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Abstract This paper presents the comparison of a proposedmeasure of dissimilarity
between time series (COMB) with three baseline measures. COMB is a convex com-
bination of Euclidean distance, a Pearson-correlation-based distance, a Periodogram-
based measure and a distance between estimated autocorrelation structures. The
comparison resorts to 1-Nearest Neighbour classifier (1NN) since the effectiveness
of the dissimilarity measures is directly reflected on the performance of 1NN. Data
considered is available in the University of California Riverside (UCR) Time-Series
Archive which includes datasets from awide variety of application domains and have
been used in similar studies. The COMB measure shows promising results: a good
trade-off performance-computation time when compared to the alternative distances
considered.
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1 Introduction

The use of dissimilarity measures between time series is critical in several data
analysis tasks which range from simple querying to classification, clustering and
anomaly detection. The role of dissimilarity measures in these contexts has been
acknowledged by several works, e.g. [1–3].

Recently, in [4], we proposed a new dissimilarity measure, COMB, a convex
combination of four (normalized) distancemeasureswhich offer complementary per-
spectives on the differences between two time series: the Euclidean distance which
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captures differences in scale; a Pearson-correlation-based measure that takes into
account linear increasing and decreasing trends over time; a Periodogram-basedmea-
sure that expresses the dissimilarities between frequencies or cyclical components
of the series and a distance between estimated autocorrelation structures, comparing
the series in terms of their dependence on past observations.

COMB achieved quite good results when clustering electricity market prices time
series in European regions and also when clustering electricity loads time series
(Portuguese Transmission System Operator data)—[4, 5].

In this work, we conduct an experimental analysis to evaluate the comparative
performance of the proposed combined distance measure.

The remainder is structured as follows: first we present the Methodology used
to provide the comparison of COMB with alternative distance measures; then, the
Data Analysis and Results section brings some insights regarding the comparative
analysis and, finally, we end with Discussion and Future Research of the presented
work.

2 Methodology

2.1 UCR Repository

Weresort to theUniversity ofCaliforniaRiverside (UCR)Time-SeriesArchivewhere
we can find time series of diverse lengths and numbers of target classes, with cor-
responding test and train sets—[6]. The UCR time-series datasets are from a wide
variety of application domains and have been used to study the comparative per-
formance of time-series classifiers—e.g. [2]—and specifically used in comparative
studies of dissimilarity measures between time series, e.g. [7].

We limit the datasets considered to 57 taking into account computational cost.
This is a criterion that has been invoked in similar studies—e.g. [8]. In our study we
found that, for example, the script routine, when referring to the analysis of the “Ges-
turePebbleZ2” UCR dataset, took 18:45h to run (using a PC with processor Intel(R)
Core(TM) i7-10750H CPU@ 2.60 2.59GHz with a RAM of 32 GB). Nevertheless,
we tried to include dissimilar datasets, namely, in what regards the number of target
classes: 28 datasets have 2 target classeswhile 29 havemore than 2 target classes. The
selected datasets are presented in the Appendix. As in previous studies—e.g. [7]—
and although this can limit the analysis, z-standardization is adopted for fairness,
since many of the UCR series are presented in their z-standardized form.
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2.2 Using the 1NN Classifier

We follow a methodology suggested in previous studies that were conducted to
compare several dissimilarity measures and their variants—e.g. [7]: we use one
nearest neighbour (1NN) classifier on labelled data to evaluate the performance of
the distance measures. In fact, since the distance measure used is critical to 1NN
accuracy, this indicator directly reflects the effectiveness of the dissimilarity measure
used. According to [7] p. 1890, 1NN classifiers are suitable methods for distance
measure evaluation for several reasons:

1. resemble the problem solved in time-series similarity search;
2. are parameter-free and easy to implement;
3. are dependent on the choice of distance measure;
4. provide an easy-to-interpret (classification) accuracy measure which captures

if the query and the nearest neighbour belong to the same class.

2.3 Dissimilarity Measures

We compare COMB [4] with three alternative dissimilarity measures between time
series. Comparisons are provided with three baseline measures: Euclidean distance,
DTW (Dynamic Time-Warping with Sakoe-Chiba band [9] windowing considering
20% of the time-series length) and Complexity Invariance Distance (CID).

