
High-Performance Gallager-E Decoders
for Hard Input LDPC Decoding

on Multi-core Devices

Bertrand Le Gal(B) , Vincent Pignoly , and Christophe Jego

IMS laboratory (UMR 5218), Bordeaux INP, Univ. Bordeaux, Talence, France
{bertrand.legal,vincent.pignoly,christophe.jego}@ims-bordeaux.fr

Abstract. LDPC codes are a family of error-correcting codes that are
present in most space communication standards. Thanks to their large
processing power and their parallelization capabilities, prevailing multi-
core devices facilitate real-time implementations of digital communica-
tion systems, which were previously implemented thanks to dedicated
hardware circuits. A lot of works were done over the last decade on the
implementation of Gbps decoders on programmable devices. However,
these works focus on soft-input LDPC decoding algorithms. But, hard-
input LDPC decoders are also required to design and prototype optical-
based satellite communication systems. In this article, the first soft-
ware based implementation of a hard-input multi-Gbps LDPC decoder is
detailed. Thanks to different parallelization strategies and deeply opti-
mized SIMD codes, throughputs up to 7.5 Gbps are achieved when 10
Gallager-E iterations are executed onto an INTEL Xeon device.

Keywords: LDPC · Gallager E · multi-core · SIMD ·
High-throughput

1 Introduction

Low-Density Parity-Check (LDPC) codes are a popular class of Error Correction
Codes (ECC) used in digital communication systems to provide reliability. Due
to their excellent error correction performance, LDPC codes were selected for
terrestrial wireless standards (e.g., WiFi and 5G) but also in RF space ones
(CCSDS, DVB-S2 and DVB-S2x). FPGA or ASIC technologies were during a
long time the single way to provide real-time LDPC decoding when hundreds of
Mbps or Gpbs are targeted. Indeed, LDPC decoding algorithms are characterized
by a high computational complexity discarding other kinds of implementations.
These dedicated hardware implementations provide high-throughput and low-
energy features at the costs of low-flexibility and low-reusability.

For ten years, the computational power offered by multi-core or many-core
devices associated with easy-to-use programming models opened new horizons.
Indeed, coping with low-flexibility and long development cycles, researchers and
industrials tried to use these programmable devices to implement ECC decoders
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-031-12748-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_1&domain=pdf
http://orcid.org/0000-0003-2269-8756
http://orcid.org/0000-0001-7044-1694
http://orcid.org/0000-0001-5964-6277
https://doi.org/10.1007/978-3-031-12748-9_1


4 B. Le Gal et al.

that are the receiver design bottlenecks [1,2,11,18]. Programmable architectures
associated with optimized software descriptions made possible the implementa-
tion of high-throughput receiver systems. They can be used as real life wireless
communication systems and/or prototype for next generation ones.

Software Defined Radio (SDR) [9] or cloud-RAN [3,21] systems were targeted
by previous works. In these works, the RF front end and demodulation stage
provide soft-input to the LDPC decoding process. Consequently, like in the field
of ASIC/FPGA LDPC decoders, previous works focused on soft-input Min-Sum
(MS) algorithm. Unfortunately, to reach a high throughput of several Gbps in
optical space communications, ECC decoders can be limited to process hard
input values due to current optical technology limitations.

Hard-input decoding presents lower error correction performance than soft-
input ones. Moreover, it needs the implementation of other LDPC decoding
algorithms such as Gallager-B, Gallager-E or their variations (e.g., Bit flipping
algorithms [10], Probabilistic Gallager-B [19]). Even if efficient FPGA imple-
mentations of Probabilistic Gallager B (PGaB) and Gallager-E are detailed in
[16,19]. Implementing them efficiently in software is not an easy task. From
a software point of view, the PGaB decoding algorithm needs random number
generation and involves computation hazards at runtime making it clearly incom-
patible with processor features and thus inappropriate for Gbps performance. At
the opposite, the Gallager-E decoding algorithm has a formulation closed to the
MS one used in related works. Its computation parallelism is almost regular but
its high memory footprint and the logical bit-level computations are not clearly
adapted to software processor targets. However, in this work we focused on it
and propose its efficient SIMD (Single Instruction Multiple Data) and SIMT
(Single Instruction Multiple Threads) implementation.

