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Abstract Cancer is a disease driven and characterised by mutations in the DNA.
Different categorisations of DNA mutations have allowed the identification of pat-
terns that can act as signatures for the processes that have governed the life of the
cancer. Over the last decade, research groups have identified more than 100 such sig-
natures. Mutational signature analyses are improving our understanding of cancer
aetiology and have the potential to play a role in diagnosis, prognosis, and treat-
ment choice. Consisting of the estimation of probability mass functions or weights
determining non-negative weighted combinations, they are perhaps unique among
comparable analyses in the medical literature, in that no confidence intervals or other
representations of uncertainty are demanded when reporting the results. Here, we
review the key statistical challenges for the field, assess the potential of existing
approaches to adapt to those challenges, and comment on what we think are promis-
ing directions. As we deal with data that are noisy and heterogeneous, we evaluate
how to present them so that models use all the information available. Often posed as a
matrix factorisation problem, we argue that a fully probabilistic approach is required
to quantify uncertainty around model parameters and to underpin principled study
design. Lastly, we argue that novel methodology is required to evaluate uncertainties
in analyses where prior information is available.
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1 Introduction

Cancers can result from relatively few changes to a cell’s DNA, but typically carry
many additional somatic (i.e. occurring within the life of the patient) mutations. We
can identify thesemutations by sequencing and then comparingDNA from the cancer
andDNA fromhealthy tissue from the same individual [1, 2]. “Mutation”, here, refers
to a wide range of events ranging from single base substitutions to larger structural
variants (e.g. genomic rearrangements where large segments of a chromosomemight
be deleted, duplicated, or have their orientation inverted [3]). See, e.g. [4] for a review
of mutation classes.

Somatic mutations are the result of biological mechanisms, termed mutational
processes, associated with characteristic patterns of mutations or mutational signa-
tures, described by means of probability mass functions over mutational categories
[5]. Therefore, the catalogue of somatic mutations observed in an individual cancer
genome can be thought of as a mixture of the mutational signatures that have acted
on the tumour over time.

Somemutational processes act continuously throughout life [6], while others arise
as a result of exposures to carcinogens [7, 8]. They might be ongoing, intermittent,
or might have stopped [4]. Some processes are associated with germline mutations
in tumour suppressor genes, such as BRCA1/2 [5, 9]. Cancer genomes contain the
imprint of many such processes to differing degrees. Consequently, the goals of
mutational signature analyses are to infer from the somatic mutations in tumours
(1) the signatures of mutational processes, (2) the contribution of each process to
individual cancer genomes, and (3) when those processes contributed.

To achieve those goals, a range ofmathematical methods have been, and are being,
developed [10–21] (for a review, see, e.g. [22, 23]). Their application to data sets of
ever-increasing size and complexity has resulted in a remarkable improvement of our
understanding of cancer and its causes [24]. More than a hundred inferred mutational
signatures are available to the wider research community [24, 25]. In the context of
personalised medicine, these have a remarkable potential to stratify cancer patients
[26, 27] and to predict response to treatment [28].

1.1 Modelling Framework

Data Gathering. In the context of mutational signature analyses, we investigate data
sets generated using next-generation sequencing and analysis pipelines (involving
(a) sequencing, (b) alignment to a reference genome, (c) often-probabilistic mutation
calling, and (d) post-processing). The output is a list of “mutations” observed in the
tumour. Often, data are not solely collected for the purpose of signature analysis.

In the sequencing step, short segments of DNA from both tumour and matched
healthy tissue are read as base sequences. Each of those “reads” covers 100–250
base pairs and may contain errors. We define the coverage of an individual base to be
the number of times it has been sequenced. Additionally, we define the sequencing
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depth of an experiment to be the average number of times a base is sequenced. While
sequencing depth is typically set by the investigator, coverage is not uniform across
genomic regions. In particular, regions with a high prevalence of Cs and Gs are
susceptible to low coverage [29].

Sequence reads are then aligned to a reference genome, and aligned reads from
both tissues are presented to a “mutation caller” that determines whether a mutation
is present at a given locus by means of a statistical test. Thus, there must be a balance
between sensitivity and specificity thatwill differ between cancer types.Additionally,
that balance is unlikely to be uniform acrossmutation types. Thus, the systematic bias
introduced in this step will be propagated to mutational signature analyses, affecting
inferences. This problem can be exacerbated by the application of post-calling filters
[30, 31].