COMBDistance. Considering two time series xt and yt , (t = 1, . . . , T ), the COMB
distance is a convex combination of four distances: Euclidean (dEuclid), a Pearson-
correlation-based measure (dPearson), a Periodogram-based measure (dPeriod) and
an autocorrelation-based measure (dAutocorr ).

The Euclidean distance, dEucl , yields the sum of Euclidean distances correspond-
ing to each pair (xt , yt ) capturing the differences in scale:

dEucl =
(

T∑
t=1

(xt − yt )
2

) 1
2

. (1)

The Pearson-correlation-based measure takes into account linear increasing and
decreasing trends over time. The following measure was suggested by [10]:

dPearson =
√
1 − rxt ,yt

2
, (2)

where rxt ,yt represents the Pearson correlation.
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The Periodogram-based measure [11] considers the Euclidean distances between
the Periodograms expressing the contribution of the various frequencies or cyclical
components to the variability of the series,

dPeriod =
⎛
⎝[ T

2 ]∑
j=1

(
Px

(
w j

) − Py
(
w j

))2⎞⎠
1
2

, (3)

where Px
(
w j

)
is the Periodogram of time series xt at frequencies w j = 2π j/n,

j = 1, . . . , [n/2] in the range 0 to π, being [n/2] the largest integer less or equal to
n/2,

Px
(
w j

) =
(
1

n

) ∣∣∣∣∣
T∑
t=1

xte
−i tw j

∣∣∣∣∣
2

. (4)

The autocorrelation-based distance [12] calculates Euclidean distances between
autocorrelation structures, comparing the series in terms of their dependence on past
observations

dAutocorr =
(

L∑
l=1

(rl (xt ) − rl (yt ))
2

) 1
2

, (5)

where rl (xt ) and rl (yt ) represent the estimated autocorrelations of lag l of (xt ) and
(yt ), respectively.

In this study, we specifically use an uniform convex combination, all four weights
being equal.

Eucl—Euclidean Distance. The comparison with the performance of the
Euclidean distance is unavoidable in all studies of this type. Even because, despite
its simplicity, this distance can obtain surprisingly good results especially if the size
of the training set/database is relatively large, [13], p. 281.

DTW—Dynamic Time-Warping. DTW is an elastic measure that computes the
optimal alignment between two time series tominimize the sum of distances between
aligned elements.

Considering two time series xt and yt , (t = 1, . . . , T ), let M be the T × T matrix
where each element is a dissimilarity di, j (commonly the Euclidean distance is con-
sidered) between any pair of elements xi and y j (i, j = 1, . . . , T ).
Awarping path P = ((i1, j1) , (i2, j2)) is a series of indexes ofM defining amapping
from each element of one time series to one, or more than one, or even none, of the
elements of the other time series. A valid path should satisfy several conditions, for
example, ik+1 ≥ ik ensures the path does not go back in time. For other step patterns
constrains see, e.g. [14]. For each path P , through M , the total sum of the distances
along it is
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D (P) =
K∑

k=1

dik , jk . (6)

For example, the Euclidean distance is the total distance along the diagonal of M .
The goal of the DTWmeasure is to find a path P∗ that minimizes the total distances
D (P):

P∗ = min
P

D (P) . (7)

To improve the efficiency of the procedure, it is a common practice to limit the
time distortion (e.g. considering 20% of the time-series length). For example, the
Sakoe-Chiba band [9] limits the warping path to a band of size T0 directly above and
to the right of the diagonal of thematrixM , by enforcing the constraint |ik − jk | < T0.

CID—Complexity Invariance Distance. CID measure was proposed by [15]. The
time series’ complexity is measured by stretching them and measuring the length of
the resulting lines.

C I D (xt , yt ) = dEucl .CF (xt , yt ) , (8)

where

CF (xt , yt ) = max (CE (xt ) ,CE (yt ))

min (CE (xt ) ,CE (yt ))
(9)

is the Complexity Factor, and

CE (xt ) =
(

T−1∑
t=1

(xt − xt+1)
2

) 1
2

(10)

is the Complexity Estimate of time series xt .
We resort to the R package “TSclust” [12] where the four distances that compose

the COMB distance, the CID and the DTW (using the “dtw” package [14]) are
implemented.