The remainder of the paper is organized as follows. Section 2 introduces
LDPC codes and the horizontal-layered Gallager-E decoding algorithm. Then,
the parallelization strategy and the applied optimizations are provided in Sect. 3.
Section 4 summarizes the experimental results obtained with the proposed
decoder implementations. Finally, conclusion and future works are reported.

2 LDPC Decoding Algorithm

An LDPC code is a linear block code defined by a binary sparse M × N parity-
check matrix called H. This H matrix is composed of N columns representing
the received bit information (VN) from the channel whereas the M = N − K
rows are associated to parity-check information (CN) with K the number of
information bits in the received frame. To ease the implementation of LDPC
decoders, a special class of LDPC codes is used in standards. Quasi-Cyclic (QC)
LDPC codes are codes that are composed of an array of Z × Z shifted identity
sub-matrices. Z is the order that defines the computation parallelism level. It
eases H matrix storage and ensures that Z CNs can be processed in parallel
without conflicts independently of the computation scheduling.



High-Performance Gallager-E Decoders . . . on Multi-core Devices 5

Algorithm 1. Horizontal-layered Gallager E
� Input (received word) : y = (y1, y1, ..., yN ) ∈ {0, 1}N

init
t = 0, Yi = 2yi − 1 and Vi = 0 for i ∈ [1, .., N ]

repeat
� L1 - loop 1: Horizontal layered scheduling
for all j ∈ [1, .., M ] do

C
(t)
j = 1, Sum0 = 0

� L2 - Loop 2
for all i ∈ N(j) do

� L1S1 - Stage S1: Variable to parity check message v2c
(t)
ij processing

Mij =

{
Vi, t = 0

Vi − c2v
(t−1)
ji , otherwise

v2c
(t)
ij = sign(Mij + ω(t) ∗ Yi)

� L1S2 - Stage S2: Check node C
(t)
j processing

C
(t)
j =

{
C

(t)
j , Mij � 0

−C
(t)
j , otherwise

ifMij = 0 then Sum0 = Sum0 + 1 end if
end for
� L3 - Loop 3
for all i ∈ N(j) do

� L3S1 - Stage S1: Check to variable message c2v
(t+1)
ji processing

c2v
(t)
ji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, Sum0 � 2

0, Sum0 = 1 and M
(t)
ij �= 0

C
(t)
j , Sum0 = 1 and M

(t)
ij = 0

C
(t)
j × M

(t)
ij , otherwise

� L3S2 - Stage S2: Variable node accumulator Vi updating
Vi = Mij + c2v

(t+1)
ji

end for
end for
t = t + 1

until t ≤ tmax

∀i ∈ [1, .., N ], xi =

⎧⎪⎨
⎪⎩

yi, Yi + Vi = 0

0, Yi + Vi > 0

1, Yi + Vi < 0

� Output (decoded word) : x = (x1, x1, ..., xN ) ∈ {0, 1}N

Usually, the LDPC decoding process is performed thanks to a message pass-
ing (MP) approach where VNs and CNs exchange m messages. When the decod-
ing process benefits from soft-input, the sum-product algorithm (SPA) approxi-
mations such as Min-Sum (MS) variants are applied [4,13].

Hard-input constraint involves another algorithmic choice. Gallager-B algo-
rithm was initially proposed in [5] to process hard-input values. However, its
decoding performance is relatively low due to binary values used to repre-
sent exchanged messages. This algorithm was recently improved in terms of
error correction power by inserting for instance decoding noise (e.g. Proba-
bilistic Gallager-B [19]) or using gradient descent based algorithm [7,20]. These
algorithms (PGaB, GDBF and PGDBF) were developed for hardware decoders
manipulating for short frame sizes. However, in the current context, they are use-
less due to spatial related constraints: (a) the codewords should be long (> 16k
bits), and (b) to reach high-throughput performances randomness and computa-



6 B. Le Gal et al.

tion irregularity should be avoided. Consequently, they were discarded. Original
Gallager B decoding algorithm [14] can be extended by considering erasures
in message passing. This extended algorithm, called Gallager E algorithm in
[17], manages ternary values −1, 0,+1 for exchanged messages instead of binary
−1,+1 ones in the Gallager B algorithm. This third value that represents doubt
during the decoding process, drastically improves error correction performance.