Mutational Signatures and Mutational Catalogues. For themutational class being
considered, biologically meaningful categorisations must be defined (see, e.g. [4]
for a review) and we denote the resulting categories by k = 1, . . . , K . We define a
mutational signature, sn = (s1n, . . . , sKn)

T , to be a probability mass function over
the K categories, with skn denoting the probability that a mutation generated by
signature n is of type k.

We now consider the mutational catalogues of G cancer patients and assume
that they have been exposed to N mutational processes. The observed number of
mutations of category k in patient g, mkg, is approximately

mkg ≈
N∑

n=1

skneng (1)

where eng denotes the exposure of patient g to signature n, that is, the number of
mutations attributed to that signature. In matrix form,

M ≈ S × E (2)

where M = [m1 · · ·mG], S = [s1 · · · sN ], and E = [e1 · · · eG].

1.2 Mathematical Approaches to Mutational Signatures

We will consider two problems. The first, termed de novo signature extraction, con-
sists in estimating S and E for known M. The second, termed refitting, consists in
estimating E for known M and S.

De Novo Signature Extraction. This problem, consisting of estimating S and E
given M in (2), was originally posed as the following non-convex optimisation prob-
lem:

arg min
S≥0,E≥0

||M − SE|| (3)



244 V. Velasco-Pardo et al.

where || · || denotes an appropriate norm. This approach, termed Non-Negative
Matrix Factorisation (NMF) [32], is taken by the original and arguably most pop-
ular method, SigProfiler [10, 24]. Several other software packages are avail-
able implementing similar solutions based on NMF [11, 25, 33–36]. An alternative
method is EMu [14], which considers the exposures to be nuisance parameters and
uses the EM algorithm to estimate the matrix S.

A slightly different approach is to place (2) in a Bayesian setting, as done by
SignatureAnalyzer [12, 13], signeR [15], and sigfit [16]. Briefly, prior
distributions are placed on the elements of S and E, and a likelihood function is
assumed for the elements of M. SignatureAnalyzer performs Maximum A
Posteriori estimation of S and E using the methodology developed by Tan and
Févotte [37]. Alternatively, the other two methods use different MCMC algorithms
[38–40] to draw from the posterior distributions of S and E.

Those methods also differ in their model selection criterion (Table1). For brevity,
we refer the reader to [22] for a thorough albeit somewhat dated summary.

Table 1 Overview of methods for de novo mutational signature analysis. The third column indi-
cates, if relevant, a point estimation criterion, a posterior sampling method, and a model selection
criterion. NMF, PCA, MLE, MAP, EM, BIC, and HMC stand for Non-negative Matrix Factori-
sation, Principal Component Analysis, Maximum Likelihood Estimation, Maximum A Posteriori,
Expectation Maximisation, Bayesian Information Criterion, and Hamiltonian Monte Carlo

Software Method Estimation methods

SigProfiler [24] NMF [32] MLE
–
Ad hoc

SomaticSignatures [11] NMF/PCA [32] Optimisation
–
–

SignatureAnalyzer [12,
13]

Bayesian NMF [37] MAP
–
Not needed

EMu [14] Poisson model MLE (EM)
–
BIC

signeR [15] Bayesian NMF [38, 39] –
Gibbs
BIC

sigfit [16] Bayesian NMF –
HMC (stan [40])
Ad hoc

SparseSignatures [17] Sparse NMF –
–
Cross validation
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The Bayesian Nonparametric Alternative. An alternative approach to the methods
described above is the one byRoberts [18], implemented in the R package hdp, using
the methodology of Teh et al. [41]. Here, we are not presented with vectors of counts
but with lists of mutations.

