
Karol Desnos
Sergio Pertuz (Eds.)

LN
CS

 1
34

25

Design and Architecture
for Signal and Image Processing
15th International Workshop, DASIP 2022
Budapest, Hungary, June 20–22, 2022
Proceedings

Lecture Notes in Computer Science 13425

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Karol Desnos · Sergio Pertuz (Eds.)

Design and Architecture
for Signal and Image Processing
15th International Workshop, DASIP 2022
Budapest, Hungary, June 20–22, 2022
Proceedings

Editors
Karol Desnos
IETR, INSA
Rennes, France

Sergio Pertuz
TU Dresden
Dresden, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-12747-2 ISBN 978-3-031-12748-9 (eBook)
https://doi.org/10.1007/978-3-031-12748-9

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1527-9668
https://doi.org/10.1007/978-3-031-12748-9

Preface

This volumecontains papers presented at the 15thWorkshoponDesign andArchitectures
for Signal and Image Processing (DASIP 2022), which was held jointly with the 17th
HiPEAC Conference, during June 20–22, 2022, in Budapest, Hungary. DASIP provides
an inspiring international forum for the latest innovations and developments in the field of
leading signal, image, and video processing and machine learning in custom embedded,
edge, and cloud computing architectures and systems.

This year, two calls for papers were organized, the first in fall 2021 and the second in
spring 2022. We received 32 paper submissions from authors in 11 countries around the
world, and 13 high-quality papers were accepted as oral presentations. Each contributed
paper underwent a rigorous double-blind peer review process during which it was
reviewed by at least three reviewers who were drawn from a large pool of the Technical
Program Committee members.

The success of DASIP 2022 depended on the contributions of many individuals and
organizations. With that in mind, we thank all authors who submitted their work to the
conference. We also wish to offer our sincere thanks to the members of the Technical
Program Committee, for their very detailed reviews, and to the members of the Steering
Committee.

We would also like to address special thanks to Dave Lacey, from Graphcore (UK),
and Eduardo Juarez, from the Universidad Politecnica deMadrid (Spain), for presenting
deeply inspiring keynotes during the event.

June 2022 Karol Desnos
Sergio Pertuz

Organization

General Chairs

Karol Desnos IETR, INSA Rennes, France
Sergio Pertuz Technische Universität Dresden, Germany

Steering Committee

Bertrand Granado Sorbonne University, France
Diana Goehringer Technical University of Dresden, Germany
Eduardo de la Torre Polytechnic University of Madrid, Spain
Guy Gogniat University of Southern Brittany, France
Jean-Francois Nezan IETR, INSA Rennes, France
Jean-Pierre David Polytechnique Montréal, Canada
Joao M. P. Cardoso University of Porto, Portugal
Marek Gorgon AGH University of Science and Technology,

Poland
Michael Huebner Brandenburg University of Technology, Germany
Paolo Meloni University of Cagliari, Italy
Pierre Langlois Polytechnique Montréal, Canada
Sebastien Pillement University of Nantes, France
Tomasz Kryjak AGH University of Science and Technology,

Poland

Program Committee

Francois Berry Institut Pascal, CNRS, University of
Clermont-Auvergne, France

Arnaud Bourge STMicroelectronics, France
Jani Boutellier University of Vaasa, Finland
Gabriel Caffarena University CEU San Pablo, Spain
Juan Carlos Lopez University of Castilla-La Mancha, Spain
Daniel Chillet IRISA/ENSSAT, University of Rennes 1, France
Martin Danek daiteq s.r.o., Czech Republic
Milos Drutarovsky Technical University of Kosice, Slovakia
Joao Canas Ferreira University of Porto, Portugal
Oscar Gustafsson Linkoping University, Sweden
Frank Hannig University of Erlangen-Nurnberg, Gemany