Gallager E algorithm is summarized in Algorithm 1. Horizontal layered
scheduling was selected because it improves error correction performances
whereas at the same time it reduces computation and memory complexities [16].
Algorithmic structure is closed to the one used for MS decoding [15]. However,
contrary to MS algorithms that execute 8b arithmetic operations (addition, min-
imum and comparison), Gallager E algorithm needs on its side 1b or 2b logic
operations and conditional branches to execute non-reversible operations such
as voting.

Received bits Yi come from the channel. The initial values of accumulator
nodes V0 should be null as presented in [16]. C(tj corresponds to the check node
values during the iteration t, with t the current iteration and tmax the maximum
number of decoding iterations. V

(t)
ij represents the value of the vote for node

VNi. The possible value set for V
(t)
ij message is in range {−1, 0,+1}. Message

c2v(t+1)
ji from CNj to VNi is the product of incoming messages except v2c(t)ij . If

one or more input messages equal zero then the output message equals the null
value too. In this step, contrary to MS decoding algorithm, the c2v(t+1)

ji value
cannot be easily deduced from v2c(t)ij because of the vote operation that cannot
be inverted. Moreover, as the vote operation could not be inverted, the Yi values
should be kept in memory during the overall decoding process. It increases the
memory footprint of N elements in comparison to MS decoder implementations.

3 Parallelization Strategies

3.1 Targeted Multi-core System

INTEL x86 processors currently provide different parallelization features. At the
higher level, the processor circuits include many independent physical cores that
can be used to process tasks or sub-tasks in parallel (SIMT). The number of
cores can reach up to dozens for server grade processors. At the same time, each
physical processor core includes SIMD (Single Instruction Multiple Data) units
that execute parallel computations. SIMD units are 128b up to 512b wide, autho-
rizing up to 64× 8b computations per instruction. Finally, at the lower level, x86
processors are superscalar and thus implements Instruction-Level Parallelism
(ILP) authorizing multiple instructions to be scheduled within a single clock
cycle according to the resource availability. To reach efficiency, all these aspects
should be addressed together. The LDPC decoding parallelization strategy and
the optimizations are reported in this section.



High-Performance Gallager-E Decoders . . . on Multi-core Devices 7

3.2 SIMD Parallelization

Parallelization of message passing algorithm was widely studied in the context
of traditional MS decoder implementations [1]. Two main SIMD parallelization
strategies for multi-core targets where proposed [2,11]. These generic approaches
that can also be applied for the Gallager-E algorithm provide different advan-
tages and drawback effects.

Inter-frame parallelization strategy [2] takes advantage of SIMD units to
decode multiple frames in parallel. It eases the software description and provides
regular computation parallelism at runtime. Indeed, when the number of frames
processed in parallel (Q × 8b) equals the SIMD width, the SIMD efficiency is
constant to 100%. The inter-frame strategy drawback effect comes from the
memory footprint (Δinter). Indeed, this footprint becomes quickly larger than
L1, L2 and L3 memory caches. Its high memory bandwidth requirement limits
the scalability of the decoder implementations but also provides high processing
latency and impact on global system performance due.

Δinter = Q × (2 × N + m) + m (1)

At the opposite, intra-frame strategy [11] takes advantage of SIMD units
to parallelize internal computations from a single frame. This strategy limits
the memory footprint (Δintra) at runtime. However, it complexifies the software
description of the decoder and slow down memory accesses. Indeed, H struc-
ture management is done at runtime and involves complex memory accesses.
Moreover, depending on the LDPC code, a SIMD usage rate of 100% is rarely
obtained. However, from a system point of view, the intra-frame implementation
delivers low-latency feature and limits its impact on other processing elements.

Δintra = 2 × N + m +
m

Z
(2)

Both SIMD parallelization strategies can be applied to speed-up the execu-
tion of loop 1 defined in Algorithm 1. In this work, both approaches are evaluated
because they provide different features and thus different trade-offs.

3.3 ILP Improvement

An efficient implementation of loops 2 and 3 in Algorithm1 is crucial because
they are executed M times per decoding iteration. Consequently, a specific map-
ping of the algorithmic operations on available SIMD instruction is required.
Gallager-E decoding algorithm mainly manipulates bit or ternary values and
has many conditional instructions. So Gallager-E decoding is more challenging
to efficiently implement on processor cores than MS ones [15].