Specifically, we are presented with a data set X = (x1, . . . , x J ) where x j =
(x j1, . . . , x jn j )

T is the list of mutations observed in the j th patient. Within this
framework, patients are assumed to be exchangeable, i.e. the joint probability dis-
tribution p(X) does not depend on the ordering of patients. Similarly, mutations
are assumed to be partially exchangeable, meaning that p(X) is independent of the
ordering ofmutationswithin a specific patient. Observations are assumed to be drawn
from a categorical distribution:

x ji |θ j i ∼ Categorical(θ j i ) (4)

The parameters θ j i of the discrete distributions are drawn from G j , a realisation
of the Dirichlet Process associated with the j th patient, whose base measure G0

is distributed according to a “global” DP with base measure H and concentration
parameter γ. Formally,

θ j i |G j ∼ G j (5)

G j |α,G0 ∼ DP(α,G0) (6)

G0|γ, H ∼ DP(γ, H) (7)

where DP(·, ·) denotes a Dirichlet Process [41]. That is a nonparametric hierarchical
prior that does not assume a fixed number of components and has three hyperpa-
rameters: H is the mean of the prior distribution over the signatures, and γ and α
control the variability around that mean at the global and patient level, respectively.
Often, H is conveniently set to Dirichlet(1, . . . , 1), a flat prior over the (K − 1)-
simplex, and non-informative Gamma hyper-priors are placed on γ and α. As with
any Bayesian analysis, a sensitivity analysis is required to assess the prior choice
for H . The model of Eqs. (4)–(7) is referred to as the Hierarchical Dirichlet Process
Mixture Model (HDPMM).

This method has several advantages over the ones reviewed above: First, the num-
ber of components (signatures) is inferred from the data, rather than fixed. Second, it
naturally models the hierarchical nature of patient data. Further, it assumes naturally
that the number of components grows with the number of observations, explicitly
modelling the rate of growth. However, the assumption that the number of clusters
grows logarithmically with the number of patients and doubly-logarithmically with
the number of mutations is unchecked [42]. The main disadvantage is that, even if
MCMC samplers are available, inference from the raw MCMC output is non-trivial
as it requires a post-processing procedure that is currently not available.

Additionally, it should be noted that the HDPMM allows for the assumption of
exchangeability at the patient level to be relaxed by extending the hierarchy ofDirich-
let Processes. Patients can then be considered partially exchangeable and grouped,
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Table 2 Overview of challenges, grouped by proposed statistical solution

Proposed statistical approach Challenge

Constructing the matrix M 1. Accounting for bias and variance in M

2. Recognising intra-tumour heterogeneity

3. Accounting for opportunities

4. Going beyond the 96 categories

Bayesian nonparametrics 5. Uncertainty in the number of signatures

6. Uncertainty around the signatures

7. Sample size calculations

Novel statistical methodology 8. Uncertainty around the exposures

9. Obtaining separated signatures

10. Partial information about the signatures

e.g. according to the tissue where the tumour arose [18]. However, to relax the
assumption of exchangeability at the mutation level would be more challenging.

Refitting of Mutational Signatures. This is a simpler problem which consists of
solving for eg for a single patient g in (2), assuming mg and S are known. The
most popular approach is perhaps deconstructSigs [19]. Alternatively, one
can solve (2) using, e.g. non-negative least squares [20, 43]. An attempt to quantify
uncertainty by using theBootstrapwithin the context of refitting has been provided by
SignatureEstimation [20]. A Bayesian alternative that also enforces sparsity
in the solution is sigLASSO [21]. For brevity, we do not detail these approaches
here.

Statistical Challenges. Despite the advances in this area over the last decade, it is
a concern that within this field, uncertainty quantification is not receiving enough
attention. Even if the effort to develop newmethods has been substantial, recognition
of uncertainty within the discipline is surprisingly limited. While previous reviews
have focused on a mathematical description of the methods [22] and their perfor-
mance [23], here we focus on the key statistical challenges for the field, enumerated
in Table2. In the forthcoming sections, we describe these challenges, highlighting
the potential of different methods to address these challenges.

