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Abstract The world is on an urgent transition to renewable energies. Photovoltaic
(PV) solar energy is the most viable green energy source to be produced at the
domestic level, allowing every individual to contribute. Understanding the factors
that influence the adoption of domestic solar energy, how it changes throughout the
country and how spatial dependent factors contribute to the promotion of this tech-
nology is of the utmost importance to stimulate adoption. As to this day, to the best of
my knowledge, these are not yet known. This study aims to contribute to channeling
efforts to where adoption is more likely, ultimately accelerating Portugal’s energy
transition. Hence, the goal of this study is to build a spatial model that estimates
for each spatial unit in Portugal the probability of individuals adopting domestic
PV systems. The study uses data related to past solar PV installations as well as
socioeconomic and demographic data from public sources. An exploratory spatial
analysis including the study of spatial correlation across municipalities confirmed
the importance of spatial considerations. Three dependent variables were consid-
ered sequentially: installations (binary), number of panels installed (discrete), and
installed power (continuous). To model the latter, it being the main focus of the
study, eight models were compared: linear regression (OLS), spatial lag (SAR), spa-
tial error (SEM), Kelejian-Prucha (GSM), spatial lag of the explanatory variables
(SLX), spatial Durbin (SDM), spatial Durbin error (SDEM), and Manski models. It
was concluded that socioeconomic factors do spill over to neighbor locations and in

C. Goldstein (B)
MSc in Analytics and Big Data Engineering, Department of Computer Science and Department of
Mathematics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de
Caparica, 2829-516 Caparica, Portugal
e-mail: c.goldstein@campus.fct.unl.pt

J. M. Espinosa
Tech Garage, IT & Digital Department. Galp Energia, SGPS, S.A., 1600-209 Lisboa, Portugal

R. Bispo
NOVAMATH Center for Mathematics and Applications, Department of Mathematics, NOVA
School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516
Caparica, Portugal
e-mail: r.bispo@fct.unl.pt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bispo et al. (eds.), Recent Developments in Statistics and Data Science,
Springer Proceedings in Mathematics & Statistics 398,
https://doi.org/10.1007/978-3-031-12766-3_12

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12766-3_12&domain=pdf
http://orcid.org/0000-0002-6723-2557
mailto:c.goldstein@campus.fct.unl.pt
mailto:r.bispo@fct.unl.pt
https://doi.org/10.1007/978-3-031-12766-3_12


154 C. Goldstein et al.

that way influence solar PV adoption, but also that unobserved characteristics result
in similar decisions in nearby municipalities. The SDEM was found to be best to fit
the data and a final map representing the likelihood of adoption across the different
municipalities in Portugal was produced according to its estimations.

Keywords PV system adoption · Social effects · Spatial modeling · Technology
diffusion

1 Introduction

Rethinking the use of energy stemming from fossil sources and transitioning to
renewable energies is increasingly becoming a necessity. Photovoltaic (PV) energy,
attained through the installation of solar panels, is the most viable of being produced
at the level of the individual consumer for domestic use. There are companies devel-
oping highly advanced technologies to identify the energetic potential of homes and
to install these solar panels. However, inquiring about potential customers without
knowing their predisposition ends up wasting many resources.

The overall goal of this project is the construction of a spatial model that estimates
for each spatial unit, with the finest possible granularity, the probability of adopting
domestic solar PV systems. In doing so, companies will be able to better channel their
selling efforts to locations where adherence is more likely, ultimately accelerating
Portugal’s transition to renewable energies.

More specifically, using data related to past solar panel installations, the first goal
is to describe the geographical distribution of the current installations across Portugal.
Furthermore, using socioeconomic and demographic data from public sources, the
goal is to cross this information and characterize each region, in order to understand
the factors that may explain the decision of installing solar panels. The ultimate goal
is to build a map representing the adoption likelihood for each spatial unit.

This study is structured as follows: in the first section the topic is put into context
and the goals of the project are defined. The motivations for this work are also
presented in this chapter, as well as a review of the literature on similar problems. In
Sect. 2 the available data that are to be used are presented, alongwith their description,
characterization, and preprocessing. This section also presents the statistical methods
to be used, both to perform an initial exploratory analysis and to build different model
specifications, while explaining the logic that resulted in the presented decisions. In
Sect. 3, the results of the exploratory analysis and the different regression models
are shown and described. In Sect. 4, the results are discussed and conclusions are
presented.



Modeling Residential Adoption of Solar Photovoltaic Systems 155

1.1 Decision-Making in PV Technology Adoption

Schelly [1] explores the decision-making process of individuals regarding energy
technology adoption through interviews with domestic PV panel owners and indi-
cates three models to explain adoption: environmental motivations, economic ratio-
nality, and social spillover. Richter [2] studied the diffusion of solar PV technology in
theUnitedKingdom through a panelmodel with time-varying fixed effects and found
that higher educated neighborhoods installed more PV systems than neighborhoods
with, on average, lower educated populations. The author also found a correlation
between the number of systems installed in an area and the number installed three
months later. Hence, Richter [2] concludes that higher educated neighborhoods may
be more inclined to promote the spread of technology within their neighborhoods.
Bollinger and Gillingham [3], who studied the diffusion of solar PV panels in Cali-
fornia with a similar panel model, also found significant evidence that the decision
to install PV systems may be influenced by the neighbors’ previous decision to
install. Graziano and Gillingham [4] examined the diffusion of this technology in
Connecticut in a similar way and found that demographic and socioeconomic vari-
ables significantly influenced PV adoption and that higher numbers of previously
installed systems also significantly increased the number of later adoptions nearby.
Schelly and Letzelter [5] examined the decision factors that influence the adoption
of residential solar electric power systems in upstate New York through question-
naire data and found that environmental motivations are slightly more important than
economics. As Richter [2] points out, spatial econometric methods could allow the
study of social effects across borders, recognizing the study of spillover only within
the neighborhood as a limitation of her model. Baginski and Weber [6] use spatial
econometric models to study the spread of PV systems over space and the factors that
drive the regional uptake in Germany to conclude that spatial dependence is a rele-
vant factor for explaining regional clusters of PV adoption and that spatial spillover
is not mainly driven by social imitation but by unobserved regional characteristics.
High values for solar radiation, the share of detached houses, electricity demand, and
inverse population density of a region favor the PV uptake. Predicting that also in the
case of this study, the demographic and socioeconomic factors as well as built envi-
ronment associated with each region will be key to mapping the country’s regions
and identifying which are more likely to be receptive to domestic solar panels, these
variables were extracted from publicly available sources to test how they fit the data.
The approach of Baginski and Weber [6] will be closely followed, adding a predic-
tive component using the results found to build a map representing the likelihood of
adoption, making it more directly usable by decision-makers in the field.

