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Abstract In statistics of extremes, the estimation of the extreme value index (EVI)
is an important and central topic of research. We consider the probability weighted
moment estimator of the EVI, based on the largest observations. Due to the speci-
ficity of the properties of the estimator, a direct estimation of the threshold is not
straightforward. In this work, we consider an adaptive choice of the number of order
statistics based on the double bootstrap methodology. Computational and empirical
properties of the methodology are here provided.

Keywords Bootstrap · Extreme value index · Heavy tails · Probability weighted
moment · Semi-parametric estimation

1 Introduction and Scope of the Article

Let (X1, . . . , Xn) denote a random sample of size n from a population with unknown
cumulative distribution function (CDF) F(x) = P(X ≤ x) and consider the associ-
ated sample of ascending order statistics (OSs) (X1:n := min

1≤i≤n
Xi ≤ · · · ≤ Xn:n :=

max
1≤i≤n

Xi ). Further assume that for large values of x , F(x) is a Pareto-type model, i.e.,

a model with a regular varying right tail with a negative index of regular variation
equal to −1/ξ (ξ > 0). Consequently,

F(x) := 1 − F(x) = P(X > x) = x−1/ξ L(x), as x → ∞, (1)
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with L(·) a slowly varying function, i.e.

lim
t→∞

L(t x)

L(t)
= 1, ∀ x > 0.

Models satisfying the condition (1) are in the domain of attraction for maxima
of a non-degenerate distribution. This means that there exist normalizing constants
an > 0 and bn ∈ R such that

lim
n→∞P

(
Xn:n − bn

an
≤ x

)
= lim

n→∞ Fn (anx + bn) = G(x), (2)

with G(·) a non-degenerate CDF. With the appropriate choice of the normalizing
constants in (2), and under a general framework,G is the general extreme value (EV)
distribution,

G(x) ≡ EVξ (x) :=
{
exp

(−(1 + ξ x)−1/ξ
)
, 1 + ξ x > 0, if ξ �= 0,

exp(− exp(−x)), x ∈ R, if ξ = 0,
(3)

given here in the von Mises-Jenkinson form (see [1, 2]). Whenever such a non-
degenerate limit exists, we write F ∈ DM(EVξ ), and the real parameter ξ is the
extreme value index (EVI).

As already mentioned, we shall deal with Pareto right-tails, i.e. heavy right-tails
or equivalently a model with a positive EVI. Then, the right-tail function is of regular
variation with an index of regular variation equal to −1/ξ , i.e.

F ∈ DM(EVξ )ξ>0 ⇐⇒ F := 1 − F ∈ RV−1/ξ , (4)

where the notation RVα stands for the class of regularly varying functions at infinity
with an index of regular variation equal to α, i.e. positive measurable functions g
such that lim

t→∞ g(t x)/g(t) = xα , for all x > 0. With the notation

U (t) := F←(1 − 1/t), t ≥ 1, F←(y) := inf {x : F(x) ≥ y} , (5)

condition (4) is equivalent toU ∈ RVξ . Pareto-type models are extremely important
in practice due to the frequency and magnitude of extreme values and inference on
extreme and large events is usually performed on the basis of the k + 1 largest order
statistics in the sample, as sketched in Fig. 1.
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Fig. 1 A Pareto right-tail
probability density function

x
f(x

)

u = Xn−k:n

Pareto Tail

1.1 EVI-Estimators Under Consideration

One of the first classes of semi-parametric estimators of a positive EVI was the class
of Hill (H) estimators introduced in [3] and given by

ξ̂H
k,n := 1

k

k∑
i=1

{ln Xn−i+1:n − ln Xn−k:n} , k = 1, 2, . . . , n − 1. (6)

This estimator can be highly sensitive to the choice of k, especially in the presence
of a substantial bias. As an alternative, we shall also consider the Pareto probability
weighted moments (PPWM) EVI-estimators, introduced in [4]. They are consistent
for 0 < ξ < 1, compare favourably with the Hill estimator, and are given by

ξ̂PPWM
k,n := 1 − â1(k)

â0(k) − â1(k)
, (7)

with

â0(k) := 1

k

k∑
i=1

Xn−i+1:n and â1(k) := 1

k

k∑
i=1

i

k
Xn−i+1:n .

For other alternative estimators of theEVI seeRefs. [5–7], amongothers. Consistency
of the EVI-estimators in (6) and (7) is achieved if Xn−k:n is an intermediate OS, i.e.
if

k = kn → ∞ and k/n → 0, as n → ∞.