viii Organization

Dominique Houzet Grenoble Institute of Technology, France
Mateusz Komorkiewicz Aptive, Poland
Lionel Lacassagne Sorbonne University, France
Ahmed Lakhssassi Universite du Quebec en Outaouais, Canada
Yannick Le Moullec Tallinn University of Technology, Estonia
Johan Lilius Abo Akademi University, Finland
Sebastian Lopez University of Las Palmas de Gran Canaria, Spain
Gustavo Marrero Callico University of Las Palmas de Gran Canaria, Spain
Kevin J. M. Martin University of Southern Brittany, France
Gabriela Nicolescu Polytechnique Montréal, Canada
Jari Nurmi Tampere University, Finland
Arnaldo Oliveira University of Aveiro, Portugal
Andres Otero Polytechnic University of Madrid, Spain
Francesca Palumbo University of Sassari, Italy
Maxime Pelcat IETR, INSA Rennes, France
Fernando Pescador Polytechnic University of Madrid, Spain
Christian Pilato Polytechnic University of Milan, Italy
Andrea Pinna Sorbonne University, France
Jorge Portilla Polytechnic University of Madrid, Spain
Alfonso Rodriguez Polytechnic University of Madrid, Spain
Nuno Roma University of Lisbon, Portugal
Olivier Romain CY Cergy Paris University, France
Paweł Russek AGH University of Science and Technology,

Poland
Ruben Salvador CentraleSupélec, France
Carlo Sau University of Cagliari, Italy
Yves Sorel Inria, France
Dimitrios Soudris National Technical University of Athens, Greece
Walter Stechele Technical University of Munich, Germany
Marcin Szelest Aptive, Poland
Claude Thibeault Ecole de Technologie Superieure, Canada
Jose Vieira University of Aveiro, Portugal
Tanya Vladimirova University of Leicester, UK
Serge Weber University of Lorraine, France

Additional Reviewers

Ivan Luca Costa
Nuno Neves
João Vieira

Contents

Software and Architecture for Telecommunication Systems

High-Performance Gallager-E Decoders for Hard Input LDPC Decoding
on Multi-core Devices . 3

Bertrand Le Gal, Vincent Pignoly, and Christophe Jego

Low Latency Architecture Design for Decoding 5G NR Polar Codes 16
Oualid Mouhoubi, Charbel Abdel Nour, and Amer Baghdadi

Efficient Software and Hardware Implementations of a QCSP
Communication System . 29

Camille Monière, Bertrand Le Gal, and Emmanuel Boutillon

Towards Lightweight Deep-Learning Techniques

Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems 45
Paola Busia, Ilias Theodorakopoulos, Vasileios Pothos,
Nikos Fragoulis, and Paolo Meloni

DL-CapsNet: A Deep and Light Capsule Network . 57
Pouya Shiri and Amirali Baniasadi

Comparative Study of Scheduling a Convolutional Neural Network
on Multicore MCU . 69

Petr Dobiáš, Thomas Garbay, Bertrand Granado, Khalil Hachicha,
and Andrea Pinna

Design Automation and Optimization Techniques for Embedded
Hardware and Software

Influence of Dataflow Graph Moldable Parameters on Optimization Criteria . . . 83
Alexandre Honorat, Thomas Bourgoin, Hugo Miomandre,
Karol Desnos, Daniel Menard, and Jean-François Nezan

QoS Aware Design-Time/Run-Time Manager for FPGA-Based Embedded
Systems . 96

Alexis Duhamel and Sébastien Pillement

x Contents

Fixed-Point Code Synthesis Based on Constraint Generation 108
Sofiane Bessaï, Dorra Ben Khalifa, Hanane Benmaghnia,
and Matthieu Martel

Optimized Hardware and Software Implementations for Image
Processing and Health Applications

Data-Type Assessment for Real-Time Hyperspectral Classification
in Medical Imaging . 123

Manuel Villa, Jaime Sancho, Guillermo Vazquez, Gonzalo Rosa,
Gemma Urbanos, Alberto Martin-Perez, Pallab Sutradhar,
Rubén Salvador, Miguel Chavarrías, Alfonso Lagares, Eduardo Juarez,
and César Sanz

Exploring Fully Convolutional Networks for the Segmentation
of Hyperspectral Imaging Applied to Advanced Driver Assistance Systems 136

Jon Gutiérrez-Zaballa, Koldo Basterretxea, Javier Echanobe,
M. Victoria Martínez, and Inés del Campo

An Adaptable Cognitive Microcontroller Node for Fitness Activity
Recognition . 149

Matteo Antonio Scrugli, Bojan Blažica, and Paolo Meloni

Towards Real-Time and Energy Efficient Siamese Tracking –
A Hardware-Software Approach . 162