First, to reduce the complexity of the Mij computation (L2S1) that depends
on the decoding iterations, an initialization of the messages to zero was done
before the decoding. It avoids the comparison and conditional moves at runtime.
Then for the computation of v2c messages, as ω is in range 0, 1, the multi-
plication operation is implemented thanks to a logical and instruction whose



8 B. Le Gal et al.

second operand is a binary mask (0x00, 0xFF). Finally, the counter (Sum0)
can be approximated: its value is increased by the result of the comparison
instruction that is {0x00, 0xFF} and nor by 1. This approximation is possible
because in L3S1, the first part of the conditional structure can be reformulated
as Sum0− (Mij = 0) > 0. This tricky optimization removes logical instructions
and comparisons from the execution critical path. Moreover, it eases the imple-
mentation of the c2v conditional computation making possible to describe it as a
value selection in range 0, 1, and then a conditional sign inversion to regenerate
a message in range {−1, 0,+1}.

After these transformations, the number of instructions needed in the pro-
cessing kernels (loops L2 and L3) is quite small whereas the number of L2/L3
loop iterations is limited to range [7, 20] (due to benchmarked LDPC codes).
Consequently, to improve the ILP thanks to instruction execution overlapping
and also remove useless control instructions, specialized kernel codes are gener-
ated at compile time. To this end, the features of C++11 language (i.e., template
specialization) are applied like in [8]. For each CN degree value, a dedicated and
optimized kernel is generated. Consequently, the number of instructions is then
minimized for each L1 loop execution. At runtime, an array of function pointers
is used to select the right binary code to execute.

3.4 Memory Compression

The memory bandwidth is a bottleneck for software implementation of LDPC
decoders when long frame are processed. Decoder memory footprint becomes
quickly higher than memory caches. Contrary to MS-based decoder implemen-
tations that manage 8b values internally for all data, Gallager-E decoding algo-
rithm manipulate only bit or ternary values. Naively, all these values consume
8b in memory because they are involved in 8b arithmetic operations. However,
as the memory bandwidth is a bottleneck, a memory compression technique
was developed. It divides the memory footprint by 4 for exchanged messages
(c2v) that are ternary values and divides by 8 the footprint for channel values
(Yi) that are binary values. Memory footprint reduction necessitates the execu-
tion of additional SIMD instructions at runtime. However, both compression and
decompression tasks are executed with a low latency penalty on x86 architecture
whereas a single memory cache miss can produce a penalty of some hundreds of
clock cycles. The compression and the decompression tasks can be done easily
and efficiently thanks to the source codes provided in Listing 1. Note that data
compression does not impact on error correction performances because values
that are stored on 8b are in reality 2b or 1b.

3.5 SPMD Parallelization

Different parallelization techniques could be applied to take advantage of the P
cores for message passing algorithm implementation. It is possible to use them to
speed-up the execution of the loop 1 (L1) defined in Algorithm 1. However, this



High-Performance Gallager-E Decoders . . . on Multi-core Devices 9

const __m512i zero = _mm512_s e t z e r o_s i 512 ( ) ;
const __m512i pos_one = _mm512_se t1_epi8 (0 x01 ) ;
const __m512i neg_one = _mm512_se t1_epi8 (0xFF ) ;

void compress_and_sto r e_y i (__mmask64∗ ptr , const __m512i x ) {
ptr [ 0 ] = _mm512_movepi8_mask(x ) ;

}

__m512i load_and_uncompress_y i ( const __mmask64 x ) {
return _mm512_mask_blend_epi8 ( x , r_one , neg_one ) ;

}

void compress_and_sto r e_msg(__mmask64∗ ptr , const __m512i x ) {
ptr [ 0 ] = _mm512_cmpeq_epi8_mask( x , pos_one ) ;
ptr [ 1 ] = _mm512_cmpeq_epi8_mask( x , neg_one ) ;