In order to derive the asymptotic normality of these EVI-estimators, it is often
assumed the validity of a second-order condition, like

lim
t→∞

lnU (t x) − lnU (t) − ξ ln x

A(t)
=

{ xρ−1
ρ

, if ρ < 0,
ln x, if ρ = 0,

(8)
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Table 1 Asymptotic variance and bias’ rulers of H and PPWM EVI–estimators

H (ξ > 0) PPWM (0 < ξ < 1/2)

σ 2• ξ2 ξ2
(1−ξ)(2−ξ)2

(1−2ξ)(3−2ξ)

b• 1
1−ρ

(1−ξ)(2−ξ)
(1−ξ−ρ)(2−ξ−ρ)

whereU (·) is defined in (5) and |A| ∈ RVρ ,ρ ≤ 0.Under such a second-order frame-
work, if

√
k A(n/k) → λA , finite, as n → ∞, these EVI-estimators are

asymptotically normal. Denoting ξ̂ •
k,n , any of the estimators above, we have, with

Z•
k an asymptotically standard normal random variable and for adequate (b•, σ•) ∈

(R, R
+),

ξ̂ •
k,n

d= ξ + σ•Z•
k√
k

+ b• A(n/k)(1 + o
P
(1)), as n → ∞, (9)

with b• the asymptotic bias, and σ 2• the asymptotic standard deviation of the approx-
imation, given in Table 1.

Under the above second-order framework, in (8), but with ρ < 0, let us use the
parametrization

A(t) = ξβtρ, with β �= 0 and ρ < 0,

where β and ρ are generalized scale and shape second-order parameters, which need
to be adequately estimated on the basis of the available sample. Let us denote the
optimal level by

k̃•
0(n) := argmin

k
MSE(ξ̂ •

k,n),

withMSE standing formean squared error.WithE denoting themean value operator
and AMSE standing for asymptotic MSE, a possible substitute for MSE(ξ̂ •

k,n) is

AMSE(ξ̂ •
k,n) := E

(
σ•√
k
Z•
k + b•A(n/k)

)2

= σ 2•
k

+ b2• ξ 2 β2
(n
k

)2ρ
,

cf. Eq. (9). Then, with the notation k•
0(n) := argmink AMSE

(
ξ̂ •
k,n

)
, we get

k•
0(n) =

(
σ 2• n−2ρ

(−2ρ) b2• ξ 2β2

)1/(1−2ρ)

= k̃•
0(n)(1 + o(1)). (10)

For the Hill estimator in (6), and as can be seen in Table1, we have (bH , σH) =
(1/(1 − ρ), ξ). Consequently, with (β̂, ρ̂) a consistent estimator of (β, ρ) and [x]
denoting the integer part of x , we have an asymptotic justification for the estimator
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k̂H0 :=
⎡
⎣

(
(1 − ρ̂)2n−2ρ̂

(−2ρ̂β̂2)

)1/(1−2ρ̂)
⎤
⎦ + 1.

The same does not happen with the PPWMEVI-estimators, due to the fact that σPPWM ,
bPPWM and consequently kPPWM

0 depend on the value of ξ (see Table1, again). It is thus
sensible to use the bootstrap methodology for the adaptive choice of the threshold
associated to the PPWM EVI-estimation.

1.2 Scope of the Article

The main goal is the adaptive estimation of the EVI. For that purpose, the choice of
the threshold is crucial and we study computationally a recent bootstrap algorithm.
After a review, in Sect. 2, of the role of the bootstrapmethodology in the estimation of
optimal sample fractions,weprovide an algorithm for the adaptive estimation through
the Hill and the PPWM EVI-estimators. In Sect. 3 we provide results from a Monte
Carlo simulation study. In Sect. 4, as an illustration, we apply such methodology to
a data set in the field of insurance. Section5 concludes the paper.