Dominika Przewlocka-Rus and Tomasz Kryjak

Author Index . 175

Software and Architecture
for Telecommunication Systems

High-Performance Gallager-E Decoders
for Hard Input LDPC Decoding

on Multi-core Devices

Bertrand Le Gal(B) , Vincent Pignoly , and Christophe Jego

IMS laboratory (UMR 5218), Bordeaux INP, Univ. Bordeaux, Talence, France
{bertrand.legal,vincent.pignoly,christophe.jego}@ims-bordeaux.fr

Abstract. LDPC codes are a family of error-correcting codes that are
present in most space communication standards. Thanks to their large
processing power and their parallelization capabilities, prevailing multi-
core devices facilitate real-time implementations of digital communica-
tion systems, which were previously implemented thanks to dedicated
hardware circuits. A lot of works were done over the last decade on the
implementation of Gbps decoders on programmable devices. However,
these works focus on soft-input LDPC decoding algorithms. But, hard-
input LDPC decoders are also required to design and prototype optical-
based satellite communication systems. In this article, the first soft-
ware based implementation of a hard-input multi-Gbps LDPC decoder is
detailed. Thanks to different parallelization strategies and deeply opti-
mized SIMD codes, throughputs up to 7.5 Gbps are achieved when 10
Gallager-E iterations are executed onto an INTEL Xeon device.

Keywords: LDPC · Gallager E · multi-core · SIMD ·
High-throughput

1 Introduction

Low-Density Parity-Check (LDPC) codes are a popular class of Error Correction
Codes (ECC) used in digital communication systems to provide reliability. Due
to their excellent error correction performance, LDPC codes were selected for
terrestrial wireless standards (e.g., WiFi and 5G) but also in RF space ones
(CCSDS, DVB-S2 and DVB-S2x). FPGA or ASIC technologies were during a
long time the single way to provide real-time LDPC decoding when hundreds of
Mbps or Gpbs are targeted. Indeed, LDPC decoding algorithms are characterized
by a high computational complexity discarding other kinds of implementations.
These dedicated hardware implementations provide high-throughput and low-
energy features at the costs of low-flexibility and low-reusability.

For ten years, the computational power offered by multi-core or many-core
devices associated with easy-to-use programming models opened new horizons.
Indeed, coping with low-flexibility and long development cycles, researchers and
industrials tried to use these programmable devices to implement ECC decoders
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-031-12748-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_1&domain=pdf
http://orcid.org/0000-0003-2269-8756
http://orcid.org/0000-0001-7044-1694
http://orcid.org/0000-0001-5964-6277
https://doi.org/10.1007/978-3-031-12748-9_1

4 B. Le Gal et al.

that are the receiver design bottlenecks [1,2,11,18]. Programmable architectures
associated with optimized software descriptions made possible the implementa-
tion of high-throughput receiver systems. They can be used as real life wireless
communication systems and/or prototype for next generation ones.

Software Defined Radio (SDR) [9] or cloud-RAN [3,21] systems were targeted
by previous works. In these works, the RF front end and demodulation stage
provide soft-input to the LDPC decoding process. Consequently, like in the field
of ASIC/FPGA LDPC decoders, previous works focused on soft-input Min-Sum
(MS) algorithm. Unfortunately, to reach a high throughput of several Gbps in
optical space communications, ECC decoders can be limited to process hard
input values due to current optical technology limitations.

Hard-input decoding presents lower error correction performance than soft-
input ones. Moreover, it needs the implementation of other LDPC decoding
algorithms such as Gallager-B, Gallager-E or their variations (e.g., Bit flipping
algorithms [10], Probabilistic Gallager-B [19]). Even if efficient FPGA imple-
mentations of Probabilistic Gallager B (PGaB) and Gallager-E are detailed in
[16,19]. Implementing them efficiently in software is not an easy task. From
a software point of view, the PGaB decoding algorithm needs random number
generation and involves computation hazards at runtime making it clearly incom-
patible with processor features and thus inappropriate for Gbps performance. At
the opposite, the Gallager-E decoding algorithm has a formulation closed to the
MS one used in related works. Its computation parallelism is almost regular but
its high memory footprint and the logical bit-level computations are not clearly
adapted to software processor targets. However, in this work we focused on it
and propose its efficient SIMD (Single Instruction Multiple Data) and SIMT
(Single Instruction Multiple Threads) implementation.

The remainder of the paper is organized as follows. Section 2 introduces
LDPC codes and the horizontal-layered Gallager-E decoding algorithm. Then,
the parallelization strategy and the applied optimizations are provided in Sect. 3.
Section 4 summarizes the experimental results obtained with the proposed
decoder implementations. Finally, conclusion and future works are reported.