Most studies that try to explain the factors influencing PV system adoption use
the number of PV systems as the target variable to be explained [2–4, 7, e.g.].
Some, as in the case of Rode and Weber [8], use a variation of this discrete variable,
like the number of PV installations per building and number of PV installations per
owner-occupied household, transforming the target variable into a ratio and therefore
essentially continuous. Others, like Baginski and Weber [6] and Schaffer and Brun
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[9], use the PV installed capacity (in kw), which is a continuous variable. Naturally,
the methods used in each approach will also differ accordingly. In the case of this
study, there are three variables that could be used as target variables, namely Total
Price, Installed Power and Number of Panels, since all represent the size of PV
system installations. Hence, and since the installed capacity has been used by other
authors, this study will entail both the analysis of Installed Power and Number of
Panels. Thus analyzing both a continuous and a discrete variable.

Baginski and Weber [6] focus on the spatial diffusion of PV systems using spa-
tial econometric models and considering both exogenous and endogenous spatial
interactions. To follow this recommendation, this study will first perform a spatial
exploratory analysis.Many spatial analysis authors refer to Tobler’s first law of geog-
raphy, which states that areas closer together are more similar than those further apart
(“the first law of geography: everything is related to everything else, but near things
are more related than distant things.” [10]). For that reason, most spatial analysis
start by exploring spatial correlation, which implies the correlation among the same
variable from different locations.

Spatial dependence is commonly made operational by some measure of spatial
autocorrelation, which depend on the specification or estimation of a set of weights
describing spatial relationships. To describe possible spatial relationships between
locations, one must first define what accounts for neighbors of said locations. Some
typical examples of criteria that could be used to define neighbors were described by
Anselin [11], namely first-order contiguity and critical distance thresholds. Part of
assigning neighbors involves applying a measure of weighting to indicate the extent
to which the information from an area’s neighbors impacts on the observed estimate
for that area. This is commonly summarized in a spatial weights matrix.

2 Material and Methods

2.1 Data Characterization and Preprocessing

There are two important data sets to consider for the construction of the models. The
main data set contains details from 441 domestic solar panel installations done in
Portugal between the end of June and November of 2020, provided by a company
that specializes in such installations. The second data set involves demographic and
socioeconomic variables extracted from Instituto Nacional de Estatística (INE:www.
ine.pt). These variables were downloaded as isolated data sets and then aggregated
by geographical location. The selection of the variables was based on the factors
found in the literature to influence the decision to install solar panels. These were
then subjected to a correlation analysis to select the final list.

The available variables regarding the solar PV installations, their type, and their
meaning are described in Table 1.

www.ine.pt
www.ine.pt
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Table 1 Description of the variables regarding solar PV installations

Variable Type Description

Date Categorical Date of the installation

Postal code Categorical Postal code of the house of
installation

Number of panels Numerical Number of panels installed

Installed power Numerical Power installed, in kwh

Data preprocessing tasks included both data exclusion and variable creation. The
data exclusion task involved removing some values that do not make sense and are
likely to be database mistakes. The geographical aspect of the data is very important
to pursue the goals of this paper. Hence, since the only variable containing geo-
graphic information in the dataset is Postal Code, this information was expanded to
include Locality, Municipality, District, NUTSII, and NUTSIII, creating these 5 new
variables. NUTS refers to the Nomenclature of Territorial Units for Statistics, and
it is a standard for referencing subdivisions of European countries. NUTSI repre-
sents major socioeconomic regions, which corresponds to three regions in Portugal.
NUTSII refers to basic regions for the application of regional policies and is made
up of seven regions in Portugal, five if the islands are excluded. NUTSIII represents
smaller regions and corresponds to 25 regions in Portugal, 23 of these in continental
Portugal.

The list of selected explanatory variables and their description can be seen in
Table 2. A summary of descriptive statistics can be seen in Table 4 (Table 3).

From the initial set of 45 variables that have data at the municipality level, these
13 were selected based primarily on correlation analysis.

2.2 Data Modeling

SpatialWeightsMatrix Spatial weights represent geographic relationships between
the different units in a spatially referenced dataset, usually in the form of a spatial
weights matrix. This is defined as a n × n positive matrix W with elements wi j

at location pairs i, j (i �= j; i, j = 1, ..., n) for n locations. An element wi j is the
weight for each pair of locations, which is assigned by some rules that define the
spatial relations between the locations.

There are several ways to define this matrix, commonly based on contiguity. A
pair of spatial units is said to be contiguous if they share a common border. Rook
contiguity constructs a weight object from a collection of polygons that share at least
one edge. Queen contiguity is a more inclusive notion of contiguity, since it requires
a pair of polygons to share one or more vertices.
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Table 2 Description of explanatory variables

Variable Description

Population Number of people who live in each municipality

Purchase power Purchase power per person who lives in each municipality

Gross income Gini Gini coefficient calculated per taxable persons

Gross income Gross income per person who lives in each municipality

Subsidies Number of people who receive government subsidies per person who
lives in each municipality

Rental agreements Number of rental agreements per person who lives in each municipality

Energy consumption Domestic consumption of electrical energy per consumer
(kWh/consumer),
where consumed energy might have been produced by hydroelectric,
nuclear or thermal conventional centrals or also wave, mares, wind or
solar energy

Votes in the most voted Percentage of votes in the most voted in elections for the Assembly of
the Republic

Abstention Percentage of abstention in the elections for the Assembly of the
Republic

Temperature Average temperature in the last available year

Art exhibitions Number of art gallery exhibitions per person who lives in each
municipality

Family housing Number of classic family housing

Habitation buildings Number of habitation buildings

Table 3 Results for the spatial dependence tests in the OLS model

Test Statistic P-value

Moran (residuals) 0.0856 0.002021

LMerr 5.5948 0.01801

LMlag 1.4397 0.2302

RLMerr 6.1968 0.0128

RLMlag 2.0417 0.153

SARMA 7.6365 0.02197

Since there is very little information available about what type of relation would
make amunicipality in Portugal influence onemore than another and tomake the least
number of assumptions, a k-nearest neighbors matrix will be chosen and k decided
based on the most common number of neighbors a municipality has in Portugal
(discovered through rook and queen contiguity).

Spatial Correlation An important part of spatial analysis is the particular analysis
of spatial correlation. Popular options for area-level data that will be considered
include Moran’s I, Geary’s C, Gettis and Ord’s G and the Localized Indicators of
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Table 4 Summary description of explanatory variables

Variable Count Mean RSD4 (%) Min Median Max

Population 278 35247.69 57526.42 1634 14608 509515

Purchase
power

278 80.51 18.68 55.32 77.21 219.63

Gross
income Gini

272 26.89 2.34 21.10 26.70 37.20

Gross
income

278 7608.82 1726.30 4352.00 7384.50 19574.00

Subsidies 278 0.03 0.01 0.01 0.03 0.13

Rental
agreements

182 0.006 0.003 0.002 0.006 0.016

Energy con-
sumption

278 2082.81 712.62 1026.00 2082.15 10393.00

Votes in the
most voted

278 40.64 4.58 31.20 40.10 61.50

Abstention 278 47.35 5.79 30.40 46.50 66.20

Temperature 278 15.43 1.37 11.70 15.40 18.00

Art
exhibitions

278 0.0002 0.0002 0.0000 0.0001 0.0018

Family
housing

278 0.74 0.26 0.39 0.70 2.95

Habitation
buildings

278 0.60 0.27 0.07 0.58 1.61

Spatial Association (LISA). It is important to be attentive of the distinction between
global and localized correlation. Somemethods study global clustering (likeMoran’s
I), which assesses spatial correlation throughout the entire study region. Localized
correlation is also called local clustering or hot-spot analysis and includes methods
such as LISA.