}

__m512i load_and_uncompress_msg( const __mmask64∗ ptr ) {
__m512i w1 = _mm512_mask_blend_epi8 ( ptr [ 0 ] , zero , pos_one ) ;
__m512i w2 = _mm512_mask_blend_epi8 ( ptr [ 1 ] , zero , neg_one ) ;
return _mm512_or_s i512 (w1 , w2 ) ;

}

Listing 1.1. SIMD functions used for (de)compression of binary and ternary values

approach is inefficient because: (1) loop elements are not independent when hor-
izontal layered based decoding algorithm is applied due to the fact that memory
access conflicts can occur, and (2) the time spend in forking and joining tasks
is not negligible compared to L1 execution time. The best way to increase the
performance level is to allocate P independent LDPC decoders to process P dis-
tinct frames. It avoids L1/L2 memory sharing at runtime between the cores but
increase L3 cache usage. It also increases the pressure on the memory bandwidth
by a factor P. In the current work to enable an asynchronous behavior of the
decoders, the LDPC decoders are encapsulated in C++11 threads.

4 Experimentation Results

4.1 Experimentation Setup

The software-based LDPC decoder implementations were developed in C++
11 language. The targeted device was an INTEL Xeon Gold processor. Conse-
quently, the AVX512 instruction subset was selected. To benefits from INTEL
SIMD features, INTEL intrinsics which are C-style functions were applied.
To optimize the instruction scheduling and generate the executable file, the
software decoder descriptions were compiled with the CLANG++/LLVM 10.0
toolchain. The compilation flags provided to the toolchain are: -march=native
-mtune=native -Ofast -funroll-loops.

The host platform was a multi-core system composed of a dual socket INTEL
Xeon Gold 6148 CPU. Each Xeon processor has 20 physical processor cores.
The overall processor cores shares a 28160K L3 memory cache and 256GB of
RAM. A working frequency up to 3, 70GHz is achievable on this platform thanks



10 B. Le Gal et al.

Table 1. Selected QC-LDPC codes for benchmarking purposes

Code C1 [6] C2 C3

(N, K) (1296, 648) (32768, 16384) (20480, 16384)

Z 54 256 256

dc {8} {7, 8, 9} {19, 20}
# msgs 5184 131072 81664

Fig. 1. Error correction performance comparison of Gallager-B and Gallager-E algo-
rithms when 10 layered decoding iterations are executed.

to turbo boost feature when a single processor core is activated. The average
working frequency is 2,40GHz and 2,20GHz when 50% and 100% of the cores
are activated, respectively. This frequency reduction is due to power dissipation
constraints. Note that these values were confirmed using the i7z tool during
experiments.

4.2 Error Correction Performance

Before benchmarking the throughput efficiency of the proposed Gallager-E par-
allelization schemes, a validation of its BER and FER performances was done.
To check its behavior, three different QC-LDPC codes were used. The first code
comes from related works on hard-input LDPC decoding [6]. The two others are
custom LDPC codes developed specifically for spatial optical communications
[16]. The main characteristics of the codes are summarized in Table 1.



High-Performance Gallager-E Decoders . . . on Multi-core Devices 11

Table 2. Performances of Gallager-E LDPC decoders on INTEL Xeon Gold 6148 CPU

Γ in Mbit/s Δ in μs P in Watts e in nJ/bit

Code #cores Γd1 Γd2 Γd3 Δd1 Δd2 Δd3 Pd1 Pd2 Pd3 ed1 ed2 ed3

C1 1 294 272 220 281 304 6 180 180 180 613 662 819

C2 1 108 136 180 12034 9523 113 167 167 172 1547 1228 956

C3 1 77 106 247 27010 19671 132 171 170 169 2221 1228 685

C1 20 4487 4041 3207 369 410 8 300 299 290 67 74 91

C2 20 813 2412 2546 53106 10865 162 419 411 297 516 171 117

C3 20 876 2030 3177 48785 21192 218 412 416 298 471 205 94

C1 40 7532 6833 5460 440 485 10 351 342 331 47 51 61

C2 40 784 3447 4298 66739 15213 191 437 472 340 558 137 80

C3 40 712 2286 5446 118795 37893 248 434 473 341 610 207 63

The bit error rate (BER) and frame error rate (FER) performances for C1 to
C3 LDPC codes are reported in Fig. 1 when a Monte-Carlo simulation is built
on a BSC channel and a OOK modulation. As expected, the curves show that
Gallager-E algorithm outperforms the Gallager-B ones in the overall use-cases.
These results are consistent with the published literature. They demonstrate the
correct functionality of the LDPC decoders implemented in this work.