2 LDPC Decoding Algorithm

An LDPC code is a linear block code defined by a binary sparse M × N parity-
check matrix called H. This H matrix is composed of N columns representing
the received bit information (VN) from the channel whereas the M = N − K
rows are associated to parity-check information (CN) with K the number of
information bits in the received frame. To ease the implementation of LDPC
decoders, a special class of LDPC codes is used in standards. Quasi-Cyclic (QC)
LDPC codes are codes that are composed of an array of Z × Z shifted identity
sub-matrices. Z is the order that defines the computation parallelism level. It
eases H matrix storage and ensures that Z CNs can be processed in parallel
without conflicts independently of the computation scheduling.

High-Performance Gallager-E Decoders . . . on Multi-core Devices 5

Algorithm 1. Horizontal-layered Gallager E
� Input (received word) : y = (y1, y1, ..., yN) ∈ {0, 1}N

init
t = 0, Yi = 2yi − 1 and Vi = 0 for i ∈ [1, .., N]

repeat
� L1 - loop 1: Horizontal layered scheduling
for all j ∈ [1, .., M] do

C
(t)
j = 1, Sum0 = 0

� L2 - Loop 2
for all i ∈ N(j) do

� L1S1 - Stage S1: Variable to parity check message v2c
(t)
ij processing

Mij =

{
Vi, t = 0

Vi − c2v
(t−1)
ji , otherwise

v2c
(t)
ij = sign(Mij + ω(t) ∗ Yi)

� L1S2 - Stage S2: Check node C
(t)
j processing

C
(t)
j =

{
C

(t)
j , Mij � 0

−C
(t)
j , otherwise

ifMij = 0 then Sum0 = Sum0 + 1 end if
end for
� L3 - Loop 3
for all i ∈ N(j) do

� L3S1 - Stage S1: Check to variable message c2v
(t+1)
ji processing

c2v
(t)
ji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, Sum0 � 2

0, Sum0 = 1 and M
(t)
ij �= 0

C
(t)
j , Sum0 = 1 and M

(t)
ij = 0

C
(t)
j × M

(t)
ij , otherwise

� L3S2 - Stage S2: Variable node accumulator Vi updating
Vi = Mij + c2v

(t+1)
ji

end for
end for
t = t + 1

until t ≤ tmax

∀i ∈ [1, .., N], xi =

⎧⎪⎨
⎪⎩

yi, Yi + Vi = 0

0, Yi + Vi > 0

1, Yi + Vi < 0

� Output (decoded word) : x = (x1, x1, ..., xN) ∈ {0, 1}N

Usually, the LDPC decoding process is performed thanks to a message pass-
ing (MP) approach where VNs and CNs exchange m messages. When the decod-
ing process benefits from soft-input, the sum-product algorithm (SPA) approxi-
mations such as Min-Sum (MS) variants are applied [4,13].

Hard-input constraint involves another algorithmic choice. Gallager-B algo-
rithm was initially proposed in [5] to process hard-input values. However, its
decoding performance is relatively low due to binary values used to repre-
sent exchanged messages. This algorithm was recently improved in terms of
error correction power by inserting for instance decoding noise (e.g. Proba-
bilistic Gallager-B [19]) or using gradient descent based algorithm [7,20]. These
algorithms (PGaB, GDBF and PGDBF) were developed for hardware decoders
manipulating for short frame sizes. However, in the current context, they are use-
less due to spatial related constraints: (a) the codewords should be long (> 16k
bits), and (b) to reach high-throughput performances randomness and computa-

6 B. Le Gal et al.

tion irregularity should be avoided. Consequently, they were discarded. Original
Gallager B decoding algorithm [14] can be extended by considering erasures
in message passing. This extended algorithm, called Gallager E algorithm in
[17], manages ternary values −1, 0,+1 for exchanged messages instead of binary
−1,+1 ones in the Gallager B algorithm. This third value that represents doubt
during the decoding process, drastically improves error correction performance.

Gallager E algorithm is summarized in Algorithm 1. Horizontal layered
scheduling was selected because it improves error correction performances
whereas at the same time it reduces computation and memory complexities [16].
Algorithmic structure is closed to the one used for MS decoding [15]. However,
contrary to MS algorithms that execute 8b arithmetic operations (addition, min-
imum and comparison), Gallager E algorithm needs on its side 1b or 2b logic
operations and conditional branches to execute non-reversible operations such
as voting.