To model adoption of solar PV systems across Portugal, this study will start by
estimating a binary dependent variable, namely whether there are PV installations in
a certain region or not. Taking this a step further, a discrete dependent variable will
be modeled, specifically the number of panels installed in each region. Finally we
will focus more attentively on modeling a continuous dependent variable, namely
the installed power.

For all the following models in this chapter, this notation is used:

• n is the number of observations;
• K is the number of explanatory variables;
• Y is a n × 1 vector of observations on the dependent variable;
• X is a n × K matrix of observations on the explanatory variableswith an associated
vector of regression coefficients β (K × 1);

• W is the spatial weights matrix (n × n);
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• W Y denotes the endogenous interactions among the dependent variable associated
with the spatial autoregressive parameter ρ, which measures the effect of spatial
lag on this variable;

• W X denotes the exogenous interactions among the independent variables associ-
ated with a vector of regression coefficients γ (K × 1);

• W u denotes interactions among the residuals of spatial units, associated with the
spatial autocorrelation parameter λ;

• ε represents an independently identically normally distributed error term vector
with zero mean and constant variance (ε ∼ Nn

(
0,σ2 In

)
);

• α represents the models’ intercept.

Binary Dependent Variable To model the binary dependent variable Installation,
the probit model will be used, as it is typically privileged in econometrics.

This is a particular type of binary regression model that ultimately allows to
classify the observations based on their predicted probabilities. Considering the gen-
eralized linear model framework, the probit model uses a probit link function and
will be estimated using maximum likelihood. This is represented by the following
equation

P(Y = 1 | X) = Φ (Xβ) (1)

where Y is a vector of the binary outcome, 1 is a vector of ones, Φ is the cumulative
distribution function of the standard normal distribution, and β is the vector of
parameters β estimated by maximum likelihood.

To introduce a spatial component in this analysis, a Bayesian Estimation of Spatial
Probit Models will be used. The Bayesian estimation of the spatial autoregressive
probit model (SAR Probit model) is described by

Y = ρWY + Xβ + ε (2)

with notation as previously described. Note that ρ is the scalar parameter that
describes the strength of spatial dependence in the sample of observations.

The prior distributions are β ∼ N (c, T ) and ρ ∼ Beta(a1, a2), where c is the
mean value of β, T is the variance of β, while a1 and a2 are shape parameters.

In general the coefficients of any probit regression cannot be interpreted directly.
The marginal effects of the regressors should be considered partial derivatives. Addi-
tionally, in the case of the SAR Probit model, the direct, indirect, and total effects are
to be considered.A change in one explanatory variable xki for location i (i = 1, ..., n)

will not only affect the observations yi directly (this is considered the direct impact),
but this change can also affect the observations in locations nearby y j (which is
the indirect impact). Let Sk(W ) be the matrix (n × n) of impacts from location i to
location j for explanatory variable xk , defined as

Sk(W ) = d E[Y | xk]
dxk

= φ((In − ρW )−1 In x̄kβk) ∗ (In − ρW )−1 Inβk (3)
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where x̄k denotes the mean value of variable xk and βk the parameter estimate for
this variable.

Then the direct impact of a change in xki on yi can be described as Sk(W )i i and the
indirect impact from observation xk j on yi as Sk(W )i j (i �= j). Hence, the average
direct impact of k can be calculated as the average of the diagonal elements. The
average total impact is the mean of the row sum, and the average indirect impacts
can be calculated as the difference between average total impacts and average direct
impacts.

Discrete Dependent Variable To model the Number of Panels installed across the
municipalities, linear regressions were considered and estimated by OLS. The fol-
lowing models will be used

Y = Xβ + ε (4)

Y = Xβ + W Xγ + ε. (5)

Equation 4 describes the linear regression estimated by OLS (referred to as OLS
Model in Sect. 3), while Eq. 5 describes the SLXModel, which includes the spatially
lagged explanatory variables, weighted by the spatial weights matrix.

Continuous Target Variable This study will take a general-to-specific approach, as
suggested by Baginski and Weber [6], thus starting with a simple non-spatial linear
regression and successively adding different spatial interaction effects. Still using
OLS estimation, the model will be expanded with the spatial lag of the explanatory
variables (SLX). The model will then be expanded with a spatially lagged depen-
dent variable, thus estimating the spatial lag or spatial autoregressive model (SAR).
The spatial error model (SEM) is also specified, incorporating spatial autoregres-
sive process in the error term. Then, estimating a spatial durbin model (SDM) can
be appropriate, where the SAR model is expanded with spatially lagged explana-
tory variables, as it seems reasonable to think that spatially correlated variables are
probably omitted. For the same reason, the spatial durbin error model (SDEM) will
also be estimated and compared. Finally, because the underlying spatial process is
often unclear, all three spatial effects will be combined in the most general model,
the Manski model. Here it is important to take into consideration that one of the
components has to be removed for the spatial coefficients to be properly interpreted
and distinguished [12].

It has been shown in LeSage and Pace [13] that a valid way to interpret the
β coefficients in spatial econometric models is partial derivative interpretations of
the impacts. The direct impact is the change in one location associated with the
explanatory variable that affects that same region. The indirect effect is the potential
effect that this explanatory variable has on all other regions it affects. The sum of both
is the total effect. These impact measures are valid for models including a spatially
lagged variable, thus in OLS and SEM the indirect effects are zero.

The first OLS estimation is the same as described for the discrete dependent
variable in Eq. 4. Six different statistics for spatial dependence will be run to test for
residual spatial dependence of the OLS regression:
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• Moran’s I test for residual spatial autocorrelation;
• simple LM test for error dependence (LMerr);
• simple LM test for a missing spatially lagged dependent variable (LMlag);
• variants of these robust to the presence of the other:

– test for error dependence in the possible presence of a missing lagged dependent
variable (RLMerr);

– test for a missing spatially lagged dependent variable in the possible presence
of error dependence (RLMlag);

• portmanteau test (SARMA, in fact LMerr + RLMlag).

The most straightforward way to include spatial dependence in a regression is by
considering not only an explanatory variable, but also its spatial lag. This implies
estimating the SLX model, described by Eq. 5.