The first group of challenges (Sect. 2) concerns the uncertainties arising from
data collection. The second group (Sect. 3) concerns uncertainties in de novo anal-
yses and how accounting for them could inform data collection. We will argue that
the Bayesian Nonparametric approach is suitable to address those challenges. The
third group (Sect. 4) concerns uncertainty in analyses where partial information is
available. While we will highlight that progress has been made, the need to address
these challenges demands the development of new methodology.
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2 Challenges in Constructing M

2.1 Challenge 1: Accounting for Bias and Variance in M

Sequencing experiments are stochastic events, and the identification of mutations,
necessary for constructing M, is often based on probabilistic models [31]. M is
itself therefore also an observation of a random variable. While uncertainty around
the mutation calls is unavoidable, it can be reduced by increasing sequencing depth
[29]. High sequencing depth increases the chance of calling subclonal mutations (see
also Sect. 2.2) and reduces disagreements between mutation callers [31]. Typically,
it is beneficial to increase the depth of sequencing as it results in the identification
of mutations that are present in a fraction of cells. However, the benefits of doing so
are marginal after a certain depth threshold, which differs across individual tumours
[30]. Therefore, allocating extra resources to recruit more patients might be more
cost-efficient.

As well as exhibiting variation, M will be a biased estimate of the true value.
Different callers [31] and sequencing pipelines [30] can return systematically dif-
ferent results. Genomic context affects the power to detect mutations (via variation
of sequencing coverage [44]) and the false discovery rate [31], meaning that some
classes of mutation are less likely to be called correctly than others. There is potential
for novel statistical developments to estimate more accurate catalogues.

Going back to the identification of mutations present in a small fraction of cells,
these aremore likely to have occurredmore recently—and thus they aremore likely to
be overlooked due to insufficient coverage. If there is a change in mutational patterns
over time [45], then this will cause a bias in M. On the other hand, if the tumour has
recently diverged into subclones, then recent mutational processes might have their
impact measured on each subclone, and these processes will be over-represented
relative to the truth for any cell present.

2.2 Challenge 2: Recognising Intra-Tumour Heterogeneity

Intra-tumour heterogeneity (ITH) poses a difficulty with mutational signature anal-
yses that is not always acknowledged. Briefly, tumours are heterogeneous mixtures
of cells, and we are often able to identify mutations only at the patient level (i.e. not
with single cell resolution). We can sometimes infer whether a mutation is clonal
(meaning it is present in every sampled cancer cell) or subclonal. Every subclonal
mutation belongs to one or more subclones, subpopulations of cells that carry the
same variants. Subclones can be inferred by clustering on the space of the cancer
cell fraction (CCF), the unobserved proportion of tumour cells in which a mutation
is present [46].
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ITH in De Novo Signature Extraction. All de novo methods ignore ITH. They
consider, explicitly or implicitly, mutations to be exchangeable at the patient level,
ignoring their clonal status. Ideally,wewould relax the assumptionof exchangeability
by incorporating available information regarding ITH. An interesting approach has
been taken in recent studies of normal and non-neoplastic colon biopsies [47, 48]
and consists of extending the tree-like hierarchical structure of the HDPMM to a
further level. Then, mutations are grouped according to their subclone, which is in
turn grouped according to patients. However, it remains to be shown whether this
approach is applicable to cancer data.

ITH in Signature Refitting.By combining the estimation of subclones with refitting
methods we can learn about the evolution of cancers [45]. One approach is to infer
the subclones and then apply a refitting algorithm to each of them [49]. An alternative
is implemented by TrackSig [50], and consists of sorting mutations by CCF (a
surrogate for “age”). Refitting is then applied to “time points” of 100 mutations each.
Lastly, subclones are inferred at boundaries between time points.

The first approach fails to propagate the uncertainty around subclones to the
second step of the analysis. Performing inference on the subclones and the subclone-
specific exposures jointly, as done by TrackSig, seems sensible but the current
approach ignores uncertainty in the estimation of the CCF.

2.3 Challenge 3: Accounting for Opportunities

A mutation category implies a “reference state” and a “variant state”. For example,
consider the category “A[C>T]G” in the standard categorisation of SBSs. That cat-
egory implies a reference state “ACG” and a variant state “ATG”. Reference states
are not uniformly distributed across the human genome and their distribution varies
across cancer patients (due to copy number variation and loss of heterozygosity
events).

Fischer et al. [14] have proposed to adjust the observed number of mutations of
category k by the relative prevalence of that category’s reference state. That relative
prevalence is termed “opportunity” and, for patient g, is denoted okg . Adjusting for
opportunities, (1) becomes

mkg ≈ okg

N∑

n=1

skneng (8)

While this approach is available in several de novo methods [14–16], it does not
seem to be widely used in practice.