Received bits Yi come from the channel. The initial values of accumulator
nodes V0 should be null as presented in [16]. C(tj corresponds to the check node
values during the iteration t, with t the current iteration and tmax the maximum
number of decoding iterations. V

(t)
ij represents the value of the vote for node

VNi. The possible value set for V
(t)
ij message is in range {−1, 0,+1}. Message

c2v(t+1)
ji from CNj to VNi is the product of incoming messages except v2c(t)ij . If

one or more input messages equal zero then the output message equals the null
value too. In this step, contrary to MS decoding algorithm, the c2v(t+1)

ji value
cannot be easily deduced from v2c(t)ij because of the vote operation that cannot
be inverted. Moreover, as the vote operation could not be inverted, the Yi values
should be kept in memory during the overall decoding process. It increases the
memory footprint of N elements in comparison to MS decoder implementations.

3 Parallelization Strategies

3.1 Targeted Multi-core System

INTEL x86 processors currently provide different parallelization features. At the
higher level, the processor circuits include many independent physical cores that
can be used to process tasks or sub-tasks in parallel (SIMT). The number of
cores can reach up to dozens for server grade processors. At the same time, each
physical processor core includes SIMD (Single Instruction Multiple Data) units
that execute parallel computations. SIMD units are 128b up to 512b wide, autho-
rizing up to 64× 8b computations per instruction. Finally, at the lower level, x86
processors are superscalar and thus implements Instruction-Level Parallelism
(ILP) authorizing multiple instructions to be scheduled within a single clock
cycle according to the resource availability. To reach efficiency, all these aspects
should be addressed together. The LDPC decoding parallelization strategy and
the optimizations are reported in this section.

High-Performance Gallager-E Decoders . . . on Multi-core Devices 7

3.2 SIMD Parallelization

Parallelization of message passing algorithm was widely studied in the context
of traditional MS decoder implementations [1]. Two main SIMD parallelization
strategies for multi-core targets where proposed [2,11]. These generic approaches
that can also be applied for the Gallager-E algorithm provide different advan-
tages and drawback effects.

Inter-frame parallelization strategy [2] takes advantage of SIMD units to
decode multiple frames in parallel. It eases the software description and provides
regular computation parallelism at runtime. Indeed, when the number of frames
processed in parallel (Q × 8b) equals the SIMD width, the SIMD efficiency is
constant to 100%. The inter-frame strategy drawback effect comes from the
memory footprint (Δinter). Indeed, this footprint becomes quickly larger than
L1, L2 and L3 memory caches. Its high memory bandwidth requirement limits
the scalability of the decoder implementations but also provides high processing
latency and impact on global system performance due.

Δinter = Q × (2 × N + m) + m (1)

At the opposite, intra-frame strategy [11] takes advantage of SIMD units
to parallelize internal computations from a single frame. This strategy limits
the memory footprint (Δintra) at runtime. However, it complexifies the software
description of the decoder and slow down memory accesses. Indeed, H struc-
ture management is done at runtime and involves complex memory accesses.
Moreover, depending on the LDPC code, a SIMD usage rate of 100% is rarely
obtained. However, from a system point of view, the intra-frame implementation
delivers low-latency feature and limits its impact on other processing elements.

Δintra = 2 × N + m +
m

Z
(2)

Both SIMD parallelization strategies can be applied to speed-up the execu-
tion of loop 1 defined in Algorithm 1. In this work, both approaches are evaluated
because they provide different features and thus different trade-offs.

3.3 ILP Improvement

An efficient implementation of loops 2 and 3 in Algorithm1 is crucial because
they are executed M times per decoding iteration. Consequently, a specific map-
ping of the algorithmic operations on available SIMD instruction is required.
Gallager-E decoding algorithm mainly manipulates bit or ternary values and
has many conditional instructions. So Gallager-E decoding is more challenging
to efficiently implement on processor cores than MS ones [15].

