweighting scheme directly incorporates 
the researcher’s knowledge about the moments in the treatment group and adjusts 
the weights to balance the covariate distribution exactly in finite samples, without 
discarding any treated unit. These are key improvements as they overcome the time-
consuming search over propensity score models without changing the estimand. 
Moreover, the weights that result from EB can be easily incorporated into any stan-
dard statistical model the researcher would have used even without the preprocess-
ing step.

To illustrate the functioning of EB, Heinmueller and Xu (2013) rely on the subset 
of the original LaLonde data set (1986) already used by Dehejia and Wahba (1999). 
The data set provides information on 185 treated units from the NSWD that were 
involved in the subsidized work experience and 15,992 non-participants from the 
Current Population Survey Social Security Administration File (CPS-1). The for-
mer constitutes the treatment group, and the latter the control group. Remember that 
this control group is not the one identified through randomization during the 
NSWD. Instead, this control group is built ex post by using the CPS.

The treatment variable, treat, is 1 for participants and 0 for nonparticipants. The 
outcome variable is real earnings in 1978 US dollars (re78). The available pretreat-
ment covariates include age (age), years of education (educ), marital status (mar-
ried), lack of a high school diploma (nodegree), race (black, hispanic), indicator 
variables for unemployment in 1974 (u74) and 1975 (u75), and real earnings in 
1974 (re74) and 1975 (re75). The estimand is the increase in earnings in 1978 due 
to the subsidized work experience.

By simply regressing re78 on the treatment variable and all the controls, it seems 
that being exposed to the subsidized work experience increased earnings in 1978 by 
$1,068 (Fig. 4.1). However, the 95% confidence interval is large enough that the 
relative estimate is not statistically different from 0. Remember that in this lucky 
case, we know from the NSWD experimental result that being exposed to the treat-
ment increased earnings in 1978 by $1,794 with a 95% confidence interval of [551; 
3,038]. Thus, the OLS estimate on the raw data is substantially lower than the 
benchmark effect established on the experimental data.

Thus, the authors preprocess the raw data using EB. The basic syntax of the com-
mand ebalance requires the researcher to list the treatment variable (treat) and the 
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Fig. 4.1  OLS regression on the raw data

pretreatment covariates he/she will focus on (e.g., age, educ, black, and hispan). 
The most important option in ebalance is targets(numlist) as it allows the researcher 
to impose the balance constraints for the included covariates. In detail, the researcher 
has to specify a number (1, 2, or 3) that corresponds to the highest covariate moment 
that should be adjusted for each covariate.

For example, this code requests that the mean, variance, and skewness of the 
variables age, educ, black, and hispan are adjusted: ebalance treat age educ black 
hispan, targets (3).

As shown in Fig. 4.2, the command returns the number of treated and control 
units. Note that EB does not discard treated units (185), thus keeping the original 
estimand. Then, it reports descriptive statistics on the mean, variance, and skewness 
of the selected covariates in the treatment and in the control groups, before and after 
the reweighting procedure. As requested, the algorithm perfectly balances the two 
groups on first-, second-, and third-order moments by fitting the EB weights. By 
default, the EB weights are stored in a variable named _webal and can be readily 
used for subsequent analysis.

By writing 2 instead of 3 in parentheses, the algorithm would have balanced only 
the mean and variance of the same variables; by writing 1, it would have balanced 
only the mean of the same variables. The command also allows to specify specific 
constraints to each variable (see Fig. 4.3). For example, according to the command:

ebalance will adjust the first moment for age and educ, the first and the second 
moments for black and the first, second, and third moments for hispan.

To reweight the original LaLonde (1986) data set, Heinmueller and Xu (2013) 
adjust the sample by including the means, variances, and skewness of all of the 10 
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Fig. 4.2  The output of the ebalance command

Fig. 4.3  Options of the ebalance command

pretreatment covariates plus squared terms and first-order interactions of the same 
10 covariates and cubed terms for age, educ, re74, and re75.