Opportunities, when measured, are informative about the distribution of muta-
tions that might occur contemporaneously, but are used to analyse mutations that
have occurred in the past. Copy-Number gains change the opportunities for late
mutations, while loss of heterozygosity events and copy number losses effectively
change the opportunities for early events. By contrast, other processes can gradually
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shift the balance of opportunities. An SBS event can change three local contexts, so
a hypermutation event with 1,000,000+ similar mutations would noticeably change
the opportunities.

2.4 Challenge 4: Going Beyond the 96 Categories

As mentioned in Sect. 1.1, signature analyses are applicable to a range of mutational
classes. Most, though, have been performed on single base substitutions (SBS) for
which a canonical categorisation with 96 categories is available. Six basic categories
result from considering the pyrimidine in the mutated base pair and the base to
which it mutates (C>A, C>G, C>T, T>A, T>C, T>G). Considering this and the
four possible nucleotides before and after the mutated base, we obtain the most
common categorisation, with 4 × 6 × 4 = 96 mutation types.

Further Categorisations of SBS. We could consider four flanking bases instead
of two. The number of categories in this taxonomy is then 6 × 44 = 1536. While
it has been shown that the two bases immediately flanking the mutated base carry
a stronger signal, in some cases using this extended taxonomy has led to further
resolution [24]. This taxonomy comes with its own challenges. First, we would not
expect MCMC-based methods to scale to this level of resolution. Second, we would
expect matrix M to contain many zeroes, requiring methods that can account for
such sparsity.

A related problem is that there is currently no distance structure between muta-
tion categories. A mutation A[C>T]G is as different from C[C >T]G as it is
from T[T>A]T. While the NMF approach offers no obvious way of creating such
distance structure, the one-dimensional categorical observations x ji ∈ {1, . . . , 96}
in the HDPMM could be replaced with three-dimensional observations x j i =
(x ji1, x ji2, x ji3) with x ji2 ∈ {1, . . . , 6} and x ji1, x ji3 ∈ {1, . . . , 4}.
Integrating Mutation Classes. Whether it would be informative for signatures to
integrate all the mutation classes is a matter of debate [4, 24]. A cross-class cate-
gorisation, such as the one with 1,697 categories proposed by Alexandrov et al. [24],
ignores the difference in noise and degree of sparsity between mutational classes.
Performing separate analyses for each class followed by post-hoc association anal-
ysis of exposures has the drawback of ignoring uncertainty in signature attribution.
Instead, we would suggest a strategy of information sharing, using class-specific
categorisations and catalogues to extract signatures, but incorporating an associa-
tion parameter that would quantify which signatures of diverse classes tend to occur
together.

Accounting for Genomic Properties. So far, we have considered mutations from
a given patient to be exchangeable. That is reasonable if we lack information to
distinguish them, other than the category we are measuring. However, that is not
entirely true, as each mutation has genomic properties (e.g. chromosome, chromatin
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state, proximity to a particular binding site, etc.) that we might be able to measure.
Those properties can help elucidate the aetiology of a signature, as well as help
determine whether a signature is an artefact of the extraction algorithm.

Categorisations can be augmented to account for these genomic properties, but
increasing the number of categories comes at a price.With that strategy, we are likely
to be able to consider one genomic property at a time. Vöhringer et al. have suggested
an alternative based on non-negative tensor factorisation, TensorSignatures
[51]. This method scales to a large number of genomic properties. However, it has
the disadvantage of not being a probabilistic method. Further methods may arise,
in the spirit of TensorSignatures, perhaps modelling mutation categories and
genomic properties with a joint probability distribution and thus relaxing the assump-
tion of exchangeability.

3 Challenges Addressed with Bayesian Nonparametrics

3.1 Challenge 5: Uncertainty in the Number of Signatures

Parametric methods such as those based on NMF, reviewed in Sect. 1.2, assume a
fixed number of signatures. Therefore, uncertainty around the number of signatures
is not modelled or evaluated. Moreover, it has been argued that uncertainty around
the model dimension should be disregarded as its influence in the estimation of the
main signatures is marginal [4].