First, to reduce the complexity of the Mij computation (L2S1) that depends
on the decoding iterations, an initialization of the messages to zero was done
before the decoding. It avoids the comparison and conditional moves at runtime.
Then for the computation of v2c messages, as ω is in range 0, 1, the multi-
plication operation is implemented thanks to a logical and instruction whose

8 B. Le Gal et al.

second operand is a binary mask (0x00, 0xFF). Finally, the counter (Sum0)
can be approximated: its value is increased by the result of the comparison
instruction that is {0x00, 0xFF} and nor by 1. This approximation is possible
because in L3S1, the first part of the conditional structure can be reformulated
as Sum0− (Mij = 0) > 0. This tricky optimization removes logical instructions
and comparisons from the execution critical path. Moreover, it eases the imple-
mentation of the c2v conditional computation making possible to describe it as a
value selection in range 0, 1, and then a conditional sign inversion to regenerate
a message in range {−1, 0,+1}.

After these transformations, the number of instructions needed in the pro-
cessing kernels (loops L2 and L3) is quite small whereas the number of L2/L3
loop iterations is limited to range [7, 20] (due to benchmarked LDPC codes).
Consequently, to improve the ILP thanks to instruction execution overlapping
and also remove useless control instructions, specialized kernel codes are gener-
ated at compile time. To this end, the features of C++11 language (i.e., template
specialization) are applied like in [8]. For each CN degree value, a dedicated and
optimized kernel is generated. Consequently, the number of instructions is then
minimized for each L1 loop execution. At runtime, an array of function pointers
is used to select the right binary code to execute.

3.4 Memory Compression

The memory bandwidth is a bottleneck for software implementation of LDPC
decoders when long frame are processed. Decoder memory footprint becomes
quickly higher than memory caches. Contrary to MS-based decoder implemen-
tations that manage 8b values internally for all data, Gallager-E decoding algo-
rithm manipulate only bit or ternary values. Naively, all these values consume
8b in memory because they are involved in 8b arithmetic operations. However,
as the memory bandwidth is a bottleneck, a memory compression technique
was developed. It divides the memory footprint by 4 for exchanged messages
(c2v) that are ternary values and divides by 8 the footprint for channel values
(Yi) that are binary values. Memory footprint reduction necessitates the execu-
tion of additional SIMD instructions at runtime. However, both compression and
decompression tasks are executed with a low latency penalty on x86 architecture
whereas a single memory cache miss can produce a penalty of some hundreds of
clock cycles. The compression and the decompression tasks can be done easily
and efficiently thanks to the source codes provided in Listing 1. Note that data
compression does not impact on error correction performances because values
that are stored on 8b are in reality 2b or 1b.

3.5 SPMD Parallelization

Different parallelization techniques could be applied to take advantage of the P
cores for message passing algorithm implementation. It is possible to use them to
speed-up the execution of the loop 1 (L1) defined in Algorithm 1. However, this

High-Performance Gallager-E Decoders . . . on Multi-core Devices 9

const __m512i zero = _mm512_s e t z e r o_s i 512 () ;
const __m512i pos_one = _mm512_se t1_epi8 (0 x01) ;
const __m512i neg_one = _mm512_se t1_epi8 (0xFF) ;

void compress_and_sto r e_y i (__mmask64∗ ptr , const __m512i x) {
ptr [0] = _mm512_movepi8_mask(x) ;

}

__m512i load_and_uncompress_y i (const __mmask64 x) {
return _mm512_mask_blend_epi8 (x , r_one , neg_one) ;

}

void compress_and_sto r e_msg(__mmask64∗ ptr , const __m512i x) {
ptr [0] = _mm512_cmpeq_epi8_mask(x , pos_one) ;
ptr [1] = _mm512_cmpeq_epi8_mask(x , neg_one) ;

}

__m512i load_and_uncompress_msg(const __mmask64∗ ptr) {
__m512i w1 = _mm512_mask_blend_epi8 (ptr [0] , zero , pos_one) ;
__m512i w2 = _mm512_mask_blend_epi8 (ptr [1] , zero , neg_one) ;
return _mm512_or_s i512 (w1 , w2) ;

}

Listing 1.1. SIMD functions used for (de)compression of binary and ternary values

approach is inefficient because: (1) loop elements are not independent when hor-
izontal layered based decoding algorithm is applied due to the fact that memory
access conflicts can occur, and (2) the time spend in forking and joining tasks
is not negligible compared to L1 execution time. The best way to increase the
performance level is to allocate P independent LDPC decoders to process P dis-
tinct frames. It avoids L1/L2 memory sharing at runtime between the cores but
increase L3 cache usage. It also increases the pressure on the memory bandwidth
by a factor P. In the current work to enable an asynchronous behavior of the
decoders, the LDPC decoders are encapsulated in C++11 threads.