2.4 Evaluating the Classification Results

The evaluation of performance of the 1NN classifiers regards the test sets of the UCR
time series considered. Balanced accuracy measure (average between sensitivity and
specificity) when dealing with unbalanced sets is suggested by [6].We propose using
the Huberty index (H I )—e.g. [16], as a measure of classification performance:
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H I =
K∑

k=1

pc − pdef

1 − pdef
, (11)

where pc and pdef are the proportion of observations correctly classified and the
proportion of observations in the modal class, respectively. This measure is clearly
useful for the evaluation of performance in unbalanced datasets. Furthermore, it
provides a fair and interpretable viewof the success of classification taskswhich could
be overestimatedwhenhigh accuracy results are obtained in strongly unbalanced sets,
e.g. a 90% accuracy result when a target class includes 95% of observations yields a
negative Huberty index (one should do better by simply allocating all observations to
the modal class). In addition, the computational time is also taken into account in the
evaluation of the 1NN results referring to the four dissimilarity measures considered.

After the evaluation of aggregated results, comparisons referring to specific
datasets are considered to get some dissimilarities’ performance-related insights.
On a “closer look to specific problems”, [2] resorts to the selection of some time
series from each target class, trying to capture the main differences between these
classes on specific datasets. We propose using the medoids of each class as defined
by each dissimilarity measure to obtain those insights. The medoid definition is
the observations that minimize the sum of all distances to elements in the same
class—[17].

3 Data Analysis and Results

3.1 General Comparisons

A brief exploratory data analysis leads to the conclusion that, in the datasets con-
sidered, DTW generally provides better classification results than the alternative
distances, followed by COMB—Table1. COMB comparative results are illustrated
in Fig. 1. However, for time series with two target classes (K=2) only, COMB pro-
vides slightly better results—see Table1. In what regards the computation timeDTW
clearly provides the worst results—see Table2.

According to the Friedman test’s results, there are no significant differences
between the distributions of HI regarding the four dissimilarity measures (see
Table3). However, significant differences can be found when analysing data with
more than two classes (K>2), which, after pairwise comparison of Dunn’s test, can
be referred to the significant difference between HI.Eucl and HI.DTW (see Table4).

The differences between computation times regarding the four dissimilarity mea-
sures are all significant according to Friedman’s test—see Table5.
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Table 1 All time-series results

Hubert index Computation time (seconds)

HI.Eucl HI.DTW HI.CID HI.COMB t.Eucl t.DTW t.CID t.COMB

Mean 0.581 0.631 0.599 0.603 0.01 7846.60 47.53 651.27

Std. Dev. 0.279 0.268 0.273 0.261 0.01 15500.13 66.81 959.48

Coef. Var. 0.480 0.425 0.456 0.433 1 1.98 1.41 1.47

Perc. 25th 0.385 0.460 0.448 0.448 0.00 313.80 5.23 49.64

Perc. 50th 0.633 0.679 0.609 0.636 0.00 1117.40 13.00 157.96

Perc. 75th 0.799 0.842 0.830 0.791 0.02 7241.48 88.95 1047.15

IQR 0.414 0.382 0.382 0.343 0.02 6927.68 83.72 997.51

Fig. 1 Plot of Huberty index results: COMB versus Euclidean, DTW and CID

Table 2 Huberty index results: time series with two target classes versus more than two target
classes

Two target classes More than two target classes

HI.Eucl HI.DTW HI.CID HI.COMB HI.Eucl HI.DTW HI.CID HI.COMB

Mean 0.516 0.547 0.544 0.562 0.642 0.712 0.651 0.643

Std. Dev. 0.346 0.298 0.321 0.314 0.179 0.212 0.210 0.194

Coef. Var. 0.669 0.544 0.591 0.559 0.278 0.297 0.323 0.302

Perc. 25th 0.211 0.394 0.337 0.323 0.511 0.528 0.533 0.496

Perc. 50th 0.546 0.579 0.551 0.612 0.662 0.722 0.622 0.636

Perc. 75th 0.827 0.799 0.842 0.809 0.778 0.925 0.803 0.790

IQR 0.616 0.405 0.505 0.486 0.267 0.397 0.270 0.294

Table 3 Friedman test’s results regarding Huberty index

Test statistic (p-value)