4.3 Absolute Performances

For benchmarking purpose, a communication system simulation runs during a
period of 120 seconds to avoid working frequency scaling impact on average
values. The throughput (Γ ) and the latency (Δ) results are reported in Table 2
when 10 decoding iterations are executed. The following setups are evaluated:

– Inter-frame setup (d1) - Each physical processor core decodes Q = 64
LDPC frames in parallel to fully utilize the 512b SIMD units. All the values
(channel, accumulators and messages) are stored on 8 bits.

– Inter-frame with memory compression setup - (d2). Each physical pro-
cessor core process Q = 64 frames in parallel. The channel values are com-
pressed and stored using 1 bit whereas exchanged message values are com-
pressed on 2 bits. The accumulator values are stored using 8 bits.

– Intra-frame setup (d3) - A single LDPC frame is processed (Q = 1). All
the values (channel, accumulators and messages) are stored on 8 bits.

Results presented in Table 2 show that in single core configuration, through-
put from 77 Mbps up to 294 Mbps was measured for the d1 implementation. The
highest throughput was obtained when C1 is decoded. Indeed, in this case, the
inter-frame decoder has a small memory footprint (491 KB) that fills in L2/L3
caches. However, for long codes (C2 and C3), the throughput is divided up to
4× due to a memory footprint that grows up to 12125 KB. The d2 implementa-
tion gives higher throughput for C2 and C3 codes due to memory compression
that decreases the memory footprint to 4375 KB. However, the additional arith-
metic and logical computations used to compress the information at runtime



12 B. Le Gal et al.

in d2 makes it less efficient for C1 code. At the opposite, the d3 implementa-
tion provides the highest decoding throughput for C2 and C3 (from ≈ 1.2× up
to ≈ 2.4× higher than d2) with a maximum memory footprint of 194 KB. In
parallel, the processing latency of d3 implementation is about 99% shorter than
d2 ones. However, the usage rate of the SIMD units for d3 is lower than 100%
at runtime for C1 LDPC code (Z = 54). Complex memory accesses and SIMD
inefficiency in this case is not compensated by L1/L2 cache efficiency.

Experimentations were done when 20 or 40 processor cores are activated to
check the scalability of the decoder implementations. The results show that the
d1 implementation is better in terms of throughput for C1 code in all setups with
speedup factors of 15× and 25×. However, its performances fall down for C2 and
C3 codes where the speedup factors are limited to 7× to 10×. Indeed, even if
the number of cores is increased from 20 to 40, a performance floor due to the
maximal memory bandwidth appears. Memory bottleneck assertion is validated
by the results obtained for d2 implementation. Indeed, the d2 implementation
that executes memory compression over-classed d1 one for the long frames (C2

and C3) codes. The throughput grows with the number of activated cores. How-
ever, this the performance improvement is not linear due to working frequency
scaling. For d2 decoder implementation, the measured speedups are 17× and
24× when 20 cores and 40 cores are activated, respectively. This phenomenon
is due to the turbo-boost frequency scaling feature. In 20 and 40 core setups,
the d3 implementation offers the better performances and achieved up to 5446
Mbps. The speedup factors obtained in comparison with single core experiments
are 14× and 24×. At the same time, the working frequency reduction increases
the processing latency by a factor of 2.

In parallel to the throughput and latency evaluation of the implementations,
power and energy per bit comparisons were also done. Energy measurements are
provided in Table 2. The reported energy consumption values include the CPU
and the RAM consumptions. These values were obtained at runtime with the
turbostat tool that captures the power consumption of sensors. The power con-
sumption depends on the number of activated cores and the RAM usage rate.
The power consumption results are equivalent to C1 code for all implementa-
tions. However, for C2 and C3 codes, the d1 and d2 implementations have a
higher power consumption (≈ 40%) than d3 due to their high usage rate of the
RAM. Indeed, the RAM consumes up to 180W. The energy per decoded-bit
metric reinforces this performance gap about the inefficiency of the inter-frame
parallelization scheme.

