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Welcome Message from the Editors

Dear authors, referees, and readers of
Recent Developments in Statistics and Data Science,

It is a great pleasure to welcome you to the proceedings of the XXV Congress of
the Portuguese Statistical Society—SPE 2021—held during 13–16 October 2021 at
Évora, Portugal. This was the first-time, ever, online SPE conference, and it gathered
more than 200 delegates from all over the world.

Themeetingwas hosted byUniversity of Évora, Portugal, in collaborationwith the
Portuguese Statistical Society, and we had a fantastic program including 4 plenary
lectures, 31 sessions, and 22 posters. A variety of societies had virtual rooms at
SPE 2021 including Bernoulli Society, Brazilian Statistical Association, Caucus for
Women in Statistics, and the International Society for Bayesian Analysis—just to
name a few. Institutional members of the Portuguese Statistical Society were also
represented (e.g. Statistics Portugal,BancodePortugal, PORDATA). Formore details
on the meeting please, see www.spe2021.uevora.pt/en/.

Recent Developments in Statistics and Data Science highlights some selected
contributions that were presented at SPE 2021. This volume covers a broad range
of topics lying at the interface between Statistics and Data Science, such as applied
statistics, computational statistics, extremes and outliers,medical statistics,modeling
time series and stochastic processes, and data visualization, among others.

And speaking of visualization, Fig. 1 depicts a word cloud of all the titles and
abstracts in this volume. While this chart is not a substitute for a table of contents,
it does not summarize the order by which the articles appear in this issue! it offers
a visual roadmap of what is to be found ahead. Given the broad scope of topics
covered, we have opted for clustering articles according to the similarity of topics.

ix
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Fig. 1 Word cloud summarizing all titles, keywords, and abstracts of contributions included in this
issue

And, as the tag cloud in Fig. 1 reveals, data are the common denominator across
most contributions.

We are indebted to many people. First, we would like to thank the authors for
their contributions and to everyone involved in the peer-review process who did a
superb job on meeting tight deadlines in a thoughtful manner. They all worked hard
so that the community keeps breaking new ground, and should be proud of their
achievements. We are also indebted to Springer for their excellent collaboration on
the production of this issue, and to the Scientific Committee and keynote speakers
for their contributions to the meeting. Last but not the least, our words of thanks go
to the organizers of SPE 2021 for their outstanding work, and to the community of
the Portuguese Statistical Society for their continuous, and yet unbounded! support.

March 2022 Regina Bispo
Lígia Henriques-Rodrigues

Russell Alpizar-Jara
Miguel de Carvalho
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How to Increase the Visibility
of Statisticians in the Modern World
of Dataism?

Nuno Sepúlveda

Abstract In the view of the historian Yuval Noah Harari, current human thought
can be characterized by a deep belief in data, whether big or small, as the main
vehicle to understand and control the world. This belief is referred to as Dataism.
Notwithstanding their key role as guarantors of high-quality statistical exercises and
data curators, statisticians typically remain in the shadow of big decisions in multi-
disciplinary and highly collaborative environments. This situation can be overcome
by operating a change in the mindset of statisticians from shoe clerks to statistical
leaders. Under the assumption that a statistician has already achieved a certain level
of statistical proficiency, this paper aims to discuss useful skills, such as active listen-
ing, networking, and effective communication, which can foster statistical leadership
and increase recognition and merit by non-statisticians inside and outside academia.

Keywords Impact · Interpersonal skills · Leadership · Statistical career

1 Introduction

We are living in a world in which data are an integral part of our daily experience
as human beings. Take the example of our little good friend smartphone, which can
collect data on the number of daily steps. With these data, we can judge whether we
should be more active and, if so, we can get other data-collection apps to help us
tracing that increase in activity. Data and the respective collection are so engrained in
our lives that the famous historian Yuval Noah Harari writes in his best-selling book
Homo Deus: a Brief History of Tomorrow about Dataism, a kind of new religion
deeply rooted on the general belief that data and its flow are all that matters to
understand and hold control of the world [1]. This religion made us to invest in
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2 N. Sepúlveda

innovative technologies in data acquisition, storage, andmanagement [2]. As a result,
current data can be big, huge, humungous!

In this brave new world of big data, our privacy, autonomy, and individuality are
often given away to ensure our essential role as data providers. At the same time,
such a profound and often blind belief on Dataism makes us all too vulnerable to
unscrupulous politicians who use fake news or incomplete data to convince us to join
their malicious cause. In this scenario, we statisticians can be seen as whistleblow-
ers of data abuses, rationale and neutral players that can denounce disinformation,
misinformation, or statistical malpractices [3]. A kind of justice league members of
this data world. But is anyone out there who is willing to listen to us given that even
the use of our friend p-value in Science is under debate and controversy [4]?

Unfortunately, the deep faith in Dataism did not make statisticians more visible
in the society over the years. In fact, this reduced visibility can be traced back to the
time of the great statisticians of the past. In 1938, Fisher [5] famously wrote in his
usual cut-throat style that:

To consult the statistician after an experiment finished is often merely to ask him to conduct
a postmortem examination. He can perhaps say what the experiment died of.

This sentence is an open criticism to the still-prevailing attitude of seeking a statis-
tician as a last resort. It also subtlety hints that statisticians are somehow invisible
to their peers from the non-statistical world. In the past, statisticians were hidden
disciples of Mathematics and now are simply data crunchers or p-value providers.
To make things worse, statisticians are currently in direct competition with data sci-
entists, bioinformaticians, and mathematical modellers in terms of their contribution
to multidisciplinary, and above all, cutting-edge research. The fundamental question
that we all statisticians face at the moment is then how to increase our visibility and
value in this wondrous world of big data.

A first answer to this question can be found in the thought-provoking article
entitled The role of the Statistician: scientist or shoe clerk by Irving Bross [6].
This author discusses the immediate and the long-term implications of a statistician
adopting a posture similar of a shoe clerkwhose primary objective is to please current
and future customers. On the one hand, a shoe-clerk attitude has the advantage of
neutrality and minimal hassle in moments of tension amongst team’s members. It
has also the advantage of fattening the resumé of applied statisticians (including
the author of this paper) with a large number of middle-author publications; the
underlying idea seems to be: minimal effort, maximum outcome, and a big boost of
the ego. This advantage is in agreement with an increased number of middle authors
in biomedical research [7], but it remains to be uncovered what is the contribution of
statisticians to this trend. On the other hand, the hard truth is that, in the long-term,
statisticians who solely act as shoe clerks will always be treated like one. Ultimately,
the cordial, complacent but often neglecting treatment by their non-statistical peers
suggests a certain be a lamb stereotype for the statistician as a professional. Finally,
the quality of the statistical product itself could be also compromised, because it is
intrinsically difficult for shoe-clerk-type statisticians to go against their customers
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who are typically in a standpoint of I know what I want or need for my data at the
start of a collaboration.

More recently, Gibson [8] intertwines the concepts of visibility and the value
of a statistician with leadership skills; however, the use of the word value has the
unnecessary connotation that a statistician like a commodity can be sold up or down
in the stock (or job) market. According to this author, the visibility of a statistician
can be increased by creating a new culture around statistical leadership. This culture
requires the acquisition of specific skills and the mindset of a leader, which will be
discussed in Sect. 2. Such skills can be learned, practised, and improved. However,
there is a limited number of universities offering courses on these leadership skills.

In this scenario, this paper is a collection of ideas and concepts scattered around
the literature about leadership; a more personal account of this topic can be found
elsewhere [9]. It is particularly directed to all the statisticians who wish to embrace a
joyful journey towards a more impactful, fulfilling, and meaningful collaborations.
Statistical leadership is above all a personal choice and not an authority, rank, or
position. As such, it is accessible to everyone.

2 Statistical Leadership and Its Key Competences

According to Gibson [8], statistical leadership can be broadly defined as the use of
influence without authority to guide the design, strategy, and decisions of a multidis-
ciplinary team. The same author outlines three competences or soft skills essential
for successful statistical leadership: (i) active listening; (ii) networking; and (iii)
effective communication. These skills are not new and can be found in the popular
book entitled 12 Rules for Life: Antidote to Chaos by the clinical psychologist Jordan
Peterson [10], but formulated as follows:

• Active listening:Assume that the person you are listening tomight know something
you don’t;

• Networking: Make friends with people who want the best for you;
• Effective communication: Be precise in your speech.

A brief discussion on these skills will be presented in the next three subsections.

2.1 Active Listening

It is universally regarded that Nelson Mandela (1918–2013) was a great leader. He
was the elected president in the first free democratic elections in South Africa after
the end of the apartheid. One of the remarkable Mandela’s leadership skills was his
power of listening and using it for strategic and reflective questioning [11]. This
power was developed by witnessing community meetings with his father who was
the chief of his tribe [12]. He learned that everyone was seated in a circle and his
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father was always the last one to speak. The amazing capacity of listening to everyone
before speaking and, more importantly, before any rushed judgement deeply resides
the transformative power of active listening.

At the surface, onemight think that active listening is just giving free andundivided
attention to the speaker. However, it is more than that [13]. It involves (Table 1):

1. adopting an appropriate body language while listening;
2. reflecting in what is being heard;
3. understanding the consequences and implications of the information received.

As a consequence, active listening is able to generate mutual understanding, com-
mitment between parties, and the joyful and fulfilling sensation that each side was
heard. Ultimately, active listening builds trust and respect, which are necessary to
maintain harmonious and sustainable collaborative environments.

We statisticians like medical doctors, nurses, and other professionals alike are
required to develop such a listening skill due to our line of work. Unfortunately, this
skill is taken for granted, because it is supposedly to be natural to have it. In the
truth of the matter, it is not easy to master it without any effort and even more so in
the modern world of constant distractions by smartphones, social media, amongst
other factors. As suggested in the Introduction, this skill can be learned, trained, and
improved. In the book entitled How to be heard: Secrets for Powerful Speaking and
Listening, Julian Treasure [14] suggests simple exercises to improve one’s listening
capacities such as:

1. enjoy the sound of silence (or simply enjoy the song of Simon and Garfunkel or
the cover by the Disturbed);

2. listen to mundane sounds like a bus passing by or a working dishwasher;
3. try to identify how many different sounds can be heard in a bar;
4. changing listening positions such as passive versus active or critical versus

empathic;
5. follow RASA (Receive, Appreciate, Summary, and Ask) in a conversation.

The crisis in listening is so severe nowadays that the same author in his 2011 Ted
Talk about this topic gathered more than 10 million views on YouTube since then
[15]. Hence, it is time to sharpen our hearing and try to listening better.

2.2 Networking

Current scientific agenda aims to provide answers to complex societal problems,
such as the impact of climate change in the world, the prediction of a new pandemic,
or the reduction of social inequality. The complexity of these problems motivates the
creation of large research teams, research consortia, or networks, in which people
with different expertise converge. In this regard, statisticians are sought as strategic
partners of these enterprises, because they can help with the design of a project and
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Table 1 Active listening skills according to Robertson [13]

Attentive body language

Posture and gestures showing involvement and engagement

Appropriate body movement

Appropriate facial expressions

Appropriate eye contact

Non-distracting environment

Following skills

Interested door openers

Minimal verbal encouragers

Infrequent, timely and considered questions

Attentive silences

Reflective skills

Paraphrase (check periodically that you’ve understood)

Reflect back feelings and content

Summarize the major issues

deliver advanced statistical analysis that is typically out of reach of non-statistically-
trained researchers. However, working in such multidisciplinary environments can
be challenging and overwhelming for statisticians, because they need to interact with
other researchers often enough to negotiate different strategic decisions for the course
of a project. The development of networking skills is then necessary.

These skills consist in developing an interpersonal intuition on how different
members of a research team fit together in order to understand team dependen-
cies, responsibilities, and dynamics. For example, in a large epidemiological study,
statisticians are typically asked to join forces with epidemiologists, mathematical
modellers, and bioethical experts. Statisticians can increase visibility by talking to
each of these colleagues in order to decide on the best study design. In a sentence,
higher visibility comes when a statistician is a team player and sets the team’s goal
as his/her top priority.

Networking skills are also mandatory for choosing collaborators wisely. Like
ice-creams, collaborators come in different flavours and, therefore, statisticians who
intend to be treated as equal should create a network of collaborators who share the
same principles, attitudes, and ambitions. When it comes to evaluating the success of
a given collaboration, statisticians should weight the immediate research output (i.e.,
a high-impact paper or a funded project) against the sense ofmutual respect, harmony,
and sustainability in the long term. One cannot forget that, given the high demand
for statistical services in academia and elsewhere, statisticians have all the autonomy
and power to choose and embrace only durable and harmonious collaborations with
their non-statistical peers.

The important question is then to know how to improve networking skills. Besides
taking formal training, statisticians can also join a professional society such as the
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Portuguese Statistical Society in Portugal, the Royal Statistical Society in the United
Kingdom (UK), or the International Biometrical Society. Active citizenship in these
societies allows statisticians to find and connect easily with other professionals with
the same research interests. Alternatively, statisticians canmake an effort to seek net-
working opportunities outside the field of Statistics. For example, being a member of
COST actions funded by the European Union is a unique opportunity for statisticians
to increase their network of collaborators across Europe. In the UK, the Academy
of Medical Sciences and the Royal Society offer specific funding for creating new
networks between UK-based and overseas researchers.

2.3 Effective Communication

The primary objective of any act of verbal communication is to create understanding
fromwhat is being said and heard. The same objective is also expected when commu-
nication takes the form of the written word. Effective communication goes beyond
this basic objective by aiming to create impact, to generate action, or to motivate
change.

In the case of applied statisticians, effective communication is likely to come in the
shape of presenting or writing the results of a statistical analysis to a non-specialized
audience. In this scenario, impactful communication should not be understood as the
delivery of catchy and simple soundbites or keywords, or just speaking to the audi-
ence’s emotions, or even more so sacrificing technical accuracy and rigour. Impact
should be seen in a broader sense in which the target audience understands the results
and the respective implications clearly. Impactful communication also sets the scene
for statisticians to manage expectations and negotiations that might occur during the
lifetime of a project or collaboration. Unsurprisingly, there is no magical solution
for effective and impactful communication. However, some of the tips below are
extremely useful for a scientist in general to learn, practice, and improve.

In the current work and scientific culture of frequent meetings and conferences,
effective and impactful verbal communication is intimately related to delivering a
good talk or presentation. In this regard, the TED curator Chris Anderson provides
a set of tricks for public speaking [16]. According to this author, delivering a decent
talk is at the reach of everyone’s hand. Delivering a talk in the format of a story is
always a very compelling way to fuel people’s imagination. Stories are also easy to
follow and natural for all of us given thatwe learn life through stories since childhood.
Simplify the message and never underestimate the power of rehearsing are two other
tips for effective talks. The Indian Yoga’s master Sadhguru [17] also provides a very
useful advice for speaking in general:

See if you can articulate the same things that you are saying with half the number of words.
Suddenly you will become extremely conscious of everything.

When preparing slides supporting a presentation, the humorous and bold David
Phillips [18] advises five tips to avoid death by powerpoint:
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1. one message per slide to increase focus of the audience and avoid distraction
amongst competing content;

2. avoid the use of text to reduce the mental strain of listening and reading simulta-
neously;

3. increase the size of key objects to maximize their readability and interpretability
by the audience;

4. use contrast of colours to guide people’s attention;
5. use a maximum of 6 objects per slide to minimize the time for the audience to

grasp what is on each slide.

From the above five tips, avoiding text should be the mantra for any public speaker
including a statistician. In fact, slides with insane amounts of text might be one of the
deadliest sins in public speaking. It can give the impression that the text is not there
for the audience to read, but for the speaker not forget what to say. As a consequence,
one might feel that the speaker is neither prepared, nor confident, nor comfortable
in his/her shoes. While lack of preparation suggests some sort of disrespect for the
audience, lack of confidence might generate empathy to some listeners; after all,
we all have been out there, exposed in front of the audience with sharp eyes, but it
ultimately generates pity rather impact. Reducing the amount of text has the benefit
of creating the right motivation for a speaker to be brief and simple, and to rehearse
the presentation. We should never forget that the speaker and what he/she is saying
are the main focus of a talk. By logic, if the speaker wishes the audience to read from
slides, why is he/she there?

For effective writing in scientific papers and reports, Ehrenberg [19] suggests the
following guidelines:

1. to start at the end (or focus on findings first);
2. be prepared to revise;
3. cut down the long words;
4. be brief;
5. think of the reader.

Presenting and discussing the results first is the writing format that some scien-
tific journals such as the Nature-branded and PLoS journals are adopting nowadays;
the Materials & Methods section where statisticians feel more comfortable, is typ-
ically placed at the end of the paper or, in some extreme cases, buried in an online
supplementary material. This writing format might be challenging for statisticians
given their natural inclination and enthusiasm for methodological issues. However,
at the same time, this inclination and enthusiasm should not be totally silenced,
because providing detailed information about the statistical methodology is a moral
and ethical obligation that promotes scientific replication and reproducibility [3].

To be prepared to revise is the joyful art for some or the painstaking task for
others of making tweaks and adjustments to the text for better readability. This task
is intimately related to be brief and cut down unnecessary jargon which is typically
encapsulated in longwords. It takes anunderestimatednumber of iterations, specially,
by students and early-career statisticians. The revision of a paper written in English
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might be challenging for non-native speakers. In this case, one should operate in
a benevolent regime of practice makes perfect; that and a lot of patience. Finally,
thinking of the reader helps deciding the level of (statistical) detail that statisticians
can dive in a report or paper.

If one seeks to master the art of effective (oral) communication to inspire others,
Simon Sinek [20] proposes a simple but useful concept: the golden circle (Fig. 1).
The way that we communicate on the daily basis is by progressing from what, how,
andwhy. For example, if one aims to present the content of this paper in a conference,
the traditional way to start the presentation could be the following:

Today I will share with you some tips that I have learned about statistical leadership. These
tips are related to active listening, networking, and effective communication. I will first
define what they mean and then tell you how you can improve them. I hope all of these tips
are useful for you and your future career.

This is the natural way of communicating for most of us, because we start from
the most precise to the most vague piece of information. That is, (almost) everyone
knows what he/she is supposed to do, some really know how to do it, but only a
few know the reason for what they are doing. This way of communication is not
necessarily ineffective per se, but fails to deliver impact to the audience; we listen to
the same communication format over and over again and, therefore, boredom might
set in with these repetitions.

According to Simon Sinek, simply reversing the order of the information given
generates more impact on the listener. Let’s come back to the above example. After
some tweaking, one could alternatively start the presentation like this:

Big data are the brave new world. However, we statisticians remain hidden in the shadow
of this world of wonder. We are simply seen as data crunchers or p-value providers. We

The Golden Circle

Usual communication

Why

How

What

Why

How

What

Inspirational communication

Fig. 1 The golden circle of communication by Simon Sinek [20]: usual communication travels
from what, how, and why, while inspirational communication does the opposite
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should change this narrow view of our profession. How to operate this change? By thinking
of statistical leadership and how we can develop it. Today I will give you some tips about
active listening, networking, and effective communication, which we can use routinely in
our profession. In the end, if we are little ambassadors of statistical leadership, everyone
wins.

The clear articulation of why talks to our emotions and, as we all know it, they are
capable to convince us to do wonderful things. However, for this communication
approach to work, there is the challenge of knowing the reason of what we are doing.
In this regard, the philosophical discussion about the role of a statistician, the duality
between a scientist and shoe clerk as smartly put it by Bross [6], helps to solve this
challenge. If a statistician acts like a shoe clerk, it is difficult to inspire anyone by
simply pleasing the customer, getting a salary at the end of the month, or climbing up
the academic ladder. In contrast, if a statistician considers him/herself as a scientist
first of all, it is much easier to find a purpose for being part of a given project. After
all, a scientist is a curious person about the world and an eternal chaser of the truth.

3 Increasing Visibility in Academia

In theory, the academic recognition and visibility of a statistician should be in a
direct correlation with the publication record and the amount of funding awarded.
Hence, any attempt to increase the number of publications and funding awarded are
straightforward steps towards a higher recognition and visibility of statisticians in
academia. In practice, there are other factors that one must consider.

Firstly, increasing the number of publications might require to extend the number
of collaborators and projects involved.Managing different collaborators and projects
might imply to become a slave of them. This can dramatically reduce the time ded-
icated to pursuit personal research interests. Therefore, applied statisticians should
find their optimal balance between their own projects and statistical consultancy
activities.

Secondly, funding opportunities for the development of statistical methodolo-
gies are scarce and, when available, are often shared with mathematical modellers,
mathematicians, bioinformaticians, and data scientists. Given this scenario and the
multidisciplinary nature of the statistical exercise, applied statisticians could try to
widen their research interests beyond statistical methodology; genetics and climate
changes are just two examples of scientific areas where a deep knowledge of statistics
and statistical modelling is a requirement. Such a widening of the research agenda
increases the chance of getting a project funded and provides an opportunity for
statisticians to lead a project. Leading a project increases the visibility of the respec-
tive leader irrespective of the scientific area. In this regard, we should follow the
footsteps of the great statisticians of the past who made remarkable contributions
outside the field of Statistics: Ronald Fisher-population and quantitative genetics;
Karl Pearson-biometrics; Egon Pearson and Walter Shewhart-quality control; Fran-
cis Galton-psychometrics; amongst others.
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There are also less conventional ways that statisticians can use to increase their
visibility in academia. Statisticians can find inspiration in a recent review of global
travelling and infectious diseases using James Bond’s movies as case studies [21].
At the time of writing, this review gathered almost 3,500 likes and 2,000 mentions
on Twitter. The infamous Christmas edition of the prestigious British Medical Jour-
nal also offers the publication of formal and rigorous scientific enquiries to quirky,
light-hearted, or funny biomedical questions, including the estimation of teaspoons
disappearance from shared kitchens in a research institute [22], risk estimation of
neck and head injuries in heavy metal lovers [23], or the reporting of side-effects in
sword-swallowing [24]. A final example comes from James Carlisle who gained the
nickname of data detective [25]. This Englishman is a trained anesthesiologist but
spends his part-time screening the biomedical literature for unusual statistical con-
sistency, data fabrication, and statistical anomalies [26, 27]. Of course, his hobby
does not make him particular popular amongst the targets of his investigations [28].
However, his sleuth efforts were not left unnoticed by the research community and
hopefully, they served the purpose of raising awareness on the statistical problems
in the existing literature while promoting better science and better use of statistical
methodology.

4 Increasing Visibility in Society

Imagination, creativity, and personal motivation are the only limits that can hold
someone’s back in the track of increased visibility in society. For example, statis-
ticians can embrace the technological revolution in mass communication provided
by the internet. Social media platforms such as Facebook or Twitter offer quick
and cheap ways to disseminate research findings amongst collaborators, colleagues,
family, and friends. These platforms also provide an informal forum of discussion
between researchers and the general public who ultimately fund research through
taxes. The production of podcasts dedicated to disseminate scientific ideas are also
gaining popularity in different corners of science [29]. In this regard, the podcast
called The Effective Statistician by Alexander Schacht [30] helps statisticians to
improve efficiency at the workplace, to think more strategically about their career,
and to appreciate leadership and negotiation skills.

An interesting opportunity to increase visibility amongst the youngsters is pro-
vided by the journal Frontiers for Young Minds. The journal publishes conceptual
papers to be read by the young ones. The peer-review process is conducted by a young
reviewer, but under the guidance of a professional scientist. The modus operandi of
the journal offers the chance of disseminating statistical ideas and promoting their
use amongst the young readers, as the case of Sendef and Robbins [31], who explored
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the concepts of population, statistics, and probability. The reviewwas done by Joseph
of 12 years of age with the help of Jonathan Montaño from the New Mexico State
University.

5 Concluding Remarks

This paper discusses some useful skills with the potential of increasing the visibility
and the potential of a statistician at the individual level. These skills require perma-
nent and, if needed, formal training. Unfortunately, traditional statistical courses are
mainly focused on the hardcore technical skills even if a successful statistician is
required to master interpersonal skills given the translational nature of the statistical
exercise. Therefore, there is a mismatch between the formal training of Statistics at
the university and the prerequisites for a successful career in academia and elsewhere,
namely, in the long-term. It is then advised for future or even established statisti-
cians to seek opportunities for improving their interpersonal skills. The acquisition
and practising of these skills will make them more prepared, more comfortable, and
more confidence to go beyond the “shoe-clerk”-type mindset.

The underlying assumption of this discussion is that a statistician reached a cer-
tain badge of statistical proficiency when it is reasonable to think of leadership and
visibility. This badge does not necessarily mean a world-class recognition of some-
one’s achievements in terms of statistical methodology and modelling. It only means
a level of understanding of what a statistical analysis is and what it entails. In other
words, statistical leadership and visibility come naturally when a statistician under-
stands not only the methodology, but also the big picture beyond the remit of a given
statistical analysis. In this scenario, early-career statisticians would find themselves
less inclined to invest time in developing leadership skills and taking the necessary
steps towards a more impactful career. This comes more naturally to mid-career
statisticians who were already involved in enough collaborations and projects, and
therefore, have a better idea of the pros and cons of the statistical profession. How-
ever, it is important to emphasize again that leadership and visibility are personal
choices and, as such, every one of us should make an introspective exercise at least
once in a lifetime to answer the question whether statistical leadership is a suffi-
ciently appealing or attractive journey to take. At the end of the day, a career of any
professional should be joyful.

Statisticians with the intention to increase their (professional) influence should be
aware of two possible psychological roadblocks. The first one is that leadership and
increased visibility should be perceived as journeys rather than goals. These jour-
neys require a great amount of patience, persistence, and resilience. These personal
capacities typically clash with current culture of instant gratification and constant
pursuit for impact. Anxiety might come along the way. If such happens, statisticians
should make a step back and revaluate their situation. The second roadblock is the
so-called impostor phenomenon. In this phenomenon, people express self-doubt on
their accomplishments and skills, despite factual evidence or other people indicating
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otherwise. People who suffer from this phenomenon believe that their success is due
to some kind of luck or error, and they live in constant fear of being unmasked as
unintelligent or less capable. These impostor feelings can diminish career planning,
career prospective, and the motivation to lead [32]. Therefore, it is possible that
future highly visible statistical leaders should feel something similar. In that case,
statisticians should embrace these feelings as a motivation and an opportunity for
self-improvement and not for self-doubt.

The final remark is to make a clear distinction amongst individual, organizational,
and policy levels of statistical leadership and visibility, as discussed byGibson [8]. In
this scenario, the present paper mainly focused the discussion at the individual level.
This level relates to small research groups and day-to-day interactions between a
statistician andhis/her colleagues or collaborators. Statistical visibility and leadership
at the organizational level is related to the situation where the influence of a (senior)
statistician or a group of them aims to be felt at the level of a given institution, such
as company or research consortium. This influence can take the form of trying to
change a given statistical practice amongst all members of the same institution. In
turn, statistical leadership and visibility at the policy level is operated by statisticians
who sit at technical advisory committees representing different stakeholders. For
example, statisticians together with epidemiologists, medical doctors, nurses, and
other health staff might be put together to discuss with the national health authorities
whether an existing policy needs to be change or whether a new policy needs to
be created at the light of new data. An interesting example of statistical leadership
at this level is the discussion around the salt consumption and health held by the
Institute of Medicine (currently, named National Academy of Medicine) from the
USAprovided byNancyCook [33].Another example is given by the statisticianMike
Campbell who works on the NICE appraisal committee in the UK [34]; NICE is the
agency that decides which new therapies should be allowed in the British National
Health System. These two levels of statistical leadership are more challenging than
the individual one, and require a deeper discussion of other skills (e.g., negotiation,
conflict management, and mediation skills) that are beyond the scope of this paper.
A more extensive discussion about these two levels of statistical leadership can be
found in Gibson [8].
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A Robust Hurdle Poisson Model in the
Estimation of the Extremal Index
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Abstract In statistical extreme value theory, the occurrence of clusters of
exceedances above a high threshold is related to the extremal index (EI), when
that parameter exists. In such cases, the EI represents the reciprocal of the mean
cluster dimension in the limit distribution. The set of observed cluster sizes may
contain too many zeroes, depending on the scheme used in the identification of the
clusters and posterior estimation process, as it happens with the Blocks estimator.We
consider the estimation of the mean cluster size by modelling the clusters dimension
with a hurdle zero truncated Poisson regression model. The goal is to find a robust
estimator with a good performance along increasing quantiles and computationally
user friendly. The paper highlights the importance of the last question also, since
many statisticians use or do not use some methods, depending on the free software
devoted to the method and respective confidence in their optimization procedures
and results. A simulation study explores and compares different proposals.
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1 The Extremal Index

1.1 Motivation

There is a great interest in modelling extreme values, particularly when they rep-
resent the exceedance of high thresholds. The theory is extensively developed for
extremes in the independence framework. Nevertheless, many phenomena are more
realistically modelled by the occurrence of clusters of extreme values than assuming
a scenery of isolated independent ones. That is the case with heat or cold waves,
extremely rainy days, price crashes in the stock market and so on. The duration of
those phenomena can be traduced by a counting process that represents the cluster
size,whosemean is related to theEI, when it exists. Thus, theEI estimation procedure
deserves a great practical interest. But it is not enough to look for a method with good
mathematical properties from a classical point of view. The proceduremust be robust,
in the sense that gives good estimates in the assumed model and, simultaneously, it
is not very sensitive to small deviations from the model assumptions, for instance,
gross error values or even the functional form of the cluster size distribution. Robust
estimation theory has been widely investigated for location and regression models,
particularly with continuous distributions. With respect to counting processes, the
research is still very active nowadays.

Another important point of view is the existence of computation facilities that
allow easy access to the EI estimates, either in individual case studies or in simu-
lations. Computational techniques cover two main fields: the numerical questions,
since many estimators depend on complex optimization problems that become more
evident in simulation environments; and open access software tools, like the R plat-
form with its packages, which are already programmed in a devoted way and well
tested by investigators. It is also desirable that software is user friendly, so that it can
be used by statisticians in general. Those aspects are essential to the success of the
EI estimation process (and others), mainly outside the more popular Gaussian and
independence scenarios.

1.2 Theoretical Introduction

Assume a strictly stationary sequence of random variables {Xn}n≥1, from a cumula-
tive distribution function (CDF) denoted by F , under general asymptotic and long-
range dependence restrictions, like the long-range dependence condition D (see [1])
and the local dependence condition D” (see [2]). Let {Xi :n}n≥1, 1 ≤ i ≤ n, denote
the associated sequence of ascending order statistics.

The stationary sequence {Xn}n≥1 is said to have an EI, θ , with (0 < θ ≤ 1), if
for all τ > 0, we can find a sequence of levels un = un(τ ) such that, with {Yn}n≥1

the associated independent, identically distributed (i.i.d.) sequence (i.e., an i.i.d.
sequence from the same CDF F),
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P (Yn:n ≤ un) = Fn(un) −→
n→∞ e−τ

and
P (Xn:n ≤ un) −→

n→∞ exp−θτ .

Since 0 < θ ≤ 1, there is thus a ‘shrinkage’ of the values in the limit CDF, but
after linearly normalized, Xn:n has still an extreme value (EV ) distribution, with a
CDF with a functional form of the type

EVξ (x) =
{
exp{−(1 + ξ x)−1/ξ }, 1 + ξ x > 0, if ξ �= 0
exp(− exp(−x)), x ∈ R, if ξ = 0.

(1)

Under the two mixing conditions D and D”, the EI can also be defined as:

θ = 1

limiting mean size of clusters
= lim

n→∞ P(X2 ≤ un|X1 > un),

with

un : F(un) = 1 − τ/n + o(1/n), as n → ∞, with τ > 0, fixed. (2)

The m-dependent (m-dep) processes are used here for illustration. It is known
that for these processes the EI is given by θ = 1/m. They may be based on i.i.d.
Fréchet (ξ) random variables Yi , i ≥ 1, from a CDF �

1/m
ξ , with �ξ(x) = exp

( −
x−1/ξ

)
, x ≥ 0, the standard Fréchet CDF. They are then built upon the relation

Xi = maxi≤ j≤i+m−1 Y j , i ≥ 1. An illustration of clustering of high values with an
asymptotic mean size equal to m, is presented in Fig.1 as illustrated in [12].
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Fig. 1 Sample paths of an i.i.d. (left), 2-dep (center) and 5-dep (right) processes from the same
underlying Fréchet (�ξ=1), but with EIs, respectively, equal to 1, 0.5 and 0.2 [12]
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When θ = 1 it corresponds to the occurrence of independent extreme values. As
θ decreases to zero, m-dependence has an increasing m and leads to a number of
sequential extreme values forming clusters that tend to have greater size. Thus we
are more concerned with the estimation of low θ values (high dependence).

1.3 EI Estimators

Since the last 80s, several authors have proposed different EI estimators. The most
distinguishable feature is the scheme used in the clusters of exceedances identifica-
tion. The Blocks estimator is the most known, in spite of still existent current doubts
about optimizing the number of blocks to be considered; the problem is investi-
gated, e.g., in [3]. The Blocks estimator was initially suggested by [4], and it has
been improved in different versions, like the equivalent weighted version in [5], or
the sliding blocks versions as studied in [6]. Inference questions about the limiting
cluster size distribution are studied in [7]. Basically, the Blocks estimator start by
identifying a cluster when it occurs an observation higher than a pre-fixed thresh-
old. The dimension of the cluster is the number of observations in the block above
that fixed threshold. Notice that, dealing with extremely high observations, the great
majority of the blocks do not contain clusters. The Blocks estimator corresponds to
the inverse of the mean cluster size estimate.

With more detail, the sample is divided into k blocks of equal range. The total
number of exceedances above a fixed high threshold is counted per each block. Those
blocks that do not contain exceedances are ignored. Then,

θ̂B = (Nn/Zn)
−1 = Zn/Nn,

where Nn is the number of exceedances and Zn is the number of blocks that contain
at least one exceedance.

There are other type of estimators, like the Runs estimator (see [8]), the
Nandagopalan estimator, those based in the inter-exceedance times, e.g., [5], or the
k-gaps estimator (see [9] or [10]). In the paper of Gomes andGuillou [11], the authors
present a review of the topic. The present paper is devoted to the Blocks estimator,
continuing and improving the previous work [12]. For computational purpose, the
authors used the equivalent form suggested by Robert in [7]:

θ̂B = −
log

(
1
k

k∑
i=1

I
(
M(i−1)r,ir ≤ un

))

1
k

rk∑
i=1

I (Xi > un)

, (3)
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with Ms,r = max
s<i≤r

Xi , for 0 ≤ s < r . The estimator θ̂B is a consistent and asymptot-

ically normal EI-estimator.

1.4 Scope of the Article

The main goal is to find the best robust version of the E I -estimator in (3), in the
sense of an estimator with a good performance under model assumptions, but that it
does not breakdown in the neighbourhoods of the model, namely in the presence of
atypical observations or of small deviations from the assumed model. In Section2, a
Hurdle model for fitting the clusters dimension asymptotic distribution is proposed.
In Section3, a robust estimation of the model in the framework of the generalized
linearmodel is considered. The last two sections, Section4 and5, include a simulation
study and the analysis of results.

2 The Hurdle Model

2.1 Why the Hurdle Poisson Model?

Since the Blocks estimator counts the number of extreme values above a fixed thresh-
old, there exist a lot of blocks with no exceedances, i.e., with zero observations of
exceedances. Among the most known counting models prepared for dealing with
an excess of zeroes (see [13]), we considered mixed models with two components,
and we decided that the hurdle model with a zero truncated distribution was the best
choice. Actually, a possible candidate model would be a Zero Inflated Model. But
that one would assume that the zeroes could be generated by both components of the
model. In the opposite, the hurdle model with a zero truncated distribution admits
that all the zeroes must be generated by a single component of the model, while
the strictly positive counts are in the second component. Observations belonging to
the zero truncated component occur conditionally based on a Bernoulli distribution.
Therewith, it is necessary to assume a discrete distribution for the cluster dimension.

In the limit distribution, it was proven in [14] that under a broad condition, the
number of exceedances Nn converges to a compound Poisson process with multi-
plicities equal to the dimension of the clusters. Moreover, clusters’ size distribution
is given by

πn( j) = P

[
rn∑
i=1

I(Xi>un) = j |Mrn > un

]
, j = 1, 2, . . .
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where I stands for the indicator function. If the limit exists when n → ∞, the
distribution of the clusters’ size associated with the compound Poisson process is
π = limn→∞ πn .

In general, π is not known. Some authors assume a Poisson distribution. Taking
into account that the Poisson distribution should not fit with the excess of zeroes,
we will consider that the limit distribution of the strictly positive cluster dimension
belongs to the neighbourhood of a Zero Truncated Poisson (ZTP) model. Obser-
vations belonging to the ZTP component occur conditionally based on a Bernoulli
distribution.

The hurdle ZTP model can be characterized by

P[Yi = yi ] =
{
1 − p(xi ), yi = 0,
p(xi )

exp[−λ(μi )][λ(μi )]yi
yi ![1−exp[λ(μi )]] , yi = 1, 2, . . . ,

(4)

where Yi represent the countings yi , xi ∈ R, μi ∈ R. The corresponding expectation
is

E[Yi |xi ] = μi = λi

1 − exp (−λi )
. (5)

Thus, once the parameter λi of the complete Poisson distribution is estimated it
is easy to obtain the estimated expected value of the ZTP.

There are other advantages in treating the hurdle ZTP in the General Linear
Model (GLM) framework: besides treating the mean as the constant term of the
Poisson regression (after inverting the link function), the GLM estimation is inten-
sively studied, particularly, whenever dealing with robust estimation.

3 Robust Estimation of the Hurdle Model

Let us consider the generalization of (4) to the case of covariates xi ∈ R
p, with

μμμi ∈ R
p̃, with p and p̃ not necessarily the same:

P[Yi = yi ] =
{
1 − p(xi ), yi = 0,
p(xi )

exp[−λ(μμμi )][λ(μμμi )]yi
yi ![1−exp[λ(μμμi )]] , yi = 1, 2, . . . .

Each component of the model can be interpreted as aGLM, namely, the Bernoulli
component as a logistic regression with link function

logi t[p(xxxi )] = log

[
p(xxxi )

1 − p(xxxi )

]
= xxxTi ααα, (ααα ∈ R

p)

and the second component as a log-linear regression conditional to p(xxxi ), with link
function
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log[λ(μμμi )] = μμμT
i γγγ (γγγ ∈ R

p̃).

The log-likelihood function of the model is presented in Cantoni and Zedini [15]:

l(ααα,γγγ ; yyy) =
∑
yi=0

log

(
1

1 + exp(xxxTi ααα)

)
+

∑
yi>0

log

(
xxxTi ααα

1 + exp(xxxTi ααα)

)
+

+
∑
yi>0

(
yi (μμμ

T
i γγγ ) − exp(μμμT

i γγγ ) − log
(
1 − exp(− exp(μμμT

i γγγ ))
)) − log(yi !).

The expression above can be written as a sum of the type

l(ααα,γγγ ; yyy) = l1(ααα; y) + l2(γγγ ; yyy),

where l1 does not depend on γγγ and l2 does not depend on ααα. So, maximization of
l(ααα,γγγ ; yyy) in order to each parameter is independent from the other. That means
that parameters ααα and γγγ of the GLM are orthogonal. Thus, the estimation of both
components of the model can be independent. In the same paper, the authors present
also the variance and the deviance functions computed originally in [16], where the
ZTPwas treated as aGLM for the first time. One of the advantages in considering the
GLM framework is that the expected value of the complete Poisson is the constant
term of the previous log regression with a Poisson error term. Besides, since our main
goal is to get a robust estimate of the expectation of the ZTP, we are only interested
in estimating the second component of the model.

Robust regression estimators for theGLM are already available for some distribu-
tions, namely for the complete Poisson or the Bernoulli distributions. The estimators
are included in free software like R, particularly, in the robustbase package. They
have already been deeply studied, used and tested by the community, thus avoiding
numerical questions with optimization problems. Taking into account the relation (5)
between expectations of the Poisson and the ZTP, we begin by looking for the robust
fit of the complete Poisson parameter, using just the strictly positive observations
in the estimation process. The zeroes are ignored, as it is usual with non-observed
values in a sample, in spite of belonging to distribution support. With that procedure
we hope to find the λi estimates that better fit the strictly positive cluster size, inde-
pendently of the zeroes frequency. Once we have a good estimate for the Poisson
parameter, the mean cluster size estimate considering the ZTP is obtained directly
from (5).

The R package robustbase includes the glmrob function, which collects the most
recognized or computationally disposable robust counterparts to the common GLM
estimators. For the Poisson distribution, there are implemented two main families
of robust estimators (particularly, M-estimators): MT-type estimators andMallows’s
or Huber-type estimators. MT-estimators are based on a stabilizing variance trans-
formation proposed in [17]; in the glmrob function, those estimators correspond
to the option method=“MT". They can be computationally more time consuming,
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depending on the initial value used in the algorithm and they did not produce the
best results according to the authors previous studies. Mallows’s or Huber estimators
correspond to the optionmethod=“Mqle", as suggested in [18] and [15], but they are
computed using a pure influence algorithm, with the possibility of several choices
through the glmrob.control function. For the GLM with different covariates, they
have the following form:

n∑
i=1

ψ(yi ,μμμi ) =
n∑

i=1

[
ψc(ri )ω(xxxi )

1√
νμi

μμμi )
T
i − a(βββ)

]
= 000,

where ψc is the Huber function with tuning constant c; ri = (yi − μi )/
√

νμi are the
Pearson residuals; νμi = V[Yi |xxxi ]; ω(xxxi ) are weights that control xxxi ;μμμi = E[Yi |xxxi ];
and a(βββ) assures Fisher consistency (see Cantoni and Zedini [15]). Since our goal
is to estimate just the constant term of the GLM, we have ω(xxxi ) = 1,∀i . The tuning
constant is recommended by [15] as c ∈ (1.2, 1.8). We obtained better results with
c = 1.6, but the value of c determines the efficiency of the estimator and that issue has
not been theoretically investigated by the authors. From previous simulation studies,
Mallows’s type estimators seem to be preferable.

The result obtained by the GLM model, let it be denoted by λ̂, is the estimate
of the GLM constant term. Inversion of the link function gives the estimate for the
expected value of the Poisson, λ̃ = exp(λ̂).

The relation (5) between the expected values of the ZTP and the Poisson, i.e.,

λ̂ZT P = λ̃

1 − exp(−λ̃)
,

gives the estimate of the mean cluster dimension (assuming a ZTP). Finally, the EI
estimate is

θ̂Rob.ZT P = 1/λ̂ZT P . (6)

4 Simulation Study

Thepresent simulation study aims tofind the best robust alternative as a robust version
of the Blocks EI estimator. The evaluation of the performance of the robust version
when compared with other EI estimators, in the same dependence structure, takes
into account the results of the methods in both cases: “clean” samples, in the sense
that they are generated according with model assumptions; but the results must be
satisfactory also when the samples are contaminated. By contaminated samples, we
mean that the sample may contain atypical values according to the assumed model,
or that the real distribution lies in some neighbourhoods of the assumed model. A
robust estimator should not break down under those conditions.
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The evaluation criteria were the following:

• For each sample, the performance was evaluated for high percentiles (30 levels
from 80% to 99%).

• Estimators are compared in terms of bias, through the mean estimates of the EI;
and in terms of variability, which is evaluated through the root mean square error.

• Stability along the percentiles also matters. That is analyzed by graphical compar-
isons.

• Computational facilities and reliability of estimates along repetitive simulations.
The authors consider that the development of free packages that are simple to use
is essential for the application of the methods in a real environment.

4.1 Simulated Scenarios

The generated samples must contain extreme values, higher than fixed thresholds,
particularly, in scenarios of distributions defined by (1). Thus, observations were
generated according to a unit Fréchet distribution. In what concerns the dependence
structure, theworkwas focused in low values of θ , since 0 < θ < 1when the extreme
values present dependence and θ = 1 corresponds to the independent case. Herein,
we present results for m-dependent processes with θ = 0.2, but similar results were
obtained for other values of m. In the case of m-dependent processes, it is possible
to compute explicitly the EI value, which is θ = 1/m. Thus, 5-dependent processes
allow to investigate a scenery quite away from independence.

Each generated sample has a dimension n = 2000. The number of blocks is pre-
fixed and it is an issue still under current research (see [3]). We choose b = 100
blocks, in accordance with other similar simulation studies. Finally, the number of
replicates is 500. Those conditions are related to the “clean” samples.

For producing contaminated samples, notice that the introduction of contamina-
tion should be not in the observed values from the Fréchet processes, but necessarily
in the size of the clusters of exceedances. That goal was achieved with the following
procedure: the samples were partially randomly generated in such a manner that, in
every sample, at least one cluster of exceedances should contain an atypical dimen-
sion. Thus, the 25 central observations in each sample were replaced by the maxima
observed in the block where they were registered.

To access robust properties, every procedure and criterionwas repeated using both
clean and contaminated samples.
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Table 1 R packages and functions used for obtaining estimates by different methods

estim. Function Package Method

θ̂B Programmed

θ̂W Programmed

θ̂Runs extremalindex extRemes

θ̂I nt ext.index mev Intervals

θ̂Rob glmrob robustbase Mqle

θ̂MT glmrob robustbase MT

θ̂Gaps iwls exdex

θ̂N spm exdex

θ̂BB spm exdex

4.2 Software Tools

All the computations were performed with R software, since it has free access and
many already tested packages, namely, devoted to robustness and extreme value
distributions. We used self-programmed software in some cases.

In past studies about the same topic the authors noticed that was not possible
to compare results using some EI estimators, namely, the k-gaps estimator θ̂Gaps ,
the semiparametric maxima Northrop θ̂N estimator or the MT-estimator θ̂MT . Then,
they produced the estimates just with specific samples, but they presented serious
problems in the simulation of many samples, probably due to numerical lack of
convergence.

Nowadays those problems seem to have been solvedwith important computational
improvements. The package exedex can compute θ̂Gaps , Northrop estimator θ̂N and
also a similar estimator proposed by Berghaus and Büche (see [19]), here denoted by
θ̂BB . Unfortunately that package does not allow visual comparisons of the two last
estimators with the rest, quantile by quantile. So, they appear in Table 1 (respecting
to the non-sliding block version), but they do not appear in the following graphical
evaluations. We just present numerical comparisons of their estimates with θ̂Rob.ZT P

global results.
In spite of the referred great improvements in the computational tools, there are

some difficulties not yet solved.

5 Analysis of Results

Remember that θ̂Rob.ZT P represents the robust version of the EI estimator computed
by the Mallows’s type estimator. Next figures represent the curves of the estimates
of θ obtained by different methodologies. The empirical quantiles are chosen as pre-
fixed thresholds, in the abscissa axis. The results are shown for 30 quantiles of the
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Fig. 2 Estimated means (left) and estimated root mean square errors (right) by different methods
with “clean” samples and θ = 0.2

empirical distribution from 0.80 until 0.99. Almost all the methods and packages
provide estimates according with that choice of thresholds.

We start by comparing robust versions of Blocks estimator with other EI estima-
tors, in the “clean” samples scenery, with θ = 0.2. Figure2 shows the results.

In what concerns bias (in the left of Fig. 2) it is possible to see that the robust
version θ̂Rob.ZT P and the Blocks estimator have a similar behaviour under “clean”
samples, with increasing bias when the quantiles increase; in terms of root mean
square error, θ̂Rob.ZT P shows a slightly reduction on variability. Comparing with the
robust alternative θ̂MT , the latter performs better when there is no contamination.
Notice that under the simulated condition θ̂Gap has the best performance—minimum
values and stability for almost all the quantiles.

The conclusions are not the same when we consider the contaminated scenery, as
in Fig. 3.

θ̂Rob.ZT P estimates show a bias reduction when compared with original version
of Blocks estimates, but only until somewhere between the 85% and 90% quantiles;
and the advantage in terms of variability is lost from (about) the same threshold.
Analyzing the estimates, the comparative results with the other robust estimator, θ̂MT ,
is even more disappointing. We must conclude that under this type of contamination
there is not a great improvement in EI estimation through θ̂Rob.ZT P , which was our
initial choice in the sequence of previous work. Nevertheless, the performance of the
θ̂Gap estimator is remarkable, both with or without contamination. Actually, without
contamination, that estimator seems to present (in general) the smaller bias and the
smaller root mean square error, being also quite stable along the increasing quantiles;
with contaminated samples (in general) θ̂Gap is preferable.

The authors think that the improvement on the θ̂Gap estimates is due to the compu-
tational evolution. In spite of working with the same samples, previous simulations
were difficult and worse than the present ones, perhaps due to divergence problems
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Fig. 3 Estimated means (left) and estimated root mean square errors (right) by different methods
with contaminated samples and θ = 0.2

Table 2 Comparison of θ̂N and θ̂BB estimates with global results of θ̂Rob.ZT P and θ̂Gap estimates
(bold digits for smaller cases)

Clean samples Contaminated
samples

Est. bias RMSE Est.absol.bias RMSE

θ̂N 0.0079 0.0368 0.0010 0.0498

θ̂BB 0.0176 0.0393 0.0101 0.0505

θ̂Rob.ZT P 0.0112 0.0213 0.0112 0.0486

θ̂Gap 0.0049 0.0102 0.0395 0.0446

in the numerical optimization. The present use of the R package exdex (with the
original settings), which was not disposable when we did the previous similar study,
led to completely different conclusions.

The analysis of the results under the simulated conditions highlights the impor-
tance of the associated computational methods in the evaluation of the estimators
and their comparisons. With the package exdex is possible to analyze the estimates
obtained with the Northrop and the Berghaus and Büche estimators, respectively,
θ̂N and θ̂BB . As mentioned before, the results are presented in a different format, so
we did not compare them in the same type of graphical representation. The package
includes a sliding blocks version for each of those estimators, but we dealt just with
disjoint blocks, in coherence with Blocks estimator versions. Thus, we present the
next table for comparing their estimates with θ̂Rob.ZT P global results and with θ̂Gap,
since apparently, it provided the best results.

Observing Table 2 we see that with clean samples there are no great differences,
like those pointed in the graphics. Both inwhat respects to estimated bias or estimated
root mean square error, θ̂Gap had the best performance. When there is contamination,
the robust Mallows type estimator is overpassed by the Northrop estimator, the last
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one being almost unbiased. The estimated root mean square error is very similar for
all the estimators considered in the table and slightly better for the k-gaps estimator.
Concluding, with the introduced contamination, θ̂N is the best in terms of bias, while
θ̂Gap is the best in terms of root mean square error.

6 Final Comments

The dimension of clusters of exceedances distribution was modelled with a Hurdle
model with a zero truncated Poisson. We have improved past computations of the
robust Mallows type version of the Blocks estimators (see [12]), but that did not
improve the comparative results. Some estimators that could not be compared in
previous simulations (due to frequent optimization problems) are now available with
good estimates, using the present version of exdex R package (see [20]). That points
out the importance of free access, good and user friendly software. According to the
simulated scenarios and the studied type of contamination, we can conclude that:
unfortunately the M-estimators proposed showed lower performance than expected
(particularly the MT-estimator); The k-Gap estimator seems to be the best, consid-
ering either “clean" or contaminated samples, and for different criteria, followed by
Northrop estimator. Future research is needed to study robust estimators under other
simulated dependence structures and contaminations.
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Computational Study of the Adaptive
Estimation of the Extreme Value Index
with Probability Weighted Moments

Frederico Caeiro and M. Ivette Gomes

Abstract In statistics of extremes, the estimation of the extreme value index (EVI)
is an important and central topic of research. We consider the probability weighted
moment estimator of the EVI, based on the largest observations. Due to the speci-
ficity of the properties of the estimator, a direct estimation of the threshold is not
straightforward. In this work, we consider an adaptive choice of the number of order
statistics based on the double bootstrap methodology. Computational and empirical
properties of the methodology are here provided.

Keywords Bootstrap · Extreme value index · Heavy tails · Probability weighted
moment · Semi-parametric estimation

1 Introduction and Scope of the Article

Let (X1, . . . , Xn) denote a random sample of size n from a population with unknown
cumulative distribution function (CDF) F(x) = P(X ≤ x) and consider the associ-
ated sample of ascending order statistics (OSs) (X1:n := min

1≤i≤n
Xi ≤ · · · ≤ Xn:n :=

max
1≤i≤n

Xi ). Further assume that for large values of x , F(x) is a Pareto-type model, i.e.,

a model with a regular varying right tail with a negative index of regular variation
equal to −1/ξ (ξ > 0). Consequently,

F(x) := 1 − F(x) = P(X > x) = x−1/ξ L(x), as x → ∞, (1)
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with L(·) a slowly varying function, i.e.

lim
t→∞

L(t x)

L(t)
= 1, ∀ x > 0.

Models satisfying the condition (1) are in the domain of attraction for maxima
of a non-degenerate distribution. This means that there exist normalizing constants
an > 0 and bn ∈ R such that

lim
n→∞P

(
Xn:n − bn

an
≤ x

)
= lim

n→∞ Fn (anx + bn) = G(x), (2)

with G(·) a non-degenerate CDF. With the appropriate choice of the normalizing
constants in (2), and under a general framework,G is the general extreme value (EV)
distribution,

G(x) ≡ EVξ (x) :=
{
exp

(−(1 + ξ x)−1/ξ
)
, 1 + ξ x > 0, if ξ �= 0,

exp(− exp(−x)), x ∈ R, if ξ = 0,
(3)

given here in the von Mises-Jenkinson form (see [1, 2]). Whenever such a non-
degenerate limit exists, we write F ∈ DM(EVξ ), and the real parameter ξ is the
extreme value index (EVI).

As already mentioned, we shall deal with Pareto right-tails, i.e. heavy right-tails
or equivalently a model with a positive EVI. Then, the right-tail function is of regular
variation with an index of regular variation equal to −1/ξ , i.e.

F ∈ DM(EVξ )ξ>0 ⇐⇒ F := 1 − F ∈ RV−1/ξ , (4)

where the notation RVα stands for the class of regularly varying functions at infinity
with an index of regular variation equal to α, i.e. positive measurable functions g
such that lim

t→∞ g(t x)/g(t) = xα , for all x > 0. With the notation

U (t) := F←(1 − 1/t), t ≥ 1, F←(y) := inf {x : F(x) ≥ y} , (5)

condition (4) is equivalent toU ∈ RVξ . Pareto-type models are extremely important
in practice due to the frequency and magnitude of extreme values and inference on
extreme and large events is usually performed on the basis of the k + 1 largest order
statistics in the sample, as sketched in Fig. 1.
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Fig. 1 A Pareto right-tail
probability density function

x
f(x

)

u = Xn−k:n

Pareto Tail

1.1 EVI-Estimators Under Consideration

One of the first classes of semi-parametric estimators of a positive EVI was the class
of Hill (H) estimators introduced in [3] and given by

ξ̂H
k,n := 1

k

k∑
i=1

{ln Xn−i+1:n − ln Xn−k:n} , k = 1, 2, . . . , n − 1. (6)

This estimator can be highly sensitive to the choice of k, especially in the presence
of a substantial bias. As an alternative, we shall also consider the Pareto probability
weighted moments (PPWM) EVI-estimators, introduced in [4]. They are consistent
for 0 < ξ < 1, compare favourably with the Hill estimator, and are given by

ξ̂PPWM
k,n := 1 − â1(k)

â0(k) − â1(k)
, (7)

with

â0(k) := 1

k

k∑
i=1

Xn−i+1:n and â1(k) := 1

k

k∑
i=1

i

k
Xn−i+1:n .

For other alternative estimators of theEVI seeRefs. [5–7], amongothers. Consistency
of the EVI-estimators in (6) and (7) is achieved if Xn−k:n is an intermediate OS, i.e.
if

k = kn → ∞ and k/n → 0, as n → ∞.

In order to derive the asymptotic normality of these EVI-estimators, it is often
assumed the validity of a second-order condition, like

lim
t→∞

lnU (t x) − lnU (t) − ξ ln x

A(t)
=

{ xρ−1
ρ

, if ρ < 0,
ln x, if ρ = 0,

(8)
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Table 1 Asymptotic variance and bias’ rulers of H and PPWM EVI–estimators

H (ξ > 0) PPWM (0 < ξ < 1/2)

σ 2• ξ2 ξ2
(1−ξ)(2−ξ)2

(1−2ξ)(3−2ξ)

b• 1
1−ρ

(1−ξ)(2−ξ)
(1−ξ−ρ)(2−ξ−ρ)

whereU (·) is defined in (5) and |A| ∈ RVρ ,ρ ≤ 0.Under such a second-order frame-
work, if

√
k A(n/k) → λA , finite, as n → ∞, these EVI-estimators are

asymptotically normal. Denoting ξ̂ •
k,n , any of the estimators above, we have, with

Z•
k an asymptotically standard normal random variable and for adequate (b•, σ•) ∈

(R, R
+),

ξ̂ •
k,n

d= ξ + σ•Z•
k√
k

+ b• A(n/k)(1 + o
P
(1)), as n → ∞, (9)

with b• the asymptotic bias, and σ 2• the asymptotic standard deviation of the approx-
imation, given in Table 1.

Under the above second-order framework, in (8), but with ρ < 0, let us use the
parametrization

A(t) = ξβtρ, with β �= 0 and ρ < 0,

where β and ρ are generalized scale and shape second-order parameters, which need
to be adequately estimated on the basis of the available sample. Let us denote the
optimal level by

k̃•
0(n) := argmin

k
MSE(ξ̂ •

k,n),

withMSE standing formean squared error.WithE denoting themean value operator
and AMSE standing for asymptotic MSE, a possible substitute for MSE(ξ̂ •

k,n) is

AMSE(ξ̂ •
k,n) := E

(
σ•√
k
Z•
k + b•A(n/k)

)2

= σ 2•
k

+ b2• ξ 2 β2
(n
k

)2ρ
,

cf. Eq. (9). Then, with the notation k•
0(n) := argmink AMSE

(
ξ̂ •
k,n

)
, we get

k•
0(n) =

(
σ 2• n−2ρ

(−2ρ) b2• ξ 2β2

)1/(1−2ρ)

= k̃•
0(n)(1 + o(1)). (10)

For the Hill estimator in (6), and as can be seen in Table1, we have (bH , σH) =
(1/(1 − ρ), ξ). Consequently, with (β̂, ρ̂) a consistent estimator of (β, ρ) and [x]
denoting the integer part of x , we have an asymptotic justification for the estimator
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k̂H0 :=
⎡
⎣

(
(1 − ρ̂)2n−2ρ̂

(−2ρ̂β̂2)

)1/(1−2ρ̂)
⎤
⎦ + 1.

The same does not happen with the PPWMEVI-estimators, due to the fact that σPPWM ,
bPPWM and consequently kPPWM

0 depend on the value of ξ (see Table1, again). It is thus
sensible to use the bootstrap methodology for the adaptive choice of the threshold
associated to the PPWM EVI-estimation.

1.2 Scope of the Article

The main goal is the adaptive estimation of the EVI. For that purpose, the choice of
the threshold is crucial and we study computationally a recent bootstrap algorithm.
After a review, in Sect. 2, of the role of the bootstrapmethodology in the estimation of
optimal sample fractions,weprovide an algorithm for the adaptive estimation through
the Hill and the PPWM EVI-estimators. In Sect. 3 we provide results from a Monte
Carlo simulation study. In Sect. 4, as an illustration, we apply such methodology to
a data set in the field of insurance. Section5 concludes the paper.

2 Adaptive EVI-Estimation and the Bootstrap
Methodology

Similarly to what has been done in Gomes and Oliveira [8], for the H estimator, and
in Gomes et al. [9], for adaptive reduced-bias estimation, we can use the algorithm
in Caeiro et al. [10] (see also [4]), considering the auxiliary statistic,

T •
k,n := ξ̂ •

[k/2],n − ξ̂ •
k,n, k = 2, . . . , n − 1, (11)

which converges to the known value zero, and double-bootstrap it adequately, in
order to estimate k•

0(n), through a bootstrap estimate k̂•,∗
0 . Indeed, again under the

second-order framework, in (8), we get, for the auxiliary statistic T •
k,n , in (11), the

asymptotic distributional representation,

T •
k,n

d= σ• Q•
k√

k
+ b•(2ρ − 1) A(n/k) + o

P
(A(n/k)),

with Q•
k asymptotically standard normal, and (b•, σ•) given in Table 1. The AMSE

of T •
k,n is thus minimal at a level k•

0|T (n) such that
√
k A(n/k) → λ′

A
�= 0, i.e. a level

of the type of the one in (10), with b• replaced by b•(2ρ − 1), and we consequently
have

k•
0(n) = k•

0|T (n) (1 − 2ρ)
2

1−2ρ (1 + o(1)).
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2.1 The Bootstrap Methodology in Action

Given the sample Xn = (X1, . . . , Xn) from an unknown model F , consider for any
n1 = O(n1−ε), with 0 < ε < 1, the bootstrap sample X∗

n1 = (X∗
1, . . . , X

∗
n1), from

the model F∗
n (x) = 1

n

∑n
i=1 I{Xi≤x}, the empirical CDF associated with the original

sample Xn . We choose the resample size n1 to be less than the original sample size
to avoid underestimation of the bias (see Hall [11]). Next, associate to that bootstrap
sample the corresponding bootstrap auxiliary statistic, denoted T •,∗

k1,n1
, 1 < k1 < n1.

Then, with the notation

k•,∗
0|T (n1) = argmin

k1
AMSE

(
T •,∗
k1,n1

)
,

we have that
k•,∗
0|T (n1)

k•,∗
0|T (n)

= (n1/n)
− 2 ρ

1−2 ρ (1 + o(1)).

Consequently, for another sample size n2 = n21/n,

(
k•,∗
0|T (n1)

)2
k•,∗
0|T (n2)

= k•
0|T (n)(1 + o(1)), as n → ∞.

We are now able to estimate k•
0(n), on the basis of any estimate ρ̂ of ρ. With k̂•,∗

0|T
denoting the sample counterpart of k•,∗

0|T , ρ̂ the ρ-estimate and taking into account
(10), we can build the k0-estimate,

k̂•,∗
0 ≡ k̂•,∗

0 (n; n1) := min

(
n − 1,

[(
1 − 2ρ̂

) 2
1−2ρ̂

(
k̂•,∗
0|T (n1)

)2
k̂•,∗
0|T ([n21/n] + 1)

]
+ 1

)
, (12)

and the ξ -estimate
ξ̂ •,∗ ≡ ξ̂ •,∗(n; n1) := ξ̂k̂•,∗

0|T (n;n1),n. (13)

A few questions, some of them with answers outside the scope of this paper,
may be raised: How does the bootstrap method work for small or moderate sample
sizes? Is the method strongly dependent on the choice of n1? What is the type of the
sample path of the EVI-estimator, as a function of n1? What is the sensitivity of the
bootstrap method with respect to the choice of the ρ-estimate? Although aware of
the theoretical need to have n1 = o(n), what happens if we choose n1 = n?
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2.2 An Algorithm for the Adaptive EVI-Estimation

The estimates (β̂, ρ̂), of the vector (β, ρ) of second-order parameters, are the ones
already used in previous papers:

1. Given a sample (x1, . . . , xn), consider the observed values of the ρ-estimators
ρ̂τ (k), introduced and studied in Fraga Alves et al.[12], for tuning parameters
τ = 0 and τ = 1.

2. Select
{
ρ̂τ (k)

}
k∈K, with K = ([n0.995], [n0.999]), and compute their median,

denoted by ητ , τ = 0, 1.
3. Next compute Iτ := ∑

k∈K
(
ρ̂τ (k) − ητ

)2
, τ = 0, 1, and choose the tuning

parameter τ ∗ = 0 if I0 ≤ I1; otherwise, choose τ ∗ = 1.
4. Work with ρ̂ ≡ ρ̂τ ∗ = ρ̂τ ∗(k1) and β̂ ≡ β̂τ ∗ := β̂ρ̂τ∗ (k1), k1 = [n0.999] and β̂ρ̂ (k)

given in Gomes and Martins [13].

Now, and with ξ̂H
k,n and ξ̂PPWM

k,n respectively defined in (6) and (7), the algorithm
goes on with the following steps:

5. Compute ξ̂ •
k,n , k = 1, . . . , n − 1, • = H and/or PPWM.

6. Next, consider a sub-sample size n1 = o(n), and n2 = [n21/n] + 1.
7. For l from 1 until B, generate independently B bootstrap samples (x∗

1 , . . . , x
∗
n2)

and (x∗
1 , . . . , x

∗
n2 , x

∗
n2+1, . . . , x

∗
n1), of sizes n2 and n1, respectively, from the

empirical CDF, F∗
n (x) = 1

n

∑n
i=1 I{Xi≤x}, associated with the observed sample

(x1, . . . , xn).
8. Denoting by T •,∗

k,n the bootstrap counterpart of T •
k,n , defined in (11), obtain

(t•,∗
k,n1,l

, t•,∗
k,n2,l

), 1 ≤ l ≤ B, the observed values of the statistic T •,∗
k,ni

, i = 1, 2.
For k = 2, . . . , ni − 1, compute

MSE•,∗(ni , k) = 1

B

B∑
l=1

(
t•,∗k,ni ,l

)2
,

and obtain
k̂•,∗
0|T (ni ) := arg min

1<k<ni
MSE•,∗(ni , k), i = 1, 2.

9. Compute the threshold estimate k̂•,∗
0 , in (12).

10. Finally obtain
ξ̂ •,∗ ≡ ξ̂ •,∗(n; n1) = ξ̂k̂•,∗

0|T (n;n1),n,

already provided in (13).

Such an algorithm needs to be computationally validated, a topic we deal with
in the next section. Further, note that bootstrap confidence intervals (CIs) are easily
associated with the estimates presented through the replication of this algorithm r
times.
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3 A Small-Scale Simulation Study

In this section, we have implemented a multi-sampleMonte Carlo simulation experi-
ment of size 1000, to obtain the distributional behaviour of the EVI adaptive bootstrap
estimates ξ̂ H,∗ and ξ̂ PPWM,∗ in (6) and (7), respectively. We have considered a re-
sample of size n1 = [n0.955] for samples of size n = 100, 200, 500, 750, 1000, 2000
and 5000 from the following models:

• the Fréchet model, with d.f.

F(x) = exp(−x−1/ξ ), x > 0, ξ > 0,

with ξ = 0.25 (ρ = −1);
• the Burr model, with d.f.

F(x) = 1 − (1 + x−ρ/ξ )1/ρ, x > 0,

with (ξ, ρ) = (0.25,−0.75);
• the Half-t4 model, i.e., the absolute value of a Student’s t with ν = 4 degrees of
freedom (ξ = 0.25, ρ = −0.5).

In Table 2 we present, for the above mentioned models, the multi-sample simulated
(mean) double bootstrap optimal sample fraction (OSF), the mean (E) and median
(med) of the EVI-estimates and the simulated RMSE for both EVI-estimators, as a
function of the sample size n. The less biased EVI-estimate and the smallest RMSE is
presented in bold. Although both estimators over-estimate the EVI, the consideration
of the PPWM EVI-estimator leads to a less biased EVI-estimate, as expected. The
PPWM estimation can also lead to a smaller RMSE, for models with |ρ| < 1.

4 A Case Study

Here, the performance of the adaptive double bootstrap procedure is illustrated
through the analysis of a real dataset. The analysis was made in R software with
the computer code developed in Caeiro and Gomes [14]. We used the dataset Auto-
Claims from a motor insurance portfolio. The data is available in the R package
insuranceData [15]. The variable of interest is the amount paid on a closed
claim, in dollars. There are n = 6773 claims available. Since large claims are a topic
of great concern in the Insurance Industry, accurate modelling of the right tail of
the underlying distribution is extremely important. The Histogram and the Pareto
Quantile-Quantile (QQ) Plot, in Fig. 2, are compatible with a Pareto-type underlying
distribution.

In Fig. 3, we present the EVI-estimates provided by the Hill and the PPWM EVI-
estimators in (6) and (7), respectively. Both estimators are upward biased for large k.
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Table 2 Simulated OSF, EVI-estimates (provided by the mean and median) and RMSE estimates
obtained through the Hill and PPWM estimators and the double bootstrap methodology

Hill PPWM

n OSF E(ξ̂∗) med(ξ̂∗) RMSE(ξ̂∗) OSF E(ξ̂∗) med(ξ̂∗) RMSE(ξ̂∗)
Fréchet with ξ = 0.25 (ρ = −1)

100 0.3458 0.2665 0.2716 0.0706 0.3677 0.2446 0.2533 0.0728

200 0.3246 0.2675 0.2701 0.0561 0.3453 0.2503 0.2559 0.0573

500 0.2750 0.2656 0.2674 0.0390 0.3101 0.2544 0.2587 0.0395

750 0.2567 0.2646 0.2680 0.0322 0.2826 0.2532 0.2571 0.0353

1000 0.2420 0.2630 0.2640 0.0282 0.2632 0.2528 0.2566 0.0332

2000 0.2027 0.2614 0.2628 0.0217 0.2269 0.2538 0.2569 0.0244

5000 0.1602 0.2588 0.2601 0.0163 0.1832 0.2539 0.2562 0.0177

Burr with ξ = 0.25, ρ = −0.75

100 0.1756 0.2963 0.3020 0.1390 0.1676 0.2611 0.2737 0.0969

200 0.1503 0.2913 0.2988 0.0931 0.1389 0.2614 0.2702 0.0761

500 0.1202 0.2885 0.2927 0.0612 0.1133 0.2614 0.2686 0.0590

750 0.1021 0.2836 0.2882 0.0525 0.0979 0.2602 0.2660 0.0500

1000 0.0974 0.2833 0.2854 0.0503 0.0912 0.2604 0.2654 0.0464

2000 0.0768 0.2780 0.2813 0.0391 0.0733 0.2595 0.2639 0.0372

5000 0.0550 0.2703 0.2724 0.0292 0.0570 0.2577 0.2623 0.0306

Half-t4 (ξ = 0.25, ρ = −0.5)

100 0.0986 0.3492 0.3520 0.2877 0.0951 0.2922 0.3025 0.1318

200 0.0843 0.3391 0.3463 0.1907 0.0761 0.2887 0.3012 0.1105

500 0.0628 0.3382 0.3371 0.2858 0.0562 0.2862 0.2960 0.0874

750 0.0550 0.3279 0.3361 0.1037 0.0492 0.2849 0.2934 0.0794

1000 0.0500 0.3243 0.3300 0.0973 0.0436 0.2807 0.2906 0.0736

2000 0.0392 0.3133 0.3179 0.0799 0.0340 0.2755 0.2839 0.0618

5000 0.0268 0.2993 0.3030 0.0604 0.0244 0.2715 0.2786 0.0498
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Fig. 2 Histogram and Pareto QQ plot for the AutoClaims dataset
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Fig. 3 Estimates of the EVI for the AutoClaims dataset
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Fig. 4 Estimates of theOSF’s k̂•,∗
0 /n (left) and the bootstrap adaptive extreme value index estimates

ξ̂•,∗ (right), as functions of the sub-sample size n1, for the amount paid on a closed claim

In Fig. 4, as a function of the sub-sample size n1, ranging from n1 = 3990 until
n1 = 6700, we picture, at the left, the estimates k̂•,∗

0 (n1)/n of the optimal sample
fraction, k•

0/n, for the adaptive double bootstrap estimation of ξ through the H and
the PPWM estimators. Associated bootstrap EVI-estimates are pictured at the right.
Contrarily to the bootstrap Hill, the bootstrap PPWM EVI-estimates are quite stable
as a function of the sub-sample size n1 (see Fig. 4, right).

For a re-sample size n1 = [n0.955] = 4554, and B = 250 bootstrap generations,
we were led to k̂ H,∗

0 = 67 and to ξ̂ H,∗ = 0.3463. This same algorithm applied to the
PPWM estimator provide the bootstrap estimates k̂ P PWM,∗

0 = 88 and ξ̂ PPWM,∗ =
0.3301.