By running the initial OLS regression on the reweighted data, the treatment 
effect estimate suggests that being exposed to the subsidized work experience 
increased earnings in 1978 by $1,761 with a 95% confidence interval of [333; 
3,190]. Thus, the simple OLS estimate on the reweighted data is very close to the 
experimental target answer ($1,794 with a 95% confidence interval of [551; 3,038]). 
A similar conclusion may be achieved by regressing re78 on treat only (Fig. 4.4).

4.4.2 � Coarsened Exact Matching

All the matching procedures based on the propensity score (see Table 4.1) assume 
that the data generation process is based on simple random sampling, which means 
that drawing repeated hypothetical samples of fixed size n < ∞at random from a 
population of θ units with covariates X, each sample of n observations has an equal 
probability of selection.
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Fig. 4.4  OLS regression on the reweighted data

CEM modifies this assumption by theorizing that the data generation process 
guarantees stratified random sampling. Informally, the adjective “stratified” means 
that random sampling does not apply directly to the population of θ units, but to 
strata or partitions, within this population, that are identified by the researcher 
according to his/her knowledge of the set of covariates X. For example, if the set of 
covariates X includes age, gender, and earnings, a stratum may refer to young males 
making more than $25,000. Inside this stratum, sample selection should be random 
(Iacus et al., 2019: 48–49). Then, as with all the other matching procedures, CEM is 
grounded on the selection on observables and on the common support assumptions 
(even if inside each stratum; see Iacus et al., 2019: 50–51).

As the reader may have already realized, the emphasis is on the definition of 
strata by the researcher. The authors underline that this step is case specific and criti-
cally reflects “the knowledge the investigator must have” (Iacus et al., 2019: 54). 
Indeed, the CEM algorithm helps the researcher in coarsening each variable among 
the set of pretreatment covariates judged as relevant into substantively meaningful 
categories that reduce variability while at the same time preserving information. 
The easiest example is the variable reporting the years of education that can be eas-
ily coarsened into categories such as high school, some college, college gradu-
ates, etc.

Starting from the LaLonde’s data set (1986), Iacus et  al. (2009, 2011, 2012, 
2019) show that CEM, on average, dominates commonly used matching procedures 
in a large variety of real and simulated data sets because it reduces imbalance, model 
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dependence, estimation error, bias, variance, and mean square error. Moreover, it 
usually produces more matched units. Furthermore, while to improve propensity 
score matching, the researcher has to marginally change and rerun the model, 
recheck imbalance, and rerun the model again several times (King & Nielsen, 2019), 
and CEM makes it easier to find a specification that improves balance. Indeed, strata 
are explicitly defined ex ante by the researcher according to his/her substantive 
knowledge on the covariates: reducing maximum imbalance on one variable never 
has any effect on the maximum imbalance specified for any of the other variables 
(Iacus et  al., 2012: 21). Let us apply this algorithm to the subset of the original 
LaLonde data set (1986) already used by Dehejia and Wahba (1999). For an appli-
cation on the original experimental LaLonde’s data set, see Blackwell et al. (2009).

First, we have to assess the imbalance in the original unmatched data through the 
λ1 statistic (Iacus et al., 2008). This statistic ranges from 0, meaning perfect global 
balance between the treatment and the control groups, to 1, meaning complete sepa-
ration between the two (Fig. 4.5).

The imb (meaning “imbalance”) command works as follows. The researcher has 
to list the pretreatment covariates they want to focus on (in the example, age, educ, 
black, and hispan), followed by the indication of the treatment variable (treat). First, 
the Stata output shows the λ1 statistic. In our example, λ1 = 0.893, thus signaling that 
the original unmatched data are highly unbalanced. Note that the λ1 value is not 
valuable on its own: it is as a point of comparison between matching solutions. The 
value 0.893 is a baseline reference for the unmatched data. The researcher has to 
compare the λ1 value obtained on the matched data to the value 0.893 obtained on 
the unmatched data and verify whether there has been an increase in balance due to 
the matching solution (Blackwell et al., 2009: 531).