The spatial lag model (SAR) introduces a spatial lag of the dependent variable,
as seen in the following equation

Y = ρWY + Xβ + ε. (6)

This model violates the exogeneity assumption, crucial for OLS to work and
therefore a maximum likelihood estimation will be used.

The spatial error model (SEM) includes a spatial lag in the error term of the
equation, resulting in the following term

Y = Xβ + u

u = λWu + ε.
(7)

As this specification violates the assumptions about the error term in a classical
OLS model, a maximum likelihood will be used.

The spatial Durbin error model (SDEM) includes a spatial lag in the error term
of the equation and the spatial lag of explanatory variables, resulting in

Y = Xβ + W Xγ + u

u = λWu + ε.
(8)

The spatial Durbinmodel (SDM) includes the spatial lag of the dependent variable
and of the explanatory variables, resulting in

Y = ρWY + Xβ + W Xγ + ε. (9)

The Kelejian-Prucha model (GSM) includes the spatial lag of the dependent vari-
able and in the error term of the equation, resulting in

Y = ρWY + Xβ + u

u = λWu + ε.
(10)



Modeling Residential Adoption of Solar Photovoltaic Systems 163

The Manski model is the most general model and includes the spatial lag of the
dependent variable, in the error term of the equation and of the explanatory variables,
resulting in

Y = ρWY + Xβ + W Xγ + u

u = λWu + ε.
(11)

Model Selection In this study, AIC will be the main criteria used to select the best
model. To do model diagnosis, residual plots will be produced for all the regressions.
Some important aspects when analyzing the regression results estimated by OLS are
the t and F statistics. To test for heteroskedasticity, the Breusch-Pagan test will be
used. To compare different models, the Nagelkerke pseudo R-squared will be used.

Ultimately, this study sets out to build a spatial model that estimates, for each
spatial unit inPortugal, the probability of adoptingdomestic solar PVsystems.Hence,
a map will be produced where each region has a value, in a scale that ranges from 0
to 1, representing the probability of a solar installation being adopted. This may be
achieved by dividing the predicted value of Installed Power for each region by the
total predicted value for the country.

3 Results

3.1 Exploratory Analysis

Dependent Variables Firstly, a general exploratory analysis is important to under-
stand the distribution of the dependent variables. Bar plots and histograms were
built to achieve this, as well as simple tables with descriptive statistics and maps to
visualize their geographical distribution.

Asmentioned before, there are three variables that will be considered to be depen-
dent throughout this study. Installation is a binary variable that is 1when amunicipal-
ity has at least one installation. Number of Panels is a discrete variable that represents
the total sum of panels. Installed Power is a continuous variable that contains the
sum of installed power (in kwh). Since the patterns found in the variables Number
of Panels and Installed Power are very similar, the graphs for Number of Panels are
presented only in the Appendix. Indeed the similarity can be seen in the scatter plot
of Fig. 7.

Most installations have 3 panels installed and half the installations have 4 or less
panels, but the number of panels can vary between 1 and 22. The installed power
ranges from 0.3 to 7.5, with half of the installations having around 1.4kwh or less.
Both variables present a positive skewness at installation level, as can be seen in
Figs. 1a and 8.
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At municipality level, around 63% of regions have solar PV installations, hence
the total number of panels and installed power show a large positive skewness and
zero-inflation, as shown in Figs. 1b and 9 as well as Table 5.

Figure 2 shows that in general, the municipalities that do not have solar PV
installations are mainly in the interior part of Portugal. The regions that do show
some installations vary a lot in size, described by the Number of Panels and capacity,
represented by the Installed Power. The biggest installations can be found in coastal

(b) Installed Power per municipality

(a) Installed Power per installation

Fig. 1 Distribution of installed power
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Table 5 Summary description of numerical dependent variables

Variable Count Mean RSD5 (%) Min Median Max

Number of
panels

278 6.892 144.8758 0 3 65

Installed
power (in
kw)

278 2.057 148.9829 0.0 1.020 21.16

5Relative Standard Deviation or Coefficient of Variation

(a) Installations (b) Number of Panels (c) Installed Power

Fig. 2 Choropleth maps of dependent variables

Portugal, especially in the center and south regions, but also some in the north around
the city of Porto (Figs. 3, 4, 5, 6, 7, 8 and 9).

Spatial Weights Matrix In this subsection, the choice of the weights matrix is pre-
sented. In this case, the queen and rook weights matrix attribute to all locations the
same neighbors. Since the grid is not regular, there is no “edge” case and so both
matrices are being the same. Figure 10a shows the contiguity relationships repre-
sented by the centroids of each municipality and edges connecting them. Figure 10b
shows that theminimumnumber of neighbors in this case is 1, while onemunicipality
has 10 rook neighbors. The most common number of neighbors is 5.

Instead of having to assume that contiguity will affect more than distance or vice-
versa, a simple approach is applied by using k-nearest neighbors weights matrix and
choosing k = 5, which is the mode of the number of neighbors.

Spatial Correlation The Moran Plot shows the relation between a variable and its
spatial lag. To helpwith the interpretation, a linear fit, which represents the best linear
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Fig. 3 Moran’s I

(a) Distribution of the Installed Power against its lag

(b) Distribution of simulated Moran’s
I statistics for Installed Power and ver-
tical line showing the estimated value
(in red)

fit to the scatter plot is included. The slope of this line is the value of the Moran’s
I statistic. Figures 3a and 11 show the plots for the dependent variables. The plots
display positive relationships between both variables, which is associated with the
presence of positive spatial autocorrelation, meaning that similar values tend to be
located close to each other.

To test whether this is statistically significant, a simulation was run with 999
permutations and the distribution of these values is shown in Figs. 3b and 12. It
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Fig. 4 LISA statistics for Installed Power across municipalities

corresponds to a kernel density estimation plot and a rug showing all of the simulated
points, as well as a vertical line denoting the observed value of the statistic. It shows
that it is not likely that the pattern came from a spatially random process, allowing
for the conclusion that there is indeed spatial autocorrelation in the dataset.

Geary’s C statistic is in line with Moran’s I, as a value lower than 1 indicates
that neighboring observations are similar. Geary’s C simulated p-value is also 0.001.
Gettis and Ord’s G requires a binary spatial weights matrix with ones for all points
defined as being within a certain distance of any given location, so that a different
weights matrix was used to calculate this statistic. To ensure that every municipality
has at least one neighbor, the minimum distance band was calculated. This needs to
be at least around 31km for this data. Using this d results in the value of 0.0597 for
the G statistic and the pseudo p-value of 0.001, which also suggests a clear departure
from the hypothesis of no concentration. These values are summarized in Table 6.
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(a) Likelihood map (b) Normalized Likelihood map

Fig. 5 Likelihood maps

Fig. 6 Adoption probability per municipality
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Fig. 7 Number of panels against installed power

Fig. 8 Distribution of the number of panels per installation
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Fig. 9 Distribution of number of panels per municipality

(a) Centroids and edges used in
rook and queen weights matrix

(b) Histogram number of neighbors in
the rook and queen weights matrix

Fig. 10 Rook and Queen contiguity in Portuguese municipalities
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Fig. 11 Distribution of the number of panels against its lag

Fig. 12 Distribution of simulatedMoran’s I statistics for number of panels and vertical line showing
the estimated value (in red)
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Table 6 Results of global spatial correlation statistics for variables Number of Panels and Installed
Power with respective pseudo p-values in brackets

Number of panels Installed power

Moran I 0.2951 (0.001) 0.2610 (0.001)

Geary’s C 0.6455 (0.001) 0.6758 (0.001)

Getis and Ord’s G 0.0597 (0.001) 0.0583 (0.001)

Figure 4 shows four plots that bring the different perspectives of the results for
LISA for Installed Power together.