Computational study of the adaptive estimation of the Extreme Value Index 39

5 Conclusions

In this paper we addressed the adaptive estimation of the EVI with the double boot-
strap methodology associated to the Hill and the PPWM estimators. The presented
simulation study shows that the adaptive PPWMEVI-estimator is usually less biased
and provides a similar or a smaller RMSE than the adaptive Hill EVI-estimator.
Moreover, the efficiency of the adaptive PPWM estimator relatively to the adaptive
Hill estimator seems to improve as the asymptotic bias of estimators increases (as ρ

increases). Further research concerning the sensitivity of the method on the choice
of n1 will be addressed in the future.
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Estimation of the Weibull Tail Coefficient
Through the Power Mean-of-Order- p

Frederico Caeiro , M. Ivette Gomes , and Lígia Henriques-Rodrigues

Abstract TheWeibull tail coefficient (WTC) is the parameter θ in a right-tail func-
tion of the type F := 1 − F , such that H := − ln F is a regularly varying function
at infinity with an index of regular variation equal to θ ∈ R

+. In a context of extreme
value theory for maxima, it is possible to prove that we have an extreme value index
(EVI) ξ = 0, but usually a very slow rate of convergence. Most of the recent WTC-
estimators are proportional to the class of Hill EVI-estimators, the average of the
log-excesses associated with the k upper order statistics, 1 ≤ k < n. The interest-
ing performance of EVI-estimators based on generalized means leads us to base
the WTC-estimation on the powermean-of-order-p (MOp) EVI-estimators. Consis-
tency of the WTC-estimators is discussed and their performance, for finite samples,
is illustrated through a small-scale Monte Carlo simulation study.
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1 A Brief Introduction

Extreme value theory (EVT) and statistics of extremes help us to control poten-
tially disastrous events, of high relevance to society and with a high social impact.
Domains of application of EVT are quite diverse. We mention biostatistics, finance,
insurance, structural engineering and also environment, hydrology,meteorology and
seismology. Earthquakes, fires, floods and other extreme events have provided impe-
tus for several recent re-developments of extreme value analysis (EVA), of statistics
of univariate extremes (SUE) and also multivariate and spatial extremes.

By the late seventies, it was common to work in the field of parametric statis-
tics of extremes, essentially through the use of the limiting models for extremes.
The developments of the asymptotic EVT led researchers to work under semi-
parametric and non-parametric frameworks. Nowadays, with the increase in compu-
tational resources, the parametric modelling gained a new dynamism with the use of
Bayesian and spatial techniques.

Apart from the estimation of the extreme value index (EVI), one of the primary
parameters in EVA, the reliable estimation of other important parameters of rare
events, like the Weibull tail coefficient (WTC), the shape parameter in a Weibull-
type right-tail, will be among the topics to be addressed. Among a large variety
of Weibull-type right-tails, we mention the Exponential, the Gamma, the Logistic
and the Normal tails. They thus form an important and large subgroup of light and
exponential right-tailed distributions of a Gumbel type, being of high interest in
hydrology, meteorology, environmental and actuarial science, among other areas of
application. As mentioned above, we shall emphasize the use of generalized means
(GMs) in the WTC-estimation.

2 A Brief Motivation for the Need of EVT

To motivate the interest for this area, and despite the great variety of disasters that
have happened recently, we merely mention the historical floods in the North Sea,
on February 1, 1953. According to Encyclopaedia Britannica [1], this was the worst
storm recorded in the North Sea with extensive floodings in several North sea coun-
tries that caused 2551 deaths and vast destruction.

As a way of preventing future floods, the Dutch government created the Delta
project, to determine the height of the dikes and dams so that the probability of
flooding in a future year would be extremely small [1]. And EVT was used as a tool
to reliably answer this question.

When dealing with extreme or rare events, we are interested in working with
maximum or minimum values and we want to characterize the tails’ behaviour. For
this, we need to use asymptotic methods, being necessary to make a compromise
since there are generally not many observations in the tails of the distributions and
extrapolation upwards or downwards of the observed sample is required.
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EVT is aStatistics’ branch that provides the probabilistic tools to fully characterize
and understand extreme and rare events. Even when dealing with ‘big data’, the tails
are scarce, and just as mentioned above it is often required an estimation beyond the
sample extremes. The answer to the question, ‘Is there a hidden pattern underlying
this type of extreme events?’, is positive, being next partially and briefly provided.

3 A Brief Touch on Asymptotical EVT

Some of the key tools that have led to the way statistical EVT has been exploding
in these last decades are the following ones: 1 – The key result obtained by Fréchet
[2], on the functional equation of stability for maxima, which led him to the now
rightly called Fréchet law; 2 – Such a functional equation was later solved, still with
some restrictions, by Fisher and Tippett [3], who derived the possible non-degenerate
limiting laws of the linearly normalized sample maxima,

Xn:n − bn
an

, an > 0, bn ∈ R, Xn:n := max(X1, . . . , Xn), (1)

associated with an independent and identically distributed (IID) random sample,
Xn := (X1, . . . , Xn) from a cumulative distribution function (CDF) F .
They then arrived at the extreme value (EV) CDFs,

Type I : Λ(x) = e−e−x
, x ∈ R [Gumbel], (2)

Type II : Φα(x) = e−x−α

, x > 0, α > 0 [Fréchet], (3)

Type III : Ψα(x) = e−(−x)α , x < 0, α > 0 [Max − Weibull]; (4)

3 – Such a result was initially formalized by Gnedenko [4], used by Gumbel [5],
for applications of EVT in engineering and hydrology, and finally formalized by de
Haan [6].

SUE is thus mainly based on the aforementioned EV models, also called max-
stable laws, related to the non-degenerate limiting behaviour of the sequence of
linearly normalized maximum values, as in (1). SUE deals thus essentially with the
above-mentioned EV CDFs, in (2), (3) and (4), which can be encompassed in the
general extreme value (GEV) CDF,

Gξ (x) ≡ GEVξ (x) =
{
e−(1+ξ x)−1/ξ

, 1 + ξ x ≥ 0, if ξ �= 0,
e−e−x

, x ∈ R, if ξ = 0,
(5)

with ξ the so-called EVI, the primary parameter in SUE. But SUE is also based on
asymptotic results related to the non-degenerate limiting behaviour of a set of upper
order statistics (OSs), either individually or jointly (Weissman [7, 8]; Pickands [9];
Gomes [10–12]; Smith [13]), or of excesses over high thresholds (Davison [14];
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Smith [15]; Davison and Smith [16]), linked to generalized Pareto CDFs (GPξ (·) =
1 + ln GEVξ (·)). And the fact that min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn)

enables the derivation of analogous results for minima and lower OSs.
The aforementioned main theoretical result on the non-degenerate limiting

behaviour of the linearly normalized maximum in (1) is commonly known as the
Fisher–Tippett–Gnedenko’s theorem, also called extremal types theorem (ETT), and
has a role similar to the central limit theorem (CLT) for averages (or sums). The CDF
F is then said to belong to the max-domain of attraction (MDA) of GEVξ , and we
write F ∈ DM

(
GEVξ

)
. The EVI measures the heaviness of the right-tail function

(RTF), F(x) := 1 − F(x). The heavier the right-tail, the larger ξ is.
Statistical applications of EVT have given emphasis to the relaxation of the inde-

pendence condition and homoscedasticity, to the consideration of multidimensional
and spatial frameworks and from a theoretical point of view, to a deeper and deeper
use of regular variation and point processes.

4 Semi-parametric Estimation in SUE

The crucial parameter in SUE is the already defined EVI, denoted by ξ (∈ R). For
dependent samples, we also have the extremal index, related to the mean size of
clusters of extreme events. Under a semi-parametric framework, there is no fitting
of an adequate parametric model. It is only assumed that F ∈ DM(GEVξ ), with
GEVξ (·) given in (5), ξ being the unique primary parameter of extreme events to
be initially estimated, on the basis of a few upper observations, and according to an
adequate methodology.

It is then common to consider the k upper observations above the random threshold
Xn−k:n , i.e. Xn:n ≥ · · · ≥ Xn−k+1:n . Such a threshold needs to be an upper interme-
diate OS, i.e.

k = kn → ∞, k ∈ [1, n), k = o(n) as n → ∞. (6)

Let F← denote the generalized inverse function associated with the underlying
CDF, F . Let U be the associated reciprocal tail quantile function:

U (t) := F←(1 − 1/t), t ∈ [1,∞]. (7)

The model F is commonly said to have a heavy right-tail if and only if there exists
a positive real ξ such that

F = 1 − F ∈ RV−1/ξ if and only if U ∈ RVξ , (8)
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withU (·) defined in (7) and where the notation RVβ stands for the class of regularly
varying functions at infinity with an index of regular variation equal to β, i.e. positive
measurable functions g(·) such that lim

t→∞ g(t x)/g(t) = xβ, for all x > 0.

Since risks aremore dangerous whenwe deal with a heavy RTF, we often consider
heavy-tailed models, i.e. Pareto-type underlying CDFs, with a positive EVI, working
thus in

DM+ := DM
(
GEVξ>0

)
, (9)

or equivalently, models F such that (8) holds.

4.1 A Class of GM EVI-Estimators

Among the large variety of EVI-estimators, we mention the Hill (H) estimators
[17]. The H EVI-estimators are the average of the log-excesses, Vik := ln Xn−i+1:n −
ln Xn−k:n, 1 ≤ i ≤ k < n, i.e.

Hk,n ≡ H(k) ≡ H(k; Xn) := 1

k

k∑
i=1

Vik, 1 ≤ k < n. (10)

We further mention one of the competitive generalizations of H(k), recently intro-
duced in the literature, and based on a simple GM.

First, note that we can write

H(k) =
k∑

i=1

ln

(
Xn−i+1:n
Xn−k:n

)1/k

= ln

(
k∏

i=1

Xn−i+1:n
Xn−k:n

)1/k

.

The H EVI-estimator in (10) is thus the logarithm of the geometric mean (or power
mean-of-order-0) of

Uik := Xn−i+1:n
Xn−k:n

, 1 ≤ i ≤ k < n. (11)

Almost simultaneously, Brilhante et al. [18], Paulauskas and Vaičiulis [19] and
Beran et al. [20] (see also [21]) considered as basic statistics, the power mean-of-
order-p (MOp) of Uik , 1 ≤ i ≤ k, in (11), for p ≥ 0. More generally, Caeiro et al.
[22] considered the same statistics for any p ∈ R, i.e.

Mp(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
k

k∑
i=1

U p
ik

)1/p

, if p �= 0,
(

k∏
i=1

Uik

)1/k

, if p = 0,
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and the associated class of MOp EVI-estimators:

Hk,n,p ≡ Hp(k) = Hp(k; Xn) :=

⎧⎪⎨
⎪⎩

(
1 − M−p

p (k)
)
/p, if p < 1/ξ, p �= 0,

lnM0(k) = H(k), if p = 0.

(12)

The use of the extra tuning parameter p ∈ R and the MOp methodology can thus
provide a much more adequate EVI-estimation. Asymptotic normality is achieved
for p ≤ 1/(2ξ). But, on the basis of Gomes et al. [23] (see also [24]), we can now go
up to p = 1/ξ , getting then a sum-stable behaviour, with an index of sum-stability
α = 1/(pξ). And for p = 1/ξ , we get, for Hp(k) − ξ , a deterministic dominant
component, of the order of 1/ ln k.

4.2 Semi-parametric Estimation of the WTC

The WTC is the parameter θ in an RTF of the type

F(x) = 1 − F(x) =: e−H(x), H ∈ RV1/θ , θ ∈ R
+. (13)

Equivalently to (13), we can say that

U (et ) = H←(t) ∈ RVθ ⇐⇒ U (t) =: (ln t)θ L(ln t), (14)

with L ∈ RV0, a slowly varying function.
In a context of EVT for maxima, it is possible to prove that we have an EVI

ξ = 0, but usually a very slow rate of convergence. We are working with those
tails, like the Normal RTF, in the MDA of Gumbel’s law Λ(·), in (2), which can
exhibit a penultimate (or pre-asymptotic) behaviour, a concept introduced in the
aforementioned seminal paper by Fisher and Tippett, [3]. Such RTFs, despite double-
exponential, look more similar either to

– Max-Weibull, Ψα(x) = exp(−(−x)α), x < 0 (ξ = −1/α < 0)
– or to Fréchet, Φα(x) = exp(−x−α), x > 0 (ξ = 1/α > 0)

right-tails, according to θ < 1 or θ > 1, respectively. Details on penultimate
behaviour can be found in Gomes [10, 25] and Gomes and de Haan [26], among
others.

Here, wemerely mention the most relevantWTC-estimators in Gardes and Girard
[27], which are given by

θ̂H
k,n := ln(n/k)

k

k∑
i=1

Vik = ln(n/k)Hk,n, (15)



Estimation of the WTC through the Power Mean-of-Order-p 47

with Hk,n the already defined H EVI-estimators, in (10). More generally than θ̂H
k,n ,

we now suggest the consideration of MOp WTC-estimators, based on the aforemen-
tioned GM EVI-estimators, in (12), i.e.

θ̂
MOp

k,n := ln(n/k)Hk,n,p. (16)

And recently, Lehmer’s mean-of-order-p EVI-estimators (Penalva et al. [28–30])
have revealed even a higher efficiency, but have not yet been considered for the
WTC-estimation.

4.3 Consistency of the WTC-Estimators

To achieve the consistency of the new class of WTC-estimators, we just need to
consider p �= 0, in (16), since the case p = 0 that corresponds to the class θ̂H

k,n , in
(15), was already studied in Gardes and Girard [27]. We start by observing that, for
any p �= 0, and with U (·) defined in (7),

(
U (t x)

U (t)

)p

=
(
1 + ln x

ln t

)pθ (
L(ln t + ln x)

L(ln t)

)p

.

Since L(·), defined in (14), is in RV0, and applying a first-order Taylor expansion to
the first term, we can write

(
U (t x)

U (t)

)p

∼ 1 + p θ
ln x

ln t
.

Let Y1:n,Y2:n, . . . ,Yn:n denote the OSs associated with a random sample of n inde-
pendent standard Pareto random variables with CDF FY (y) = 1 − 1/y, y ≥ 1. Then

Xi :n
d= U (Yi :n), 1 ≤ i ≤ n andYn−i+1:n/Yn−k:n

d= Yk−i+1:k . In this case, the following
distributional representation holds, with Uik defined in (11),

U p
ik

d=
(
U (Yn−i+1:n)
U (Yn−k:n)

)p

d=
(
U (Yn−k:nYk−i+1:k)

U (Yn−k:n)

)p

∼ 1 + p θ ln Yk−i+1:k
ln(n/k)

.

Since Ei = ln Yi are IID exponentially random variables with mean value 1 and
En−k:n ∼ ln(n/k) → ∞, for intermediate sequences of OSs satisfying (6), we then
get

1

k

k∑
i=1

U p
ik

d= 1 + p θ

ln(n/k)
(1 + o

P
(1)), p �= 0,
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with o
P
(1) uniform in i , 1 ≤ i ≤ k (see [22]). From (12) and (16), the consistency of

the MOp WTC-estimators in (16) follows, in the whole DM+, in (9), provided that
(6) holds.

5 Finite Sample Behaviour with Simulated Data

In this section, we evaluate the finite sample performance of the class of estimators
θ̂
MOp

k,n , in (16), through a Monte Carlo simulation study. The values for the tuning
parameter p were selected from a preliminary simulation study. The value p = 0
was always used, since it provides the estimator in (15). The value p = 1 was also
used as an example of a positive tuning parameter. We have considered the following
typical distributionswithin the class ofWeibull-typemodels: theGamma distribution
with a shape parameter equal to 0.75 (θ = 1) and the Half-Normal model (θ = 0.5).
In Figs. 1 and 2, we present, at the left, the simulated mean value and, at the right,
the corresponding simulated root mean squared error (RMSE), as a function of k,
provided by the aforementioned class ofWTC-estimators and 20,000 samples of size
n = 1000. The horizontal solid line, at the left plot, indicates the true WTC value.
Similar patterns were obtained for other simulated models and sample sizes.

In Table1, we present the simulated values of the RMSE at the simulated optimal
level, for samples of sizes 100, 200, 500, 1000, 2000 and 5000. For each model and
sample size, the smallest RMSE is written in bold. The smallest RMSE is always
achieved by θ̂

MOp

k,n := ln(n/k)Hk,n,p, in (16), with p < 0. Moreover, the optimal p
decreases, as the sample size n increases. For large sample sizes, the choices −3 and
−1.5 seem to provide an overall good performance for the Gamma and Half-Normal
models, respectively.
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Fig. 1 Simulated Mean values (left) and RMSEs (right) of the WTC-estimators under study from
samples of size n = 1000 from a Gamma(0.75, 1) parent (θ = 1)
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Fig. 2 Simulated Mean values (left) and RMSEs (right) of the WTC-estimators under study from
samples of size n = 1000 from a Half-Normal parent (θ = 0.5)

Table 1 Simulated RMSE at the simulated optimal level

Sample
size:

100 200 500 1000 2000 5000

Gamma(0.75, 1)

p = −3 0.2808 0.1868 0.1206 0.0942 0.0781 0.0653

p = −2 0.2311 0.1768 0.1369 0.1173 0.1023 0.0867

p = −1 0.2302 0.1948 0.1619 0.1413 0.1248 0.1068

p = 0 0.2547 0.2242 0.1880 0.1651 0.1478 0.1273

p = 1 0.2910 0.2573 0.2180 0.1936 0.1738 0.1494

Half-Normal

p = −2 0.1191 0.0814 0.0512 0.0377 0.0280 0.0195

p = −1.5 0.0985 0.0678 0.0419 0.0300 0.0215 0.0137

p = −1 0.0878 0.0637 0.0430 0.0320 0.0237 0.0157

p = 0 0.0873 0.0694 0.0507 0.0398 0.0311 0.0220

p = 1 0.0961 0.0792 0.0605 0.0489 0.0396 0.0295

A few general comments:

– For all simulated parents, we could always find a value of p (negative, contrary
to what happens with the MOp EVI-estimation), such that, for adequate k-values,
there is a reduction in RMSE, as well as in bias, and for such a value of p, the
MOp often strongly beats the H ≡ MO0 WTC-estimators.

– Algorithmic details on the choice of tuning parameters under play are still under
progress, but can be easily devised, similar to what has been done for an EVI-
estimation in Caeiro and Gomes [31] and Gomes et al. [32], where R-scripts are
provided.
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6 Overall Conclusions

– Risk analyses related to extreme events are challenging and require the combined
expertise of statisticians and domain experts in climatology, hydrology, finance,
insurance, medicine, sports and other fields.

– In our opinion, even SUE is still a quite lively topic of research, of high relevance
in risk modelling.

– Important developments have appeared recently in the area of spatial extremes,
whereparametricmodels, both asymptotic andpre-asymptotic, becameagain quite
relevant.

– And in a semi-parametric framework, topics like threshold selection and the PORT
methodology, with PORT standing for peaks over random thresholds, a terminol-
ogy coined in Araújo Santos et al. [33], are still quite challenging.

– The lack of efficiency of the MOp WTC-estimators for p > 0, and of the MOp

EVI-estimators for p < 0, together with the results in Stehlík et al. [34], related to
the robustness of the MO−1 EVI-estimators, deserves a further discussion of the
topic ‘robustness versus efficiency’.

– Related statistical research with critical risk assessment applications can be found
in several books, like Embrechts et al. [35], Beirlant et al. [36], Gomes et al. [37]
andDey andYan [38], among others. For recent overviews on SUE and its possible
application in risk modelling, see Davison and Huser [39] and Gomes and Guillou
[40].

– Wehave here considered the univariate case only, but EVT is of high relevance both
in the multivariate and in the spatial setup, whenever dealing with the modelling
of extreme events or equivalently the modelling of risk.

– A comparative study with other WTC-estimators, like the ones in Diebolt et al.
[41], Gardes and Girard [42, 43], Goegebeur et al. [44], Gong and Ling [45] and
Kpanzou et al. [46], among others, is expected to be developed in the near future.

– In a way similar to what has been done in Worms and Worms [47], the new
estimator can be developed for censored data.

– Also corresponding estimators of extreme quantiles can be developed either for
complete or censored (mild/heavy) settings.
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On the Maximum of a Bivariate
Max-INAR(1) Process

Sandra Dias and Maria da Graça Temido

Abstract In this paper, we introduce a Z2+-valued strictly stationary bivariate max-
INAR(1) model, which is an extension of the univariate max-INAR(1) model, intro-
duced and studied in [1]. We consider that the marginals have a double geometric
distribution in the sense of Marshall and Olkin [2]. As a consequence, we deduce
that the innovations have a tail equivalent to a bivariate geometric distribution. By
proving that the restriction dependence conditions introduced in [3] hold, we estab-
lish asymptotic lower and upper bounds for the distribution function of the double
maxima.

Keywords Bivariate geometric distribution · Extreme value theory ·
Max-stability · Max-INAR(1) process

1 Introduction

The study of time series for count data has attracted the interest of many authors
in the last three decades. Understanding the discreteness of the data, that are com-
mon in practice, strongly impacts a wide variety of fields, particularly engineering,
marketing, finance and health science.

The literature on univariate time series for counts is largely developed, whereas
the research of multivariate time series models is progressing more slowly and is not
so detailed.

In the successful attempt to establish a parallel with the moving average or autore-
gressive classic models, the very well-known Binomial thinning operator is intro-
duced by Steutel and van Harn [4]. Assuming that X is a non-negative integer-valued
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random variable and α ∈ ]0, 1[, this operator, when applied to (α, X), gives

α ◦ X =
X∑

s=1

Bs(α) ,

where {Bs(α)} is a sequence of independent and identically distributed (i.i.d.) random
variables with Bernoulli distribution satisfying P(Bs(α) = 1) = α and independent
of X . This interesting counterpart of the usual multiplication allowed the flowering of
such models, which started with the so-called integer autoregressive model (INAR),
introduced byMacKenzie [5] andAl-Osh andAlzaid [6]. Interesting results of bivari-
ate count models can be found in Pedeli and Karlis [7], who discuss the bivariate
INAR(1) model with negative binomial innovations, and in [8] for the parameter
inference context.

Despite the wide variety of results that seems to cover a significant number of
practical situations, many discrete models used in the above-mentioned fields remain
to be studied with respect to their extreme values. In part, this is due to the fact that
many integer-valued distributions do not belong to the domain of attraction of any
extreme-value distribution. Anderson [9] gave an important contribution to overtak-
ing this limitation by obtaining upper and lower bounds for the limiting distribution
of the maximum of i.i.d. sequences with marginal discrete distributions exhibiting
an exponentially decaying tail. Indeed, Anderson [9] proved that an integer-valued
distribution function (d.f.) F , with infinite right endpoint, satisfies

lim
n→∞

1 − F(n − 1)

1 − F(n)
= r, r ∈ ]1,+∞[ , (1)

if and only if ⎧
⎨

⎩
lim sup
n→∞

Fn(x + bn) ≤ exp(−r−x )

lim inf
n→∞ Fn(x + bn) ≥ exp(−r−(x−1))

for any real x and bn suitably chosen. In the literature on extremes, the class of
distributions satisfying (1) is usually called Anderson’s class. A simple example of
a d.f. in this class is the Negative Binomial.

When the univariate approach is considered, one can find in the literature of
extremes the study of the extremal behaviour of integer-valued autoregressivemodels
as well as moving average models in a few number of papers. Among these, we cite
[1, 10–14]. In theseworks, dealingwith the stationary or non-stationary process, with
distributions in Anderson’s class and satisfying Leadbeter’s dependence restrictions
(or some natural extensions), the limiting extremal behaviour is obtained.

In what concerns the multivariate case, little has been done so far with respect to
extreme values of integer-valued data. Hüsler et al. [15] establishes asymptotics for
the distribution of the maximum term of stationary sequences {(Xn,Yn)}, where the
marginals are defined by non-negative integer-valued moving average sequences of
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the general form

(Xn,Yn) =
( +∞∑

i=−∞
αi ◦ Vn−i ,

+∞∑

i=−∞
βi ◦ Wn−i

)
,

with i.i.d. innovation sequence {(Vn,Wn)} and αi ,βi ∈ ]0, 1[. Assuming also that
α ◦ V and β ◦ W are independent given (V,W ), it is established that, for all (x, y) ∈
R

2, it holds

⎧
⎨

⎩

lim sup
n→∞

P(M (1)
n ≤ un, M (2)

n ≤ vn) ≤ exp{−r−x
1 − r−y

2 }
lim inf
n→∞ P(M (1)

n ≤ un, M (2)
n ≤ vn) ≥ exp{−r−x+1

1 − r−y+1
2 } ,

where r1 > 1 and r2 > 1 are parameters of the model.
Due to the aim of this paper, we pay special attention to [1], where the univariate

max-INAR(1) model is introduced and studied. Given an innovation sequence {Zn}
of i.i.d. random variables, the max-INAR(1) stationary process is defined in [1] by

Xn = max{α ◦ Xn−1, Zn},

with α ∈ ]0, 1[ and {Zn} independent of X1. Considering that the marginal d.f. F of
{Xn} belongs to Anderson’s class and proving that Leadbeter’s dependence restric-
tions D(un) and D′(un) hold, for a suitable sequence of normalizations {un} with
un := un(x), these authors have established the following bounds:

⎧
⎨

⎩
lim sup
n→∞

P(Mn ≤ un) ≤ exp{−r−x }
lim inf
n→∞ P(Mn ≤ un) ≥ exp{−r−(x−1)} (2)

for any real x . Another approach with F in the domain of attraction of the Fréchet
d.f. is also considered in [1].

In this work, we extend the univariate max-INAR model, proposed and studied
in [1], to a bivariate one, considering that the marginal stationary distribution is the
bivariate geometric distribution introduced in [2]. The details follow.

We introduce the bivariate max-INAR(1) process

(Xn, Yn) = (max{α ◦ Xn−1, Zn},max{β ◦ Yn−1,Wn}) , (3)

where α ∈ ]0, 1[ and {(Zn,Wn)} is a sequence of i.i.d. bivariate random variables
which are independent of (X1,Y1).
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We first prove that the process is strictly stationary. Also, for suitable normal-
izations {un} and {vn}, we prove that the process {(Xn,Yn)} satisfies the long-range
condition D(un, vn) and the local dependence condition D′(un, vn) introduced in
[3]. Consequently, for the normalized double maxima, the expected extension of (2)
is obtained.

2 Stationarity of the Process

The multivariate distribution of any vector of the process {(Xn,Yn)} can be obtained
from the following lemma.

Lemma 1 The probability function of (X1,Y1, X2,Y2, ..., Xn,Yn) is given by

P(X1 = x1,Y1 = y1, X2 = x2,Y2 = y2, ..., Xn = xn,Yn = yn)

= P(X1 = x1,Y1 = y1)
n∏

i=2

[
FZ ,W (xi , yi )Fα◦xi−1,β◦yi−1(xi , yi )

−FZ ,W (xi − 1, yi )Fα◦xi−1,β◦yi−1(xi − 1, yi )

−FZ ,W (xi , yi − 1)Fα◦xi−1,β◦yi−1(xi , yi − 1)

+FZ ,W (xi − 1, yi − 1)Fα◦xi−1,β◦yi−1(xi − 1, yi − 1)
]

,

where Fα◦u,β◦t (k, �) = P(α ◦ X ≤ k,β ◦ Y ≤ �|X = u,Y = t) and FZ ,W repre-
sents the d.f. of (Z ,W ).

Proof For any n ≥ 2, the conditional d.f. of the process is given by

P(Xn ≤ k1,Yn ≤ �|Xn−1 = u,Yn−1 = t) = P(Zn ≤ k1,Wn ≤ �) ×
×P(α ◦ Xn−1 ≤ k,β ◦ Yn−1 ≤ �|Xn−1 = u,Yn−1 = t)

= FZ ,W (k, �)Fα◦u,β◦t (k, �) .

Therefore, we can write the conditional probability function as follows:

P(Xn = k,Yn = �|Xn−1 = u,Yn−1 = t)

= P(Xn ≤ k,Yn ≤ �|Xn−1 = u,Yn−1 = t)

−P(Xn < k,Yn ≤ �|Xn−1 = u,Yn−1 = t)

−P(Xn ≤ k,Yn < �|Xn−1 = u,Yn−1 = t)

+P(Xn < k,Yn < �|Xn−1 = u,Yn−1 = t)

= P(Xn ≤ k,Yn ≤ �|Xn−1 = u,Yn−1 = t)

−P(Xn ≤ k − 1,Yn ≤ �|Xn−1 = u,Yn−1 = t)

−P(Xn ≤ k,Yn ≤ � − 1|Xn−1 = u,Yn−1 = t)

+P(Xn ≤ k − 1,Yn ≤ � − 1|Xn−1 = u,Yn−1 = t)
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= FZ ,W (k, �)Fα◦u,β◦t (k, �)
−FZ ,W (k − 1, �)Fα◦u,β◦t (k − 1, �)

−FZ ,W (k, � − 1)Fα◦u,β◦t (k, � − 1)

+FZ ,W (k − 1, � − 1)Fα◦u,β◦t (k − 1, � − 1) .

So, since the process (3) is a Markov chain,

P(X1 = x1,Y1 = y1, X2 = x2,Y2 = y2, ..., Xn = xn,Yn = yn)

= P(X1 = x1,Y1 = y1)P(X2 = x2,Y2 = y2|X1 = x1,Y1 = y1) ×
×P(X3 = x3,Y3 = y3|X1 = x1,Y1 = y1, X2 = x2,Y2 = y2) × ... ×
×P(Xn = xn,Yn = yn|X1 = x1,Y1 = y1, ..., Xn−1 = xn−1,Yn−1 = yn−1)

= P(X1 = x1,Y1 = y1)
n∏

i=2

P(Xi = xi ,Yi = yi |Xi−1 = xi−1,Yi−1 = yi−1)

and the result follows. �

Now, applying the result of Lemma 1 to any finite sequence of random vari-
ables (X1+k,Y1+k, X2+k,Y2+k, ..., Xn+k,Yn+k), k ≥ 1, we conclude that the process
is strictly stationary if it is i.d..

We emphasize the difficulty of characterizing analytically the class of stationary
distributions FX,Y satisfying

FZ ,W (x, y) = FX,Y (x, y)

Fα◦X,β◦Y (x, y)
. (4)

Indeed, we are not able to discuss the limit behaviour of 1−Fα◦X,β◦Y (x,y)
1−FX,Y (x,y) from the

general relationship (4). So, we choose the particular case of the bivariate geometric
distribution defined in [2] by

1 − FX,Y (x, y) = p[x]+1
1 + p[y]+1

2 − p[x]+1
1 p[y]+1

2

(
p3

p1 p2

)min([x],[y])+1
(5)

for all (x, y) ∈ (R+
0 )2 and with p3 < min{p1, p2} and p3 > p1 + p2 − 1.

Theorem 1 Consider the d.f in (5) and the normalizations un = x − 1 − ln n
ln p1

and

vn = y − 1 − ln n
ln p2

. Then we have

⎧
⎨

⎩

lim sup
n→∞

Fn
X,Y (un, vn) ≤ exp{−px1 − py

2 }
lim inf
n→∞ Fn

X,Y (un, vn) ≥ exp{−px−1
1 − py−1

2 }

for all (x, y) ∈ R
2.
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Proof Indeed, since min([x], [y]) ≤ [x], we get

n
(
1 − FX,Y

(
x − 1 − ln n

ln p1
, y − 1 − ln n

ln p2

))
= np

[x−1− ln n
ln p1

]+1

1

+ np
[y−1− ln n

ln p2
]+1

2 − np
[x−1− ln n

ln p1
]+1

1 p
[y−1− ln n

ln p2
]+1

2

(
p3

p1 p2

)[x−1− ln n
ln p1

]+1

:= �(1)
n + �(2)

n − �(3)
n .

We now prove that �(3)
n −→ 0, as n → +∞. In fact, due to p

− ln n
ln pi

i = 1
n , it holds

�(3)
n ≤ np

[x− ln n
ln p1

]
1 p

[y− ln n
ln p2

]
2

(
p3

p1 p2

)[x− ln n
ln p1

]

≤ np
x−1− ln n

ln p1
1 p

y−1− ln n
ln p2

2

(
max{1, p3

p1 p2
}
)x− ln n

ln p1

= nO
(
1/n1+γ

) −→ 0, n → +∞ , (6)

where

γ =
{

1 if p3 ≤ p1 p2
ln(p3/p2)

ln p1
> 0 if p3 > p1 p2

.

We also have �(1)
n ≤ np

x−2− ln n
ln p1

+1

1 = px−1
1 and �(1)

n ≥ np
x−1− ln n

ln p1
+1

1 = px1 . The
same for �(2)

n . �

In the rest of this section, we characterize the distribution of the innovations
{(Zn,Wn)}.

The joint d.f of (X,Y ) has the following relation with the joint d.f of (Z ,W ) and
(α ◦ X,β ◦ Y ):

1 − FX,Y (x, y) = 1 − Fα◦X,β◦Y (x, y)FZ ,W (x, y)

= 1 − FZ ,W (x, y) + FZ ,W (x, y)(1 − Fα◦X,β◦Y (x, y)) . (7)

Considering that α ◦ X and β ◦ Y are independent given X and Y , in [15] the
asymptotic behaviour of the tail 1 − Fα◦X,β◦Y is established. To do so, that authors
started by proving that the probability generating function

PX,Y (s1, s2) :=
∞∑

k=0

∞∑

�=0

P(X = k,Y = �)sk1s
�
2

satisfies
Pα◦X,β◦Y (s1, s2) = PX,Y (αs1 + 1 − α,βs2 + 1 − β)

where the series converges. In addition, the same authors proved also that the tail
probability generating function
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QX,Y (s1, s2) =
∞∑

k=0

∞∑

�=0

(
1 − F(X,Y )(k, �)

)
sk1s

�
2

satisfies
(1 − s1)(1 − s2)QX,Y (s1, s2) = 1 − PX,Y (s1, s2)

as well as

Qα◦X,β◦Y (s1, s2) = αβQX,Y (αs1 + 1 − α,βs2 + 1 − β)

under the convergence of the series. As a corollary, we can find also in [15] that

1 − Fα◦X,β◦Y (x, y)

=
+∞∑

k=x

+∞∑

�=y

(
k

x

)(
�

y

)
(1 − α)k−x (1 − β)�−yαx+1β y+1(1 − FX,Y (k, �)) (8)

for any non-negative integers x and y. Now, consider that (X,Y ) has a bivariate
geometric distribution given above. Taking into account (8) and

+∞∑

k=0

(
k + x

k

)
zk = 1

(1 − z)x+1
, |z| < 1 ,

it results in

1 − Fα◦X,β◦Y (x, y) =

=
+∞∑

k=[x]

+∞∑

�=[y]

(
k

[x]

)(
�

[y]
)

(1 − α)k−[x](1 − β)�−[y]α[x]+1β[y]+1(pk+1
1 + p�+1

2 )

−
+∞∑

k=[x]

+∞∑

�=[y]

(
k

[x]

)(
�

[y]
)

(1 − α)k−[x](1 − β)�−[y]α[x]+1β[y]+1 ×

×pk+1
1 p�+1

2

(
p3

p1 p2

)min(k,�)+1
(9)

=
(

p1α
1−(1−α)p1

)[x]+1 +
(

p2β
1−(1−β)p2

)[y]+1− P(α ◦ X > x,β ◦ Y > y)

for any (x, y) ∈ R
2+.

Given the difficulty to obtain an explicit expression for P(α ◦ X > x,β ◦ Y > y)
(second sum in (9)), we will obtain an appropriated upper bound. Note that

(
p3

p1 p2

)min([x],[y]) ≤
{(

p3
p1 p2

)x
if p3 > p1 p2

1 if p3 ≤ p1 p2
.
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Consequently, for any non-negative integers x and y, we deduce

P(α ◦ X > x,β ◦ Y > y) ≤ (αp3/p2)x+1(β p2)y+1×

×
+∞∑
k=0

+∞∑
�=0

(k+x
x

)(
�+y
y

)
(1 − α)k(1 − β)� pk1 p

�
2

(
p3

p1 p2

)k

=
(

αp3/p2
1−(1−α)p3/p2

)x+1 (
β p2

1−(1−β)p2

)y+1

when p3 > p1 p2, and

P(α ◦ X > x,β ◦ Y > y) ≤
(

αp1
1−(1−α)p1

)x+1 (
β p2

1−(1−β)p2

)y+1

when p3 ≤ p1 p2.

Write A = αp1
1 − (1 − α)p1

, B = β p2
1 − (1 − β)p2

and C = αp3/p2
1 − (1 − α)p3/p2

when p3 > p1 p2 and C = A when p3 ≤ p1 p2. With some straightforward calcu-
lus, we conclude that

P(α ◦ X > x,β ◦ Y > y)

A[x]+1 + B[y]+1
≤ 1
(
A
C

)[x]+1 + 1
C [x]+1

−→ 0, x, y → +∞

and

p[x]+1
1 p[y]+1

2

(
p3

p1 p2

)min([x],[y])+1

p[x]+1
1 + p[y]+1

2

−→ 0, x, y → +∞ .

As a consequence, it results in

1 − Fα◦X,β◦Y (x, y)

1 − FX,Y (x, y)
∼ A[x]+1 + B[y]+1

p[x]+1
1 + p[y]+1

2

≤ A[x]+1

p[x]+1
1

+ B[y]+1

p[y]+1
2

−→ 0, x, y → +∞ . (10)

Then, combining (7) and (10), we can establish that FZ ,W is asymptotically the d.f.
of a bivariate geometric distribution. Namely,

1 − FZ ,W (x, y) ∼ p[x]+1
1 + p[y]+1

2 − p[x]+1
1 p[y]+1

2

(
p3

p1 p2

)min([x],[y])+1
, x, y → +∞ ,

with p3 < min{p1, p2} and p3 > p1 + p2 − 1.
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3 Limiting Distribution of the Bivariate Maximum

Let M (1)
n = max{X1, ..., Xn} and M (2)

n = max{Y1, ..., Yn}. In order to obtain the lim-
iting distribution of the bivariate maxima (M (1)

n , M (2)
n ), under linear normalization,

we prove that the sequence {(Xn,Yn)} satisfies the condition D(un, vn) and some
local dependence condition, in this case D′(un, vn). The conditions D(un, vn) and
D′(un, vn) presented next were proposed in [3], and are extensions of Leadbetter’s
conditions D(un) and D′(un) in [16]. The long-range condition D(un, vn) states that
exceedances occurring in block of random vectors �n separated are asymptotically
independent.

Definition 1 The sequence of random vectors {(Xn,Yn)} satisfies condition D(un,
vn) if for any integers 1 ≤ i1 < ... < i p < j1 < ... < jq ≤ n, for which j1 − i p >

�n, we have

∣∣∣∣∣P
(

p⋂

s=1

{Xis ≤ un,Yis ≤ vn},
q⋂

m=1

{X jm ≤ un,Y jm ≤ vn}
)

−P

(
p⋂

s=1

{Xis ≤ un,Yis ≤ vn}
)
P

(
q⋂

m=1

{X jm ≤ un,Y jm ≤ vn}
)∣∣∣∣∣ ≤ αn,�n ,

where lim
n→∞ αn,�n = 0 for some sequence �n = on(n).

Condition D′(un, vn) prevents the existence of clusters of exceedances in blocks
of size at most [n/sn] in both margins of {(Xn,Yn)} as well as together in the two
components.

Definition 2 Let {sn} and {�n} be sequences of positive integers such that

lim
n→∞

1

sn
= lim

n→∞
sn�n
n

= lim
n→∞ snαn,�n = 0 .

The sequence of random vectors {(Xn,Yn)} satisfies condition D′(un, vn) if

lim
n→∞ n

[n/sn ]∑

j=2

[
P(X1 > un, X j > un) + P(X1 > un,Y j > vn)

+P(Y1 > vn, X j > un) + P(Y1 > vn,Y j > vn)
] = 0 .

Since the conditions D(un, vn) and D′(un, vn) hold for the strictly stationary
bivariate max-INAR(1) model, the limiting d.f. of the bivariate maximum of the
associated sequence can be directly inferred from the limiting d.f. of the bivariate
maximum of i.i.d. random vectors with the same marginals [3].

Theorem 2 Let {(Xn,Yn)} be the bivariate max-INAR(1) sequence defined by
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(Xn, Yn) = (max{α ◦ Xn−1, Zn},max{β ◦ Yn−1,Wn}) ,

where {(Xn,Yn)} has the bivariate geometric distribution given by (5) and the innova-
tions {(Zn,Wn)} are i.i.d. and independent of (X1,Y1). For all (x, y) ∈ R

2, consider
un = x − 1 − ln n

ln p1
and vn = y − 1 − ln n

ln p2
. Then {(Xn,Yn)} is a stationary sequence

that satisfies D(un, vn), D′(un, vn) and, therefore
⎧
⎨

⎩

lim sup
n→∞

P
(
M (1)

n ≤ un, M (2)
n ≤ vn

) ≤ exp
{−px1 − py

2

}

lim inf
n→∞ P

(
M (1)

n ≤ un, M (2)
n ≤ vn

) ≥ exp
{
−px−1

1 − py−1
2

} .

Proof To prove that the process {(Xn,Yn)} satisfies condition D(un, vn), with un
and vn as proposed in the theorem, consider the events

An =
p⋂

k=1

{
Xik ≤ un,Yik ≤ vn

}
and Bn =

q⋂

k=1

{
X jk ≤ un,Y jk ≤ vn

}
,

where j1 − i p > �n , with �n = o(n). Consider also

Cn =
j1⋂

m=i p+1

{Zm < α ◦ Xm−1} and Dn =
j1⋂

m=i p+1

{Wm < β ◦ Ym−1} .

Observe that for any events A, B and C , such that P(C) 
= 0, we have

|P(A ∩ B) − P(A)P(B)|
≤ |P((A ∩ B ∩ C) − P(A ∩ C)P(B ∩ C)| + 4P(C)

= P(C)
∣∣P(A ∩ B|C) − P(A|C)P(B|C)P(C)

∣∣+ 4P(C)

≤ ∣∣P(A ∩ B|C) − P(A|C)P(B|C)
∣∣+ 5P(C) .

Then we get

∣∣P(An ∩ Bn) − P(An)P(Bn)
∣∣

≤ ∣∣P(An ∩ Bn|Cn ∩ Dn) − P(An|Cn ∩ Dn)P(Bn|Cn ∩ Dn)
∣∣

+5P(Cn) + 5P(Dn) . (11)

Let us prove that

∣∣P(An ∩ Bn|Cn ∩ Dn) − P(An|Cn ∩ Dn)P(Bn|Cn ∩ Dn)
∣∣ −→ 0 , (12)

as n → +∞.
Notice that α ◦ max(X,Y ) 
= max(α ◦ X,α ◦ Y ).
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In what concerns the event Cn , we have Zm > α ◦ Xm−1 at least for some m ∈
{i p + 1, ..., j1}. Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xm = Zm

Xm+1 = max(α ◦ Xm, Zm+1)

= max(α ◦ Zm, Zm+1)

= f (1)
m (Zm, Zm+1)

Xm+2 = max(α ◦ Xm+1, Zm+2)

= f (2)
m (Zm, Zm+1, Zm+2)

· · ·
X j1 = max(α ◦ X j1−1, Z j1)

= f ( j1−m)
m (Zm, Zm+1, ..., Z j1)

where f (�)
m , � ∈ {1, 2, ..., j1 − m}, are measurable functions of the subset of inde-

pendent random variables {Zm, Zm+1, ..., Zm+�}.
In the same way, we can prove that Y j1 can be written as a measurable function

of the independent random variables {Wm ′ ,Wm ′+1, ...,Wj1}, for some m ′ ∈ {i p +
1, i p + 2, ..., j1}.

Consequently, under the occurrence of Cn ∩ Dn , {X j1 , ..., X jq ,Y j1 , ..., X jq } are
measurable functions of {Zm∗ , ..., Z j1 , ..., Z jq ,Wm∗ , ...,Wj1 ...,Wjq }, with m∗ =
max{m,m ′}, which implies that An and Bn are independent given Cn ∩ Dn . Then
(12) is proved.

In the following, we prove that P(Cn) −→ 0, as n → +∞. For δ ∈ ]0, 1[, con-
sider the event

En = {Zip+[�δ
n ] = . . . = Z j1−1 = Z j1 = 0}

where

P(En) = P(Z = 0) j1−i p−�δ
n+1 ≤ P(Z = 0)�n−�δ

n+1 −→ 0, n → +∞ .

Moreover, with α(k) ◦ Xip = α ◦ α ◦ . . . ◦ α◦︸ ︷︷ ︸
k thinning operators

Xip ,

P(Cn ∩ En) = P

⎛

⎝Cn ∩
⎛

⎝
j1−i p⋃

k=[�δ
n ]
{Zip+k > 0}

⎞

⎠

⎞

⎠

≤
j1−i p∑

k=[�δ
n ]
P(Xip+1 = α ◦ Xip , Xip+2 = α ◦ Xip+1, . . . ,

X j1 = α ◦ X j1−1, 0 < Zip+k < α ◦ Xip+k−1)

≤
j1−i p∑

k=[�δ
n ]
P(Xip+1 = α ◦ Xip , Xip+2 = α(2) ◦ Xip , . . . ,
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X j1 = α( j1−i p) ◦ Xip , 0 < Zip+k < α ◦ Xip+k−1)

≤
j1−i p∑

k=[�δ
n ]
P(0 < Zip+k < α(k) ◦ Xip )

=
j1−i p∑

k=[�δ
n ]

+∞∑

z=1

P(α(k) ◦ Xip > z)P(Z = z)

=
j1−i p∑

k=[�δ
n ]

+∞∑

z=1

P(αk ◦ Xip > z)P(Z = z) ,

because α(k) ◦ Xip =d αk ◦ Xip . Using Markov’s inequality and the fact that E(αk ◦
Xip ) = αk E(Xip ), we achieve the following result:

P(Cn ∩ En) ≤ E(Xip )

j1−i p∑

k=[�δ
n ]

αk
+∞∑

z=1

z−1P(Z = z)

≤ E(Xip )
α�δ

n−1

1 − α
C −→ 0, n → +∞ ,

where C bounds the convergent series
+∞∑
z=1

z−1P(Z = z). Then, taking into account

that
P(Cn) ≤ P(En) + P(Cn ∩ En) ,

it results in P(Cn) −→ 0, as n → +∞.
Similarly, we prove that P(Dn) −→ 0, as n → +∞, considering the set

Fn = {Wip+[�δ
n ] = . . . = Wj1−1 = Wj1 = 0} .

Since all terms in (11) converge to zero, we conclude that

|P(An ∩ Bn) − P(An)P(Bn)| −→ 0, n → +∞ .

Condition D(un, vn) is satisfied. To show that condition D′(un, vn) holds, for
the margins we have P(X1 > un, X j > un) = O

(
1/n2

)
and, similarly, P(Y1 >

vn,Y j > vn) = O
(
1/n2

)
, from the results in [1].

With respect to P(X1 > un,Y j > vn), we start by observing that due to (6) we
have

P(X1 > un,Y1 > vn) = O
(
1/n1+γ

)
,

where γ = 1 if p3 ≤ p1 p2 and γ = ln(p3/p2)
ln p1

> 0 if p3 > p1 p2. Also, for j ≥ 2, we
get
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P(X1 > un,Y j > vn) = P(X1 > un) − P(X1 > un,Y j ≤ vn)

= FX (un) − P(X1 > un,β ◦ Y j−1 ≤ vn,Wj−1 ≤ vn)

= FX (un) − FW (vn)P(X1 > un,β ◦ Y j−1 ≤ vn)

= FX (un) − FW (vn)[P(X1 > un) − P(X1 > un,β ◦ Y j−1 > vn)]
= FX (un) − FW (vn)FX (un)

+FW (vn)P(X1 > un,β ◦ Y j−1 > vn,Y j−1 > vn)

≤ FW (vn)FX (un) + FW (vn)P(X1 > un,Y j−1 > vn) ,

where F := 1 − F . So, since P(X1 > un,Y1 > vn) = O(1/n1+γ), we prove that

P(X1 > un,Y2 > vn) ≤ FW (vn)FX (un) + FW (vn)P(X1 > un,Y1 > vn)

= O
(
1/n2

)+ O
(
1/n1+γ

) = O
(
1/n1+γ

)
,

because γ ∈ ]0, 1]. Recursively, for j ≥ 3 it follows that P(Y1 > vn, X j > un) =
O
(
1/n1+γ

)
.

In the same way, we deduce that P(Y1 > vn, X j > un) = O
(
1/n1+γ

)
.

Then

n
[n/sn ]∑

j=2

[
P(X1 > un, X j > un) + P(X1 > un,Y j > vn)

+P(Y1 > vn, X j > un) + P(Y1 > vn,Y j > vn)
]

≤ 4n[n/sn]O(1/n1+γ) −→ 0, n → +∞ ,

with sn = [nψ] for ψ ∈ ]0, 1[ such that ψ + γ > 1.
Condition D′(un, vn) holds and the theorem is proved. �

The results of Theorems1 and 2 deserve the following relevant remarks.
In the rich field of models based on bivariate sequences of real-valued random

variables (with continuous d.f.), the dependence structure of the innovations margins
(and process margins) is usually reflected in the limit results on bivariate maxima.
However, in the bivariate integer context of ourmodel (and [15] aswell), even starting
with dependent margins, Xn and Yn , we arrive at the asymptotic independence of the
marginal maxima M (1)

n and M (2)
n , displayed in the upper and lower limiting bounds.

Although surprising, this is due to the fact that

nP(X > un,Y > vn) −→ 0, n → ∞ .

Indeed we established this limit in the proof of Theorem1 by proving that �(3) −→
0, n → ∞.

We also point out that instead of a well-defined limit of the double maxima, we
only obtain limiting bounds because the geometric d.f. does not belong to any max-
stable domain of attraction. That is, it is impossible to construct a normalization
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un(x) (linear or not) such that n(1 − FX (un(x)) −→ − logG(x), n → ∞, for a
non-degenerate d.f. G. As we can see, since the pioneering work of Anderson [9],
we always have

px1 ≤ n

(
1 − FX

(
x + log n

log p1

))
≤ px−1

1 ,

and the same for FY .
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The Performance of a Combined
Distance Between Time Series

Margarida G. M. S. Cardoso and Ana Alexandra Martins

Abstract This paper presents the comparison of a proposedmeasure of dissimilarity
between time series (COMB) with three baseline measures. COMB is a convex com-
bination of Euclidean distance, a Pearson-correlation-based distance, a Periodogram-
based measure and a distance between estimated autocorrelation structures. The
comparison resorts to 1-Nearest Neighbour classifier (1NN) since the effectiveness
of the dissimilarity measures is directly reflected on the performance of 1NN. Data
considered is available in the University of California Riverside (UCR) Time-Series
Archive which includes datasets from awide variety of application domains and have
been used in similar studies. The COMB measure shows promising results: a good
trade-off performance-computation time when compared to the alternative distances
considered.

Keywords Clustering · Distance measures · Time series

1 Introduction

The use of dissimilarity measures between time series is critical in several data
analysis tasks which range from simple querying to classification, clustering and
anomaly detection. The role of dissimilarity measures in these contexts has been
acknowledged by several works, e.g. [1–3].

Recently, in [4], we proposed a new dissimilarity measure, COMB, a convex
combination of four (normalized) distancemeasureswhich offer complementary per-
spectives on the differences between two time series: the Euclidean distance which
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captures differences in scale; a Pearson-correlation-based measure that takes into
account linear increasing and decreasing trends over time; a Periodogram-basedmea-
sure that expresses the dissimilarities between frequencies or cyclical components
of the series and a distance between estimated autocorrelation structures, comparing
the series in terms of their dependence on past observations.

COMB achieved quite good results when clustering electricity market prices time
series in European regions and also when clustering electricity loads time series
(Portuguese Transmission System Operator data)—[4, 5].

In this work, we conduct an experimental analysis to evaluate the comparative
performance of the proposed combined distance measure.

The remainder is structured as follows: first we present the Methodology used
to provide the comparison of COMB with alternative distance measures; then, the
Data Analysis and Results section brings some insights regarding the comparative
analysis and, finally, we end with Discussion and Future Research of the presented
work.

2 Methodology

2.1 UCR Repository

Weresort to theUniversity ofCaliforniaRiverside (UCR)Time-SeriesArchivewhere
we can find time series of diverse lengths and numbers of target classes, with cor-
responding test and train sets—[6]. The UCR time-series datasets are from a wide
variety of application domains and have been used to study the comparative per-
formance of time-series classifiers—e.g. [2]—and specifically used in comparative
studies of dissimilarity measures between time series, e.g. [7].

We limit the datasets considered to 57 taking into account computational cost.
This is a criterion that has been invoked in similar studies—e.g. [8]. In our study we
found that, for example, the script routine, when referring to the analysis of the “Ges-
turePebbleZ2” UCR dataset, took 18:45h to run (using a PC with processor Intel(R)
Core(TM) i7-10750H CPU@ 2.60 2.59GHz with a RAM of 32 GB). Nevertheless,
we tried to include dissimilar datasets, namely, in what regards the number of target
classes: 28 datasets have 2 target classeswhile 29 havemore than 2 target classes. The
selected datasets are presented in the Appendix. As in previous studies—e.g. [7]—
and although this can limit the analysis, z-standardization is adopted for fairness,
since many of the UCR series are presented in their z-standardized form.
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2.2 Using the 1NN Classifier

We follow a methodology suggested in previous studies that were conducted to
compare several dissimilarity measures and their variants—e.g. [7]: we use one
nearest neighbour (1NN) classifier on labelled data to evaluate the performance of
the distance measures. In fact, since the distance measure used is critical to 1NN
accuracy, this indicator directly reflects the effectiveness of the dissimilarity measure
used. According to [7] p. 1890, 1NN classifiers are suitable methods for distance
measure evaluation for several reasons:

1. resemble the problem solved in time-series similarity search;
2. are parameter-free and easy to implement;
3. are dependent on the choice of distance measure;
4. provide an easy-to-interpret (classification) accuracy measure which captures

if the query and the nearest neighbour belong to the same class.

2.3 Dissimilarity Measures

We compare COMB [4] with three alternative dissimilarity measures between time
series. Comparisons are provided with three baseline measures: Euclidean distance,
DTW (Dynamic Time-Warping with Sakoe-Chiba band [9] windowing considering
20% of the time-series length) and Complexity Invariance Distance (CID).

COMBDistance. Considering two time series xt and yt , (t = 1, . . . , T ), the COMB
distance is a convex combination of four distances: Euclidean (dEuclid), a Pearson-
correlation-based measure (dPearson), a Periodogram-based measure (dPeriod) and
an autocorrelation-based measure (dAutocorr ).

The Euclidean distance, dEucl , yields the sum of Euclidean distances correspond-
ing to each pair (xt , yt ) capturing the differences in scale:

dEucl =
(

T∑
t=1

(xt − yt )
2

) 1
2

. (1)

The Pearson-correlation-based measure takes into account linear increasing and
decreasing trends over time. The following measure was suggested by [10]:

dPearson =
√
1 − rxt ,yt

2
, (2)

where rxt ,yt represents the Pearson correlation.
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The Periodogram-based measure [11] considers the Euclidean distances between
the Periodograms expressing the contribution of the various frequencies or cyclical
components to the variability of the series,

dPeriod =
⎛
⎝[ T

2 ]∑
j=1

(
Px

(
w j

) − Py
(
w j

))2⎞⎠
1
2

, (3)

where Px
(
w j

)
is the Periodogram of time series xt at frequencies w j = 2π j/n,

j = 1, . . . , [n/2] in the range 0 to π, being [n/2] the largest integer less or equal to
n/2,

Px
(
w j

) =
(
1

n

) ∣∣∣∣∣
T∑
t=1

xte
−i tw j

∣∣∣∣∣
2

. (4)

The autocorrelation-based distance [12] calculates Euclidean distances between
autocorrelation structures, comparing the series in terms of their dependence on past
observations

dAutocorr =
(

L∑
l=1

(rl (xt ) − rl (yt ))
2

) 1
2

, (5)

where rl (xt ) and rl (yt ) represent the estimated autocorrelations of lag l of (xt ) and
(yt ), respectively.

In this study, we specifically use an uniform convex combination, all four weights
being equal.

Eucl—Euclidean Distance. The comparison with the performance of the
Euclidean distance is unavoidable in all studies of this type. Even because, despite
its simplicity, this distance can obtain surprisingly good results especially if the size
of the training set/database is relatively large, [13], p. 281.

DTW—Dynamic Time-Warping. DTW is an elastic measure that computes the
optimal alignment between two time series tominimize the sum of distances between
aligned elements.

Considering two time series xt and yt , (t = 1, . . . , T ), let M be the T × T matrix
where each element is a dissimilarity di, j (commonly the Euclidean distance is con-
sidered) between any pair of elements xi and y j (i, j = 1, . . . , T ).
Awarping path P = ((i1, j1) , (i2, j2)) is a series of indexes ofM defining amapping
from each element of one time series to one, or more than one, or even none, of the
elements of the other time series. A valid path should satisfy several conditions, for
example, ik+1 ≥ ik ensures the path does not go back in time. For other step patterns
constrains see, e.g. [14]. For each path P , through M , the total sum of the distances
along it is
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D (P) =
K∑

k=1

dik , jk . (6)

For example, the Euclidean distance is the total distance along the diagonal of M .
The goal of the DTWmeasure is to find a path P∗ that minimizes the total distances
D (P):

P∗ = min
P

D (P) . (7)

To improve the efficiency of the procedure, it is a common practice to limit the
time distortion (e.g. considering 20% of the time-series length). For example, the
Sakoe-Chiba band [9] limits the warping path to a band of size T0 directly above and
to the right of the diagonal of thematrixM , by enforcing the constraint |ik − jk | < T0.

CID—Complexity Invariance Distance. CID measure was proposed by [15]. The
time series’ complexity is measured by stretching them and measuring the length of
the resulting lines.

C I D (xt , yt ) = dEucl .CF (xt , yt ) , (8)

where

CF (xt , yt ) = max (CE (xt ) ,CE (yt ))

min (CE (xt ) ,CE (yt ))
(9)

is the Complexity Factor, and

CE (xt ) =
(

T−1∑
t=1

(xt − xt+1)
2

) 1
2

(10)

is the Complexity Estimate of time series xt .
We resort to the R package “TSclust” [12] where the four distances that compose

the COMB distance, the CID and the DTW (using the “dtw” package [14]) are
implemented.

2.4 Evaluating the Classification Results

The evaluation of performance of the 1NN classifiers regards the test sets of the UCR
time series considered. Balanced accuracy measure (average between sensitivity and
specificity) when dealing with unbalanced sets is suggested by [6].We propose using
the Huberty index (H I )—e.g. [16], as a measure of classification performance:
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H I =
K∑

k=1

pc − pdef

1 − pdef
, (11)

where pc and pdef are the proportion of observations correctly classified and the
proportion of observations in the modal class, respectively. This measure is clearly
useful for the evaluation of performance in unbalanced datasets. Furthermore, it
provides a fair and interpretable viewof the success of classification taskswhich could
be overestimatedwhenhigh accuracy results are obtained in strongly unbalanced sets,
e.g. a 90% accuracy result when a target class includes 95% of observations yields a
negative Huberty index (one should do better by simply allocating all observations to
the modal class). In addition, the computational time is also taken into account in the
evaluation of the 1NN results referring to the four dissimilarity measures considered.

After the evaluation of aggregated results, comparisons referring to specific
datasets are considered to get some dissimilarities’ performance-related insights.
On a “closer look to specific problems”, [2] resorts to the selection of some time
series from each target class, trying to capture the main differences between these
classes on specific datasets. We propose using the medoids of each class as defined
by each dissimilarity measure to obtain those insights. The medoid definition is
the observations that minimize the sum of all distances to elements in the same
class—[17].

3 Data Analysis and Results

3.1 General Comparisons

A brief exploratory data analysis leads to the conclusion that, in the datasets con-
sidered, DTW generally provides better classification results than the alternative
distances, followed by COMB—Table1. COMB comparative results are illustrated
in Fig. 1. However, for time series with two target classes (K=2) only, COMB pro-
vides slightly better results—see Table1. In what regards the computation timeDTW
clearly provides the worst results—see Table2.

According to the Friedman test’s results, there are no significant differences
between the distributions of HI regarding the four dissimilarity measures (see
Table3). However, significant differences can be found when analysing data with
more than two classes (K>2), which, after pairwise comparison of Dunn’s test, can
be referred to the significant difference between HI.Eucl and HI.DTW (see Table4).

The differences between computation times regarding the four dissimilarity mea-
sures are all significant according to Friedman’s test—see Table5.
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Table 1 All time-series results

Hubert index Computation time (seconds)

HI.Eucl HI.DTW HI.CID HI.COMB t.Eucl t.DTW t.CID t.COMB

Mean 0.581 0.631 0.599 0.603 0.01 7846.60 47.53 651.27

Std. Dev. 0.279 0.268 0.273 0.261 0.01 15500.13 66.81 959.48

Coef. Var. 0.480 0.425 0.456 0.433 1 1.98 1.41 1.47

Perc. 25th 0.385 0.460 0.448 0.448 0.00 313.80 5.23 49.64

Perc. 50th 0.633 0.679 0.609 0.636 0.00 1117.40 13.00 157.96

Perc. 75th 0.799 0.842 0.830 0.791 0.02 7241.48 88.95 1047.15

IQR 0.414 0.382 0.382 0.343 0.02 6927.68 83.72 997.51

Fig. 1 Plot of Huberty index results: COMB versus Euclidean, DTW and CID

Table 2 Huberty index results: time series with two target classes versus more than two target
classes

Two target classes More than two target classes

HI.Eucl HI.DTW HI.CID HI.COMB HI.Eucl HI.DTW HI.CID HI.COMB

Mean 0.516 0.547 0.544 0.562 0.642 0.712 0.651 0.643

Std. Dev. 0.346 0.298 0.321 0.314 0.179 0.212 0.210 0.194

Coef. Var. 0.669 0.544 0.591 0.559 0.278 0.297 0.323 0.302

Perc. 25th 0.211 0.394 0.337 0.323 0.511 0.528 0.533 0.496

Perc. 50th 0.546 0.579 0.551 0.612 0.662 0.722 0.622 0.636

Perc. 75th 0.827 0.799 0.842 0.809 0.778 0.925 0.803 0.790

IQR 0.616 0.405 0.505 0.486 0.267 0.397 0.270 0.294

Table 3 Friedman test’s results regarding Huberty index

Test statistic (p-value)

All sample 7.062 (0.07)

K = 2 4.375 (0.228)

k > 2 12.761 (0.005)
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Table 4 Dunn’s pairwise comparison tests regarding Huberty index for data with more than two
classes (“Adj. Sig” are p-values adjusted by Bonferroni correction)

Test statistic Sig. Adj. Sig.

HI.Eucl-HI.CID −0.328 0.334 1.000

HI.Eucl-HI.COMB −0.414 0.222 1.000

HI.Eucl-HI.DTW −1.121 0.001 0.006

HI.CID-HI.COMB −0.086 0.799 1.000

HI.CID-HI.DTW 0.793 0.019 0.116

HI.COMB-HI.DTW 0.707 0.037 0.222

Table 5 Friedman test’s results regarding computation time

Test statistic (p-value)

All sample 171.0 (0.000)

K = 2 84.0 (0.000)

K > 2 87.0 (0.000)

3.2 COMB “Wins” and “Looses” Examples

In an attempt to understand the data conditions that could (un)favour COMB, we
looked for some insights regarding a “COMB wins example” and a “COMB looses
example”: ToeSegmentation2 and Herring time series, respectively. ToeSegmenta-
tion2 was originated in the CMU Graphics Lab Motion Capture Data, referring to
right toe movements, with target classes “Walk Normally” and “Walk Abnormally”.
Herring data refers to calcium carbonate structures from two classes of Herring:
North sea or Thames. In Table6, we present the details of data referring to these two
datasets.

On the assumption that exploring the target classes in the test set could bring some
insights into the performance of 1NN classifier, we obtained the medoids of target
classes according to each of the four dissimilarity measures. The ToeSegmentation2
test set classes’ medoids are depicted in Fig. 2. The COMB measure reveals not
only scale differences between the medoids (as Euclidean distance does, with the
poorest results) but it is also apparent (for example) how the medoids’ tendencies
diverge from each other, which, conjugated with the additional differences captured
by COMB, results in its best performance, according to the HI.

Table 6 COMB “wins” and “looses” datasets
Name Train Test Class Length HI.Eucl HI.DTW HI.CID HI.COMB

ToeSegmentation2 36 130 2 343 −0.0416 0.1252 0.0001 0.2915

Herring 64 64 2 512 −0.192 −0.115 −0.115 −0.346
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Fig. 2 Medoids of ToeSegmentation2 test set classes, according to dissimilarity measures Eucl,
DTW, CID and COMB

TheHerring test set classes’medoids coincide for all dissimilaritymeasures except
DTW which presents slightly different medoids. Nevertheless, a negative HI was
obtained for all measures (revisit Table6).

In an attempt to explore the potential of COMBmeasure, in a worst-case scenario,
we performed a brief sensitivity analysis manipulating the COMB’s weights. After
some trials, when considering the COMB weights regarding dPeriod and dAutocorr

as nine times the weights regarding dEuclid and dPearson , we managed to cross the
“waterline”, obtaining a HI slightly positive which the alternative measures could
not. Note, however, that a customized parametrization of DTW could eventually
obtain better results also, but we believe that it would also bring a relevant increase
in computation time.

4 Discussion and Future Research

We conducted experiments on 57 time-series datasets from diverse application
domains to compare the proposed dissimilarity measure, COMB, with three baseline
alternativemeasures: Euclidean,DynamicTime-Warping andComplexity Invariance
Distance.We resorted to the 1-Nearest Neighbour classifier, using the four dissimilar-
ities, to compare their effectiveness. Huberty index was used as a classification met-
ric providing more informative analysis results than the simple Accuracy measure,
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adopted in previous studies to evaluate performance (ignoring prevalence). Exper-
imental results obtained indicate that there are no significant differences between
the classification performance (Huberty index measures) of the four dissimilarity
measures. Nevertheless, it appears COMB can produce better results regarding time
series with two target classes. Furthermore, there is also the potential to improve the
results obtained with COMB by changing the weights in the convex combination:
an example was provided for the Herring dataset where the COMB with uniform
weights provided the worst classification results, while COMB with tuned weights
was able to provide the best results. In what regards the computation time, Dynamic
Time-Warping, which appears to be the most direct COMB competitor regarding
classification performance, presented the (significantly) worst results. Considering
the classification performance-runtime results we conclude that the proposed com-
bined measure can be seen as competitive in several settings.

In future research, we aim to extend the present analysis to all (128) UCR datasets
which will require to explore hardware-aware implementations and/or algorithmic
solutions to turn the measures’ implementation the most efficient. We also think the
Complexity Invariance Distance, which revealed to be a competitive measure, should
definitely play a role in future similar studies (along with the unavoidable Euclidean
and Dynamic Time-Warping dissimilarities and other eventual baseline measures).
An investigation of the process to determine COMB weights should also be con-
sidered. Finally, the experimental design should include additional characteristics of
the time-series data, besides the number of target classes, namely, we think that the
inclusion of a measure of separation between classes should be considered.

Acknowledgements This work was supported by Fundação para a Ciência e a Tecnologia, grant
UIDB/00315/2020.

5 Appendix: The Datasets

The characteristics of the 57 datasets used in thiswork are presented in Tables7 and 8.
Several time series have missing values which were treated with linear interpolation.
In order to make all time series of the same dataset with equal length, low-amplitude
random noise was imputed to the end of time series with smallest length. For more
details, see web page https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
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Table 7 The datasets’ dimensions

Name Train Test No. Classes Length

ArrowHead 36 175 3 251

Beef 30 30 5 470

BeetleFly 20 20 2 512

BirdChicken 20 20 2 512

BME 30 150 3 128

Car 60 60 4 577

CBF 30 900 3 128

Chinatown 20 343 2 24

Coffee 28 28 2 286

DiatomSizeReduction 16 306 4 345

DodgerLoopDay 78 80 7 288

DodgerLoopGame 20 138 2 288

DodgerLoopWeekend 20 138 2 288

ECG200 100 100 2 96

ECGFiveDays 23 861 2 136

FaceFour 24 88 4 350

Fish 175 175 7 463

FreezerSmallTrain 28 2850 2 301

Fungi 18 186 18 201

GestureMidAirD1 208 130 26 360

GestureMidAirD2 208 130 26 360

GestureMidAirD3 208 130 26 360

GesturePebbleZ1 132 172 6 455

GesturePebbleZ2 146 158 6 455

GunPoint 50 150 2 150

GunPointAgeSpan 135 316 2 150

GunPointMaleVersusFemale 135 316 2 150

GunPointOldVersusYoung 136 315 2 150

Ham 109 105 2 431

Herring 64 64 2 512

HouseTwenty 40 119 2 2000

InsectEPGRegularTrain 62 249 3 601
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Table 8 The datasets’ dimensions (continuation)

Name Train Test No. Classes Length

InsectEPGSmallTrain 17 249 3 601

ItalyPowerDemand 67 1029 2 24

Lightning2 60 61 2 637

Lightning7 70 73 7 319

Meat 60 60 3 448

MoteStrain 20 1252 2 84

OliveOil 30 30 4 570

OSULeaf 200 242 6 427

PickupGestureWiimoteZ 50 50 10 361

Plane 105 105 7 144

PowerCons 180 180 2 144

Rock 20 50 4 2844

ShakeGestureWiimoteZ 50 50 10 385

ShapeletSim 20 180 2 500

SmoothSubspace 150 150 3 15

SonyAIBORobotSurface1 20 601 2 70

SonyAIBORobotSurface2 27 953 2 65

Symbols 25 995 6 398

ToeSegmentation1 40 228 2 277

ToeSegmentation2 36 130 2 343

Trace 100 100 4 275

TwoLeadECG 23 1139 2 82

UMD 36 144 3 150

Wine 57 54 2 234

WormsTwoClass 181 77 2 900
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Zero-Distorted Generalized Geometric
Distribution with Application to Time
Series of Counts

Esmeralda Gonçalves and Diogo Sousa

Abstract Weconsider a recently introduced discrete distribution [1] that generalizes
the geometric law and that, through an additional parameter, allows changing the
probability attributed to observation zero. After referring to some characteristics of
this distribution, we establish the asymptotic behaviour, according to different types
of convergence, of the estimators of the parameters obtained using threemethods, and
their performance is compared by means of numerical studies in medium- and large-
sized samples. The study proceeds with the introduction of a model for time series
of integer values in which the law conditional to the past belongs to this family of
laws. The first-order stationarity of this model is established. Modelling the number
of newHantavirus infection cases per week reported in a German state between 2005
and 2018 concludes this study.

Keywords Asymptotic behaviour of estimators · Generalized geometric
distribution · INGARCH time series · Zero-distorted law

1 Introduction

Wehavewitnessed a growing interest in the study of time series of integer values, also
called counting time series. As examples of such series, we can mention the number
of infections by a virus and deaths recorded daily, the number of daily transactions
on a stock market, the strikes in a social sector or the sales of a certain product in
a store per day, coming from areas as diverse as Medicine or Economics or even
Actuarial or Biology. It is therefore important to introduce probabilistic models to
describe the dynamics of these time series and their future evolution.
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The integer-valuedmodels presented in the literature have underlying distributions
which allow the count time series in the study to be zero, which means that zero is a
possible value of the model.

It may happen, however, that the expected number of zeros according to the
underlying distribution is not compatible with those actually occurring. We have in
this case an inflation or deflation situation of zero value and, in order to correct this
situation, we have to provide for the possibility to mix the underlying distribution
with a point probability. This is for example the case of integer-valued zero-inflated
models, studied in particular by Zhu [2], andGonçalves,Mendes Lopes and Silva [3],
involving Poisson, generalized Poisson, negative binomial and compound Poisson
distributions.