We argue that as the number of signatures is unknown, there is uncertainty about
the true model dimension. This uncertainty can be modelled and evaluated after
collecting data. A Bayesian clustering approach relaxes the assumption of a fixed
number of signatures and lets this number be a parameterwhose value is to be learned.
This is achieved by placing a prior on the number of signatures. A nonparametric
prior implies that the model dimension increases with the number of observations
[52]. The assumed rate of growth depends on the chosen nonparametric prior, as
briefly discussed for the HDPMM in Sect. 1.2.

The latter approach has, in our opinion, several advantages. First, avoiding an
upper bound on the number of signatures is intuitively appealing, as we expect to see
more signatures as more observations arrive. However, the assumption about the rate
of growth is rather strong and must be checked. Second, it allows for inference to
be performed on model parameters and model dimension jointly. Hence, uncertainty
intervals around model parameters will reflect the uncertainty around the number of
signatures (see also Sect. 3.2).

Provided with a data set, a sampler for the HDPMM will produce draws from
a posterior distribution, each of them with a different number of signatures. From
those draws, it is straightforward to produce a (marginal) posterior distribution over
the number of signatures. As that posterior will help quantify the strength of the
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signal in the data set, it must be reported along with the “most representative set of
signatures”. Relatedly, the required evaluation of uncertainty around signatures in
that representative set is not trivial (see Sect. 3.2).

3.2 Challenge 6: Uncertainty Around the Signatures

Contrary to the usual practice in the biomedical literature, estimates of mutational
signatures have typically been reported without intervals of uncertainty [5, 9, 24].
This is undesirable, as we are often interested in the possible range of values that
might have generated the data. First, even if wewere only interested in the “centre” of
the signatures, uncertainty in estimating that centre is unavoidable. Second, if there
is any randomness in the biological mechanism under which mutational processes
generate mutations, we would expect them to leave slightly different “fingerprints”
in each patient. Uncertainty intervals around signature probabilities should reflect
that variability.

The Bayesian paradigm provides a natural setting to quantify that uncertainty.
While this has been proposed in two contexts, Bayesian NMF [15, 16] and Bayesian
clustering [18], we believe that the latter is more promising. This is because the
Bayesian clustering approach accounts for the uncertainty in the model dimension
when reporting uncertainty around the signatures (see Sect. 3.1). This can be useful
considering study design (see Sect. 3.3).

TheBayesian clustering framework provides a posterior over the space of possible
partitions. At every iteration of the MCMC sampler, every mutation is allocated
to a cluster which is, in turn, characterised by θ j i in (5)–(7). The random vector
θ j i represents the signature attributed to mutation x ji . For ease of interpretation, a
representative clustering must be determined from the MCMC output. An objective
criterion must be defined to determine that “most representative set of signatures”.

Once a representative set has been derived, the MCMC output can be used to
determine the strength of the signal. If a signature is needed to explain the data, it
will appear consistently across iterations of the sampler, and hence credible intervals
around it will be narrow. Conversely, if a signature appears in the best set but does not
appear throughout the MCMC output (e.g. because it might emerge admixed with
similar signatures), it will be reported with wide credible intervals.

Such an approach, while needing development, would differ from the post-
processingmethod ofRoberts [18] that disregards uncertainty in clustering by assum-
ing that every reported signature is present across iterations of the sampler. Rather,
one of the strengths of the Bayesian clustering approach is that it allows one to assess
whether a given signature is present across iterations.
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3.3 Challenge 7: Sample Size Calculations

Since the first collection of 5 mutational signatures was found on a data set of 21
breast cancer whole genomes [9], the number of known mutational signatures has
grown with the number of cancer genomes available for analysis. The first pan-
cancer mutational signature study reported 21 SBS signatures in 507 genomes and
6535 exomes [5, 10], while the most recent large-scale study has reported 49 SBS
signatures in 4645 genomes and 19184 exomes [24], suggesting that the rate at
which new mutational signatures can be found shrinks as the number of patients
and observed mutations grows. Heterogeneity within the cohort is also known to
influence the power to extract signatures.

While we would expect the inventory of mutational signatures to keep increasing
as new tumour samples are observed, it is good practice to make sample size calcu-
lations before collecting new samples. When making sample size calculations, it is
advisable to consider (1) the number of new individuals recruited, (2) the number of
mutations observed in each patient, and (3) heterogeneity within the cohort.