The upper-left map shows the result for local spatial autocorrelation represented
by the LISA statistics. The municipalities that show high local spatial correlation in
Installed Power are represented in yellow. There are some differences in the munic-
ipalities with high local spatial correlation when it comes to the Number of Panels,
as can be seen in Fig. 13, namely there are less municipalities in the north of Por-
tugal with this characteristic. The upper-right maps show the location of the LISA
statistic in the quadrant of the Moran scatter plot. Comparing these two maps one
can see that the positive association in the north interior part of Portugal is due to
low adoption in these municipalities, while in the coastal south part of Portugal the
positive association is due to the high adoption of solar PV. However, it is important
to introduce the underlying statistical significance of the local values when analyzing
this. Positive forms of local spatial autocorrelation are of two types: significant HH
(high-high) clustering, i.e., hot spots, or LL (low-low) clustering, i.e., cold spots.
Locations with significant but negative local autocorrelation are either doughnuts
(low value is neighbored by locations with high values) or diamonds (high value
is neighbored by locations with low values). In the last map, in bright red are the
locations with an unusual concentration of high installed power surrounded also by
similar locations. In light red there are the first type of spatial outliers, areas that
have high installed power despite being surrounded by areas with low values. These
correspond to some areas in the interior of Portugal. In darker blue one can see the
spatial clusters of low power. In light blue there is another type of spatial outlier,
areas with low installed power nearby areas with high.

The core idea of LISA statistics is to identify cases in which the comparison
between the value of an observation and the average of its neighbors is either more
similar (HH, LL) or dissimilar (HL, LH) than one would expect from chance. Fig-
ures 14 and 15 show the distribution of LISA values for the dependent variables,
indicating a skewed distribution due to the dominance of the positive forms of spa-
tial association.

Themaps representing the values for the G statistics, which can be seen in Fig. 16,
show similar results to LISA.
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Fig. 13 LISA statistics for number of panels across municipalities

3.2 Models

Binary Target Variable In this section, the results of the non-spatial and the SAR
Probit models to estimate the adoption of Installations are presented. A summary of
these results is shown in Table 7.

The variables Purchase Power, Subsidies, Rental Agreements, Gross income Gini
coefficient, Votes in the most voted, Family housing, and Abstention were not signif-
icant to explain whether a certain municipality adopts solar PV installations. Table 7
shows that all of the fittedmodels’ coefficients are statistically significant. The excep-
tion lies in the SAR Probit model’s spatial lag coefficient rho, thus indicating that
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Fig. 14 Distribution of LISA values for the installed power

Fig. 15 Distribution of LISA values for the number of panels

the decision to adopt PV installations in one location does not seem to directly affect
this decision in other locations. Regarding the log-likelihood statistics shown at the
end of Table 7, they seem to show a negligible difference between the Probit and the
SAR Probit model.

When considering themarginal effects presented in Table 8, one can see that while
Population, Temperature, andGross Income contribute positively to the probability of
installing PV systems, Energy Consumption, Art Exhibitions, and Housing buildings
seem to have a negative contribution. Regarding the SAR Probit marginal effects,
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Fig. 16 Distribution of G statistic values for the number of panels

Table 7 Summary of the installation (binary) model (SE between brackets)
Probit SAR Probit

(Intercept) −2.779∗∗ −2.835∗∗
(1.150) (1.262)

Population 0.00002∗∗ 0.00002∗∗
(0.00001) (0.00001)

Energy consumption −0.0003∗ −0.0004∗∗
(0.0002) (0.0002)

Temperature 0.166∗∗ 0.181∗∗
(0.082) (0.085)

Art exhibitions −10.674∗∗ −11.660∗∗
(5.416) (5.686)

Gross income 0.0002∗∗ 0.0002∗∗
(0.0001) (0.0001)

Housing buildings −0.011∗∗ −0.012∗∗
(0.005) (0.006)

rho −0.026

(0.132)

AIC 280.806 283.2535

BIC 306.1991 312.2745

Log likelihood −133.403 −133.6267

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8 Marginal effects

Probit SAR Probit

Direct Indirect Total

Population 0.000005 0.000002 −0.000001 0.000002

Energy
consumption

−0.000094 −0.000201 −0.000026 −0.000207

Temperature 0.045030 0.010450 −0.012240 0.009950

Art exhibitions −2.902000 −5.627000 −0.728900 −5.725000

Gross income 0.000065 0.000024 −0.000016 0.000023

Housing
buildings

−0.002939 −0.005602 −0.000640 −0.005565

it is clear that the direct effects are larger in the case of every explanatory variable,
except for temperature. The direct effect of Temperature in the probability to install
is positive, while the indirect effect is negative in a similar magnitude.

Discrete Target Variable In this section, the results of the OLS and SLX models to
estimate the Number of Panels are presented. A summary of these results is shown
in Table 9.

The variables Purchase Power and Rental agreements are not included in either
of the models, together with the spatially lagged variables Population, Rental Agree-
ments, Gross Income Gini, Housing Buildings, Votes in the most voted, and Absten-
tion. When comparing both models, one can see that the introduction of the spatially
lagged variables improves the fit, as the adjusted R2 increases by 0.032. Both mod-
els estimate that the Number of Panels increases when Population, Gross Income,
Housing buildings, and Abstention increase. Both estimate that the dependent vari-
able decreases when Energy Consumption, Art exhibitions, Votes in the most voted,
and Family housing increase. Subsidies and Temperature are not present in the SLX
model, but are statistically significant in the OLS model and their lagged variant is
also present in the SLX model. This means that although the temperature and subsi-
dies received in eachmunicipality do not seem to influence the number of solar panels
acquired in the same municipality, their values contribute to explain the variance of
this phenomenon in neighboring municipalities. While the lagged temperature has
a positive influence on the number of panels in neighboring municipalities, lagged
subsidies result in the opposite behavior, although the latter is not statistically sig-
nificant. The value of the Gini coefficient of gross income is not considered relevant
for the OLS, but it is statistically significant at a 90% significance level in the SLX
model. Spatially lagged Purchase Power also seems to negatively influence the num-
ber of Panels acquired in neighboring locations, even though the Purchase Power
of a certain location does not explain the number of panels in the same location.
Energy consumption, Gross income, Family housing, and Art exhibitions, all seem
to influence the total number of panels in both the locations they relate to and their
neighbors, although spatially lagged Art exhibitions are not statistically significant.
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Table 9 Summary of the number of panels models
OLS SLX