Motivated by this problem, we consider a generalized geometric distribution
recently proposed [1] which permits inflation or deflation of the zero count proba-
bility, analyse some of its statistical properties and use it to introduce a new model
for integer-valued time series.

In Sect. 2, we recall the definition of the zero-distorted generalized geometric dis-
tribution [1], denoted as ZDGGD, Sect. 3 includes the estimation of the parameters
of the ZDGGD by the proportions of zeros and ones, the moments method and by
maximum likelihood, stating the asymptotic behaviour of the corresponding estima-
tors. A simulation study illustrates the behaviour of these estimators in moderate and
large samples. In Sect. 4, we introduce the INARCH model with conditional ZDGG
distribution for time series, state its first-order stationarity and illustrate its interest in
the modelling of the number of new cases of Hantavirus infection per week recorded
in a German state between 2005 and 2018.

2 The Zero-Distorted Generalized Geometric Distribution

We begin this section with the definition of the zero-distorted generalized geometric
distribution, proposed by [1].

Definition 1 A discrete random variable X with support SX = N0 = {0, 1, ...} fol-
lows a zero-distorted generalized geometric distribution with parameters q ∈ ]0, 1 [
and α ∈ [−1,+∞[, briefly X ∼ ZDGGD (q,α) , if

P (X = k) =
{

1 − qα+1, k = 0
(1 − q) qk+α, k ∈ N.

(1)

If α = 0 then P (X = k) = (1 − q) qk, k ∈ N0, that is, X follows a Geometric
distribution with parameter q, denoted as X ∼ G (q) .

The effect of parameter α is enhanced in Table1, becoming clear that the new
distribution is able to take into account characteristics that are not covered by the
geometric one. For example, for some values of q andα the new distribution presents
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Table 1 The effect of parameter α

G (q) ZDGGD (q,α)

P (X = 0) > P (X = 1) ∀q ∃ (q,α)

P (X = 0) < P (X = 1) – ∃ (q,α)

Positive asymmetry ∀q ∃ (q,α)

Negative asymmetry – ∃ (q,α)

Dispersion index > 1 ∀q ∃ (q,α)

Dispersion index < 1 – ∃ (q,α)

negative asymmetry and the dispersion index, defined as the quotient V (X)/E(X),
is no longer only greater than 1.

Sastry et al. [1] propose this generalized geometric distribution which permits
inflation or deflation of the zero count probability and derive certain distributional
results such as its distribution function, generating functions,moments, relationswith
other distributions and also the explicit form of the estimators of parameters q and

α by three methods. In particular, all moments exist and we have E (X) = qα+1

1 − q
,

E
(
X2
) = qα+1(q+1)

(1−q)2
.

We naturally compare this new distribution with that of the random variable Y
such that

P (Y = k) = w∂o,k + (1 − w) (1 − q) qk, k ∈ N0,

known as Geometric distribution inflated in zero with parameters q ∈ ]0, 1[ and
w ∈ ]0, 1[, briefly Y ∼ Z IG (q, w) , where ∂o,k = 1 if k = 0 and ∂o,k = 0 if k �= 0.
We have

E (Y ) = (1 − w)
q

1 − q
, V (Y ) = (1 − w)

q (1 + wq)

(1 − q)2
.

We note that if X ∼ ZDGGD (q,α) and we take w = 1 − qα, then X ∼ Z IG
(q, w) . Nevertheless, the two families of laws do not coincide because if Y ∼
Z IG (q, w) its dispersion index is

V (Y )

E(Y )
= 1 + q

1 + w

1 − q
> 1,∀q, w ∈ ]0, 1[ .

3 Estimators of ZDGG Distribution Parameters

Sastry et al. [1] presents the estimators of parameters q and α of ZDGG distribution
using the proportions of zeros and ones as well as those based on the moments and
maximum likelihood methods. In this section, after remembering their expressions
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we state the corresponding asymptotic behaviour and present numerical studies on
its behaviour in moderate and large samples.

Consider the statistical model associated with a n-sample (X1, ..., Xn) of X ∼
ZDGGD (q,α)

(
Rn,Bn, ZDGGD (q,α)(n)

)
(q,α) ∈]0,1[× [−1,+∞ [

where ZDGGD (q,α)(n) is a discrete law with probability function

gq,α(x1, x2, .., xn) =
⎡
⎣ n∏
i=1

[
(1 − qα+1)

]Ixi=0
n∏

i=1

[
(1 − q)qxi+α]Ixi>0

⎤
⎦ IN0 (x1, . . . , xn),

with (x1, x2, .., xn) ∈ Rn.

The estimator of (q,α) of the ZDGG distribution obtained using the proportions
of zeros and ones is given by

(
Q̇n, Ȧn

) =
(

P1,n
1 − P0,n

,
2 log(1 − P0,n) − log(1 − P0,n − P1,n)

log(1 − P0,n − P1,n) − log(1 − P0,n)

)
(2)

where P0,n = 1
n

∑n
i=1 1Xi=0 and P1,n = 1

n

∑n
i=1 1Xi=1.

Considering the empiricalmoments of orders 1 and 2,M1 = 1
n

∑n
i=1 Xi andM2 =

1
n

∑n
i=1 X2

i , the estimator of (q,α) obtained by the method of moments is

(
Q̃n, Ãn

) =
(
M2 − M1

M2 + M1
,

log
(
2M2

1

)− log (M2 − M1)

log (M2 − M1) − log (M2 + M1)

)
. (3)

The maximum likelihood estimator of (q,α) is given by

(
Q̂n, Ân

)
=

⎛
⎜⎜⎜⎜⎝1 −

n −
n∑

i=1

IXi=0

n∑
i=1

Xi IXi>0

,

log

(
1 − 1

n

n∑
i=1

IXi=0

)

log

(
1 − n −∑n

i=1 IXi=0∑n
i=1 IXi>0Xi

) − 1

⎞
⎟⎟⎟⎟⎠ . (4)
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3.1 Asymptotic Behaviour of the Estimators of (q,α)

3.1.1 Proportions of Zeros and Ones Method

Theorem 1 The estimators Q̇n and Ȧn given in (2) verify Q̇n−→q, in probability,
Ȧn−→α in probability, and

√
n

([
Q̇n

Ȧn

]
−
[
q
α

])
−→ Z , in law, Z ∼ N

(
0, B (q,α) Σ (q,α) B (q,α)T

)

where B (q,α) = [bi, j ]1≤i, j≤2 , Σ (q,α) = [σi, j
]
1≤i, j≤2 are given by

b1,1 = − p1
(1−p0)

2 , b1,2 = − 1
1−p0

,

b2,1 = (1−p0−p1) log(1−p0−p1)+(1−p0) log(1−p0)

(p0−1)(p0+p1−1)[log(1−p0−p1)−log(1−p0)]2

b2,2 = log(1−p0)

(1−p0−p1)[log(1−p0−p1)−log(1−p0)]2

σ1,1 = p0 (1 − p0) , σ1,2 = σ2,1 = −p0 p1, σ2,2 = p1 (1 − p1) ,

with p0 = 1 − qα+1 and p1 = (1 − q) qα+1.

Proof Let us prove the convergence in probability as n → +∞. The random
variables

(
1Xn=0

)
n∈N are independent and identically distributed according to a

Bernoulli distribution with parameter p0, with E
(
1Xn=0

) = p0 and, analogously,(
1Xn=1

)
n∈N are independent and identically distributed with a Bernoulli distribution

with parameter p1, with E
(
1Xn=1

) = p1. So, by Kolmogorov theorem, P0,n−→p0
almost surely (a.s.), and P1,n−→p1 a.s., and we have P0,n−→p0 and P1,n−→p1,
in probability. Using the properties of convergence in probability, we deduce that
Q̇n = 1 − P1,n

1−P0,n
−→1 − (1−q)qα+1

1−1+qα+1 = q, in probability. Otherwise, 1 − P0,n−→qα+1

and 1 − P0,n − P1,n−→qα+2, in probability. Since log (x) is a continuous function
in ]0,+∞[ , then log

(
1 − P0,n

)−→ log
(
qα+1

)
and log

(
1 − P0,n − P1,n

)−→ log
qα+2, in probability. Again by the properties of convergence in probability, we con-
clude that Ȧn−→ 2(α+1) log q−(α+2) log q

(α+2) log q−(α+1) log q = α, in probability.

Since Yn = (1Xn=0, 1Xn=1
)
, n ∈ N , are independent and identically distributed

randomvariableswithmean E (Yn) = (p0, p1) andmatrices of variances-covariances
given by

Σ =
[

V
(
1Xn=0

)
Cov

(
1Xn=0, 1Xn=1

)
Cov

(
1Xn=0, 1Xn=1

)
V
(
1Xn=1

)
]

=
[
p0 (1 − p0) −p0 p1

−p0 p1 p1 (1 − p1)

]

then, by [4, p. 61],
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√
n

([
P0,n
P1,n

]
−
[
p0
p1

])
−→Z , in law, Z ∼ N (0,Σ) .

Considering now the functions

h1 (p0, p1) = 1 − p1
1 − p0

, h2 (p0, p1) = 2 log (1 − p0) − log (1 − p0 − p1)

log (1 − p0 − p1) − log (1 − p0)
,

we obtain

√
n

([
h1
(
P0,n, P1,n

)
h2
(
P0,n, P1,n

)
]

−
[
h1 (p0, p1)
h2 (p0, p1)

])
−→Z , in law, Z ∼ N

(
0, BΣBT

)

where B =
[

∂hi
∂ p j−1

]
1≤i, j≤2

, that is,

∂h1
∂ p0

= − p1
(1−p0)

2 ,
∂h1
∂ p1

= − 1
1−p0

,

∂h2
∂ p0

= (1 − p0 − p1) log (1 − p0 − p1) + (1 − p0) log (1 − p0)

(p0 − 1) (p0 + p1 − 1)
[
log (1 − p0 − p1) − log (1 − p0)

]2 ,

∂h2
∂ p1

= log (1 − p0)

(1 − p0 − p1)
[
log (1 − p0 − p1) − log (1 − p0)

]2 . �

3.1.2 Moments Method

The estimators obtained by the method of moments Q̃n and Ãn are almost surely
(a.s.) convergent. In fact, we state the following result.

Theorem 2 The estimators Q̃n and Ãn given in (3) verify
(
Q̃n, Ãn

) −→ (q,α) a.s.
and

√
n

([
Q̃n

Ãn

]
−
[
q
α

])
−→Z , in law, Z ∼ N

(
0, D (q,α) A (q,α) D (q,α)T

)

where A (q,α) = [ai, j ]1≤i, j≤2 , D (q,α) = [di, j ]1≤i, j≤2 are such that

a1,1 = qα+1
(
1 + q − qα+1

)
(1 − q)2

,

a1,2 = a2,1 = qα+1
(
1 + 4q + q2

)
(1 − q)3

− qα+1 (1 + q)(
1 − q2

) qα+1

1 − q
,
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a2,2 = qα+1
(
1 + 11q + 11q2 + q3

)− q2α+2 (1 + q)2

(1 − q)4
,

d1,1 = − 2m2

(m1 + m2)
2 , d1,2 = 2m1

(m1 + m2)
2 ,

d2,1 =
1

m2−m1
log
(

2m2
1

m2+m1

)
+ 2

m1
log
(
m2−m1
m2+m1

)
+ 1

m2+m1
log
(

2m2
1

m2−m1

)
[
log (m2 − m1) − log (m2 + m1)

]2 ,

d2,2 =
− 1

m2−m1

[
log
(
2m2

1

)− log (m1 + m2)
]+ 1

m2+m1
log
(

2m2
1

m2−m1

)
[
log (m2 − m1) − log (m2 + m1)

]2
and m1 = qα+1

1−q ,m2 = qα+1(1+q)

(1−q)2
.

Proof We have the asymptotic normality since X has fourth-order moments, and
this estimator verifies

(
Q̃n, Ãn

) = ( f1 (M1, M2) , f2 (M1, M2)) with f1 (m1,m2) =
m2−m1
m2+m1

and f2 (m1,m2) = log(2m2
1)−log(m2−m1)

log(m2−m1)−log(m2−m1)
. The normal distribution is centred

with matrice of variances-covariances given by D (q,α) A (q,α) D (q,α)T where
A (q,α) = [Cov

(
X j , Xl

)]
1≤ j,l≤2 , that is,

Cov (X, X) = V (X) = qα+1
(
1 + q − qα+1

)
(1 − q)2

Cov
(
X, X2

) = Cov
(
X2, X

) = E
(
X3
)− E

(
X2
)
E (X)

= qα+1
(
1 + 4q + q2

)
(1 − q)3

− qα+1 (1 + q)(
1 − q2

) qα+1

1 − q

Cov
(
X2, X2

) = E
(
X4
)− E

(
X2
)
E
(
X2
)

= qα+1
(
1 + 11q + 11q2 + q3

)− q2α+2 (1 + q)2

(1 − q)4

and D =
[

∂ fi
∂m j

]
1≤i, j≤2

, that is,

∂ f1
∂m1

= − 2m2

(m1 + m2)
2 ,

∂ f1
∂m2

= 2m1

(m1 + m2)
2

∂ f2
∂m1

=
1

m2−m1
log
(

2m2
1

m2+m1

)
+ 2

m1
log
(
m2−m1
m2+m1

)
+ 1

m2+m1
log
(

2m2
1

m2−m1

)
[
log (m2 − m1) − log (m2 + m1)

]2 ,

∂ f2
∂m2

=
− 1

m2−m1

[
log
(
2m2

1

)− log (m1 + m2)
]+ 1

m2+m1
log
(

2m2
1

m2−m1

)
[
log (m2 − m1) − log (m2 + m1)

]2 . �
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3.1.3 Maximum Likelihood Method

Theorem 3 The estimators Q̂n and Ân given in (4) verify Q̂n−→q, Ân−→α in
probability and

√
n

([
Q̂n

Ân

]
−
[
q
α

])
−→Z , in law, Z ∼ N

(
0, (I (q,α))−1

)

where I (q,α) = [Ii, j ]1≤i, j≤2 is such that

I1,1 = qα−1

(
1 − q2

)
(α + 1)2 + (1 − qα+1

) [
1 − (1 − q)2

]
(
1 − qα+1

)
(1 − q)2

,

I1,2 = I2,1 = qα (α + 1) log q

1 − qα+1
, I2,2 = qα+1 (log q)2

1 − qα+1
.

Proof The proof of this result follows from ([4], pp. 461–465). The verification of
conditions is quite technical and a detailed proof may be found in [5]. �

3.2 Numerical Studies: Behaviour of Estimators in Moderate
and Large Sample Sizes

In this section, we illustrate by several forms the finite sample performance of the
estimation methods previously referred. We evaluate the average values produced
and the corresponding variability, and the evolution of these summaries with the
sample size. In this sense, we generated a sample of a ZDGG (q,α) distribution
of dimension n ∈ {100, 500} and calculated parameter estimates by the three esti-
mation methods. We repeated this procedure 1000 times with q ∈ {0.4, 0.8} and
α ∈ {−0.7,−0.3, 0.5} .

Tables2, 3 and 4 include the empiricalmeans and standard deviations, respectively
Eest (.) and SDest (.), of the estimates of parameters. We note that, as expected, the
estimates of the parameters seem to converge to the corresponding true parameter

Table 2 Estimators based on zeros and ones proportions
Parameters n = 100 n = 500

α q Eest (α̇n) SDest (α̇n ) Eest (q̇n ) SDest (q̇n ) Eest (α̇n ) SDest (α̇n ) Eest (q̇n ) SDest (q̇n )

−0.7 0.4 −0.6950 0.0818 0.3990 0.0571 −0.6987 0.0347 0.4005 0.0252

0.8 −0.6830 0.1568 0.7998 0.0425 −0.6931 0.0636 0.8007 0.0184

−0.3 0.4 −0.2822 0.1835 0.3992 0.0675 −0.2966 0.0737 0.4004 0.0298

0.8 −0.2631 0.2896 0.7976 0.0446 −0.2915 0.1169 0.7999 0.0189

0.5 0.4 0.5874 0.5073 0.4015 0.0986 0.5213 0.2035 0.4010 0.0432

0.8 0.6300 0.6560 0.7997 0.0488 0.5265 0.2284 0.8003 0.0220
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Table 3 Estimators based on the moments method
Parameters n = 100 n = 500

α q Eest (α̃n) SDest (α̃n ) Eest (q̃n ) SDest (q̃n ) Eest (α̃n ) SDest (α̃n ) Eest (q̃n ) SDest (̃qn )

−0.7 0.4 −0.7014 0.1080 0.3935 0.0506 −0.7014 0.0461 0.3985 0.0230

0.8 −0.7098 0.4345 0.7957 0.0246 −0.7049 0.1875 0.7992 0.0110

−0.3 0.4 −0.3049 0.1950 0.3908 0.0598 −0.3025 0.0855 0.3981 0.0274

0.8 −0.3067 0.5167 0.7955 0.0256 −0.3056 0.2224 0.7991 0.0115

0.5 0.4 0.4771 0.4469 0.3830 0.0841 0.4928 0.2024 0.3955 0.0380

0.8 0.4826 0.6348 0.7955 0.0274 0.4938 0.3009 0.7988 0.0122

Table 4 Estimators of maximum likelihood
Parameters n = 100 n = 500

α q Eest (α̂n) SDest (α̂n ) Eest (q̂n ) SDest (q̂n ) Eest (α̂n ) SDest (α̂n ) Eest (q̂n ) SDest (̂qn )

−0.7 0.4 −0.6984 0.0738 0.3969 0.0434 −0.6998 0.0321 0.3996 0.0195

0.8 −0.7004 0.1216 0.7982 0.0188 −0.6969 0.0556 0.7999 0.0082

−0.3 0.4 −0.2953 0.1513 0.3958 0.0519 −0.2994 0.0637 0.3995 0.0230

0.8 −0.2969 0.1986 0.7980 0.0197 −0.2980 0.0901 0.7998 0.0086

0.5 0.4 0.5252 0.3772 0.3938 0.0776 0.5062 0.1609 0.3986 0.0327

0.8 0.5181 0.3514 0.7986 0.0219 0.5032 0.1452 0.7996 0.0094

Table 5 Empirical and theoretical variances and covariances of the ZDGG distribution with
(q,α) = (0.4,−0.7), for the proportions method [5]

n = 100 n = 500 Theoretical values

nVest (q̇n) 0.3264 0.3179 0.3159

nVest (α̇n) 0.6690 0.6022 0.5885

nCovest (q̇n, α̇n) 0.2806 0.2655 0.2586

values as the sample size increases. Further, the standard deviations of the estimates
decrease when the sample size increases.

We also constructed confidence regions for the parameters, based on the limit
laws of the estimators, and compared the degree of confidence set with the so-
called coverage probability, that is, with the proportion of generated samples whose
estimated confidence region contains the true values of the parameters. The numerical
results support the theoretical findings regarding the consistency of the estimators.

Next, we considered the parameter (q,α) = (0.4,−0.7) and compared the theo-
retical values nV (q̇n) , nV (α̇n) and nCov (q̇n, α̇n), related to the method of propor-
tions of zeros and ones, with the empirical ones, respectively nVest (q̇n) , nVest (α̇n)

and nCovest (q̇n, α̇n).
In Table5 (in [5]), we observe that for n = 100 the estimates of the elements of

the variance-covariance matrices of the asymptotic law are close to the theoretical
values, unless those related to the variance of the α estimator. For n = 500, the
estimates behave better than in the case n = 100 with all of them very close to the
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Table 6 Empirical and theoretical variances and covariances of the ZDGG distribution with
(q,α) = (0.4,−0.7), for the moments method

n = 100 n = 500 Theoretical values

nVest (̃qn) 0.2556 0.2641 0.2654

nVest (α̃n) 1.1673 1.0648 1.0313

nCovest (̃qn, α̃n) 0.3667 0.3619 0.3551

Table 7 Empirical and theoretical variances and covariances of the ZDGG distribution with
(q,α) = (0.4,−0.7), for the maximum likelihood method

n = 100 n = 500 Theoretical values

nVest (̂qn) 0.1883 0.1899 0.1896

nVest (α̂n) 0.5450 0.5150 0.5038

nCovest (̂qn, α̂n) 0.1624 0.1617 0.1552

theoretical values.We have repeated the process using the estimators ofmoments and
maximum likelihood methods, and we note that similar conclusions were observed,
as illustrated in Tables6 and 7.

4 The INARCH Model with Conditional ZDGG
Distribution

In this section, we introduce a model for time series with integer values such that
its conditional law given the past belongs to the ZDGG distribution and states its
first-order stationarity.

4.1 Definition and First-order Stationarity

Definition 2 A stochastic process X = (Xt , t ∈ Z) follows a zero-distorted gen-
eralized geometric integer-valued ARCH model with order p ∈ N and parameters
qt ∈ ]0, 1[ and αt ∈ [−1,+∞ [, briefly ZDGGD-INARCH(p), if for all t ∈ Z,

⎧⎪⎨
⎪⎩

Xt |Xt−1 ∼ ZDGGD (qt ,αt )

E
(
Xt |Xt−1

) = λt = qαt+1
t

1 − qt
= a0 +

p∑
i=1

ai Xt−i

where a0 > 0 and ai ≥ 0 for i = 1, ..., p. For all t ∈ Z, Xt−1 denotes the σ-field
generated by {Xt−k, k ∈ N} .
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Theorem 4 A stochastic process X = (Xt , t ∈ Z) following a ZDGGD-INARCH(p)
model is first-order stationary if and only if

∑p
i=1 ai < 1.

Proof We have to verify that E (Xt ) exists and is independent of t, for any t ∈ Z.

As Xt is a positive measurable function, we can write formally

μt = E (Xt ) = E
(
E
(
Xt |Xt−1

)) = E (λt ) = E
(
a0 +∑p

i=1 ai Xt−i
)

⇔ μt = a0 +∑p
i=1 aiμt−i ,

taking into account that the involved sums exist although theymay be non-finite. This
non-homogenous difference equation has a stable solution, which is independent of
t and finite, if and only if all roots of the equation 1 −∑p

i=1 ai z
i lie outside the unit

circle, that is, if and only if
∑p

i=1 ai < 1.

�
In these conditions, we have E (Xt ) = μ = a0

1 −∑p
i=1 ai

, t ∈ Z.

In the general case, the second-order stationarity of a ZDGGD-INARCH(p)model
is an open question. There are studies [2, 3] in some sub-families like in the geometric
INARCH model, which is obtained when we consider αt = 0 in the general one.
This G-INARCH model is also a member of the ZIG-INARCH family, defined as a
stochastic process X = (Xt , t ∈ Z) satisfying

⎧⎪⎪⎨
⎪⎪⎩

Xt |Xt−1 ∼ Z IG (1 − pt , w)

E
(
Xt |Xt−1

) = (1 − w)
1 − pt
pt

= (1 − w)λt

λt = a0 +∑p
i=1 ai Xt−i

with w ∈ [0, 1 [, a0 > 0 and ai ≥ 0 for i = 1, ..., p. If w = 0 we get the G-
INARCH(p) model.

4.2 Real-Data Application: Number of New Hantavirus
Infections Per Week in a German State

We study now the modelling of a dataset related to the number of new cases of
Hantavirus infection per week in the federal state Eslésvico-Holsácia of Germany
between 2005 and 2018, totaling 742 observations (obtained from the database of
Robert-Koch Institute, https://survstat.rki.de). We intend to identify, among some
of the models here discussed, which are the most compatible with the evolution of
this series. In this study, we will use the log-likelihood (-Log L), Akaike (AIC) and
Bayesian (BIC) criteria as well as the comparison between theoretical summaries of
the models and the corresponding summaries of the observed series and a residual
analysis.

https://survstat.rki.de
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Fig. 1 Hantavirus infections per week: trajectory

Fig. 2 Hantavirus infections per week: histogram

Figure1 presents the trajectory of the series and in Fig. 2, we have its histogram.
Autocorrelation and partial autocorrelation empirical values are in Fig. 3. The max-
imum observed is 3 and the empirical mean and variance are 0.1509 and 0.1877,
respectively. The proportion of zero observations is 0.8733 and the autocorrelations
of order two or greater are not significant.

Since the partial autocorrelations are not significant for lag 2 or greater, we
choose G-INARCH(1) and Poisson-INARCH(1) models. Taking into account the
large number of zeros present in the observed series, we decided to consider also
the zero-inflated Geometric and Poisson INARCH(1) models (ZIG-INARCH and
ZIP-INARCH, respectively).

Taking into account the smaller values of the criteria, as visible in Table8 (in
[5]), we note that the G-INARCH and ZIG-INARCHmodels perform better than the
others. Also, from Table9 (in [5]) we conclude that the ZIG-INARCH(1) presents,
in general, the best results and so we decide to analyse the residual series produced.
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Fig. 3 Hantavirus infections per week: autocorrelation (left) and partial autocorrelation (right)
values

Table 8 Estimates of models parameters and values of -Log L, AIC and BIC criteria [5]

Model Estimates Criteria

α0 α1 w - log L AIC BIC

G-INARCH(1) 0.1320 0.1269 327.1165 658.2330 667.4517

INARCH(1) 0.1321 0.1259 332.2810 668.5619 677.7806

ZIG-INARCH(1) 0.1508 0.1441 0.1238 326.9672 659.9343 673.7624

ZIP-INARCH(1) 0.2800 0.2480 0.5259 327.6763 661.3525 675.1806

Table 9 Theoretical values of mean, variance and autocorrelation of order 1 for estimated models
and for the Hantavirus infections data. Mean (Mr) and variance (Vr) of Pearson residuals for each
model [5]

Model G-INARCH(1) INARCH(1) ZIG-
INARCH(1)

ZIP-
INARCH(1)

Hantavirus
series

Mean 0.1512 0.1511 0.1512 0.1505 0.1509

Variance 0.1799 0.1536 0.1873 0.1808 0.1877

ACF(1) 0.1269 0.1259 0.1262 0.1176 0.1227

Mr 0.0000 0.001 0.0001 0.0006 0

Vr 1.0858 1.2450 1.0482 1.0699 1

Figure4 shows the correlogram and partial correlogram of the Pearson residuals. The
compatibility with white noise is clear.

Finally, a model for the X series of the new cases of Hantavirus infection per
week in the federal state Eslésvico-Holsácia of Germany is then

⎧⎨
⎩

Xt |Xt−1 ∼ Z IG (1 − pt , 0.1238)
E
(
Xt |Xt−1

) = (1 − 0.1238)λt

λt = 1−pt
pt

= 0.1508 + 0.1441Xt−1.
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Fig. 4 Pearson residuals related to the ZIG-INARCH(1) model: autocorrelation (left) and partial
autocorrelation (right) values

5 Conclusion

After recalling the definition of the ZDGG distribution, we stated the asymptotic
behaviour of the estimators of its parameters deduced using three approaches (pro-
portions of zeros and ones, moments and maximum likelihood). We illustrated by
numerical studies the corresponding behaviour in moderate and large samples, con-
cluding the coherency with the theoretical results. Finally, we have introduced the
INARCHmodel with a ZDGG conditional distribution for the study of counting time
series, stated its first-order stationarity and evaluated the performance of some mem-
bers of this family in themodelling of the number of newcases ofHantavirus infection
recorded in a German state. Further studies in the general ZDGGD-INARCH model
are in progress, in particular on the second-order stationarity.
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Uncovering Abnormal Water
Consumption Patterns for
Sustainability’s Sake: A Statistical
Approach

Ana Borges , Clara Cordeiro , and M. Rosário Ramos

Abstract Monitoring domestic water usage may help the water utilities uncover
abnormal water consumption. In this context, it is necessary to improve and develop
tools based on data analysis of households’ meter readings. This study contributes
to this goal by using a statistical methodology that detects abnormal water consump-
tion patterns, namely, significant increases or decreases. This approach relies on a
combination of methods that analyse billed water consumption time series. The first
step is to decompose the time series using Seasonal-Trend decomposition based on
Loess. Next, breakpoint analysis is performed on the seasonally adjusted time series
to look for changes in the pattern over time. Afterwards, the Mann–Kendall test and
Sen’s slope estimator are applied to assess whether there are significant increases
or decreases in water consumption. The strategy is applied to water consumption
data from the Algarve, Portugal, successfully detecting breakpoints associated with
significant increasing or decreasing trends.
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1 Introduction

In the last decades, water has been recognised as an essential resource for guaran-
teeing economic development and maintaining living standards. Water stress makes
it indispensable to acknowledge water as a scarce resource and to enhance focus on
managing demand [1]. In the context of water scarcity, [2] alert to the importance
of assessing losses in water distribution systems since the compensation of water
losses increases water demand. Enhancing water use efficiency and conservation are
priorities to ensure, for example, universal access to drinking water and reduce the
population suffering from its scarcity.

Water companies’ awareness for the responsible use of water has gained impor-
tance, with climate changes emphasising this need. The analysis of urban water
consumption patterns and the estimation of the corresponding water demand are
expected to be among the top priorities for water companies in the near future [3]. In
this sense, controlling domestic water usage can help reduce both water consumption
and protect the environment [4]. Therefore, investigatingwater consumption patterns
will provide a better understanding at a household level. This will promote water use
efficiency and help to reduce non-revenue water (NRW). Detecting an anomalous
increase will allow companies to take measures, such as alerting their consumers to
have sustainable behaviours.

The Portuguese region of Algarve is known for registering the highest values of
water consumption [5]. This region faces an enormous challenge in optimising water
management and usage standards due to long periods of drought. Consequently,
water utilities feel the need to develop mechanisms for water planning based on data
analysis. Overall, they concentrate their efforts on addressing the consequences of
climate change. Therefore, managing Portuguese water resources is likely to become
challenging due to the potential decrease of water availability and the increase of the
seasonal hydrological asymmetries [6].

This paper presents an application of a procedure capable of detecting significant
changes in a time series anchored on statistical methods. The aim is the assessment of
abnormal increasing and decreasing trends in water consumption. The methodology
is an extension of the work developed by [7] that detects significant decreasing trends
in water consumption time series. This approach can be synthesised in four steps: the
first step consists of time series decomposition using Seasonal-Trend decomposition
based on Loess [8]; on the second step, a breakpoint analysis is performed on the
seasonally adjusted time series; the third step consists of the search for decreasing or
increasing changes in the periods between breakpoints through the Mann–Kendall
[9] test, and Sen’s [10] slope estimator. In the end, an indicator for the magnitude of
change is presented. Monthly time series of billed water consumption from Loulé
Municipality, located in Algarve—the southern region of Portugal, is used.

The paper is organised as follows: the Methodology section describes the statis-
tical methods that underlie the procedure and how they are connected; the following
section presents the data set used to exemplify the procedure; the results are detailed
in the next section and it ends with the Conclusion and Future Work section.
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2 Methodology

A time series is a set of consecutive observations indexed in time t , t = 1, · · · n,
during regular intervals. Often time series exhibit seasonal behaviour, and adequate
“control” for a seasonal component is essential before using any statistical model.
Also, the time series may exhibit patterns such as an upward or downward movement
(trend). The irregular component is the remaining time series behaviour that is not
attributed to trend or seasonality. Both trend and seasonality components are potential
confounding features in analysis, so identification and removal are important.

The methodology is organised into four steps described below.
In the first step, the Seasonal-Trend decomposition procedure based on Loess

(STL) [8] is applied to decompose each time series into a trend (Tt ), seasonal (St )
and irregular or residual (It ) components using nonparametric regression. Assuming
the additive model, the time series is decomposed into

Yt = Tt + St + It , (1)

where t = 1, · · · n, is the time period and n its length. This method was chosen over
other decomposition methods in the literature because it has attractive modelling
features, such as the seasonal component being allowed to change over time and
being robust in the presence of outliers. This procedure is available in the software
through function stl() [11]. However, this procedure requires a subjective selection
of two smoothing parameters: the seasonal (s.window) and trend (t.window) window
widths. Therefore, the algorithm used was proposed by [12], named as stl.fit()
[13], which overcomes this drawback. The latter selects the best STL model with
the smallest error measure achieved with a specific combination of the smoothing
parameters. In this study, the Mean Absolute Error (MAE) is used. For more details,
see [12].

The second step consists of the detection of breakpoints in the seasonally adjusted
time series of water consumption given by

Y ∗
t = Yt − St (2)

t = 1, · · · , n. The package strucchange [14] is used to obtain the breakpoints.
This package features methods from the generalised fluctuation and F-test (Chow
test) frameworks. That includes methods to fit, plot and test fluctuation processes
(e.g. CUSUM, MOSUM, recursive/moving estimates and F-statistics, respectively).
This procedure tests for structural changes in linear regression models, estimating
the number of segments (m) and the set of the breakpoints bp = { t∗1 , t∗2 , · · · , t∗m−1},
minimising the Bayesian information criterion and the residual sum of squares [15].
The present study uses the two expressions proposed in [7] for obtaining theminimum
length between consecutive breaks (min.h) and the maximum number of breaks
(max.breaks).
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In a third step, the change identified in the previous procedure is submitted to a
nonparametric analysis through Mann–Kendall (MK) test [9], and Theil–Sen’s (TS)
Slope [10]. The choice of these methods is linked to the fact that they can handle sit-
uations where the segments correspond to short periods of asymmetric distributions
and allow assess of the underlying increase or decrease through robust methods [16].
If the result is significant, positive or negative, then the breakpoint adjacent to the seg-
ment is considered relevant. To obtain these statistics, the function sen.slope(),
available in the package trend [17] is used.

In the last step, the magnitude of the change in water consumption before and
after the significant break is obtained by theRelativeMagnitude of theChange (RMC)
proposed by [7]. This indicator is a ratio that compares thewater consumption pattern
before and after a breakpoint as follows:

RMC = slpa f ter − slpbe f ore
|slpbe f ore| , (3)

where slpa f ter and slpbe f ore are the nonparametric Sen’s slopes in the neighbourhood
of a specific breakpoint t∗k ∈ bp∗. Higher negative values of RMC represent a higher
decreasing change in water consumption after the considered breakpoint. While high
positive values of RMC represent a higher increase in water consumption after the
considered breakpoint.

For more details about each step, see [7].

3 Data

The empirical analysis uses billed water consumption data from residential house-
holds (RH) from a municipality located in the Portuguese region of Algarve. The
municipality occupies about 200 km2 and has an estimated population of around
5,000 inhabitants. It is characterised by an elderly population and an agricultural-
based economy.

Two case studies will be presented to exemplify the procedure. Both cases refer to
household’s monthly water consumption (m3) from February 2011 until December
2017, registered by two water meters: RH1 and RH2.

On meter RH1, the higher values of water consumption (see Fig. 1a) were reg-
istered in the summer months of July and August. This is consistent with a strong
seasonal behaviour, with the higher temperatures justifying the need for higher water
consumption, related to Algarve’s tourism period. Moreover, a decrease in the trend
until 2016 was followed by an increase more pronounced during 2017, as seen in
Fig. 1. The latter might be explained by its replacement on 8 November 2016. The
consumption registered by this meter showed a noticeable abrupt increase in 2018,
reaching a value higher than 30 m3.
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Fig. 1 Time series of water consumption

In contrast, meter RH2 did not present a seasonal pattern as regular as in the
previous case. In addition, it showed the highest values of water consumption in
months such as October 2014, December 2016 and December 2017, as shown in
Fig. 1b.

4 Results

The proposed strategy was applied to two case studies showing different water con-
sumption patterns.

The first step was the decomposition of the water consumption time series into its
components: trend, seasonal and remainder. STL [8] has already been successfully
applied in studies of water consumption such as [18] and more recently [7]. Since
STL is robust against outliers, the detection of these observations was done according
to [8]. From Fig. 2, the robust approach of the STL was applied to RH1 and RH2.

The stl.fit() proposed by [12] was applied, and the decomposition plots are
shown in Fig. 3a and b.Note that this function searches for the best combination of the
parameters (s.window and s.trend) minimising an error measure, which in this case
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Table 1 MAE results

RH stl stl.fit

1 1.33 1.25

2 1.57 1.09
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Fig. 4 Breakpoints analysis

was the MAE. Table2 presents the results of the stl(), with s.window="periodic"
(fixed seasonality), and the stl.fit() that search for the “best” combination, in
terms of MAE. Therefore, based on these results, the latter was chosen (Table1).

The breakpoint algorithm was applied to the seasonally adjusted water consump-
tion, considering min.h = 0.15 (12.2 months) and max.breaks = 4. The relevance of
each breakpoint was detected throughMK and TSmethods that infer the significance
of the adjacent trends before and after the breakpoint.

For RH1, the procedure detected two breakpoints in water consumption in July
2012 and in October 2016 (Fig. 4a and Table2). However, the estimated Theil–Sen’s
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Table 2 Breakpoints & Trend analysis

RH Breakpoints Theil–Sen’s slopes RMC

Segment 1 Segment 2 Segment 3

1 2012 (Jul),
2016 (Oct)

0.009 (0.880) −0.016 (0.533) 0.536 (<0.001) 34.5

2 2013 (Jun),
2014 (Nov)

0.052 (0.002) 0.236 (0.005) 0.004 (0.744) 3.538, −0.983

Note 1 Statistically significant trend slope (p-value) in boldface
Note 2 All values are rounded with three decimal places

slopes of the segments, before and after the breakpoint in 2012, were not significant
(p-values of 0.880 and 0.533, respectively). This means that the breakpoint was not
considered as a relevant one by the procedure. Hence, the water utility should not be
concerned with the pattern of water consumption of this household at that moment.
Nonetheless, regarding the second breakpoint in October 2016, the segment slope
estimated after it was positive (0.536) and statistically significant (p-value< 0.001).
This represented an increased pattern in water consumption after that moment, with
a magnitude RMC = 34.5.

Regarding RH2, the strategy implemented was able to detect two relevant break-
points in June 2013 and November 2014 (Fig. 4b and Table1). The estimated Theil–
Sen’s slope of the segment before the first breakpoint was positive with the low value
of 0.052 (p-value = 0.0017), and the slope of the segment after the breakpoint was
higher with the value of 0.236 (p-value = 0.0489). This represents an increase in
water consumption pattern, with amagnitude of RMC= 3.538 (lower than the change
in consumption of water meter RH1). In a deeper inspection, we can deduce that
this result may be associated with a change in the mean value between the two peri-
ods (before and after the break). For the second breakpoint detected in November
2014, a decrease in water consumption was detected since the estimated segment
slope before it was 0.236 and the estimated slope after the breakpoint was 0.004 and
non-significant. Thus, the indicator RMC = –0.983, i.e. negative, as expected.

5 Conclusion

Trend and breakpoint analysis of water consumption—at an individual level—are
important for decision-making in a broad sense, including in environmental, health
and sustainability concerns.

This study presents an integrated statistical approach to analyse water consump-
tion time series within the framework of water sustainability. The goal is to detect
the moment (or moments) when a significant increase or decrease in consumption
occurs.

Several studies have adopted time series decomposition and breakpoint detection
methodologies, such as [7, 18–21]. The classical methods of decomposition of time
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series allow identifying the trend, the seasonality and the irregular components. How-
ever, these methodologies do not allow for a flexible specification of the seasonal
component, and the trend component is generally represented by a deterministic
time function, which is easily affected by the existence of outliers. The nonparamet-
ric Seasonal-Trend decomposition by Loess can identify a seasonal component that
changes over time, a non-linear trend, and it can be robust in the presence of outliers.
Similar to all nonparametric regression methods, STL requires the subjective selec-
tion of smoothing parameters. The two main parameters are the seasonal (s.window)
and trend (t.window) window widths. Therefore, to overcome this limitation, the
stl.fit() procedure [12] was used since it allows an “objective” choice of STL
smoothing parameters. This procedure has been developed to obtain “automatically”
the seasonal and trend smoothing parameters by minimising an error measure.

After estimating the components using STL, the seasonality was removed. After-
wards, a combination of methods was applied on the seasonally adjusted time series
to detect breakpoints, using the algorithm implemented in the package struccha-
nge [14]. Subsequently, statistically significant decreasing and increasing segments
of water consumption were analysed using robust nonparametric methods such as
MK and TS.

Additionally, a water consumption change indicator, the RMC, was calculated.
The RMC is unitless, allowing to compare different types of consumption. It allows
the water utility to understand and compare consumption patterns between house-
holds (or other buildings) and between different periods. Thewater company can also
choose threshold values for RMC, at which the consumption is considered problem-
atic. Overall, the idea is to quantify the change of the decrease or increase in water
consumption for each consumer and identify which ones the water company should
investigate.

This strategy was applied to real data of billed water consumption from house-
holds located in the municipality of Loulé, characterised as an agriculturally based
economy regionwith tourism activity. Themethodology successfully detected break-
points linked to a significant increase or decrease in water consumption. Moreover,
the difference in household water consumption patterns justifies the importance of
implementing a procedure at an individual level able to capture consumption speci-
ficities.

The detection of an abnormal increase will allow the water utility to alert its
consumers of less environmentally sustainable behaviour. This is important since
the impacts of climate change on water demand may be particularly relevant in the
case of agricultural water use. In fact, the water needs for crop production increase
as a consequence [6].

In conclusion, this integrated strategy may also contribute to the assessment of
losses in water distribution systems as well as apparent losses and NRW. Further-
more, the application of the methodology is not limited to the time series of water
consumption. The flexibility of the procedure allows, in each step, to regulate param-
eters such as the seasonal and trend windows in STL decomposition, the minimum
length (min.h) of the segment and the maximum number of breaks (max.breaks).



Uncovering Abnormal Water Consumption Patterns for Sustainability’s … 107

In the future, an alternative approach could be a prior application of time series
clustering on households’ water consumption to group the consumers by pattern
similarity. Afterwards, the proposed strategy would be implemented only to the
most problematic consumer profiles.
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Modeling and Forecasting Wind Energy
Production by Stochastic Differential
Equations

Paulo Cabral and Paula Milheiro–Oliveira

Abstract Renewable energies are on the rise and their impact on the sustainability
of our planet is consensual. Adequate tools for modeling and forecasting production
from different sources are needed, so that management of energy resources is auto-
matic and efficient. This work addresses this issue by a first modeling attempt of the
wind power production in Continental Portugal using Stochastic Differential Equa-
tions (SDEs), based on available hourly observations. We resort to parametric SDE
models proposed in the literature on wind energy research (the Ornstein–Uhlenbeck
model and a transformedOrnstein–Uhlenbeckmodel), we estimate themodel param-
eters, we perform the residual analysis and the short-term forecasting. We found that
SDEs have produced useful results for the management of wind energy production.
However, there would be an interest in evolving toward SDEs models that better
explain the data in short periods of time, in order to obtain more reliable forecasts.

Keywords Ornstein–Uhlenbeck process · Parameter estimation · Predictive
modeling · Renewable energy · Stochastic differential equations · Wind power

1 Introduction

Renewable energies have increased their relevance in the composition of the world’s
energy matrix. In particular, in Portugal, wind energy corresponds to 27.5% of total
energy production, being the second largest energy source in the country [1]. The
diversification of the energymatrix requires adequate tools for forecasting production
from different sources, so that the management of energy resources is automatic and
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efficient. Wind energy presents a particular challenge in this context, as it is a highly
complex phenomenon with possibly non-linear behavior and with high variability
[2].

Advanced computational and statistical methods should be able to provide a com-
plete description of predictive densities of energy production with forecast horizons
from seconds to days [3]. Forecasts should desirably be obtained in such a way that
they can be used in smart grids and therefore need to be computed in real time. Fore-
casting wind energy production remains a challenge even after 25years of research,
from a statistical point of view. This is mainly due to the non-linear and doubly
limited nature of the stochastic process that describes the variation over time in the
amount of wind energy produced [4]. We are referring to a phenomenon that suffers
influences as varied as those resulting from the speed of the wind that passes through
the turbine up to the amount of debris stuck to the propellers during its operation.

The literature contains a diversity of approaches to the problem of modeling
and forecasting wind energy production [5, 6]. Among this previous research, [3,
7–9] approach the problem using Stochastic Differential Equations (SDEs). The
advantage of the approach via SDEs lies in that, once the model is judged adequate,
it is possible to fully describe the phenomenon, including the characterization of
its variability, independently of the time scale or the frequency of the collected
observations, meeting state-of-the-art requirements.

This work discusses a first attempt at modeling the energy production of the
wind turbines placed in continental Portugal using SDEs, based on available hourly
observations. With this goal, we resort to parametric models of SDEs proposed in
the literature of wind energy research, namely, the Ornstein–Uhlenbeck (O-U)model
and a transformed Ornstein–Uhlenbeck model [9], we perform the estimation of the
model parameters, the residual analysis, and the short-term forecasting. By short term
we mean either the 24 or the 48h ahead forecast. We find that tested SDEs produce
useful results for the management of continental Portugal wind energy production.
However, additional research addressing other alternative SDE models that would
better explain data over short time periods would be recommended in order to try
achieve more reliable forecasts.

The paper is organized as follows: in Sect. 2 we introduce the problem under
study; in Sect. 3 we explore different SDE models that could fit the available data; in
Sect. 4 we compare solutions to the problem under study by computing the 1 h, the 24
h, and the 48 h ahead forecasts of the hourly wind energy production in Continental
Portugal. This is our main contribution to the subject. Finally, in Sect. 5 we present
some final comments and main directions for future research.

2 The Problem Under Study

The amount of wind energy produced in Continental Portugal exhibits variability
along time (see Fig. 1) and models representing its behavior, which can subsequently
be used to derive good quality predictions of future values of wind energy production,
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Fig. 1 Wind energy produced in Continental Portugal from January 3, 2016 until July 25, 2018

are needed. It is our intention to consider particular classes of SDEs to represent the
dynamics of the wind energy production along time.

The problem under study can be formulated as follows. Let {�,F ,P} be a proba-
bility space and {Xt }t , with t ≥ 0, a stochastic process representing the wind energy
production along time. We assume that {Xt }t is the solution of a SDE

dXt = b(t, Xt , θ)dt + σ(t, Xt , θ)dWt , (1)

where {Wt }t is a standardWiener process and X0 = x0 represents the initial condition,
in our case assumed known for simplification. Assume that {Xt }t is observed at
discrete time instants t0, t1, t2, . . . , tn until time T . Denote by Ft ′ the σ -algebra of
the observations until time t ′ ∈ [0, T ]. Our goal is twofold:
• fit a parametric model of type (1) in which the families of functions b(·) and σ(·)
are assumed to be known except for the dependency on a vector θ of unknown
parameters,with θ ∈ �.Wewill use differentmodels, that is, different formsofb(·)
and σ(·), and we will estimate the parameters based on the available observations
{Xti }ni=0;• forecast the amount of energy produced by the set of wind turbines, that is, for the
stochastic process {Xt }t with t ≥ T , based on the values available up to time T .

In our case, we consider the data collected on the wind energy produced from
January 3, 2016 until July 25, 2018. We separate the collected data in a training set
consisting on the observations from January 3, 2016 until January 16, 2018, and a test
set consisting on the observations from there on until July 25, 2018. The training set
will be used to fit the SDE and the remaining data will be used to assess forecasting
capability. Data has been hourly collected and our goal is to compute short horizon
forecasts that could go from 1 to 48h horizons.
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3 Modeling via SDEs

The literature suggests different types of SDEs for the modeling of wind energy pro-
duction: the Ornstein–Uhlenbeck process [10]; the Black–Scholes equation [11] and
some transformation of a Ornstein–Uhlenbeck process [9]. We give a brief overview
of the main points that are needed in the sequel.

Ornstein–Uhlenbeck process:

dXt = ωXtdt + νdWt (2)

with ω ∈ R and ν ∈ R+.
We remind that the solution of (2) is a Gaussian process and one can easily write

closed formulas for the conditional moments:

E[Xt |Ft ′ ] = Xt ′e
ω(t−t ′) (3a)

and

V[Xt |Ft ′ ] = ν2

2ω
(e2ω(t−t ′) − 1) . (3b)

An extension dXt = ω(Xt − λ)dt + νdWt , with λ being an extra parameter, can
also be considered.

Black–Scholes model:

dXt = θ1Xtdt + θ2XtdWt (4)

with θ1 ∈ R, θ2 ∈ R+ and X0 = x0 > 0.

Closed formulas for the conditional moments of Zt = ln
(

Xt
x0

)
exist as well:

E[Zt |Ft ′ ] = Zt ′ +
(

θ1 − θ2
2

2

)
(t − t ′) (5a)

and
V[Zt |Ft ′ ] = θ2

2 (t − t ′) . (5b)

Also
Xt |Ft ′ ∼ LogN

(
xt ′e

θ1(t−t ′), x2t ′e
2θ1(t−t ′)(eθ2

2 (t−t ′) − 1)
)

, (5c)
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where we have indicated, in parenthesis, the conditional mean and variance of this
lognormal distribution.

Transformed Ornstein–Uhlenbeck process [9]:

dXt =
(

ω ln(Xt ) − ω h + ν2

2

)
Xtdt + νXtdWt . (6)

This means that
Xt = eUt+h, (7)

where h is a parameter of the model which should guarantee that the paths remain
close to the average of the observations, and {Ut }t is a Ornstein–Uhlenbeck process
with parameters ω and ν.

Again closed formulas for the conditional moments can be derived by using the
well-known expression for the expected value of an exponential of a Gaussian dis-
tribution:

E[Xt |Ft ′ ] = exp

{
h + E[Ut |Ft ′ ] + V[Ut |Ft ′ ]

2

}
(8a)

and

V[Xt |Ft ′ ] = exp {2h + 2E[Ut |Ft ′ ] + V[Ut |Ft ′ ]} (exp {V[Ut |Ft ′ ]} − 1) . (8b)

For a detailed reading on SDE modeling in general we refer to, e.g., [12–15].

3.1 Parameter Estimation

In this study, the available data consists on hourly observations of wind energy
production. Therefore, the time unit will be from now on equal to 1 hour and the
convention that zero will be the initial time (with known X0 = x0) is adopted, so
that ti = i . The wind energy production X will be expressed in MWh. Parameter
estimates and other results reported in the present paper use these units of time and
energy production.

TheMLestimators of the previousmodels’ parameters are consistent andnormally
distributed as n → ∞ (e.g., [12, 15–17]). For model (2) one has

ω̂n = ln

(∑n
i=1 Xi−1Xi∑n
i=1 X

2
i−1

)
(9a)

ν̂2
n = 2ω̂n

n(e2ω̂n − 1)

n∑
i=1

(
Xi − Xi−1e

ω̂n

)2
. (9b)
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Table 1 ML estimates of the model parameters

Model Parameter estimates Confidence interval (95%)

Model (2) ω̂ = −0, 0041 (−0.0054; −0.0028)

ν̂ = 154.48 (152.89; 156.10)
Model (4) θ̂1 = 0.0170 (0.0143; 0.0197)

θ̂2 = 0.1847 (0.1828; 0.1866)
Model (6) ω̂ = −0.0195 (−0.0224; −0.0166)

ν̂ = 0.1856 (0.1837; 0.1876)

For model (4), denoting θ∗ = θ1 − θ2
2
2 , one has

θ̂∗
n = 1

n

n∑
i=1

ln

(
Xi

Xi−1

)
(10a)

θ̂2,n = 1

n

n∑
i=1

(
ln

(
Xi

Xi−1

)
− θ̂∗

n

)2

. (10b)

For model (6), the transformation (7) is combined with (9a)–(9b), meaning that,
since the process {Xt }t is transformed into process {Ut }t and {Ut }t is a Ornstein–
Uhlenbeck process, the tools used with model (2) are also used on the transformed
data. The value 6.908 has been used for h in (7). This corresponds to taking

ĥ = 1

n

n∑
i=1

ln Xi ,

given that h = E[ln Xt −Ut ] = E[ln Xt ] (see [9]). Computation of theMLestimates
and confidence intervals can be performed resorting to functions mle and confint
available in the R software.

Table1 shows the estimates of the model parameters for the models mentioned
above. The extra parameter λ of the extended O-U process was dropped as it was not
significant.

3.2 Analysis of the Residuals

Denoting by E[·] andV[·] as usual the expected value and variance, respectively, we
analyze the standardized residuals [18]:

Rti (θ) = xti − E[Xti |Xti−1; θ ]√
V[Xti |Xti−1; θ ] . (11)
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(a) model (2) (b) model (4) (c) model (6)

Fig. 2 QQ-plot of the standardized residuals

Since we do not know the true parameter values we estimate the residuals Rti by
replacing the parameters by their ML estimates. In the case of models (4) and (6),
we analyze the residuals of the Zti and Uti predictions, respectively, instead of the
Xti predictions. If the model fits the data, residuals should behave as Gaussian white
noise.

The residuals have been analyzed for their concentration on the band [−2, 2], their
auto-correlation as well as their normality. Although statistical testing (Ljung-Box
and significance of ACF and PACF) leads to the rejection of the assumptions under-
lying Gaussian white noise for the behavior of the residuals, we should remark that
the data set contains more than 10,000 observations, thus the emphasis of analyzing
the conformity of the residuals should not be placed on the strict violation of white
noise model assumptions but rather on the degree of violation that can disrupt the
good functioning, for the purpose of forecasting, of a statistical model that requires
standard Gaussian white noise. The QQ-plots of the residuals are depicted in Fig. 2.
We consider that model (4) does not fit the data well. Therefore this model will not
be used for prediction.

4 Forecasting

Generally speaking, once model (1) has been fitted, the optimal predictor in terms
of the root mean square error RMSE is given by

X̂t |T = E[Xt |FT ] for t ≥ T . (12)

In the Gaussian case, one can also determine the approximate prediction interval for
a 95% confidence level:

X̂t |T ± 1.96
√
V[Xt |FT ](1 + τ/T ) (13)

with τ = t − T . Since V[Xt |FT ] is not known but the number of observations used
to estimate the model is very large, in our problem the conditional variance has been
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Table 2 1, 24, and 48 h ahead predictors

Model Predictor (μ̂ti = Ê[Xti |Fti−1 ])
1h 24h 48h

Model (2) μ̂ti = xti−1e
−0.0041 μ̂ti = xti−1e

−0.0981 μ̂ti = xti−1e
−0.1962

Nodel (6) μ̂ti = 1017.8 e0.9807 uti−1 μ̂ti = 1308.8 e0.6260 uti−1 μ̂ti = 1454.0 e0.3919 uti−1

replaced by its estimate. In the case of model (6), this expression (13) is used for the
processUt instead. Based on this model it is reasonable to compute an approximation
of the prediction interval for Xt by applying transformation (7) to the bounds of the
prediction interval for Ut .

Table2 shows the expressions of the predictors of the selected models (2) and (6),
for three different forecast horizons of interest. They stem from (3a) and (8a), which
allow us to anticipate the expected behavior of predictors according to their analytic
expression.

Figures3, 4, 5 show the forecasts that were obtained for the first 480h (20d) of
the test set.

Because ω̂ = −0.0041 is small, we have that eω̂ ≈ 1 and the O-U process
approaches amartingale. As a result, the obtained 1 h ahead forecasts closely follow
the observed series (slight horizontal translation; see Fig. 3).

As an example, Table3 presents the 95% confidence intervals for the 1 h ahead
forecasts relative to January 17, 2018 at 12:00 a.m.

The forecast produced by model (2) appears to be closer to the test set trajectory.
However, forecasts are still not able to follow the data when rapid ascents occur. This
holds for the 24 h as well as for the 48 h ahead forecasts (Figs. 4 and 5). The results
obtained with model (4) are also shown in Fig. 5 as a curiosity.

The following measures have been used to assess the error when producing fore-
casts:

MPE =
(
1

m

m∑
i=1

xi − x̂i
xi

)
, (14a)

MAPE =
(
1

m

m∑
i=1

|xi − x̂i |
|xi |

)
, (14b)

RMSE =
√√√√ 1

m

m∑
i=1

(xi − x̂i )2 , (14c)

where xi denotes the i th observation after time T , m the forecasting horizon, and x̂i
the i th forecast. Table 4 presents the forecast errors obtained on the test set.
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(a) model (2)

(b) model (6)

Fig. 3 1 h ahead forecasts for the first 480h of the test set

Table 3 95% confidence intervals for the 1 h ahead forecasts relative to January 17, 2018 at 12:00
a.m.

Model Forecast (MWh) Prediction interval (MWh)

Model (2) 1313.69 (1011.52 ; 1615.87)

Model (6) 1334.41 (0.00 ; 2769.19)



118 P. Cabral and P. Milheiro–Oliveira

(a) model (2)

(b) model (6)

Fig. 4 24 h ahead forecasts for the first 480h of the test set

From a statistical point of view, model (2), despite fitting the training set quite
well, does not have a high predictive capability for 48 h horizons, as shown in our
test set. Model (6) gives even worst results. However, from the engineering point
of view, these results are still useful. It is also interesting to note that the forecast
errors are in line with the quality of the residuals when we talk about the comparison
between models fit.
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Fig. 5 48 h ahead forecasts for the first 480h of the test set

Table 4 Forecast errors computed on the test set

Model Prediction
horizon (h)

MAPE (%) MPE (%) RMSE

Model (2) 1h 23.7 −5.1 297.9

24 91.0 −43.8 1023.0

48 102.7 −45.7 1147.1

Model (6) 1h 24.2 −7.1 297.2

24 115.9 −89.2 947.9

48 145.3 −120.1 1011.9

5 Final Comments

From the family of models that were examined, model (2) was the one that best fitted
the data. In addition, according to most commonly used forecast error metrics, model
(2) was also the model which gave the closest forecasts to the test set.

Assessing the predictive capacity of the models for the most relevant forecast
horizons, 24h ahead and specially 48h ahead, all models showed large forecast
errors, which reflects the high complexity of the task of predicting the phenomenon.
Although the obtained forecasts have low precision they are still of use for engineer-
ing and management purposes. The results suggest that we should evolve toward
more complex models which would be more likely to describe the inherent com-
plexity. The fact that we are trying to model and predict the total production of
Continental Portugal, encompassing individual productions subject to different cli-
mate and operational conditions, deserves further attention. If data could be made
available on each wind tower or at least on each of the existing wind farms, the
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modeling and prediction of each of those and its contribution to predicting the total
production would give a better solution to the problem at hand.

There are a couple of immediate directions for future work. The first is to seek
better forecasts for hourly wind energy production based on non-parametric EDE
models which can better adapt to the behavior of the observed data, allowing greater
adherence to sudden ascents or descents (see, e.g., [14] for an introduction). The
second is to incorporate wind data into themodel as an exogenous stochastic process.
Also itwould be interesting to apply the techniques developed in thiswork to different
time scales (and horizons). All approaches can be enriched by comparing these with
other forecasting methods, such as classic time series models or other computational
tools of machine learning as, for instance, neural networks and random forests.
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Abstract A practical and theoretically interesting problem in the context of point
processes are marked point patterns where the statistical properties of marks depend
locally on point intensity. Such dependence can be observed, for example, in fishery
data, where catches (marks) are certainly associated with the locations where the
fisheries take place (points), in order to optimize capture effort. In intensity-marked
point processes, the marks are allowed to be marginally correlated and the mark
size depends locally on the point density. In this work, we analyse the relation-
ship between these models and the geostatistical model under preferential sampling.
Detecting dependence between marks and locations of marked point processes is an
important issue because predictions of the process can be severely biased when stan-
dard statistical methodologies are applied to data where the distribution of a mark
varies along the point density. The aforementioned relationship was explored in real
data.
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1 Introduction

Traditional geostatistical methods assume that sampling locations are either fixed
or stochastically independent of the spatially continuous phenomenon under study.
However, in practice, choice of sampling positions in a spatial network is often guided
by budget and other practical requirements. For example, it is well known that in air
pollution studies the monitors are, typically, placed near the most likely pollution
sources and in areas of higher population density. In fisheries,where data are observed
when and where the resource is available, this means sampling in locations that were
deliberately chosen guided by a belief regarding the abundance of the species of
interest. Thus, the aforementioned assumption fails since the process under study
determines data locations. This problem, coined preferential sampling in the context
of spatial statistics, has been discussed in a model-based approach by [1]. Diggle
and co-authors demonstrate that ignoring the preferential nature of the sampling can
lead to biased estimates and misleading inferences.

Watson [2] claims that predictions of the process can be severely biased when
standard statistical methodologies are applied to preferentially sampled data with-
out adjustment. Preferential sampling of sites chosen to observe a spatial process
has been identified as a major problem in several fields. In species richness studies,
preferential sampling may occur due to data being comprised of opportunistic sight-
ings. Observers frequently focus their efforts in areas where they expect to find the
species, [2]. Conn and colleagues [3] use geostatistical methods to model ecological
data obtained by preferential sampling, referring to a special case of opportunistic
sampling in which there is stochastic dependence between the sampling design and
the reported species counts. Pennino and colleagues [4] present an approach for
modelling the distribution of species using opportunistic data and show that predic-
tive maps significantly improve the prediction of the target species when the model
accounts for preferential sampling.

Geostatistical model [5], can be regarded from the perspective of a marked point
process [6], modelling the marks the observed quantities and the points the sampling
locations. In this context, Illian and colleagues [7] consider three types of models:
Independent marks, which may be regarded as a null model, where the marks are
drawn independently from a probability distribution; random field model, where
the marks are correlated, meaning that marks of points close together are typically
similar; however, there is no correlation between marks and points density. This
is termed geostatistical marking. The third type is marked Cox process, the case
where the marks depend linearly on local point density. Therefore, a practically
and theoretically interesting problem are marked point patterns where the statistical
properties ofmarks depend locally onpoint intensity.Myllymäki [8] considered a log-
intensitymarked Cox process to deal with intensity-dependent marks.Myllymäki [9]
extend the family of intensity-dependentmarked processes considering conditionally
heteroscedastic intensity-dependent markings, meaning that not only the mean but
also the variance of a mark depends on the local intensity.
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In this work, we analyse and compare the model proposed by [1] to deal with
preferential sampling in the context of Geostatistics and the model proposed by [8]
to deal with intensity-dependent marks in the context of marked point processes.

For modelling preferential sampling directly, it is common to take a model-based
approach, within a joint model framework for the observation process and sampling
process. Due to the computational challenges of fitting joint models, detecting prefer-
ential sampling or dependence between marks and points is, therefore, an important
issue. When there are covariates available, it is possible that when they are explicitly
included in the model they are sufficient to account for this relationship between
points and marks. The discovery of these covariates may justify the continued use
of standard methodologies [10]. As such, it is also important to find this set of infor-
mative covariates.

In this study, we present a test proposed by [11] to detect preferential sampling
and identify informative covariates that correct preferential sampling and compare it
with another test proposed by [12] to analyse the independence of marks and points.

Thepaper is organized as follows. InSect. 2,we analyse and compare themodel for
preferential sampling in Geostatistics and the model for intensity-dependent marks
in marked point processes. Section 3 is dedicated to the presentation of two tests to
detect the existence of preferential sampling. In Sect. 4, we show the application of
the previously described tests to a real dataset provided by the Instituto Português do
Mar e da Atmosfera (IPMA) which corresponds to the black scabbardfish catches in
the fishing grounds of the south zone of Portugal, from 2009 to 2013. Section 5 is
devoted to draw some conclusions and directions for future work.

2 Intensity-Dependent Processes

In this section, we present the models proposed by [1, 8] to deal with the situation
where there is stochastic dependence between the spatial process under study and
the sampling locations where it is observed. In addition, we analyse the relationship
that exists between these two models.

2.1 Geostatistical Model for Preferential Sampling

Diggle and colleagues [1] developed a model for geostatistical data collected in a
preferential way, where sampling locations and observations are jointly modelled
depending on a common unobserved random field. The sampling points and the
observations can also be considered as a marked point pattern [9].

The model for point locations is a log-Gaussian Cox process with intensity

Λ(xi ) = exp {α + βS(xi )} (1)
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where S is a stationaryGaussian Processwithmeanμs and varianceσ2
s andβ controls

the degree of preferentiality, the case β = 0 corresponds to a homogeneous Poisson
process with intensity exp(α).

A model for the data takes the following form:

Y (xi ) = S(xi ) + Wi (2)

where Y (xi ) denotes the measured value at the location xi and Wi is a Gaussian
random error with mean 0, variance τ 2 and i = 1 · · · n, where n is the number of
locations.

Diggle and colleagues [1] suggest a modelling approach that accounts for prefer-
ential sampling using likelihood-based inference with Monte Carlo methods but
Bayesian inference based on an SPDE-INLA approach has more recently been
used [13].

2.2 Log-Intensity Marked Cox Processes

In the context of marked point processes, [8] considered a log-intensity marked Cox
process, in which point density and mark sizes are closely coupled.

The simple point pattern is a log-Gaussian Cox process with intensity

Λ(xi ) = exp {S(xi )}

Conditional on Λ(xi ), the marks are provided by

Y (xi ) = a + bS(xi ) + Wi (3)

where a and b are model parameters.
If b < 0, then the marks are small in regions of high point density, while positive

b yields large marks in regions with high intensity.

2.3 Geostatistical Model for Preferential Sampling Versus
Log-Intensity Marked Cox Processes

The geostatistical model presented in Sect. 2.1 equals the marks of the log-intensity
marked Cox process up to parametrization with respect to the intensity of the point
process. Indeed, the marks (2) can be rewritten as

Y (xi ) = −α

β
+ 1

β
log(Λ(xi )) + Wi (4)

with β = 1
b , α = − a

b and Λ(xi ) is given by (1).
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The parameterization is amatter of interpretation of themodel. In the geostatistical
model, the interest is in the random field S(x), while in the log-intensity marked
Cox process model, the interest is in the mark. Parameter β controls the degree
of preferentiality; if β > 0, this means that more sampling locations are collected
in areas, where S(x) is expected to get higher values. In analysing marked point
patterns, β > 0 means that marks are larger in areas with high point density. Thus,
in the geostatistical model, β can be interpreted similarly as b in the log-intensity
markedCox process. The importance of this relationship for this work is that it allows
the use of methodologies developed in the context of point processes for the analysis
of preferential sampling.

3 Test to Detect Preferential Sampling or
Intensity-Dependent Marks

Not taking preferential sampling into account whenever it is present leads to biased
results. As such, the application of a test that allows to identify its existence becomes
of primordial importance in the analysis to be carried out.

3.1 Nearest Neighbour Test

Watson [11] developed a general test for the presence of preferential sampling. He
uses the nearest neighbour distances (or averaged K-nearest neighbour distances for
some chosen integer K ) between points as a way to measure the local degree of clus-
tering. In case of preferential sampling, a significant correlation should exist between
the nearest neighbour distances and the observed response values at each of sampled
locations. He computes Spearman’s rank correlation coefficient between estimates
of S(x) at observed locations and the mean nearest neighbour distances. The method
primarily requires that one is able to predict the values of S(x), [2]. Preferential
sampling often appears as a spatial clustering of locations chosen to observe and this
test directly targets this excess clustering. A point process is fitted to the observed
locations to capture the true sampling process under the null hypothesis of no pref-
erential sampling. Then, Monte Carlo realizations of the point process under the
null hypothesis are generated and an empirical p-value associated with any desired
test statistic can be computed. If a stronger correlation is observed in the real data
compared with theMonte Carlo samples, then evidence for preferential sampling has
been found. The ranked nearest neighbour distances between the sampling locations
provide a way to measure the local magnitude of clustering, [2].

A set of covariates can condition the choice of sampling locations, and these
covariates can also be associated with the underlying process being modelled. When
this occurs, the inclusion of the necessary covariates in the model can partially



128 A. Monteiro et al.

remove the effects of the preferential sampling [10]. The test can also be adjusted for
covariates, allowing researchers to discover whether a given covariate is sufficient to
control preferential sampling.

The nearest neighbour test can be used when the responses (marks) are non-
Gaussian and even non-continuous and is available on the R package PStestR. For
the algorithm and more details about the test, see [10].

3.2 Schlather Test

The independence of marks and points can be tested as suggested by [12]. They
developed two Monte Carlo tests and their null hypothesis assumes that the data
locations are a realization of a point process, the marks of the points are the values
of a realization of a random field and they are independent processes.

To detect deviations from the null hypothesis, the authors define two characteris-
tics of marked point processes, denoted E(r) and V (r). These represent respectively
the conditional expectation and conditional variance of amark, given that there exists
another point of the process at a distance r . Under the null hypothesis, E and V
should be constant. This approach requires the assumption of Gaussian observations
and does not generalize to non-continuous marks. To assess deviations of E and V
from constant function in this paper, we will use Envelope Tests. A brief description
of envelope tests and global envelope tests is presented in the next subsection.

3.3 Envelope Tests

Envelope tests, proposed by [14], are Monte Carlo significance tests [15], based on
some summary function F(r), where r denotes distance. It is a common situation
that distribution of F(r) is unknown, and the use of Monte Carlo simulations is the
only way to test a hypothesis [16].

The simulation envelope method works as follows. First, simulate s marked point
patterns independently according to the null hypothesis of independence. Then, cal-
culate F̂(r) for each simulated marked point pattern. Among the summary functions
F̂2(r), · · · , F̂s+1(r) obtained, the kth largest and smallest F̂i (r) for each r in some
range of scales [rmin, rmax ] are taken to form the upper Fup(r) and lower Flow(r)
envelopes. If the summary function F̂1(r) obtained for the data is not completely
between the envelopes, there is evidence against the null hypothesis.

However, the type I error probability is high, and this is related to the so-called
multiple testing problem [17], because, in the envelope test, the null hypothesis is
tested simultaneously for many distances r . Increasing the number of simulations
from which the envelopes are calculated is a way to obtain a reasonable type I error.
Grabarnik and colleagues [16] suggest carrying out 999 simulations.
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The results for envelope tests are displayed in a graphicalmanner, but it is desirable
to use them as a proper statistical test. In this way, we use a global envelope test,
introduced by [18], a statistical test that rejects the null hypothesis if the observed
function F̂1(r) is not completely inside the envelope. This test provides p-values and
a graphical representation. The 100(1 − α)% global envelope complements the test
result given by the p-values.

Global envelope tests are available in the R libraryGET,with detailed descriptions
in [19].

4 Data Example

We illustrate the previously described tests on a real data provided by the Instituto
Português doMar e daAtmosfera (IPMA) on black scabbardfish catches in the fishing
grounds of the south zone of Portugal, from 2009 to 2013.

4.1 Data

A subset of the original data described in [20] was taken for this data analysis: the
fishing area with latitude minor than 39.3◦, captures that occurred from September
to February for the years between 2009 and 2013, resulting in a total set of 732
observations. The data not only include the Black Scabbardfish (BSF) catches (in
kg) by a fishing haul of the longline fishing fleet but also include the location of each
fishing haul (Fig. 1), the corresponding vessel identification and the depth of the
locations where the fish was captured. A total of 12 vessels were grouped into two
levels according to their tonnage (low and medium) that relates to the cargo capacity.

4.2 Application of Nearest Neighbour Test to BSF catches

The nearest neighbour test was applied to BSF catches. Initially, the presence of
preferential sampling is tested without any covariate. A Box–Cox transformation of
the catches was used

BSF∗ = 2
√
BSF − 2

The R-INLA package with the SPDE approach is used to fit a standard geostatis-
tical model. Following [2], PC priors were placed on the approximate Matern field
parameters. A prior probability that the spatial range is below 30km was set to 0.2,
and the prior probability that the standard deviation of the field is above 10 was set
to 0.01. Empirical p-values were computed using 1000 Monte Carlo samples. The
empirical pointwise p-values of this test, for different values of K , where K is the
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Fig. 1 Locations of the BSF catches

Table 1 Table of empirical p-values

K 1 2 3 4 · · · 11 12 13 14 15

p-
value

0.001 0.001 0.001 0.001 · · · 0.002 0.002 0.002 0.002 0.003

number of neighbours considered, are shown in Table 1. Strong evidence of prefer-
ential sampling is found. A researcher would now have to decide whether to pursue
a sufficient set of covariates or fit a joint model, [2].