Whereas methods based on Non-negative matrix factorisation do not provide
an obvious way of informing study design, the fully probabilistic approach of the
HDPMMcould be used to inform future sample collection. In particular, wewould be
interested in assessing the posterior probability of discovering a new signature, condi-
tional on the data already observed and L future observations x J+1, x J+2, . . . , x J+L .

The scaling properties of the HDPMM [42, 52], explained in Sects. 1.2 and 3.1,
can be applied to assess that probability. Related probabilistic questions on future
data collection could be answered, for example regarding heterogeneity within the
cohort. This approach has been successful in other problems, such as single-cell
sequencing experiments with competing budget constraints [53]. However, to avoid
making false inferences, we must check that the newly discovered signatures are
likely to be genuine, considering the level of support for them by the observed data.

4 Challenges Requiring a New Modelling Approach

4.1 Challenge 8: Uncertainty Quantification Around
Exposures

Remember that the goal of a refitting analysis is to solve for eg in (2) for a single
patient g. In Sect. 1.2, we have briefly reviewed the mathematical methods available
for performing this task. To date, it remains the case that most point estimates in
refitting analyses are reported without an uncertainty interval (see, e.g. [54]).

So far, there has been one attempt to provide confidence intervals around the
estimates of a refitting analysis, provided bySignatureEstimation [20],which
uses the bootstrap to produce confidence intervals around the exposure estimates.
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There is a concern though that this approach accounts at best for a fraction of the
uncertainty.

Avoiding False Exposures and Obtaining a Sparse Solution. Because signatures
overlap, different weighted combinations of signatures can explain a mutational
catalogue equally well. Thus, it has been argued that S should include only the
signatures that one could reasonably expect to see in the tissue where the tumour
arose [4]. Moreover, any extra signature added to the S matrix will result in a fitted
vector that better resembles the observed vector.

Those two difficulties are acknowledged and addressed by Alexandrov et al. [24].
Their solution consists in (a) including in S all the signatures that have been previ-
ously found in the relevant tissue, (b) removing signatures from S sequentially, until
the removal of a single signature results in a reduction in the cosine similarity≥ 0.01,
and (c) adding to S the signatures that result in an increase in cosine similarity of
≥ 0.05, even if they have not been previously associated with the relevant tissue.

However, that approach is not without problems. First, the inference is based on
ad-hoc rules and relies on cut-offs that appear arbitrary. The first suggestion from a
statistical point of view would be to elucidate an informative prior distribution over
the exposures. If prior information is limited to the tissue in which the tumour was
observed, it might be possible to adopt a hierarchical modelling approach, with the
ambition to borrow information across patients. Further, a penalty parameter could
be included, ensuring that over-fitting is avoided.

Assessing All Sources of Uncertainty. In principle, to avoid underestimating uncer-
tainty, all its sources should be modelled explicitly. Degasperi et al. [25] have argued
that, even if most signatures occur in more than one tissue, the profile of each signa-
ture is tissue-specific. Therefore, the matrix S should contain signatures as extracted
from tumours of the relevant tissue only.While this seems sensible, we would go fur-
ther and argue that, if there is any randomness in the mechanism under which a given
mutational process generates mutations, then the fingerprint of that process must
differ at least slightly between patients. This must be accounted for when allocating
mutations to signatures.

Another source of uncertainty that is often ignored has been termed “sampling
uncertainty” by Li and colleagues [21]. It formalises the idea that uncertainty in the
estimated exposures will decrease as more mutations are observed. A response to
that is their method, sigLASSO. However, even if this method accounts for such
“sampling uncertainty” in its modelling, it reports point estimates only. This is an
appealing idea that could be incorporated into the other methods.

4.2 Challenge 9: Obtaining Separated Signatures

If we are looking to extract a representation of the true exposures and signatures,
then it should be noted that two true but distinct signatures can be similar. This has
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been highlighted as problematic, as the presence of similar signatures in the matrix
S prevents unambiguous attribution of mutations to signatures [24]. We should also
note that the interpretation of similarity is very much dependent on the vector space
in which we are representing signatures, which is a restrictive space due to the non-
negativity constraint.