2 Adaptive EVI-Estimation and the Bootstrap
Methodology

Similarly to what has been done in Gomes and Oliveira [8], for the H estimator, and
in Gomes et al. [9], for adaptive reduced-bias estimation, we can use the algorithm
in Caeiro et al. [10] (see also [4]), considering the auxiliary statistic,

T •
k,n := ξ̂ •

[k/2],n − ξ̂ •
k,n, k = 2, . . . , n − 1, (11)

which converges to the known value zero, and double-bootstrap it adequately, in
order to estimate k•

0(n), through a bootstrap estimate k̂•,∗
0 . Indeed, again under the

second-order framework, in (8), we get, for the auxiliary statistic T •
k,n , in (11), the

asymptotic distributional representation,

T •
k,n

d= σ• Q•
k√

k
+ b•(2ρ − 1) A(n/k) + o

P
(A(n/k)),

with Q•
k asymptotically standard normal, and (b•, σ•) given in Table 1. The AMSE

of T •
k,n is thus minimal at a level k•

0|T (n) such that
√
k A(n/k) → λ′

A
�= 0, i.e. a level

of the type of the one in (10), with b• replaced by b•(2ρ − 1), and we consequently
have

k•
0(n) = k•

0|T (n) (1 − 2ρ)
2

1−2ρ (1 + o(1)).
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2.1 The Bootstrap Methodology in Action

Given the sample Xn = (X1, . . . , Xn) from an unknown model F , consider for any
n1 = O(n1−ε), with 0 < ε < 1, the bootstrap sample X∗

n1 = (X∗
1, . . . , X

∗
n1), from

the model F∗
n (x) = 1

n

∑n
i=1 I{Xi≤x}, the empirical CDF associated with the original

sample Xn . We choose the resample size n1 to be less than the original sample size
to avoid underestimation of the bias (see Hall [11]). Next, associate to that bootstrap
sample the corresponding bootstrap auxiliary statistic, denoted T •,∗

k1,n1
, 1 < k1 < n1.

Then, with the notation

k•,∗
0|T (n1) = argmin

k1
AMSE

(
T •,∗
k1,n1

)
,

we have that
k•,∗
0|T (n1)

k•,∗
0|T (n)

= (n1/n)
− 2 ρ

1−2 ρ (1 + o(1)).

Consequently, for another sample size n2 = n21/n,

(
k•,∗
0|T (n1)

)2
k•,∗
0|T (n2)

= k•
0|T (n)(1 + o(1)), as n → ∞.

We are now able to estimate k•
0(n), on the basis of any estimate ρ̂ of ρ. With k̂•,∗

0|T
denoting the sample counterpart of k•,∗

0|T , ρ̂ the ρ-estimate and taking into account
(10), we can build the k0-estimate,

k̂•,∗
0 ≡ k̂•,∗

0 (n; n1) := min

(
n − 1,

[(
1 − 2ρ̂

) 2
1−2ρ̂

(
k̂•,∗
0|T (n1)

)2
k̂•,∗
0|T ([n21/n] + 1)

]
+ 1

)
, (12)

and the ξ -estimate
ξ̂ •,∗ ≡ ξ̂ •,∗(n; n1) := ξ̂k̂•,∗

0|T (n;n1),n. (13)

A few questions, some of them with answers outside the scope of this paper,
may be raised: How does the bootstrap method work for small or moderate sample
sizes? Is the method strongly dependent on the choice of n1? What is the type of the
sample path of the EVI-estimator, as a function of n1? What is the sensitivity of the
bootstrap method with respect to the choice of the ρ-estimate? Although aware of
the theoretical need to have n1 = o(n), what happens if we choose n1 = n?
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2.2 An Algorithm for the Adaptive EVI-Estimation

The estimates (β̂, ρ̂), of the vector (β, ρ) of second-order parameters, are the ones
already used in previous papers:

1. Given a sample (x1, . . . , xn), consider the observed values of the ρ-estimators
ρ̂τ (k), introduced and studied in Fraga Alves et al.[12], for tuning parameters
τ = 0 and τ = 1.

2. Select
{
ρ̂τ (k)

}
k∈K, with K = ([n0.995], [n0.999]), and compute their median,

denoted by ητ , τ = 0, 1.
3. Next compute Iτ := ∑

k∈K
(
ρ̂τ (k) − ητ

)2
, τ = 0, 1, and choose the tuning

parameter τ ∗ = 0 if I0 ≤ I1; otherwise, choose τ ∗ = 1.
4. Work with ρ̂ ≡ ρ̂τ ∗ = ρ̂τ ∗(k1) and β̂ ≡ β̂τ ∗ := β̂ρ̂τ∗ (k1), k1 = [n0.999] and β̂ρ̂ (k)

given in Gomes and Martins [13].