Tonnage group (medium or low) was taken as an informative covariate and it was
then investigated if preferential sampling remains unaccounted. Based on Fig. 2, to
obtain the covariate in a fine grid, we considered that data points with latitude greater
than or equal to 4280 were classified as corresponding to vessels of medium tonnage,
with latitude less than or equal to 4250 are classified as low tonnage and points with
latitude between 4250 and 4280 are random assignment of medium tonnage and low
tonnage, respectively, according to the proportion of boats observed in that area.

The empirical pointwise p-values of this test are shown in Table 2. Preferential
sampling is no longer detected after this adjustment. Tonnage group covariate has
explained preferential sampling, so standard methods can be used.
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Fig. 2 Tonnage group, red—low; green—medium

Table 2 Table of empirical p-values

K 1 2 3 4 5 6 7 8 9

p-value 0.702 0.724 0.839 0.872 0.897 0.920 0.930 0.942 0.947

We also analysed depth as an informative covariate andwhether its inclusion in the
model was able to explain preferential sampling. The empirical pointwise p-values
of this test are shown in Table 3. Depth fails to explain the observed preferential
sampling seen in the data.
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Table 3 Table of empirical p-values

K 1 2 3 4 · · · 9 · · · 29 · · · 40

p-
value

0.001 0.001 0.001 0.001 · · · 0.003 · · · 0.002 · · · 0.002

4.3 Application of Schlater Test to BSF catches

Schlater Test was applied to BSF catches. E(r) and V (r) functions were built using
Emark and Vmark functions in R-library spatstat. Options “isotropic”, “Ripley” or
“translate” specify the edge corrections to be applied. Ripley’s isotropic correction
is implemented only for rectangular and polygonal windows. In Fig. 3, we present
E(r) andV (r) functions forBSF catches. E(r)iso andV (r)iso represent, respectively,
the estimates of functions E(r) or V (r) obtained by the edge correction isotropic.
E(r)trans and V (r)trans represent, respectively, the estimates of functions E(r) or
V (r) obtained by the edge correction translate. Eiid(r) and V iid(r) represent, respec-
tively, constant value of E(r) or V (r) when the marks attached to different points
are independent. If the marks and points are independent then we expect both E(r)
and V (r) to be constant as the horizontal line Eiid(r) and V iid(r), respectively.

Fig. 3 E(r) and V (r) functions for BSF catches
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Fig. 4 Global envelope tests
for E(r) and V (r) functions

To assess deviations of E and V from constant function, we use global envelope
tests. The results are presented in Fig. 4. Envelope tests were based on 999 simula-
tions, the grey areas show the 95% global envelopes, the solid black line is the data
function, F̂1(r), and the dashed line represents the (estimated) expectation. For E(r),
we obtained p-value = 0.002, and for V (r), we obtained p-value = 0.003; thus, the
null hypothesis was rejected at the significance level 0.05 by this test. Graphically,
we can see that data function has not completely covered the envelopes in none of
the situations. In this way, we reject the independence of marks and points.

To analyse the Tonnage group covariate effect, we construct E(r) and V (r) func-
tions and the respective global envelope tests to data with only medium tonnage
vessels, Fig. 5, and with only low tonnage vessels, Fig. 6. For data with only medium
tonnage vessels, the null hypothesis was rejected at the significance level of 0.05 but
was not rejected at the significance level of 0.01. Only for E(r), data function was in
a small part outside the envelopes. In this way, we accept the independence of marks
and points for data with only medium tonnage vessels. In the case of data only with
low tonnage vessels, the null hypothesis was rejected, for both E(r) and V (r) and, in
this case, it seems to exist dependence between marks and points. We think that these
results are possible due to a poor categorization of the Tonnage group covariate.
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Fig. 5 Global envelope tests
for E(r) and V (r) functions,
for medium tonnage vessels

5 Final Remarks and Future Work

Themain objectives of thisworkwere centred on the analysis of how the geostatistical
model can be understood from the point of view of marked point processes, namely
considering log-intensitymarkedCox processes, and the presentation of tests capable
of identifying the existence of dependence between marks and the point process.
Furthermore, we show that the preferential sampling model proposed by [1] in the
geostatistics context equals the log-intensity marked Cox processes in the context of
point processes, up to parametrization.

The two tests presented in Sect. 3 were applied to a set of real data related to BSF
catches in the south zone of Portugal. Both tests revealed the existence of dependence
between the marks and the point process. The existence of this dependency implies
the use of more complex models, such as the joint model proposed by [1]. In an
attempt to avoid the use of this type of technique, we looked for a set of informative
covariates capable to explain the dependence between marks and points. The nearest
neighbour test revealed that the covariate Tonnage group is sufficient for controlling
the preferential sampling. On the other hand, depth fails to explain the observed
preferential sampling seen in the data. Schlater test corroborated the conclusion
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Fig. 6 Global envelope tests
for E(r) and V (r) functions,
for low tonnage vessels

obtained in the nearest neighbour test that the analysed fishery data present depen-
dence between marks and points. However, the covariate Tonnage group, namely in
the case of low tonnage vessels, fails to explain the observed preferential sampling.
Other categorizations of this covariate can be analysed to see if the results change.

As a goal for future research, we plan to investigate the use of constructed covari-
ates that are able to explain preferential sampling. Constructed covariates are sum-
mary characteristics defined for any location in the observation window reflecting
spatial behaviour such as local interaction or competition. We intend to consider a
construct covariate based on the distance to the kth nearest point. The objective is that
the inclusion of this covariate is able to explain the dependence existing between the
marks and the points. If this dependence is no longer detected after this adjustment,
then we can use standard statistical techniques.
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Geostatistical Sampling Designs Under
Preferential Sampling for Black
Scabbardfish

Paula Simões , Maria Lucília Carvalho , Ivone Figueiredo ,
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Abstract In Portugal, the spatial distribution and abundance of the black scabbard-
fish (BSF) is mostly unknown, the existing information relying on data from com-
mercial fisheries. Available data refers to areaswhere fisherman expect to have higher
catches of the species, resulting in fishing locations that are not selected randomly
but preferentially. The BSF captures in Portuguese waters were previously mod-
elled, taking the sampling preferentiality into account, using a Bayesian approach
and INLAmethodology, considering stochastic partial differential equations (SPDE)
for geostatistical data, jointly with a Log-Cox point process model. Based on this
work, the aim of this study is to construct a new survey design to improve the BSF
capture estimates and to analyse the effect of preferential sampling on the choice of
new sampling locations and its influence in the sampling design choice. Within this
approach, different design classes are investigated, namely random, simple inhibitory
and adaptive geostatistical sampling designs, regarding the problem of spatial pre-
diction, in order to achieve the optimal BSF design towards the objective of the
analysis.
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1 Introduction

Preserving species and habitats depends on a large scale of knowing where they
occur. In order to map, the distribution of plants and animals is usually carried out
field surveys, but despite this the full distribution of species often remains unknown
as field surveys cannot cover the entire region or area considered. Improving knowl-
edge about biodiversity and species abundance has become a scientific and societal
important issue. On the Portuguese coast, the spatial distribution and abundance of
the highly appreciated species black scabbardfish (BSF) is mostly unknown, relying
mainly on information from commercial fisheries. Recent advances in statistics (and
computing) presently allow a comprehensive mapping of the species spatial distri-
bution and abundance using species distribution modelling. This approach is being
widely used in ecology, at a terrestrial and maritime level, for management and con-
servation purposes, standing out the spatial models, in particular the geostatistical
models. The main objective is to predict where a species is likely to be present in
unsampled locations, using available information about the species occurrence and
about environmental covariates in a finite number of locations. Standard geostatis-
tical methodology assumes that sampling locations are stochastically independent
over the observed region and sometimes such assumption may be unrealistic. If the
sampling process that determines the data locations and the species observations are
not independent, i.e. sampling locations are deliberately chosen in areas where the
values of the species of interest are thought likely to be (low or high depending on
the problem), which is referred to as preferential sampling [1], standard geostatis-
tical methods yield biased results. The chosen species observation sites should be
accounted for in the modelling process of the preferentially sampled data. Therefore,
abundance estimation using standard geostatistical methods is not the most appro-
priate approach. Since commercial fishing takes place where fisherman expects to
find the species, leading to the choice of sampling locations that are not random but
preferentially selected, a species distribution modelling that address this question to
the black scabbardfish is required. Considering the previous work [2], which has per-
formed species distribution modelling of BSF captures using geostatistical methods
that has taken preferentiality into account, different design classes are outlined to
reach the most suitable sampling design for BSF species.

2 Methods

2.1 Geostatistical Model Under Preferential Sampling

The preferential sampling model is considered as a two part model that share infor-
mation [3], first in terms of the observed locations (s1, ..., sn), assumed to come
from a non-homogeneous Poisson process with intensity λ(s). The intensity func-
tion measures the average number of events per unit of area based on the point
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pattern that is responsible for the occurrence of the events, in the considered region.
A Log-Gaussian Cox Process (LGCP) is assumed for this. Under this assumption it is
possible to model the log intensity of the Cox process, a Poisson process with diver-
sified intensity, with a Gaussian process that captures the spatial effect. Secondly the
species characteristic (abundance/captures) y is assumed to follow an exponential
family distribution, whose mean is related with the spatial term using a link func-
tion g(.), being the spatial term shared with the LGCP. To allow differences in scale
between the abundances/captures and the LGCP, a scale parameter (β) is consid-
ered in the spatial term [3]. Inference can be made using INLA (Integrated Nested
Laplace Approximation), under the new approach considering stochastic partial dif-
ferential equations (SPDE) models for geostatistical data. This alternative uses an
approximate stochastic weak solution of a Stochastic Partial Differential Equation
that is a continuous Gaussian field with a Matérn covariance structure [4, 5]. This
approximation given by the finite element approach enables to deal with non-regular
areas allowing flexibility on the choice of the required mesh of the study region.

The model is then given by (without covariates):

Yi |S ∼ Normal(μi , τ
2)

Yi |(S, X = x)] = β
y
0 + βS(xi ) + ei

e ∼ N (0, τ 2)

λi = exp(β pp
0 + S(xi ))

(1)

where the observed locations (x1, ..., xn) come from a non-homogeneous Poisson
process with intensity λi , a Log-Gaussian Cox Process (LGCP) is assumed for
X |S, β

pp
0 is the correspondent intercept, S(xi ) spatial effect of the model, where

the observed locations are modelled by a LGCP, i = 1, ..., n (index of i-location).
The response, Yi , belongs to the exponential family distribution, S(x) is a sta-

tionary Gaussian Process with mean zero, variance σ2, and a Matérn correlation
(correlation shape parameter fixed k = 1.5, correlation range φ and nugget variance
τ 2), S(x) ∼ N (0,Σ), with

ρ(u) = Corr(S(x), S(x ′)), u = ‖x − x ′‖,

ρ(u,φ,κ) = {2k−1Γ (k)}−1( u
φ
)k Kk(

u
φ
)),

(2)

where φ > 0 is a scale parameter that controls the rate at which correlation decays
with increasing distance, Kk(.) is a modified Bessel function of order k > 0, and
S(x) ism times mean square differentiable if k > m, being the correspondent vector
of parameters given by θ = (β

pp
0 ,β,β

y
0 , τ

2,φ, k,σ2) [6].
In terms of the referred scale parameter β on the shared random field effect, if

β > 0 the response values tend to be higher where there are more observations, if
β < 0 the response values are lower where there are more observations and in the
case that β = 0 corresponds to non-preferentially sampling [6, 7].
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2.2 Sampling Designs

The sampling design problem assuming an underlying stochastic process with a
stationary covariance structure, a common assumption on geostatistical applications,
is considered in this section and different design classes are presented, namely simple
inhibitory and adaptive geostatistical sampling designs.

Inhibitory DesignChipeta [8] and Chipeta et al. [9] address the problem of choosing
spatial designs for investigating an unobserved spatial phenomenon, S, in terms of
spatial prediction,while taking into account the need to estimate covariance structure.
They propose a class of inhibitory sampling designs for accurate spatial prediction
with estimated covariance model parameters [8, 9].

An inhibitory design consists of a random design that generates spatially regular
configurations points in order to deliver efficient mapping of the complete surface
S(X), over the region of interest, including two specific classes, the simple inhibitory
design (SI) and the inhibitory design with close pairs (ICP).

Simple inhibitory designs - S I (n, δ)Asimple inhibitory design belonging to a class of
non-adaptive sampling design, for accurate spatial prediction with estimated covari-
ance model parameters, consists of n locations chosen at random in domain D, with
the constrain that no two locations are at a distance of less than some value δ. It is
considered that all designs X that meet the inhibitory constrain are equally likely to
be picked. Notation SI (n, δ) is used for different designs with fixed sample size n
and varying δ.

This class of designs considers the average prediction variance (APV) as perfor-
mance criterion:

APV = ∫
S V ar{S(x)|Y }dx . (3)

For fixed sample size n, region D, and an assumed geostatistical model (with a
specific numerical value for its vector of parameters θ), the algorithm is numerically
optimized to determine the combination that minimize the design criterion (APV).

The proportion of the total region covered by n non-overlapping disks of diameter
δ is defined as the packing density of the design, ρ = nπδ2

4|D| .
The formal constructions of an SI (n, δ) design on a region D proceeds as follows

[8, 9]:

1. Draw a sample of locations xi , i = 1, ..., n completely at random in D;
2. Set i = 1;
3. Calculate the minimum, dmin of the distances from xi to all other x j in the current

sample;
4. If dmin ≥ δ, increase i by 1 and return to step 3 if i ≤ n, otherwise stop;
5. If dmin < δ, replace xi by a new location drawn completely at random in D and

return to step 3.
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Adaptative Geostatistical Design An adaptive design strategy purposely built to
deliver efficient mapping of the complete surface S(x), within a model-based geo-
statistics framework and considering a design criterion that ensures that data are
collected only from locations that will deliver useful additional information of the
study region is also proposed by Chipeta et al. [10]. This class of adaptive designs
allows to define new sampled locations, defined single or in batches, or over time
that depends on information obtained from previous designs in order to optimize
data collection and identify critical areas where interventions can have substantial
impact on the purpose of analysis.

Adaptive sampling enables efficient identification of hotspots for which data are
collected over a period of time and later sampling locations can depend on data
collected from earlier locations. According to Chipeta [8] and Chipeta et al. [10]: “
this kind of design is well suited to spatial mapping studies in low resource settings”
where uniformly precise mapping may be expensive and the priority often identifies
critical areas where interventions can have the greatest impact.

An adaptive design strategy proceeds as follows [8, 10]:

1. Specify the finite set, X∗ say, of n∗ potential sampling locations xi ∈ D;
(Any point x ∈ D may be a potential sampling location, in which case we take
X∗ to be a finely spaced regular lattice to cover D)

2. Use a non-adaptive design to choose an initial set of sample locations, X0 = {xi ∈
D : i = 1, ..., n0};

3. Use the corresponding data Y0 to estimate the parameters of an assumed geosta-
tistical model;

4. Specify a criterion for the addition of one or more new sample locations to form
an enlarged set X0 ∪ X1.

5. Repeat steps 3 and 4 with augmented data Y1 at the points in X1;
6. Stop when the required number of points has been sampled, a required perfor-

mance criterion has been achieved or no more potential sampling points are avail-
able.

In step 2, any initial design can be considered, in addition to a suitable addition
criterion in step 4, it is also necessary to choose the number and locations of points
in the initial design X0, and the number to be added at each subsequent stage, batch
b.

For the present study, a simple inhibitory design, SI (n0, δ), is used to obtain the
earlier locations x1, ..., xn0 , and the batch adaptive sampling will be sets of b > 1
locations chosen, with each set (xn1+1, ..., xn1+b) depend on data from earlier n1
locations.

The prediction variance, PV (x), is considered as the selection design criterion.
For the predictive target T = S(x) at a particular location x , given an initial set
of sampling locations X0 = (x1, ..., xn0), the available set of additional sampling
locations are A0 = X∗ \ X0. For each x ∈ A0 the prediction variance, PV (x), is
Var(T |Y0) = Var(S(x)|Y0). For example, one ormore new sample locations would
be the elements of X∗ with the largest values of PV (x) amongst all points not already
included in X0 [8, 10].
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Notation AD(n0, n, δ, b) is used with fixed initial sample size n0, with the con-
strain that any two locations are at a distance of less than some value δ, with a batch
of b new locations in order to obtain the final proposed design of n locations.

3 Results

3.1 BSF Data

The data considered in this study were provided by the Portuguese Institute of Sea
andAtmosphere (IPMA). It is a comprehensive data set of geo-referenced captures of
black scabbard fish from commercial fisheries, along the Portuguese coast, between
2002 and 2013. Since fishing takes place where fisherman expects to find large
amount of this species, preferential sampling should be accounted. Several other
variables have also been registered along with the captures as, for example, the
speed, the vessel tonnage and identification, and also the depth at which the capture
has been made.

A subset of the original data was taken for this data analysis: the fishing area with
latitude minor than 39.3◦, captures that have occurred from September to February
for the years between 2009 and 2013, resulting in a total set of 732 observations. The
locations of the data are displayed in Fig. 1.

Original data follows approximately a Gamma distribution, BSF ∼ Gamma, a
Box-Cox transformation of BSF data was carried out, according with the expres-
sion Y = BSFλ−1

λ
, with λ = 1

2 , so that the response follows approximately a Normal
distribution, Y = 2

√
BSF − 2 ∼ Normal.

Fig. 1 BSF data locations
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Fig. 2 Box-Cox transformation of BSF data

The transformed variable, Y , as a minimum value of 16.22, a first quartil of 56.14,
median value of 68.80, the 3rd quartil of 80.53 with a maximum value of 121.74 and
mean 69.02 (see Fig. 2).

3.2 Model Fitting Under Preferential Sampling

This section performs species distribution modelling that address the question of
the sampling preferentiality for black scabbardfish, since commercial fishing takes
place where fisherman expects to find the species, leading to the choice of sampling
locations that are not random but preferentially selected.

The BSF captures in Portuguese waters were previously modelled, taking the
sampling preferentiality into account, using a Bayesian approach and INLAmethod-
ology, considering stochastic partial differential equations (SPDE) for geostatistical
data jointly with a Log-Cox point process (LGCP) model [2].

For appropriate inference of the geostatistical model under preferential sampling
using the SPDE approach, the first step is the triangulation of the considered spatial
domain by building a mesh that covers the study region, D, the constrained refined
Delaunay triangulation. The SPDE approach for point pattern defines the model at
the nodes of the mesh, in order to fit the LGCP model, these points are considered as
integration points. Figure 3 shows the consideredmesh and corresponding integration
points.
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Fig. 3 Considered Mesh for BSF data

The preferential sampling model, in terms of the response, for the i-th spatial
point location, the observation Yi is modelled as

Yi ∼ N (ηi ,σ
2
e ), i = 1, .., n,

where n is the total number of fishing hauls, σ2
e is the nugget effect. The response

mean is defined as
ηi = β

y
0 + βSi + ei ,

where e ∼ N (0,σ2
e ).

Si is the i-realization of the latent Gaussian Field (GF) S(x) with Matérn covari-
ance function shared with the LGCP and scaled by β. S(x) = ∑G

g=1 Aig S̃g , where S̃g
are zero mean Gaussian distributed weights; Aig is the generic element of the sparse
n × G matrix A that maps the GMRF S̃ from the triangulation vertices of a mesh to
the n locations (x1, ..., xn) [6, 7, 11].

The observed locations (x1, ..., xn) come from a non-homogeneous Poisson pro-
cess with intensity λi , a Log-Gaussian Cox Process (LGCP) is assumed for X |S, β pp

0
is the correspondent intercept.

It was considered in the point process with intensity λi the covariate depth (D),
having

λi = exp(β pp
0 + β1Di + Si ),
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Table 1 Parameter estimates for BSF preferential model

Parameter Mean Sd 0.025 0.0975

β
pp
0 −10.710 2.781 −17.360 −6.389

β1 −0.002 0.001 −0.003 −0.001

β
y
0 62.253 2.681 55.749 66.193

Precision of
Gaussian
observations

0.003 0.000 0.003 0.004

Range (r ) of
spatial field

39.128 12.268 20.852 68.441

Stdev (σ) of
spatial field

3.784 1.316 1.916 7.006

β 1.237 0.237 0.764 1.698
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Fig. 4 Posterior predicted mean of the spatial effect in the BSF preferential model

considering penalized complexity priors (PC Priors) for the range r and for the the
marginal standard deviation σ (of the spatial effect) [11],

P[r < 30] = 0.2,

P[σ > 10] = 0.01.

Parameter estimates for the selected model (BSF preferential model) are sum-
marized in Table 1, and the corresponding posterior predicted mean and standard
deviation of the spatial effect are represented in Fig. 4. This model has an estimated
value of β of 1.237, so β > 0 the response values are higher where there is more
observation locations.
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Fig. 5 BSF captures estimates at considered unobserved potential sampling locations

The construction of a new survey design, for the BSF captures estimates, requires
predictions to be made at considered unobserved locations, named as potential sam-
pling locations. These locations are obtained through the triangulation of the consid-
ered spatial domain, taking into account the chosen mesh. The estimated values for
Y in the N = 612 spatial prediction coordinates (potential sampling locations) are
represented in Fig. 5.

3.3 Sampling Designs for Black Scabbardfish

The proposed design strategies are implemented in order to achieve the optimal BSF
sampling design under preferential sampling, and are presented in this section. The
first stage involves deciding on the initial sampling design, a non-adaptive design.
It was considered BSF simple inhibitory design, SI (45, 2), that consists of n = 45
locations chosen at random in D, fromN= 612 spatial prediction coordinates (poten-
tial sampling locations), with the constrain that no two locations are at a distance of
less than 2 km. It as a packing density of ρ = nπδ2

4|D| = 0.03, with |D| = 4241.124, and
an APV = 6.13 (see Fig. 6). Once data have been collected from sample locations
in the chosen design the second stage is to analyse the data in order to reestimate
model parameters, within our assumed geostatistical model without preferentiality,
where ηi = β

y
0 + β1Di + Si + ei is the correspondence response mean.

In Fig. 7 are represented the correspondent posterior predicted mean and standard
deviation of the spatial effect, for BSF Simple Inhibitory Design new model fitting.
Note that the minimum mean square error predictor of T for any given design X
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Fig. 6 BSF simple inhibitory design, SI (45, 2). Green points denote BSF data locations
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Fig. 7 Posterior predicted mean and standard deviation of the spatial effect, for BSF Simple
Inhibitory Design new model fitting under SI (45, 2)

in D, MSE(T̂ ), with T a predictive target, where T̂ = E[T |Y ; X ] is considered as
a generic measure of predictive accuracy of a design X . The selected design as an
MSE = 3.67.

The third stage consists in to predict all unobserved potential sampling locations,
considering the non-adaptative design SI (45, 2), using the geostatistical model with-
out preferential sampling. The estimated values are represented in Fig. 8.
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Fig. 8 BSF simple inhibitory design SI (45, 2) predictions for potential sampling locations; Green
points denote BSF data locations

Fig. 9 BSF final design
proposal, the black dots
(n0 = 45) denote the initial
sampling locations and the
red dots (b = 15) the
adaptive sampling locations
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Geostatistical Preferential Sampling - Workflow

Re-Estimate Assumed
Geostatistical Model
without preferentiability

Real Data
Model parameters
Estimation using the

assumed geostatistical
model considering

preferentiability

Predictions of
S(x) and to all
unobserved

potential
sampling
locations

1

2 Non-Adaptative
geostatistical

design

Sample selection
criterion - APV

Performance 
criterion – MSE on a 
predictive target;

BSF Initial Design

Predictions of
S(X) and to all
unobserved

potential
sampling
locations

4

Adaptative
geostatistical

design for aditional
samples

Sample selection
criterion - PV

3

BSF Final Design

Repeat the process, if there is need to 
achive some required preditive accuracy;

BSF Initial Design

New 
Data

Fig. 10 BSF sampling design workflow

The fourth stage is the implementation of adaptive sampling if there is a need
for additional samples to achieve the required predictive accuracy. BSF adaptative
geostatistical design, AD(45, 60, 2, 15), has been considered with n0 = 45, n = 60,
b = 15, δ = 2 , and a corresponding ρ = 0.04 and APV = 6.12. The constrain that
no two locations are at a distance of less than 2 km was kept. The first final design
proposal is produced and represented in Fig. 9, black dots (n0 = 45) are the initial
sampling locations and the red dots (b = 15) are adaptive sampling locations added
after analysing data from the initial design.

In order to resume the proposed steps, a scheme of the workflow is presented in
Fig. 10.

4 Discussion

Regarding the problem of constructing a new survey design to improve the BSF
capture estimates, this study takes a first approach/proposal for implementing a BSF
sampling design. The previously modelling of BSF captures in Portuguese waters
is taken into account. BSF captures were modelled using a Bayesian approach and
INLA methodology, considering stochastic partial differential equations (SPDE) for
geostatistical data jointly with a Log-Cox point process model, taking the sampling
preferentiality into account.

Different design classes are investigated, namely simple inhibitory and adaptive
geostatistical sampling designs. Regarding the problem of spatial prediction, the pro-
posed approach involves repeated estimation and prediction stages. Several sampling
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rounds can be implemented allowing for spatial constraints to change at each stage.
Required inputs include predictions at considered unobserved potential sampling
locations and a sample selection criterion.

In terms of generating adaptive sample locations, given the initial or existing sam-
ple locations (usually a simple inhibitory design), the prediction variance criterion
is used to determine new locations that can be added to the existing sample in an
adaptive manner. In this stage, is also important to explore several issues in a future
work, namely the selection of the initial sampling locations n0 of the design, and
the number of locations to be added, at each subsequent stage (batch b), or even to
explore other possible values for the constrain that no two locations are at a distance
of less than some value δ.

A measure to choose between different initial and final proposed designs is also
necessary. This paper presents one first possible combination of choices, for proposed
sampling methodology, however others can be implemented and compared with
each other. Developing a comparative study of alternative combinations of sampling
designs choices may constitute the next phase in the present analysis, in achieving
the ideal design for BSF species.

With regard to the question of understanding the effect of preferential sampling
in determining new sampling locations and its effect in the BSF sampling design,
it is necessary to consider other initial available modelling options of BSF captures
assumed model (taking preferentiality into account). For example, the covariable
group of tonnage could be considered in themodelling approaches.On the other hand,
it is necessary to investigate the assumed geostatistical model for BSF captures (not
taking preferentiality into account) for predictions at unobserved potential sampling
locations. Thiswill enable to compare and evaluate the effect of preferential sampling
and its influence in the sampling design choice as well as the corresponding impact
on its performance criteria.

Other important issues in this study, for future approach, will be to carry out the
development of a new survey design to improve the BSF capture estimates without
BSF transformation. The sampling design problem, under preferential sampling, for
BSF captures should be also addressed considering Gamma distribution.

It is considered that this first approach is an important step towards solving the
problem of the need to build mathematical/statistical models that take into account
the problem of preferentiality, making it possible to produce maps of abundance
that are more consistent and less biased, that will allow the responsible institutions
to rely on concrete data to define more precise quotas, ensuring the sustainability
of commercial fisheries and protecting the biodiversity of species that are of high
interest for consumption.
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Modeling Residential Adoption of Solar
Photovoltaic Systems

Carolina Goldstein, José Miguel Espinosa, and Regina Bispo

Abstract The world is on an urgent transition to renewable energies. Photovoltaic
(PV) solar energy is the most viable green energy source to be produced at the
domestic level, allowing every individual to contribute. Understanding the factors
that influence the adoption of domestic solar energy, how it changes throughout the
country and how spatial dependent factors contribute to the promotion of this tech-
nology is of the utmost importance to stimulate adoption. As to this day, to the best of
my knowledge, these are not yet known. This study aims to contribute to channeling
efforts to where adoption is more likely, ultimately accelerating Portugal’s energy
transition. Hence, the goal of this study is to build a spatial model that estimates
for each spatial unit in Portugal the probability of individuals adopting domestic
PV systems. The study uses data related to past solar PV installations as well as
socioeconomic and demographic data from public sources. An exploratory spatial
analysis including the study of spatial correlation across municipalities confirmed
the importance of spatial considerations. Three dependent variables were consid-
ered sequentially: installations (binary), number of panels installed (discrete), and
installed power (continuous). To model the latter, it being the main focus of the
study, eight models were compared: linear regression (OLS), spatial lag (SAR), spa-
tial error (SEM), Kelejian-Prucha (GSM), spatial lag of the explanatory variables
(SLX), spatial Durbin (SDM), spatial Durbin error (SDEM), and Manski models. It
was concluded that socioeconomic factors do spill over to neighbor locations and in

C. Goldstein (B)
MSc in Analytics and Big Data Engineering, Department of Computer Science and Department of
Mathematics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de
Caparica, 2829-516 Caparica, Portugal
e-mail: c.goldstein@campus.fct.unl.pt

J. M. Espinosa
Tech Garage, IT & Digital Department. Galp Energia, SGPS, S.A., 1600-209 Lisboa, Portugal

R. Bispo
NOVAMATH Center for Mathematics and Applications, Department of Mathematics, NOVA
School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516
Caparica, Portugal
e-mail: r.bispo@fct.unl.pt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bispo et al. (eds.), Recent Developments in Statistics and Data Science,
Springer Proceedings in Mathematics & Statistics 398,
https://doi.org/10.1007/978-3-031-12766-3_12

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12766-3_12&domain=pdf
http://orcid.org/0000-0002-6723-2557
mailto:c.goldstein@campus.fct.unl.pt
mailto:r.bispo@fct.unl.pt
https://doi.org/10.1007/978-3-031-12766-3_12


154 C. Goldstein et al.

that way influence solar PV adoption, but also that unobserved characteristics result
in similar decisions in nearby municipalities. The SDEM was found to be best to fit
the data and a final map representing the likelihood of adoption across the different
municipalities in Portugal was produced according to its estimations.

Keywords PV system adoption · Social effects · Spatial modeling · Technology
diffusion

1 Introduction

Rethinking the use of energy stemming from fossil sources and transitioning to
renewable energies is increasingly becoming a necessity. Photovoltaic (PV) energy,
attained through the installation of solar panels, is the most viable of being produced
at the level of the individual consumer for domestic use. There are companies devel-
oping highly advanced technologies to identify the energetic potential of homes and
to install these solar panels. However, inquiring about potential customers without
knowing their predisposition ends up wasting many resources.

The overall goal of this project is the construction of a spatial model that estimates
for each spatial unit, with the finest possible granularity, the probability of adopting
domestic solar PV systems. In doing so, companies will be able to better channel their
selling efforts to locations where adherence is more likely, ultimately accelerating
Portugal’s transition to renewable energies.

More specifically, using data related to past solar panel installations, the first goal
is to describe the geographical distribution of the current installations across Portugal.
Furthermore, using socioeconomic and demographic data from public sources, the
goal is to cross this information and characterize each region, in order to understand
the factors that may explain the decision of installing solar panels. The ultimate goal
is to build a map representing the adoption likelihood for each spatial unit.

This study is structured as follows: in the first section the topic is put into context
and the goals of the project are defined. The motivations for this work are also
presented in this chapter, as well as a review of the literature on similar problems. In
Sect. 2 the available data that are to be used are presented, alongwith their description,
characterization, and preprocessing. This section also presents the statistical methods
to be used, both to perform an initial exploratory analysis and to build different model
specifications, while explaining the logic that resulted in the presented decisions. In
Sect. 3, the results of the exploratory analysis and the different regression models
are shown and described. In Sect. 4, the results are discussed and conclusions are
presented.
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1.1 Decision-Making in PV Technology Adoption

Schelly [1] explores the decision-making process of individuals regarding energy
technology adoption through interviews with domestic PV panel owners and indi-
cates three models to explain adoption: environmental motivations, economic ratio-
nality, and social spillover. Richter [2] studied the diffusion of solar PV technology in
theUnitedKingdom through a panelmodel with time-varying fixed effects and found
that higher educated neighborhoods installed more PV systems than neighborhoods
with, on average, lower educated populations. The author also found a correlation
between the number of systems installed in an area and the number installed three
months later. Hence, Richter [2] concludes that higher educated neighborhoods may
be more inclined to promote the spread of technology within their neighborhoods.
Bollinger and Gillingham [3], who studied the diffusion of solar PV panels in Cali-
fornia with a similar panel model, also found significant evidence that the decision
to install PV systems may be influenced by the neighbors’ previous decision to
install. Graziano and Gillingham [4] examined the diffusion of this technology in
Connecticut in a similar way and found that demographic and socioeconomic vari-
ables significantly influenced PV adoption and that higher numbers of previously
installed systems also significantly increased the number of later adoptions nearby.
Schelly and Letzelter [5] examined the decision factors that influence the adoption
of residential solar electric power systems in upstate New York through question-
naire data and found that environmental motivations are slightly more important than
economics. As Richter [2] points out, spatial econometric methods could allow the
study of social effects across borders, recognizing the study of spillover only within
the neighborhood as a limitation of her model. Baginski and Weber [6] use spatial
econometric models to study the spread of PV systems over space and the factors that
drive the regional uptake in Germany to conclude that spatial dependence is a rele-
vant factor for explaining regional clusters of PV adoption and that spatial spillover
is not mainly driven by social imitation but by unobserved regional characteristics.
High values for solar radiation, the share of detached houses, electricity demand, and
inverse population density of a region favor the PV uptake. Predicting that also in the
case of this study, the demographic and socioeconomic factors as well as built envi-
ronment associated with each region will be key to mapping the country’s regions
and identifying which are more likely to be receptive to domestic solar panels, these
variables were extracted from publicly available sources to test how they fit the data.
The approach of Baginski and Weber [6] will be closely followed, adding a predic-
tive component using the results found to build a map representing the likelihood of
adoption, making it more directly usable by decision-makers in the field.

Most studies that try to explain the factors influencing PV system adoption use
the number of PV systems as the target variable to be explained [2–4, 7, e.g.].
Some, as in the case of Rode and Weber [8], use a variation of this discrete variable,
like the number of PV installations per building and number of PV installations per
owner-occupied household, transforming the target variable into a ratio and therefore
essentially continuous. Others, like Baginski and Weber [6] and Schaffer and Brun
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[9], use the PV installed capacity (in kw), which is a continuous variable. Naturally,
the methods used in each approach will also differ accordingly. In the case of this
study, there are three variables that could be used as target variables, namely Total
Price, Installed Power and Number of Panels, since all represent the size of PV
system installations. Hence, and since the installed capacity has been used by other
authors, this study will entail both the analysis of Installed Power and Number of
Panels. Thus analyzing both a continuous and a discrete variable.

Baginski and Weber [6] focus on the spatial diffusion of PV systems using spa-
tial econometric models and considering both exogenous and endogenous spatial
interactions. To follow this recommendation, this study will first perform a spatial
exploratory analysis.Many spatial analysis authors refer to Tobler’s first law of geog-
raphy, which states that areas closer together are more similar than those further apart
(“the first law of geography: everything is related to everything else, but near things
are more related than distant things.” [10]). For that reason, most spatial analysis
start by exploring spatial correlation, which implies the correlation among the same
variable from different locations.

Spatial dependence is commonly made operational by some measure of spatial
autocorrelation, which depend on the specification or estimation of a set of weights
describing spatial relationships. To describe possible spatial relationships between
locations, one must first define what accounts for neighbors of said locations. Some
typical examples of criteria that could be used to define neighbors were described by
Anselin [11], namely first-order contiguity and critical distance thresholds. Part of
assigning neighbors involves applying a measure of weighting to indicate the extent
to which the information from an area’s neighbors impacts on the observed estimate
for that area. This is commonly summarized in a spatial weights matrix.

2 Material and Methods

2.1 Data Characterization and Preprocessing

There are two important data sets to consider for the construction of the models. The
main data set contains details from 441 domestic solar panel installations done in
Portugal between the end of June and November of 2020, provided by a company
that specializes in such installations. The second data set involves demographic and
socioeconomic variables extracted from Instituto Nacional de Estatística (INE:www.
ine.pt). These variables were downloaded as isolated data sets and then aggregated
by geographical location. The selection of the variables was based on the factors
found in the literature to influence the decision to install solar panels. These were
then subjected to a correlation analysis to select the final list.

The available variables regarding the solar PV installations, their type, and their
meaning are described in Table 1.

www.ine.pt
www.ine.pt
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Table 1 Description of the variables regarding solar PV installations

Variable Type Description

Date Categorical Date of the installation

Postal code Categorical Postal code of the house of
installation

Number of panels Numerical Number of panels installed

Installed power Numerical Power installed, in kwh

Data preprocessing tasks included both data exclusion and variable creation. The
data exclusion task involved removing some values that do not make sense and are
likely to be database mistakes. The geographical aspect of the data is very important
to pursue the goals of this paper. Hence, since the only variable containing geo-
graphic information in the dataset is Postal Code, this information was expanded to
include Locality, Municipality, District, NUTSII, and NUTSIII, creating these 5 new
variables. NUTS refers to the Nomenclature of Territorial Units for Statistics, and
it is a standard for referencing subdivisions of European countries. NUTSI repre-
sents major socioeconomic regions, which corresponds to three regions in Portugal.
NUTSII refers to basic regions for the application of regional policies and is made
up of seven regions in Portugal, five if the islands are excluded. NUTSIII represents
smaller regions and corresponds to 25 regions in Portugal, 23 of these in continental
Portugal.

The list of selected explanatory variables and their description can be seen in
Table 2. A summary of descriptive statistics can be seen in Table 4 (Table 3).

From the initial set of 45 variables that have data at the municipality level, these
13 were selected based primarily on correlation analysis.

2.2 Data Modeling

SpatialWeightsMatrix Spatial weights represent geographic relationships between
the different units in a spatially referenced dataset, usually in the form of a spatial
weights matrix. This is defined as a n × n positive matrix W with elements wi j

at location pairs i, j (i �= j; i, j = 1, ..., n) for n locations. An element wi j is the
weight for each pair of locations, which is assigned by some rules that define the
spatial relations between the locations.

There are several ways to define this matrix, commonly based on contiguity. A
pair of spatial units is said to be contiguous if they share a common border. Rook
contiguity constructs a weight object from a collection of polygons that share at least
one edge. Queen contiguity is a more inclusive notion of contiguity, since it requires
a pair of polygons to share one or more vertices.
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Table 2 Description of explanatory variables

Variable Description

Population Number of people who live in each municipality

Purchase power Purchase power per person who lives in each municipality

Gross income Gini Gini coefficient calculated per taxable persons

Gross income Gross income per person who lives in each municipality

Subsidies Number of people who receive government subsidies per person who
lives in each municipality

Rental agreements Number of rental agreements per person who lives in each municipality

Energy consumption Domestic consumption of electrical energy per consumer
(kWh/consumer),
where consumed energy might have been produced by hydroelectric,
nuclear or thermal conventional centrals or also wave, mares, wind or
solar energy

Votes in the most voted Percentage of votes in the most voted in elections for the Assembly of
the Republic

Abstention Percentage of abstention in the elections for the Assembly of the
Republic

Temperature Average temperature in the last available year

Art exhibitions Number of art gallery exhibitions per person who lives in each
municipality

Family housing Number of classic family housing

Habitation buildings Number of habitation buildings

Table 3 Results for the spatial dependence tests in the OLS model

Test Statistic P-value

Moran (residuals) 0.0856 0.002021

LMerr 5.5948 0.01801

LMlag 1.4397 0.2302

RLMerr 6.1968 0.0128

RLMlag 2.0417 0.153

SARMA 7.6365 0.02197

Since there is very little information available about what type of relation would
make amunicipality in Portugal influence onemore than another and tomake the least
number of assumptions, a k-nearest neighbors matrix will be chosen and k decided
based on the most common number of neighbors a municipality has in Portugal
(discovered through rook and queen contiguity).

Spatial Correlation An important part of spatial analysis is the particular analysis
of spatial correlation. Popular options for area-level data that will be considered
include Moran’s I, Geary’s C, Gettis and Ord’s G and the Localized Indicators of
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Table 4 Summary description of explanatory variables

Variable Count Mean RSD4 (%) Min Median Max

Population 278 35247.69 57526.42 1634 14608 509515

Purchase
power

278 80.51 18.68 55.32 77.21 219.63

Gross
income Gini

272 26.89 2.34 21.10 26.70 37.20

Gross
income

278 7608.82 1726.30 4352.00 7384.50 19574.00

Subsidies 278 0.03 0.01 0.01 0.03 0.13

Rental
agreements

182 0.006 0.003 0.002 0.006 0.016

Energy con-
sumption

278 2082.81 712.62 1026.00 2082.15 10393.00

Votes in the
most voted

278 40.64 4.58 31.20 40.10 61.50

Abstention 278 47.35 5.79 30.40 46.50 66.20

Temperature 278 15.43 1.37 11.70 15.40 18.00

Art
exhibitions

278 0.0002 0.0002 0.0000 0.0001 0.0018

Family
housing

278 0.74 0.26 0.39 0.70 2.95

Habitation
buildings

278 0.60 0.27 0.07 0.58 1.61

Spatial Association (LISA). It is important to be attentive of the distinction between
global and localized correlation. Somemethods study global clustering (likeMoran’s
I), which assesses spatial correlation throughout the entire study region. Localized
correlation is also called local clustering or hot-spot analysis and includes methods
such as LISA.

To model adoption of solar PV systems across Portugal, this study will start by
estimating a binary dependent variable, namely whether there are PV installations in
a certain region or not. Taking this a step further, a discrete dependent variable will
be modeled, specifically the number of panels installed in each region. Finally we
will focus more attentively on modeling a continuous dependent variable, namely
the installed power.

For all the following models in this chapter, this notation is used:

• n is the number of observations;
• K is the number of explanatory variables;
• Y is a n × 1 vector of observations on the dependent variable;
• X is a n × K matrix of observations on the explanatory variableswith an associated
vector of regression coefficients β (K × 1);

• W is the spatial weights matrix (n × n);



160 C. Goldstein et al.

• W Y denotes the endogenous interactions among the dependent variable associated
with the spatial autoregressive parameter ρ, which measures the effect of spatial
lag on this variable;

• W X denotes the exogenous interactions among the independent variables associ-
ated with a vector of regression coefficients γ (K × 1);

• W u denotes interactions among the residuals of spatial units, associated with the
spatial autocorrelation parameter λ;

• ε represents an independently identically normally distributed error term vector
with zero mean and constant variance (ε ∼ Nn

(
0,σ2 In

)
);

• α represents the models’ intercept.

Binary Dependent Variable To model the binary dependent variable Installation,
the probit model will be used, as it is typically privileged in econometrics.

This is a particular type of binary regression model that ultimately allows to
classify the observations based on their predicted probabilities. Considering the gen-
eralized linear model framework, the probit model uses a probit link function and
will be estimated using maximum likelihood. This is represented by the following
equation

P(Y = 1 | X) = Φ (Xβ) (1)

where Y is a vector of the binary outcome, 1 is a vector of ones, Φ is the cumulative
distribution function of the standard normal distribution, and β is the vector of
parameters β estimated by maximum likelihood.

To introduce a spatial component in this analysis, a Bayesian Estimation of Spatial
Probit Models will be used. The Bayesian estimation of the spatial autoregressive
probit model (SAR Probit model) is described by

Y = ρWY + Xβ + ε (2)

with notation as previously described. Note that ρ is the scalar parameter that
describes the strength of spatial dependence in the sample of observations.

The prior distributions are β ∼ N (c, T ) and ρ ∼ Beta(a1, a2), where c is the
mean value of β, T is the variance of β, while a1 and a2 are shape parameters.

In general the coefficients of any probit regression cannot be interpreted directly.
The marginal effects of the regressors should be considered partial derivatives. Addi-
tionally, in the case of the SAR Probit model, the direct, indirect, and total effects are
to be considered.A change in one explanatory variable xki for location i (i = 1, ..., n)

will not only affect the observations yi directly (this is considered the direct impact),
but this change can also affect the observations in locations nearby y j (which is
the indirect impact). Let Sk(W ) be the matrix (n × n) of impacts from location i to
location j for explanatory variable xk , defined as

Sk(W ) = d E[Y | xk]
dxk

= φ((In − ρW )−1 In x̄kβk) ∗ (In − ρW )−1 Inβk (3)
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where x̄k denotes the mean value of variable xk and βk the parameter estimate for
this variable.

Then the direct impact of a change in xki on yi can be described as Sk(W )i i and the
indirect impact from observation xk j on yi as Sk(W )i j (i �= j). Hence, the average
direct impact of k can be calculated as the average of the diagonal elements. The
average total impact is the mean of the row sum, and the average indirect impacts
can be calculated as the difference between average total impacts and average direct
impacts.

Discrete Dependent Variable To model the Number of Panels installed across the
municipalities, linear regressions were considered and estimated by OLS. The fol-
lowing models will be used

Y = Xβ + ε (4)

Y = Xβ + W Xγ + ε. (5)

Equation 4 describes the linear regression estimated by OLS (referred to as OLS
Model in Sect. 3), while Eq. 5 describes the SLXModel, which includes the spatially
lagged explanatory variables, weighted by the spatial weights matrix.

Continuous Target Variable This study will take a general-to-specific approach, as
suggested by Baginski and Weber [6], thus starting with a simple non-spatial linear
regression and successively adding different spatial interaction effects. Still using
OLS estimation, the model will be expanded with the spatial lag of the explanatory
variables (SLX). The model will then be expanded with a spatially lagged depen-
dent variable, thus estimating the spatial lag or spatial autoregressive model (SAR).
The spatial error model (SEM) is also specified, incorporating spatial autoregres-
sive process in the error term. Then, estimating a spatial durbin model (SDM) can
be appropriate, where the SAR model is expanded with spatially lagged explana-
tory variables, as it seems reasonable to think that spatially correlated variables are
probably omitted. For the same reason, the spatial durbin error model (SDEM) will
also be estimated and compared. Finally, because the underlying spatial process is
often unclear, all three spatial effects will be combined in the most general model,
the Manski model. Here it is important to take into consideration that one of the
components has to be removed for the spatial coefficients to be properly interpreted
and distinguished [12].

It has been shown in LeSage and Pace [13] that a valid way to interpret the
β coefficients in spatial econometric models is partial derivative interpretations of
the impacts. The direct impact is the change in one location associated with the
explanatory variable that affects that same region. The indirect effect is the potential
effect that this explanatory variable has on all other regions it affects. The sum of both
is the total effect. These impact measures are valid for models including a spatially
lagged variable, thus in OLS and SEM the indirect effects are zero.

The first OLS estimation is the same as described for the discrete dependent
variable in Eq. 4. Six different statistics for spatial dependence will be run to test for
residual spatial dependence of the OLS regression:
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• Moran’s I test for residual spatial autocorrelation;
• simple LM test for error dependence (LMerr);
• simple LM test for a missing spatially lagged dependent variable (LMlag);
• variants of these robust to the presence of the other:

– test for error dependence in the possible presence of a missing lagged dependent
variable (RLMerr);

– test for a missing spatially lagged dependent variable in the possible presence
of error dependence (RLMlag);

• portmanteau test (SARMA, in fact LMerr + RLMlag).

The most straightforward way to include spatial dependence in a regression is by
considering not only an explanatory variable, but also its spatial lag. This implies
estimating the SLX model, described by Eq. 5.

The spatial lag model (SAR) introduces a spatial lag of the dependent variable,
as seen in the following equation

Y = ρWY + Xβ + ε. (6)

This model violates the exogeneity assumption, crucial for OLS to work and
therefore a maximum likelihood estimation will be used.

The spatial error model (SEM) includes a spatial lag in the error term of the
equation, resulting in the following term

Y = Xβ + u

u = λWu + ε.
(7)

As this specification violates the assumptions about the error term in a classical
OLS model, a maximum likelihood will be used.

The spatial Durbin error model (SDEM) includes a spatial lag in the error term
of the equation and the spatial lag of explanatory variables, resulting in

Y = Xβ + W Xγ + u

u = λWu + ε.
(8)

The spatial Durbinmodel (SDM) includes the spatial lag of the dependent variable
and of the explanatory variables, resulting in

Y = ρWY + Xβ + W Xγ + ε. (9)

The Kelejian-Prucha model (GSM) includes the spatial lag of the dependent vari-
able and in the error term of the equation, resulting in

Y = ρWY + Xβ + u

u = λWu + ε.
(10)
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The Manski model is the most general model and includes the spatial lag of the
dependent variable, in the error term of the equation and of the explanatory variables,
resulting in

Y = ρWY + Xβ + W Xγ + u

u = λWu + ε.
(11)

Model Selection In this study, AIC will be the main criteria used to select the best
model. To do model diagnosis, residual plots will be produced for all the regressions.
Some important aspects when analyzing the regression results estimated by OLS are
the t and F statistics. To test for heteroskedasticity, the Breusch-Pagan test will be
used. To compare different models, the Nagelkerke pseudo R-squared will be used.

Ultimately, this study sets out to build a spatial model that estimates, for each
spatial unit inPortugal, the probability of adoptingdomestic solar PVsystems.Hence,
a map will be produced where each region has a value, in a scale that ranges from 0
to 1, representing the probability of a solar installation being adopted. This may be
achieved by dividing the predicted value of Installed Power for each region by the
total predicted value for the country.

3 Results

3.1 Exploratory Analysis

Dependent Variables Firstly, a general exploratory analysis is important to under-
stand the distribution of the dependent variables. Bar plots and histograms were
built to achieve this, as well as simple tables with descriptive statistics and maps to
visualize their geographical distribution.

Asmentioned before, there are three variables that will be considered to be depen-
dent throughout this study. Installation is a binary variable that is 1when amunicipal-
ity has at least one installation. Number of Panels is a discrete variable that represents
the total sum of panels. Installed Power is a continuous variable that contains the
sum of installed power (in kwh). Since the patterns found in the variables Number
of Panels and Installed Power are very similar, the graphs for Number of Panels are
presented only in the Appendix. Indeed the similarity can be seen in the scatter plot
of Fig. 7.

Most installations have 3 panels installed and half the installations have 4 or less
panels, but the number of panels can vary between 1 and 22. The installed power
ranges from 0.3 to 7.5, with half of the installations having around 1.4kwh or less.
Both variables present a positive skewness at installation level, as can be seen in
Figs. 1a and 8.
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At municipality level, around 63% of regions have solar PV installations, hence
the total number of panels and installed power show a large positive skewness and
zero-inflation, as shown in Figs. 1b and 9 as well as Table 5.

Figure 2 shows that in general, the municipalities that do not have solar PV
installations are mainly in the interior part of Portugal. The regions that do show
some installations vary a lot in size, described by the Number of Panels and capacity,
represented by the Installed Power. The biggest installations can be found in coastal

(b) Installed Power per municipality

(a) Installed Power per installation

Fig. 1 Distribution of installed power
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Table 5 Summary description of numerical dependent variables

Variable Count Mean RSD5 (%) Min Median Max

Number of
panels

278 6.892 144.8758 0 3 65

Installed
power (in
kw)

278 2.057 148.9829 0.0 1.020 21.16

5Relative Standard Deviation or Coefficient of Variation

(a) Installations (b) Number of Panels (c) Installed Power

Fig. 2 Choropleth maps of dependent variables

Portugal, especially in the center and south regions, but also some in the north around
the city of Porto (Figs. 3, 4, 5, 6, 7, 8 and 9).

Spatial Weights Matrix In this subsection, the choice of the weights matrix is pre-
sented. In this case, the queen and rook weights matrix attribute to all locations the
same neighbors. Since the grid is not regular, there is no “edge” case and so both
matrices are being the same. Figure 10a shows the contiguity relationships repre-
sented by the centroids of each municipality and edges connecting them. Figure 10b
shows that theminimumnumber of neighbors in this case is 1, while onemunicipality
has 10 rook neighbors. The most common number of neighbors is 5.

Instead of having to assume that contiguity will affect more than distance or vice-
versa, a simple approach is applied by using k-nearest neighbors weights matrix and
choosing k = 5, which is the mode of the number of neighbors.

Spatial Correlation The Moran Plot shows the relation between a variable and its
spatial lag. To helpwith the interpretation, a linear fit, which represents the best linear
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Fig. 3 Moran’s I

(a) Distribution of the Installed Power against its lag

(b) Distribution of simulated Moran’s
I statistics for Installed Power and ver-
tical line showing the estimated value
(in red)

fit to the scatter plot is included. The slope of this line is the value of the Moran’s
I statistic. Figures 3a and 11 show the plots for the dependent variables. The plots
display positive relationships between both variables, which is associated with the
presence of positive spatial autocorrelation, meaning that similar values tend to be
located close to each other.

To test whether this is statistically significant, a simulation was run with 999
permutations and the distribution of these values is shown in Figs. 3b and 12. It
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Fig. 4 LISA statistics for Installed Power across municipalities

corresponds to a kernel density estimation plot and a rug showing all of the simulated
points, as well as a vertical line denoting the observed value of the statistic. It shows
that it is not likely that the pattern came from a spatially random process, allowing
for the conclusion that there is indeed spatial autocorrelation in the dataset.

Geary’s C statistic is in line with Moran’s I, as a value lower than 1 indicates
that neighboring observations are similar. Geary’s C simulated p-value is also 0.001.
Gettis and Ord’s G requires a binary spatial weights matrix with ones for all points
defined as being within a certain distance of any given location, so that a different
weights matrix was used to calculate this statistic. To ensure that every municipality
has at least one neighbor, the minimum distance band was calculated. This needs to
be at least around 31km for this data. Using this d results in the value of 0.0597 for
the G statistic and the pseudo p-value of 0.001, which also suggests a clear departure
from the hypothesis of no concentration. These values are summarized in Table 6.
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(a) Likelihood map (b) Normalized Likelihood map

Fig. 5 Likelihood maps

Fig. 6 Adoption probability per municipality
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Fig. 7 Number of panels against installed power

Fig. 8 Distribution of the number of panels per installation
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Fig. 9 Distribution of number of panels per municipality

(a) Centroids and edges used in
rook and queen weights matrix

(b) Histogram number of neighbors in
the rook and queen weights matrix

Fig. 10 Rook and Queen contiguity in Portuguese municipalities
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Fig. 11 Distribution of the number of panels against its lag

Fig. 12 Distribution of simulatedMoran’s I statistics for number of panels and vertical line showing
the estimated value (in red)
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Table 6 Results of global spatial correlation statistics for variables Number of Panels and Installed
Power with respective pseudo p-values in brackets

Number of panels Installed power

Moran I 0.2951 (0.001) 0.2610 (0.001)

Geary’s C 0.6455 (0.001) 0.6758 (0.001)

Getis and Ord’s G 0.0597 (0.001) 0.0583 (0.001)

Figure 4 shows four plots that bring the different perspectives of the results for
LISA for Installed Power together.

The upper-left map shows the result for local spatial autocorrelation represented
by the LISA statistics. The municipalities that show high local spatial correlation in
Installed Power are represented in yellow. There are some differences in the munic-
ipalities with high local spatial correlation when it comes to the Number of Panels,
as can be seen in Fig. 13, namely there are less municipalities in the north of Por-
tugal with this characteristic. The upper-right maps show the location of the LISA
statistic in the quadrant of the Moran scatter plot. Comparing these two maps one
can see that the positive association in the north interior part of Portugal is due to
low adoption in these municipalities, while in the coastal south part of Portugal the
positive association is due to the high adoption of solar PV. However, it is important
to introduce the underlying statistical significance of the local values when analyzing
this. Positive forms of local spatial autocorrelation are of two types: significant HH
(high-high) clustering, i.e., hot spots, or LL (low-low) clustering, i.e., cold spots.
Locations with significant but negative local autocorrelation are either doughnuts
(low value is neighbored by locations with high values) or diamonds (high value
is neighbored by locations with low values). In the last map, in bright red are the
locations with an unusual concentration of high installed power surrounded also by
similar locations. In light red there are the first type of spatial outliers, areas that
have high installed power despite being surrounded by areas with low values. These
correspond to some areas in the interior of Portugal. In darker blue one can see the
spatial clusters of low power. In light blue there is another type of spatial outlier,
areas with low installed power nearby areas with high.

The core idea of LISA statistics is to identify cases in which the comparison
between the value of an observation and the average of its neighbors is either more
similar (HH, LL) or dissimilar (HL, LH) than one would expect from chance. Fig-
ures 14 and 15 show the distribution of LISA values for the dependent variables,
indicating a skewed distribution due to the dominance of the positive forms of spa-
tial association.

Themaps representing the values for the G statistics, which can be seen in Fig. 16,
show similar results to LISA.
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Fig. 13 LISA statistics for number of panels across municipalities

3.2 Models

Binary Target Variable In this section, the results of the non-spatial and the SAR
Probit models to estimate the adoption of Installations are presented. A summary of
these results is shown in Table 7.

The variables Purchase Power, Subsidies, Rental Agreements, Gross income Gini
coefficient, Votes in the most voted, Family housing, and Abstention were not signif-
icant to explain whether a certain municipality adopts solar PV installations. Table 7
shows that all of the fittedmodels’ coefficients are statistically significant. The excep-
tion lies in the SAR Probit model’s spatial lag coefficient rho, thus indicating that
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Fig. 14 Distribution of LISA values for the installed power

Fig. 15 Distribution of LISA values for the number of panels

the decision to adopt PV installations in one location does not seem to directly affect
this decision in other locations. Regarding the log-likelihood statistics shown at the
end of Table 7, they seem to show a negligible difference between the Probit and the
SAR Probit model.

When considering themarginal effects presented in Table 8, one can see that while
Population, Temperature, andGross Income contribute positively to the probability of
installing PV systems, Energy Consumption, Art Exhibitions, and Housing buildings
seem to have a negative contribution. Regarding the SAR Probit marginal effects,
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Fig. 16 Distribution of G statistic values for the number of panels

Table 7 Summary of the installation (binary) model (SE between brackets)
Probit SAR Probit

(Intercept) −2.779∗∗ −2.835∗∗
(1.150) (1.262)

Population 0.00002∗∗ 0.00002∗∗
(0.00001) (0.00001)

Energy consumption −0.0003∗ −0.0004∗∗
(0.0002) (0.0002)

Temperature 0.166∗∗ 0.181∗∗
(0.082) (0.085)

Art exhibitions −10.674∗∗ −11.660∗∗
(5.416) (5.686)

Gross income 0.0002∗∗ 0.0002∗∗
(0.0001) (0.0001)

Housing buildings −0.011∗∗ −0.012∗∗
(0.005) (0.006)

rho −0.026

(0.132)

AIC 280.806 283.2535

BIC 306.1991 312.2745

Log likelihood −133.403 −133.6267

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8 Marginal effects

Probit SAR Probit

Direct Indirect Total

Population 0.000005 0.000002 −0.000001 0.000002

Energy
consumption

−0.000094 −0.000201 −0.000026 −0.000207

Temperature 0.045030 0.010450 −0.012240 0.009950

Art exhibitions −2.902000 −5.627000 −0.728900 −5.725000

Gross income 0.000065 0.000024 −0.000016 0.000023

Housing
buildings

−0.002939 −0.005602 −0.000640 −0.005565

it is clear that the direct effects are larger in the case of every explanatory variable,
except for temperature. The direct effect of Temperature in the probability to install
is positive, while the indirect effect is negative in a similar magnitude.

Discrete Target Variable In this section, the results of the OLS and SLX models to
estimate the Number of Panels are presented. A summary of these results is shown
in Table 9.

The variables Purchase Power and Rental agreements are not included in either
of the models, together with the spatially lagged variables Population, Rental Agree-
ments, Gross Income Gini, Housing Buildings, Votes in the most voted, and Absten-
tion. When comparing both models, one can see that the introduction of the spatially
lagged variables improves the fit, as the adjusted R2 increases by 0.032. Both mod-
els estimate that the Number of Panels increases when Population, Gross Income,
Housing buildings, and Abstention increase. Both estimate that the dependent vari-
able decreases when Energy Consumption, Art exhibitions, Votes in the most voted,
and Family housing increase. Subsidies and Temperature are not present in the SLX
model, but are statistically significant in the OLS model and their lagged variant is
also present in the SLX model. This means that although the temperature and subsi-
dies received in eachmunicipality do not seem to influence the number of solar panels
acquired in the same municipality, their values contribute to explain the variance of
this phenomenon in neighboring municipalities. While the lagged temperature has
a positive influence on the number of panels in neighboring municipalities, lagged
subsidies result in the opposite behavior, although the latter is not statistically sig-
nificant. The value of the Gini coefficient of gross income is not considered relevant
for the OLS, but it is statistically significant at a 90% significance level in the SLX
model. Spatially lagged Purchase Power also seems to negatively influence the num-
ber of Panels acquired in neighboring locations, even though the Purchase Power
of a certain location does not explain the number of panels in the same location.
Energy consumption, Gross income, Family housing, and Art exhibitions, all seem
to influence the total number of panels in both the locations they relate to and their
neighbors, although spatially lagged Art exhibitions are not statistically significant.
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Table 9 Summary of the number of panels models
OLS SLX

(Intercept) −24.894∗∗∗ −14.345∗∗∗
(9.033) (3.645)

Population 0.0001∗∗∗ 0.00004∗∗∗
(0.00001) (0.00000)

Energy consumption −0.002∗∗∗ −0.001∗∗∗
(0.001) (0.0002)

Subsidies 1.275∗∗∗
(0.436)

Temperature 1.210∗∗∗
(0.402)

Art exhibitions −48.850∗∗ −15.889∗∗
(23.676) (7.229)

Gross income Gini coefficient 0.161∗
(0.082)

Gross income 0.002∗∗∗ 0.0003∗
(0.0004) (0.0002)

Votes in the most voted −0.233∗∗ −0.060∗
(0.110) (0.033)

Housing buildings 0.179∗∗∗ 0.062∗∗∗
(0.044) (0.013)

Family housing −0.207∗∗∗ −0.077∗∗∗
(0.036) (0.011)

Abstention 0.260∗∗∗ 0.060∗∗
(0.087) (0.028)

L. Purchase Power −0.132∗∗∗
(0.043)

L. Energy consumption 0.003∗∗∗
(0.001)

L. Subsidies −0.369

(0.231)

L. Temperature 0.478∗∗
(0.188)

L. Art exhibitions −23.992

(15.767)

L. Gross income 0.001∗∗
(0.0005)

L. Family housing 0.038∗∗∗
(0.013)

R2 0.4924 0.533

Adjusted R2 0.473 0.505

Residual Std. Error 7.246 2.156

F Statistic 25.902∗∗∗ 18.655∗∗∗

AIC 1902.82 1234.495

Log likelihood −939.41 −599.2476

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Distribution of the fitted values of
the OLS regression against the residu-
als

(b) Q-Q plot from OLS regression
residuals

Fig. 17 Residuals of the OLS regression

Gross income in a certain location has a positive influence on the number of panels
in this same location as well as its numbers, while Energy Consumption and Family
housing have opposite effects when comparing their influence on their location and
its neighbors.

Continuous Target Variable In this section, the results of the OLS, SAR, SEM,
GSM, SLX, SDM, SDEM, and Manski models to estimate the Installed Power are
presented. Summaries of these results are shown in Tables 10 and 11.

To analyze these results, it is important to firstly analyze the residuals of the
regressions and inspect the chance of heteroscedasticity as well as normality of the
residuals. Analyzing Fig. 17a the residuals seem to be heteroscedastic. Looking at
the Q-Q plot in Fig. 17b, the residuals tend to stray from the line near the tails,
especially the right tail, which can indicate that they are not normally distributed.

Spatial autocorrelation is at least partly the suspected cause of some heteroscedas-
ticity and non-normality found in the residuals, thus the results for spatial dependence
tests in the OLS residuals were produced and can be found in Table 3. Moran’s I
value for global spatial autocorrelation in the residuals of the estimated model of
0.09 is statistically significant, indicating that spatial autocorrelation seems indeed
to exist in the residuals of this regression. Both statistics that test for spatial error
dependence (LMerr and RLMerr) are statistically significant at a 95% significance
level, as well as the portmanteau test (SARMA). On the other hand, test statistics
LMlag and RLMlag, which test for a missing spatially dependent variable, are not
statistically significant. This seems to indicate that there is in fact spatial dependence
in the residuals, but the cause is rather the spatial error dependence and not so much
a spatially lagged dependent variable.

An analysis of the residuals of the other regressions, namely SAR, SEM, GSM,
SLX, SDM, SDEM, and Manski, shown in the Appendix in Figs. 18, 19, 20, 21, 22,
23, and 24 reveals that their distributions remain very similar despite the different
model specifications.
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Table 10 Summary of the installed power models
OLS SAR SEM GSM

(Intercept) −8.248∗∗∗ −7.649∗∗∗ −7.268∗∗ −7.300∗∗
(2.821) (2.781) (3.190) (3.434)

Population 0.00003∗∗∗ 0.00003∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗
(0.00000) (0.00000) (0.00000) (0.00000)

Energy consumption −0.001∗∗ −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Temperature 0.442∗∗∗ 0.410∗∗∗ 0.432∗∗∗ 0.456∗∗∗
(0.120) (0.121) (0.142) (0.161)

Art exhibitions −16.745∗∗ −16.050∗∗ −14.229∗∗ −0.135∗
(7.430) (7.269) (7.242) (7.172)

Gross income 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0001) (0.0001) (0.0001) (0.0001)

Votes in the most
voted

−0.068∗∗ −0.068∗∗ −0.065∗ −0.063∗

(0.035) (0.034) (0.034) (0.034)

Housing buildings 0.068∗∗∗ 0.068∗∗∗ 0.069∗∗∗ 0.068∗∗∗
(0.013) (0.013) (0.013) (0.013)

Family housing −0.079∗∗∗ −0.078∗∗∗ −0.084∗∗∗ −0.087∗∗∗
(0.011) (0.011) (0.011) (0.011)

Abstention 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.080∗∗∗
(0.027) (0.026) (0.029) (0.030)

Rho 0.10802 -0.15075

(0.079751) (0.14566)

Lambda 0.28883∗∗∗ 0.40034∗∗∗
(0.084845) (0.12999)

R2 0.4668

Adjusted R2 0.449

Residual Std. Error 2.274 (df = 268)

F Statistic 26.072∗∗∗ (df = 9;
268)

Nagelkerke Pseudo
R2

0.470 0.480 0.483

AIC 1257.633 1258.062 1252.472 1253.096

BIC 1297.536 1301.593 1296.004 1300.255

Log likelihood −617.8163 −617.031 −614.236 −613.548

σ2 4.949 4.787 4.6737

Wald Test (df = 1) 1.835 11.589∗∗∗ 160.61∗∗∗

LR Test (df = 1) 1.571 7.160∗∗∗ 8.5366∗∗

Breusch Pagan 14.162 14.624 15.836∗ 15.685∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11 Results Installed Power with spatially lagged explanatory variables
SLX SDM SDEM Manski

(Intercept) −14.345∗∗∗ −10.865∗∗∗ −12.184∗∗∗ -8.3895∗∗
(3.645) (3.415) (3.896) (3.7336)

Population 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗
(0.00000) (0.00000) (0.00000) (0.00000)

Energy consumption −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ -0.001∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Art exhibitions −15.889∗∗ −16.293∗∗ −14.632∗∗ −12.267∗
(7.229) (6.938) (6.894) (6.614)

Gross income Gini 0.161∗ 0.144∗ 0.166∗∗ 0.153∗
(0.082) (0.079) (0.083) (0.084)

Gross income 0.0003∗ 0.0003∗ 0.0003∗ 0.0003∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Votes in the most
voted

−0.060∗ −0.063∗ −0.060∗ -0.054∗

(0.033) (0.032) (0.032) (0.032)

Housing buildings 0.062∗∗∗ 0.061∗∗∗ 0.066∗∗∗ 0.068∗∗∗
(0.013) (0.013) (0.013) (0.013)

Family housing −0.077∗∗∗ −0.078∗∗∗ −0.080∗∗∗ -0.082∗∗∗
(0.011) (0.011) (0.011) (0.011)

Abstention 0.060∗∗ 0.060∗∗ 0.061∗∗ 0.047

(0.028) (0.027) (0.029) (0.031)

L. Purchase Power −0.132∗∗∗ −0.146∗∗∗ −0.157∗∗∗ −0.185∗∗∗
(0.043) (0.041) (0.044) (0.049)

L. Energy
consumption

0.003∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)

L. Subsidies −0.369

(0.231)

L. Temperature 0.478∗∗ 0.306∗ 0.295

(0.188) (0.164) (0.203)

L. Rental agreements 3.251∗
(1.910)

L. Art exhibitions −23.992

(15.767)

L. Gross income 0.001∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗
(0.0005) (0.0004) (0.0005) (0.0005)

L. Family housing 0.038∗∗∗ 0.032∗∗∗ 0.024∗
(0.013) (0.012) (0.013)

Rho 0.20689∗∗ −0.29091∗
(0.085) (0.1604)

Lambda 0.28517∗∗∗ 0.55031∗∗∗
(0.085074) (0.11073)

(continued)
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(a) Distribution of the fitted values of
the SAR regression against the residu-
als

(b) Q-Q plot from SAR
regression residuals

Fig. 18 Residuals of the SAR regression

(a) Distribution of the fitted values of
the SEM regression against the residu-
als

(b) Q-Q plot from SEM
regression residuals

Fig. 19 Residuals of the SEM regression

(a) Distribution of the fitted values of
the GSM regression against the residu-
als

(b) Q-Q plot from GSM
regression residuals

Fig. 20 Residuals of the GSM regression
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Table 11 (continued)
SLX SDM SDEM Manski

R2 0.534

Adjusted R2 0.505

Residual Std. Error 2.156

F Statistic 18.65∗∗∗

Nagelkerke Pseudo
R2

0.5317 0.5397 0.54044

AIC 1234.495 1233.565 1228.771 1228.324

BIC 1299.792 1295.235 1290.441 1289.994

Log likelihood -599.248 −599.783 −597.386 −597.162

σ2 4.359 4.242 3.984

Wald Test (df = 1) 4.128∗∗ 11.236∗∗∗ 238.26∗∗∗

LR Test (df = 1) 3.244∗ 8.038∗∗∗ 173.08∗∗∗

Breusch Pagan 32.139∗∗∗ 31.411∗∗∗ 32.088∗∗∗ 32.922∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(a) Distribution of the fitted values of
the SLX regression against the residu-
als

(b) Q-Q plot from SLX
regression residuals

Fig. 21 Residuals of the SLX regression

All models that include a spatial term seem to produce a better fit, considering
the Pseudo R-squared, than the non-spatial OLS estimation. The SAR regression
produces only a slight improvement from the OLS estimation, and the ρ coefficient
for the spatially lagged dependent variable is not statistically significant. Hence it
seems that the Installed Power in onemunicipality does not affect the Installed Power
in its neighbors directly. On the other hand, the λ coefficient for the spatial depen-
dence in the error is positive and statistically significant. This indicates that similar
unobserved characteristics result in similar decisions regarding Installed Power in
nearby municipalities. This may be the result of a concentration of solar initiatives,
local PV supplier activities, marketing campaigns or even other socioeconomic and
demographic variables that were not taken into account. It is interesting to notice that
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(a) Distribution of the fitted values of
the SDM regression against the residu-
als

(b) Q-Q plot from SDM
regression residuals

Fig. 22 Residuals of the SDM regression

(a) Distribution of the fitted values of
the SDEM regression against the resid-
uals

(b) Q-Q plot from SDEM
regression residuals

Fig. 23 Residuals of the SDEM regression

(a) Distribution of the fitted values of
the Manski regression against the resid-
uals

(b) Q-Q plot from Manski
regression residuals

Fig. 24 Residuals of the Manski regression
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the λ coefficient is higher and still statistically significant at 99% significance level
for the GSMmodel. Thismeans that although the spatially lagged dependent variable
by itself does not seem to help to model the data, it increases the influence of the
spatial component in the error term. The model fit, however, measured by the pseudo
R-squared increases only slightly when compared to the SEM model. These four
models include the same explanatory variables and all excluded the variables Pur-
chase Power, Temperature, Subsidies, Rental Agreements, and Gross Income Gini.
All of the remaining variables are statistically significant, meaning that they con-
tribute to explain Installed Power. Population, Temperature, Gross Income, Housing
buildings, and Abstention provide a positive contribution towards Installed Power,
so that when their values increase, so does the chosen Installed Power. On the other
hand when Energy consumption, Art exhibitions, Votes in the most voted, or Family
housing increases, the Installed Power decreases.

