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Abstract Aim of this study is to develop a calibration procedure through Machine 
Learning to upgrade the low-cost air quality sensor performance and investigate the 
generalization of this function over a specific area towards air quality data fusion. 
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1 Introduction 

Bad air quality (AQ) has a negative impact on peoples’ quality of life. The small 
number of monitoring stations used for the official AQ monitoring and the opera-
tionally available air pollution modelling tools still leave open space for improving 
local AQ knowledge. The KASTOM project (www.air4me.eu) is developing a versa-
tile and flexible air quality monitoring and forecasting system by deploying an IoT-
oriented network of low-cost AQ sensor nodes (LCAQSN), while in parallel devel-
oping a state-of-the-art emission modeling module combined with state-of-the-art 
three-dimensional AQ models. LCAQSN can cover larger areas due to their low cost 
but are lacking the necessary accuracy. 

2 Materials 

The Greater Thessaloniki Area (GTA) is the second largest urban agglomeration 
in Greece hosting more than 1 million inhabitants. The KASTOM project has 
installed 33 LCAQSN in the GTA including: (a) Particle sensors (PM10–PM2.5: 
PMS5003, Beijing Plantower Co., Ltd.), (b) sensors for gaseous pollutants (NO2, 
O3 and CO: Alphasense Ltd., U.K.) and meteorological sensors (Air Temperature, 
Relative Humidity and Air Pressure, BME280 Bosch Sensortec, Germany).
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Fig. 1 LCAQSN network in the GTA (Dots). : KORD : AGSOF 

Table 1 Dataset description 

NodeSet (Nset) FusionSet (Fset) Target variables 

PM10, PM2.5, PM1, CO, O3, NO2, 
relative humidity, temperature, 
pressure 

NodeSet + wind speed, wind 
direction, precipitation, friction 
velocity, saturation, saturation ratio, 
traffic 

PM10, O3, NO2 

In this study, we have collocated six nodes with two reference stations (Fig. 1) 
in Agias Sofias (AGSOF) and Kordelio (KORD) areas, classified by the European 
Environment Agency as an urban traffic and urban industrial station respectively. 

The initial dataset (NodeSet) consists of six nodes measurements (Node1–3 
located in AGSOF and Node4–6 located in KORD) for the period of 21/12/2019– 
10/03/2020 and the reference stations measurements for PM10, O3 and NO2 (NO2 

measurements in KORD omitted due to missing value problems). The additional 
dataset (FSet) included meteorological modeling (WRF) and free traffic flow data 
(Salanova et al., 2018). All variables are presented in Table 1. 

3 Methods 

The first step of the computational procedure aimed at generating a set of features, 
capturing the maximum amount of information. We therefore applied time lags (from 
1 to 12 h) and rolling—aggregation statistics (6 and 12 h) to all the variables, leading to
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161 features for the Nset and 401 features for the Fset. To reduce noise introduced by 
features, a feature reduction procedure was followed employing the Random Forest 
Feature Importance (RFFI) method. We then employed a Machine Learning (ML)-
oriented modeling approach, making use of the reference station measurements as 
target parameters (PM10, O3 and NO2) to calibrate and upgrade the KASTOM nodes 
performance. Models were trained in the two subsets, for each sensor and location. 
A Gradient Boosting algorithm was used (Friedman, 2001), combining the outputs 
sequentially from individual regression trees, where each new tree helps to correct 
errors made by a previously trained tree. 

To evaluate the initial performance of the LCAQSN, the Pearson Correlation 
Coefficient (r) and Coefficient of Divergence (CoD) were calculated. The ML models 
were evaluated using a fivefold time forward cross validation on a rolling basis, 
using the Coefficient of Determination (R2) and the Relative Expanded Uncertainty 
(REU), following the methodology described in the Guide to the Demonstration 
of Equivalence of Ambient Air Monitoring Methods (EUD, 2008). According to 
the European Air Quality Directive, uncertainties for “class 1 sensor” or indicative 
measurements are 50, 25, 30% and for “class 2 sensor” or objective measurements 
are 100, 75, 75% for PM10, NO2 and O3 respectively. 