Now, and with ξ̂H
k,n and ξ̂PPWM

k,n respectively defined in (6) and (7), the algorithm
goes on with the following steps:

5. Compute ξ̂ •
k,n , k = 1, . . . , n − 1, • = H and/or PPWM.

6. Next, consider a sub-sample size n1 = o(n), and n2 = [n21/n] + 1.
7. For l from 1 until B, generate independently B bootstrap samples (x∗

1 , . . . , x
∗
n2)

and (x∗
1 , . . . , x

∗
n2 , x

∗
n2+1, . . . , x

∗
n1), of sizes n2 and n1, respectively, from the

empirical CDF, F∗
n (x) = 1

n

∑n
i=1 I{Xi≤x}, associated with the observed sample

(x1, . . . , xn).
8. Denoting by T •,∗

k,n the bootstrap counterpart of T •
k,n , defined in (11), obtain

(t•,∗
k,n1,l

, t•,∗
k,n2,l

), 1 ≤ l ≤ B, the observed values of the statistic T •,∗
k,ni

, i = 1, 2.
For k = 2, . . . , ni − 1, compute

MSE•,∗(ni , k) = 1

B

B∑
l=1

(
t•,∗k,ni ,l

)2
,

and obtain
k̂•,∗
0|T (ni ) := arg min

1<k<ni
MSE•,∗(ni , k), i = 1, 2.

9. Compute the threshold estimate k̂•,∗
0 , in (12).

10. Finally obtain
ξ̂ •,∗ ≡ ξ̂ •,∗(n; n1) = ξ̂k̂•,∗

0|T (n;n1),n,

already provided in (13).

Such an algorithm needs to be computationally validated, a topic we deal with
in the next section. Further, note that bootstrap confidence intervals (CIs) are easily
associated with the estimates presented through the replication of this algorithm r
times.
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3 A Small-Scale Simulation Study

In this section, we have implemented a multi-sampleMonte Carlo simulation experi-
ment of size 1000, to obtain the distributional behaviour of the EVI adaptive bootstrap
estimates ξ̂ H,∗ and ξ̂ PPWM,∗ in (6) and (7), respectively. We have considered a re-
sample of size n1 = [n0.955] for samples of size n = 100, 200, 500, 750, 1000, 2000
and 5000 from the following models:

• the Fréchet model, with d.f.

F(x) = exp(−x−1/ξ ), x > 0, ξ > 0,

with ξ = 0.25 (ρ = −1);
• the Burr model, with d.f.

F(x) = 1 − (1 + x−ρ/ξ )1/ρ, x > 0,

with (ξ, ρ) = (0.25,−0.75);
• the Half-t4 model, i.e., the absolute value of a Student’s t with ν = 4 degrees of
freedom (ξ = 0.25, ρ = −0.5).

In Table 2 we present, for the above mentioned models, the multi-sample simulated
(mean) double bootstrap optimal sample fraction (OSF), the mean (E) and median
(med) of the EVI-estimates and the simulated RMSE for both EVI-estimators, as a
function of the sample size n. The less biased EVI-estimate and the smallest RMSE is
presented in bold. Although both estimators over-estimate the EVI, the consideration
of the PPWM EVI-estimator leads to a less biased EVI-estimate, as expected. The
PPWM estimation can also lead to a smaller RMSE, for models with |ρ| < 1.

4 A Case Study

Here, the performance of the adaptive double bootstrap procedure is illustrated
through the analysis of a real dataset. The analysis was made in R software with
the computer code developed in Caeiro and Gomes [14]. We used the dataset Auto-
Claims from a motor insurance portfolio. The data is available in the R package
insuranceData [15]. The variable of interest is the amount paid on a closed
claim, in dollars. There are n = 6773 claims available. Since large claims are a topic
of great concern in the Insurance Industry, accurate modelling of the right tail of
the underlying distribution is extremely important. The Histogram and the Pareto
Quantile-Quantile (QQ) Plot, in Fig. 2, are compatible with a Pareto-type underlying
distribution.