When adding some of the explanatory variables with a spatial lag to the OLS
model (SLX model), the adjusted R-squared increases when compared to the four
previous models and many of these variables are significant, showing that indeed
some characteristics of neighbor municipalities seem to influence Installed Power.
As was the case when lagged explanatory variables were not considered, including
a spatially lagged dependent variable (SDM) improves the fit slightly. It is further
improved when instead a spatially dependent error term is considered (SDEM) and
even more when both spatial components are included (Manski). In the SDM, how-
ever, ρ is statistically significant at a 95%, which did not happen in SAR, meaning
that when the spatial lag of explanatory variables is considered, the Installed Power in
nearby municipalities seems to influence the Installed Power of an individual munic-
ipality directly. In SDEM λ also has a positive statistically significant influence on
the Installed Power. Similar to the case without lagged explanatory variables, the λ
coefficient increases when the spatially lagged dependent variable is added (Man-
ski). However, the coefficient of this variable, ρ, becomes negative with a similar
magnitude (0.2 and −0.3), impacting the Installed Power in the opposite way when
comparing to the SDM.

The Breusch-Pagan test reveals the presence of heteroscedasticity, by rejecting
the null hypothesis of homoscedasticity, in residuals of SEM, GSM, and all models
that include lagged explanatory variables.

As to the β estimates, they generally do not change drastically in magnitude when
comparingOLS to spatialmodels, what also indicates that the spatial association does
not account for a great part of the model.

As mentioned in Sect. 2.2, to analyze in a more precise way the influence of each
explanatory variable inmodels with a spatial autoregressive component (SAR, GSM,
SDM, Manski), a distinction should be made between direct and indirect impacts.
These can be found in the Appendix in Tables 12, 13, 14, and 15, but such a detailed
analysis was considered out of the scope of this study.

Likelihood of Adoption Distribution Map The likelihood of adoption distribu-
tion map, which represents the estimated probability of PV solar installations being
adopted in a certainmunicipality,was producedwith the predicted values for Installed
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Power of the SDEM regression. The estimated value for the Installed Power for each
region was divided by the total estimated value. The resultingmap and its normalized
version can be seen in Fig. 5.

The municipalities that have a probability higher than 50% of adopting PV sys-
tems belong mainly to five clusters. Sintra being the municipality with the highest
probability is also surrounded by other municipalities with high adoption probability,
namely Cascais, Oeiras, Seixal, and Loures. On the north of Portugal, there is another
cluster containing Vila Nova de Gaia, Porto, and Matosinhos. In the south, there is
another cluster made up from Santiago do Cacém and Odemira. Furthermore, there
are two municipalities that are isolated that form their own single clusters, namely
Braga and Coimbra. Hence, these are themunicipalities towards which selling efforts
should be focused.

Table 12 Impacts SAR model

Direct Indirect Total

Population 0.00003 0.000004 0.00005

Energy consumption −0.0006 −0.0001 −0.0006

Temperature 0.4112 0.0489 0.4601

Art exhibitions −16.0826 −1.9114 −17.9939

Gross income 0.0006 0.0001 0.0006

Votes in the most
voted

−0.069 −0.008 −0.0767

Housing buildings 0.0681 0.0081 0.0762

Family housing −0.0782 −0.0093 −0.0875

Abstention 0.0802 0.0095 0.0897

Table 13 Impacts GSM model

Direct Indirect Total

Population 0.000038 −0.000005 0.000033

Energy consumption −0.000783 0.000105 −0.000678

Temperature 0.457296 −0.061306 0.395990

Art exhibitions −13.55226 1.816842 −11.73542

Gross income 0.000564 0.000076 0.000488

Votes in the most
voted

−0.062910 −0.084338 −0.054476

Housing buildings 0.068347 −0.009163 0.059184

Family housing −0.087023 0.011666 −0.075356

Abstention 0.080357 −0.010773 0.069584
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Table 14 Impacts SDM model

Direct Indirect Total

Population 0.000036 0.000007 0.000043

Energy consumption −0.000772 −0.000514 −0.000924

Art exhibitions −16.37473 −3.209359 −19.58409

Gross income Gini 0.1444413 0.028310 0.1727511

Gross income 0.000287 0.000056 0.000343

Votes in the most
voted

−0.063155 −0.012378 −0.075532

Housing buildings 0.061716 0.012096 0.073812

Family housing −0.078398 −0.015366 −0.093763

Abstention 0.059877 0.011736 0.071612

L. Purchase Power −0.146840 −0.028780 −0.175620

L. Energy
consumption

0.002395 0.000469 0.002865

L. Temperature 0.307829 0.060333 0.368161

L. Gross income 0.001155 0.000226 0.001381

L. Family housing 0.031831 0.006239 0.038070

Table 15 Impacts Manski model

Direct Indirect Total

Population 0.000038 −0.000009 0.000029

Energy consumption −0.000630 0.000148 −0.000482

Art exhibitions −12.42235 2.920080 −9.502266

Gross income Gini 0.154449 −0.036306 0.118143

Gross income 0.000336 −0.000079 0.000257

Votes in the most
voted

−0.054868 0.012898 −0.041971

Housing buildings 0.069294 −0.016289 0.053005

Family housing −0.082595 0.019415 −0.063179

Abstention 0.047514 −0.011169 0.036345

L. Purchase Power −0.187175 0.043999 −0.143176

L. Energy
consumption

0.003149 −0.000740 0.002409

L. Rental agreement 3.292395 −0.773932 2.518463

L. Gross Income 0.001714 −0.000403 0.001311
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4 Conclusions and Discussion

In this study, the problem of modeling the adoption of domestic solar PV systems
was addressed. To do so, related data as well as socioeconomic and demographic data
from each municipality was gathered. After the conclusion was reached that spatial
correlation was present in the data, several models were run to try to model this
behavior. Adoption was considered using three variables, namely simply whether
each municipality had any installation at all, how many panels were installed and the
installed power.

The purchase power and rental agreements of each municipality do not seem to
add explanatory value to any of the models. Rental agreements, on the other hand,
were inserted in the model to identify municipalities where many people own their
house and can in fact decide on adoption of solar PV systems. For that reason, it was
unanticipated. Energy consumption per capita seems to have a negative influence on
the installed power, which was also not anticipated. It does, interestingly, seem to
have a positive significant influence on neighboring municipalities. Temperature, as
expected, has a positive significant influence on the installed power in neighboring
municipalities. Municipalities that have less votes in the most voted party for gov-
ernment tend to have more solar power installed. One interpretation could be that
these municipalities have larger environmental concerns and this is usually not rep-
resented in the most voted parties. Abstention has a positive influence, which was not
expected. Intuitively one would think that more education results in less abstention
and education was shown to be a positive influence on solar panel adoption.

Art exhibitions seem to be the major predictor for PV adoption, but this is most
likely due to unobserved characteristics. Art exhibitions are only available on highly
urban areas and these do not have high PV systems adoption rates, as apartment
buildings are more common. As expected, gross income has a positive influence on
adoption. A higher income naturally allows families to have space in their budget for
environmentally conscious products. This positive relationship between economic
status and PV installations is also reinforced by the negative influence that having a
high rate of subsidies beneficiaries exerts on installed power in some model speci-
fications. Another variable that refers to this economic factor is the Gini coefficient
of gross income. Here a greater income inequality results in an increase in installed
power, which is likely related to the fact that municipalities with a large total gross
income result in a large Gini coefficient. Number of housing buildings has a posi-
tive influence on installed power, whereas one could have expected that an increase
in housing buildings would diminish PV installations. Family housing on the other
hand has a positive influence, both directly and indirectly through spatial lag, which
intuitively makes sense.

The SDEMmodel, which considers spatially correlated explanatory variables and
spatial effects in the error component is the final selectedmodel, whichmeans that the
spatial lag is negligible. Thus, the total installed power that the population in a partic-
ular municipality in Portugal chooses to adopt does not seem to be directly dependent
on the installed power of neighbor municipalities. Rather, it seems directly and indi-
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rectly dependent on some observed demographic and socioeconomic variables of its
neighbors, as well as unobserved characteristics (not controlled).

Considering the adoption likelihood map in Fig. 5, the focus should primarily go
to Sintra. Other municipalities with high adoption likelihood can be seen in Fig. 6.
When deciding on where to allocate efforts to promote solar adoption, following
this order of municipalities should be optimal to accelerate Portugal’s transition to
renewable energies.

Acknowledgements This work is funded by national funds through the FCT—Fundação para a
Ciência e aTecnologia, I.P., under the scopeof the projectsUIDB/00297/2020andUIDP/00297/2020
(Center for Mathematics and Applications).

Appendix: Complementary Figures and Tables

See Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.
Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.
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Comparison of Semiparametric
Approaches to Two-Way ANOVA
in the Presence of Heteroscedasticity

Dulce G. Pereira and Anabela Afonso

Abstract Factorial analysis of variance designs is commonly used in several fields
like biology, ecology and social sciences. However, in practice, the underlying
assumptions, normality and homoscedasticity, are easily violated. In recent years,
several alternative tests were proposed to relax these assumptions, the Wald-type
statistics and the ANOVA-type statistics, and tests based on the permutation of obser-
vations. Few studies are focusing on the performance of the permutation tests in the
presence of heterogeneity. This work intends to contribute to this last analysis. A
simulation study is carried out, considering balanced designs, with an equal number
of factor levels and several types of discrete distributions with different degrees of
dispersion.

Keywords Interaction · Permutation tests · Robustness · Wald statistics

1 Introduction

Factorial Analysis of variance (ANOVA) is used to compare the mean of several
sets of data and is based on the assumptions: (i) normality of error distribution,
(ii) homoscedasticity and (iii) independence of residuals. But, in practice, these
assumptions are easily violated. Moreover, for categorical data, parametric ANOVA
may not be appropriate due to the non-metric nature of the data.

Several authors have proposed nonparametric tests, which are based on the rank
transform and aligned rank of the observations [1–4, e.g.]. However, simply replacing
observations by their ranks and using the same sampling distributions as for the

D. G. Pereira (B) · A. Afonso
Research Centre for Mathematics and Applications, University of Évora, Évora, Portugal
e-mail: dgsp@uevora.pt

A. Afonso
e-mail: aafonso@uevora.pt

Department of Mathematics, School of Sciences and Technology, University of Évora,
Évora, Portugal

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bispo et al. (eds.), Recent Developments in Statistics and Data Science,
Springer Proceedings in Mathematics & Statistics 398,
https://doi.org/10.1007/978-3-031-12766-3_13

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12766-3_13&domain=pdf
http://orcid.org/0000-0001-7281-4992
http://orcid.org/0000-0002-5517-4855
mailto:dgsp@uevora.pt
mailto:aafonso@uevora.pt
https://doi.org/10.1007/978-3-031-12766-3_13


190 D. G. Pereira and A. Afonso

parametric counterpart is generally not a valid approach [5]. The hypothesis tested
by the nonparametric tests, in general, are not the same as those of the parametric
F-test [6].

In the late 1990s, two semiparametric approaches were proposed that allow relax-
ing homoscedasticity assumptions: the Wald-Type Statistics (WTS) and ANOVA-
Type Statistics (ATS) [7]. While the ATS assumes that the data has a normal distri-
bution, the WTS does not require such assumption but has the big disadvantage that
for small and moderate sample sizes the test tends to be liberal [7]. Reviews about
these tests are available in Hahn and Salmaso [8] and Pauly et al. [9].

In recent years, permutation-based tests have gained much attention because they
do not require the normality assumption and can be used with small samples. In addi-
tion, they can be used with discrete and ordinal data used quite often in many fields,
e.g. social sciences, biology and ecology. The most popular permutation tests for
factorial designs are the Constrained Synchronized Permutation (CSP), the Uncon-
strained Synchronized Permutation (USP) [10, 11] and the Wald-Type Permutation
Statistic (WTPS) [9]. Salmaso [11] carried out a simulation study with synchronized
permutations tests, which shows that, for small sample sizes, the power of these tests
is close to that of parametric counterparts based on normality of errors. However,
there are few studies about their performance in the presence of heteroscedasticity.

In the literature, one can find several studies on these tests with continuous error
distributions [7–9, 11, 12, e.g.], but not with discrete distributions. However, unlike
continuous scales, in the discrete scale, equal observations (ties) occur with positive
probabilities. Thus, it seems relevant to study whether the performance of these tests
is affected by the presence of tied observations, in particular for small sample sizes.
In this paper, we intend to contribute to filling this gap in the analysis.

This paper aims to study and compare the Type I error rate and power of clas-
sical ANOVA with the alternative approaches ATS, WTS, WTPS, CSP and USP,
which are designed to address the same hypotheses. Discrete data, with different
degrees of dispersion, were simulated to investigate the impact of tied observations.
Homoscedastic and heteroscedastic balanced designs are considered.

2 Statistical Model and Hypotheses

The general two-way completely randomized factorial balanced design is described
by the effects model:

Yi jk = μ + αi + β j + γi j + εi jk,

⎧
⎨

⎩

i = 1, . . . , a;
j = 1, . . . , b;
k = 1, . . . , n,

(1)

where μ is the global mean effect, αi is the effect of level i of factor A, β j is the
effect of level j of factor B, γi j is the effect of the interaction between the level i of
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factor A and level j of factor B and εi jk is the random error. The global number of
observations is N = abn.

All the effects are assumed to be fixed, consequently, the conditions are fulfilled:∑a
i=1 αi = 0,

∑b
j=1 β j = 0 and

∑a
i=1 γi j = ∑b

j=1 γi j = 0 [13]. The null hypotheses
of the no-main effect of factor A, the no-main effect of factor B and the no interaction
effect between factors A and B are:

• Hμ
0 (A) : αi = 0, for all i ,

• Hμ
0 (B) : β j = 0, for all j and

• Hμ
0 (AB) : γi j = 0, for all i, j .

These null hypotheses can be written in terms of contrasts as:

• Hμ
0 (A) : C Aμ = 0,

• Hμ
0 (B) : CBμ = 0,

• Hμ
0 (AB) : C ABμ = 0,

whereμ = (μ11, . . . , μ1b, . . . , μa1, . . . , μab)
′,μi j = E(Yi jk) = μ + αi + β j + γi j ,

and CL the contrast matrix, with L = A, B, AB.

3 Compared Methods

This paper compares the classical ANOVA and the alternative methods ATS,
WTS, CSP, USP and WTPS. The performance of these methods is evaluated for
homoscedastic and heteroscedastic balanced designs, considering several types of
discrete distributions and different degrees of dispersion.

3.1 Wald-Type Statistic (WTS)

WTS was developed by Brunner et al. [7]. The WTS is asymptotically exact in
the general factorial design for N → ∞, even in the case of heteroscedastic and
nonnormal errors.

The statistic of this test is

WN (L) = NY
′
.C

′
L

(
CL SNC ′

L

)+
CLY . �̊ χ2

rank(CL ), (2)

where
Y . = (Y 11, . . . ,Y ab)

′ (3)

is the vector of the sample means Y i j. = 1
n

∑n
k=1 Yi jk ,

SN = N

n
diag(s211, . . . , s

2
ab) (4)
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the diagonal matrix of the sample variances s2i j = 1
n−1

∑n
k=1(Yi jk − Y i j.)

2 and M+
denotes the Moore–Penrose inverse of matrix M .

This test is asymptotically exact and requires large sample sizes to keep the nom-
inal Type I error level.

3.2 ANOVA-Type Statistic (ATS)

ATSwas proposed byBrunner et al. [7]. TheATS relies on the assumption of normally
distributed error terms, and it is an approximate test.

The statistic of this test is defined by

FN (L) = N

trace (T L SN )
Y

′
.T LY . �̊ fd f1,d f2 , (5)

with

d f1 = (trace (T L SN ))2

trace
(
(T L SN )2

) and d f2 = (trace (T L SN ))2

trace
(
D2

TL S
2
N�ab

) , (6)

where T L = C ′
L

(
CLC ′

L

)+
CL is projection matrix, DTL the diagonal matrix of the

diagonal elements of T L , �ab = 1
n−1 Iab, Iab the a × b-dimensional identity matrix

and Y . and SN as defined in expression (4).
The ATS tends to behave conservatively in the case of small sample sizes, being

more conservative for skewed distributions [9].

3.3 Permutation Tests

The permutation tests are computationally intensive and distribution-free procedures.
Under the assumption of exchangeability, the permutation tests are exact, i.e. the
Type I error of the test is exactly equal to the preassigned significance level [9]. The
assumption of exchangeability means that the joint distribution of the observations is
invariant under the permutations of the observations, i.e. the order in which they are
collected [14]. Basso et al. [12] proposed the use of synchronized permutations to
test for main effects and interaction together. Pauly et al. [9] proposed a permutation
test (WTPS) which can be used in cases with heteroscedastic error variances (i.e.,
not exchangeable) being asymptotically exact.

Synchronized Permutation Tests In synchronized permutation tests, values are
permuted between two levels of a factor, keeping the level of the remaining factors
in the model constant and exchanging the same number of units within each pair of
the considered blocks [12].
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Let T ∗
is| j = T ∗

i j − T ∗
s j and T ∗

jh|i = T ∗
i j − T ∗

ih , where

T ∗
i j =

n∑

k=1

Y ∗
i jk, (7)

and Y ∗
i jk denotes the permutation value of Yi jk , of the block Ai B j , according to some

permutation scheme.
The proposed test statistics in the two-way design are given by

• Main effect A:

T ∗
A =

a∑

i=1

∑

s>i

⎛

⎝
b∑

j=1

T ∗
is| j

⎞

⎠

2

, (8)

• Main effect B:

T ∗
B =

b∑

j=1

∑

h> j

(
a∑

i=1

T ∗
jh|i

)2

, (9)

• Interaction effect AB:

T ∗
AB =

a∑

i=1

∑

s>i

b∑

j=1

∑

h> j

(
T ∗
is| j − T ∗

is|h
)2 +

b∑

j=1

∑

h> j

a∑

i=1

∑

s>i

(
T ∗
jh|i − T ∗

jh|s
)2

. (10)

The effects not of interest are eliminated by the synchronization and are not
present in the test statistic of the effect of interest. When testing the main effect A,
observations are permuted within the blocks constructed by the levels of the factor
B, i.e. Ai B j and As Bj . When testing the B main effect, observations are permuted
within the blocks constructed by the A factor levels, i.e. Ai B j and Ai Bh [15]. When
testing the interaction the test statistic is composed of two parts: (i) the first part is
obtained from permutations involving factor A; and (ii) the second part is obtained
from permutations involving factor B [12].

P-value is calculated as the proportion of permutations for which test statistics
values of permuted data sets are greater or equal to the test statistic value for the
original data set.

There are twoways to obtain a synchronized permutation: constrained and uncon-
strained [10, 11].

Constrained Synchronized Permutation (CSP) CSP consists of applying the same
permutation in all pairs of blocks, i.e. exchanged units must be in the same original
position within each block. In balanced designs, if the number of replicates n is too
small, CSP could give a minimum achieved significance level higher than the desired
Type I error [12].
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Unconstrained Synchronized Permutation (USP) In the USP, exchanged units may
not be in the same original position within each block. The only requirement is
that the number of exchanges is the same. USP is computationally more intensive
compared to CSP. Basso et al. [12] refer that the difference between these two tests
quickly decreases with the growth of the number of replicates available. Therefore,
the authors recommend using the USP when n is small (say n ≤ 3).

Wald-Type Permutation Statistic (WTPS) Pauly et al. [9] proposed a permutation
procedure (WTPS) based on the Wald-Type Statistic (WTS). The proposed test is
exact under the exchangeability condition and is asymptotically exact and consistent
in the presence of heteroscedasticity.

The WTPS is based on the permutation of data Y ∗ = (Y ∗
111, . . . , Y

∗
abn)

′ within the
whole data set. Under the hypothesis Hμ

0 (L) : CLμ = 0, the test statistics are [9]:

W ∗
N (L) = N (Y

∗
. )

′C ′
L

(
CL S∗

NC
′
L

)+
CLY

∗
. �̊ χ2

rank(CL ), (11)

where Y
∗
. =

(
Y

∗
11., . . . ,Y

∗
ab.

)′
denote the vector with the permuted means

Y
∗
i j. = 1

n

∑n
k=1 Y

∗
i jk and S

∗
N = N

n .diag
(
s∗2
11 , . . . , s

∗2
ab

)′
is thematrixwith the permuted

sample variances s∗2
i j = 1

n−1

∑n
k=1

(
Y ∗
i jk − Y

∗
i j.

)2
.

WTPS was constructed without the assumption of equal sample sizes, equal vari-
ances and a particular distribution of the errors. In general, the test does not perform
satisfactorily well for extremely skewed and heteroscedastic distributions, in partic-
ular when the larger sample has a smaller variance [16].

4 Simulation

A simulation study was carried out to evaluate the performance of the testing proce-
dures presented in Sect. 3, i.e. the Type I error and power of these tests. The simulation
experiments were performed in the R programming language, version 3.6.3 [17]. For
ATS, WTS and WTPS tests, we used the functions implemented in the R package
GFD [16]. For CSP and USP, we used the R functions available at http://static.gest.
unipd.it/salmaso/web.

Type I error rates and power of the tests were assessed under the following effect
conditions (models):

M1. all effects null (i.e. null model): αi = 0; β j = 0; γi j = 0,
M2. the main effect A nonnull and all other effects null, considering αi = 0.25σ,

0.5σ, 1σ ; β j = 0; γi j = 0,
M3. themain effects A and B nonnull and the interaction effect AB null, considering

αi = β j = 0.25σ, 0.5σ, 1σ ; γi j = 0,

http://static.gest.unipd.it/salmaso/web
http://static.gest.unipd.it/salmaso/web


Comparison of Semiparametric Approaches to Two-Way ANOVA … 195

M4. the interaction effect AB nonnull, and both main effects null, considering αi =
β j = 0; γi j = 0.25σ, 0.5σ, 1σ ,

M5. the main effect A and the interaction effect AB nonnull, and main effect B null,
considering αi = γi j = 0.25σ, 0.5σ, 1σ and β j = 0,

M6. all effects nonnull (i.e., full model), considering αi = β j = γi j = 0.25σ, 0.5σ,

1σ ,

where σ represents the standard deviation of the error distribution.
Balanced design was considered (n = 3, 5, 10) with two factors, A and B, with

equal number of levels (3 × 3). The homoscedastic setting was generated from dis-
crete distributions, with different parameters to obtain distinct degrees of dispersion
and skewness:

i Positive asymmetric binomial: B(K ; 0.2) with K = 25, 50, 100;
ii Binomial symmetric: B(K ; 0.5) with K = 10, 20, 40;
iii Binomial Negative: BN (K ; 0.4) with K = 2, 4, 8;
iv Poisson: P(λ) with λ = 5, 10, 20; and
v Uniform: U {0, . . . , K } with K = 10, 20, 40.

To generate the heteroscedastic setting the following steps were performed:

1. For i = 1, . . . , a − 1 and j = 1, . . . , b the homogeneous case was generated;
2. For i = a and j = 1, . . . , b, the data was generated from the distributions:

a. (i) Positive asymmetric binomial: B(K ; 0.2) with K = 13, 25, 50; (ii) Bino-
mial symmetric: B(K ; 0.5) with K = 5, 10, 20; (iii) Binomial Negative:
BN (K ; 0.4) with N = 1, 2, 4; (iv) Poisson: P(λ) with λ = 2.5, 5, 10; and
(v) Uniform: U {0, . . . , K } with K = 7, 14, 28;

b. To get distributionswith the samemean as in the homogeneous case, a constant
was added to the values obtained in step 2a. The constants addedwere (i) 0.1K ;
(ii) 0.1K ; (iii) 0.5λ; (iv) 0.5K ; and (v) 0.15K .

For each distributional scenario configuration, the number of simulations and
permutations were nsim = 1000 and nper = 1000, respectively.

For each of the tests described in the previous section, the empirical distribution
was recorded of the p-values and the proportion of repetitions that lead to rejection
of the null hypothesis (α = 0.01, 0.05, 0.1) in the total number of repetitions. When
the null hypothesis is true this proportion gives the empirical Type I error rate,
otherwise, gives the empirical power. Bradley’s liberal criterium of robustness was
adopted to classify the tests [18]. According to this criterium, a test is considered
robust if its empirical Type I error rate iswithin the interval (0.5α, 1.5α), is considered
conservative when ≤ 0.5α and is liberal when ≥ 1.5α, where α is the nominal level
(i.e. level of significance).



196 D. G. Pereira and A. Afonso

5 Results

Results referring to the error distributions will not be presented, since a different
behavior was not found in the various discrete distributions considered in this work.

In the next subsections, only the results for α = 5% will be presented.

5.1 Homoscedastic Versus Heteroscedastic Settings

There are differences in empirical Type I error rates and empirical power between
tests, due to the presence/absence of homogeneity (Fig. 1).

All tests that do not meet the Bradley criterium are classified as liberal. There
are more liberal tests in the heteroscedastic setting. All tests are liberal in the het-
eroscedastic setting when the main effect A is not present (Fig. 1a).

The USP andWTS tests are the most powerful, but they are almost always liberal.
Among the robust tests, ANOVA is the most powerful, followed by WTPS and ATS
(Fig. 1b).

5.2 Effect Size

The performance of the tests seems to be similar in the homoscedastic and het-
eroscedastic settings (Fig. 2).

With the increase of the effect size present (0.25σ, 0.5σ, 1σ ), the Type I error rate
remains virtually unchanged, but the power of the tests increases (Fig. 2).

Homoscedasticity Heteroscedasticity
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Fig. 1 a Empirical Type I error rate and b empirical power, of each test, when α = 5%, in the
absence and presence of heterogeneity. The dashed vertical lines represent the robustness limits of
the Bradley criterium
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Fig. 2 Empirical power, of each test, when α = 5%, by effect value, in the absence and presence
of heterogeneity

5.3 Model Effect

The presence of heterogeneity affects the Type I error rate, especially when effect A
is not present (Fig. 3).

USP and WTS are not robust to testing for interaction whether or not the main
effects are present (models 1–3). In the test for the presence of effect B, both pro-
cedures are robust in the homoscedastic setting but are no longer robust in the het-
eroscedastic setting whether or not the interaction and A effects are present (models
1, 2, 4 and 5).

When heteroscedasticity is introduced, all tests are liberal when testing for the
presence of effect A whether or not the interaction and B effects are present (models
1 and 4, Fig. 3a).

In the heterogeneous settings, the tests are more powerful than in the homogenous
settings (Fig. 3b).

5.4 Sample Size Effect

The behaviour of the tests depends on the number of replicates (Fig. 4).
CSP never rejected the null hypothesis, whenever sample sizes were too small

(n = 3). Consequently, this test had a zero empirical Type I error rate (Fig. 4a) and
power (Fig. 4b). In the test for the presence of interaction, as the sample size increased,
CSP changed from being a conservative test to a liberal test, both homogeneous and
heterogeneous settings. The difference between CSP and USP rapidly decreases as
the sample size increases.

When testing for the presence of main effect A, in all tests there is an increase
in the empirical Type I error rate when heteroscedasticity is included in the model,
which worsens with the increase in sample size.
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Fig. 3 a Empirical Type I error rate and b empirical power, of each test, when α = 5%, bymodel, in
the absence and presence of heterogeneity. The dashed vertical lines indicate the robustness bounds
of the Bradley criterium

ATS turned out to be conservative when testing for interaction in the case where
the sample is too small (n = 3). WTS was never robust in testing for interaction,
but as the sample size increases, the test seems to approach the desired robustness
(Fig. 4a).

The empirical power of the tests increases with sample size, being higher in the
heteroscedastic than in the homoscedastic setting (Fig. 4b).
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Fig. 4 a Empirical Type I error rate, and b empirical power, of each test, when α = 5%, by number
of replicates n, in the absence and presence of heterogeneity. The dashed vertical lines indicate the
robustness bounds of the Bradley criterium

5.5 Ties Effect

ATS, WTS and WTPS tests did not always return results, mainly when the number
of replicates was too small (n = 3). This situation occurred when at least in a given
cell Ai B j the values are all equal (i.e. all observations are tied), which led to a zero
variance in that cell. For data generated from discrete distributions, this is more likely
to happen when the number of possible outcome values is small.

6 Conclusions

This simulation study showed that the performance of the tests is affected by the
presence of heterogeneity in the data, as well as by the present effects (model) and
their size, and by the number of replicates in each cell. In addition, it was not possible
to obtain results in some tests (ATS, WTS and WTPS) when at least one of the cells
had the same value for all observations (i.e. full tied), which leads to zero variances.
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Table 1 Summary of test performance as a function of empirical Type I error rate

Tested effect Setting Empirical Type I Error Rate

Robust tests Liberal tests

AB Homoscedastic ANOVA, WTPS USP

Heteroscedastic ANOVA, WTPS WTS, USP

A Homoscedastic ANOVA, WTPS –

Heteroscedastic – ANOVA, WTS,
WTPS, CSP, USP

B Homoscedastic &
Heteroscedastic

ANOVA, WTPS, ATS –

This situation is common when data are generated with discrete error distributions,
rather than continuous distributions.

Table1 presents a summary of the general performance of the compared tests as a
function of empirical Type I error rate. In the homoscedastic scenario, ANOVA and
WTPS tests showed to be robust in all models, sample sizes and size effect. In the
presence of heterogeneity, these tests became liberal when testing for the presence
of effect A. ANOVA tends to be more powerful than WTPS.

For 2 × 2 designs, Hahn et al. [15] notice that ATS is slightly conservative for
highly skewed distributions, especially in the homogenous setting. For 2 × 5 designs,
Pauly et al. [9] report the same behaviour for this test. In our study, with a 3 × 3
balanced design, ATS showed to be slightly conservative just when testing interaction
and the sample size was too small, in both homogeneous and heterogeneous settings.

The liberalism of WTS, already reported in other studies [9, 15, 16, e.g.], was
also observed in the present study.

Despite WTPS overcomes the liberalism of WTP, this test still presents a liberal
behaviour when testing the main effect A, in the heterogeneous setting. This lib-
eral behaviour increases with the sample size. For continuous distributions, it was
reported in the literature that WTPS tends to be in liberal decisions in the case of
skewed distributions and unequal variances [9, 16]. However, liberalism was not as
pronounced as the WTS.

In the interaction analysis, the USP test does not maintain the nominal α level,
and it is liberal. This is one limitation of this test because despite having high power,
it is very liberal.

The CSP test reveals conservative behavior for a small sample size (n = 3). In
agreement with the results of Hahn et al. [15], the CSP test has, in general, slightly
lower power than the other tests, for both homogeneous and heterogeneous settings.

Based on the obtained results, for small samples (n ≤ 10) and discrete distribu-
tions, parametric ANOVA andWTPS had a stable behaviour and, in general, a better
performance.
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Paulo Infante , Anabela Afonso , Gonçalo Jacinto , Leonor Rego ,
Pedro Nogueira , Marcelo Silva , Vitor Nogueira , José Saias ,
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Abstract In Portugal, the district of Setúbal is among those with the higher number
of road accidents with fatal injuries but with fewer accidents. This work analyzes
data from road accidents that occurred in the area under the jurisdiction of the Ter-
ritorial Command of Setúbal, belonging to the Guarda Nacional Republicana, the
Portuguese Gendarmerie. A spatial analysis of the accidents was carried out, using
the Getis–Ord Gi* statistic to identify hotspots and the Local Moran’s I statistic
for spatial autocorrelation, which allowed the identification of municipalities with
identical profiles for fatalities and serious injuries. With a logistic regression model,
we identify some determinants which can explain the existence of serious and/or
fatal injuries in road accidents: type of accident, geographical factors, temporal fac-
tors, road characteristics, drivers’ characteristics, vehicles’ features, and victims’
characteristics.
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1 Introduction

Road accidents are a problem with repercussions in several dimensions: social, eco-
nomic, health, justice, and safety. In 2018, the Portuguese Secretary of State for
Civil Protection referred that road accidents had an economic and social impact in
the country equivalent to 1.2% of Gross Domestic Product (GDP), i.e., 2.3 billion
euros [1].

Between 2016 and 2019, theDistrict of Setúbal was one of the Portuguese districts
with the most road traffic accidents resulting in fatalities or serious injuries. In 2018,
in the area under the jurisdiction of the Guarda Nacional Republicana (GNR), it was
the sixth district with the highest number of road traffic accidents in Portugal but
was the first in the number of fatalities as a consequence of the road traffic accidents
(Table1). To explain the high number of road traffic accidentswith fatalities or serious
injuries and to find measures to reduce them, a partnership was established between
the Territorial Command of Setúbal of GNR (GNR-TC Setúbal) and the University
of Évora, and the Modeling and Prediction of Road Traffic Accidents in the District
of Setúbal (MOPREVIS) project was created.

In the last years, several methodological approaches were used to analyze traffic
road accidents data [2–8].

In this work, we are mainly interested in identifying the factors for the severity
of road accidents, combining Geographical Information System (GIS) and statistical
models, and leveraging the ability of GIS to perform complex spatial analyses.
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Table 1 Top 8 of 18 districts in Continental Portugal in 2018, ranked by number of road accidents
and associated fatalities, within the 24h after the accident and in the areas of GNR jurisdiction

District Number of road accidents Number of fatalities

Porto 12646 43

Faro 8181 39

Aveiro 8072 30

Lisbon 7497 17

Braga 7640 25

Setúbal 7249 55

Santarém 5128 32

Leiria 4600 37

GIS was used to geocode the accident data and locations, for visualization of
accident data on maps and in the analysis and determination of hotspots [5]. Prasan-
nakumar et al. [8] used the Moran’s I index, Getis–Ord Gi*, and Kernel density
functions to assess spatial clustering of accidents and spatial density hotspots.

Studies with statistical models try to quantify the effect of the determinants in
the frequency and severity of road accidents, forecast future accidents and severities,
and evaluate the effectiveness of a specific safety measure [9]. Logistic regression
models were used to estimate the influence of accident factors on road crash fatalities
[10], and as a classification model to predict accidents [2]. A multinomial logit
model and a mixed logit model were used to determine risk factors or fatal cases
involving motorcycle fatal accidents based on the number of vehicles involved [11].
Chen and Chen [4] modeled road accident severity comparing the logistic regression
with machine learning techniques, namely, decision trees and random forest models.
Machine learningmethods have beenmostly used as prediction tools, while statistical
models are more frequently used in crash severity modeling [6]. Casado-Sanz et al.
[3] applied a multinomial logit model to find the most important factors for the
occurrence of a fatal outcome based on single-vehicle crashes.

There are several examples of modeling road accident severity in Portugal.
Ordered probit models were used to predict road accident severity in the munici-
pality of Coimbra [12]. Recently, ordered logistic regression was applied to identify
the risk factors associated with the increase of the injury severity of powered two-
wheeler riders when involved in a road accident in Portugal [13]. Classification and
Regression Trees (CART) method was used to predict the effect of vehicle charac-
teristics on crash severity, in Porto metropolitan area [14].

The objective of this work is to determine the risk factors associated with greater
severity in road accidents and hence providing a first step to contribute to solving
the problem by providing suggestions to reduce their impact. We use several sources
of data on road accidents provided by partner entities of the MOPREVIS project.
Initially, a local spatial analysis of road accidents was performed. The Getis–Ord
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Gi* statistic allowed the identification of critical points. Moran’s I local statistic was
used to identify local clusters and local spatial outliers. Based on this analysis, the
municipalities were grouped into categories with the same vulnerability for road
accidents with serious and/or fatal injuries. Then, to identify some determinants that
contribute to the existence of fatalities and/or serious injuries in road traffic accidents,
which occurred in the district of Setúbal, a logistic regression model was used.

This paper is organized as follows. In Sect. 2, sources and variables used in the
dataset are described as well as the statistical methods used in the paper. In Sect. 3 the
main results are presented, including a short exploratory analysis of the dataset, and
the logistic regression model obtained. In Sect. 4 the main conclusions are presented.

2 Methods

2.1 Study Area

The district of Setúbal is the eighth largest in Portugal with a land area of
5064km2, divided by 13 municipalities and six protected areas. It has 293km of
National Road (EN—Estrada Nacional), 219km of Highway (AE—Auto Estrada),
19km of Principal Itinerary (IP—Itinerário Principal), and 90km of Complementar
Itinerary (IC—Itinerário Complementar). The GNR-TC Setúbal is responsible for
around 96% of this territory.

2.2 Data

Our work analyzes the data collected with the Statistical Bulletin of Road Acci-
dents (BEAV [15]) by GNR-TC Setúbal, with an update of the Autoridade Nacional
de Segurança Rodoviária (ANSR) for victims at 30days, and complemented with
meteorological information provided by Instituto Português do Mar e da Atmosfera
(IPMA). A first effort was taken to join several datasets provided by the partners of
theMOPREVIS project, each with different structures. Since an accident can involve
several vehicles, drivers, and victims, the team created several summarymeasures for
these variables by accident. This work uses data from January 1, 2016, to December
31, 2019.

The BEAV is a statistical notation instrument filled in by policy entities when-
ever they become aware of the occurrence of a road accident. This bulletin collects
information about the accident, the vehicles, the drivers, the victims, and the severity
outcomes.

ANSRupdated the information regarding the victims, including their injuries upon
30days after the accident. The severity of injuries of the victims of road accidents,
within 30days of the occurrence of the accident, are classified as [15]:
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• fatality: victim who dies;
• severe injury: victim whose bodily injury requires hospitalization for more than
24h and who does not die within 30days of the accident;

• minor injury: victim whose bodily injury did not require hospitalization, or whose
hospitalization has been less than 24h, and who does not die within 30days of the
accident.

Through IPMA it was possible to obtain meteorological information at the time
and place of the accident. Information regarding the temperature, the wind velocity,
the volume of precipitation, the humidity, and the temperature. The weather infor-
mation was collected by the team of the project at the hour preceding and following
the time of the accident (when information in the previous hour was not available).

Using these sources, we were able to create a unique dataset with all the infor-
mation regarding the accident. A list of some of the variables used in our analysis
are

• Variables regarding the accident: county, accident location, type of accident,
type and name of the road, type of roadside, type of lane, road conservation state,
the existence of works on the road, the existence of light signals, the existence
of pavement marks, the existence and type of damage on the road, existence of
nearby health facilities, total and type of victims, driver escaping from the location
of the accident, causes of the accident, date and time of the accident.

• Variables regarding the vehicle: type of vehicle, class, and category of vehicle,
a vehicle with or without a trailer, an accident resulting from a vehicle on fire, tire
conditions, the existence of insurance, number of occupants.

• Variables regarding the driver: gender, date of birth, alcohol and drugs con-
trol, existence and year of driving license, driving time, the occurrence of driving
maneuvers, use of safety accessories.

• Variables regarding the victims: type of victim, use of safety accessories, injury
severity of the victim, if the victim is a pedestrian in circulation, number of deaths
within 30days, number and type of victims.

• Variables regarding the weather conditions: precipitation, temperature, humid-
ity, wind speed, the occurrence of hail, and the existence of fog or smoke clouds.

2.3 Statistical Analysis

A spatial analysis of the accidents was carried out. The Getis–Ord Gi* statistic
was used to identify hotspots and the Local Moran’s Ii statistic to measure spatial
autocorrelation. Let Xi , i = 1, . . . , n, be a numeric variable X at location i and Wi j

the spatial weight between locations i and j . The Getis–Ord Gi* values are given by
[16] and the local Moran’s Ii values are given in [17].

Logistic regression was used to identify some determinants for the existence of
fatalities and/or serious injuries, at 30days, in road accidents in the district of Setúbal.
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To fit the logistic model, we followed the methodology proposed by Hosmer and
Lemeshow [18]. To obtain a parsimonious multivariate model, only the variables that
were significant at 0.05 in the univariate analysiswere considered and the interactions
were considered significant at 0.001 significance level. The linearity of numerical
covariates with logit was assessed by lowess methods and fractional polynomials.
Some categories were merged, and the likelihood ratio test was used to evaluate the
simplified model against the model where the categories were separated.

3 Results

In the district of Setúbal, between 2016 and 2019, there were 28103 accidents in the
area under the jurisdiction of the GNR-TC-Setúbal, which resulted in 8260 victims,
being 497 severe injuries and 183 fatal injuries (Table2).

An exploratory spatial analysis of the data available at BEAV was carried out,
which, in addition to the description of the variables and identification of some
associations, contributed to assessing the quality of the available data. A series of
model maps were produced with the purpose of exporting the information from the
database. These maps allowed to visualize and interpret the data to be able to draw
some conclusions about the accidents. The main conclusions obtained from both
approaches were the following:

• Palmela is the municipality with the highest number of serious accidents, being
Alcácer do Sal, Palmela, and Alcochete the municipalities more associated with
fatalities and serious injuries;

• Accidents occurring in IC/IP, municipal roads (EM), EN, or bridges are more
associated with fatalities and serious injuries;

• Accidents with victims occurred mostly on the roads where the pavement was in
a good state of conservation, but on roads where the roadside is not paved there
are more accidents with fatalities and serious injuries;

Table 2 Number of accidents and victims, at 30days, by year in the areas under jurisdiction of
GNR-CT Setúbal

Highest
injury

2016 2017 2018 2019 Total

Number of accidents Fatalities 32 52 54 25 163

Severe 81 120 99 107 407

Minor 1212 1370 1415 1439 5436

Number of victims Fatalities 39 55 63 26 183

Severe 105 147 125 120 497

Minor 1709 1932 1961 1978 7580
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Fig. 1 Getis–Ord Gi* for accidents with fatalities and severe injuries. Areas without squares cor-
respond to regions without data

• An accident where the victims have not used safety accessories has 2.5 higher
odds to result in fatalities and serious injuries;

• Accidents where a driver had been driving continuously between 1 and 3h are
more likely to have fatalities and serious injuries;

• An accident involving not just female drivers has 2.5 higher odds to have fatalities
and serious injuries;

• On the straight roads, there was a significantly higher percentage of collision
accidents and a significantly lower percentage of crash accidents when compared
to accidents occurring on curves;

• The majority of accidents that only resulted in damage occur in car parks and on
national roads;

• A high number of accidents occur at roundabouts near motorway exits;
• 60% of the accidents occurring on the road are collisions and 75% of the accidents
occurring on the limit of the road are collisions.

Using GIS for the spatial analysis we were able to identify four hotspots areas
(Fig. 1) with an aggregation of hotspot cells with high levels of confidence in the
Northern part of the district, that can be explained, or at least partly, by being located
near the access ways to the district, meaning that there are other inherent variables
that contribute to the higher concentrations of accidents resulting in serious or fatal
injuries.

The concentration of accidents found in the southern half of the district cannot
be counted as hotspots per se, since the cells appear in an isolated fashion. Note,
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however, that these isolated cells gravitate towards the main localities of this section,
apart fromGrândola, which contains no hotspot cell nearby. The only coldspot found
under GNR’s jurisdiction is located West of Sesimbra, with no real explanation at
the moment.

Having the initial contribution of the exploratory analysis and of the spatial anal-
ysis, we proceed to the simple logistic analysis for the existence of severe injuries
and/or fatalities in a crash with victims (as recommended by [18])). The variables
whose in the univariate test had a p-value less than 0.05 were: municipality, location
(outside or inside urban areas), type of road (EN, AE, IC/IP, other roads), type of
roadside, type of lane (existence of central road separation), the existence of pave-
ment markings, day of the week, time of the accident, atmospheric factors, average
wind intensity (m/s), percentage of male drivers involved in the accident, age of the
oldest victim involved in the accident, the median age of the vehicles involved in the
accident, age of youngest driver involved, type of vehicles involved in the accident
and accident typology. In the multiple logistic regression, some of these variables
ceased to be significant.

From the adjusted multiple logistic model with interactions, we can conclude that
the determinants for the occurrence of accidents severe injuries and/or fatalities are
type of accident, geographical factors (municipality and accident location), temporal
factors (day of the week and time of day when the accident occurs), road factors (type
of roadside, type of road and type of lane), driver, victims and vehicle factors (%
of male drivers, age of drivers involved in the accident, type of the vehicle, age
of vehicles and maximum victims age), and associations between the type of the
accident and the type of vehicle and between the type of roadside and accident
location (Table3).

The factors that potentiate the existence of serious injuries and/or fatalities in road
accidents with victims are:

• Geographical factors: the odds of municipalities of Alcochete, Alcácer do Sal
and Palmela are 2 times greater than the odds in municipalities of Almada, Moita,
Montijo, Sesimbra e Setúbal (OR=1.96; CI_95%:]1.560; 2.462[), and 1.3 times
greater than the odds in the municipalities of Santiago do Cacém, Grândola, Sines,
Barreiro and Seixal (OR=1.26; CI:]1.006; 1.586[).

• Temporal factors: (i) between Thursday and Monday there are 30% higher odds
than on the other days of the week (OR=1.30; CI_95%:]1.034; 1.595[); (ii) the
odds between 2 and 5 a.m. and between 6 and 7 a.m. are 3 times greater (OR=3.0;
CI_95%:]2.390; 3.843[), and the odds between 8 p.m. to 2 a.m, 5 a.m. to 6 a.m.
and 7 a.m. to 8 a.m. are almost 2 times greater (OR=1.8; CI_95%:]1.599; 2.122[),
than the odds between 8 a.m to 8 p.m.

• Road characteristics: (i) accidents occurring on an IC/IP or on an EN have 60%
higher odds than those occurring on another type of road (OR=1.6;CI_95%:]1.328;
2.041[); (ii) accidents occurring on a road where the lanes do not have a central
separator are 70% more likely of serious injuries and/or fatalities than when there
is a central separator (OR=1.7; CI_95%:]1.225; 2.302[); (iii) accidents occurring
inside urban areas are almost twice as likely of serious injuries and/or fatalities
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Table 3 Logistic regressionmodel for severe injuries and/or fatalities in road accidentswith victims.
Significant variables of the model and their categories, coefficient estimates, standard errors, and
respective p-values

Variable Estimate Std. Error p-value

Constant –4.95 0.30 <0.001

Municipality (ref: Alcochete/Alcácer/Palmela)

Almada/Montijo/Moita/Sesimbra/Setúbal –0.67 0.12 <0.001

Santiago/Grândola/Sines/Barreiro/Seixal –0.23 0.12 0.044

Accident location (ref: inside urban area)

Outside urban area 1.09 0.20 <0.001

Type of accident (ref: collision)

Trampling 1.61 0.19 <0.001

Crash 0.80 0.16 <0.001

Type of roadside (ref: paved)

Unpaved or non-existent 0.61 0.16 <0.001

Type of road (ref: AE/bridge or other)

IC/IP or EN 0.50 0.11 <0.001

Type of lane (ref: without central separator)

With central separator –0.52 0.16 0.001

Day of the week (ref: Thursday to Monday)

Tuesday and Wednesday –0.25 0.11 0.024

Hour of the day (ref: 8–20 h)

20–2 h, 5–6 h, 7–8 h 0.61 0.11 <0.001

2–5 h, 6–7 h 1.11 0.19 <0.001

Type of vehicle (ref: light passenger vehicles)

Motorbikes but not heavy vehicles 1.26 0.14 <0.001

Heavy vehicles 1.39 0.20 <0.001

% of male drivers (ref: <50%)

≥ 50% 0.84 0.17 <0.001

Median age of vehicle 0.02 0.01 0.009

Maximum victims age 0.02 0.00 <0.001

Age of the youngest driver –0.01 0.00 <0.001

Type of accident × Type of vehicle

Trampling × motorbikes but not heavy
vehicles

–1.45 0.61 0.017

Crash × motorbikes but not heavy vehicles –1.08 0.23 <0.001

Trampling × heavy vehicles –0.25 0.57 0.653

Crash × heavy vehicles –1.86 0.57 0.001

Type of roadside × Accident location

Unpaved or non-existent × outside urban
area

–0.70 0.22 0.001
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than when the roadside is not paved as when it is paved (OR=1.9, CI_95%:]1.366;
2.534[); (iv) accidents that occur on a road with a paved roadside, if they occur
outside an urban area, have almost three times the odds of serious injuries and/or
fatalities than if they occur inside an urban area (OR=2.9, CI_95%:]1.966; 4.261[);

• Drivers’ characteristics: (i) accidents in which the majority of drivers involved
aremale have approximately twice the odds of serious injuries and/or fatalities than
accidents in which the majority of drivers are female (OR=2.3; CI_95%:]1.666;
3.253[); (ii) as the age of the youngest driver involved in the accident increases,
the odds of serious injuries and/or fatalities decrease (Fig. 2a). For example, an
accident where the youngest driver’s age is 10years higher than in another accident
has 14% less odds (OR=0.86; CI_95%:]0.797; 0.932[) of having serious injuries
and/or deaths, and if this difference is 20years then it has 26% less odds (OR=0.74;
CI_95%:]0.636; 0.869[).

• Victims’ characteristics: With increasing age of the older victim involved in
the accident increases the odds of serious injuries and/or deaths (Fig. 2b). For
example, an accident in which the oldest victim is 10years older than in another
accident has 19% higher odds (OR=1.19; CI_95%:]1.120; 1.266[) of having seri-
ous injuries and/or deaths, and if this difference is 20years then it has 42% higher
odds (OR=1.42; CI_95%:]1.255; 1.602[).

• Vehicles’ features: (i) the odds of a crash involving serious injuries and/or deaths
increase with the median age of the vehicles involved in the crash (Fig. 3). For
example, there are 1.2 times more odds for each 10-year increase in the median
age of the vehicles involved in the crash (OR=1.2; CI_95%:]1,049; 1,386[), and
1.5 times more odds for each 20-year increase (OR=1.5; CI_95%:]1,100; 1,921[);
(ii) in collision accidents, those involving heavy vehicles have 4 times more
odds (OR=4.0; CI_95%:]2.702;5.905[), and those not involving heavy vehicles
but involving motorbikes have 3.6 times more odds (OR=3.6; CI_95%:]2.710;
4.740[), relative to accidents involving only light vehicles; (iii) in accidents involv-
ing only light vehicles, accidents by trampling have 5 times more odds (OR=5.0;
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Fig. 2 Odds ratio, and respective 95% confidence interval, for the occurrence of an accident with
severe injuries and/or fatalities for different increases in the age of the a youngest driver, b oldest
victim, involved in the accident with victims
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Fig. 3 Odds ratio, and
respective 95% confidence
interval, for the occurrence
of an accident with severe
injuries and/or fatalities for
different increases in the
median age of vehicles
involved in the accident with
victims
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CI_95%:]3.413;7.274[), and those by crashing have about 2 times more odds
(OR=2.2; CI_95%:]1.620; 3.010[), than by collision.

4 Conclusions

This work analyzes road accidents that occurred in the area under the jurisdiction of
theGNR-CTSetúbal, pooling data fromdifferent sources.We usedGISmethodology
for spatial analysis of the road accidents, and to cluster municipalities by accident
vulnerability. Afterward, we fit a logistic regression model to find the determinants
for severe injuries and/or fatalities in road accidents in the district of Setúbal.

We have concluded that a greater chance of severe injuries and/or fatalities occur
in the municipalities of Alcochete, Alcácer do Sal, and Palmela, between Thursday
and Monday, in the periods from 2 a.m. to 5 a.m. and from 6 a.m. to 7 a.m., on an
IC/IP or on an EN and on roads outside urban areas and with lanes without a central
separator with unpaved or non-existence of roadsides, and when the majority of
drivers involved in the accident are male. Accidents with motorbikes, young drivers,
and old vehicles also increase the possibilities of severe injuries and/or fatalities.

Themain limitation of thiswork is that it only considers the accidents that occurred
under GNR jurisdiction in the district of Setúbal, corresponding to 4888km2 (96.5%
of the district) covering 417900 habitants (49.2% of the district).

Futureworkwill develop predictivemodels for the time and place of the accidents.
Data from 2020/21, out of the lockdown COVID-19 period, will be used to validate
the adjusted models. Finally, a digital decision support tool will be developed to
support GNR to make more informed decisions regarding road accident prevention.
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Impact of Misclassification and Imperfect
Serological Tests in Association Analyses
of ME/CFS Applied to COVID-19 Data

João Malato , Luís Graça , and Nuno Sepúlveda

Abstract The diagnosis of ME/CFS is problematic due to the absence of a dis-
ease specific biomarker. As such, it is conducted under uncertainty using symptom-
based criteria and the exclusion of known diseases. The possibility of misdiagnosing
patients reduces the power to detect new and previously identified factors that can
be associated with the disease. To investigate this problem, we previously conducted
a simulation study to estimate the power of case-control association studies as a
function of the misdiagnosed rate. Here we extended this simulation study to the
more general situation where there is also the possibility of having misclassifica-
tion in a binary factor related to a previous exposure to a given infection. Given the
suggested link between ME/CFS and past viral infections including SARS-CoV-2
(which causes COVID-19), we performed the simulation study in the specific context
of serological testing of this new coronavirus using published data from Portuguese,
Spanish and Iranian seroepidemiological studies.
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1 Background

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is one example of
a complex disease with uncertainty in its diagnosis [1]. Patients diagnosed with this
debilitating disorder manifest heterogeneous symptoms such as unexplained long-
lasting fatigue [2], a post-exertional malaise that arises after the slight physical, or
mental effort and is not alleviated by rest [3], accompanied by other symptoms. Its
prevalence is estimated between 0.4 and 1% depending on the population, affecting
more women than men, at a 6:1 ratio [4, 5].

The aetiology of ME/CFS has been proved difficult to determine. Different
reported factors such as acute infections, genetic predisposition, or environmen-
tal stressors can serve as triggers for the disease onset [6, 7]. Moreover there is no
biomarker, or combination of biomarkers, that characterise this heterogeneous dis-
ease, which ultimately leave its diagnosis to be mostly done on the basis of specific
symptoms and exclusion of other diseases [8]. This further increases the uncertainty
surrounding an objective diagnosis, which has resulted in more than 20 symptom-
based criteria currently used to clinically diagnose ME/CFS [9]. Despite proposed
protocols for criteria standardisation in ME/CFS research [10], distinct studies will
inevitably define the cohort of patients differently, potentially with conflicting results
[1]. This inherent level ofmisclassification—non-ME/CFS patients being incorrectly
diagnosed as such—amongst ME/CFS cohorts has already been described in a study
characterising the genome of suspected patients [11] and should be taken into account
in order to minimise the negative effects on association studies [12].

Despite the pathomechanisms of ME/CFS remaining unknown, the disease has
been described as having an autoimmune onset [13, 14]. This immune dysregulation
often occurs after exposure to an acute viral infection [7, 15, 16], with multiple asso-
ciation studies relating the exposure to viruses as trigger for ME/CFS development
[14, 17]. Serological surveys have thus been conducted to better understand the role
of distinct viruses in this disease. However, so far there have not been replicable
confirmed associations. Possible arguments for this can be the disparate cohorts of
(inherently misclassified) suspected ME/CFS patients used and other factors related
to study design such as the low sample sizes used [18] or the further stratification
of patients into different subtypes [19]. Additionally, the serological tests used to
assess exposure/non-exposure to the viruses are based on predetermined and arbi-
trary cutoff values to determine seropositive individuals [18]. This important but often
overlooked aspect can potentially add an additional layer to the misclassification on
ME/CFS, with impacts on the studies’ reproducibility [20].

Previously, we studied the dissimilarity between different symptom diagnosis
criteria and simulated the impacts of misclassification in a single scenario of poten-
tial misdiagnosis of suspected patients [12]. In the present paper, we extended the
proposed ideas on misclassification and studied its impact on the statistical power
of serology hypothetical association studies. More recently, studies have related
ME/CFS and the chronic post-viral syndrome developed after infection by the SARS-
CoV-2 virus, responsible for the COVID-19 pandemic [21]. Despite the need for
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more extensive research on this topic, studies have reported that subset of patients
following COVID-19 infection can develop a chronic syndrome that fulfils ME/CFS
diagnostic criteria [22]. For illustrative purposes we extrapolated on the idea that
there is in fact an association between COVID-19 and ME/CFS onset, however mild
(1.25 ≤ odds ratio ≤ 2.0), and simulated multiple case-control association studies
with different sample sizes, using results for seroprevalence surveys from three coun-
tries: Portugal [23], Spain [24], and Iran [25]. For each serology study, we hypothe-
sised on the impact of misclassification, also accounting for the estimated levels of
sensitivity and specificity.

2 Simulation Study

2.1 Mathematical Formulation of the Problem

Following-up on the reported ideas onmisclassification [12], the goal of the proposed
hypothetical study was to assess the association of a binary exposure outcome (as
exposed versus non-exposed) after a serological survey forCOVID-19withME/CFS.
This was accomplished by comparing a cohort of sampled patients suspected of
ME/CFS to a cohort of sampled matched healthy controls. The sampling distribution
of the designed case-control study was then, the product of two Binomial distribu-
tions given by the number of sampled individuals from the two cohorts, n0 and n1,
respectively for healthy controls and suspectedME/CFS patients, and the probability
of exposure to the virus, θ0 and θ1, respectively; with x0 and x1 being the observed
frequencies of exposed healthy controls and suspectedME/CFS [12]. Altogether, the
sampled populations can be summarised by a 2 × 2 frequency table that presents dif-
ferent outlines depending on the described parameters ni and θi , i = {0, 1}. Testing
the null hypothesis for lack of association to ME/CFS (i.e. H0 : θ0 = θ1) was done
through the Pearson’s χ2 test for independence. After testing, H0 was rejected if the
p-value for the Pearson’s χ2 test was less than the prespecified level of significance
of 5%. Through simulation, and by repeating the inference multiple times under the
same conditions, the power of the study was estimated as the overall proportion in
which H0 was rejected.

Previously [12], to account for the inherent misclassification as a diluting effect
for the detection of a potential association, four assumptions were considered for the
ME/CFS cohort: (i) sampled suspected ME/CFS cases can be divided into apparent
(false positives) and true positive cases; (ii) the misclassified apparent cases are
considered healthy controls, in the sense that they share the same probability of
exposure to COVID-19, θ0; (iii) there is an overall misclassification rate, γ , creating
the two distinct possibilities of apparent and true caseswithin the cohort for suspected
cases; and (iv) thismisclassification rate is only dependent on the true clinical status of
each of the suspected cases. Under the assumption (ii) and the law of total probability,
the probability of exposure associated with the suspected cases was written as
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θ1 = γ θ0 + (1 − γ )θ∗
1 , (1)

where θ∗
1 is the exposure probability of true ME/CFS cases.

However, this analysis does not account for the sensitivity and specificity of a
serology test if the exposure to a given infection is determined this way. Therefore,
four additional assumptions were considered for this study, with effects transversal
to all data sets: (v) for each serology test performed, individuals can only be clas-
sified as seropositive or seronegative—in opposition to serology tests where there
are more than two possible outcomes; (vi) the levels of sensitivity, πse, and speci-
ficity, πsp, respectively determine the accuracy of a test to identify truly exposed and
truly non-exposed individuals; (vii) these parameters related to the performance of
the serology test create a category of undetected false positives and false negative
for individuals poorly measured by the serology assessment; and (viii) the binary
exposure outcomes given by πse and πsp are independent from the assessed cohort.
Under these assumptions, the probability of exposure for suspected cases from Eq.
(1) can be extended to

θ1 = πseγ θ0 + (1 − πsp)γ (1 − θ0) + πse(1 − γ )θ∗
1 + (1 − πsp)(1 − γ )(1 − θ∗

1 ) .

(2)
Under the eight assumptions, the observable 2 × 2 frequency table can be augmented,
as the cohort for suspected ME/CFS is divided into apparent and true cases based
on the misclassification rate, γ , and with sensitivity and specificity, respectively πse

and πsp, defining the serology tests’ overall accuracy to determine the seropositive
(either true positive or false positive) and seronegative (both true and false negative)
populations on both cohorts (Table1).

Notes. Instead of the Pearson’s χ2 test, an analogous investigation could also
been proposed using the Fisher’s exact test to assess the null hypothesis for lack
of association. Equation (2) includes parameters related to the accuracy of serology
tests; based on this formulation, one can obtain Eq. (1) by simply assuming πse =
πsp = 1.

Table 1 Augmented version of the observable 2 × 2 frequency table in the case-control association
study scenario with possible misclassification of suspected ME/CFS cases (into apparent and true
cases) and existence of false positive and false negative serological outcomes observed fromserology
tests done to assess exposure (confirmed by the true exposure indicator columns, with E for exposed
individuals and E for non-exposed)
Observed test
outcome

True exposure
indicator

Controls Suspected cases

(Apparent) (True)

Seropositive E πseθ0 πseγ θ0 πse(1 − γ )θ∗
1

E (1 − πsp)(1 − θ0) (1 − πsp)γ (1 − θ0) (1 − πsp)(1 − γ )(1 − θ∗
1 )

Seronegative E (1 − πse)θ0 (1 − πse)γ θ0 (1 − πse)(1 − γ )θ∗
1

E πsp(1 − θ0) πspγ (1 − θ0) πsp(1 − γ )(1 − θ∗
1 )
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2.2 Parameterisation Using Real-Word Data

As example of real-life application, we looked at data from three distinct seroepi-
demiologic surveys: Portugal [23], Spain [24], and Iran [25]. The studies occurred
between April and August 2020 and applied similar methods of estimation of their
populations’ seroprevalence. Also, all surveys presented information regarding the
sensitivity and specificity estimates for the serology tests performed. The estimated
values for the mentioned parameters in each survey are presented in Table2.

For the purpose of the study, we assumed the existence of an association between
exposure to COVID-19 and ME/CFS onset. Despite few evidences thus far due
to the novelty of the topic, some studies have mentioned this association based
on the idea of immune dysregulation, linking the development of post-COVID-19
chronic symptoms with the autoimmune proposal for ME/CFS [14]. Since there are
no biomarkers for ME/CFS diagnosis, we defined the association as a mild relation
with three possible values of the overall true odds ratio, �T = {1.25, 1.5, 2}. Based
on the values of θ0 from the three surveys and the proposed �T , the probability of
exposure on true ME/CFS cases was determined by

θ∗
1 = θ0�T

1 + θ0 (�T − 1)
. (3)

2.3 Simulation Structure

The impact of inherent misclassification on the hypothetical case-control association
studies was assessed through multiple simulations on different parametric values
for θ0, πse, πsp, in accordance to each serological survey (Table2), and �T . For
each combination of θ0 and �T , parameters θ1 and θ∗

1 were calculated from Eqs.
(2) and (3), respectively. To illustrate how sample sizes also influence the overall
power of a study, we performed our simulations considering cohort sample sizes of
n0 = n1 = {100, 250, 500, 1000, 2500, 5000}.

To assess the power of rejecting H0, 10,000 data sets were generated for each
value of γ , ranging from 0 (no misclassification) to 1 (no true ME/CFS patients in
the cohort for suspected cases) with a lag of 0.01. As previously mentioned, H0 was

Table 2 Parameter values used in the study, where the probability of exposure to the virus and the
sensitivity and specificity of the serology test are given by θ0, πse, and πsp , respectively

Reference Country θ0 πse πsp

[23] Portugal 0.025 0.95 0.98

[24] Spain 0.050 0.80 0.98

[26] Iran 0.150 0.75 0.98
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rejected at each data set if the p-value from the Pearson’s χ2 test was less than the
usual level of significance. Finally, for each parameter set, power was estimated as
the proportion of simulated data sets in which H0 was rejected. All simulations and
analyses were done using R statistical software, version 4.1.0 [26], using our own
scripts, available upon request.

Notes. For the purpose of study consistency, the estimated seroprevalence values
published on the serological surveys were considered as the probability of exposure
in the cohort of matched healthy controls, θ0.

3 Simulation Results

As expected, the estimated power to detect the hypothetical association decreased
withmisclassification rate (Fig. 1). Looking at the extreme cases, the estimated power
was highest when no misclassification was considered and all suspected ME/CFS
cases were considered to be true positives (γ = 0). Irrespective of the scenario, as
misclassification increases, the overall power is reduced towards 5% at the opposite
most extreme value (γ = 1)—i.e. the significance level specified for the Pearson’s
χ2 test.

Along with gradually increasing the misclassification of suspected patients, the
power to detect an association was estimated by varying the values of probability of
exposure in healthy controls, θ0, and sensitivity of the serology test, πse, for each
country serological scenario. In all three illustrated scenarios, the specificity was the
same and estimated at πsp = 0.98 (Table2).

Overall, only sample sizes of ni ≥ 500 individuals were able to reach a power
of at least 80%—the specified power threshold to identify what can be considered
as having acceptable reproducibility level (Table3). Simulations with larger sample
sizes granted a consistency to the reproducibility of the studies, with power remaining
above the defined threshold for higher values of misclassification. Similarly, higher
values of �T also affected positively the overall power of each study (Table3).

The Portuguese survey had the smallest estimate for the probability of virus expo-
sure and the highest sensitivity [23]. For this scenario, only higher association values
of �T = 2 and cohort sample sizes of 2500 and 5000 reached the power of at least
80%. Under these parametric conditions, the acceptable level of reproducibility was
observable at γ ≤ 0.45.

Compared to Portugal’s results, the Spain’s survey had θ0 increased and the πse

decreased [24]. In this scenario therewas an increase on the reproducibility,withmore
studies surpassing the 80% threshold. Nonetheless, this only occurred for sample
sizes of ni ≥ 1000.

Lastly, Iran’s survey [25] had the highest estimate for θ0 and lowest estimates
for πse. Despite the lower sensitivity, simulations under these parameters had higher
power for the same sample sizes than the other two scenarios (Fig. 1 and Table3).
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Fig. 1 Probabilities of rejecting the null hypothesis, i.e. absence of association between the two
populations as function of the misclassification rate. Each column represents the values attributed
to the true odds ratio for COVID-19 exposure and true ME/CFS, assessed between true positive
cases and healthy controls. Each row indicates a country serologic survey, with distinct values of θ0
and πse identified in the first column of each survey, and fixed πsp = 0.98 across all simulations.
Power analysis was estimated for different cohort sample sizes of 100, 250, 500, 1000, 2500, and
5000 individuals (n0 = n1), represented by the lines of different colours in each scenario. Grey
filled area indicates scenarios where the probability of rejecting the null hypothesis is above 80%.
Dark horizontal line indicates the level of significance used, α = 0.05
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Table 3 Maximum values of misclassification rate, γ , that maintain power if at least 80% to reject
the null hypothesis of lack of association, for different values of true odds ratio, �T , country of
serological survey, and sample sizes, ni , i = (0, 1). Cells with no value indicate the inability to
reach the power threshold between cohort, even at γ = 0

Country �T

1.25 1.50 2.00 ni

Portugal – – – 100

Spain – – –

Iran – – –

Portugal – – – 250

Spain – – –

Iran – – –

Portugal – – – 500

Spain – – –

Iran – – 0.19

Portugal – – – 1000

Spain – – 0.07

Iran – – 0.45

Portugal – – 0.20 2000

Spain – – 0.43

Iran – 0.35 0.65

Portugal – – 0.20 2500

Spain – – 0.43

Iran – 0.35 0.65

Portugal – – 0.45 5000

Spain – 0.22 0.60

Iran 0.13 0.55 0.76

4 Discussion

Focusing on ME/CFS, our simulation results showed how misclassification of
patients poses an impact on the ability to consistently recognise true associations
to a triggering viral exposure, prior to the disease onset. While still researching for
biomarkers able to discriminate the disease, the power is very likely to suffer from
limited statistical power due to possible misclassification of the suspected ME/CFS
cases. The proposed solution to this problem is to take into account for misclassifi-
cation in the respective statistical analysis.

The results evidenced how increasing a study’s sample size can increase its power.
Until now, misclassification studies mostly focused on identifying the extent of mis-
diagnosed of patients when using distinct diagnosis criteria, not particularly looking
at sample sizes [12]. With MEC/FS research being usually underfunded [27, 28],
case-control studies are frequently performed on sample sizes below 250 patients.
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This allows for potential sporadic associations that ultimately cannot be replicated
in follow-up studies. Throughout efforts to raise awareness and laboratory collabo-
rations, studies have been increasing their sampled populations. After all, our study
showed that under the parameterised conditions, only cohorts with samples above
500 individuals were able to consistently reject the null hypothesis under some levels
of misclassification (Table3).

A more in depth study would be required to pose a more general conclusion on
the influence of power caused by the prevalence of exposure and the sensitivity and
specificity of the serology test.One can argue that increasing the prevalencewillmake
for better comparisons between cohorts through Pearson’s χ2 test for independence,
as it might improve the frequency distributions across the 2 × 2 contingency table
cells. Whereas sensitivity and specificity will produce a lessened effect, as serology
tests keep improving—but still impactful, if not from the estimated πse and πsp, then
because the majority of serological cutoff values for seropositivity used arise from
inherently arbitrary choices if the researchers and manufacturers of the serology
tests [20, 29]. Nevertheless, diagnostic accuracy is still of extremely importance in
the evaluation of medical diagnostic tests and should be taken into account when
replication of a study—in this case, a scenario of a serology study—is necessary.

This hypothetical study was done in the context of the recent COVID-19 pan-
demic and the association of the long-term symptoms caused by the SARS-CoV-2
virus andME/CFS diagnosis.With the lack of extensive information on this COVID-
19 exposure—ME/CFS diagnosis relation premise, the parameter �T was defined
within low-to-mild values so as to not profoundly influence the simulation results.
As more studies and serological surveys are published on the matter, focusing on dif-
ferent populations or even focusing on serology tests for different specific antibodies
against COVID-19, one could better parameterise the simulation study.

ME/CFS is a complex disease and there is still a lack of understanding to the
extension of the disease’s aetiology and pathophysiology. Even under these uncer-
tainties, accepting and accounting for a level of patient misclassification—however
small—in association studies might help to improve the study designs and increase
scientific reproducibility. Ultimately, the ability to replicate and reproduce the results
proposed by a study is one of the most important aspects in research, and consis-
tent results are what allow ideas to become postulates, continuously driving science
forwards.
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Identification of Antibody Responses
Predictive of Protection Against Clinical
Malaria

André Fonseca , Clara Cordeiro , and Nuno Sepúlveda

Abstract Statistical pipelines have been proposed to discover antibody responses
associated with protection against clinical malaria. However, these often produce
inconsistent results due to the failure of the statistical assumptions, such as normal-
ity. In the present work, we have developed a new statistical pipeline to analyse data
from IgG antibodies against 36 Plasmodium falciparum antigens from 121 Kenyan
children. This pipeline was based on the identification of cut-off values in the anti-
body distributions that maximised the distinction between susceptible and protected
individuals. Our pipeline enabled us to construct a classifier based on few antibod-
ies, whose performance outperformed the previous ones based on a Random forest
approach. The good performance of the pipeline suggests its applicability in antibody
data analysis with the aim of identifying antimalarial vaccine candidates.

Keywords Random forest · Regression · Malaria · Regularisation strategies

1 Introduction

Malaria is caused by infections of Plasmodium parasites with the Plasmodium fal-
ciparum species (P.falciparum) being the most lethal one. It remains a global health
problem that threatens millions of people worldwide [1, 2]. Malaria is endemic
to tropical and subtropical regions where children under 5 years old are the most
affected by severe symptoms [1, 3]. The vulnerability of these children has been
mainly attributed to the slow process in acquiring natural immunity against malaria
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parasites via specialised antibody responses upon repeated exposure to the infec-
tion [4–6]. Antibodies, also known as immunoglobulins, are proteins produced by
B cells of the adaptive immune system upon antigen recognition [7]. In turn, anti-
gens are small protein fragments ingested and presented to B cells by other immune
cells.When bound to their antigen, antibodies are typically used as molecular signals
delivered to specialised immune cells (i.e. phagocytes) with the ability to remove the
culprit infectious agent by a process called opsonization [7].