All sample 7.062 (0.07)

K = 2 4.375 (0.228)

k > 2 12.761 (0.005)
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Table 4 Dunn’s pairwise comparison tests regarding Huberty index for data with more than two
classes (“Adj. Sig” are p-values adjusted by Bonferroni correction)

Test statistic Sig. Adj. Sig.

HI.Eucl-HI.CID −0.328 0.334 1.000

HI.Eucl-HI.COMB −0.414 0.222 1.000

HI.Eucl-HI.DTW −1.121 0.001 0.006

HI.CID-HI.COMB −0.086 0.799 1.000

HI.CID-HI.DTW 0.793 0.019 0.116

HI.COMB-HI.DTW 0.707 0.037 0.222

Table 5 Friedman test’s results regarding computation time

Test statistic (p-value)

All sample 171.0 (0.000)

K = 2 84.0 (0.000)

K > 2 87.0 (0.000)

3.2 COMB “Wins” and “Looses” Examples

In an attempt to understand the data conditions that could (un)favour COMB, we
looked for some insights regarding a “COMB wins example” and a “COMB looses
example”: ToeSegmentation2 and Herring time series, respectively. ToeSegmenta-
tion2 was originated in the CMU Graphics Lab Motion Capture Data, referring to
right toe movements, with target classes “Walk Normally” and “Walk Abnormally”.
Herring data refers to calcium carbonate structures from two classes of Herring:
North sea or Thames. In Table6, we present the details of data referring to these two
datasets.

On the assumption that exploring the target classes in the test set could bring some
insights into the performance of 1NN classifier, we obtained the medoids of target
classes according to each of the four dissimilarity measures. The ToeSegmentation2
test set classes’ medoids are depicted in Fig. 2. The COMB measure reveals not
only scale differences between the medoids (as Euclidean distance does, with the
poorest results) but it is also apparent (for example) how the medoids’ tendencies
diverge from each other, which, conjugated with the additional differences captured
by COMB, results in its best performance, according to the HI.

Table 6 COMB “wins” and “looses” datasets
Name Train Test Class Length HI.Eucl HI.DTW HI.CID HI.COMB

ToeSegmentation2 36 130 2 343 −0.0416 0.1252 0.0001 0.2915

Herring 64 64 2 512 −0.192 −0.115 −0.115 −0.346
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Fig. 2 Medoids of ToeSegmentation2 test set classes, according to dissimilarity measures Eucl,
DTW, CID and COMB

TheHerring test set classes’medoids coincide for all dissimilaritymeasures except
DTW which presents slightly different medoids. Nevertheless, a negative HI was
obtained for all measures (revisit Table6).

In an attempt to explore the potential of COMBmeasure, in a worst-case scenario,
we performed a brief sensitivity analysis manipulating the COMB’s weights. After
some trials, when considering the COMB weights regarding dPeriod and dAutocorr

as nine times the weights regarding dEuclid and dPearson , we managed to cross the
“waterline”, obtaining a HI slightly positive which the alternative measures could
not. Note, however, that a customized parametrization of DTW could eventually
obtain better results also, but we believe that it would also bring a relevant increase
in computation time.

4 Discussion and Future Research

We conducted experiments on 57 time-series datasets from diverse application
domains to compare the proposed dissimilarity measure, COMB, with three baseline
alternativemeasures: Euclidean,DynamicTime-Warping andComplexity Invariance
Distance.We resorted to the 1-Nearest Neighbour classifier, using the four dissimilar-
ities, to compare their effectiveness. Huberty index was used as a classification met-
ric providing more informative analysis results than the simple Accuracy measure,
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adopted in previous studies to evaluate performance (ignoring prevalence). Exper-
imental results obtained indicate that there are no significant differences between
the classification performance (Huberty index measures) of the four dissimilarity
measures. Nevertheless, it appears COMB can produce better results regarding time
series with two target classes. Furthermore, there is also the potential to improve the
results obtained with COMB by changing the weights in the convex combination:
an example was provided for the Herring dataset where the COMB with uniform
weights provided the worst classification results, while COMB with tuned weights
was able to provide the best results. In what regards the computation time, Dynamic
Time-Warping, which appears to be the most direct COMB competitor regarding
classification performance, presented the (significantly) worst results. Considering
the classification performance-runtime results we conclude that the proposed com-
bined measure can be seen as competitive in several settings.