4 Experimentation Results

4.1 Experimentation Setup

The software-based LDPC decoder implementations were developed in C++
11 language. The targeted device was an INTEL Xeon Gold processor. Conse-
quently, the AVX512 instruction subset was selected. To benefits from INTEL
SIMD features, INTEL intrinsics which are C-style functions were applied.
To optimize the instruction scheduling and generate the executable file, the
software decoder descriptions were compiled with the CLANG++/LLVM 10.0
toolchain. The compilation flags provided to the toolchain are: -march=native
-mtune=native -Ofast -funroll-loops.

The host platform was a multi-core system composed of a dual socket INTEL
Xeon Gold 6148 CPU. Each Xeon processor has 20 physical processor cores.
The overall processor cores shares a 28160K L3 memory cache and 256GB of
RAM. A working frequency up to 3, 70GHz is achievable on this platform thanks

10 B. Le Gal et al.

Table 1. Selected QC-LDPC codes for benchmarking purposes

Code C1 [6] C2 C3

(N, K) (1296, 648) (32768, 16384) (20480, 16384)

Z 54 256 256

dc {8} {7, 8, 9} {19, 20}
msgs 5184 131072 81664

Fig. 1. Error correction performance comparison of Gallager-B and Gallager-E algo-
rithms when 10 layered decoding iterations are executed.

to turbo boost feature when a single processor core is activated. The average
working frequency is 2,40GHz and 2,20GHz when 50% and 100% of the cores
are activated, respectively. This frequency reduction is due to power dissipation
constraints. Note that these values were confirmed using the i7z tool during
experiments.

4.2 Error Correction Performance

Before benchmarking the throughput efficiency of the proposed Gallager-E par-
allelization schemes, a validation of its BER and FER performances was done.
To check its behavior, three different QC-LDPC codes were used. The first code
comes from related works on hard-input LDPC decoding [6]. The two others are
custom LDPC codes developed specifically for spatial optical communications
[16]. The main characteristics of the codes are summarized in Table 1.

High-Performance Gallager-E Decoders . . . on Multi-core Devices 11

Table 2. Performances of Gallager-E LDPC decoders on INTEL Xeon Gold 6148 CPU

Γ in Mbit/s Δ in μs P in Watts e in nJ/bit

Code #cores Γd1 Γd2 Γd3 Δd1 Δd2 Δd3 Pd1 Pd2 Pd3 ed1 ed2 ed3

C1 1 294 272 220 281 304 6 180 180 180 613 662 819

C2 1 108 136 180 12034 9523 113 167 167 172 1547 1228 956

C3 1 77 106 247 27010 19671 132 171 170 169 2221 1228 685

C1 20 4487 4041 3207 369 410 8 300 299 290 67 74 91

C2 20 813 2412 2546 53106 10865 162 419 411 297 516 171 117

C3 20 876 2030 3177 48785 21192 218 412 416 298 471 205 94

C1 40 7532 6833 5460 440 485 10 351 342 331 47 51 61

C2 40 784 3447 4298 66739 15213 191 437 472 340 558 137 80

C3 40 712 2286 5446 118795 37893 248 434 473 341 610 207 63

The bit error rate (BER) and frame error rate (FER) performances for C1 to
C3 LDPC codes are reported in Fig. 1 when a Monte-Carlo simulation is built
on a BSC channel and a OOK modulation. As expected, the curves show that
Gallager-E algorithm outperforms the Gallager-B ones in the overall use-cases.
These results are consistent with the published literature. They demonstrate the
correct functionality of the LDPC decoders implemented in this work.

4.3 Absolute Performances

For benchmarking purpose, a communication system simulation runs during a
period of 120 seconds to avoid working frequency scaling impact on average
values. The throughput (Γ) and the latency (Δ) results are reported in Table 2
when 10 decoding iterations are executed. The following setups are evaluated:

– Inter-frame setup (d1) - Each physical processor core decodes Q = 64
LDPC frames in parallel to fully utilize the 512b SIMD units. All the values
(channel, accumulators and messages) are stored on 8 bits.

– Inter-frame with memory compression setup - (d2). Each physical pro-
cessor core process Q = 64 frames in parallel. The channel values are com-
pressed and stored using 1 bit whereas exchanged message values are com-
pressed on 2 bits. The accumulator values are stored using 8 bits.