To avoid such ambiguity in post-hoc refitting analysis, we can impose a sparsity
constraint on de novo methods by adding a penalty term to the optimisation problem
(3), as suggested by Lal et al. [17]:

λ

N∑

n=1

||sn||1 (9)

where || · ||1 is the L1 norm and λ can be interpreted as the data set’s degree of
sparsity. This approach results in extracting signatures that are sparse, thus making
pairs of signatures more likely to be separated. It should be noted however that, by
imposing a sparsity constraint, a restriction that may not be supported by evidence
is introduced for computational and interpretational convenience.

By shrinking the signature parameters towards zero, the aforementioned sparsity
constraint results in a rather strong restriction over a space that is already restrictive.
This has implications for the stability of present and future signatures: presented with
additional data carrying novel signatures, a de novo method may fail to find space to
accommodate those novel signatures, potentially distorting old ones.

4.3 Challenge 10: Partial Information About the Signatures

With themethodology available to date, a researcher has twooptionswhen attempting
to analyse data—to rely on an external collection of signatures to perform a refitting
analysis or to perform a de novo analysis. However, there are situations where it
would be more natural to assume an intermediate setting, where the signatures are
neither known nor unknown.

In this context, it might make sense to consider an intermediate approach where
partial information about the signatures is available, but they are not known precisely.
This is not the same as the approach termed fit-ext in [16] and also implemented
in [18]. That approach, consisting in setting part of the signatures matrix to point
estimates derived fromprevious studies, ignores the uncertainty associatedwith those
point estimates. Moreover, it does not allow for those estimates to be updated.

Rather than considering previously discovered signatures to be fixed, it seems
more appropriate to incorporate knowledge obtained from previous studies
through means of an informative prior distribution. This setting has, to some extent,
been explored also in [16], allowing informative Dirichlet priors over both signatures
and the exposures. However, there is little guidance on how to take advantage of this
method. We note however two possible lines of future research within this approach.
First, the Dirichlet distribution might not be flexible enough to model prior knowl-
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edge about the signatures. Second, a hierarchical prior over the exposures might be
worth considering, to borrow statistical strength between patients.

5 Conclusions

This review has set out what we perceive to be the main statistical challenges in the
field of mutational signatures.While highlighting the achievements of themutational
signatures community in improving our understanding of cancer, we have drawn
attention to the lack of estimates of uncertainty in such analyses. Motivated by this,
and by related statistical challenges, we have highlighted the strengths of certain
methods to address those challenges while also emphasising the need for future
developments.

First, we have outlined four challenges involving potential errors or loss of infor-
mation when constructing M. We have highlighted that the problem of estimating
the “true” M has been largely ignored (Sect. 2). As an alternative, we could have
argued for a single Bayesian pipeline integrating mutation calling and signature
analysis. However, that would set back the adoption of new methods, since muta-
tion calling pipelines are established. Relatedly, we have underlined the promise of
TrackSig in the study of tumour evolution, but further developments are required
to account for all the uncertainties (Sect. 2.2). Similarly, we drew attention to the
concept of mutational opportunities while calling for new developments to account
for the opportunities’ temporal evolution (Sect. 2.3).

Second, we have outlined three challenges related to uncertainty quantification in
de novo applications. While NMF approaches have been augmented with probabilis-
tic models, their lack of flexibility regarding model dimension is a drawback. We
have argued that the Bayesian Nonparametrics approach, first suggested by Roberts,
offers a more natural framework for assessing sources of uncertainty. However, we
have argued that further study is needed to take advantage of the vast MCMC output
resulting from this approach (Sects. 3.1 and 3.2).We have also discussed the potential
of this fully probabilistic modelling to underpin study design, allowing practitioners
to address trade-offs and optimise limited resources (Sect. 3.3).

Lastly, we have outlined three challenges for which no obvious statistical solution
is available. We have highlighted the need for quantifying uncertainty in the context
of refitting. We have also highlighted the recent application of statistical methods
such as the Bootstrap to assess a fraction of such uncertainty, while identifying
additional sources of uncertainty that are being ignored (Sect. 4.1). Finally, we have
underlined thefit-ext approach as an attempt to pose an intermediate problembetween
de novo and refitting. However, that approach needs enhancement to account for the
uncertainty around estimates obtained in previous studies (Sect. 4.3).
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