(Intercept) −24.894∗∗∗ −14.345∗∗∗
(9.033) (3.645)

Population 0.0001∗∗∗ 0.00004∗∗∗
(0.00001) (0.00000)

Energy consumption −0.002∗∗∗ −0.001∗∗∗
(0.001) (0.0002)

Subsidies 1.275∗∗∗
(0.436)

Temperature 1.210∗∗∗
(0.402)

Art exhibitions −48.850∗∗ −15.889∗∗
(23.676) (7.229)

Gross income Gini coefficient 0.161∗
(0.082)

Gross income 0.002∗∗∗ 0.0003∗
(0.0004) (0.0002)

Votes in the most voted −0.233∗∗ −0.060∗
(0.110) (0.033)

Housing buildings 0.179∗∗∗ 0.062∗∗∗
(0.044) (0.013)

Family housing −0.207∗∗∗ −0.077∗∗∗
(0.036) (0.011)

Abstention 0.260∗∗∗ 0.060∗∗
(0.087) (0.028)

L. Purchase Power −0.132∗∗∗
(0.043)

L. Energy consumption 0.003∗∗∗
(0.001)

L. Subsidies −0.369

(0.231)

L. Temperature 0.478∗∗
(0.188)

L. Art exhibitions −23.992

(15.767)

L. Gross income 0.001∗∗
(0.0005)

L. Family housing 0.038∗∗∗
(0.013)

R2 0.4924 0.533

Adjusted R2 0.473 0.505

Residual Std. Error 7.246 2.156

F Statistic 25.902∗∗∗ 18.655∗∗∗

AIC 1902.82 1234.495

Log likelihood −939.41 −599.2476

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Distribution of the fitted values of
the OLS regression against the residu-
als

(b) Q-Q plot from OLS regression
residuals

Fig. 17 Residuals of the OLS regression

Gross income in a certain location has a positive influence on the number of panels
in this same location as well as its numbers, while Energy Consumption and Family
housing have opposite effects when comparing their influence on their location and
its neighbors.

Continuous Target Variable In this section, the results of the OLS, SAR, SEM,
GSM, SLX, SDM, SDEM, and Manski models to estimate the Installed Power are
presented. Summaries of these results are shown in Tables 10 and 11.

To analyze these results, it is important to firstly analyze the residuals of the
regressions and inspect the chance of heteroscedasticity as well as normality of the
residuals. Analyzing Fig. 17a the residuals seem to be heteroscedastic. Looking at
the Q-Q plot in Fig. 17b, the residuals tend to stray from the line near the tails,
especially the right tail, which can indicate that they are not normally distributed.

Spatial autocorrelation is at least partly the suspected cause of some heteroscedas-
ticity and non-normality found in the residuals, thus the results for spatial dependence
tests in the OLS residuals were produced and can be found in Table 3. Moran’s I
value for global spatial autocorrelation in the residuals of the estimated model of
0.09 is statistically significant, indicating that spatial autocorrelation seems indeed
to exist in the residuals of this regression. Both statistics that test for spatial error
dependence (LMerr and RLMerr) are statistically significant at a 95% significance
level, as well as the portmanteau test (SARMA). On the other hand, test statistics
LMlag and RLMlag, which test for a missing spatially dependent variable, are not
statistically significant. This seems to indicate that there is in fact spatial dependence
in the residuals, but the cause is rather the spatial error dependence and not so much
a spatially lagged dependent variable.

An analysis of the residuals of the other regressions, namely SAR, SEM, GSM,
SLX, SDM, SDEM, and Manski, shown in the Appendix in Figs. 18, 19, 20, 21, 22,
23, and 24 reveals that their distributions remain very similar despite the different
model specifications.
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Table 10 Summary of the installed power models
OLS SAR SEM GSM

(Intercept) −8.248∗∗∗ −7.649∗∗∗ −7.268∗∗ −7.300∗∗
(2.821) (2.781) (3.190) (3.434)

Population 0.00003∗∗∗ 0.00003∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗
(0.00000) (0.00000) (0.00000) (0.00000)

Energy consumption −0.001∗∗ −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Temperature 0.442∗∗∗ 0.410∗∗∗ 0.432∗∗∗ 0.456∗∗∗
(0.120) (0.121) (0.142) (0.161)

Art exhibitions −16.745∗∗ −16.050∗∗ −14.229∗∗ −0.135∗
(7.430) (7.269) (7.242) (7.172)

Gross income 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0001) (0.0001) (0.0001) (0.0001)

Votes in the most
voted

−0.068∗∗ −0.068∗∗ −0.065∗ −0.063∗

(0.035) (0.034) (0.034) (0.034)

Housing buildings 0.068∗∗∗ 0.068∗∗∗ 0.069∗∗∗ 0.068∗∗∗
(0.013) (0.013) (0.013) (0.013)

Family housing −0.079∗∗∗ −0.078∗∗∗ −0.084∗∗∗ −0.087∗∗∗
(0.011) (0.011) (0.011) (0.011)

Abstention 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.080∗∗∗
(0.027) (0.026) (0.029) (0.030)

Rho 0.10802 -0.15075

(0.079751) (0.14566)

Lambda 0.28883∗∗∗ 0.40034∗∗∗
(0.084845) (0.12999)

R2 0.4668

Adjusted R2 0.449

Residual Std. Error 2.274 (df = 268)

F Statistic 26.072∗∗∗ (df = 9;
268)

Nagelkerke Pseudo
R2

0.470 0.480 0.483

AIC 1257.633 1258.062 1252.472 1253.096

BIC 1297.536 1301.593 1296.004 1300.255

Log likelihood −617.8163 −617.031 −614.236 −613.548

σ2 4.949 4.787 4.6737

Wald Test (df = 1) 1.835 11.589∗∗∗ 160.61∗∗∗

LR Test (df = 1) 1.571 7.160∗∗∗ 8.5366∗∗

Breusch Pagan 14.162 14.624 15.836∗ 15.685∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11 Results Installed Power with spatially lagged explanatory variables
SLX SDM SDEM Manski

(Intercept) −14.345∗∗∗ −10.865∗∗∗ −12.184∗∗∗ -8.3895∗∗
(3.645) (3.415) (3.896) (3.7336)

Population 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗
(0.00000) (0.00000) (0.00000) (0.00000)

Energy consumption −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ -0.001∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Art exhibitions −15.889∗∗ −16.293∗∗ −14.632∗∗ −12.267∗
(7.229) (6.938) (6.894) (6.614)