In Fig. 3, we present the EVI-estimates provided by the Hill and the PPWM EVI-
estimators in (6) and (7), respectively. Both estimators are upward biased for large k.
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Table 2 Simulated OSF, EVI-estimates (provided by the mean and median) and RMSE estimates
obtained through the Hill and PPWM estimators and the double bootstrap methodology

Hill PPWM

n OSF E(ξ̂∗) med(ξ̂∗) RMSE(ξ̂∗) OSF E(ξ̂∗) med(ξ̂∗) RMSE(ξ̂∗)
Fréchet with ξ = 0.25 (ρ = −1)

100 0.3458 0.2665 0.2716 0.0706 0.3677 0.2446 0.2533 0.0728

200 0.3246 0.2675 0.2701 0.0561 0.3453 0.2503 0.2559 0.0573

500 0.2750 0.2656 0.2674 0.0390 0.3101 0.2544 0.2587 0.0395

750 0.2567 0.2646 0.2680 0.0322 0.2826 0.2532 0.2571 0.0353

1000 0.2420 0.2630 0.2640 0.0282 0.2632 0.2528 0.2566 0.0332

2000 0.2027 0.2614 0.2628 0.0217 0.2269 0.2538 0.2569 0.0244

5000 0.1602 0.2588 0.2601 0.0163 0.1832 0.2539 0.2562 0.0177

Burr with ξ = 0.25, ρ = −0.75

100 0.1756 0.2963 0.3020 0.1390 0.1676 0.2611 0.2737 0.0969

200 0.1503 0.2913 0.2988 0.0931 0.1389 0.2614 0.2702 0.0761

500 0.1202 0.2885 0.2927 0.0612 0.1133 0.2614 0.2686 0.0590

750 0.1021 0.2836 0.2882 0.0525 0.0979 0.2602 0.2660 0.0500

1000 0.0974 0.2833 0.2854 0.0503 0.0912 0.2604 0.2654 0.0464

2000 0.0768 0.2780 0.2813 0.0391 0.0733 0.2595 0.2639 0.0372

5000 0.0550 0.2703 0.2724 0.0292 0.0570 0.2577 0.2623 0.0306

Half-t4 (ξ = 0.25, ρ = −0.5)

100 0.0986 0.3492 0.3520 0.2877 0.0951 0.2922 0.3025 0.1318

200 0.0843 0.3391 0.3463 0.1907 0.0761 0.2887 0.3012 0.1105

500 0.0628 0.3382 0.3371 0.2858 0.0562 0.2862 0.2960 0.0874

750 0.0550 0.3279 0.3361 0.1037 0.0492 0.2849 0.2934 0.0794

1000 0.0500 0.3243 0.3300 0.0973 0.0436 0.2807 0.2906 0.0736

2000 0.0392 0.3133 0.3179 0.0799 0.0340 0.2755 0.2839 0.0618

5000 0.0268 0.2993 0.3030 0.0604 0.0244 0.2715 0.2786 0.0498
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Fig. 2 Histogram and Pareto QQ plot for the AutoClaims dataset
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Fig. 3 Estimates of the EVI for the AutoClaims dataset
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Fig. 4 Estimates of theOSF’s k̂•,∗
0 /n (left) and the bootstrap adaptive extreme value index estimates

ξ̂•,∗ (right), as functions of the sub-sample size n1, for the amount paid on a closed claim

In Fig. 4, as a function of the sub-sample size n1, ranging from n1 = 3990 until
n1 = 6700, we picture, at the left, the estimates k̂•,∗

0 (n1)/n of the optimal sample
fraction, k•

0/n, for the adaptive double bootstrap estimation of ξ through the H and
the PPWM estimators. Associated bootstrap EVI-estimates are pictured at the right.
Contrarily to the bootstrap Hill, the bootstrap PPWM EVI-estimates are quite stable
as a function of the sub-sample size n1 (see Fig. 4, right).

For a re-sample size n1 = [n0.955] = 4554, and B = 250 bootstrap generations,
we were led to k̂ H,∗

0 = 67 and to ξ̂ H,∗ = 0.3463. This same algorithm applied to the
PPWM estimator provide the bootstrap estimates k̂ P PWM,∗

0 = 88 and ξ̂ PPWM,∗ =
0.3301.
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5 Conclusions

In this paper we addressed the adaptive estimation of the EVI with the double boot-
strap methodology associated to the Hill and the PPWM estimators. The presented
simulation study shows that the adaptive PPWMEVI-estimator is usually less biased
and provides a similar or a smaller RMSE than the adaptive Hill EVI-estimator.
Moreover, the efficiency of the adaptive PPWM estimator relatively to the adaptive
Hill estimator seems to improve as the asymptotic bias of estimators increases (as ρ

increases). Further research concerning the sensitivity of the method on the choice
of n1 will be addressed in the future.
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