Then, the output shows additional unidimensional measures of imbalance. The 
first column, labelled L1, reports the statistics λ1 computed for each variable sepa-
rately. The second column, mean, reports the difference in means between the treat-
ment and control groups. The remaining columns report the difference in the 
empirical quantiles of the distributions of the two groups for the 0th, 25th, 50th, 75th, 
and 100th percentiles for each variable (Fig. 4.6).

Fig. 4.5  The output of the imb command
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Fig. 4.6  The output of the cem command

Having obtained our baseline reference λ1 value for the unmatched data, we 
apply the CEM algorithm by calling the cem command. Crudely put, CEM (1) 
begins with the covariates X and makes a copy X∗, (2) coarsens X∗ according to user-
defined cut-points (or CEM’s automatic binning algorithm), (3) creates one stratum 
per unique observation of X∗ and places each observation in a stratum, and (4) 
assigns these strata to the original data, X, and drops any observation whose stratum 
does not contain at least one treated and one control unit. Note that (4) may drop 
both treated and control units, thus changing the estimand. However, it does it trans-
parently. Obviously, fewer strata will result in more heterogeneous observations 
within the same stratum and thus higher imbalance and vice versa (Blackwell et al., 
2009: 527).

According to this basic coding, cem performs an automated coarsening. The out-
put provides a small table reporting the number of observations in total (All), 
matched and unmatched by treatment group. Notably, two treated observations have 
been discarded because there were no good matches (thus, the estimand is changed).

Then, the output provides information about the imbalance in the matched data. 
The imbalance in the preprocessed data set is equal to 0.343, which means that the 
common ground between treated and control units is equal to 66%. Since our base-
line reference λ1 value for the unmatched data is 0.893, this matching solution 
increases the balance between the two groups. Note that cem also generates weights 
(stored in cem weights) for use in the subsequent analysis (Fig. 4.7).

As anticipated, the added value of cem is that it allows the researcher to set the 
coarsening for each variable such that substantively indistinguishable values are 
grouped together. For example, the code below asks cem to match all binary 
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Fig. 4.7  The output of the cem command with specific coarsening

Fig. 4.8  OLS regression with cem weights

variables and education exactly and age according to standard labor force classes 
(i.e. 15–19, 20–24, 25–34, 35 and over).

This matching solution differs from that resulting from the automated approach: 
the balance is worse (from 0.343 in the automated preprocessed data set to 0.431 in 
the data set preprocessed according to user choices), but all the treated units have 
been matched. Since we have not achieved a perfect balance between treatment and 
control groups, it a good idea to adjust for the remaining imbalance via a statistical 
model. This can be done by taking advantage of the cem weights (Fig. 4.8).
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By running the initial OLS regression on the reweighted data, the treatment 
effect estimate suggests that being exposed to the subsidized work experience 
increased earnings in 1978 by $1,499 with a 95% confidence interval of [571; 
2,428]. Thus, the OLS estimate on the cem reweighted data is quite close to the 
experimental target answer ($1,794 with a 95% confidence interval of [551; 3,038]).

4.5 � Conclusion

This chapter discussed the necessary assumptions for statistical correlation to jus-
tify a causal interpretation when, as is usually the case in practice, controlled ran-
domization is unfeasible or politically sensitive and there are no convincing natural 
experiments providing a substitute for randomization.

First, the chapter recognized that in observational studies, causal inference is 
always hazardous due to the strong assumption of selection on observables, which 
is not easily testable by looking at the raw data (see Oster, 2019 on evaluating 
OLS robustness to the omitted variable bias). The chapter clarified that, ultimately, 
the reliability of the estimates obtained by preprocessing the raw data depends on 
the validity of the selection on observables assumption, which should be discussed 
on a case-by-case basis by the researcher. Simply put, once you have identified a 
set of covariates Xi, you should ask yourself whether there are additional unob-
servable variables capable of pushing units into treatment. If the answer is “No,” 
then the assumption of selection on observables is theoretically met and matching 
and weighting procedures may credibly help you in finding out causal 
relationships.