Gross income Gini 0.161∗ 0.144∗ 0.166∗∗ 0.153∗
(0.082) (0.079) (0.083) (0.084)

Gross income 0.0003∗ 0.0003∗ 0.0003∗ 0.0003∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Votes in the most
voted

−0.060∗ −0.063∗ −0.060∗ -0.054∗

(0.033) (0.032) (0.032) (0.032)

Housing buildings 0.062∗∗∗ 0.061∗∗∗ 0.066∗∗∗ 0.068∗∗∗
(0.013) (0.013) (0.013) (0.013)

Family housing −0.077∗∗∗ −0.078∗∗∗ −0.080∗∗∗ -0.082∗∗∗
(0.011) (0.011) (0.011) (0.011)

Abstention 0.060∗∗ 0.060∗∗ 0.061∗∗ 0.047

(0.028) (0.027) (0.029) (0.031)

L. Purchase Power −0.132∗∗∗ −0.146∗∗∗ −0.157∗∗∗ −0.185∗∗∗
(0.043) (0.041) (0.044) (0.049)

L. Energy
consumption

0.003∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)

L. Subsidies −0.369

(0.231)

L. Temperature 0.478∗∗ 0.306∗ 0.295

(0.188) (0.164) (0.203)

L. Rental agreements 3.251∗
(1.910)

L. Art exhibitions −23.992

(15.767)

L. Gross income 0.001∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗
(0.0005) (0.0004) (0.0005) (0.0005)

L. Family housing 0.038∗∗∗ 0.032∗∗∗ 0.024∗
(0.013) (0.012) (0.013)

Rho 0.20689∗∗ −0.29091∗
(0.085) (0.1604)

Lambda 0.28517∗∗∗ 0.55031∗∗∗
(0.085074) (0.11073)

(continued)
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(a) Distribution of the fitted values of
the SAR regression against the residu-
als

(b) Q-Q plot from SAR
regression residuals

Fig. 18 Residuals of the SAR regression

(a) Distribution of the fitted values of
the SEM regression against the residu-
als

(b) Q-Q plot from SEM
regression residuals

Fig. 19 Residuals of the SEM regression

(a) Distribution of the fitted values of
the GSM regression against the residu-
als

(b) Q-Q plot from GSM
regression residuals

Fig. 20 Residuals of the GSM regression
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Table 11 (continued)
SLX SDM SDEM Manski

R2 0.534

Adjusted R2 0.505

Residual Std. Error 2.156

F Statistic 18.65∗∗∗

Nagelkerke Pseudo
R2

0.5317 0.5397 0.54044

AIC 1234.495 1233.565 1228.771 1228.324

BIC 1299.792 1295.235 1290.441 1289.994

Log likelihood -599.248 −599.783 −597.386 −597.162

σ2 4.359 4.242 3.984

Wald Test (df = 1) 4.128∗∗ 11.236∗∗∗ 238.26∗∗∗

LR Test (df = 1) 3.244∗ 8.038∗∗∗ 173.08∗∗∗

Breusch Pagan 32.139∗∗∗ 31.411∗∗∗ 32.088∗∗∗ 32.922∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(a) Distribution of the fitted values of
the SLX regression against the residu-
als

(b) Q-Q plot from SLX
regression residuals

Fig. 21 Residuals of the SLX regression

All models that include a spatial term seem to produce a better fit, considering
the Pseudo R-squared, than the non-spatial OLS estimation. The SAR regression
produces only a slight improvement from the OLS estimation, and the ρ coefficient
for the spatially lagged dependent variable is not statistically significant. Hence it
seems that the Installed Power in onemunicipality does not affect the Installed Power
in its neighbors directly. On the other hand, the λ coefficient for the spatial depen-
dence in the error is positive and statistically significant. This indicates that similar
unobserved characteristics result in similar decisions regarding Installed Power in
nearby municipalities. This may be the result of a concentration of solar initiatives,
local PV supplier activities, marketing campaigns or even other socioeconomic and
demographic variables that were not taken into account. It is interesting to notice that
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(a) Distribution of the fitted values of
the SDM regression against the residu-
als

(b) Q-Q plot from SDM
regression residuals

Fig. 22 Residuals of the SDM regression

(a) Distribution of the fitted values of
the SDEM regression against the resid-
uals

(b) Q-Q plot from SDEM
regression residuals

Fig. 23 Residuals of the SDEM regression

(a) Distribution of the fitted values of
the Manski regression against the resid-
uals

(b) Q-Q plot from Manski
regression residuals

Fig. 24 Residuals of the Manski regression
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the λ coefficient is higher and still statistically significant at 99% significance level
for the GSMmodel. Thismeans that although the spatially lagged dependent variable
by itself does not seem to help to model the data, it increases the influence of the
spatial component in the error term. The model fit, however, measured by the pseudo
R-squared increases only slightly when compared to the SEM model. These four
models include the same explanatory variables and all excluded the variables Pur-
chase Power, Temperature, Subsidies, Rental Agreements, and Gross Income Gini.
All of the remaining variables are statistically significant, meaning that they con-
tribute to explain Installed Power. Population, Temperature, Gross Income, Housing
buildings, and Abstention provide a positive contribution towards Installed Power,
so that when their values increase, so does the chosen Installed Power. On the other
hand when Energy consumption, Art exhibitions, Votes in the most voted, or Family
housing increases, the Installed Power decreases.

When adding some of the explanatory variables with a spatial lag to the OLS
model (SLX model), the adjusted R-squared increases when compared to the four
previous models and many of these variables are significant, showing that indeed
some characteristics of neighbor municipalities seem to influence Installed Power.
As was the case when lagged explanatory variables were not considered, including
a spatially lagged dependent variable (SDM) improves the fit slightly. It is further
improved when instead a spatially dependent error term is considered (SDEM) and
even more when both spatial components are included (Manski). In the SDM, how-
ever, ρ is statistically significant at a 95%, which did not happen in SAR, meaning
that when the spatial lag of explanatory variables is considered, the Installed Power in
nearby municipalities seems to influence the Installed Power of an individual munic-
ipality directly. In SDEM λ also has a positive statistically significant influence on
the Installed Power. Similar to the case without lagged explanatory variables, the λ
coefficient increases when the spatially lagged dependent variable is added (Man-
ski). However, the coefficient of this variable, ρ, becomes negative with a similar
magnitude (0.2 and −0.3), impacting the Installed Power in the opposite way when
comparing to the SDM.

The Breusch-Pagan test reveals the presence of heteroscedasticity, by rejecting
the null hypothesis of homoscedasticity, in residuals of SEM, GSM, and all models
that include lagged explanatory variables.

As to the β estimates, they generally do not change drastically in magnitude when
comparingOLS to spatialmodels, what also indicates that the spatial association does
not account for a great part of the model.

As mentioned in Sect. 2.2, to analyze in a more precise way the influence of each
explanatory variable inmodels with a spatial autoregressive component (SAR, GSM,
SDM, Manski), a distinction should be made between direct and indirect impacts.
These can be found in the Appendix in Tables 12, 13, 14, and 15, but such a detailed
analysis was considered out of the scope of this study.