Given their putative protective effect, antibodies have been extensively investi-
gated in the context of natural immunity against malaria parasites [8, 9]. However,
which set of antibodies confer individual-level protection to clinical malaria is still
elusive [8, 10]. A possible reason for the limited knowledge on this research topic is
the lack of reproducible results across different studies, as demonstrated by different
studies [8, 10, 11]. This lack of reproducibility might be attributed to the failure of
the underlying statistical assumptions invoked in the data. To aggravate, there are no
standard statistical pipelines to analyse immunological data consistently and reliably
in order to make different studies directly comparable.

In this scenario, we propose a newmethodology to analyse malaria antibody data.
Our working hypothesis is that a pipeline based on strong statistical principles may
increase reproducibility across studies, thus, contributing to a reliable discovery of
antibodies that promote natural protection to clinical malaria.

Thepaper is organised as follows: the following sectionpresents a brief description
of the data, the methodologies used and the pipeline. The following section shows
the results, ending with the discussion, concluding remarks and future work.

2 Materials and Methods

2.1 KEN Dataset

We have analysed a prospective cohort study of 286 children conducted in Kenya
(KEN) that arbours immune profiles of ELISA-based antibody titers against 36
P.falciparum-specific antigens. Children were monitored for clinical episodes of
malaria and classified as Susceptible (Sus) (ns = 40) if they had at least one recorded
episode of symptomatic malaria (clinical disease1). Children with no clinical episode
were classified as Protected (Prt) (np = 81). Based on the article by Osier et al. [12],
the analysis was performed solely on 121 children (N = ns + np) who were infected
at screening; these children had 1, 2, . . . , 10 years of age. In this way, the bias that
can arise from ascertaining exposure to infectious mosquitoes was minimised.

1 Clinical disease was defined as an auxiliary temperature >37.5 ◦C, plus any parasitemia for chil-
dren less than 1 year, and an auxiliary temperature of > 37.5 ◦C, plus parasitemia > 2500/μl for
individuals older than 1 year, during the 6-month follow-up.
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2.2 Measuring Association

The Chi-squared (χ2) test of independence identified antibodies associated with
clinical protection to malaria [13]. The latter was used to determine if individuals’
seropositivity was related to clinical protection against clinical malaria.

2.3 Predictive Methodologies

2.3.1 Multiple Logistic and Probit Regression

Logistic/probit regressions were followed by stepwise selection (forward and back-
ward) to select the subset of immune responses most associated with the clinical
malaria status response variable. The Hosmer–Lemeshow (HL) test was used to
evaluate the goodness-of-fit of the estimated regressions [14]. When performing the
HL test, the number of bins to calculate quantiles was set to 10. Finally, the Akaike’s
information criterion (AIC) was used to select the best model.

2.3.2 Regularisation Strategies

Ridge, Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic-Net
regressions were concomitantly used to predict immune signatures underlying clini-
cal protection to malaria [15–17] using the glmnet package [18] for the R software.
These regression models apply a penalty function λ to the regression model, which
reduces or shrinks coefficient estimates towards 0, thus allowing the less-contributing
covariates to have a coefficient close to or equal to zero [19]. To obtain the λ that
provided the highest accuracy for eachmodel, we incremented λ from 0.001 to 1with
a lag of 0.001. Then, a 10-fold cross-validation was used to compute the model accu-
racy for each λ [19, 20], and the process was repeated one hundred times. Usually,
two distinct λ values are chosen when performing the Ridge and LASSO regressions.
However, when using the glmnet package, a single λ value can be selected and a
second tunning parameter called α that ranges from 0 to 1 can be set to adjust the
tunning parameter. To perform the Ridge regression, α is set to 0 while performing
the LASSO regression an α equal to 1 is established. To perform the Elastic-Net
regression, we increased α from 0 and to 1 with a lag of 0.1.

2.3.3 Random Forest

A machine learning technique known to provide good results in classification prob-
lems is Random forest. It works by constructing multiple decision trees trained on
different parts of the same training set by a process called bagging or bootstrap
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aggregation [21]. The number of trees to grow and the number of predictors ran-
domly sampled as candidates in each split was set to default. To obtain more robust
results we performed one hundred iterations of 10-fold cross-validations.

2.4 Predictive Accuracy

Twomeasures were used to assess the accuracy of the predictive approaches: Receiv-
ing Operating Characteristic (ROC) curves and confusion matrices. The area under
the ROC curves (AUC) were utilised as a measure of the predictive model accuracy
(or discrimination performance) [22]. In this case, ROC curves were used to assess
the antibodies’ inherent ability to predict individuals’ protection to clinical malaria.
Confusion matrices are tables used to describe the performance of a classification
model on a set of data for which the true values are known. The confusion matrix is
a 2 × 2 table in which each cell shows the frequency of a different combination of
predicted and observed values [23].

2.5 Pipeline

Identification of antibody signatures associated with protection to clinical malaria
was achieved by developing, establishing and integrating a pipeline to the KEN
dataset (Fig. 1). This pipeline starts by ordering the individuals according to their anti-
body quantity values and specifying each value as a possible cut-off to characterise
patients as either seropositive or seronegative. Individuals’ classified as seroposi-
tive had expression values above the cut-off point, while seronegative individuals
had expression values below. Contingency tables of seropositivity against clinical
malaria status were then constructed. Chi-squared tests of independence were used
to determine if antibody seropositivity was associated with clinical protection to clin-
ical malaria. Finally, the cut-off that provided the strongest association to protection
(the cut-off with the smallest p-value) for each antibody was selected to characterise
patients into seropositive and seronegative populations. This process was repeated
for each of all the 36 antibodies initially present in our data set. The methodolo-
gies Logistic/Probit, Ridge, LASSO, Elastic-Net regressions, and the Random forest
were then used to construct different classifiers for clinical malaria. Finally, the per-
formance of each classifier was assessed by ROC curves.

All the analyses were performed using R version 4.0.4 [24] and their packages:
AID [25], caret [26], dplyr [27], ggplot2 [28], glmnet [18], MASS [29],
pROC [30], randomForest [31], stats [24], tidyr [32]. A significance level
of 0.05 was used.
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Fig. 1 Pipeline. The different steps of the analysis are displayed on the workflow using distinct
coloured shapes. Blue colour identifies the beginning of the pipeline. Green indicate computational
steps prior and after the loop for obtaining the χ2 test p-value for each potential cut-off (light
orange). Dark orange refers to the predictive performance step and dark grey indicates antibodies
removed from the analysis. Additional information is provided by the faded light orange and dark
orange coloured shapes



232 A. Fonseca et al.

3 Results

The analysis was performed on the 121 childrenwhowere parasite-positive at screen-
ing, in line with both the original published article [12] and by Valletta and Recker
[8]. Of the 121 children, 40 were considered susceptible, and 81 were protected
against clinical malaria. The immune profiles for these individuals consisted of 36
P.falciparum-specific antigens taken at the start of the transmission season. Selection
of immune profiles against the P. falciparum derives from the fact that this species
is the most prevalent malaria one in the African continent, home to Kenya [33].

We started by ordering the individuals according to their antibody quantity levels
and obtaining the antibody level that provided the best separation ability between the
susceptible and protected group of individuals. Antibodies that were not statistically
significant in the χ2 test were removed from the analysis. The antibody data were
replaced by a dichotomized seropositive/seronegative variable for the remaining anti-
bodies, whichwas used later in the predictive performance analysis. According to our
results, 28 out of 36 antibodies were able to differentiate susceptible from protected
individuals with a 95% confidence, as seen in Table1.

Considering the 28 antibodies, we proceeded to identify a panel of antibody signa-
tures that could predict individuals’ immune status tomalaria. Therefore, five distinct
methodologies: Logistic/probit, Ridge, LASSO, and Elastic-Net regressions and the
Random forest were applied. The objective was to assure that the identification of the
best classifier was not hindered by the predictive method selected. Regardless of the
method used, individuals’ status against malaria was used as the response variable.
In contrast, the individuals dichotomized (seronegative/seropositive) data were used
as predictive variables.

Logistic and probit regressions were performed. The subsets of antibodies with
the highest association with clinical malaria were obtained by stepwise selection.
Due to the similarity of the results, we present only the Logistic regression infor-
mation. Our results showed that the best model was composed of antibodies against
the msp2, msp4, msp7 msp10, pf11_0373 and pf113 antigens, with an accuracy of
approximately 86% (as seen in Fig. 2a). Following this analysis, we included the
variable “Age” into this classifier and it was statistically significant p-value <0.001;
Mann–Whitney). Therefore, it was included in the model in order to understand its
effect on the performance. According to the results, the accuracy of the classifier
increased from 86 to 90%, reflecting the contributing effect of other antibodies that
were not captured by the model (Fig. 2a). Overall, our method correctly classified
a total of 102 (75 + 27) individuals out of the total 121 (Fig. 2b). In addition, for
both the logistic models with (p-value = 0.450) and without Age (p-value = 0.9275)
the p-value for the HL goodness of fit test was above 0.05, indicating that at a 95%
confidence there was not enough evidence to say that our models were a poor fit.

Notwithstanding the predictive capability of the logistic/probit regression mod-
els, we also decided to perform the predictive analysis using regularisation strate-
gies. Ridge regression (α = 0) was the best performing model between the three
regularisation methods utilised, reaching a predictive accuracy close to 80% when λ
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Table 1 Patient Seroprevalence. The statistically significant results of the χ2 test for the 28
antibodies. The antibody levels that provided the best separation ability between the susceptible
and protected group of individuals (Cut-off), and the proportion of seropositive individuals for all
(Total), Protected (Prt) and susceptible (Sus) children, respectively

Antibody p-value Cut-off Total Prt Sus

msp1 0.013 0.15 0.85 0.91 0.73

msp2 <0.001 0.07 0.45 0.57 0.20

msp4 <0.001 0.13 0.86 0.96 0.65

msp5 0.020 0.09 0.56 0.64 0.40

msp10 <0.001 0.25 0.79 0.90 0.58

pf12 0.002 0.10 0.65 0.75 0.45

pf92 0.001 0.11 0.83 0.91 0.65

pf31 0.002 0.07 0.61 0.72 0.40

pf113 0.020 0.05 0.74 0.81 0.60

gama 0.002 0.05 0.61 0.72 0.40

ama1 0.001 0.16 0.74 0.84 0.53

eba175 <0.001 0.14 0.71 0.84 0.45

eba140 0.006 0.11 0.96 1.00 0.88

eba181 0.003 0.11 0.90 0.96 0.78

mtrap 0.013 0.05 0.85 0.91 0.73

asp 0.005 0.08 0.70 0.79 0.53

msp3 0.010 0.08 0.48 0.57 0.30

msp6 0.002 0.12 0.78 0.86 0.60

msp7 <0.001 0.24 0.71 0.86 0.40

msrp1 0.003 0.05 0.79 0.88 0.63

msrp3 0.006 0.04 0.96 1.00 0.88

h101 0.031 0.05 0.74 0.80 0.60

h103 0.001 0.07 0.50 0.60 0.28

pf41 0.002 0.12 0.38 0.48 0.18

pff0335c 0.003 0.05 0.88 0.95 0.75

rh5 0.046 0.16 0.39 0.46 0.25

ron6 0.016 0.04 0.81 0.88 0.68

pf11_0373 0.006 0.08 0.21 0.28 0.05

ranged from 0.526 to 0.839 (Fig. 3a). According to the Ridge regression model, the
immune responses most associated with the clinical malaria status were similar to
the ones obtained with logistic regression, with the antibody against the msp7 anti-
gen appearing as the most important variable (importance = 100), followed by the
antibody against msp4 (importance = 85) (Fig. 3a). The antibody against the msp10
antigen appeared on the fourth position (importance = 78), followed by the antibody
against pf11_0373 in the fifth position (importance = 70) and the antibody against
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Fig. 2 Predictive performance of the best antibody signature. a ROC curve for the best anti-
bodies signature comprising only the antibodies against msp2, msp4, msp7, msp10, pf11_0373 and
pf113 antigens (red), only Age (blue) and the best antibodies signatures together with Age (green).
b Confusion matrices derived from the model built with the best antibodies signature together with
Age (Abs and Age)

Fig. 3 Ridge regression regularisation strategy results. a The mean accuracy for each regulari-
sation parameter (λ) after one hundred runs of 10-fold cross-validation are given by a blue circle.
b Importance of each antibody in the model

msp2 on the eight position (importance = 64). The antibody against Pf113 appeared
well below the importance scale in the twenty-seventh position, with an importance
of just 6.64 (see Fig. 3b). However, Ridge regression kept all antibodies in the final
classifier with an exception for asp.

The results for both the LASSO and Elastic-Net regression will not be discussed
here since the main objective was to identify the method that provides the highest
accuracy. To further compare the results of the traditional regression techniques with
more complex technologies such as machine learning model, the Random forest
was used. This approach was able to provide an accuracy of 81% (Fig. 4a). Like the
Ridge regression, the Random forest approach kept all antibodies in the final classi-
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Fig. 4 Random forest results. a Themean accuracy for each value of randomly selected predictors
when performing each tree after one hundred runs of 10-fold cross-validation are given by a blue
circle. b Importance of each antibody in the model

fier except the antibody against eba140 (Fig. 4b). Even more, the immune responses
most associated with the clinical malaria status resembled the ones obtained by the
Ridge regression, with the antibody against msp7 once again appearing as the most
important variable (importance = 100), the antibody against msp2 on the third posi-
tion (importance = 61), the antibody against msp10 on the fifth position (importance
= 54), followed by the antibody against msp4 on the sixth (importance = 50). Inter-
estingly the antibody against pf113, however, had more weight in the Random forest
(importance = 21) than in the Ridge regression. Oppositely, however, the antibody
against pf11_0373 had significantly lower importance on the Random forest (impor-
tance = 19).

4 Discussion

Despite tremendous efforts in the malaria field, it is still unclear which antibodies are
essential for developing immune responses that lead to clinical malaria protection
[8, 12]. The inconsistent results amongst studies regarding which set of antibodies
are responsible for individual-level protection to clinical malaria highlight the need
for novel approaches to analysing immunological data. Here we set to establish and
implement a pipeline to analyse immunological data in a consistent and replicable
manner, thus obtaining reproducible results. We hypothesise that pipelines such as
the one proposed may finally help identify clear relationships between the measured
immune responses and the level of protection against malaria. Our pipeline was able
to identify an immunological classifier against clinical malaria using 86% using anti-
body information solely against 6 antigens (msp2, msp4, msp7, msp10, pf11_0373,
pf113). Adding “Age” to our classifier increased its accuracy to 90%. This reveals
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that there were antibody responses associated with clinical protection to malaria that
our model could not identify. While age itself does not confer protection against
malaria, older individuals are more to have been exposed to the malaria parasite,
therefore developing different antibody responses [5]. In this sense, age is a proxy of
additional antibodies that the model did not capture. Nevertheless, this effect could
also come from the fact that the antibodies responsible for adding this additional
explainability to the model were not found in the dataset (due to the small number
of features). Comparing our results with the ones obtained by Valletta and Recker
[8], our pipeline systematically outperformed their approach independently of the
predictive technique used. This increase in accuracy provides clear evidence that an
alternative approach to just blindly applying a Random forest approach without any
selection criterion may not be best suitable. The benefit of doing a more thorough
data analysis before applying a predictive model becomes even more evident when
we consider the performance of the Random forest technique in our analysis, which
was also used by Valletta and Recker [8]. While they obtained only a predictive
performance of 68%, we, on the other hand, obtained a predictive performance of
81%. Concerning the antibody panel associated with protection to clinical malaria
here identified,msp2,msp4,msp7, andmsp10 belong to the group of Merozoite Sur-
face Proteins (MSPs) [34]. The MSPs are expressed on the surface of the merozoite,
providing great therapeutic targets for malaria mainly because they are repeatedly
and directly exposed to the host humoral immune system [34, 35]. In fact, msp2 has
been extensively associated with protection from clinical malaria in a vast number
of independent studies. As an example, msp2 has been demonstrated to be strongly
associated with protection against clinical malaria in two independent cohorts of
Kenyan children [10].Msp4 has too been already identified as a potential candidate
component of the malaria vaccine. In a Senegalese community living in an area of
moderate, seasonal malaria transmission, high antibody levels against msp4 con-
structs were associated with reduced morbidity [36]. Moreover, the protective effect
ofmsp4 against symptomatic malaria has been already reported in Kenyan children
on two occasions [12, 37]. On the other hand, the association between msp7 and
protection against clinical malaria in the literature is less extensive, however msp7
protection againstmalaria have already been identified in theKenyan population [37].
For the pf113 antigen, however, the literature is more prominent. Using sera from a
longitudinal study in a cohort of Kenyan children, Osier et al. have identified 10 anti-
gens amongst which pf113 were associated with protection against clinical episodes
of malaria [12].Furthermore, several other studies refer pf113 as a promising malaria
vaccine candidate [38, 39]. These findings further corroborate our results, as com-
monlymalaria vaccine candidates identified in other studieswere also identified here.
Interestingly, msp10 and pf11_0373 have not been associated with clinical malaria
protection so far, as we were unable to identify a single study with such information.
This evidence may suggest that there may be antibodies associated with protection
against clinical malaria that has not yet been identified. Nevertheless, further studies
are necessary to validate our analysis. Immune responses commonly associated with
malaria protection and often referred to as potential vaccine candidates such as the
merozoite surface protein-1 (msp1) and the apical membrane antigen-1 (ama1) were
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not amongst the best predictors of clinical protection malaria in children, none being
incorporated in any of our panel of antibodies [34, 40]. These findings have already
been reported in other studies, where antibodies against msp1 and ama1 have been
described to show low or no associations with protection to clinical malaria [8].
These inconsistent findings further suggest the need for sturdier pipelines that may
help to increase reproducibility amongst studies.

5 Concluding Remarks and Future Work

Although we have provided a suggestive approach here, it should be noted that this
pipeline is simplistic and will not provide the most sturdy results in every scenario. A
situationwhere this pipelinemay not performwell is if there are numerous antibodies
related to the outcome under analysis, as a large number of antibodies will be avail-
able for the predictive analysis phase. This may reduce the strength of the analysis
and consequently lead to less powerful results. One solution to overcome this prob-
lem might be to implement correction techniques (such as Bonferroni) for multiple
testing. Nevertheless, the implementation of these correction techniques remains to
be done. Note that, the question of multiple testing can also be raised for each 121
chi-squared tests when analysing a given antibody. However, this question can be
reframed as an estimation problem where the cut-off value that best discriminates
patients from healthy control is an unknown parameter that requires to be estimated.
This idea is conceptually similar to the application of the profile likelihood method
with cut-off as an unknown parameter.

Work to improve our pipeline to be more suitable for a broader range of datasets
is already ongoing. Implementation of other approaches has been considered, where
we are trying to make our pipeline more robust. We have also developed another
pipeline that relies on traditional statistical techniques after appropriate data trans-
formation and flexible finite mixture models for determining antibody positivity. The
former has also shown promising results. Additionally, it is worth mentioning that
by proposing a methodology to analyse antibody data instead of just identifying the
exact antibody threshold, any differences in the results may arise due to different
sample handling, different sequencing instruments, or other factors that may alter
the results. As experimentally conditions are complex to recreate, providing a value
that would differentiate patients is a less sensible strategy than providing amethodol-
ogy that can systematically reproduce the findings of the antibodies associated with
antibodies in various studies.

To conclude, although promising, we propose that this pipeline should be tested
in other data sets to assess its robustness in different settings. Moreover, we believe
that pipelines such as the one presented here may allow the identification of the
antibodies that confer protection against clinical malaria in a reproducible manner.
Finally, since antibody data are an essential research component of any infectious
disease, it is expected that the impact of this work transverses the field of malaria.
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Abstract Cancer is a disease driven and characterised by mutations in the DNA.
Different categorisations of DNA mutations have allowed the identification of pat-
terns that can act as signatures for the processes that have governed the life of the
cancer. Over the last decade, research groups have identified more than 100 such sig-
natures. Mutational signature analyses are improving our understanding of cancer
aetiology and have the potential to play a role in diagnosis, prognosis, and treat-
ment choice. Consisting of the estimation of probability mass functions or weights
determining non-negative weighted combinations, they are perhaps unique among
comparable analyses in the medical literature, in that no confidence intervals or other
representations of uncertainty are demanded when reporting the results. Here, we
review the key statistical challenges for the field, assess the potential of existing
approaches to adapt to those challenges, and comment on what we think are promis-
ing directions. As we deal with data that are noisy and heterogeneous, we evaluate
how to present them so that models use all the information available. Often posed as a
matrix factorisation problem, we argue that a fully probabilistic approach is required
to quantify uncertainty around model parameters and to underpin principled study
design. Lastly, we argue that novel methodology is required to evaluate uncertainties
in analyses where prior information is available.
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1 Introduction

Cancers can result from relatively few changes to a cell’s DNA, but typically carry
many additional somatic (i.e. occurring within the life of the patient) mutations. We
can identify thesemutations by sequencing and then comparingDNA from the cancer
andDNA fromhealthy tissue from the same individual [1, 2]. “Mutation”, here, refers
to a wide range of events ranging from single base substitutions to larger structural
variants (e.g. genomic rearrangements where large segments of a chromosomemight
be deleted, duplicated, or have their orientation inverted [3]). See, e.g. [4] for a review
of mutation classes.

Somatic mutations are the result of biological mechanisms, termed mutational
processes, associated with characteristic patterns of mutations or mutational signa-
tures, described by means of probability mass functions over mutational categories
[5]. Therefore, the catalogue of somatic mutations observed in an individual cancer
genome can be thought of as a mixture of the mutational signatures that have acted
on the tumour over time.

Somemutational processes act continuously throughout life [6], while others arise
as a result of exposures to carcinogens [7, 8]. They might be ongoing, intermittent,
or might have stopped [4]. Some processes are associated with germline mutations
in tumour suppressor genes, such as BRCA1/2 [5, 9]. Cancer genomes contain the
imprint of many such processes to differing degrees. Consequently, the goals of
mutational signature analyses are to infer from the somatic mutations in tumours
(1) the signatures of mutational processes, (2) the contribution of each process to
individual cancer genomes, and (3) when those processes contributed.

To achieve those goals, a range ofmathematical methods have been, and are being,
developed [10–21] (for a review, see, e.g. [22, 23]). Their application to data sets of
ever-increasing size and complexity has resulted in a remarkable improvement of our
understanding of cancer and its causes [24]. More than a hundred inferred mutational
signatures are available to the wider research community [24, 25]. In the context of
personalised medicine, these have a remarkable potential to stratify cancer patients
[26, 27] and to predict response to treatment [28].

1.1 Modelling Framework

Data Gathering. In the context of mutational signature analyses, we investigate data
sets generated using next-generation sequencing and analysis pipelines (involving
(a) sequencing, (b) alignment to a reference genome, (c) often-probabilistic mutation
calling, and (d) post-processing). The output is a list of “mutations” observed in the
tumour. Often, data are not solely collected for the purpose of signature analysis.

In the sequencing step, short segments of DNA from both tumour and matched
healthy tissue are read as base sequences. Each of those “reads” covers 100–250
base pairs and may contain errors. We define the coverage of an individual base to be
the number of times it has been sequenced. Additionally, we define the sequencing
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depth of an experiment to be the average number of times a base is sequenced. While
sequencing depth is typically set by the investigator, coverage is not uniform across
genomic regions. In particular, regions with a high prevalence of Cs and Gs are
susceptible to low coverage [29].

Sequence reads are then aligned to a reference genome, and aligned reads from
both tissues are presented to a “mutation caller” that determines whether a mutation
is present at a given locus by means of a statistical test. Thus, there must be a balance
between sensitivity and specificity thatwill differ between cancer types.Additionally,
that balance is unlikely to be uniform acrossmutation types. Thus, the systematic bias
introduced in this step will be propagated to mutational signature analyses, affecting
inferences. This problem can be exacerbated by the application of post-calling filters
[30, 31].

Mutational Signatures and Mutational Catalogues. For themutational class being
considered, biologically meaningful categorisations must be defined (see, e.g. [4]
for a review) and we denote the resulting categories by k = 1, . . . , K . We define a
mutational signature, sn = (s1n, . . . , sKn)

T , to be a probability mass function over
the K categories, with skn denoting the probability that a mutation generated by
signature n is of type k.

We now consider the mutational catalogues of G cancer patients and assume
that they have been exposed to N mutational processes. The observed number of
mutations of category k in patient g, mkg, is approximately

mkg ≈
N∑

n=1

skneng (1)

where eng denotes the exposure of patient g to signature n, that is, the number of
mutations attributed to that signature. In matrix form,

M ≈ S × E (2)

where M = [m1 · · ·mG], S = [s1 · · · sN ], and E = [e1 · · · eG].

1.2 Mathematical Approaches to Mutational Signatures

We will consider two problems. The first, termed de novo signature extraction, con-
sists in estimating S and E for known M. The second, termed refitting, consists in
estimating E for known M and S.

De Novo Signature Extraction. This problem, consisting of estimating S and E
given M in (2), was originally posed as the following non-convex optimisation prob-
lem:

arg min
S≥0,E≥0

||M − SE|| (3)
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where || · || denotes an appropriate norm. This approach, termed Non-Negative
Matrix Factorisation (NMF) [32], is taken by the original and arguably most pop-
ular method, SigProfiler [10, 24]. Several other software packages are avail-
able implementing similar solutions based on NMF [11, 25, 33–36]. An alternative
method is EMu [14], which considers the exposures to be nuisance parameters and
uses the EM algorithm to estimate the matrix S.

A slightly different approach is to place (2) in a Bayesian setting, as done by
SignatureAnalyzer [12, 13], signeR [15], and sigfit [16]. Briefly, prior
distributions are placed on the elements of S and E, and a likelihood function is
assumed for the elements of M. SignatureAnalyzer performs Maximum A
Posteriori estimation of S and E using the methodology developed by Tan and
Févotte [37]. Alternatively, the other two methods use different MCMC algorithms
[38–40] to draw from the posterior distributions of S and E.

Those methods also differ in their model selection criterion (Table1). For brevity,
we refer the reader to [22] for a thorough albeit somewhat dated summary.

Table 1 Overview of methods for de novo mutational signature analysis. The third column indi-
cates, if relevant, a point estimation criterion, a posterior sampling method, and a model selection
criterion. NMF, PCA, MLE, MAP, EM, BIC, and HMC stand for Non-negative Matrix Factori-
sation, Principal Component Analysis, Maximum Likelihood Estimation, Maximum A Posteriori,
Expectation Maximisation, Bayesian Information Criterion, and Hamiltonian Monte Carlo

Software Method Estimation methods

SigProfiler [24] NMF [32] MLE
–
Ad hoc

SomaticSignatures [11] NMF/PCA [32] Optimisation
–
–

SignatureAnalyzer [12,
13]

Bayesian NMF [37] MAP
–
Not needed

EMu [14] Poisson model MLE (EM)
–
BIC

signeR [15] Bayesian NMF [38, 39] –
Gibbs
BIC

sigfit [16] Bayesian NMF –
HMC (stan [40])
Ad hoc

SparseSignatures [17] Sparse NMF –
–
Cross validation
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The Bayesian Nonparametric Alternative. An alternative approach to the methods
described above is the one byRoberts [18], implemented in the R package hdp, using
the methodology of Teh et al. [41]. Here, we are not presented with vectors of counts
but with lists of mutations.

Specifically, we are presented with a data set X = (x1, . . . , x J ) where x j =
(x j1, . . . , x jn j )

T is the list of mutations observed in the j th patient. Within this
framework, patients are assumed to be exchangeable, i.e. the joint probability dis-
tribution p(X) does not depend on the ordering of patients. Similarly, mutations
are assumed to be partially exchangeable, meaning that p(X) is independent of the
ordering ofmutationswithin a specific patient. Observations are assumed to be drawn
from a categorical distribution:

x ji |θ j i ∼ Categorical(θ j i ) (4)

The parameters θ j i of the discrete distributions are drawn from G j , a realisation
of the Dirichlet Process associated with the j th patient, whose base measure G0

is distributed according to a “global” DP with base measure H and concentration
parameter γ. Formally,

θ j i |G j ∼ G j (5)

G j |α,G0 ∼ DP(α,G0) (6)

G0|γ, H ∼ DP(γ, H) (7)

where DP(·, ·) denotes a Dirichlet Process [41]. That is a nonparametric hierarchical
prior that does not assume a fixed number of components and has three hyperpa-
rameters: H is the mean of the prior distribution over the signatures, and γ and α
control the variability around that mean at the global and patient level, respectively.
Often, H is conveniently set to Dirichlet(1, . . . , 1), a flat prior over the (K − 1)-
simplex, and non-informative Gamma hyper-priors are placed on γ and α. As with
any Bayesian analysis, a sensitivity analysis is required to assess the prior choice
for H . The model of Eqs. (4)–(7) is referred to as the Hierarchical Dirichlet Process
Mixture Model (HDPMM).

This method has several advantages over the ones reviewed above: First, the num-
ber of components (signatures) is inferred from the data, rather than fixed. Second, it
naturally models the hierarchical nature of patient data. Further, it assumes naturally
that the number of components grows with the number of observations, explicitly
modelling the rate of growth. However, the assumption that the number of clusters
grows logarithmically with the number of patients and doubly-logarithmically with
the number of mutations is unchecked [42]. The main disadvantage is that, even if
MCMC samplers are available, inference from the raw MCMC output is non-trivial
as it requires a post-processing procedure that is currently not available.

Additionally, it should be noted that the HDPMM allows for the assumption of
exchangeability at the patient level to be relaxed by extending the hierarchy ofDirich-
let Processes. Patients can then be considered partially exchangeable and grouped,
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Table 2 Overview of challenges, grouped by proposed statistical solution

Proposed statistical approach Challenge

Constructing the matrix M 1. Accounting for bias and variance in M

2. Recognising intra-tumour heterogeneity

3. Accounting for opportunities

4. Going beyond the 96 categories

Bayesian nonparametrics 5. Uncertainty in the number of signatures

6. Uncertainty around the signatures

7. Sample size calculations

Novel statistical methodology 8. Uncertainty around the exposures

9. Obtaining separated signatures

10. Partial information about the signatures

e.g. according to the tissue where the tumour arose [18]. However, to relax the
assumption of exchangeability at the mutation level would be more challenging.

Refitting of Mutational Signatures. This is a simpler problem which consists of
solving for eg for a single patient g in (2), assuming mg and S are known. The
most popular approach is perhaps deconstructSigs [19]. Alternatively, one
can solve (2) using, e.g. non-negative least squares [20, 43]. An attempt to quantify
uncertainty by using theBootstrapwithin the context of refitting has been provided by
SignatureEstimation [20]. A Bayesian alternative that also enforces sparsity
in the solution is sigLASSO [21]. For brevity, we do not detail these approaches
here.

Statistical Challenges. Despite the advances in this area over the last decade, it is
a concern that within this field, uncertainty quantification is not receiving enough
attention. Even if the effort to develop newmethods has been substantial, recognition
of uncertainty within the discipline is surprisingly limited. While previous reviews
have focused on a mathematical description of the methods [22] and their perfor-
mance [23], here we focus on the key statistical challenges for the field, enumerated
in Table2. In the forthcoming sections, we describe these challenges, highlighting
the potential of different methods to address these challenges.

The first group of challenges (Sect. 2) concerns the uncertainties arising from
data collection. The second group (Sect. 3) concerns uncertainties in de novo anal-
yses and how accounting for them could inform data collection. We will argue that
the Bayesian Nonparametric approach is suitable to address those challenges. The
third group (Sect. 4) concerns uncertainty in analyses where partial information is
available. While we will highlight that progress has been made, the need to address
these challenges demands the development of new methodology.
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2 Challenges in Constructing M

2.1 Challenge 1: Accounting for Bias and Variance in M

Sequencing experiments are stochastic events, and the identification of mutations,
necessary for constructing M, is often based on probabilistic models [31]. M is
itself therefore also an observation of a random variable. While uncertainty around
the mutation calls is unavoidable, it can be reduced by increasing sequencing depth
[29]. High sequencing depth increases the chance of calling subclonal mutations (see
also Sect. 2.2) and reduces disagreements between mutation callers [31]. Typically,
it is beneficial to increase the depth of sequencing as it results in the identification
of mutations that are present in a fraction of cells. However, the benefits of doing so
are marginal after a certain depth threshold, which differs across individual tumours
[30]. Therefore, allocating extra resources to recruit more patients might be more
cost-efficient.

As well as exhibiting variation, M will be a biased estimate of the true value.
Different callers [31] and sequencing pipelines [30] can return systematically dif-
ferent results. Genomic context affects the power to detect mutations (via variation
of sequencing coverage [44]) and the false discovery rate [31], meaning that some
classes of mutation are less likely to be called correctly than others. There is potential
for novel statistical developments to estimate more accurate catalogues.

Going back to the identification of mutations present in a small fraction of cells,
these aremore likely to have occurredmore recently—and thus they aremore likely to
be overlooked due to insufficient coverage. If there is a change in mutational patterns
over time [45], then this will cause a bias in M. On the other hand, if the tumour has
recently diverged into subclones, then recent mutational processes might have their
impact measured on each subclone, and these processes will be over-represented
relative to the truth for any cell present.

2.2 Challenge 2: Recognising Intra-Tumour Heterogeneity

Intra-tumour heterogeneity (ITH) poses a difficulty with mutational signature anal-
yses that is not always acknowledged. Briefly, tumours are heterogeneous mixtures
of cells, and we are often able to identify mutations only at the patient level (i.e. not
with single cell resolution). We can sometimes infer whether a mutation is clonal
(meaning it is present in every sampled cancer cell) or subclonal. Every subclonal
mutation belongs to one or more subclones, subpopulations of cells that carry the
same variants. Subclones can be inferred by clustering on the space of the cancer
cell fraction (CCF), the unobserved proportion of tumour cells in which a mutation
is present [46].
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ITH in De Novo Signature Extraction. All de novo methods ignore ITH. They
consider, explicitly or implicitly, mutations to be exchangeable at the patient level,
ignoring their clonal status. Ideally,wewould relax the assumptionof exchangeability
by incorporating available information regarding ITH. An interesting approach has
been taken in recent studies of normal and non-neoplastic colon biopsies [47, 48]
and consists of extending the tree-like hierarchical structure of the HDPMM to a
further level. Then, mutations are grouped according to their subclone, which is in
turn grouped according to patients. However, it remains to be shown whether this
approach is applicable to cancer data.

ITH in Signature Refitting.By combining the estimation of subclones with refitting
methods we can learn about the evolution of cancers [45]. One approach is to infer
the subclones and then apply a refitting algorithm to each of them [49]. An alternative
is implemented by TrackSig [50], and consists of sorting mutations by CCF (a
surrogate for “age”). Refitting is then applied to “time points” of 100 mutations each.
Lastly, subclones are inferred at boundaries between time points.

The first approach fails to propagate the uncertainty around subclones to the
second step of the analysis. Performing inference on the subclones and the subclone-
specific exposures jointly, as done by TrackSig, seems sensible but the current
approach ignores uncertainty in the estimation of the CCF.

2.3 Challenge 3: Accounting for Opportunities

A mutation category implies a “reference state” and a “variant state”. For example,
consider the category “A[C>T]G” in the standard categorisation of SBSs. That cat-
egory implies a reference state “ACG” and a variant state “ATG”. Reference states
are not uniformly distributed across the human genome and their distribution varies
across cancer patients (due to copy number variation and loss of heterozygosity
events).

Fischer et al. [14] have proposed to adjust the observed number of mutations of
category k by the relative prevalence of that category’s reference state. That relative
prevalence is termed “opportunity” and, for patient g, is denoted okg . Adjusting for
opportunities, (1) becomes

mkg ≈ okg

N∑

n=1

skneng (8)

While this approach is available in several de novo methods [14–16], it does not
seem to be widely used in practice.

Opportunities, when measured, are informative about the distribution of muta-
tions that might occur contemporaneously, but are used to analyse mutations that
have occurred in the past. Copy-Number gains change the opportunities for late
mutations, while loss of heterozygosity events and copy number losses effectively
change the opportunities for early events. By contrast, other processes can gradually



Statistical Challenges in Mutational Signature Analyses of Cancer … 249

shift the balance of opportunities. An SBS event can change three local contexts, so
a hypermutation event with 1,000,000+ similar mutations would noticeably change
the opportunities.

2.4 Challenge 4: Going Beyond the 96 Categories

As mentioned in Sect. 1.1, signature analyses are applicable to a range of mutational
classes. Most, though, have been performed on single base substitutions (SBS) for
which a canonical categorisation with 96 categories is available. Six basic categories
result from considering the pyrimidine in the mutated base pair and the base to
which it mutates (C>A, C>G, C>T, T>A, T>C, T>G). Considering this and the
four possible nucleotides before and after the mutated base, we obtain the most
common categorisation, with 4 × 6 × 4 = 96 mutation types.

Further Categorisations of SBS. We could consider four flanking bases instead
of two. The number of categories in this taxonomy is then 6 × 44 = 1536. While
it has been shown that the two bases immediately flanking the mutated base carry
a stronger signal, in some cases using this extended taxonomy has led to further
resolution [24]. This taxonomy comes with its own challenges. First, we would not
expect MCMC-based methods to scale to this level of resolution. Second, we would
expect matrix M to contain many zeroes, requiring methods that can account for
such sparsity.

A related problem is that there is currently no distance structure between muta-
tion categories. A mutation A[C>T]G is as different from C[C >T]G as it is
from T[T>A]T. While the NMF approach offers no obvious way of creating such
distance structure, the one-dimensional categorical observations x ji ∈ {1, . . . , 96}
in the HDPMM could be replaced with three-dimensional observations x j i =
(x ji1, x ji2, x ji3) with x ji2 ∈ {1, . . . , 6} and x ji1, x ji3 ∈ {1, . . . , 4}.
Integrating Mutation Classes. Whether it would be informative for signatures to
integrate all the mutation classes is a matter of debate [4, 24]. A cross-class cate-
gorisation, such as the one with 1,697 categories proposed by Alexandrov et al. [24],
ignores the difference in noise and degree of sparsity between mutational classes.
Performing separate analyses for each class followed by post-hoc association anal-
ysis of exposures has the drawback of ignoring uncertainty in signature attribution.
Instead, we would suggest a strategy of information sharing, using class-specific
categorisations and catalogues to extract signatures, but incorporating an associa-
tion parameter that would quantify which signatures of diverse classes tend to occur
together.

Accounting for Genomic Properties. So far, we have considered mutations from
a given patient to be exchangeable. That is reasonable if we lack information to
distinguish them, other than the category we are measuring. However, that is not
entirely true, as each mutation has genomic properties (e.g. chromosome, chromatin
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state, proximity to a particular binding site, etc.) that we might be able to measure.
Those properties can help elucidate the aetiology of a signature, as well as help
determine whether a signature is an artefact of the extraction algorithm.

Categorisations can be augmented to account for these genomic properties, but
increasing the number of categories comes at a price.With that strategy, we are likely
to be able to consider one genomic property at a time. Vöhringer et al. have suggested
an alternative based on non-negative tensor factorisation, TensorSignatures
[51]. This method scales to a large number of genomic properties. However, it has
the disadvantage of not being a probabilistic method. Further methods may arise,
in the spirit of TensorSignatures, perhaps modelling mutation categories and
genomic properties with a joint probability distribution and thus relaxing the assump-
tion of exchangeability.

3 Challenges Addressed with Bayesian Nonparametrics

3.1 Challenge 5: Uncertainty in the Number of Signatures

Parametric methods such as those based on NMF, reviewed in Sect. 1.2, assume a
fixed number of signatures. Therefore, uncertainty around the number of signatures
is not modelled or evaluated. Moreover, it has been argued that uncertainty around
the model dimension should be disregarded as its influence in the estimation of the
main signatures is marginal [4].

We argue that as the number of signatures is unknown, there is uncertainty about
the true model dimension. This uncertainty can be modelled and evaluated after
collecting data. A Bayesian clustering approach relaxes the assumption of a fixed
number of signatures and lets this number be a parameterwhose value is to be learned.
This is achieved by placing a prior on the number of signatures. A nonparametric
prior implies that the model dimension increases with the number of observations
[52]. The assumed rate of growth depends on the chosen nonparametric prior, as
briefly discussed for the HDPMM in Sect. 1.2.

The latter approach has, in our opinion, several advantages. First, avoiding an
upper bound on the number of signatures is intuitively appealing, as we expect to see
more signatures as more observations arrive. However, the assumption about the rate
of growth is rather strong and must be checked. Second, it allows for inference to
be performed on model parameters and model dimension jointly. Hence, uncertainty
intervals around model parameters will reflect the uncertainty around the number of
signatures (see also Sect. 3.2).

Provided with a data set, a sampler for the HDPMM will produce draws from
a posterior distribution, each of them with a different number of signatures. From
those draws, it is straightforward to produce a (marginal) posterior distribution over
the number of signatures. As that posterior will help quantify the strength of the
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signal in the data set, it must be reported along with the “most representative set of
signatures”. Relatedly, the required evaluation of uncertainty around signatures in
that representative set is not trivial (see Sect. 3.2).

3.2 Challenge 6: Uncertainty Around the Signatures

Contrary to the usual practice in the biomedical literature, estimates of mutational
signatures have typically been reported without intervals of uncertainty [5, 9, 24].
This is undesirable, as we are often interested in the possible range of values that
might have generated the data. First, even if wewere only interested in the “centre” of
the signatures, uncertainty in estimating that centre is unavoidable. Second, if there
is any randomness in the biological mechanism under which mutational processes
generate mutations, we would expect them to leave slightly different “fingerprints”
in each patient. Uncertainty intervals around signature probabilities should reflect
that variability.

The Bayesian paradigm provides a natural setting to quantify that uncertainty.
While this has been proposed in two contexts, Bayesian NMF [15, 16] and Bayesian
clustering [18], we believe that the latter is more promising. This is because the
Bayesian clustering approach accounts for the uncertainty in the model dimension
when reporting uncertainty around the signatures (see Sect. 3.1). This can be useful
considering study design (see Sect. 3.3).

TheBayesian clustering framework provides a posterior over the space of possible
partitions. At every iteration of the MCMC sampler, every mutation is allocated
to a cluster which is, in turn, characterised by θ j i in (5)–(7). The random vector
θ j i represents the signature attributed to mutation x ji . For ease of interpretation, a
representative clustering must be determined from the MCMC output. An objective
criterion must be defined to determine that “most representative set of signatures”.

Once a representative set has been derived, the MCMC output can be used to
determine the strength of the signal. If a signature is needed to explain the data, it
will appear consistently across iterations of the sampler, and hence credible intervals
around it will be narrow. Conversely, if a signature appears in the best set but does not
appear throughout the MCMC output (e.g. because it might emerge admixed with
similar signatures), it will be reported with wide credible intervals.

Such an approach, while needing development, would differ from the post-
processingmethod ofRoberts [18] that disregards uncertainty in clustering by assum-
ing that every reported signature is present across iterations of the sampler. Rather,
one of the strengths of the Bayesian clustering approach is that it allows one to assess
whether a given signature is present across iterations.
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3.3 Challenge 7: Sample Size Calculations

Since the first collection of 5 mutational signatures was found on a data set of 21
breast cancer whole genomes [9], the number of known mutational signatures has
grown with the number of cancer genomes available for analysis. The first pan-
cancer mutational signature study reported 21 SBS signatures in 507 genomes and
6535 exomes [5, 10], while the most recent large-scale study has reported 49 SBS
signatures in 4645 genomes and 19184 exomes [24], suggesting that the rate at
which new mutational signatures can be found shrinks as the number of patients
and observed mutations grows. Heterogeneity within the cohort is also known to
influence the power to extract signatures.

While we would expect the inventory of mutational signatures to keep increasing
as new tumour samples are observed, it is good practice to make sample size calcu-
lations before collecting new samples. When making sample size calculations, it is
advisable to consider (1) the number of new individuals recruited, (2) the number of
mutations observed in each patient, and (3) heterogeneity within the cohort.

Whereas methods based on Non-negative matrix factorisation do not provide
an obvious way of informing study design, the fully probabilistic approach of the
HDPMMcould be used to inform future sample collection. In particular, wewould be
interested in assessing the posterior probability of discovering a new signature, condi-
tional on the data already observed and L future observations x J+1, x J+2, . . . , x J+L .

The scaling properties of the HDPMM [42, 52], explained in Sects. 1.2 and 3.1,
can be applied to assess that probability. Related probabilistic questions on future
data collection could be answered, for example regarding heterogeneity within the
cohort. This approach has been successful in other problems, such as single-cell
sequencing experiments with competing budget constraints [53]. However, to avoid
making false inferences, we must check that the newly discovered signatures are
likely to be genuine, considering the level of support for them by the observed data.

4 Challenges Requiring a New Modelling Approach

4.1 Challenge 8: Uncertainty Quantification Around
Exposures

Remember that the goal of a refitting analysis is to solve for eg in (2) for a single
patient g. In Sect. 1.2, we have briefly reviewed the mathematical methods available
for performing this task. To date, it remains the case that most point estimates in
refitting analyses are reported without an uncertainty interval (see, e.g. [54]).

So far, there has been one attempt to provide confidence intervals around the
estimates of a refitting analysis, provided bySignatureEstimation [20],which
uses the bootstrap to produce confidence intervals around the exposure estimates.
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There is a concern though that this approach accounts at best for a fraction of the
uncertainty.

Avoiding False Exposures and Obtaining a Sparse Solution. Because signatures
overlap, different weighted combinations of signatures can explain a mutational
catalogue equally well. Thus, it has been argued that S should include only the
signatures that one could reasonably expect to see in the tissue where the tumour
arose [4]. Moreover, any extra signature added to the S matrix will result in a fitted
vector that better resembles the observed vector.

Those two difficulties are acknowledged and addressed by Alexandrov et al. [24].
Their solution consists in (a) including in S all the signatures that have been previ-
ously found in the relevant tissue, (b) removing signatures from S sequentially, until
the removal of a single signature results in a reduction in the cosine similarity≥ 0.01,
and (c) adding to S the signatures that result in an increase in cosine similarity of
≥ 0.05, even if they have not been previously associated with the relevant tissue.

However, that approach is not without problems. First, the inference is based on
ad-hoc rules and relies on cut-offs that appear arbitrary. The first suggestion from a
statistical point of view would be to elucidate an informative prior distribution over
the exposures. If prior information is limited to the tissue in which the tumour was
observed, it might be possible to adopt a hierarchical modelling approach, with the
ambition to borrow information across patients. Further, a penalty parameter could
be included, ensuring that over-fitting is avoided.

Assessing All Sources of Uncertainty. In principle, to avoid underestimating uncer-
tainty, all its sources should be modelled explicitly. Degasperi et al. [25] have argued
that, even if most signatures occur in more than one tissue, the profile of each signa-
ture is tissue-specific. Therefore, the matrix S should contain signatures as extracted
from tumours of the relevant tissue only.While this seems sensible, we would go fur-
ther and argue that, if there is any randomness in the mechanism under which a given
mutational process generates mutations, then the fingerprint of that process must
differ at least slightly between patients. This must be accounted for when allocating
mutations to signatures.

Another source of uncertainty that is often ignored has been termed “sampling
uncertainty” by Li and colleagues [21]. It formalises the idea that uncertainty in the
estimated exposures will decrease as more mutations are observed. A response to
that is their method, sigLASSO. However, even if this method accounts for such
“sampling uncertainty” in its modelling, it reports point estimates only. This is an
appealing idea that could be incorporated into the other methods.

4.2 Challenge 9: Obtaining Separated Signatures

If we are looking to extract a representation of the true exposures and signatures,
then it should be noted that two true but distinct signatures can be similar. This has



254 V. Velasco-Pardo et al.

been highlighted as problematic, as the presence of similar signatures in the matrix
S prevents unambiguous attribution of mutations to signatures [24]. We should also
note that the interpretation of similarity is very much dependent on the vector space
in which we are representing signatures, which is a restrictive space due to the non-
negativity constraint.

To avoid such ambiguity in post-hoc refitting analysis, we can impose a sparsity
constraint on de novo methods by adding a penalty term to the optimisation problem
(3), as suggested by Lal et al. [17]:

λ

N∑

n=1

||sn||1 (9)

where || · ||1 is the L1 norm and λ can be interpreted as the data set’s degree of
sparsity. This approach results in extracting signatures that are sparse, thus making
pairs of signatures more likely to be separated. It should be noted however that, by
imposing a sparsity constraint, a restriction that may not be supported by evidence
is introduced for computational and interpretational convenience.

By shrinking the signature parameters towards zero, the aforementioned sparsity
constraint results in a rather strong restriction over a space that is already restrictive.
This has implications for the stability of present and future signatures: presented with
additional data carrying novel signatures, a de novo method may fail to find space to
accommodate those novel signatures, potentially distorting old ones.

4.3 Challenge 10: Partial Information About the Signatures

With themethodology available to date, a researcher has twooptionswhen attempting
to analyse data—to rely on an external collection of signatures to perform a refitting
analysis or to perform a de novo analysis. However, there are situations where it
would be more natural to assume an intermediate setting, where the signatures are
neither known nor unknown.

In this context, it might make sense to consider an intermediate approach where
partial information about the signatures is available, but they are not known precisely.
This is not the same as the approach termed fit-ext in [16] and also implemented
in [18]. That approach, consisting in setting part of the signatures matrix to point
estimates derived fromprevious studies, ignores the uncertainty associatedwith those
point estimates. Moreover, it does not allow for those estimates to be updated.

Rather than considering previously discovered signatures to be fixed, it seems
more appropriate to incorporate knowledge obtained from previous studies
through means of an informative prior distribution. This setting has, to some extent,
been explored also in [16], allowing informative Dirichlet priors over both signatures
and the exposures. However, there is little guidance on how to take advantage of this
method. We note however two possible lines of future research within this approach.
First, the Dirichlet distribution might not be flexible enough to model prior knowl-



Statistical Challenges in Mutational Signature Analyses of Cancer … 255

edge about the signatures. Second, a hierarchical prior over the exposures might be
worth considering, to borrow statistical strength between patients.

5 Conclusions

This review has set out what we perceive to be the main statistical challenges in the
field of mutational signatures.While highlighting the achievements of themutational
signatures community in improving our understanding of cancer, we have drawn
attention to the lack of estimates of uncertainty in such analyses. Motivated by this,
and by related statistical challenges, we have highlighted the strengths of certain
methods to address those challenges while also emphasising the need for future
developments.

First, we have outlined four challenges involving potential errors or loss of infor-
mation when constructing M. We have highlighted that the problem of estimating
the “true” M has been largely ignored (Sect. 2). As an alternative, we could have
argued for a single Bayesian pipeline integrating mutation calling and signature
analysis. However, that would set back the adoption of new methods, since muta-
tion calling pipelines are established. Relatedly, we have underlined the promise of
TrackSig in the study of tumour evolution, but further developments are required
to account for all the uncertainties (Sect. 2.2). Similarly, we drew attention to the
concept of mutational opportunities while calling for new developments to account
for the opportunities’ temporal evolution (Sect. 2.3).

Second, we have outlined three challenges related to uncertainty quantification in
de novo applications. While NMF approaches have been augmented with probabilis-
tic models, their lack of flexibility regarding model dimension is a drawback. We
have argued that the Bayesian Nonparametrics approach, first suggested by Roberts,
offers a more natural framework for assessing sources of uncertainty. However, we
have argued that further study is needed to take advantage of the vast MCMC output
resulting from this approach (Sects. 3.1 and 3.2).We have also discussed the potential
of this fully probabilistic modelling to underpin study design, allowing practitioners
to address trade-offs and optimise limited resources (Sect. 3.3).

Lastly, we have outlined three challenges for which no obvious statistical solution
is available. We have highlighted the need for quantifying uncertainty in the context
of refitting. We have also highlighted the recent application of statistical methods
such as the Bootstrap to assess a fraction of such uncertainty, while identifying
additional sources of uncertainty that are being ignored (Sect. 4.1). Finally, we have
underlined thefit-ext approach as an attempt to pose an intermediate problembetween
de novo and refitting. However, that approach needs enhancement to account for the
uncertainty around estimates obtained in previous studies (Sect. 4.3).
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Abstract The volume of DNA in a sequencing experiment is often amplified
by PCR, leading to the possibility that the same original DNA fragment will be
sequenced twice—a “PCR duplicate”. Sometimes indistinguishable from these are
multiple sequences arising from identical but independent molecules, which can lead
to an over-estimation of the PCR duplicate proportion. The PCR duplicate propor-
tion, and othermeasures derived from it, are important statistics for quality assurance,
experimental design, and interpretation of sequencing experiments. Here, we pro-
vide a full likelihood basis for a combinatorial approach using heterozygous SNPs
as implemented in our R package and demonstrate the efficacy of the approach. We
also discuss the association with DNA copy number and demonstrate the impact on
a question of inferring mitochondrial DNA copy number that has recently been a
feature of several high-profile cancer studies. This is explored through a simulation
study.
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1 Duplicate Sequencing Reads

A simple DNAwhole-genome sequencing (WGS) experiment might consist of sam-
pling DNA from several cells, breaking the DNA up into fragments, increasing the
number of fragments by creating copies, using a sequencer to identify the sequences
of a random sample of those fragments, and mapping them to a reference genome.
Once this is done, we can assume that the number of reads mapping to a genomic
region is proportional to the average DNA copy number for that region and that the
degree of evidence for a particular feature of the genome is measured in the number
of sequenced fragments (reads) that support the feature.

It is desirable for the accuracy of these quantitative methods that no original small
molecule ends up being counted more than once in the analysis, for which reason
“duplicate reads” are typically removed from analyses.

Typically, duplicate reads are defined by the locations to which they map in the
genome. Broadly, there are three ways in which such reads can arise. The first is an
error in the imaging or image processing (hereafter referred to as “optical duplicates”,
although our definition may be broader than that usually associated with this term).
The second is that the same original DNA fragment can give rise to multiple clusters
on the sequencing flow cell—most likely because the fragment was duplicated in
a Polymerase Chain Reaction (PCR) amplification step—and so we refer to these
as PCR duplicates. The third is that two independent DNA molecules happen to
fragment in the same positions and both give rise to clusters on the flow cell (hereafter
referred to as “fragmentation duplicates”).

Since fragmentation duplicates represent independent molecules, we wish to
retain them in analyses. By contrast, ideally, we would wish to retain only one of
a set of PCR duplicates, and so all others are typically removed. As fragmentation
duplicates are generally indistinguishable from PCR duplicates but fewer in number,
fragmentation duplicates are typically removed along with PCR duplicates. Optical
duplicates by their nature are typically identifiable and can be removed as a sepa-
rate process, but could also reasonably be combined with the PCR duplicates in an
“undesirable” duplicate category. We will ignore optical duplicates for the rest of the
manuscript.

1.1 An Example Data Set

We illustrate this articlewithWGSdata sets previously published by theOesophageal
Cancer Clinical andMolecular Stratification (OCCAMS) consortium [1]. In particu-
lar, we focus on 22 “control”WGS data sets that we can assume to be broadly diploid
(i.e. they have two copies of each of the autosomal chromosomes). These were gen-
erated from blood (n = 12) and non-cancerous oesophageal tissue (n = 10) from
22 Oesophageal Adenocarcinoma (OAC) patients. DNA from oesophageal tissue
was extracted using the DNeasy kit (Qiagen) and from blood using the NucleonTM
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Genomic Extraction kit (Gen-Probe) (according to the manufacturers’ instructions).
A single library was created for each sample and was sequenced to a nominal depth
of 50x, using paired-end reads of length 100. Read-pairs were aligned to the human
reference genome GRCh37 using the Burrows-Wheeler Aligner (BWA) [2].

The median duplicate percentage (counting both PCR and Fragmentation) across
these samples, as derived using Picard [3], is 6.5% (ranging from 3.73 to 14.49%).
As might be anticipated, these values are skewed by areas of the genome that are
not diploid (e.g. mitochondria), or which (due to problems with aligning reads and
discrepancies between the reference genome and the true genome) do not behave
as diploid (e.g. telomeres). Such regions need to be removed before calculating and
correcting the values.

2 Approaches to Separating Out the Duplicate Types

When classifying specific duplicate reads as being fragmentation duplicates is not
possible, i.e. when random tags have not been appended to the original molecules in
the mix, it is sufficient for some analyses merely that we can estimate the numbers
in each class.

A probabilistic approach for estimating the numbers of fragmentation duplicates,
through considering the distribution of insert sizes, read lengths, and coverage, has
been presented in the context of high-coverage targeted sequencing experiments
[4]. This makes such reasonable assumptions about the independence of reads, the
independence of insert size and depth of coverage, and the lack of external limiting
factors (e.g. constraints imposed by starting with fewmolecules). While it is possible
to apply an approach comparable to Zhou et al.’s [4] toWGS data, the nature of these
data allows for an empirical estimate of the proportion of fragmentation duplicates.

Specifically, we take advantage of knowing that many loci in a WGS experiment
will be heterozygous, with a known allele fraction (often 0.5), and that the definition
of duplicate reads makes use of their genomic locations rather than their sequences.
PCR duplicates covering a heterozygous site should show the same allele, while frag-
mentation duplicates are neither constrained to show the same allele nor compelled
not so to do. This was a characteristic that we exploited in our 2016 software and the
update accompanying this manuscript [5], and which has been similarly exploited
by others [6]. This latter application is notable for suggestions of application also to
RNA-seq data.
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3 A Likelihood Approach Based on Allele Patterns at
Heterozygous Loci

Here, we set out a likelihood methodology for estimating the proportion of duplicate
reads that are PCR duplicates (or equivalently the proportions that are fragmentation
duplicates). This is the same approach as implemented in our software [5].

3.1 A Simple Approach Using Only Pairs of Duplicates

We first simplify the problem by imagining that where duplicate reads exist, there
are precisely two reads mapping to the locus and no more.

We will consider such pairs of reads that overlay the sites of heterozygous Single
Nucleotide Polymorphisms (SNPs). In each case, one of the pair will have been
marked as a duplicate. In practice, we will consider only a predefined set of potential
sites of heterozygous SNPs in order to simplify computations. Our aim is to identify
the proportion, PD , of duplicate reads that do not represent an observation arising
from a novel molecule and to separate this from the proportion that do.

If we assume that we are dealing only with a pair of fragments, then with probabil-
ity PD (the quantity we wish to estimate) they are observations of the same original
molecule, while with probability FD = 1 − PD they are observations representing
different starting molecules. We exploit the fact that at these locations, if we are
restricting ourselves to parts of the genome that are in allelic balance (i.e. the same
number of copies of paternal andmaternal sequence), thenwe canmake the following
statements:

If the two reads are observations of the same original molecule, then they should
report the same nucleotide at the locus of the heterozygous SNP (excepting for
sequencing errors, the inclusion of which we assume we can control by filtering on
the base-calling quality score). This scenario we denote AA regardless of the allele
being reported.

If the reads arise from different starting molecules, then they will report the same
nucleotide (AA) half of the time and different nucleotides (denoted AB) half of the
time (assuming that the number of cells contributing to the sequencing library is such
that removing one molecule from one cell does not noticeably affect the balance of
available alleles).

If we observe counts of NAA pairs of reads where the duplicate is reporting the
same nucleotide, and NAB where it is reporting different nucleotides, giving a total
number N = NAA + NAB , then equating the observed and expected proportions of
AA and AB patterns gives

NAA/N = PD × 1 + FD × 0.5

NAB/N = FD × 0.5
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which we can rearrange to gain an estimate of PD:

PD = 1 − 2 × NAB/N . (1)

3.2 A Likelihood Approach for Pairs of Duplicates

We can explicitly frame this in terms of a likelihood model. There are Q = 2 distinct
observable allele patterns (AP1 = AA and AP2 = AB). We wish to calculate the
probabilities of observing each of the Q allele patterns given a value of PD , denoted
Pr(APk |PD) for allele pattern k of Q. Coupled with the observed counts of each
allele pattern, N (APk), these allow us to define the log-likelihood of PD to within
an additive constant:

l(PD) =
Q∑

k=1

N (APk) log Pr(APk | PD). (2)

We can write down Pr(APk | PD) in a straightforward manner. When Q = 2,

Pr(AA | PD) = 1

2
(1 + PD)

Pr(AB | PD) = 1

2
(1 − PD).

The log-likelihood is then

l(PD) = NAA log((1 + PD)/2) + NAB log((1 − PD)/2),

and if we seek the maximum likelihood estimate by equating the first derivative to
zero, we obtain 0 = NAA(1 − P̂D) + NAB(1 + P̂D), whence

P̂D = (NAA + NAB)/N = 1 − 2 × NAB/N

as required to match the estimate in Eq. (1).

3.3 The Full Model

If we have more than two fragments in our duplicate set, then we can extend the
log-likelihood approach in a natural manner. For each size M of duplicate set, we
still sum over all Q = QM potential allele patterns the number of times that allele
pattern was seen multiplied by the log of the probability of seeing that allele pattern.
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We simply have to extend this by summing also over all values of M . The challenge
is to calculate the probabilities of the allele patterns, Pr(APk | PD).

This calculation can be facilitated by conditioning on the underlying partition
of the M reads into the, at most M , original molecules contributing to the set. We
consider every possible partitioning of M fragments into m non-identifiable bins
representing m original molecules, to obtain

Pr(APk | PD) =
∑

i

Pr(APk | PARTi )Pr(PARTi | PD), (3)

allowing us to calculate the log-likelihood and to find the maximum likelihood esti-
mate of PD .

Determining theNumber of PartitionsDetails of the sequence of partition numbers
can be found at http://oeis.org/A000041/. Since the task needs only to be performed
once, and the largest value ofM observedwill typically not be very large, the numbers
can be determined by recursively deriving all possible partitions.

Determining the Probability of an Allele Pattern Given a Partition Given a par-
tition, we know the number of molecules present, and the number of read-pairs each
molecule contributes (this is in essence our definition of a partition). Every pattern
of assignment of alleles (“A” or “B”) to the molecules is given an equal probability.
Without loss of generality, we can initially assign “A” to the first molecule, so the
number of allele assignments to be considered is only 2m−1 where m is the number
of molecules in the partition. Similarly, for reasons of identifiability, if necessary
we relabel the alleles within a pattern so that the number of “A” alleles is at least
as great as the number of “B” alleles. See Fig. 1 and supplementary materials for
example calculations. The probability of an allele pattern is the sum of probabilities
of assignments that give rise to that pattern.

When M read-pairs are partitioned among m molecules, it is straightforward to
see that the form of Pr(PARTi | PD) must be

Pr(PARTi | PD) = K F (m−1)
D P (M−m)

D (4)

since m molecules imply that we have (m − 1) fragmentation duplicates (the “-1”
since one read-pair is regarded as an original and not a duplicate of anything) and
the remaining (M − m) read-pairs in the set must be PCR duplicates.

The value of K is

K =
⎛

⎝
∑

j

ν j

⎞

⎠!
/ ∏

j

ν j ! (5)

where ν j is the number ofmolecules fromwhich exactly j read-pairs have originated.
Thismay be intuited via combinatorial arguments, or a proof is given in the appendix.

As a concrete example, consider the case when there are four fragments (M = 4)
partitioned among three molecules (m = 3) such that two read-pairs arise from one

http://oeis.org/A000041/
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Fig. 1 Details for the case when M = 4. For example, if the 4 read-pairs arose from two original
molecules, then they must partition into a 3 and 1, or into 2 lots of 2. In the latter case, the only two
patterns that can be seen are “AAAA”and “AABB”depending onwhether the twooriginalmolecules
exhibited the same or different alleles, respectively. Each has equal probability when arising from
this partitioning, but the same observed patterns can also result from other partitionings

molecule and one read-pair arises from each of the other two (as in the lower-middle
case of Fig. 1). Then ν1 = 2 and ν2 = 1 (ν j = 0 ∀ j > 2). The value of K is then
3!/(2!1!)
= 3.

3.4 Application to Our Example Data

Our method relies on identifying heterozygous SNPs in regions of constant copy
number. In this case, we seek regions that are well-behaved and diploid. We also
require an observation of the proportion of duplicates that we can correct. The basic
observation of the percentage of duplicates for the samples (the total number of
duplicates seen, minus optical duplicates, divided by the total number of read-pairs
examined) varies from 3.7 to 14.5% with a median of 6.5%. However, as highlighted
above, the proportion of duplicates seen is affected by the inclusion of regions that
are not representative of the regions in which our SNPs are located, and we may then
choose to replace our basic observation with a “masked” observation.

With the removal of masked regions, the median duplicate percentage seen in our
22 samples is 5.0% (ranging from 2.3 to 13.2%). The reduction in the percentage is
quite uniform across samples (Fig. 2) but, additionally, we have a third observation.
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Fig. 2 Left: Showing the basic and masked observations of duplicate proportions to be unsatis-
factory estimates of the proportions at our SNP loci. Right: Showing the degree to which the basic
observation and observation from our SNP loci over-estimate our best, corrected, estimate

To apply the methods described above, we investigate 2,500 common SNPs in antic-
ipation of identifying 1,000 heterozygous sites for each sample: In fact, the numbers
seen per sample vary from 942 to 1,093. From these approximately 1,000 heterozy-
gous SNPS,we can calculate an observed proportion of duplicates that directly relates
to the correction we will make. On average there are 70,000 read-pairs considered
per sample, which is sufficient to estimate the duplicate proportion well.

As seen in Fig. 2, masking the genome brings the observed proportion much more
in line with that observed from the SNP loci (median 4.5%, range 1.9 to 12.1%),
but the observations remain over-estimates of the duplicate proportions at the SNPs.
Therefore, our calculations that follow will take the direct observation at the SNP
loci as the combined PCR and fragmentation duplicate rate.

In total, 78,173 sets of duplicates are observed across our 22 samples, with the
largest set containing six duplicate read-pairs. The percentage of observed duplicates
attributed to fragmentation varied from 1.7 to 19.8% andwas higher in blood samples
(which have a lower observed duplicate proportion than the tissue samples). As seen
in Fig. 2, the “corrected” estimate for PCR duplicate proportion is overestimated by
more than a tenth in several samples if the fragmentation contribution is not removed,
but more noticeably it is overestimated by a factor of up to 2.5 if, additionally,
over-influential regions of the genome are not masked, or some other approach to
establishing a representative observation of duplicate proportion is not used.

Single versus Paired-End Sequencing. We have, to this point, been considering
read-pairs, those reads arising fromDNA fragments where both ends of the fragment
are sequenced. It is possible also to conduct sequencing such that only one end of the
fragment is read (“Single-end sequencing”). In the case of single-end sequencing, the
definition of a duplicate is based on only the coordinate of one end of the fragment,
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Fig. 3 Left: Comparing the basic observations of duplicate proportions from our paired-end exam-
ple data and simulated single-end sequencingdata.Right: Showing the agreement between corrected
estimates of PCR duplicate proportion from the two data sets

and not the length of the fragment. With this laxer criterion reads will be classed as
fragmentation duplicates more readily.

We can simulate a single-end read data set by discarding the second end from each
read in our example data. Crucially, in doing this, we are simulating a single-end data
set with the same PCR duplicate proportion as the paired-end data set, because these
are the same DNA fragments represented in both. One property of our correction
method then is that it should return the same value when applied to each data set in
turn.

In Fig. 3, we see that the observed duplicate proportion is indeed substantially
higher in the single-end data, and not even highly correlated with the observation
in the paired-end data. After applying the correction methods presented here, the
estimates show remarkable agreement (also Fig. 3).

A Cancer Sample We have until now been considering “normal” diploid samples,
but much interest lies in the study of cancer samples that are not diploid. We will
illustrate now the application of this methodology to an OAC sample. Specifically,
we consider sequencing library SS6003314 from the same study [1] as the blood and
benign tissue samples that have been the examples so far.

SS6003314 appears to be generated from a broadly tetraploid tumourwith approx-
imately 74% tumour purity (i.e. 26% of cells in the sample are contaminating normal
tissue). While a copy number stage of “AABB” (i.e. two copies of both the pater-
nal and maternal genome) is most frequently observed (Fig. 4, there are noticeable
regions with copy numbers ranging from one to six and ranging from balanced to
exhibiting loss of heterozygosity (i.e. for a given region, only one of the maternal or
paternal genome is present). Importantly for this analysis, there are regions present
with inferred copy number state “AB”.

So long as the SNP loci selected are from regions with the same copy number,
and are balanced, then we can apply the methods outlined in this paper. For this
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Fig. 4 Left: Illustrating the expected patterns to be seen when plotting minor allele frequency
against sequencing depth for a sample that is 74% tumour. Genomic regions that, in the tumour,
share the same copy number state in all cells are expected to appear at the points indicated, and
the copy number state associated with each point is annotated. For example, “AAABB” indicates
a region of copy number five with three paternal and two maternal copies or vice versa, while
“0” indicates regions that are entirely missing in the tumour genome. Note that since the minor
allele fraction is bounded at 0.5, the expected value for balanced regions has to be less than this,
and the bias is more extreme, the lower the copy number count. Right: A scatter plot illustrating
the observed relationship between smoothed minor allele fraction and smoothed sequencing depth
for sequencing library SS6003314; an oesophageal adenocarcinoma sample with inferred tumour
purity of 74%. Darker regions indicate that more of the genome lies at this position. The grid from
the left-hand plot is superimposed. Clouds of points lying off the grid may indicate regions of
the genome that do not have a common copy number state in all cancer cells, artefacts from the
smoothing, or that the tumour purity has been misidentified

Table 1 Reporting the percentage of observed duplicates and the estimated PCR and fragmentation
duplicate percentages both for regions of the genome that have copy number pattern “AABB” and
those with copy number pattern “AB”

Observed
duplicates (%)

Proportion due to
fragmentation

PCR duplicates
(%)

Fragmentation
duplicates (%)

AABB 3.76 0.047 3.58 0.18

AB 3.68 0.017 3.62 0.06

example, we can apply them independently to the “AB” and “AABB” copy number
states. For the “AABB” regions, we have identified 8,396 heterozygous SNPs to use
in the analysis, while for the “AB” regions, we have identified 759.

The results from the analysis in Table1 show that the inferred proportion of
duplicates due to fragmentation is still, for this data set, low at a copy number of
four. Therefore, the duplicate proportions are similar before and after correction and
also when comparing “AABB” and “AB” regions. While still small, the proportion
of duplicates due to fragmentation did increase going from “AB” to “AABB”.
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Note that the likelihood models presented here could be extended to any copy
number state where both alleles are present, but (a) this is more complicated and (b)
most cases have a region that can be identified as balanced. Note also that even if the
assignment of copy number states was wrong (perhaps we have actually been con-
sidering regions that were “AABB” and “AAABBB”), we are not affected, because
all we have made use of is the knowledge that the regions were balanced.

4 Effects on the Estimation of DNA Copy Number

While the effects of copy number may sometimes be minimal when comparing
diploid and tetraploid genomes, there are circumstances in considering duplicate
proportions when it is important to distinguish DNA copy number and depth of
sequencing coverage despite the linear relationship we anticipate (as in Fig. 4).

Local to a region of constant copy number, the PCR duplicate proportion will be
trivially linked to the depth of coverage since duplicate sequences count towards that
coverage, and if fewer than two reads are present, then there cannot be a duplicate.
There may also be factors such as GC content that have the potential to influence
both properties locally within a genome. Beyond this, there is no reason to expect the
PCR duplicate proportion to vary with copy number. The variation of our observed
duplicate proportion with copy number we then attribute to the fragmentation dupli-
cates.

At high values, it is clear that the depth of sequencing will drive the proportion
of fragmentation duplicates we see. There are only a finite number of positions in
which sequencing read-pairs can be positioned and that there must be a depth of
coverage, beyond which all additional reads will be classed as duplicates. That is,
we achieve saturation, and there is a depth beyond which our sequencing will reveal
only additional duplicates. Consequently, if we remove duplicates from an analysis,
we place an artificial threshold on the copy number we can call. Moreover, as one
approaches that threshold, reads will be classed as duplicates more frequently. Depth
of sequencing for a region of the genome will depend on the DNA copy number
locally (as shown in Fig. 4) and the overall number of sequences generated for the
sample.