Second, the chapter endorsed the practice of preprocessing the raw data through 
weighting and matching techniques in order to generate well-balanced samples and 
then applying the same familiar methods of estimation the researcher would have 
used anyway on the original data set, without preprocessing. In fact, even if these 
implementation steps do not overcome the selection on observables assumption (i.e. 
even if your answer to the previous question is “Yes”), weighting and matching 
techniques will reduce model dependence for the subsequent estimation of the treat-
ment effect via parametric analysis. This means that effect estimates become far less 
sensitive to seemingly arbitrary choices in model specification: if the treatment and 
control groups are well balanced, slightly different model specifications are less 
likely to alter the substantial empirical conclusion of the analysis. Thus, preprocess-
ing the raw data through weighting and matching techniques to generate well-
balanced samples is strongly suggested. In this regard, remember that CEM may 
discard treated units, while EB leaves the estimand unchanged. Even if dropping 
unmatched treated units can be beneficial (Iacus et al., 2009), also this choice should 
be openly discussed on a case-by-case basis by the researcher: for example, drop-
ping a treated respondent in a survey may be easier to justify than dropping an entire 
geographical region.
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The hands-on section provided practical guidance for the implementation of the 
EB and CEM algorithms, respectively. This exercise was performed on the well-
known LaLonde (1986) data set, a lucky case in which we know the “true” average 
treatment effect from an RCT and we have to match or weight the observations and 
to adjust the model specification so that the estimation becomes as close as possible 
to the experimental result (see also Costalli & Negri, 2021 for the application of 
CEM to the evaluation of the effectiveness of peacekeeping missions in the Bosnian 
civil war).

This is not what usually happens in practice. Since researchers do not know the 
“true” average treatment effect, they face several decisions during the implementa-
tion of the statistical analysis, and there are not always rules of thumb to be applied. 
The most desirable feature of the implementation steps suggested here is that they 
force researchers to take the assumptions that have to be met out of the shadows and 
make them explicit before looking at the outcomes.

Several things may go wrong. For example, researchers may miss a higher 
dimensional aspect of imbalance when checking lower dimensional summaries. 
This may affect the estimates. However, since this may also happen without prepro-
cessing, following the steps suggested here should at least not make things worse. 
Moreover, when the preprocessing implies the loss of some treated unit, researchers 
should openly discuss the consequences in terms of external validity.

Lastly, as with the techniques covered in Chaps. 3 and 5, the research design 
discussed here are suitable for establishing a causal relationship between a given 
variable of interest, the treatment, and an outcome variable, while controlling for 
confounders. The implementation steps described here are not designed to investi-
gate the paths linking a factor of interest to the outcome (see Chap. 6), to identify 
the full set of conditions under which the positive outcome is observed (see Chap. 
7) or the mechanisms (see Chap. 8) behind the uncovered effects. While recognizing 
these limitations, these implementation steps help researchers in evaluating whether 
they are meeting the necessary conditions for generating valid inferences in their 
applications or how far they go. Good luck with your applied research.

Review Questions
	1.	 Discuss the reasons why statistical association is not a sufficient, but still a nec-

essary, condition to make a causal claim.
	2.	 Formalize the causal inference identification problem through the lens of the 

potential outcomes framework and discuss it.
	3.	 Do matching procedures overcome the inferential problems related to the selec-

tion on observables assumption?
	4.	 What are the differences between exact and approximate matching procedures? 

List the aforementioned four approximate matching procedures based on the 
propensity score and describe two of them.

	5.	 Why can the propensity score solution to the curse of dimensionality be seen as 
a tautology?

	6.	 Once treated units have been matched to control units according to one among 
the available matching algorithms, is it correct to estimate the causal effect 
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through a simple difference in means between the observed outcomes of the 
treatment and control groups?

	7.	 Compare EB and CEM preprocessing techniques by highlighting how they, 
respectively, address the propensity score tautology.

	8.	 Define the following keywords:

•	 Confirmation bias
•	 Selection on observables
•	 Model dependence
•	 Common support
•	 Propensity score
•	 Balance

Replication Material
•	 Data and replication materials for Section 4.4 are available at https://github.com/

FedraNegri/CorrelationIsNotCausationYet-.git
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