4 Results 

Field calibration of an LCAQSN network requires the individual nodes to perform 
identical to each other, this being the first condition to apply the same calibration 
function. This was checked with the aid of the CoD versus Pearson (Fig. 2). All PM10 
sensors scored very high Pearson and very low CoD thus behaving identical, but the 
gas sensors, and especially O3 sensors in the AGSOF, displaying a more diverse 
behavior therefore suggesting that in this case, the generalization of the calibration 
functions could be more challenging. 

Fig. 2 Pearson against CoD. Left: AGSOF, right: KORD
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The RFFI selected the most relevant features, mostly the ones deriving from 
the KASTOM nodes’ measurements, but also meteorological factors deriving from 
modeling (Fig. 3). On the other hand, traffic related features are only chosen in the 
AGSOF location (an urban traffic station). Also, traffic features seem to influence 
more NO2 and PM10 than O3. 

. 
While raw measurements display extremely poor scores against reference 

measurements, the computational procedure and the XGBoost shows promising 
results (Table 2). In most of the cases the use of the Fset leads to better output 
than the use of the Nset, though by a small margin. 

In terms of REU, the calibrated PM10 can be considered as “class 1 sensor” in 
both locations, while the calibrated O3 are above the desired threshold but have still 
improved their performance and be considered as “class 2 sensor” (Fig. 4).

Fig. 3 Feature selected from the RFFI by category for each node 

Table 2 R2 score for XGBoost and raw measurements. Bold: best performance per sensor 

Set Node PM10 NO2 O3 Node PM10 O3 

Fset 1 0.82 0.69 0.76 4 0.8 0.72 

Nset 1 0.78 0.61 0.75 4 0.78 0.72 

Raw 1 −27.96 −4.28 −1.95 4 −25.93 −12.18 

Fset 2 0.81 0.65 0.69 5 0.8 0.74 

Nset 2 0.81 0.6 0.69 5 0.79 0.69 

Raw 2 −24.43 −10.46 −13.95 5 −23.95 −1.36 

Fset 3 0.82 0.67 0.74 6 0.77 0.74 

Nset 3 0.78 0.6 0.73 6 0.77 0.74 

Raw 3 −33.35 −1.35 −0.3 6 −20.54 0.67 
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Fig. 4 REU for PM10 (up) and O3 (down) in AGSOF (left) and KORD (right). Red lines: raw 
measurements, blue lines: calibrated measurements, black line: “class 2 sensor” threshold, green 
line: “class 1 sensor” threshold 

5 Conclusions 

The intercomparison of LCAQSN for a small time period, proves that PM10 sensors 
are behaving similar in the same locations and the proposed computational calibration 
procedure can upgrade their performance as indicative measurements for regulatory 
purposes, while it may be possible to apply the same approach to the rest of the 
network. For NO2 and O3, while the calibration functions can improve the sensors’ 
response, the desired REU levels couldn’t be reached. In every case data fusion 
is improving results and therefore more data sources and additional effort towards 
better fusion should be considered. 
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Questions and Answers 

QUESTIONER Zhaoyue Chen 
QUESTION Thanks, how could you determine lagged hour length when 

enriching feature space? 
ANSWER The lagged length was determined after trial-and-error experi-

ments, while it has been observed from previous computational 
exercises by our group that no more than 24 hours lagged is 
important for low-cost sensor nodes calibration. 

QUESTIONER Bas Mijling 
QUESTION Low-cost sensors are calibrated at two different sites. What would 

happen if the sensor location snapped? Does the calibration 
obtained at site 1 is applicable at site 2? 

ANSWER This is a very interesting question and can be answered thoroughly 
only if further research is applied. From our knowledge of the 
field and ongoing experiments, applying a calibrated function from 
Agias Sofias to Kordelio and vice versa is yielding good results in 
terms of uncertainty and R2 for PM2.5 and PM10, and acceptable 
metrics for O3. Although the question about the spatial generaliz-
ability of the calibration function cannot be answered with only two 
reference stations collocated with the low-cost sensors. Data from a 
third collocated reference station, not included in this study, show 
more ambiguous behavior and thus applying functions by prox-
imity or by type of station (urban, suburban, traffic, background, 
etc.) or applying one generalized calibration function trained in all 
available locations, would be considered for calibrating the whole 
network of 33 devices.
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