For a given DNA copy number, there are three key aspects of the sequencing that
determine the numbers of reads that are lost after being classed as fragmentation
duplicates. These are as follows: (a) The depth of sequencing associated with a
region of copy number one: More depth is generally a good thing in sequencing
experiments, but leads us to problems with fragmentation duplicates sooner. (b)
The standard deviation (or more generally the distribution) of the fragment sizes:
Less variable fragment lengths are conceptually useful for identifying some types of
structural variant, but increase the numbers of fragment duplicates. (c) The lengths
of the sequencing reads: For most purposes, it is beneficial that these are long, and
minimizing fragmentation duplicates is no exception.
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Fig. 5 Showing the percentages of reads incorrectly discarded due to being identified as frag-
mentation duplicates under three simulation schemes. The parameters varied are read length (RL),
standard deviation of the fragment lengths (SD), and depth of coverage for a region of copy number
one (Cov)

If we simulate some not-unrealistic data, where the sequencing coverage asso-
ciated with one copy of DNA is 30 reads (achieved using paired-end 100 base pair
(bp) reads and a DNA fragment length standard deviation of 50, and with no PCR
duplicates), then we see that the removal of duplicates (all due to fragmentation)
has an increasingly large effect as the copy number increases. At moderate copy
numbers, taking a copy number of 2 as the baseline, there is little effect—regions
of copy number 8 for example will be estimated to have a copy number of 7.98
in these conditions. A true copy number of 50 would be estimated to be 49, 100
would be estimated to be 96, 500 would be estimated to be 410, and a copy number
of 1000 would be estimated to be 686. This “compression” of observed copy num-
bers in high-copy-number-states will naturally result in increased uncertainty in the
inference of true copy number, even before saturation is reached.

In Fig. 5, we show the percentages of reads that are lost through being fragmen-
tation duplicates for three simulated examples. One example matches the scenario
given above where the parameters provide an approximation to our real data. The
second example is a more extreme case with shorter reads and a tighter distribution
of insert sizes, while the third shows the effect for a case with longer reads, more
variable fragment length, but lower coverage per DNA copy (perhaps because the
sample being studied is tetraploid not diploid). From this figure, we can see that the
effects can vary from extreme to possibly ignorable.

Although most of the genome is of a copy number where these effects are small,
it is worth noting that (a) the PCR duplicate proportion is also small, and the effect
on this (and downstream characteristics such as inferred sequencing library size) can
be considerable, (b) that only a small region of the genome at very high copy number
can greatly increase the number of fragmentation duplicates present in samples, and
(c) the inference of copy number states can sometimes be finely balanced between
multiple credible solutions, and any discrepancy between the assumptions of the
model and the true nature of the data could affect the proffered solution.



PCR Duplicate Proportion Estimation and Consequences for DNA … 271

5 The Estimation of Mitochondrial DNA Copy Number

Mitochondria are organelles within a cell that contain their own small (∼17kB)
genome (mtDNA). There will be many mitochondria within a cell and each can have
several copies of the mtDNA. Thus, the mtDNA is expected to be present in a cell at
a high copy number.

That different cell types have different mtDNA copy numbers has been known for
nearly half a century [7] and “next-generation” sequencing data have been used to
investigate this since the early days of the technology using targeted sequencing [8]
or WGS [9]. A review of the changes in mtDNA copy number in cancers of various
tissues highlights the potential importance of this quantity and also highlights the
range of copy numbers that are possible (0–100,000) [10]. A recent pan-cancer
analysis of over 2000 tumour samples estimated values from 8 in a pancreatic cancer
to > 1750 in a cancer originating in the central nervous system [11].

Clearly then, we can be of an order of copy number where the saturation effects
described above could have an effect, in underestimating the mtDNA copy number.

5.1 PCAWG Copy Number

Assuming that appropriate measures of coverage for the nuclear genome and mito-
chondrial genome can be identified, the recent Pan Cancer Analysis of Whole
Genomes (PCAWG) survey of mitochondrial changes in cancer [11] used the fol-
lowing approach for the estimation of mtDNA copy number (mtDNA-CN):

mtDNA-CNtumour = mtDNA coverage

nuclear coverage
× mean nuclear copy number (6)

where the mean nuclear copy number is defined as

f × ‘Tumour mean nuclear copy number’ + (1 − f ) × 2,

f being the proportion of tumour within the sample.
Tumour Purity We note that the term

nuclear coverage

mean nuclear copy number

is simply ameasure of the coverage per copy number, andwhile it has been calculated
taking into account the tumour purity, when we rearrange Eq.6, it becomes clear that
there is no further correction for tumour purity in the mitochondrial copy number:

mtDNA-CNtumour = mtDNA coverage

coverage per copy number
. (7)
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Fig. 6 Showing how the effect of removing duplicates can quickly outstrip the effect of impurity
in the sample. For a range of true tumour mtDNA-CN values and a fixed mtDNA-CN of 500 for
contaminating benign tissue (indicated with a vertical dotted line), three curves are depicted for
the copy number inferred from simulation with three different levels of tumour purity. A line of
agreement is shown in bold for contrast

Thus, the estimated mtDNA copy number is that averaged over the tumour and
contaminating benign tissue. This is natural if, as is often the case, the mtDNA copy
number for benign tissue is not known (unlike for the nuclear genome where the
copy number for benign tissue can be assumed to be 2), but since it has long been
known that mtDNA copy number can differ between malignant and benign tissue
[12], trends between estimated mtDNA copy number and tumour purity would seem
inevitable.

In particular, the tumour mtDNA-CN will be shrunk towards the benign value.
A process that accentuates any bias due to duplicate removal if the mtDNA-CN is
higher in the tumour than surrounding benign tissue, but may apparently compensate
for it if the mtDNA-CN is lower. Nevertheless, in that scenario, the two competing
biases cannot be relied upon to “cancel out” (Fig. 6). These two effects clearly have
the potential to mask or reduce the differences in mtDNA-CN observed between
groups.

Consideration of Duplicates It seems clear that in calculating the ratio of coverages
in Eq.6, duplicates should either be retained in both numerator and denominator, or
duplicates should be removed from both numerator and denominator. Early examples
of research into mitochondria using sequencing technologies retained the duplicates
[8, 13, 14], but many more recent investigations have been secondary analyses. It is
almost certainly the case that reported values pertaining to the nuclear genome will
have been calculated after removing duplicates and revisiting an entire WGS data
set to recalculate values for the nuclear genome will be costly. Therefore, it may
be more convenient to remove duplicates from both numerator and denominator, as
indeed appears to have been done in the recent pan-cancer characterization [11] and
in other studies.
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5.2 An Approach to Correct the Estimate of mtDNA Copy
Number

The problemwith removing duplicates in both denominator and numerator is that it is
only the PCR duplicates that we would wish to remove, and we have seen that while
the contribution of fragmentation duplicates will have minimal effect on the nuclear
genome calculations, it will have a potentially great effect on the mitochondrial
calculations (Fig. 6).

Assuming that we do not wish to pay the cost of reanalysing the complete data set,
then we are typically in the position of having the nuclear coverage with PCR and
fragmentation duplicates removed, and mitochondrial coverage with PCR and frag-
mentation duplicates removed. For little cost, it is possible to extract and reprocess
the mitochondrial-mapping sequences, while applying the methods of this paper to
the nuclear genome.

We are then left with observations of the nuclear coverage with PCR and fragmen-
tation duplicates removed, an estimate of the corresponding fragmentation duplicate
proportion, an estimate of the PCR duplicate proportion, and the observed mitochon-
drial coverage with no duplicates removed. From these, it is clearly possible to obtain
an estimate either of the ratio of coverages with no duplicates removed, or the ratio
of coverages with PCR duplicates removed.

Note that the fragmentation duplicate proportion in the mitochondrial genome
cannot be estimated directly using our methods due to the lack of heterozygous SNPs
in the mtDNA. Note also that in many cases, the correction of the nuclear genome
with the nuclear fragmentation duplicate proportion will have minimal effect and
might be dropped for even greater computational simplicity.

5.3 Example

We contrast the mtDNA-CN calculated with duplicates removed with a corrected
estimate for our example data in Fig. 7. In this figure, we can see that not only are
the absolute values of mtDNA-CN poorly estimated if all duplicates are removed,
but the general reduction in copy number will shrink differences between groups,
making comparisons less powerful (although a contrast as striking as blood versus
tissue still shows a clear difference).

In calculating the coverages, we have assumed that the alignment process was
well-behaved and that there are minimal biases—enabling a natural measure of cov-
erage to be used. Note also that since these are benign samples, we do not need to
worry about tumour purity or ploidy in the calculations.

Applying the method to cancer samples is only marginally trickier, but as previ-
ously mentioned, the inference of nuclear copy number can often present multiple
credible solutions. For example, distinguishing between a copy number of 2 and a
high tumour purity and a copy number of 4 and lower tumour purity can sometimes
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Fig. 7 Showing estimates ofmtDNA-CN in the gold standard scenario that no duplicates (excepting
optical duplicates) are removed from either coverage estimate, the scenario that all duplicates are
removed, and then also estimates corrected using the approach described above. For comparison,
the estimates for OAC tumour tissue recently reported [11] are also shown

be nearly impossible (consider sequencing a sample immediately following a nuclear
genome doubling event). It should be noted that such uncertainty will naturally lead
to a reciprocal change in the inferred mtDNA copy number, and so uncertainty in
the nuclear copy number is something of which one should be aware. Although the
ranges of mtDNA copy number for a cancer type typically range by more than a
factor of two, the inferred mtDNA copy number may be a tool for distinguishing
between competing nuclear copy number solutions.

6 Conclusions

We have set out a framework for estimating the PCR duplicate proportion in a WGS
library. This we have argued from basic principles, but have also demonstrated to
provide sensible and consistent results. We have updated our software [5], better to
make these methods available. Our approach relies on being able to identify a subset
of the genome where the PCR duplicate to fragmentation duplicate ratio is constant
(i.e. regions of constant copy number state), and we require knowledge of the minor
allele fraction (which should preferably be 0.5).

Should we not know the true minor allele fraction or should the number of cells
being sequenced be such that removing oneDNA fragment greatly changes theminor
allele fraction, then these methods will be biased. For all reasonable experimental
scenarios, their application would still be an improvement over attributing the basic
observed duplicate proportion to be the PCR duplicate proportion.

There are implications too for quality control metrics that rely on the PCR dupli-
cate proportion, e.g. sequencing library complexity. Complexity is an important met-
ric, allowing comparison with previously sequenced libraries in order to detect out-
of-control library preparation [15]. It also predicts the value of generating further
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sequencing from a sample, making it invaluable for experimental design (especially
adaptive designs), and will be underestimated if fragmentation duplicates are not
corrected for.

We have also shown that the estimation of DNA copy number is affected by the
removal of fragmentation duplicates and that regions of high copy number can be
severely affected. Additionally, we have demonstrated a computationally effective
way to make corrections when the copy number estimation is a secondary analysis
on WGS data for which duplicates have been removed.

Appendix 1: Proof That K = (
∑

j ν j )!/∏
j ν j !

The proof of Eq.5 is by induction.

1.1 The Base Case (M = 2)

If M = 2, we either have the case where two fragments have been observed from
the same starting molecule (and so ν2 = 1, ν j = 0 for all j > 2), or we have the
right-hand case where one fragment is observed from each of two original molecules
(and so ν1 = 2, ν j = 0 for all j > 1). In the first case, K = 1!/1! = 1 and in the
second K = 2!/2! = 1 as required.

1.2 The Assumption (M = G − 1, G > 2)

For typographical convenience, we write ν+ = ∑
j ν j in what follows. We assume

that, for all partitions where M = G − 1, the relationship

K = ν+! /
∏

j

ν j ! (8)

holds.

1.3 The Inductive Step (M = G)

We assume that our partition of G duplicates is represented by the vector (ν1, ν2,

ν3, ...).Weview the set ofG duplicates as having arisen froma set ofG − 1 fragments
and then sequencing onemore.Wemust distinguish between the two cases: (1) where
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the new duplicate in the set is the first from a previously unseen molecule (only
possible if ν1 > 0), and (2) where the new duplicate is a further PCR duplicate from
a previously seen molecule.

Case 1:ANewMolecule If we have observed a newmoleculewith ourGth fragment,
then the previous set of G − 1 duplicates must have been represented by the vector
(ν1 − 1, ν2, ν3, ...). Clearly, this is only possible if ν1 > 0 and, since observing a
new molecule in this situation will always result in our observed partition, the full
coefficient is inherited from the previous set (there will of course be a factor of FD

as well).
Hence, the contribution to a from this case is

I(ν1 > 0) (ν+ − 1)!
(ν1 − 1)! ∏ j>1 ν j ! (9)

where I() is the indicator function.

Case 2: A PCR Duplicate from a Previously Observed Molecule In this case, the
previous set ofG − 1 duplicatesmust have been represented by the vector (..., νk−1 +
1, νk − 1, ...) for some k such that νk > 0 and k > 1.

The coefficient, K ′, associated with that vector is

K ′ = I(νk > 0) ν+!
(νk−1 + 1)! (νk − 1)! ∏ j /∈k,(k−1) ν j !

but a new PCR duplicate added to that set might create patterns other than the one in
which we are interested, so only a portion of the coefficient makes a contribution to
our estimate of K . It would only have led to our observed pattern if the PCR duplicate
had been of a molecule of which there previously existed k − 1 copies. The fraction
of the coefficient, K ′, that contributes to our value of K (not withstanding a factor
PD) is therefore the proportion of molecules of which there were previously k − 1
copies: (νk−1 + 1) /ν+.

The additive contribution to K for this value of k is therefore

(νk−1 + 1)

ν+
I (νk > 0)ν+!

(νk−1 + 1)! (νk − 1)! ∏ j /∈k,(k−1) ν j !

and in total the contributions from this second case are

∑

k>1

(
(νk−1 + 1)

ν+
I(νk > 0)ν+!

(νk−1 + 1)! (νk − 1)! ∏ j /∈k,(k−1) ν j !

)
. (10)

Combining The Two Cases. If we combine the terms from the two cases as repre-
sented by expressions (9) and (10), then we get
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K = I(ν1 > 0) (ν+ − 1)!
(ν1 − 1)! ∏ j>1 ν j ! +

∑

k>1

((
νk−1 + 1

)

ν+
I(νk > 0) ν+!(

νk−1 + 1
)! (νk − 1)! ∏ j /∈k,(k−1) ν j !

,

)

which we can simplify by removing the terms in the first fraction on the right-hand
side to get

K = I(ν1 > 0) (ν+ − 1)!
(ν1 − 1)! ∏ j>1 ν j ! +

∑

k>1

(
I(νk > 0) (ν+ − 1)!

(νk−1)! (νk − 1)! ∏ j /∈k,(k−1) ν j !

)

and this can be tidied to

K = I(ν1 > 0) (ν+ − 1)!
(ν1 − 1)! ∏ j>1 ν j ! +

∑

k>1

(
I(νk > 0) (ν+ − 1)!
(νk − 1)! ∏ j �=k ν j ! ,

)
.

Adjusting the products to be independent of 1 and k, we get

K = I(ν1 > 0) (ν+ − 1)! ν1!
(ν1 − 1)! ∏ j ν j ! +

∑

k>1

(
I(νk > 0) (ν+ − 1)! νk !

(νk − 1)! ∏ j ν j !

)
.

Tidying up the other terms,

K = I(ν1 > 0) (ν+ − 1)! ν1∏
j ν j ! +

∑

k>1

(
I(νk > 0) (ν+ − 1)! νk∏

j ν j !

)
.

We can now combine everything into one sum over k:

K =
∑

k

(
I(νk > 0) (ν+ − 1)! νk∏

j ν j !

)
.

Moving the terms that are independent of k out of the sum,

K = (ν+ − 1)!∏
j ν j !

∑

k

(νkI(νk > 0)) = (ν+ − 1)!∏
j ν j ! ν+,

whence

K = ν+!∏
j ν j !

as was to be shown.
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Appendix 2: Data Availability

The raw data are archived in the European Genome-Phenome Archive [EGA:
EGAD00001000704]. Processed data and code to generate these values, alongside
code to reproduce the figures in this text, have been added to the GitHub repository
containing the fragmentationDuplicates R Package [16].

Appendix 3: OCCAMS Consortium

For membership of the OCCAMS Consortium, see [17].
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A Retrospective Study on Obstructive
Sleep Apnea
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Abstract Obstructive sleep apnea (OSA) is a sleep-related breathing disorder with
worldwide increasing prevalence. Polysomnography is the traditional gold standard
for the diagnosis of OSA, but the fact that it is a complex, time-consuming, and
expensive test contributes to the underdiagnosis of this pathology. For this reason,
one usually opts for the simpler, less labor-intensive, and cheaper cardiorespiratory
sleep test for the diagnosis of this syndrome. The manual analysis of these tests,
which usually involves two ormore qualified observers, is one of the aspects thatmost
contributes to the amount of time spent in the analysis and, consequently, to diagnostic
delay. Automatic analysis emerges as a faster alternative to the manual analysis.
Based on a sample of 2559 patients monitored by the Pulmonology Department—
Sleep Unit of the Hospital da Luz Setúbal during the period 2011–2019, this research
concludes that there is no agreement between the manual and automatic readings of
two popular OSA classification indexes.
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1 Introduction

Sleep has multiple functions, from preventing multiple diseases (cardiovascular,
metabolic, neurological, psychiatric), contributing to the body’s immune response
and weight regulation to the consolidation of memory and learning and physical
recovery for daily life activities. Thus, when sleep is insufficient or of poor quality,
there is an alteration in the entire homeostasis of the bodywith consequences on daily
activities and quality of life, as well as at the systemic level, increasing the propen-
sity for certain diseases and aggravating pre-existing ones [1]. Sometimes breathing
pauses occur during sleep, reflecting a pathology called sleep apnea. According to
the International Classification of Sleep Disorders (ICSD-3), sleep apnea can be
classified into two main groups: obstructive sleep apnea and central sleep apnea [2].
OSA is a frequent sleep-related breathing disorder that can be present at any age.
It is characterized by recurrent episodes of partial collapse (hypopnea) or complete
collapse (apnea) of the upper airway during sleep and translates to changes in the
quality of sleep and daily life [3]. OSA is a very heterogeneous disease, resulting
from the interaction between different pathophysiological mechanisms, anatomical
characteristics, genetic and environmental factors resulting in diverse clinical mani-
festations.

The prevalence of OSA is estimated to be 4–6% in men and 2–3% in women,
values thatmay, however, be underestimated. There are data that indicate a significant
increase in prevalence of OSA in the last 20 years, partly related to the increase in
the prevalence of obesity [3]. In Portugal, the prevalence of OSA is not known.
Considering the data from Spain, it is observed a high prevalence corresponding to
moderate/severe disease (82.4%) [4]. As the Spanish population is demographically
similar to the Portuguese, specialists believe that the prevalence of OSA may be
identical. Currently, OSA is considered a public health problem, not only due to
the associated comorbidities, but also due to the risk of traffic and work accidents
resulting from poor and/or insufficient sleep quality.

The gold standard sleep exam for evaluating sleep apnea is polysomnography
(PSG), which is a time-consuming exam. The cardiorespiratory studies (manual scor-
ing) are simpler exams that are indicated in patients who have a higher suspicion and
probability of having this disease. However, these exams are also time-consuming.
The aim of this study is to evaluate if the manual scoring of cardiorespiratory exams
could be replaced by automatic scoring. Previous studies have already confirmed
that cardiorespiratory studies are inferior in terms of diagnosis comparing to PSG.
PSG is a more complete test than the cardiorespiratory test, as it comprehends the
analysis of a greater number of physiological variables. In this way, the time spent in
the analysis of the PSG test is always higher than the one spent in the analysis of the
cardiorespiratory test. In addition, because the PSG allows for a much more com-
prehensive diagnosis than the cardiorespiratory test it is substantially more costly. A
patient with a negative cardiorespiratory study should perform a PSG. In this article,
we can suggest to compare with the gold standard (PSG), but we already know that
cardiorespiratory exams are inferior in terms of diagnosis comparing to PSG.
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OSA diagnosis as well as its treatment depends on the Apnea Hypopnea Index
(AHI) classification, i.e., the average number of apneas and hypopneas per hour of
sleep [5, 6]. The AHI classification can be made by a manual analysis (performed
by the physician) or in an automatic way using specific software [7–9]. The manual
analysis, although more reliable, is a very time-consuming method that contributes
to OSA being an underdiagnosed pathology worldwide. Several studies have been
performed in order to verify the effectiveness of automatic analysis of sleep studies
in OSA diagnosis with the performance of the two methods varying [7, 10, 11]. The
severity of sleep apnea is based on AHI and also on the oxygen desaturation index
(ODI). ODI is defined as the number of episodes of oxygen desaturation per hour
of sleep, with oxygen desaturation defined as a decrease in blood oxygen saturation
(SpO2) to lower than 3% or 4% below clinical baseline. As ODI is an important
parameter in assessing the severity of OSA, its manual and automatic readings were
also considered in this study. Another factor that contributes to the onset of OSA is
obesity which is considered in this study [12].

This study is a retrospective observational study based on patient data from the
Sleep Unit of Hospital da Luz Setúbal (Portugal). Here, we intend to compare: (i) the
agreement between the AHI and ODI manual and automatic readings; and (ii) OSA
diagnosis based on the automatic readings to OSA diagnosis based on the manual
readings, which are taken in this study as gold standard.

2 Data

The data under analysis is based on a sample of 2979 patients monitored by the Sleep
Unit of the Pulmonology Department of Hospital da Luz, Setúbal, during the period
2011–2019 and refers to: age (in years), sex, Body Mass Index (BMI), and manual
and automatic readings of AHI and ODI. As eligibility criteria for statistical analysis,
we consider only the records of users who had complete information in terms of the
values of themanual and automatic readings ofAHI andODI,which resulted in a final
sample with 2559 records, i.e., a reduction of 14.13%. These patients were submitted
to type-III cardiorespiratory sleep tests with the manual readings of AHI and ODI
being performed by two physicians and the automatic readings of these indexes
obtained from the Embla RemLogic Software [13]. The study was authorized by the
hospital’s ethics committee.

3 Statistical Analysis

Considering the aim of the study, an association analysis between the two reading
methodswas performedusing theχ2 test of independence andCramer’sVcoefficient.
The Concordance Correlation Coefficient (CCC) and the Bland–Altman analysis
were also used in the agreement analysis of the two reading methods.
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3.1 Association Analysis

Automatic andmanual reading performance was compared using theMann-Whitney
test for continuous variables. In the case of the apnea-hypopnea index (AHI), data
were grouped into class intervals and an association analysis was performed using the
χ2 test for independence. When an association is verified, the Cramer’s V coefficient
is calculated.

3.2 Agreement Analysis

In addition to the association analysis, one of the objectives of this study is to under-
stand whether manual reading can be replaced by automatic reading, taking into
account the subdiagnoses of OSA. In particular, given the possibility of reading the
AHI values can be performed by two different techniques (manual vs. automatic) and
being the AHI values used in the classification of the diagnosis of OSA (AHI: [0;5[—
no apnea; [5;15[—mild apnea; [15;30[—moderate apnea; ≥30—severe apnea) it is
relevant to know if these techniques lead to similar results, i.e., if there is an agreement
between the readings. Therefore the CCC proposed by Lin was calculated as well
as the Bland–Altman plot reporting both the limits of agreement and the percentage
error [14–16].

3.2.1 Concordance Correlation Coefficient of Agreement

TheCCC is based on the distance in the plane of the pair of variables relative to the 45◦
line through the origin, which allows us to evaluate the degree of agreement between
two techniques, with manual reading being considered the gold standard. Consider-
ing the bivariate Normal random sample (Xi1, Xi2), i = 1, ..., n with means μ1 and
μ2, respectively, and covariance matrix

(
σ 2
1 σ12

σ21 σ 2
2

)
,

the CCC is given by

ρC = 2σ12

σ 2
1 + σ 2

2 + (μ1 − μ2)2
.

The value of ρC ranges between −1 and 1 where the value of 1 is interpreted as
perfect positive agreement, 0 as no agreement, and−1 as perfect negative agreement.
The method of moments is used to estimate the parameters [15, 16]. In addition to
assessing the degree of agreement between two readings, the CCC also takes into
account the assessment of precision, which is the deviation of observations from
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the fitted line, but also the measurements of accuracy, which is the deviation of the
fitted line from the concordance line [15, 16]. Considering ρ̂C the estimator of ρC

and using the Fisher’s Z-transformation to approximate the distribution of ρ̂C to the
normal distribution, we obtain

λ̂ = tanh−1 (ρ̂C) = 1

2
ln

(
1 + ρ̂C

1 − ρ̂C

)
. (1)

The variance of ρ̂C is estimated by

S2
λ̂

= 1

n − 2

{
(1 − r2)ρ̂2

C

(1 − ρ̂2
C)r2

+ 4ρ̂3
C (1 − ρ̂C)u2

r(1 − ρ̂2
C)2

− 2ρ̂4
Cu

4

r2(1 − ρ̂2
C)2

}
, (2)

where u = |X1−X2|√
S1S2

and r is the Pearson correlation coefficient. Accordingly with (1)

and (2), a (1 − α) × 100% confidence interval is given by (̂λ ± z1−α/2 Ŝλ) [15].

3.2.2 Bland–Altman Analysis

The Bland–Altman analysis consists of determining the differences between mea-
surements and the resulting averages of both measurements, information which
will subsequently be represented in a two-dimensional graph where it will be pos-
sible to identify biases in relation to a pair of measurements used. Let Xi1 and
Xi2, (i = 1, ..., n), the measures used in the measurement of a given variable refer-
ring to a random sample of n individuals, where Xi1 represents the value of the gold
standard measure in i-individual while Xi2 represents the alternative measures. The
Bland–Altman plot consists in considering the pair ((Xi1 + Xi2)/2, di f f ), where
di f f = Xi1 − Xi2. The lower (LL) and upper (UL) limits of agreement are also
considered and are calculated as

LL = di f f − z(1−α/2)σdi f f ; UL = di f f + z(1−α/2)σdi f f ,

where, di f f = ∑n
i=1(Xi1 − Xi2)/n; σdi f f =

√∑n
i=1[(Xi1−Xi2)−di f f ]2

n and z(1−α/2)

denotes the 1 − α/2 quantile of the standard normal distribution. A higher level
of agreement between the measures used is visible by the distribution of most pairs
of observations along the line y = 0 or by the overlapping of the lines y = di f f and
y = 0. On the other hand, if the observations are located between the two limits of
agreement, which are clinically admissible limits, the variable may bemeasured with
any of the measurements. The existence of observations that are outside the limits
of agreement indicates deviations of the alternative measure from the gold standard
measure, and this difference is more pronounced depending on the higher number
of observations outside the recommended limits [17, 18].
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A significance level of 0.05 was considered and the data analysis was performed
using the R software version 4.0.2 [19].

4 Results

Two thousand, five hundred fifty-nine individuals were retrospectively included.
Most patients are male (n = 1433; 56%). Table 1 shows some basic characteristics
of the sample by sex, namely age (years) andBMI (kg/m2).The comparisons between
genders in relation to the variables age and BMI were made using Mann-Whitney
test, where statistically significant differences were identified in age, observing that
women presented a higher median value than men.

Since the AHI corresponds to the sum of the number of apneas (pauses in breath-
ing) and hypopneas (periods of shallow breathing) that occur on average per hour,
its value allows the severity of OSA to be measured. According to the International
Classification of Sleep Disorders (ICSD-3) one of the criteria for the diagnosis of
sleep apnea consists of AHI values ≥15. A first analysis shows that the automatic
reading of the AHI underestimates the diagnosis of OSA. The AHI values more than
triple frommanual to automatic approach (17.8 vs. 5.3; p < 0.001). Also, we observe
a possible relation between the values of AHI and the two readings (Fig. 1). Figure1
shows the automatic readings (y-axis) of AHI plotted against the correspondingman-
ual readings (x-axis). The dashed lines represent the threshold AHI values, where,
according to the International Classification of Sleep Disorders (ICSD-3), values ≥
than 15 represent a diagnosis of OSA. Since we are trying to assess the agreement
between the two readings, we would have perfect agreement only if the points in the
plot would lie along the line of equality (y = x). This is clearly not the case here,
with the manual readings showing higher values than the automatic ones, results that
are inline with those from the literature [10, 20].

The averagemanual reading of AHI values was 23.59 (±19.38) per hour, with dis-
tinct values in both genders (male: 27.06±19.73; female: 19.15±17.99; p < 0.001).
The literature corroborates differences in AHI values taking into account gender as
well as in the prevalence of OSA itself [21]. OSA prevalence differs between male
and female, even more if we consider values of AHI ≥ 5 events/hour verses AHI ≥
15 events/hour. Thus, the more reliability of the results obtained through automatic
analysis vs manual analysis, the closer to reality will be the difference in prevalence

Table 1 Sample characteristics

Total (n = 2559) Male (n = 1433) Female
(n = 1126)

p-value

Age (years) 57.57 ± 13.03 56.97 ± 13.26 58.33 ± 12.69 < 0.001

BMI (kg/m2) 29.35 ± 5.32 29.07 ±4.77 29.71± 5.94 0.10



A Retrospective Study on Obstructive Sleep Apnea 287

Fig. 1 AHI values for manual (x axis) and automatic (y axis) readings. The solid black line
represents the line of equality (y = x) and the dashed lines the AHI threshold at which OSA is
diagnosed

Fig. 2 Bland–Altman’s plot depicts a bias in the AHI values comparing manual and automatic
readings

between genders. Figure2 displays the Bland–Altman’s plot, which represents the
differences between two paired manual and automatic readings against the average
of the paired readings.We observe a positive bias (di f f = 11.5), which corroborates
that manual AHI readings tend to be higher than the automatic, and that seems to
be due to AHI readings above 20 units. Indeed, because the mean of the differences
in the measurements is non-zero this indicates an absence of absolute agreement
between the measurements, otherwise all pairs of observations would be arranged
under the straight line y = 0. The existence of observations (163) outside the limits
of agreement [−14.84; 37.85] corresponds to about 6.36% (163/2559) of pairs of
measurements whose difference exceeds the expected tolerance limits.
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Table 2 Number of individuals by OSA severity, type of reading and by AHI values

AHI automatic reading AHI manual reading

[0–5[ [5–15[ [15–30[ ≥30

No apnea [0–5[ 241 575 269 158

Mild apnea [5–15[ 17 203 340 53

Moderate
apnea

[15–30[ 9 28 162 174

Severe apnea ≥30 0 6 18 306

A pertinent issue in clinical practice is the identification of misdiagnoses of OSA
based on reading the automatic AHI values. Our attention will focus on the number
of patients counted in the AHI class [0-5[ with automatic reading. This is justified
because values in this class correspond to a diagnosis of absence of OSA. We, there-
fore, confronted these values with those obtained in the manual reading deserving
another classification. 19.39%of the results in the automaticAHI are correct (80.61%
of misdiagnosis); 33.12% keep mild sleep apnea; 43.43% keep moderate sleep apnea
and 92.73% keep severe sleep apnea (Table 2).

Additionally, it can be seen that the higher the severity of OSA, the greater the
agreement between readings. The percentage of concordant classifications in both
readings is 35,52%. The chi-square test was used to assess the existence of an associ-
ation between the two reading classes.We concluded that there was a statistically sig-
nificant association between the two AHI readings (χ2= 1427.1, df = 9, p < 0.001).
Once the existence of a statistically significant association between readings was
verified, the intensity of this relationship was measured using the Cramer’s V coeffi-
cient, whose value was 0.431. The value of the Cramer’s V coefficient reveals a very
strong association between the readings [22].

Another parameter evaluated was the ODI measurement. In Fig. 3 it can be seen
that there is no agreement in the manual and automatic readings of the ODI values,
justifying the Bland–Altman and CCC analysis. We observe the existence of statis-
tically significant differences between manual and automatic readings regarding the
ODI values (median: 17.7 vs. 5.4; p < 0.001). Considering the analysis by sex we
observe statistically significant differences in both genders (male: 21.1 vs. female:
14.1; p < 0.001). As with the AHI values in the automatic reading, we observe dif-
ferences in the ODI values in both genders (male: 6.8 vs. female: 4.3; p < 0.001).
The Bland–Altman’s plot (Fig. 4) depicts a bias in the ODI values when comparing
the two readings (manual vs. automatic), in line with the conclusions drawn from
the analysis of the AHI values. It is verified that the mean of the differences in
the measurements is non-zero (di f f = 11.41) which means an absence of absolute
agreement between the measurements indicating that ODI values in manual reading
are systematically higher compared to automatic reading. The existence of observa-
tions (130) outside the limits of agreement [-10.84;33.66] corresponds to about 5%
of pairs of measurements whose difference exceeds the expected tolerance limits.
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Fig. 3 ODI values for manual (x axis) and automatic (y axis) readings. The solid black line
represents the line of equality (y = x). There is no fixed threshold for the diagnosis of OSA based
on ODI values

Fig. 4 Bland–Altman’s plot depicts a bias in the ODI values comparing manual and automatic
readings

In a properly administered exam, the literature points to the AHI and ODI val-
ues being positively correlated [23]. Our data further confirms this as one obtains
Spearman correlation coefficients rS of 0.76 and 0.99 for the automatic and manual
readings of AHI and ODI, respectively (both association test p-values<0.001). In
addition, we observe that the correlation between manual readings of both indexes
is higher than the one obtained between automatic readings.

One question that arose naturally in the course of this investigation was whether
the automatic reading of AHI and ODI values emerges as a credible alternative to
the current gold standard represented by manual reading, which is performed by two
clinicians independently.We obtained the Lin’s ConcordanceCorrelationCoefficient
rc for AHI reading: rc = 0.557 (C I ρc

95% : [0.534; 0.578]) while for the ODI was rc =
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Table 3 Number of individuals by BMI classes and by AHI values considering the manual reading

BMI classes AHI manual reading

[0–5[ [5–15[ [15-30[ ≥30

Low <18.5 5 5 9 5

Normal [18.5–25.0[ 114 190 81 28

Overweight [25.0–30.0[ 100 386 375 229

Grade I [30.0–35.0[ 36 180 230 264

Grade II [35.0–40.0[ 8 37 68 119

Morbid ≥40 4 14 26 46

0.626 (C I ρc

95% : [0.599; 0.651]). Given the absence of a high concordance between
readings evidenced by both the Bland–Altman analysis and the CCC coefficient,
there is a natural need for comparison with a third method, a method recognized as
a gold standard. These results revealed that automatic reading alone is not yet an
alternative solution to the manual reading [14].

Since obesity is a risk factor for OSA, the BMI was determined for each patient
and the following classes and classifications were adopted: < 18.5 (low weight),
[18.5–25.0[ (normal weight), [25.0–30.0[ (overweight), [30.0–35.0[ (grade I obe-
sity), [35.0–40.0[ (grade II obesity) and ≥ 40 (morbid obesity). We note that the
BMI thresholds and classifications considered, are in conformity with those defined
by WHO [24] and in line with the guidelines of the National Institute of Health
(NIH). Accordingly, we found that 82.3% of the patients (n = 2122) are obese or
overweight. Further, we observed an association between the BMI and the AHI
values obtained from manual reading (Table 3; χ2= 418.43, df = 15, p < 0.001).
This association translates into a strong relationship between the two variables by
Cramer’s V coefficient (C = 0.233).

5 Conclusions

OSA is still an underdiagnosed disease and is currently considered a public health
problem, not only because of the associated comorbidities but also because of the risk
of accidents that result from insufficient and/or poor sleep quality. In order to help
prevent these and other possible consequences, it is thus essential to improve upon
the accuracy of OSA diagnosis and consequently effectively decide on the adequate
type of treatment.

In our study, the AHI values are greater than ODI values independently of the
reading method. Also we observed a high correlation between AHI values and ODI
values for each technique. Since the severity of OSA is evaluated by the AHI, we can
conclude that the automatic analysis, using the Embla Remlogic software, underval-
ued the diagnosis of the disease. Although there is a significant agreement between
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automatic and manual analysis when OSA severity is higher (higher AHI), the same
is not true for the remaining stages of severity, with a high percentage of patients with
falsely normal AHI. So, the greater the severity of OSA the greater the agreement
between the analyses (manual and automatic).

Automatic analysis with the Embla RemLogic Software is reliable for the diag-
nosis of OSA but should still be complemented with manual analysis by qualified
professionals, in order to decrease the number of false negative results and thus
mitigate the underdiagnosis of OSA via this automated method.

In addition, becausemanual analysis is time-consuming due to its complexity, any
improvement in the algorithm of the software that enhances its accuracy, could help,
not only to alleviate the amount of time that is currently spent on manual review, but
also to speed up OSA diagnosis and subsequent treatment protocols.
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Censored Multivariate Linear Regression
Model

Rodney Sousa , Isabel Pereira , and Maria Eduarda Silva

Abstract Often, real-life problems require modelling several response variables
together. This work analyses a multivariate linear regression model when the data
are censored. Censoring distorts the correlation structure of the underlying variables
and increases the bias of the usual estimators. Thus, we propose three methods to
deal with multivariate data under left censoring, namely Expectation Maximization
(EM),DataAugmentation (DA) andGibbs SamplerwithDataAugmentation (GDA).
Results from a simulation study show that both DA andGDA estimates are consistent
for low and moderate correlation. Under high correlation scenarios, EM estimates
present a lower bias.

Keywords Censored data · Multivariate linear regression

1 Introduction

Linear regression (LR) is one of the most widely used models in Econometrics to
analyse the relationship between two sets of variables. Often, real-life problems can
be best described by considering several (say m ≥ 2) correlated response variables,
that is, experiments are performed to analyse the variation ofm characteristics of the
same phenomenon. In these cases, we should consider the multivariate LR model,
which is a natural extension of the univariate regressionmodel. An essential aspect of
multivariate analysis is the dependence between the different variables, which may
involve the covariance between them [1].
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Additionally, some or all of the response variables can be censored, meaning that
they are only accessible in a restricted interval. Censored data can arise for a variety of
reasons, such as limitations of themeasuring device or of the experimental design [2].
Examples occur in environmental studies where mineral concentration in air/water
may be subjected to lower detection limits [3], in Medicine, where [4] studied the
relationship between two cytokines (pro-inflammatory and anti-inflammatory) when
both variables are censored or in Economics where hours worked is usually treated as
censored variable [5]. We might note that in the literature, the terminology censored
data is also used in the survival data analysis, in which the variable of interest is the
time to an event. In these cases, unexpected interruptions of scheduled experiments
create fully missing values or censored survival (or failure time) data. The structure
of such data and the censored data described above are quite different and require
different statistical techniques for their analysis [6, 7]. Our discussion will focus on
the first type of censored data in which the outcome or variable of interest is below
(or above) a limit of detection (LOD).

Censoring makes the observed dataset incomplete and therefore direct analysis
using standard complete data methods inadequate, resulting in inconsistent esti-
mates. To overcome these issues, a variety of methods have been proposed to handle
censored univariate data (see [8–10]). Filling in censored data in order to apply
standard complete data methods has a strong intuitive appeal, because this strategy
greatly reduces the burden of developing specialized methods and computer code
for analysing incomplete data [3].

Methods for creating complete data via filling in censored data can be single impu-
tation (one value for each observation) or multiple imputations. In single imputation,
it is common to fill in the censored observation by its expected value, predicted mean
or the centre of the detection interval. More statistically sound approaches are based
on the EM and DA algorithms [8, 11]. However, the extension of methods to handle
censored data inmultivariate settings confronts a significant practical barrier. Indeed,
there are very few works is this subject [3, 7, 12]. In particular, to the best of our
knowledge, there is no specific work in the literature about the censored multivariate
linear regression model (CMLR).

Muthén [13] pointed out that, in addition to inconsistent estimates, censoring also
distorts the correlation structure of the response variables. Aiming to develop more
suitable methods to handle this problem, in this work we propose three methods to
estimate CMLR, mainly Expectation Maximization (EM), Data Augmentation (DA)
and Gibbs sampler with Data Augmentation (GDA). All of these methods are based
on filling in censored data in order to create a complete dataset, which is the most
widely used strategy when the data are missing or censored, both in Classical and
Bayesian approaches.

The paper is organized as follows: Sect. 2 presents the CMLR model, Sect. 3
analyses threemethods to estimateCMLRmodel, in Sect. 4we present the simulation
study, in which we analyse the accuracy of the proposed methods and, finally, we
present some final remarks.
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2 Censored Multivariate Linear Regression

In this section,we define themultivariate linear regressionmodel in order to introduce
censored multivariate linear regression.

2.1 The Multivariate Linear Regression Model

In matrix form, the Multivariate Linear Regression Model (MLR) can be written as
follows:

W = Xβ + ε, (1)

whereW = [W(1) . . . W(m)] is a n × m matrix of m response variables, X is a n ×
(k + 1)matrix of k predictors, whose rows are xi = (1, xi1, . . . , xik)′, i = 1, . . . , n,
β is a (k + 1) × m coefficientsmatrix andε = [ε(1) . . . ε(m)] is an × mmatrix of the
errors associated with each response variable, where each εi = (εi1, . . . , εim)′, i =
1, . . . , n is assumed to be iid m−variate normal variable with mean 0 and m × m
covariance matrix Σ = [σi j ] [14]. Then, the model (1) may be written as

⎡
⎢⎣
W11 . . . W1m
...

. . .
...

Wn1 . . . Wnm

⎤
⎥⎦ =

⎡
⎢⎣
1 x11 . . . x1k
...

...
. . .

...

1 xn1 . . . xnk

⎤
⎥⎦ ·

⎡
⎢⎣

β01 . . . β0m
...

. . .
...

βk1 . . . βkm

⎤
⎥⎦ +

⎡
⎢⎣

ε11 . . . ε1m
...

. . .
...

εn1 . . . εnm

⎤
⎥⎦ (2)

where E[ε( j)] = 0 andCov(ε(i), ε( j)) = σi j In , σ j j = σ2, i, j = 1, . . . ,m and In is
the n × n identity matrix. This is the generalization of multiple LR (m = 1), where
each response variable W( j), j = 1, . . . ,m, follows a multiple LR model.

In the MLR model (2), observations from different individuals are uncorrelated,
but the errors for different responses of the same individual can be correlated [14].
By using the multivariate model, the covariance of the response variables can be
modelled, which is not possible in the case of separate univariate regression models.

2.2 The Censored Multivariate Linear Regression Model

Let’s assume that the latent variable Wi = (Wi1, . . . ,Wim)′ denotes the m multi-
variate measure on subject i = 1, . . . , n, and that each component vector W( j) of
the hypothetical multivariate data W is subjected to left censoring at fixed limit
of detection (LOD), L j ∈ R, j = 1, . . . ,m. Rather than Wi , we actually observe
Yi = (yi1, . . . , yim)′, where yi j = max{wi j , L j } and corresponds to the j−th record
on the subject i , for i = 1, . . . , n [7, 12]. Here we are assuming that the censor-
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ing patterns vary across the component vectors, but are fixed within each W( j), for
j = 1, . . . ,m.

Now, given a dataset Y = (y′
1, . . . , y

′
n)

′, each observation yi = (yi1, . . . , yim)′ of
the CMLR model can be defined as follows:

Y =[yi j ] = [max(wi j , L j )], i = 1, . . . , n and j = 1, . . . ,m,

W =Xβ + ε.
(3)

For simplicity of notation, the remaining of the text focus on the bivariate case,
m = 2, defined as follows:

Censored Bivariate Linear Regression. We assume that the errors term εi , i =
1, ..., n has bivariate normal distribution N2(0,Σ), the probability density function
(pdf) of the latent variable Wi is N2(β

′xi ,Σ) and has the form

f (Wi1,Wi2) = 1

2πσ1σ2

√
1 − ρ2

exp
{

− 1

2(1 − ρ2)

[(Wi1 − x′
iβ1

σ1

)2

+
(Wi2 − x′

iβ2

σ2

)2 − 2ρ
(Wi1 − x′

iβ1)(Wi2 − x′
iβ2)

σ1σ2

]}
,

(4)

while the observed Yi variable has a bivariate truncated normal distribution, with
support [L1,∞] × [L2,∞] and pdf

f (Yi1,Yi2|Wi1 ≥ L1,Wi2 ≥ L2) = f (Wi1,Wi2)

P(Wi1 ≥ L1,Wi2 ≥ L2)
× I(Wi1≥L1,Wi2≥L2).

(5)
Although there are several approaches and methods to estimate CLR in the uni-

variate case, extensions tomultivariate settings confront a significant practical barrier.
Muthén [13] observed that censoring distorts the correlation structure of the underly-
ing variable and presented results on a general formula for truncation in the standard
bivariate normal distributions. Cohen [15] found a maximum likelihood solution for
the truncated bivariate normal where the truncation is with respect to only one vari-
able, while Tallis [16] gave general formulas for multivariate truncation from below
in the multivariate normal distribution using the moment-generating function.

3 Estimation of CMLR Model

In this section, we propose three methods to estimate the CMLR model, focusing on
left-censored bivariate data. All these methods are based on filling in the censored
data in order to obtain complete data.
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3.1 EM Algorithm for Multivariate Data

The EM (Expectation Maximization) algorithm is an iterative method to maximize
the expected value of the likelihood function, given the observed data, Y [11]. In
the case of censored bivariate data, the algorithm requires the computation of the
expected value of the truncated bivariate variable, in order to fill up the data. If the
latent variable Wi = (Wi1,Wi2)

′ is left-censored, then the values below the LOD
have right-truncated distribution, with expected value given by

E[(Wi1,Wi2)
′|Wi1 ≤ L1,Wi2 ≤ L2] =

(E[Wi1|Wi1 ≤ L1,Wi2 ≤ L2], E[Wi2|Wi1 ≤ L1,Wi2 ≤ L2])′
(6)

for i = 1, . . . , n. Using the moment-generating function, Tallis [16] gave gen-
eral formulas for truncated multivariate multivariate normal distribution. Let α =
P(W1 ≤ L1,W2 ≤ L2) = F(L1, L2) represent the probability that the random vari-
able W = (W1,W2)

′ takes on a value less than or equal to L = (L1, L2)
′. Taking

μ j = E[W( j)], η j = (Wj − μ j )/σ j and γ j = (L j − μ j )/σ j , j = 1, 2, the proba-
bility α can be written as

α = P(η1 ≤ γ1, η2 ≤ γ2), (7)

where η j , j = 1, 2, are standardized normal variables, truncated at γ = (γ1, γ2).
Thus, we can write

α = Φ(γ;R), (8)

where

R =
[
1 ρ
ρ 1

]
(9)

is the correlation matrix with ρ = corr(η1, η2) [16] and the expected value of the
truncated standardized bivariate variable, η = (η1, η2)

′, is given by

E[ηi |η ≤ γ] = 1

α
× {

ρi1φ(γ1)Φ(A12;R1) + ρi2φ(γ2)Φ(A21;R2)
}
, i = 1, 2,

(10)

where Ai j = (γ j − ρ j iγi )/
√
1 − ρ2j i , for i, j = 1, 2 and i �= j [16].

From (10) results that
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E[η1|η ≤ γ] = 1

α

{
ρ11φ(γ1)Φ(A12) + ρ12φ(γ2)Φ(A21)

}

E[η2|η ≤ γ] = 1

α

{
ρ21φ(γ1)Φ(A12) + ρ22φ(γ2)Φ(A21)

}
,

(11)

where φ(.) and Φ(.) are, respectively, the pdf and distribution function of a standard
normal variable.

Using the result in Eq. (11), the expected value of each component Wi j of the
truncated variable Wi = (Wi1,Wi2) is given by

E[Wi j |W ≤ L] = x′
iβ( j) + σ j × E[η j |η ≤ γ] (12)

where E[Wj |W ≤ γ], j = 1, 2 are the conditional expected value of standardized
normal variables.

At iteration t , after filling up the censored observed dataset, the complete dataset
Y(t) is then used to compute the expected log-likelihood function, conditional on

θ̂
(t−1)

,

Q(θ|θ̂(t−1)
) = E[logL(θ|W,θ(t−1))] (13)

where θ = (β,Σ) and L(θ|W) denotes the likelihood function given the complete

data. The expected MLE estimates satisfy θ̂
(t) = argmax Q(θ|θ̂(t−1)

). The value
of β which maximizes (13) is

β̂
(t) = (X′X)−1X′W(t). (14)

Given an estimate of β, an unbiased estimate for Σ is

Σ̂
(t) = 1

n − m − 1
(W(t) − Xβ̂

(t)
)′(W(t) − Xβ̂

(t)
)′. (15)

3.2 Data Augmentation Algorithm

The data augmentation (DA) algorithm as described here is based on successive
updating of the censored observations, and the corresponding ordinary least squares
(OLS) estimates are computed using the augmented data.

At each iteration of the DA algorithm, censored values of each response variable
W( j) are sampled from their univariate truncated distribution conditional on the val-
ues of the remaining response variables, corresponding to the same subject. This pro-
cedure results in a sequence of randomm−variate variables which converge in prob-
ability to the joint distribution of the m−variate latent variableW = (W1, . . . ,Wm)

[17].
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In multivariate distributions, the acceptance-rejection algorithms are feasible, but
the rate of convergence may be too low to be practical. Thus, a more efficient algo-
rithm is the data augmentation, in which incomplete data is reconstructed using a
Gibbs sampler-type algorithm [17, 18].

3.3 Gibbs Sampler with Data Augmentation Algorithm

The Gibbs sampling with data augmentation (GDA) algorithm [8] allows the use of a
Bayesian approach to estimate the CMLR model, where inferences about the model
parameters are obtained from the posterior distribution, π(β,Σ |W), defined by

π(β,Σ |W) ∝ L(β,Σ |W) × π(B,Σ), (16)

where L(β,Σ |W) is the likelihood function of the observed data and π(B,Σ) rep-
resents the joint prior distribution of the parameters.

The Likelihood Function. As in [19], model (2) may be rewritten equivalently as

W∗ = X∗B + ε, (17)

where W∗ = (W′
(1), . . . ,W

′
(m))

′ is a mn × 1 vector, X∗ = diag(X(1), . . . ,X(m))

is a mn × (mk + m) block diagonal matrix, where X(1) = . . . = X(m) = X, B =
(β′

(1), . . . ,β
′
(m))

′ is a (mk + m) × 1 vector of the regression coefficients and ε =
(ε′

(1), . . . , ε
′
(m))

′ is a mn × 1 vector of the disturbances, assumed to be normally dis-
tributed, with zeromean and covariancematrixΣ ⊗ In . Then, the likelihood function
for β and Σ may be rewritten as

L(β,Σ |W∗) =(2π)−nm/2|Σ |−n/2exp
{

− 1

2
ε′Σ−1 ⊗ Inε

}
.

=(2π)−nm/2|Σ |−n/2exp
{

− 1

2
(W∗ − X∗B)′Σ−1 ⊗ In(W∗ − X∗B)

}

(18)
where ⊗ is the Kronecker product and In is the identity matrix of order n.

Using the properties of the trace of a matrix [14] and considering that β̂ =
(X′X)−1X′W and A = (W − Xβ̂)′(W − Xβ̂) are jointly sufficient for β and Σ

[19], the likelihood function (18) can be simplified to

L(β,Σ |W) =(2π)−nm/2|Σ |−n/2

× exp
{

− 1

2
trΣ−1A − 1

2
(B − B̂)′Σ−1 ⊗ X′X(B − B̂)

}
.

(19)
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The Prior Distribution. Now, let’s assume thatβ andΣ are independent [19]. Then,
a non-informative prior distribution for β and Σ can be written as

π(β,Σ) = π(β)π(Σ). (20)

Due to the invariance property [19], we have that

π(β) ∝ C,

π(Σ) ∝ |Σ |− m+1
2 ,

(21)

where C is a constant. Then, π(β,Σ) ∝ |Σ |− m+1
2 .

The Posterior Distribution. Using the prior distribution in (21) in conjunction with
the likelihood function (19), the posterior distribution of β and Σ is given by

π(β,Σ |W) ∝L(β,Σ |W) × π(B,Σ)

∝|Σ |− n+m+1
2 exp

{
− 1

2
trΣ−1A − 1

2
(B − B̂)′Σ−1 ⊗ X′X(B − B̂)

}

∝ exp
{

− 1

2
(B − B̂)′Σ−1 ⊗ X′X(B − B̂)

}

× |Σ |− n+m+1
2 exp

{
− 1

2
tr

(
Σ−1A

)}
.

(22)
From Eq. (22) and taking only the terms involving each model parameter, the

conditional posterior distribution of B and Σ can be expressed as

π(B,Σ |W) = π(B|Σ,W)π(Σ |W), (23)

with

π(B|Σ,W) ∝ exp
{

− 1

2
(B − B̂)′Σ−1 ⊗ X′X(B − B̂)

}
(24)

and

π(Σ |W) ∝ |Σ |− n+m+1
2 exp

{
− 1

2
tr

(
Σ−1A

)}
. (25)

The functional form of (24) and (25) show that

π(B|Σ,W) ∝ N(mk+m)

(
B̂,Σ ⊗ (X′X)−1

)

π(Σ |W) ∝ IW (n,A),
(26)
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where IW (.) stands for inverted Wishart distribution [20]. Thus, observations from
the joint distribution π(B,Σ |W) can be drawn, iteratively, through the GDA algo-
rithm.

TheGDAAlgorithm. TheGDAalgorithm has twomain steps: (1) update the param-
eters’ values from the posterior distributions, based on the data from the previous
iterations and (2) use data augmentation (DA) algorithm (see Sect. 3.2) to update
the censored observations, based on the current parameters’ values. The successive
updating of themodel parameters and censored observations will result in a sequence
of random m−variate variables which converge to the joint posterior distribution of
θ = (β,Σ) [7, 17].

4 Simulation Study

To analyse the performance of the above procedures, consider a bivariate censored
LRmodel (m = 2) with one predictor.1 The datasets, of size n = 100, 500 and 1000,
are generated using two sets of regression coefficients β(1) and β(2), each one com-
bined with three different covariance matrices (low Σ (1), moderate Σ (2) and high
correlation Σ (3)), as follows:

β(1) =
[
2 1
0.6 0.89

]
and β(2) =

[
0.2 0.3
0.4 0.24

]
, (27)

Σ (1) =
[
2 0.1
0.1 1.5

]
,Σ (2) =

[
2 −0.4

−0.4 1.5

]
Σ (3) =

[
2 0.8
0.8 1.5

]
. (28)

Values of LOD (L1 and L2) were set so that the observed response variables
Y(1) and Y(2) have five different pairwise levels of censorship: A = (5%, 5%), B =
(5%, 20%),C = (5%, 40%), D = (20%, 20%) and E = (40%, 40%). We generate
100 realizations of each of these 90 scenarios to assess the finite sample behaviour
of the estimates.

To illustrate the comparison between the methods, boxplots of biases correspond-
ing to the three scenarios of censorship (low, medium and high) are represented in
Figs. 1, 2, 3 and 4.

The overall results, illustrated in Figs. 1 (weak correlation) and 2 (strong corre-
lation), indicate that the proposed methods produce approximately unbiased esti-
mates for the regression parameters, β, with decreasing variance as the sample size
increases. However, as the correlation increases, the estimates present slight bias
especially for high censoring.

1 The generalization of this study to more than one independent variable is trivial for DA and GDA.
However, the computation of the EM estimates may be hindered by the need to obtain the moments
of the truncated multivariate distributions.
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Fig. 1 Biases of β̂
(1)

based on data generated from the model with Σ (1), for n = 100 (top) and
n = 1000 (down)
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The DA and GDA approaches yield estimates for Σ, illustrated in Figs. 3 and 4,
approximately unbiased and with decreasing variance as the sample size increases
under weak correlation Σ(1). Under high correlation, Σ(3), and high censoring rate,
the bias increases for all the approaches, with EM showing lower bias. The results
indicate thatΣ is under-estimated in all scenarios but this does not affect the estimates
of β. This behaviour is expected since, in theory, the estimator of β is independent
of the estimator of Σ̂ [14].

5 Final Remarks

One of the main features of multivariate LR is cross-correlation among the response
variables. The censorship may distort the correlation pattern in multivariate data.
Then, in this work, we propose three methods based on filling up data: EM, DA and
GDA. Results from the simulation study show that both DA and GDA estimates are
consistent for low and moderate correlation.

This study has been conducted for the bivariate case. The main issue when con-
sideringm > 2 is related to the computation of the conditional expected value of the
multivariate censored variable, needed to compute the EM estimates. Since general
expressions for this conditional mean are given in [16], it is our aim to implement
higher order cases in the future. Furthermore,we aim to developmethods for censored
multivariate time series data.
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AMethodology to Reveal Terrain Effects
from Wind Farm SCADA Data Using a
Wind Signature Concept

Alda Carvalho , Daniel C. Vaz , Tiago A. N. Silva , and Cláudia Casaca

Abstract Terrain features can deviate wind, causing heterogeneity in wind power
distribution that varies with oncoming wind direction. An opportunity to review a
wind farm layout, and improve its performance, arises with the need to replace end-
of-life turbines. A methodology that adds value to wind data recorded over time by a
supervisory control and data acquisition (SCADA) system is proposed. Time series
portions, i.e., “time bands”, with steady wind are identified and validated to compute
a proposed index, SB , that quantifies the significance of the directional distribution
of these “time bands” number. SB polar plots bring out terrain effects. Additionally,
a wind signature concept is introduced, which is a convenient way of graphically
displaying, over the topographic map of the wind farm, wind speed, direction, and
turbulence at the location of a given turbine, providing an expeditious assessment of
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the wind pattern at a turbine-level scale. The proposed methodology is applied to the
case study of four turbines in complex terrain in northern Portugal, revealing some
effects of terrain features for various directions of oncoming wind.

Keywords Complex terrain · Micro-sitting · Wind turbine replacement · Applied
statistics · Data mining · Flow pattern

1 Introduction

Energy production from renewable sources is increasingly playing a leading role
in the development and implementation of sustainable energy and environmental
policies to mitigate global warming [1, 2].

Worldwide, the rate of installation of modern horizontal axis wind turbines
(HAWT) was rather moderate up to about 2004, with global annual installed capaci-
ties below 10 GW/yr, but after 2009 the values have been four times higher [3]. Since
the life expectancy of wind turbines is around 18–25 years [3], around 2030, it is
expected a significant increase in the number of turbines that reach their end of life
and, therefore, need to be decommissioned and replaced.

Taking the example of Europe, the power per turbine doubled over about a decade
[4]. In repowering a wind farm, after a lifetime of about two decades, a single new
turbine can replace 4 old ones. Therefore, wind farms layout will need to be revised,
creating an opportunity to improve the performance of the wind farm. The placement
of new turbineswill benefit fromknowledge about localwind collected over the years.
Indeed, wind farms continuously record operational data.

The positioning of turbines in a wind farm taking into consideration local effects
of terrain, obstacles, or other turbines is referred to as micro-sitting. In micro-sitting,
negative effects should be avoided, namely wind velocity deficit and/or increased
turbulence when the wind from a predominant direction interacts with a terrain
feature or when a turbine becomes immersed in the wake of another one, leading to
reduced power production (up to 40%).

Considering the financial return of the investment in wind farms, the main chal-
lenge in applying wind-based knowledge is the improvement of wind turbine relia-
bility to reduce its downtime. The performance and other operational parameters of
wind turbines can bemonitored through supervisory control and data acquisition sys-
tems (SCADA). SCADA data allows monitoring power production in the wind farm
and, at the same time, gathers a large amount of information about wind flow and the
functioning of various components, at a low cost [5–7]. The analysis of a SCADA
dataset, by itself, can become challenging due to the constantly changing operating
conditions of the turbine and the random nature of environmental conditions (wind
speed and direction, air density, turbulence, etc.). A methodology for analysing this
dynamic dataset can improve the understanding of wind farm operation, enhancing
its performance, as well as the capability to anticipate equipment malfunctions [5, 8,
9]. Several methodologies can be used in forecasting or to extract useful information
from SCADA data [5, 10–12].
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With the agingofwind farms the propensity for the occurrence of failures increases
and, when the turbines eventually reach their end of life, the need to replace themwith
newer turbines arises. Because of continuing technological advances, the new tur-
bines are different from the previously installed ones, as they may be larger and more
efficient, and this issue calls for rethinking the wind farm layout. Both failure pre-
diction and wind farm layout benefit from information, and this has generated much
interest in studying the large amount of data provided by the monitoring tools [13].

Monitoring how efficiency varies with wind direction is seen as a crucial task to
assess the actual performance of wind farms, as this is affected by wake interactions
and terrain complexity [14]. Indeed, wind characteristics can be significantly affected
by surrounding terrains features [15–18]. The shape, orientation, and steepness of
valleys and hills, result in hill shielding and valley channelling effects [19]. Upwind
terrain or topographical conditions may affect both wind speed and wind direction.

While turbines in a wind farm located on a large flat terrain or offshore experience
about the same wind regardless of oncoming direction, that is not the case with
complex terrains. In [20], an analysis of a wind farm in a complex terrain reveals
complex flow patterns at turbine-level scale. The results suggest a switch between at
least two flow patterns. Thus, micro-sitting should not rely on wind assessment just
at a single location in a wind farm, considered a representative location, but the flow
pattern dependence on wind direction should be taken into consideration.

Dai et al. [21] have analysed SCADA data for a cluster of four turbines on a
mountainous location in Chenzhou, China, to obtain the joint distribution surface of
wind speed and direction. This surface exhibits peaks that characterize the specific
turbine cluster studied. However, this analysis provides just a perception of the wind
averaged over a year or a season.

In a recent work, Nai-Zhi et al. [22] have looked at extracting wake features from
SCADA data to precisely account for the variation of wake expansion with local
environment and inflow factors, for a specific wind farm. Such effects of topography
on wake expansion had never been reflected in existing analytical wake models.
Massive SCADA data has been analysed and processed to extract wake expansion
features contained in it. Then, the relationship between the local inflow information
and expansion features has been established by a machine learning algorithm. Wind
speed and direction have been identified as the most important variables. That work,
however, has been focused on the effects of wakes.

Castellani et al. [23] have proposed a very interesting methodology to derive
from SCADA data knowledge useful for wind farm optimization. As the authors
well put it, this “is a challenging task, involving engineering, physics, statistics, and
computer science skills”. In their approach, to automatically identify the dominant
patterns of rotor orientations, a sub-cluster of turbines is selected, e.g., affected by
wakes, and the properly discretized nacelles’ orientations are post-processed through
simple statistical methods. Castellani et al. have shown that non-trivial alignments
with respect to the wind direction arise, as it is also found in the present work. Their
study concerned a wind farm laying on a very gentle terrain in southern Italy and,
thus, was more focused on the effect of wakes, although the authors mention that
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their methodology can be applied to address local effects associated with complex
terrains.

Wind data gathered at each turbine may assist in producing a picture of the wind
flow pattern. In principle, the comparison of wind speed and wind direction between
the time series of data from neighbouring turbines can be used to infer the effects that
the terrain, or obstacles around these turbines, have on local wind. However, it may
not be possible to detect hidden changes if they are overwhelmed by the complexity
of the signals collected by the anemometers, especially when wind direction and
speed vary abruptly and frequently over time and small distances. To overcome this
issue, in this paper, we propose a concept of using time bands, i.e., sufficiently long
continuous portions of the time series for which wind is steady in direction and/or
speed. Also, seeking combining orography with data, we propose the concept of
local wind signature, i.e., a convenient way of graphically displaying over a map of
the wind farm, wind direction, speed, and turbulence at each turbine. When used to
display entries of different time bands, a dynamic representation results and small
differences in wind characteristics between turbines can be seen, suggesting that
the time band technique can indeed assist in the analysis of the effects of terrain,
obstacles, and wakes.

2 Background

2.1 SCADA Data

SCADAsystems are fully disseminated in different industrial applications to perform
automated and synchronized data collection from numerous sensors. In a wind farm,
environmental and operational related data is measured at an acquisition rate that
depends on the situation, although the standard forwind-related data, e.g., wind speed
and direction, is to acquire one data point at each second and then downsampling
the dataset to store 10-minute statistics metrics, such as average, extreme or standard
deviation values [24].

2.2 Data Pre-processing/Cleansing

The step of data pre-processing or preparation aims at ensuring that time series of
different variables, and furthermore, of different wind turbines (T) are compatible,
i.e., that the time-stamps indeed match. Thus, after loading the dataset and defining
the time period of interest, all data vectors are stored in multidimensional arrays,
as these vectors might contain different sizes. Then, one initializes all variables as
arrays of nan with the exact size of the expected time-stamp vector and, for each
variable of interest, one should compare the time-stamp vectors of different turbines:
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Fig. 1 Scatter plot comparing the raw wind speed dataset for two turbines over a period of four
years (left). Line plot for raw wind direction dataset over 125 days (right)

Fig. 2 A flowchart
illustrating the main steps of
the analysis of SCADA data
towards the study of local
wind flow

(i) if both time-stamp vectors match, one records the variable vectors as they are;
(ii) otherwise, one identifies missing time-stamp entries and records the existing
data at its registered time-stamps, leaving the non-matched data entries as nan. The
compatible dataset is saved in a unique file, containing the synchronized data vectors.
Note that the term synchronized here stands for compatible data entries, regarding
their recording time-stamp. It is worthy to mention that this data preparation task is
applied with a general purpose and thus one can treat the dataset using missing-data
imputation techniques [25], before data cleansing and filtering.

In Fig. 1, on the left, it is possible to see a scatter plot of wind speed measured
at two neighbouring turbines. Not all instances (here represented by the points) are
aligned along the identity line, many samples have significant differences in wind
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speed. In Fig. 1, on the right, it is possible to see the temporal evolution of wind
direction. Besides the natural variability of the time series, abrupt changes are seen
between 0◦ and 360◦: circular statistics can be used to deal with this problem.

The proposed methodology is illustrated in the flowchart of Fig. 2. It presents
the main steps of the analysis to derive understanding of the local wind flow from
SCADA raw data. Details on the various steps of the analysis are given in Sect. 3.

2.3 Variables of Interest

As mentioned before, SCADA data has a large set of variables. In order to study
the terrain effect on local wind farm pattern, the main variables of interest are wind
speed (U ), wind direction (θ ), and turbulence intensity (T I ),

T I = σU

U
(1)

where σU is the standard deviation of the wind speed time series and U is the wind
speed time average [24].

2.4 Frequency Wind Roses

Useful information can be obtained from data by conveniently displaying parts of it
graphically. An example is frequency wind roses, in which the frequency of winds, at
a particular location and over a time period, is plotted by wind direction, producing a
polar plot with spokes of a variety of lengths. Longer spokes correspond to directions
of greater wind frequency. Most often, the spokes are subdivided in colour bands
representing a selection of wind speed bins. Commonly called wind rose, it provides
a view of how wind speed is distributed over all directions.

The set of the frequency wind roses of the wind measured at the various turbines
in a farm (Fig. 3) is useful but not sufficient for the understanding of the wind pattern
over the farm. They are useful because they give an indication of possible changes in
wind direction as it flows between neighbouring turbines. On the other hand, they are
insufficient since the results in wind frequency wind roses are integrated over time
and, thus, do not provide an instantaneous picture of the wind direction at the various
turbines. This means that associating directions of high (or low) frequencies between
wind frequency wind roses of neighbouring turbines may point towards an erroneous
flow pattern because this flow pattern may not coincide with any actual instantaneous
flow pattern over the farm. For simple terrains, i.e., terrains for which a wind pattern
is dominant throughout the period analysed, it may be easy to spot how wind is
being deflected by some sole feature in the terrain. However, for complex terrain,
the frequency wind roses result from the superposition of several wind patterns, and
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Fig. 3 Frequency wind roses for the 4 turbines of the wind farm discussed as case study

thus, it can be difficult do understand how exactly the wind is being deflected along
the vicinity of a sequence of turbines.

2.5 Fluctuations in the Direction Signal

In principle, one expects to get an understanding of the flow pattern over the wind
farm through observation of simultaneous wind directions at multiple turbines. How-
ever, it would be very difficult to use this approach to reach conclusions about the
flow pattern because the fluctuations exhibited by direction signals (time series) are
not exclusively due to the effects from terrain topology. While the terrain can intro-
duce fluctuations in the signal, for example, as observed in the perturbed flow in the
wake of a hill or another obstacle, the direction signals include additional effects
from fluctuations of the oncoming wind itself, related with atmospheric instabilities,
weather systems, amongst other causes. For the aforementioned approach to be use-
ful, it is necessary to remove fluctuations in the signal that are not attributable to
terrain effects. In this paper a procedure is proposed to identify portions of the time
series where the wind is considered to be steady, as will be defined in Sect. 3.

3 The Proposed Methodology

3.1 Overview

In this section we detail the methodology that is being offered to uncover terrain
effects from SCADA data collected by the various wind turbines in a wind farm. This
corresponds to the step “Application of a methodology to extract useful information
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Fig. 4 Flowchart detailing the proposed methodology to uncover terrain effects from SCADA data

from the data” in the flowchart of Fig. 2. As a roadmap for the present section, that
step has been expanded in Fig. 4.
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3.2 Steady Wind

The main idea behind the analysis is to obtain time bands in which the wind can be
considered constant, or steady. For clarity, herein, constant/steady wind, is that for
which a given property, or combination of properties, remain(s) within a specified
small interval(s). The more intuitive variables of interest related to wind are wind
speed and wind direction, but it could also be any other recorded by the SCADA
system, like air temperature or wind speed standard deviation. Filtering the time
series with given criteria of constant wind will produce several portions, which are
herein called time bands.

It must be noted that constant, or steady, wind should not be confused with sta-
tionary wind, since the later has a precise technical meaning. It is associated with
decomposing the velocity of random wind as a sum of a constant mean wind veloc-
ity and three turbulence components (longitudinal, lateral, and vertical), modelled
as stationary Gaussian random processes [26]. On the other hand, steady wind, as
employed in the present study, is understood as wind for which over a period of time
the instantaneous values of one or more variables of interest related to wind remain
between a specified interval.

Denoting by T the variable of interest, this interval may be specified in abso-
lute terms (especially for wind direction), T(n) − T(1) < δT , or in relative terms,
max

(
T(n)/T − 1, 1 − T(1)/T

)
< εT , where T(1) ≤ T(2) . . . ≤ T(n) are the ascending

order statistics and T is the sample mean from a period of time, here represented by
(T1, T2, ..., Tn). Such steadiness criteria can be applied to more than one variable,
with distinct intervals, and may concern the variables registered at a single reference
turbine or at several turbines.

3.3 Harvesting and Selection of Time Bands

As pointed out in Sect. 2.5, the effects of terrain topology on the wind pattern may
be masked by stronger fluctuations in wind direction due to other causes, originated
far away, upwind of the wind farm. Hence, for the analysis of terrain effects on local
wind direction to be feasible, it is of the most importantance to retain for analysis just
the portions of the time series in which wind does not exhibit direction fluctuations
as it approaches the wind farm. Since weather masts are not available around the
whole periphery of a wind farm, it is necessary to resort to the wind measurements at
the turbines themselves. However, one has to allow for fluctuations in wind direction
caused by terrain features, that is to say, the time series should not be filtered for
portions where the wind direction is steady for all turbines. Therefore, the filter is
applied to the variable(s) of one turbine (or at most, a fraction of the total number of
turbines) taken as reference.

Given the circular nature of wind direction, a second step involving circular statis-
tics should desirably be included in the process of obtaining time bands, to ensure
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Fig. 5 Example of trends in the time bands: without trend (left); and with trend (right)

Fig. 6 Polar plot of time bands collected for T1 as reference turbine: time bands without trend
(black) and rejected time bands for having trend (red)

that time bands associated with the north direction and of significance to the analysis
are not missed because of the 0◦/360◦ discontinuity.