4.4 Comparison with FPGA-Based Decoder Implementations

Finally, the proposed Gallager-E LDPC decoder implementations on multi-core
devices were compared with FPGA-based ones [16] to estimate the feature dif-
ferences. Indeed, works presented in [16] details hardware optimized Gallager-E
architectures implemented in a Zynq Ultrascale+ FPGA (xczu9eg-3ffvb1156e)
based on architecture described in [12]. The number of hardware decoders allo-
cated in the FPGA device varies according to the LDPC code concerned as



High-Performance Gallager-E Decoders . . . on Multi-core Devices 13

reported in Table 3. This value was fixed to occupy the FPGA at 75% of its
capacity to avoid place & route issues. The working frequencies post-PaR of the
overall hardware experiments reach 500 MHz. Table 3 summarized for perfor-
mance levels reached in terms of throughput, latency and energy.

The throughput and latency measurements first demonstrate that the FPGA
solution provides 2× to 16× higher decoding throughput when a single processing
core is considered on both platforms. This performance gap despite the favorable
working frequency of the Xeon processor is due to the inefficiency of the x86
ISA. Indeed, a large set of basic computation requires on several clock cycles on
the Xeon processor whereas in hardware they can be trivially implemented in
one clock cycle. The observations related to the decoding latency between the
two types of systems is in line with the observations made on throughput. The
difference in terms of energy consumption per bit is more important. Factors are
in the range 315× up to 830×. This is due to the high-power consumption of
the Xeon processor when one core is active.

Table 3. Comparisons of software Gallager-E decoders with FPGA ones [16].

LDPC Xeon implementation FPGA implementation [16]
code # cores Γ (Mbps) Δ (μs) E (nJ/bit) #cores Γ (Mbps) Δ (μs) E (nJ/bit)

C1 1 220 6 819 1 620 2.1 1.94
C2 1 180 113 956 1 3060 10.7 1.15
C3 1 247 132 685 1 3020 6.8 1.13

C1 40 5460 10 61 65 40300 2.1 0.9
C2 40 4298 191 80 15 45900 10.7 0.97
C3 40 5446 248 63 15 45300 6.8 0.89

Multi-core execution modifies the previous acknowledgment. The throughput
difference is in this setup in range 5× to 11×. Indeed, the number of decoding
cores that can be instantiated in the FPGA is lower than the number of cores
in the Xeon processor, but at the same time, the Xeon working frequency is
approximately halved. Consequently, the power consumption per decoded bit
drops sharply for the Xeon solution because the power consumption is only
double when 40 cores are activated compared to 1 core configuration and the
throughput gain is thus over 20×. As a consequence, the difference in terms
of power consumption between the FPGA implementation and the multi-core
implementation varies finally from 52× to 82×.

This comparative section highlights the differences in terms of performance
between dedicated architectures on FPGA targets and more flexible software
solutions. As expected, dedicated hardware solutions are more energy efficient.
However the gap with optimized software-based implementations that are faster
to develop constantly decreases.



14 B. Le Gal et al.

5 Conclusion

In this paper, three parallelized software LDPC decoder implementations are
detailed. These software implementations implement the Gallager-E decoding
algorithm which is efficient for hard input decoding of LDPC codes contrary to
related work that manage soft-input values. The parallelization scheme applied
and arithmetic optimizations used to implement this algorithm on INTEL Xeon
multi-core target are detailed. Throughput up to 7,5 GBps is reported when 10
decoding iterations are executed. Finally, a comparison of throughput, latency
and power measurements is done with FPGA-based implementation to highlight
the efficiency of the proposer decoder implementations.