In future research, we aim to extend the present analysis to all (128) UCR datasets
which will require to explore hardware-aware implementations and/or algorithmic
solutions to turn the measures’ implementation the most efficient. We also think the
Complexity Invariance Distance, which revealed to be a competitive measure, should
definitely play a role in future similar studies (along with the unavoidable Euclidean
and Dynamic Time-Warping dissimilarities and other eventual baseline measures).
An investigation of the process to determine COMB weights should also be con-
sidered. Finally, the experimental design should include additional characteristics of
the time-series data, besides the number of target classes, namely, we think that the
inclusion of a measure of separation between classes should be considered.

Acknowledgements This work was supported by Fundação para a Ciência e a Tecnologia, grant
UIDB/00315/2020.

5 Appendix: The Datasets

The characteristics of the 57 datasets used in thiswork are presented in Tables7 and 8.
Several time series have missing values which were treated with linear interpolation.
In order to make all time series of the same dataset with equal length, low-amplitude
random noise was imputed to the end of time series with smallest length. For more
details, see web page https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
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Table 7 The datasets’ dimensions

Name Train Test No. Classes Length

ArrowHead 36 175 3 251

Beef 30 30 5 470

BeetleFly 20 20 2 512

BirdChicken 20 20 2 512

BME 30 150 3 128

Car 60 60 4 577

CBF 30 900 3 128

Chinatown 20 343 2 24

Coffee 28 28 2 286

DiatomSizeReduction 16 306 4 345

DodgerLoopDay 78 80 7 288

DodgerLoopGame 20 138 2 288

DodgerLoopWeekend 20 138 2 288

ECG200 100 100 2 96

ECGFiveDays 23 861 2 136

FaceFour 24 88 4 350

Fish 175 175 7 463

FreezerSmallTrain 28 2850 2 301

Fungi 18 186 18 201

GestureMidAirD1 208 130 26 360

GestureMidAirD2 208 130 26 360

GestureMidAirD3 208 130 26 360

GesturePebbleZ1 132 172 6 455

GesturePebbleZ2 146 158 6 455

GunPoint 50 150 2 150

GunPointAgeSpan 135 316 2 150

GunPointMaleVersusFemale 135 316 2 150

GunPointOldVersusYoung 136 315 2 150

Ham 109 105 2 431

Herring 64 64 2 512

HouseTwenty 40 119 2 2000

InsectEPGRegularTrain 62 249 3 601
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Table 8 The datasets’ dimensions (continuation)

Name Train Test No. Classes Length

InsectEPGSmallTrain 17 249 3 601

ItalyPowerDemand 67 1029 2 24

Lightning2 60 61 2 637

Lightning7 70 73 7 319

Meat 60 60 3 448

MoteStrain 20 1252 2 84

OliveOil 30 30 4 570

OSULeaf 200 242 6 427

PickupGestureWiimoteZ 50 50 10 361

Plane 105 105 7 144

PowerCons 180 180 2 144

Rock 20 50 4 2844

ShakeGestureWiimoteZ 50 50 10 385

ShapeletSim 20 180 2 500

SmoothSubspace 150 150 3 15

SonyAIBORobotSurface1 20 601 2 70

SonyAIBORobotSurface2 27 953 2 65

Symbols 25 995 6 398

ToeSegmentation1 40 228 2 277

ToeSegmentation2 36 130 2 343

Trace 100 100 4 275

TwoLeadECG 23 1139 2 82

UMD 36 144 3 150

Wine 57 54 2 234

WormsTwoClass 181 77 2 900
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