Likelihood of Adoption Distribution Map The likelihood of adoption distribu-
tion map, which represents the estimated probability of PV solar installations being
adopted in a certainmunicipality,was producedwith the predicted values for Installed
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Power of the SDEM regression. The estimated value for the Installed Power for each
region was divided by the total estimated value. The resultingmap and its normalized
version can be seen in Fig. 5.

The municipalities that have a probability higher than 50% of adopting PV sys-
tems belong mainly to five clusters. Sintra being the municipality with the highest
probability is also surrounded by other municipalities with high adoption probability,
namely Cascais, Oeiras, Seixal, and Loures. On the north of Portugal, there is another
cluster containing Vila Nova de Gaia, Porto, and Matosinhos. In the south, there is
another cluster made up from Santiago do Cacém and Odemira. Furthermore, there
are two municipalities that are isolated that form their own single clusters, namely
Braga and Coimbra. Hence, these are themunicipalities towards which selling efforts
should be focused.

Table 12 Impacts SAR model

Direct Indirect Total

Population 0.00003 0.000004 0.00005

Energy consumption −0.0006 −0.0001 −0.0006

Temperature 0.4112 0.0489 0.4601

Art exhibitions −16.0826 −1.9114 −17.9939

Gross income 0.0006 0.0001 0.0006

Votes in the most
voted

−0.069 −0.008 −0.0767

Housing buildings 0.0681 0.0081 0.0762

Family housing −0.0782 −0.0093 −0.0875

Abstention 0.0802 0.0095 0.0897

Table 13 Impacts GSM model

Direct Indirect Total

Population 0.000038 −0.000005 0.000033

Energy consumption −0.000783 0.000105 −0.000678

Temperature 0.457296 −0.061306 0.395990

Art exhibitions −13.55226 1.816842 −11.73542

Gross income 0.000564 0.000076 0.000488

Votes in the most
voted

−0.062910 −0.084338 −0.054476

Housing buildings 0.068347 −0.009163 0.059184

Family housing −0.087023 0.011666 −0.075356

Abstention 0.080357 −0.010773 0.069584
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Table 14 Impacts SDM model

Direct Indirect Total

Population 0.000036 0.000007 0.000043

Energy consumption −0.000772 −0.000514 −0.000924

Art exhibitions −16.37473 −3.209359 −19.58409

Gross income Gini 0.1444413 0.028310 0.1727511

Gross income 0.000287 0.000056 0.000343

Votes in the most
voted

−0.063155 −0.012378 −0.075532

Housing buildings 0.061716 0.012096 0.073812

Family housing −0.078398 −0.015366 −0.093763

Abstention 0.059877 0.011736 0.071612

L. Purchase Power −0.146840 −0.028780 −0.175620

L. Energy
consumption

0.002395 0.000469 0.002865

L. Temperature 0.307829 0.060333 0.368161

L. Gross income 0.001155 0.000226 0.001381

L. Family housing 0.031831 0.006239 0.038070

Table 15 Impacts Manski model

Direct Indirect Total

Population 0.000038 −0.000009 0.000029

Energy consumption −0.000630 0.000148 −0.000482

Art exhibitions −12.42235 2.920080 −9.502266

Gross income Gini 0.154449 −0.036306 0.118143

Gross income 0.000336 −0.000079 0.000257

Votes in the most
voted

−0.054868 0.012898 −0.041971

Housing buildings 0.069294 −0.016289 0.053005

Family housing −0.082595 0.019415 −0.063179

Abstention 0.047514 −0.011169 0.036345

L. Purchase Power −0.187175 0.043999 −0.143176

L. Energy
consumption

0.003149 −0.000740 0.002409

L. Rental agreement 3.292395 −0.773932 2.518463

L. Gross Income 0.001714 −0.000403 0.001311
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4 Conclusions and Discussion

In this study, the problem of modeling the adoption of domestic solar PV systems
was addressed. To do so, related data as well as socioeconomic and demographic data
from each municipality was gathered. After the conclusion was reached that spatial
correlation was present in the data, several models were run to try to model this
behavior. Adoption was considered using three variables, namely simply whether
each municipality had any installation at all, how many panels were installed and the
installed power.

The purchase power and rental agreements of each municipality do not seem to
add explanatory value to any of the models. Rental agreements, on the other hand,
were inserted in the model to identify municipalities where many people own their
house and can in fact decide on adoption of solar PV systems. For that reason, it was
unanticipated. Energy consumption per capita seems to have a negative influence on
the installed power, which was also not anticipated. It does, interestingly, seem to
have a positive significant influence on neighboring municipalities. Temperature, as
expected, has a positive significant influence on the installed power in neighboring
municipalities. Municipalities that have less votes in the most voted party for gov-
ernment tend to have more solar power installed. One interpretation could be that
these municipalities have larger environmental concerns and this is usually not rep-
resented in the most voted parties. Abstention has a positive influence, which was not
expected. Intuitively one would think that more education results in less abstention
and education was shown to be a positive influence on solar panel adoption.

Art exhibitions seem to be the major predictor for PV adoption, but this is most
likely due to unobserved characteristics. Art exhibitions are only available on highly
urban areas and these do not have high PV systems adoption rates, as apartment
buildings are more common. As expected, gross income has a positive influence on
adoption. A higher income naturally allows families to have space in their budget for
environmentally conscious products. This positive relationship between economic
status and PV installations is also reinforced by the negative influence that having a
high rate of subsidies beneficiaries exerts on installed power in some model speci-
fications. Another variable that refers to this economic factor is the Gini coefficient
of gross income. Here a greater income inequality results in an increase in installed
power, which is likely related to the fact that municipalities with a large total gross
income result in a large Gini coefficient. Number of housing buildings has a posi-
tive influence on installed power, whereas one could have expected that an increase
in housing buildings would diminish PV installations. Family housing on the other
hand has a positive influence, both directly and indirectly through spatial lag, which
intuitively makes sense.

The SDEMmodel, which considers spatially correlated explanatory variables and
spatial effects in the error component is the final selectedmodel, whichmeans that the
spatial lag is negligible. Thus, the total installed power that the population in a partic-
ular municipality in Portugal chooses to adopt does not seem to be directly dependent
on the installed power of neighbor municipalities. Rather, it seems directly and indi-
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rectly dependent on some observed demographic and socioeconomic variables of its
neighbors, as well as unobserved characteristics (not controlled).

Considering the adoption likelihood map in Fig. 5, the focus should primarily go
to Sintra. Other municipalities with high adoption likelihood can be seen in Fig. 6.
When deciding on where to allocate efforts to promote solar adoption, following
this order of municipalities should be optimal to accelerate Portugal’s transition to
renewable energies.
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Appendix: Complementary Figures and Tables

See Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.
Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.
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