References

1. Andrade, J., Falcao, G., Silva, V., Sousa, L.: A survey on programmable LDPC
decoders. IEEE Access 4, 6704–6718 (2016)

2. Le Gal, B., Jego, C.: High-throughput multi-core LDPC decoders based on x86
processor. IEEE Trans. Parallel Distrib. Syst. 27(5), 1373–1386 (2016)

3. Checko, A., et al.: Cloud RAN for mobile networks - a technology overview. IEEE
Commun. Surv. Tutorials 17(1), 405–426 (2015)

4. Chen, J., Fossorier, M.: Near optimum universal belief propagation based decoding
of low-density parity check codes. IEEE Trans. Commun. 50(3), 406–414 (2002)

5. Gallager, R.: Low density parity-check codes. IRE Trans. Inform. Theory 8, 21–28
(1962)

6. Ghaffari, F., et al.: Efficient FPGA implementation of probabilistic Gallager B
LDPC decoder. In: Proceedings of ICECS, pp. 178–181, December 2017

7. Ghaffari, F., Vasic, B.: Probabilistic gradient descent bit-flipping decoders for flash
memory channels. In: Proceedings of ISCAS, pp. 1–5, May 2018

8. Giard, P., Sarkis, G., Leroux, C., Thibeault, C., Gross, W.J.: Low-latency software
polar decoders. J. Sig. Process. Syst. 90, 761–775 (2016)

9. Grayver, E.: Implementing Software Defined Radio. Springer, New York (2013).
https://doi.org/10.1007/978-1-4419-9332-8

10. Le, K., Ghaffari, F., Kessal, L., Declercq, D., Boutillon, E., Winstead, C.: A proba-
bilistic parallel bit-flipping decoder for low-density parity-check codes. IEEE Trans.
Circuits Syst. I Regul. Pap. 66(1), 403–416 (2018)

11. Le Gal, B., Jego, C.: Low-latency software LDPC decoders for x86 multi-core
devices. In: Proceedings of SiPS (2017)

12. Le Gal, B., Jego, C., Leroux, C.: A flexible NISC-based LDPC decoder. IEEE
Trans. Sig. Process. 62(10), 2469–2479 (2014)

13. Marchand, C., Boutillon, E.: LDPC decoder architecture for DVB-S2 and DVB-S2x
standards. In: Proceedings of SiPS, pp. 1–5, October 2015

14. Mitzenmacher, M.: A note on low density parity check codes for erasures and errors.
SRC Technical Note 1998-017 (1998)

15. Pignoly, V., et al.: High data rate and flexible hardware QC-LDPC decoder for
satellite optical communications. In: Proceedings of ISTC, pp. 1–5, December 2018

16. Pignoly, V., Le Gal, B., Jégo, C., Gadat, B.: Horizontal layered Gallager decoding
of low-density parity-check codes for wireless up-link optical space communication.
In: Proceedings of the ICECS, Glasgow, Scotland, 23–25 November 2020

https://doi.org/10.1007/978-1-4419-9332-8


High-Performance Gallager-E Decoders . . . on Multi-core Devices 15

17. Richardson, T.J., Urbanke, R.L.: The capacity of low-density parity-check codes
under message-passing decoding. IEEE Trans. Inf. Theory 47, 599–618 (2001)

18. Roberts, M.K., Anguraj, P.: A comparative review of recent advances in decoding
algorithms for Low-Density Parity-Check (LDPC) codes and their applications.
Arch. Comput. Methods Eng. 28, 2225–2251 (2020)

19. Unal, B., Ghaffari, F., Akoglu, A., Declercq, D., Vasić, B.: Analysis and implemen-
tation of resource efficient probabilistic Gallager B LDPC decoder. In: Proceedings
of NEWCAS, pp. 333–336, June 2017

20. Wadayama, T., Nakamura, K., Yagita, M., Funahashi, Y., Usami, S., Takumi, I.:
Gradient descent bit flipping algorithms for decoding LDPC codes. IEEE Trans.
Commun. 58(6), 1610–1614 (2010)

21. Wubben, D., et al.: Benefits and impact of cloud computing on 5G signal process-
ing: flexible centralization through cloud-RAN. IEEE Sig. Process. Mag. 31(6),
35–44 (2014)


	High-Performance Gallager-E Decoders for Hard Input LDPC Decoding on Multi-core Devices
	1 Introduction
	2 LDPC Decoding Algorithm
	3 Parallelization Strategies
	3.1 Targeted Multi-core System
	3.2 SIMD Parallelization
	3.3 ILP Improvement
	3.4 Memory Compression
	3.5 SPMD Parallelization

	4 Experimentation Results
	4.1 Experimentation Setup
	4.2 Error Correction Performance
	4.3 Absolute Performances
	4.4 Comparison with FPGA-Based Decoder Implementations

	5 Conclusion
	References