After applying the first criterion, the resulting time bands may not be stationary.
For the wind flow analysis, it is important to ensure that the time bands do not present
a trend. Two examples of time bands can be seen in Fig. 5. The second part of this step
is the Sieve-bootstrap Student’s t-test [27]. The null hypothesis of no trend is tested
against the alternative hypothesis of linear trend. The significance 1% is defined as
threshold for rejection and time bands with p-value< 1% are removed.
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In Fig. 6 it is possible to see the polar plot of T1 of the case study. Each point
represents a time band, where the radial distance represents the time band length and
angular coordinate represents the time band mean direction. All the time bands are
represented in Fig. 6 and the red dots correspond to the time bands rejected due to
linear trend.

3.4 Time Band Significance Index

At this point of the analysis, polar plots such as that of Fig. 6 are available for each
turbine. However, one should exercise care in giving significance to the number of
time bands found in one direction. In fact, a large number of time bands in a given
direction, relatively to the average number of time bands per direction, may stem
from the wind blowing more frequently from that direction. And the opposite is also
true.

So, to weigh the significance to attribute to the number of time bands along a
directional sector, found when considering a given turbine as reference turbine, we
put forward a non-dimensional index (significance of number of time bands along a
directional sector):

SB = NB/NT,B

N/NT
(2)

where: N is the number of observations in the directional sector, for a given turbine,
NT is the number of total valid observations in the time series, for the same turbine,
NB is the number of time bands found in the directional sector and NT,B is the total
number of time bands found in all directions.

Figure7 shows polar plots of SB , again, for the case study wind farm described
later in Sect. 4. For clarity, what is actually plotted is log(SB).

When SB < 1, (the spokes in the polar charts point inwards) it means that the
number of time bands found in that direction are relatively few, given the total

Fig. 7 Polar plot of the logarithm of SB , the time band significance index
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number of bands found in all directions, and the probability ofwind blowing from that
direction. Such directions with relatively few time bands should then be interpreted
as despite having a number of periods of steady wind—sufficient to produce valid
time bands—the number of these periods is not significant, and hence, over the whole
time series, the more general situation along that direction is that the wind is in fact
unsteady. As will be seen from the discussion of the case study presented in the next
section (4. Case Study), the process of identifying time bands, of distributing them
over directions, and of classifying the significance of the number of time bands along
a direction based on the evaluation of the proposed figure of merit SB , produces polar
plots that when overlayed on a wind farm map can tell us which terrain features are
having an influence on local wind direction and direction fluctuations. This adds
clarity and confidence to any preliminary impression of the wind pattern obtained
from the wind frequency roses. However, equally to these latter graphs, polar plots of
SB also do not provide an instantaneous view of the wind pattern over the farm. That
is to say, one does not know which spokes on the polar plots of SB of one turbine
correspond, at the same time instant, to certain prominent spokes on another-turbine’s
plot. This lack of knowledge can lead to erroneous formulations of wind patterns over
the farm, and do avoid them, it is necessary to look at mean values of wind directions
at each turbine, calculated along the collected time bands. Since these values are taken
over the same period of time, they can be assessed in ensemble to provide a coarse
picture of the flow over the farm. Next, we propose a graphical representation that is
very convenient at this point of the analysis. Besides just direction, other variables
are added to the graphical representation and result in what we label instantaneous
wind-signature at each turbine.

3.5 Instantaneous Wind Signatures

As mentioned before, a better understanding of the wind flow pattern is essential to
improve the wind farm layout. By combining orography with wind statistical data,
it is possible to bring forward some hidden correlations. In this section we propose
a schematic representation of local wind signature using wind speed, direction and
turbulence (see Fig. 8, left). Using an interactive dynamic geometry application such
as Geogebra [28], it is possible quickly visualize (and animate) the wind signature
overlapped with the wind farm map. In Fig. 8 (right) it is possible to see a particular
frame (corresponding to one-time band) with its own signature, here represented by
a triangle that summarizes the three wind measures of interest (speed, direction, and
turbulence).

Stacking several frames (each corresponding to a valid time band), wind signature
of the same time period (time band) can be inspected in a graphical and fast way.
When several time bands exhibit a similar wind pattern, then the pattern can be
identified as one possible stable pattern observed in the farm, again and again, like
has been found in [23]. If not, then despite the fact wind remained sufficiently steady
to yield a time band, the flow pattern registered is not a common one.
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Fig. 8 Wind signature: schematic representation based on wind speed, direction, and turbulence
intensity (left). Wind farm signature animation (right)

Wind signatures provide filtered information that is of good use for the aerody-
namic specialists concerned with micro-sitting of turbines. A comprehensive and
in-depth discussion of the last step of the procedure outlined in Fig. 4 is out of the
scope of the present paper and its application to the wind farm under study will be
the subject of a future publication.

4 Case Study

In this section we present the proposed methodology applied to a group of 4 turbines
located in Freita, in northern Portugal (see Fig. 9). The variables of interest for this
study are wind speed (m/s) and wind direction (◦), measured by the wind turbines’
anemometers. The four wind turbines are located at the border of a plateau raising
500m above neighbouring terrain and their average is approximately 400m. The
dataset used in this study relates to the period 2009–2013 with a 10min interval.
The complete dataset has 262944 observations, although there are some missing or
incorrect values.

After applying the criteria defined in Sect. 3.2, it is possible to see the number of
resulting time bands after the 10◦ range criteria. The average number of the resulting
time bands is approximately 200, with around 25% rejected due to linear trend
(Sect. 3.3). The average length of the resulting time bands is approximately 8h.

The situation of SB < 1 can be seen for wind coming aligned with gullies 2 and 3
(labelled g2 and g3) in Fig. 9 and reaching turbines 2 and 3, respectively. Therefore,
even though there may be situations in which the wind comes channelled by the
gullies, and remains steady in direction (resulting in validated time bands), there are
many more situations in which due to possible misalignment with the gullies, or due
to some other causes (e.g., thermal effects), the wind comes perturbed, fluctuating
in the direction in a such a way that the signal does not comply with the criteria set
for steady wind.

Other situations with SB < 1 can be seen in the polar plot of turbine T1, corre-
sponding to perturbed flow in the wake of the hill SW of the turbine, and in the polar
plot of turbine T4, for winds coming from NEE, off-aligned with gullies (g6) and
ridges in that direction and thus exhibiting fluctuations in direction.
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Fig. 9 Locations of turbines T1 to T4 over the topography of the wind farm: shaded areas are
gullies (g1 to g11) and e1 and e2 are elevations

Moving on to the directions for which SB > 1 (spokes in the polar charts pointing
outwards), an interesting situation can be seen associated with the wide valley (g10)
south of turbines T2 and T3. Wind approaching from south is possibly spread out, as
a result of the uphill broadening of the valley, and reaches turbines T1 through T4 at
somewhat different directions. The polar plots seem rotated in relation to one another,
as an effect of the terrain feature causing deflection of the wind being relatively close
to this group of turbines, so that each “sees” the feature from different angles.

Other situations can be seen in the results but to lack of space their discussion is
left for another publication.

5 Conclusions

This work aims at presenting a methodology to reveal terrain effects on wind, from
SCADA data, registered on a wind farm in the northern Portugal over a time period
of 5 years, using a wind signature concept. By the use of the proposed methodology,
it is shown that it is possible to process data in order to obtain useful information on
wind patterns that are developed as the oncoming wind changes direction.

For the same direction of oncoming wind, a number of possible wind patterns
may be observed, being overall similar, except for a given turbine. To explain the
heterogeneity of wind patterns, it is necessary to look into the effect that other vari-
ables may have on local wind signatures. Future work may address other variables
of interest apart from the wind speed and direction which have been the focus of the
current work, e.g., ambient temperature, atmospheric stability, hour of day, season,
or weather conditions.
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Further improvements should involve numerical simulation to emphasize spe-
cific details on the analysis to establish in a systematic framework the capability of
studying wind patterns in any given wind farm.
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A Robust Version of the FGLS Estimator
for Panel Data

Anabela Rocha and M. Cristina Miranda

Abstract Panel or longitudinal data sets are frequent in financial and economic
studies. This type of data combines cross-sectional with time-series data, providing
extra information and allowing to evaluate and measure the statistical effects that
would otherwise keep unknown. Different degree of restrictions upon the structure
of the data leads to different approaches with least squares methodology. This results
in estimators that can be highly affected by a violation of those assumptions. The
Feasible Generalized Least Squares estimator (FGLS) is an estimator that preserves
good properties without requiring strong distribution requisites. In spite of this, it
is highly affected by the presence of observations too much different from all the
rest. These are known as atypical observations or outliers. Economical and financial
real data often present this type of data and the FGLS estimator may be seriously
affected by those observations. This might be avoided if a robust option is chosen.
Although robustness is the main concern in recent econometric modelling, there is
still much to do in this field. Recent studies in those fields point to the advantage of
using robust estimators. With this work, we want to contribute to the use of robust
methodologies in the estimation of panel data models and present a robust version of
FGLS, the RFGLS (Robust Feasible Generalized Least Squares). In this paper, the
performance of the proposed estimator is compared with the FGLS using real data
previously analysed by some authors.
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1 Introduction and Preliminaries

In econometric studies, it is very frequent to use data referring to records of a set of
variables of interest, over some period of time. The units of studymay be households,
firms, countries, individuals, etc. This leads to a set of longitudinal data set or, as
usually denoted by econometricians, a set of panel data. Following records from a set
of variables for a period of time may reveal more information than the observation
of those same variables in a single moment (cross-sectional data).

Longitudinal data or panel data (PD) studies may be found within a long range
of areas of knowledge. This is a frequently used methodology in demographic and
economic research areas, but also in biological [1], climate and environment [2].
Several national institutes conduct panel data studies following families, companies
or individuals, keeping records of some variables of interest for a predefined period of
time. As an example, Baltagi [3] refers to the National Longitudinal Surveys (NLS)
of the U.S. Bureau of Labor Statistics. The NLSY97 consists of a sample of 8984
people with information on the labour market and educational experiences. Data
were collected for 18 rounds, from 1997−98 to 2017−18.

Typically, a panel data set consists of a number of observations, concerning dif-
ferent units taken repeatedly for a number of times, usually small when compared to
the number of units under study. The units may be companies, individuals, countries,
families, etc., depending on the object of study—macro or microeconomics. One of
the main motivations of this approach is the presence of heterogeneity among indi-
viduals. Panel data models allow the detection of effects that would be imperceptible
with cross-sectional data or with time-series data.

Panel data model analysis requires data to satisfy several conditions. Only with
such data, it is possible to obtain suitable estimators for the parameters of the models
under consideration. Most of the time, however, real data don’t behave as one would
expect. So, it is important to look for estimators that can respond adequately, even
when data don’t fulfil the necessary conditions. The answer to this problem consists
of looking for robust estimators. In this paper the authors present a new proposal for
a robust version of the Feasible Generalized Least Square (FGLS) estimator.

This paper is organized as follows. After a brief introduction, we refer to the
framework of panel data, as well as the main concepts of robust methodologies.
Section 2 provides the main results for the FGLS estimator in panel data. In Sect. 3,
a new version of a robust FGLS is presented. Then, in Sect. 4, Grunfeld data is used
as presented in one of the recent versions, available in [4]. This paper is concluded
in Sect. 5 with a brief discussion of the main results and conclusions.
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1.1 Panel Data Model (PDM)

A panel data model may be defined by the following equation:

yit = β0 + X′
i tβ + uit , i = 1, ..., N ; t = 1, ..., T, (1)

where yit denotes the observation of the dependent variable Y under study; the i
subscript refers to the unit, (individual, country,...) and the t index is used for the
time periods in which the observations are collected for each of the individuals i ;
β0 ∈ R,X′

i t is the vector of observations of the K independent variables at time t for
the individual i and β is a K × 1 vector of coefficients of the model.

The simplest way of analyzing panel data is to treat it like a cross-sectional data
set, ignoring eventual individual or time effects. This is known as the pooling model.
Choosing the model depends on the nature of the study and/or the variables under
consideration.

We will consider the usual approach of splitting the two components of the ran-
dom error uit so the existence of an unobservable individual effect, μi might be
distinguishable from the rest of disturbance νi t ,

uit = μi + νi t . (2)

The fact that the term μi is time-invariant allows it to accommodate the existence
of a specific individual effect, not expressed in the regression equation. Depending
on the assumptions we can make about the terms μi , we consider different models
for estimating the model parameters.

When we make an option for the fixed effects model, it does not necessarily mean
that we are considering the μi as nonstochastic terms. It may possible to have some
arbitrary correlations between the unobserved effect and the explainable variables
[5]. Strict exogeneity is assumed, meaning that the independent variables Xit are
independent from the error νi t , for all i and t . The error term νi t is assumed to
be independent and identically distributed (i.i.d.) with constant variance, say, σ 2

ν .

This approach is adequate if we aim to obtain inference results, only valid for the
i individuals under study. The methodology used to obtain the estimators, in this
case, is a consequence of the Frisch-Waugh-Lovell theorem and is similar to the one
applied when dummy variables are present in the model. This approach is called the
within estimation. For example, if the individuals are some banks in Portugal, this
would be equivalent to define a set of dummy variables, one for each bank present
in the study. In this case, the inference would be conditional to those same banks
and the Ordinary Least Squares (OLS) methodology would be applied to obtain the
estimators.
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If we aim to extend the results to the population, then we go for the random effects
(RE) model, in which μi are assumed to be random. In the RE model, in addition
to the assumptions made for the FE model, it is also assumed that: μi are i.i.d.
with constant variance σ 2

μ; μi are independent of νi t and Xit are independent of νi t
and μi .

According to Baltagi [3], the model (1) can be written as y = Zδ + u and the
error (2) can be written as

u = Zμμ + ν, (3)

with u′ = (u11, ..., u1T , u21, ..., u2T , ..., uN1, ..., uNT ), μ′ = (μ1, ..., μN ) and ν =
(ν11, ..., ν1T , ..., νN1, ..., νNT ).

The covariance matrix of these errors is � and its structure depends on the type
of model considered—fixed or random effects.

1.2 Robust Methods for PDM

A panel data set contains observations of several variables for a period of years (or
months for example) referring to a set of individuals (countries or firms). Real data
sets often present atypical observations or outliers. Outliers can be interpreted as
observations with a low probability of belonging to the same distribution as the one
that characterizes the majority of the rest of the data. It is important to detect multi-
variate outliers in this type of data, but visual observation is not easy, because these
observations can be masked by the complex structure of this type of data. Rousseeuw
and Van Zomeren [6] proposed a detection robust methodology for identifying mul-
tivariate outliers.

The classical estimation of PDM parameters, namely FGLS, may be seriously
affected by the presence of outliers in the sample which should not occur within
Robust estimation. Some robust procedures for PDM have been proposed in the last
years, in [7–15], for example. Some of these proposals are stated for fixed effects
models, others are for random effects models; some of them are directed to dynamic
models and others to static models. In these studies, the authors adapted robust
regression methods [16] to PDM. Although there are already some proposals for
robust methods in the case of PDM, there are still few papers with an application of
robust methodologies. In the fields of economics and finance, the most commonly
used estimators are those obtained from the application of the least squares method.
In spite of the existence of numerous robust proposals for these estimators, we find
them rarely applied in empirical studies. The authors of this paper suggest a most
user-friendly version of a robust procedure, expecting to witness a more widespread
use from the community of nonstatistical researchers.
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2 The FGLS Estimator

For the RE model, the error covariance matrix is � is given by,

� = E(uu′) = σ 2
μ(IN ⊗ JT ) + σ 2

ν (IN ⊗ IT ), (4)

with JT being a matrix of ones of dimension T, IN , IT identity matrices of order
N , T, respectively.

In case of the FE model, this matrix is simplified and has the expression:

� = E(uu′) = σ 2
ν (IN ⊗ IT ), (5)

After obtaining the inverse�−1, aGeneralizedLeast Squares (GLS) estimatormay
be obtained as a weighted least squares estimator. Thematrix�may be decomposed,
but the problem is that the component variances are unknown. Several proposals were
considered to overcome this difficulty and the framework of Feasible Generalized
Least Squares (FGLS) was developed. The methodology involved consists of using
an estimated matrix �̂.

One of the most frequent approaches considers the process of estimation in two
steps: first using an Ordinary Least Square (OLS) methodology, and in the second
step, the residuals of the first fitted values are used to estimate �. With the estimated
matrix � under suitable conditions, we obtain the FGLS estimator:

δ̂FGLS = (X′�̂−1X)−1X′�̂−1Y. (6)

Asymptotic results provide good properties for the FGLS estimator when applied
with large samples, see [3] and [5].

3 A Robust FGLS Estimator

The presented proposal consists of robustifying the FGLS estimator, recalling that
its implementation includes three steps:

(i) estimate the parameters by the PLS (Pooled Least Squares) and collect the
residuals, considering them as error estimates; (ii) estimate the covariance matrix
of the errors � with the residuals of the former step, using the sample covariance
matrix; (iii) estimate the model parameters by FGLS with the estimated covariance
matrix obtained in the former step.

The RFGLS (Robust Feasible Generalized Least Squares) estimator proposed in
this work results from applying a robust method in the second step of FGLS. The
correspondent algorithm is as follows:

1. estimate the parameters by PLS and compute the residuals,
2. estimate the covariance matrix of the errors using the robust estimator CovOGK,
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3. estimate themodel parameterswithFGLSusing the robust estimatedof covariance
matrix obtained at the previous step.

The robust covariance matrix estimator OGK (Orthogonalized Gnanadesikan-
Kettenring)was proposed byMaronna andZamar [17]. It allows to get robust location
and scale estimators. TheOGKestimator results froma transformationof a previously
proposed estimator by Gnanadesikan and Kettenring [18]. This original proposal
allows to obtain a robust estimate of the covariance matrix, but the resulting matrix
may not be positive definite. To overcome this problem, Maronna and Zamar [17]
performed a geometric transformation (orthogonalization). This transformation is
based on the fact that the eigenvalues of the covariance matrix are the variances along
the directions defined by the respective eigenvectors; this ensures that the obtained
matrix is positive definite [16]. To calculate the OGK estimator, it is necessary to
consider robust and efficient location and scale functions. In [17], Maronna and
Zamar used a weighted mean and τ -scale estimator. The OGK estimator does not
have an explicit form, but it can be obtained by applying a set of computational steps,
which can be seen in detail in [16].

4 Illustration with the Grunfeld Data

Grunfeld data [4] is a set of data widely used in econometric literature and teaching
econometrics activity. It consists of a set of annual records from the American firms:
GeneralMotors, US Steel, General Electric, Chrysler, Atlantic Refining, IBM,Union
Oil, Westinghouse, Goodyear, DiamondMatch and American Steel. Data refer to the
period between 1935 and 1954.

There is a total of 220 observations, corresponding to twenty years and eleven
firms for five variables:

• the dependent variable—invest, representing the firm investments in dollars;
• two independent variables—value referring to themarket value, and capital regard-
ing the firm capital;

• the variable firm identifying the different firms recorded;
• the variable year, a year identifier.

There are multiple versions of these data in the literature. The version used in this
study is the latest version, available at https://eeecon.uibk.ac.at/~zeileis/grunfeld/
Grunfeld.csv.

The original Grunfeld data were first analysed in the frame of Grunfeld’s PhD
in Economics, where he studied “The Determinants of Corporate Investment” [19].
This set of data continues to be widely used in order to illustrate different panel data
studies for research and educational purposes.

https://eeecon.uibk.ac.at/~zeileis/grunfeld/Grunfeld.csv
https://eeecon.uibk.ac.at/~zeileis/grunfeld/Grunfeld.csv
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Fig. 1 Detection of multivariate outliers with Mahalanobis distance

Grunfeld formulated amodel that describes the dependence of the investment, (y),
from the value (x1) and the capital (x2) [20], translated by the investment equation:

investit = β0 + β1valueit + β2capitalit + uit , (7)

with i = 1, ..., 11 e t = 1, ..., 20.
A preliminary analysis is important to detect the main characteristics of data.

Panel data analysis requires suitable conditions that should be present, otherwise, we
compromise the validity of the results. As in multiple fields of research, econometric
data sets often exhibit atypical observations that demand particular attention. It is
important to investigate the existence of outliers before proceeding to the statistical
analysis. Due to the nature of data, a simple boxplot might not do the task, i.e.,
without convenient multivariate tools, one might miss the detection of an outlier.

Outliers detection of Grunfeld data was made in accordance with the proposed
methodology for multivariate outliers detection, in [6], with classic and robustMaha-
lanobis distance and assuming the normality of the error terms. To support the com-
putations, R language [21]was used, in particular, theMoutlier function from chemo-
metrics package [22]. The pertinence of the use of this methodology is illustrated in
Fig. 1.

As shown in Fig. 1, the robust method highlights three outliers, i.e., firms that
are associated with variable values that are far away from those observed for the
remaining firms: these are the firms General Motors (GM), US Steel (USS) and
General Electrics (GE).

In this paper, we applied both classic and robust methods to obtain parameter
estimates of the Grunfeld model. The presence of outliers within Grunfeld data
justifies the use of robust estimation methods. The parameters estimation process
was made considering the fixed effects model and the random effects model, using
FGLS and RFGLS, respectively. To compare the performance of the two estimators,
we performed a residual analysis, according to [12].
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To estimate the model parameters, we used two R packages: for the FGLS esti-
mates we used the function pggls from the package plm (a package for panel data
analysis) [23]; for the RFGLS estimates, we used the function covOGK from robust-
base (package with robust methods) [24].

We initially considered the pggls function and thenmodified it, so we could obtain
an adapted version of the function that includes the robust covariance matrix. During
the FGLS estimator calculation process, we replaced the required matrix with a new,
robustified version, computed with the covOGK function. The result is a modified
robust version of the FGLS estimator, i.e., we obtained new RFGLS estimates of the
parameters.

4.1 Model Parameters Estimates

Table 1 contains the values of the parameters estimates, found for the hypotheses and
methods considered.We can observe some differences between themodel parameters
estimates obtained with the two different estimators, FGLS e RFGLS.

In order to evaluate the performance of the two estimators considered, the multi-
variate residuals were calculated for each of the fitted models and a residual analysis
was carried out, comparing the mean and standard deviation values obtained.

Figure2 shows that, for the fixed effects model, the robust method performs better.
The residuals of the fixed effects model obtained after applying the robust method
RFGLS present smaller mean values (at the left) and standard deviation (right) for
almost every company.

Figure3 shows that, for the random effects model, the robust method performs
better too. The residuals of the fitted random effects model produced, after applying
the robust method RFGLS, present smaller mean and standard deviations values for
almost every firm.

Note that both the mean and standard deviation of the residuals obtained were
lower for the robust method. For both type of models, random or fixed effects,
the residuals obtained with the robust method presented lower mean and standard
deviation. It is clear that the robust estimated model is less affected by the identified
outliers (for the three firms, GM, USS, GE) than the classical estimated model.

Table 1 Model parameters estimates

FE RE

β̂1 β̂2 β̂1 β̂2

FGLS 0.110 0.309 0.114 0.228

RFGLS 0.113 0.295 0.124 0.191
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Fig. 3 FGLS and RFGLS mean and MSE—random effects model

5 Concluding Remarks and Future Work

The panel data approach is a frequent way to represent Economical and Financial
data. In these areas of study, real data often contain outliers. Robust methods are
recommended for this type of data analysis. Robust Mahalanobis distance turned
possible to detect outliers that were present in the Grunfeld data set. The robust
estimator was the one with better performance as this estimator produced residuals
with less mean and less standard deviation. To continue this research, the authors
intend to do a simulation study in order to evaluate the RFGLS estimator properties.
A Monte Carlo study could be used to evaluate the estimated bias of the new esti-
mators. Assumptions on the idiosyncratic component νi t might fail having to face
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with autocorrelation and heteroskedasticity, so common in economics and finance.
It is important to study the behaviour of this new estimator in those adverse scenar-
ios. Furthermore, the authors seek to improve the RFGLS estimator, inserting robust
procedures in the remaining steps of FGLS estimator.
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Abstract Anew parametricmodel for recurrent gap time data based on the extended
Chen–Poisson distribution is proposed. The model is characterized by a marginal
rate function derived from a non-homogeneous Poisson process, which allows us to
deduce the conditional distribution of each gap time given the previous recurrence
time. The proposed model is quite flexible since it accommodates several shapes
of the marginal rate function. Moreover, it is shown that this model has the Chen
marginal rate model as a limiting case. The maximum likelihood method is applied
for parameter estimation in the presence of right-censoring. A simulation study is
conducted to evaluate the properties of themaximum likelihood estimators in various
scenarios. The likelihood ratio test is also investigated for model selection between
the proposed model and its limiting case. An application to small bowel motility data
is considered to illustrate the potential of the new model in comparison with other
competing models.

Keywords Extended Chen–Poisson distribution · Gap times · Non-homogeneous
Poisson process · Parametric model · Recurrent events

I. Sousa-Ferreira (B) · C. Rocha
Department of Statistics and Operational Research, Faculty of Sciences, University of Lisbon,
Lisbon, Portugal
e-mail: ivo.ferreira@staff.uma.pt

C. Rocha
e-mail: cmrocha@fc.ul.pt

I. Sousa-Ferreira · A. M. Abreu
Department of Mathematics, Faculty of Exact Sciences and Engineering, University of Madeira,
Funchal, Portugal
e-mail: abreu@staff.uma.pt

I. Sousa-Ferreira · C. Rocha
CEAUL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal

A. M. Abreu
CIMA, University of Madeira, Funchal, Portugal

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bispo et al. (eds.), Recent Developments in Statistics and Data Science,
Springer Proceedings in Mathematics & Statistics 398,
https://doi.org/10.1007/978-3-031-12766-3_23

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12766-3_23&domain=pdf
http://orcid.org/0000-0001-5526-3594
http://orcid.org/0000-0001-7162-4820
http://orcid.org/0000-0002-6155-8492
mailto:ivo.ferreira@staff.uma.pt
mailto:cmrocha@fc.ul.pt
mailto:abreu@staf\discretionary {-}{}{}f.uma.pt
https://doi.org/10.1007/978-3-031-12766-3_23


338 I. Sousa-Ferreira et al.

1 Introduction

In longitudinal studies, it is common for subjects to experience several episodes
of a certain event of interest during the observation period. Such outcomes have
been termed recurrent events and are often encountered in medical studies on dis-
ease relapses, reliability studies on repeated machine breakdowns, financial studies
on successive defaults on bank loans, among others. In many settings, researchers
have more interest in the time between consecutive events (i.e., gap times) than in
the time-to-events (e.g., Gail et al. [1]). For instance, in medical studies it is often
intended to model the time elapsed since the last event when subjects can recover
after the occurrence of each event, such as in asthma attacks, epileptic seizures and
re-hospitalizations.

The canonical models to analyse gap times are based on renewal processes [2, 3].
These models are formulated under the assumption that gap times can be directly
modelled without specifying a dependence structure within subjects. Since the inde-
pendence assumption is untenable inmost situations, more general models have been
formulated over the years through conditional distributions, including a variety of
regression models to evaluate covariate effects (e.g., [4–8]), gap time models with
frailty terms (e.g., [9, 10]) and joint distribution of the gap times via copula func-
tions (e.g., [11, 12]). For a comprehensive understanding on the existing methods to
analyse recurrent gap time data, the reader is referred to Cook and Lawless [3] and
Aalen et al. [13].

Another approach in gap time modelling consists in deducing the conditional
distribution of the gap times under the classical assumption that the number of recur-
rent events up to a given time follows a non-homogeneous Poisson process (NHPP),
for which the gap times are generally not independent [3]. In this context, Zhao and
Zhou [14] proposed an additive semiparametric model based on amarginal rate func-
tion (mrf) that is derived from a NHPP. This model has the advantage of allowing
estimation of the covariate effects without specifying the form of the baseline rate
function. Nonetheless, when the research interest is also to study how the recurrence
rate evolves over time, an adequate parametric model would be more convenient.
With this motivation, Macera et al. [15] and Louzada et al. [16, 17] suggested a
parametric form for the baseline rate function based on the exponential-Poisson
(EP), Poisson-exponential (PE) and Weibull distributions, respectively. However,
these parametric models only allow monotonic rates. Hence, alternative distribu-
tions should be considered to provide more flexibility to model gap times between
recurrent events.

For complex phenomena associated with a subject’s lifetime, it is admissible
to consider non-monotonic hazard shapes. In this sense, Sousa-Ferreira et al. [18]
recently proposed a new flexible generalization of the Chen distribution [19] by
compounding it with a zero-truncated Poisson (ZTP) distribution, which is called
extended Chen–Poisson (ECP) distribution. For this distribution, the hazard and
survival functions at time t are defined, respectively, as
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where λ, γ > 0 and φ ∈ R\{0} are the parameters of the distribution. A graph-
ical analysis showed that the hazard function (1) can be monotonic increasing,
monotonic decreasing, unimodal, bathtub, increasing-decreasing-increasing (IDI) or
decreasing-increasing-decreasing-increasing (DIDI), so it has the potential to cover
a wide variety of situations. Therefore, the ECP distribution is a promising candidate
for the development of a new model for recurrent events.

The ECP distribution arises in the context of competitive and complementary risks
(CCR) settings for single event analysis, wherein it is only possible to observe the
minimum or maximum lifetime among all causes that could trigger the occurrence of
the event, instead of observing the lifetime associatedwith a particular cause. In these
circumstances, the cause responsible for the occurrence of the event is often unknown,
as well as the number of existing causes. As discussed by Ramos et al. [20], when it is
assumed that the number of causes follows a ZTP distribution, both theminimum and
maximum distributions can be unified in a simple form, by extending the parameter
space of the ZTP distribution into R\{0}, giving rise to the extended Poisson family
of distributions. Since the ECP distribution [18] belongs to this family, it has two spe-
cial cases when φ < 0 (distribution of the minimum) and φ > 0 (distribution of the
maximum), which refer to theChen–Poisson and Poisson-Chen distributions, respec-
tively. In recurrent events analysis, it is also plausible that the nature of the recurrence
process involves a CCR scenario. The EP and PE marginal rate models proposed by
Macera et al. [15] and Louzada et al. [16], respectively, are able to deal with these
kind of problems. According to Ramos et al. [20], since the EP and PE distributions
belong to the unified Poisson family, the resulting models for recurrent events can be
merged into a single model, named extended exponential-Poisson (EEP) marginal
rate model.

In the light of the above context, we propose a new parametric model for recurrent
gap time data, considering the ECP form (1) to specify the baseline rate function. The
remainder of the paper is organized as follows. Section2 begins with the formulation
of the proposed model and with the study of its properties. The maximum likelihood
(ML)method is applied for parameter estimation, in the presence of a right censoring
mechanism, in Sect. 3. A simulation study is performed to assess the frequentist
properties of the ML estimators in Sect. 4, while in Sect. 5 the proposed model is
applied in the analysis of the small bowel motility data in [2]. Some concluding
remarks are presented in Sect. 6.
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2 Formulation of the ECP Marginal Rate Model

Suppose that there are n independent subjects in study and that each one can expe-
rience a maximum of Ki (i = 1, . . . , n) recurrences of an event. For the i th subject,
let Tik be the time from the beginning of study until the occurrence of the kth event
(k = 1, . . . , Ki ) and Wik = Tik − Ti,k−1 be the gap time between the (k − 1)th and
kth events, where 0 ≡ Ti0 < Ti1 < . . . < TiKi . Let Ni (t) denote the number of recur-
rences of an event up to time t ≥ 0. The recurrence process Ni (·) of the i th subject
is assumed to be a NHPP with independent increments. In order to simplify the
notation, an arbitrary subject is considered and the subscript i is dropped.

Zhao and Zhou [14] proposed a model wherein the general form of the mrf1 of
N (tk−1 + w) is characterized by

h(w|tk−1) = h0(tk−1 + w), w > 0, (3)

where h0(·) ≥ 0 is a baseline rate function. Under the assumptions of a NHPP [3],
the average number of recurrences over the interval (tk−1, tk−1 + w] is given by

E[N (tk−1 + w) − N (tk−1)] =
∫ tk−1+w

tk−1

h0(u)du =
∫ w

0
h0(tk−1 + u)du

= H0(tk−1 + w) − H0(tk−1) = H(w|tk−1)

and the survival function of the kth gap time, Wk , conditional on Tk−1 = tk−1 is

S(w|tk−1) = exp
{ − H(w|tk−1)

} = S0(tk−1 + w)

S0(tk−1)
, (4)

where H0(t) = ∫ t
0 h0(u)du and S0(t) = exp

{ − H0(t)
}
are the baseline cumulative

rate and baseline survival functions, respectively, and H(w|tk−1) is the cumulative
rate function of the recurrence process. So, the dependence structure among gap times
within a subject is expressedby the conditional survival function (4),which represents
the probability of not suffering any event during a gap time of length w, given that
the subject survived beyond the time tk−1. Note that, since W1 = T1 − T0 = T1, it
follows that S(w|t0) = S0(w).

To estimate h0(·), Zhao and Zhou [14] considered a non-parametric method based
on kernel estimation, while other researchers assumed a specific parametric form for
the baseline rate function, by considering an EEP [15, 16] or a Weibull [17] form.
Since the exponential distribution is a particular case of the EEP and Weibull distri-
butions, the exponential marginal ratemodel will in turn be a sub-model of amarginal
rate model (3) based on those distributions. This leads to an important special case
of the Poisson process, corresponding to the classical homogenous Poisson process

1 It represents the marginal (i.e. unconditional on the complete process history) instantaneous prob-
ability of occurring an event at time tk−1 + w.
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(HPP). This is the only case where it is assumed that the gap times between recurrent
events are independent and identically distributed exponential random variables.

To the best of our knowledge, all fully parametric marginal rate models proposed
so far only havemonotonic rate functions. This drawbackmotivated the development
of a more flexible model. Specifically, conditional on Tk−1 = tk−1, we assume that
the baseline rate function has an ECP form (1). Then, it follows from (3) that the mrf
of the recurrence process is

h(w|tk−1) = λγφ(tk−1 + w)γ−1e(tk−1+w)γ +λ

(
1−e(tk−1+w)γ

)

eφe
λ

(
1−e(tk−1+w)γ

)

− 1

, w > 0, (5)

and, together with (2) and (4), the survival function of the kth gap time, Wk , condi-
tional on the previous recurrence time is

S(w|tk−1) = 1 − e−φe
λ

(
1−e(tk−1+w)γ

)

1 − e−φe
λ

(
1−e

t
γ
k−1

) , w > 0, (6)

where λ, γ > 0 and φ ∈ R\{0}. Hereafter, the distribution of Wk |Tk−1 = tk−1 will
be called ECP marginal rate model. In the same line of the EEP marginal rate model
[15, 16, 20], the proposed model provides a practical interpretation in CCR settings.
When φ < 0 (or φ > 0), Wk |Tk−1 = tk−1 represents the minimum (or maximum)
time among all causes responsible for the event occurrence. Moreover, it should be
noted that the Chen marginal rate model is a limiting case of the proposed model,
since when φ approaches 0 it follows that the mrf (5) reduces to limφ→0 h(w|tk−1) =
λγ

(
tk−1 + w

)γ−1
exp{(tk−1 + w

)γ }, which is the form of the hazard function of the
Chen distribution [19] at time tk−1 + w.

The mrf (5) is able to take the same flexible shapes reported for the hazard func-
tion (1) of the ECP distribution [18]. Figure1 depicts some possible rate shapes
for different sets of parameter values. Although the mrf (5) presents an expression
similar to the hazard function (1) of the ECP distribution, the survival functions (2)
and (6) are clearly distinct. Actually, considering that W1 = T1 − T0 = T1, the ECP
marginal rate model is equal to the ECP distribution only for k = 1. In other words,
the first gap time follows an ECP distribution, while the subsequent gap times follow
the conditional distribution given by (6).

The cumulative distribution function (cdf), F(w|tk−1) = 1 − S(w|tk−1), can be
directly obtained from (6). Applying the inverse transformation method [21] to the
cdf, a pseudo-random sample from the ECP marginal rate model can be generated
considering the expression

Wk =
{
log

[
1 − λ−1 log

(
− φ−1 log

(
Uk − (Uk − 1)e−φe

λ

(
1−e

t
γ
k−1

)))]}1/γ

− tk−1,

(7)



342 I. Sousa-Ferreira et al.

Fig. 1 Some ECP marginal
rate functions of the
recurrence process
N (tk−1 + w) for an arbitrary
subject, considering the sets
of parameter values
(λ, γ, φ) = (0.2, 1.5, 3.0),
(1.3, 0.2,−2.0),
(3.0, 0.3, 20.0) and
(0.6, 0.6,−3.5) that
correspond to an increasing,
decreasing, unimodal and
bathtub shapes, respectively
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where Uk is a random variable with standard uniform distribution. Thus, for an
arbitrary subject, the realizations of Tk can be recursively obtained for k = 1, . . . , K
by tk = tk−1 + wk , with t0 = 0.

Based on the raw moments of the ECP distribution [18], the general expression of
the r th raw moment ofWk |Tk−1 = tk−1 can be straightforwardly deduced by making
the change of variable v = exp{λ(1 − ewγ

)}, resulting in

E(Wr
k |tk−1) = A

∫ B

0
e−φv

[
log

(
1 − log(v)

λ

)]r/γ

dv − tk−1, r ∈ N,

with A = φ/(1 − e−φB) and B = exp{λ(
1 − et

γ

k−1
)}. Hence, the mean and variance

of Wk |Tk−1 = tk−1 are given, respectively, by

E(Wk |tk−1) = A
∫ B

0
e−φv

[
log

(
1 − log(v)

λ

)]1/γ

dv − tk−1

and

Var(Wk |tk−1) = A
∫ B

0
e−φv

[
log

(
1 − log(v)

λ

)]2/γ

dv − tk−1 − [E(Wk |tk−1)]2.

Interestingly, it can be shown that E(Wk |tk−1) corresponds to the mean residual life
function of the ECP distribution at time tk−1, studied in [18].
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3 Statistical Inference

The inferential procedures are based on the well-known ML method and its large
sample properties. Suppose that data are available fromn independent subjects, that to
each subject i corresponds a vector (wik, δik), i = 1, . . . , n and k = 1, . . . , Ki , where
wik = tik − ti,k−1 is the observed gap time, 0 < ti1 < . . . < ti Ki are the observed
time-to-events corresponding to the Ki recurrences and δik is a censoring indica-
tor variable that equals 0 or 1 when wik is right-censored or completely observed,
respectively.

Let ϑ = (λ, γ, φ)′ be the vector of parameters of the ECP marginal rate model.
Assuming that the censoring mechanism is non-informative, the ML estimate of ϑ

can be obtained by direct maximization of the log-likelihood function given by

�(ϑ) =
n∑

i=1

Ki∑

k=1

{
λδik + log(λγ )δik + δik(ti,k−1 + wik)

γ − λδike
(ti,k−1+wik )

γ

+ (γ − 1)δik log(ti,k−1 + wik) + δik log

(
φ

eφe
λ

(
1−e

(ti,k−1+wik )γ
)

− 1

)
(8)

+ log

(
1 − e−φe

λ

(
1−e

(ti,k−1+wik )γ
)

1 − e−φe
λ

(
1−e

t
γ
i,k−1

)
)}

.

Care is needed when φ < 0, since the values of log{1 − exp[−φ exp(λ(1 − et
γ

))]},
t > 0, and log(φ), cannot be computed. This problem is easily overcome by
considering that log{φ/[exp[φ exp(λ(1 − e(ti,k−1+wik )

γ

))] − 1]} ∈ R and
log

{{1 − exp[−φ exp(λ(1 − e(ti,k−1+wik )
γ

))]}/{1 − exp[−φ exp(λ(1 − et
γ

i,k−1))]}} ∈
R

−
0 , ∀λ, γ > 0 and φ ∈ R\{0}.
For large samples, the inference for λ, γ and φ can be based on the correspond-

ing ML estimates and their estimated standard errors, evaluated in standard fash-
ion from the observed information matrix. For computational implementation, the
optim function available in R [22] statistical software (version 4.1.3) is applied to
maximize the log-likelihood function (8) through the Broyden–Fletcher–Goldfarb–
Shanno optimization method.

The likelihood ratio (LR) test is used for model selection between the ECP
and Chen marginal rate models, considering the hypotheses H0 : φ = 0 versus
H1 : φ �= 0. The LR statistic is given by −2{�(ϑ̂0) − �(ϑ̂)}, where �(ϑ̂0) and �(ϑ̂)

are the log-likelihoods under the null and alternative hypotheses, respectively, with
ϑ̂0 = argmax(λ,γ,0) �(ϑ) and ϑ̂ = argmax(λ,γ,φ) �(ϑ). Note that, since the baseline
distribution unifies the Poisson-Chen (φ > 0) and Chen–Poisson (φ < 0) distribu-
tions, the true parameter φ = 0 lies on the boundary of the parameter space in these
sub-models. Following Zhou andMaller [23], in this case the asymptotic distribution
of the LR test is a 50-50 mixture of a chi-square distribution with 1 degree of free-
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dom (χ2
1 ) and a point mass at 0. This result was also considered for model selection

between the EEP and exponential marginal rate models [15, 16].

4 Simulation Study

A simulation study is performed to assess the adequacy of the inferential proce-
dures described previously. The pseudo-random samples in the presence of random
censoring are generated from (7), assuming that the event times follow an ECP
marginal rate model and the censoring times are uniformly distributed. The per-
centage of pseudo-random censoring is specified as 5, 15 and 30%, following the
procedures discussed in [21]. Different sample sizes, n = 20, 100 and 500, and num-
ber of recurrences, k = 2, 5 and 10, are considered. For simplicity, it is assumed that
all subjects experience at least k − 1 recurrences, which means that only the kth gap
time can be censored. The sets of parameter values ϑ = (λ, γ, φ) = (0.2, 1.5, 3.0),
(1.3, 0.2,−2.0), (3.0, 0.3, 20.0) and (0.6, 0.6,−3.5) were selected in order to yield
increasing, decreasing, unimodal and bathtub shapes of the mrf, respectively, as
shown in Fig. 1. Thus, 108 scenarios are investigated. For each one, 1000 pseudo-
random samples are generated.

The results reported in Table1 refer to scenarios with 30% of censoring. How-
ever, similar results hold for smaller censoring percentages and also for other sets of
parameter values. From Table1, it is seen that the averages of the ML estimates of
λ, γ and φ tend to the true value of the parameter and their standard errors tend to
zero, as the sample size and number of recurrences increase. These results suggest
that the ML estimators are asymptotically unbiased. However, it appears that φ has
poor average estimates and high standard errors for small sample sizes. This aspect
is more visible for the set of parameter values corresponding to a unimodal mrf, but
then it fades for large sample sizes and large number of recurrences. The coverage
probabilities (CP) of the 95% confidence interval (CI) were also calculated for each
parameter, representing the proportion of the 1000 generated 95% CIs that include
the actual value of the parameter. The results show that, in general, the CP are close
to the nominal level of 95%.

Additionally, the performance of the LR test is analysed in two different situ-
ations, depending on whether the parameter φ is positive or negative. In the first,
the hypotheses H0 : φ = 0 versus H1 : φ > 0 are tested considering the parameters
λ = 0.2 and γ = 1.5, while in the second situation the hypotheses H0 : φ = 0 versus
H1 : φ < 0 are tested considering the parameters λ = 0.6 and γ = 0.6. Under H0,
the first and second sets of parameter values lead to the Chen marginal rate model
with increasing and bathtub shapes of the mrf, respectively. The results for these two
situations are compiled in Tables2 and 3, respectively, which contain the empirical
proportions of type I error under the null hypothesis, as well as the empirical power
of the test to detect different alternative hypothesis, at the 5% nominal significance
level. In both cases, as the sample size and number of recurrences increase, the
empirical significance levels are closer to the nominal level and the empirical power
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Table 1 The averages (Av) of the 1000ML estimates for ϑ = (λ, γ, φ)′, their standard errors (SE)
and coverage probabilities (CP) of the 95% CIs

ϑ k n Av(ϑ̂) SE(ϑ̂) CP (ϑ̂)

(0.2, 1.5, 3.0) 2 20 (0.262, 1.520, 5.254) (0.201, 0.325, 5.853) (0.870, 0.941, 0.995)

100 (0.205, 1.516, 3.099) (0.079, 0.145, 1.442) (0.936, 0.949, 0.983)

500 (0.199, 1.506, 2.989) (0.034, 0.059, 0.566) (0.966, 0.965, 0.968)

5 20 (0.215, 1.510, 3.672) (0.105, 0.152, 2.644) (0.952, 0.962, 0.996)

100 (0.200, 1.505, 3.038) (0.043, 0.061, 0.894) (0.956, 0.972, 0.984)

500 (0.200, 1.502, 2.996) (0.019, 0.026, 0.382) (0.959, 0.964, 0.960)

10 20 (0.204, 1.507, 3.297) (0.067, 0.079, 1.807) (0.944, 0.966, 0.987)

100 (0.200, 1.502, 3.035) (0.028, 0.033, 0.698) (0.952, 0.958, 0.964)

500 (0.200, 1.500, 3.001) (0.013, 0.015, 0.306) (0.963, 0.960, 0.953)

(1.3, 0.2, −2.0) 2 20 (1.372, 0.205,−2.195) (0.807, 0.044, 2.632) (0.971, 0.979, 1.000)

100 (1.311, 0.200,−2.119) (0.487, 0.022, 1.568) (0.959, 0.970, 0.996)

500 (1.300, 0.200,−2.036) (0.236, 0.010, 0.718) (0.960, 0.956, 0.972)

5 20 (1.234, 0.207,−2.438) (0.448, 0.031, 1.704) (0.883, 0.928, 0.949)

100 (1.290, 0.201,−2.073) (0.260, 0.017, 0.906) (0.940, 0.934, 0.956)

500 (1.308, 0.200,−1.987) (0.126, 0.008, 0.430) (0.942, 0.942, 0.953)

10 20 (1.261, 0.205,−2.274) (0.369, 0.022, 1.383) (0.873, 0.898, 0.923)

100 (1.294, 0.201,−2.045) (0.193, 0.011, 0.693) (0.921, 0.925, 0.929)

500 (1.301, 0.200,−2.000) (0.087, 0.005, 0.309) (0.956, 0.949, 0.957)

(3.0, 0.3, 20.0) 2 20 (3.220, 0.333, 64.973) (0.704, 0.127, 31.372) (0.773, 0.797, 0.653)

100 (3.107, 0.298, 31.026) (0.350, 0.051, 16.260) (0.926, 0.927, 0.876)

500 (3.013, 0.301, 20.991) (0.153, 0.023, 5.394) (0.961, 0.961, 0.948)

5 20 (3.161, 0.299, 42.324) (0.564, 0.052, 25.113) (0.879, 0.888, 0.813)

100 (3.028, 0.300, 22.412) (0.254, 0.023, 8.557) (0.953, 0.958, 0.942)

500 (3.005, 0.300, 20.383) (0.111, 0.010, 3.202) (0.956, 0.959, 0.951)

10 20 (3.088, 0.299, 30.078) (0.453, 0.028, 17.191) (0.934, 0.941, 0.884)

100 (3.012, 0.300, 21.196) (0.198, 0.012, 5.692) (0.959, 0.951, 0.942)

500 (3.000, 0.300, 20.144) (0.087, 0.006, 2.332) (0.947, 0.943, 0.952)

(0.6, 0.6, −3.5) 2 20 (0.814, 0.604,−3.350) (0.537, 0.122, 3.862) (0.956, 0.978, 0.972)

100 (0.692, 0.592,−3.463) (0.308, 0.054, 2.008) (0.926, 0.972, 0.956)

500 (0.627, 0.596,−3.534) (0.162, 0.022, 1.047) (0.896, 0.962, 0.922)

5 20 (0.653, 0.595,−3.586) (0.285, 0.069, 1.797) (0.903, 0.959, 0.968)

100 (0.624, 0.596,−3.449) (0.143, 0.032, 0.856) (0.939, 0.954, 0.964)

500 (0.606, 0.599,−3.486) (0.061, 0.014, 0.374) (0.944, 0.951, 0.954)

10 20 (0.623, 0.602,−3.592) (0.210, 0.048, 1.309) (0.861, 0.881, 0.908)

100 (0.610, 0.600,−3.492) (0.109, 0.025, 0.672) (0.918, 0.925, 0.919)

500 (0.603, 0.600,−3.490) (0.048, 0.011, 0.301) (0.946, 0.944, 0.957)
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Table 2 Empirical proportions of type I error and power of the LR test at the 5% nominal signifi-
cance level, considering λ = 0.2 and γ = 1.5

Empirical Empirical power

type I error φ = 0.5 φ = 2.0 φ = 3.5

n k = 2 k = 5 k =
10

k = 2 k = 5 k =
10

k = 2 k = 5 k =
10

k = 2 k = 5 k =
10

20 0.056 0.045 0.040 0.050 0.075 0.073 0.119 0.243 0.411 0.220 0.504 0.716

100 0.049 0.048 0.050 0.076 0.095 0.202 0.263 0.656 0.912 0.647 0.977 1.000

500 0.043 0.056 0.055 0.077 0.255 0.573 0.717 0.996 0.999 0.992 1.000 1.000

Table 3 Empirical proportions of type I error and power of the LR test at the 5% nominal signifi-
cance level, considering λ = 0.6 and γ = 0.6

Empirical Empirical power

type I error φ = −0.5 φ = −2.0 φ = −3.5

n k = 2 k = 5 k =
10

k = 2 k = 5 k =
10

k = 2 k = 5 k =
10

k = 2 k = 5 k =
10

20 0.054 0.045 0.041 0.008 0.026 0.134 0.038 0.176 0.456 0.091 0.412 0.730

100 0.054 0.052 0.046 0.059 0.111 0.217 0.292 0.591 0.882 0.579 0.867 0.982

500 0.041 0.041 0.044 0.117 0.272 0.566 0.792 0.957 1.000 0.968 0.999 1.000

increases, as expected. Nevertheless, some care is needed since there is a remarkable
drop of the empirical power when the LR test is performed closer to the boundary
of the parameter space of φ, which is worsened by small sample sizes and small
number of recurrences.

5 Application to Bowel Motility Data

In this section, the ECP marginal rate model is illustrated through a data set concern-
ing the cyclical motility pattern of the small bowel during a fasting state, available in
Aalen and Husebye [2]. The bowel motility data was also used by Louzada et al. [16]
as an application example for the PE marginal rate model. The study involved 19
healthy subjects, for whom the intraluminal pressure in the small bowel were moni-
tored continuously for 13h and 40min. In order to induce a fed state, a standardized
mixed meal was served. The fed state is characterized by irregular contractions,
lasting from 4 to 7h. Afterwards, the fasting state starts with a cyclical bowel motil-
ity pattern. The aim of this study is to analyse the gap times between successive
cycles during the fasting state, also known as migrating motor complex periods. The
recurrent events are associated with the initial time of the consecutive cycles. For all
subjects, the last gap time is censored due to the end of the study.
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Table 4 Marginal rate models for recurrent events fitted to bowel motility data

Marginal rate model, [ref.] Marginal rate function, h(w|tk−1), w > 0

Exponential (HPP), [3] λ1, λ1 > 0

Weibull, [17] λ2γ2(tk−1 + w)γ2−1, λ2, γ2 > 0

EEP, [15, 16, 20]
λ3φ3e−λ3(tk−1+w)

eφ3e
−λ3(tk−1+w) − 1

, λ3 > 0, φ3 ∈ R\{0}
Chen λ4γ4(tk−1 + w)γ4−1e(tk−1+w)γ4 , λ4, γ4 > 0

ECP
λ5γ5φ5(tk−1 + w)γ5−1e(tk−1+w)γ5+λ5

(
1−e(tk−1+w)γ5

)

eφe
λ5

(
1−e(tk−1+w)γ5

)

− 1

,

λ5, γ5 > 0, φ5 ∈ R\{0}

Table 5 ML estimates and their 95% CI, −log-likelihood and AIC of the marginal rate models
fitted to bowel motility data

Marginal rate model Parameter ML estimate 95% CI −�̂ AIC

Exponential (HPP) λ1 0.532 (0.416, 0.649) 130.457 262.915

Weibull λ2 0.208 (0.067, 0.348) 125.246 254.492

γ2 1.447 (1.144, 1.750)

EEP λ3 0.727 (0.579, 0.875) 124.101 252.201

φ3 4.119 (1.734, 6.503)

Chen λ4 0.229 (0.117, 0.341) 130.323 264.646

γ4 0.519 (0.455, 0.583)

ECP λ5 1.665 (1.417, 1.912) 122.235 250.470

γ5 0.276 (0.239, 0.314)

φ5 47.421 (38.479, 56.363)

For comparison purposes, the marginal rate models listed in Table4 were fitted
to bowel motility data. Table5 presents the ML estimates and the corresponding
95% CIs for the parameters of the fitted models, as well as the −log-likelihood
and observed values of the Akaike information criterion (AIC). Note that the HPP
model is a special case of the Weibull and EEP marginal rate models when γ2 = 1
and φ3 → 0, respectively. Thus, for these models, the LR test can be used to
check the independence assumption between the gap times by considering the null
hypotheses H0: γ2 = 1 and H0: γ3 = 0, as referred in [15–17]. The first situation
involves testing inside the parameter space of γ2, while the second involves test-
ing at the boundary of the parameter space of φ3. Thus, the 95% percentiles, a0.95
and b0.95, of the asymptotic distributions of the LR statistic under H0: γ2 = 1 and
H0: φ3 = 0, respectively, can be calculated from P(χ2

1 ≥ a0.95) = 0.95 ⇒ a0.95 =
3.841 and 1/2 + 1/2P(χ2

1 ≥ b0.95) = 0.95 ⇒ b0.95 = 2.706. Since the correspond-
ing observed values of LR statistic are equal to 10.423 and 12.713 (both with a
p-value < 0.001), there is evidence against the null hypotheses, indicating that a
model that takes into account the correlation between the gap times is preferred. The
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Fig. 2 Estimated marginal
rate functions of the Weibull,
EEP and ECP marginal rate
models fitted to bowel
motility data
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Chen and ECPmarginal rate models are also able to handle the lack of independence
between gap times, since they are derived from a NHPP. Once again, the LR test can
be used for model selection between these two models, by testing H0 : φ5 = 0. In
this case, given that the LR test yields an observed value of 16.176 (with a p-value
< 0.0001), there is evidence in favour of the ECP marginal rate model.

TheWeibull, EEPandECPmodel-based estimates of themrf are depicted inFig. 2.
BothWeibull and EPEmarginal ratemodels provide an increasing rate, with the latter
stabilizing fromacertain timeonwards. In contrast to thesemonotonic rate shapes, the
model based on the ECP distribution exhibits an unimodal shape. The ECP marginal
rate model has the lowest AIC value, which means that it is the preferred among all
the models that were fitted to the bowel motility data. Additionally, the Cox-Snell
residualswere used to informally assess the overall goodness-of-fit of themodels. The
residuals are defined as r̂ik = Ĥ(wik |ti,k−1), i = 1, . . . , n and k = 1, . . . , Ki , where
Ĥ(wik |ti,k−1) is the estimated cumulative rate function of the fitted model [3]. When
the model is appropriate, the graphical representation of the pairs

(
r̂ik, ĤN A(r̂ik)

)
,

where ĤN A(r̂ik) is the Nelson–Aalen estimate of the cumulative rate function based
on the residuals, yields a straight line through the originwith slope 1. Figure3 displays
the Cox-Snell residuals plots of the EEP and ECP marginal rate models (which have
the lowest AIC values) on the log scale, in order to easily identify departures from
linearity. Although both models show close agreement, the proposed model provides
a better fit to the data. This improvement in the goodness-of-fit is potentially due to
its ability to capture a non-monotonic shape of the mrf.
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Fig. 3 Cox-Snell residuals to informally evaluate the goodness-of-fit of the (a) EEP and (b) ECP
marginal rate models fitted to bowel motility data

6 Concluding Remarks

In this work, the applicability of the ECP lifetime distribution [18] is expanded for
modelling gap times between recurrent events by proposing a new marginal rate
model based on this distribution. Since the ECP marginal rate model is derived from
a NHPP, the conditional distribution of the gap times given the previous recurrence
time is deduced. Under this formulation, the gap times are treated equally and so
the relationship between events of the same subject is no longer a problem [14].
Several features of the new model were studied, such as the expressions of its mrf,
survival function and r th raw moments of the gap times (in particular, for the mean
and variance). The proposed model is innovative in the sense that it is able to take
on non-monotonic rates. In fact, it turns out to be quite flexible, as its mrf can
be monotonic increasing, monotonic decreasing, unimodal, bathtub, IDI or DIDI.
Moreover, it was shown that the proposed model has the Chen marginal rate model
as a limiting case. The ML method was applied for parameter estimation in the
presence of right-censoring. The results of the simulation study allowed to check the
efficiency of the ML estimators, as well as the performance of the LR test, in various
scenarios with different sample sizes, number of recurrences, censoring percentages
and shapes of the mrf.

In the application to the bowel motility data, the proposed ECP marginal rate
model revealed a superior fit to the data in comparison with other competing models.
Furthermore, the new model offers an important interpretation in CCR scenarios,
considering that it is based on the ECP distribution. For the bowel motility data, the
ML estimate of parameter φ of the ECP marginal rate model (as well as the EEP
marginal rate model) was positive. This fact points out that, if there are unobserv-
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able causes contributing to the event occurrence, they emerge necessarily from a
complementary risk setting.
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On Classical Measurement Error within
a Bayesian Nonparametric Framework

Emmanuel Bernieri and Miguel de Carvalho

Abstract This paper studies the impact of classical measurement error on a Depen-
dent Dirichlet Process (DDP). Specifically, we study a Simulation-Extrapolation
(SIMEX) algorithm, adapted to a nonparametric Bayesian framework, that assesses
the impact of measurement error by inducing even further error in the covariate. We
illustrate the algorithm via a battery of numerical experiments.

Keywords Classical measurement error · Dependent Dirichlet process ·
Nonparametric Bayes · Simulation-extrapolation

1 Introduction

Measurement error is a well-known statistical problem that occurs in regression
applications, when covariates cannot be observed directly but are rather observed
with error. See [1–5].

In this paper,wewill devise an algorithm for accounting for classicalmeasurement
error on an infinite mixture of regression lines; such mixture model is known in
nonparametric Bayesian parlance as dependent Dirichlet process [6–10].

The dependent Dirichlet process, developed by MacEachern in [9, 10] is a gen-
eralization of the Dirichlet process as a prior for a collection of covariate dependent
random distribution. The focus of this paper is to examine the effect of the classical
measurement error in a dependent Dirichlet process.With this aim in mind, we resort
to a SIMEX algorithm, as proposed in [11], so to correct the effect of measurement
error. While The nonparametric Bayesian framework has already been employed
in a measurement error context [12–15], the inclusion of measurement error in the
dependent Dirichlet process has not been explored yet in the literature to the best of
our knowledge.
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The remainder of the article is organized as follows. Section2presents theSIMEX-
DDP algorithm. Then in Sect. 3, we present some numerical experiments to assess
the performance of the algorithm in a controlled environment. Then we will discuss
the results of our research and conclude.

2 Simulation Extrapolation for a Conditional Dirichlet
Process

2.1 Background

When data are too complex to be described by a single distribution, statisticians
typically use mixture models that consist of weighted sums of distributions. A well-
known example is the K -normal mixture model whose density is given by:

f (y | ω, θ) =
K∑

k=1

ωkφ(y | μk, σ
2
k ), (1)

where ω = (ω1, . . . , ωK ) is a set of positive weights adding up to one, and θ =
(μ1, . . . , μK , σ 2

1 , . . . , σ 2
K ) is a parameter containing the mean and variance of each

component in the mixture.
Dirichlet process mixtures are a well-known nonparametric Bayesian approach

that extends (1) by allowing for an infinite number of components. This is achieved
by resorting to a prior on the space of probability measures, known as the Dirichlet
Process (DP) [16, 17]. For example, the density of a Dirichlet process mixture of
Normal distributions is given by:

f (y) =
∫

φ(y, μ, σ 2)dG(μ, σ 2), G ∼ DP(α,G0). (2)

Here G0 is the centering distribution and α > 0 is the so-called precision parameter.
Note that E(G) = G0 and var(G) = G0(1 − G0)/(α + 1).

Sethuraman gives a definition of the Dirichlet process in [18] as a constructive
representation according to whichG ∼ DP(α,G0) has an almost sure representation
of the form

G(·) =
∞∑

k=1

ωkδθ k (·) (3)

where θ k
iid∼ G0, k = 1, 2, . . . , and ω1 = v1, and for k ≥ 2, ωk = vk

∏
l<k(1 − vl),

with vk
iid∼ Beta(1, α).
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Now that we have introduced preparations on the Bayesian nonparametric frame-
work of interest, we are ready to discuss a conditional error-contaminated version
of (2).

2.2 Error-Contaminated Dependent Dirichlet Process

The dependent Dirichlet process proposed by MacEachern in [10] was built on top
of the stick-breaking representation of Sethuraman [18]. A common approach to
extend the Dirichlet process mixture in (2) to a conditional setting is to define the
conditional density of a dependent nonparametric process in a very general manner
as follows:

f (y | x) =
∫

�

K (θ | y)Gx(dθ), (y, x) ∈ R × X . (4)

Here, θ ⊂ � = R
p, K a kernel, and X ⊂ R

q is the covariate space. In this paper we
will choose a dependent Dirichlet process developed in [10] as a prior:

GX =
∞∑

k=1

ωk,xδθk,x , ω1,x = v1,x, ωk,x = vk,x
∏

l<k

(1 − vl,x), (5)

where θ1,x, . . . and v1,x, . . . are realizations of stochastic processes over X , with
vk,x ∼ Beta(1, αx), αx > 0 is the precision parameter, and δθk,xdenotes a point mass
at θk,x. For example, assuming a Normal kernel and focusing on the single weight
version of [10] (that sets ωh = ωh,x), the DDP conditional density can be expressed
as an infinite mixture of linear regression models that is:

f (y | x) =
∞∑

k=1

ωkφ(y, xTβk, σ
2
k ), (6)

where the ωk are similarly defined as in (3), and the βk ∈ R
p are regression param-

eters.
The current practice in the community is to learn about (6) from an error-free

random sample {xi , yi }ni=1. Yet, in practice, covariatesmay be subject tomeasurement
error [19, 20], and it will be a goal of this paper to address this problem in the context
of (4).

The classicalmeasurement error type in the case of a single contaminated covariate
has the following form:

Wi = Xi +Ui , i = 1, . . . , n, (7)
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where Xi and Wi are, respectively, the true and observed covariate, Ui is the mea-
surement error, and n is the sample size. We assume E[Ui | Xi ] = 0, and thus it
follows that E[Ui ] = E[E[Ui | Xi ]] = 0 and:

cov(Xi ,Ui ) = E[(Xi − μX )(Ui − 0)]
= E[XiUi ] − μX E[Ui ] = E[E[XiUi | Xi ]]
= E[Xi E[Ui | Xi ]]
= 0,

where μX = E[Xi ], since Xi and Ui are uncorrelated we have:

var(Wi ) = σ 2
X + σ 2

U , (8)

where σ 2
X and σ 2

U are the variance of X and U . A common metric to quantify the
relative magnitude of the measurement error is the so-called reliability ratio:

λ = σ 2
X

σ 2
X + σ 2

U

. (9)

Equation (9) warrants some remarks. The reliability ratio is important in measure-
ment error because the ordinary least squares regression of y on W is a consistent
estimator of βx∗ = λβx (see Chap. 1 of [20], or Chap. 3 of [19]). We can notice that
the OLS regression of y on W will produce an estimator that is attenuated to zero.
The more variance is induced by measurement error, the more the estimator will tend
to zero.

The error-contaminatedDDP conditional density is simply the conditional density
in (6) contaminated with classical measurement error:

f (y | w) =
∞∑

k=1

ωkφ(y;wTβ∗
k , σ

2
k ), (10)

where the β∗
k ∈ R

p are the regression parameter of the DDP contaminated with
measurement error.

So the question of interest is now the following: Given a sample with classical
measurement error {wi , yi }ni=1, how do we learn about (6)?

2.3 The SIMEX-DDP Algorithm

Before we are ready to introduce our SIMEX-DDP algorithm, we first review some
background on SIMEX-based approaches. The SIMEX was developed in 1994 by
Cook and Stefanski in [11]. It is a simulation-based method of estimating and reduc-
ing bias due to measurement error. The SIMEX methodology consists in adding
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measurement error to the data, studying the trend of measurement error induced bias
against the variance of the added measurement error. To put differently, the under-
lying idea behind SIMEX is that we can estimate the effect of measurement error
experimentally thanks to the simulation framework.

Suppose that we have our original dataset with additive measurement error, and
we also have M − 1 additional datasets each with successively larger measurement
error variance (1 + ζm)σ 2

u , where 0 < ζ1 < · · · < ζM are known. Then thanks to
(9) we can write that the parameter estimates for the mth dataset are consistently
estimated by:

β̂x,m = βxσ
2
x

σ 2
x + (1 + ζm)σ 2

u

. (11)

For each of the m dataset, we will have an estimate β̂x,m . If we consider the
following dataset {ζm, β̂x,m}Mm=1 we can write the mean function of this regression as
follows:

E(β̂x,m | ζ ) = βxσ
2
x

σ 2
x + (1 + ζ )σ 2

u

. (12)

If we set ζ = −1 in (12) we end up with βx which is the value of interest.
We can write the SIMEX algorithm as follows:

– Simulating: Add independent measurement error with variance ζmσ 2
u are gener-

ated and added to the original data W. The total variance for the mth dataset is
(1 + ζm)σ 2

u .
– Learning: Parameter estimates are obtained for each of the generated datasets.
– Averaging: The first two steps are repeated a large number of times and the average
value of the estimates for each level of contamination is calculated.

– Extrapolating: We have an average estimate for each of the mth dataset with
known level of ζ ; we use regression technique to find the estimate for ζ = −1.

The SIMEX-DDP algorithm to be presented below is a straightforward extension
of the standard SIMEX algorithm. The SIMEX-DDP procedure can be divided into
four steps:

– Simulating: Add independent measurement error with variance ζmσ 2
u to the orig-

inal dataW. Simulate m datasets with increasing measurement error variance.
– Learning: Estimate (10) for each of the generated datasets.
– Averaging: After repeating the simulation and estimation steps a large number of
times we average the estimates.

– Extrapolating to the ideal case of no measurement error (ζ = −1) yields the
SIMEX-DDP estimates of the conditional density.
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The SIMEX-DDP consists in getting successive conditional expectation by fitting
an increasing independent measurement error with variance ζmσ 2

u to the original
W data. Then we use the same logic as the original SIMEX and we get end by
extrapolating the true conditional expectation without measurement error.

Now that we have explicated the mechanics governing the proposed SIMEX-
DDP algorithm, we will conduct a battery of numerical experiments so to evaluate
its potential.

3 Numerical Experiments on Artificial Data

To evaluate the performance of the SIMEX algorithm from Sect. 2 we analyzed
simulated data under the following four scenarios: linear mean, a mixture of linear
means, nonlinear mean with constant variance, and another nonlinear mean with
constant variance. We use the same dataset for each of the four scenarios, the sample
size is n = 200. Covariates were independently generated from a standard Normal
distribution, and the responses were generated as follows:

Scenario I: yi | xi ∼ N (2 + 4xi , 2
2),

Scenario II: yi | xi ∼ 0.5 N (2 + 3xi , 1
2) + 0.5 N (6 + 2.5xi , 1

2),

Scenario III: yi | xi ∼ N (9 + 1.15x2i , 2.5
2),

Scenario IV: yi | xi ∼ N (5 + 1.5x + 1.5 × sin(x), 1.5)).

In Scenario 1,we consider different homoscedastic linearmean regressionmodels.
Data for Scenario 2 are governed by the following mixtures of homoscedastic linear
mean regression models. Scenarios 3 and 4 involve homoscedastic nonlinear mean
regression models. For each of these scenarios, we consider three level of classical
measurement error, (0.1, 0.3, 0.5), and our SIMEX-DDP algorithm will be based on
10 iterations for each scenario and measurement error level. We use the same model
specification as in [8].

On our numerical inquiry, we set m = 10 and ζ = 0.05. Each blocked Gibbs
sampler scans for 1500 draws for the posterior distribution after a burn-in of 500
samples. After fitting our models, we test them on an out-of-sample dataset of size
m = 100 generated from a standard Normal distribution.

We can clearly see in Fig. 1 the effect of measurement error on the regression
lines. The larger the variance of the contaminated data is the closer the slope of the
regression line is of 0. Now that we have presented the artificial data for the numerical
experiments let’s see how SIMEX algorithm is working.

As it can be seen in Fig. 2, the SIMEX-DDP algorithm recovers the true from
the contaminate dataset in this example with a high level of accuracy. To illustrate
the accuracy of the algorithm under study, Fig. 3 depicts the boxplot of the distance
between the estimated yield by our algorithm and the true value, and the distance
between the estimate without using the SIMEX-DDP and the true value. As we
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Fig. 1 Simulated datasets over different levels ofmeasurement error (red point are observedwithout
measurement error, green are observed with σ 2

u = 0.1, pink with σ 2
u = 0.3, and purple with σ 2

u =
0.5), and their respective regression lines for each of the four scenarios. We use the same dataset
for all the four scenarios

Fig. 2 Fitting of our first testing point for Scenario I to IV (rows) and for classical measurement
error level of (0.1, 0.3, 0.5) (columns). On each graph, we can find the true value (green), the
extrapolated value of our SIMEXalgorithm (red) alongwith the regression line over the 10 iterations
of the SIMEX-DDP algorithm that allowed us to estimate this value, and 10 iterations of the SIMEX
algorithm (black)

can see on Fig. 3, the SIMEX-DDP algorithm consistently outperforms the naive
approach that does not take into account measurement error. The only case (Scenario
IV with level of measurement error of σu = 0.1) where the naive approach performs
better, the difference in performance is negligible.
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Fig. 3 Boxplot A corresponds to the distance between to true and estimated values thanks to the
SIMEX-DDP algorithm for each of the 100 data points of our test set. Boxplot B corresponds to the
distance between the true and estimated values without taking into account the presence of classical
measurement error

4 Final Remarks

In this paper, we conduct a pilot study on a new approach to take care of classical
measurement error within a Bayesian nonparametric context based on the famous
Simulation-Extrapolation algorithm of Cook and Stenfaski. Specifically, we develop
a SIMEX algorithm with the dependent Dirichlet process framework and test its
performance on a numerical workout with various scenarios and measurement error
level.

The preliminary results that we report in this paper suggest an interesting perfor-
mance of the SIMEX-DDP algorithm. However, a Monte Carlo simulation is needed
to examine the performance of the algorithm and confirm its potential. The algorithm
that we develop here can be improved by adding extra flexibility to the regression
line that we are using to estimate our (measurement) ‘error-free’ conditional density.
For example, we could use B-spline basis functions to improve the performance of
the algorithm. We can also acknowledge that the SIMEX-DDP is performant under
all the four scenarios that we present, though at this stage, it remains unclear whether
performance over Scenario IV could be improved.

Finally, it is important to consider that the SIMEX-DDP is highly computer inten-
sive. Indeed, because we need to fit a dependent Dirichlet process at each simulation
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step of the SIMEX-DDP, the calculation cost is expensive and its regular use calls
for a need of parallel computing or cloud-based computing. In our case, for each
combination of scenarios-level of measurement error, we had to fit 12 times our data,
one for the error-free dataset, one for the contaminated dataset, and then one time
for each of the 10 steps of the algorithm. With our configuration of a test set of 200
observations, and with 1500 posterior draws for our blocked Gibbs sampler, it takes
about 4min on a machine with 64 cores with speed 3.20Ghz.
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