– Intra-frame setup (d3) - A single LDPC frame is processed (Q = 1). All
the values (channel, accumulators and messages) are stored on 8 bits.

Results presented in Table 2 show that in single core configuration, through-
put from 77 Mbps up to 294 Mbps was measured for the d1 implementation. The
highest throughput was obtained when C1 is decoded. Indeed, in this case, the
inter-frame decoder has a small memory footprint (491 KB) that fills in L2/L3
caches. However, for long codes (C2 and C3), the throughput is divided up to
4× due to a memory footprint that grows up to 12125 KB. The d2 implementa-
tion gives higher throughput for C2 and C3 codes due to memory compression
that decreases the memory footprint to 4375 KB. However, the additional arith-
metic and logical computations used to compress the information at runtime

12 B. Le Gal et al.

in d2 makes it less efficient for C1 code. At the opposite, the d3 implementa-
tion provides the highest decoding throughput for C2 and C3 (from ≈ 1.2× up
to ≈ 2.4× higher than d2) with a maximum memory footprint of 194 KB. In
parallel, the processing latency of d3 implementation is about 99% shorter than
d2 ones. However, the usage rate of the SIMD units for d3 is lower than 100%
at runtime for C1 LDPC code (Z = 54). Complex memory accesses and SIMD
inefficiency in this case is not compensated by L1/L2 cache efficiency.

Experimentations were done when 20 or 40 processor cores are activated to
check the scalability of the decoder implementations. The results show that the
d1 implementation is better in terms of throughput for C1 code in all setups with
speedup factors of 15× and 25×. However, its performances fall down for C2 and
C3 codes where the speedup factors are limited to 7× to 10×. Indeed, even if
the number of cores is increased from 20 to 40, a performance floor due to the
maximal memory bandwidth appears. Memory bottleneck assertion is validated
by the results obtained for d2 implementation. Indeed, the d2 implementation
that executes memory compression over-classed d1 one for the long frames (C2

and C3) codes. The throughput grows with the number of activated cores. How-
ever, this the performance improvement is not linear due to working frequency
scaling. For d2 decoder implementation, the measured speedups are 17× and
24× when 20 cores and 40 cores are activated, respectively. This phenomenon
is due to the turbo-boost frequency scaling feature. In 20 and 40 core setups,
the d3 implementation offers the better performances and achieved up to 5446
Mbps. The speedup factors obtained in comparison with single core experiments
are 14× and 24×. At the same time, the working frequency reduction increases
the processing latency by a factor of 2.

In parallel to the throughput and latency evaluation of the implementations,
power and energy per bit comparisons were also done. Energy measurements are
provided in Table 2. The reported energy consumption values include the CPU
and the RAM consumptions. These values were obtained at runtime with the
turbostat tool that captures the power consumption of sensors. The power con-
sumption depends on the number of activated cores and the RAM usage rate.
The power consumption results are equivalent to C1 code for all implementa-
tions. However, for C2 and C3 codes, the d1 and d2 implementations have a
higher power consumption (≈ 40%) than d3 due to their high usage rate of the
RAM. Indeed, the RAM consumes up to 180W. The energy per decoded-bit
metric reinforces this performance gap about the inefficiency of the inter-frame
parallelization scheme.

4.4 Comparison with FPGA-Based Decoder Implementations

Finally, the proposed Gallager-E LDPC decoder implementations on multi-core
devices were compared with FPGA-based ones [16] to estimate the feature dif-
ferences. Indeed, works presented in [16] details hardware optimized Gallager-E
architectures implemented in a Zynq Ultrascale+ FPGA (xczu9eg-3ffvb1156e)
based on architecture described in [12]. The number of hardware decoders allo-
cated in the FPGA device varies according to the LDPC code concerned as

High-Performance Gallager-E Decoders . . . on Multi-core Devices 13

reported in Table 3. This value was fixed to occupy the FPGA at 75% of its
capacity to avoid place & route issues. The working frequencies post-PaR of the
overall hardware experiments reach 500 MHz. Table 3 summarized for perfor-
mance levels reached in terms of throughput, latency and energy.

The throughput and latency measurements first demonstrate that the FPGA
solution provides 2× to 16× higher decoding throughput when a single processing
core is considered on both platforms. This performance gap despite the favorable
working frequency of the Xeon processor is due to the inefficiency of the x86
ISA. Indeed, a large set of basic computation requires on several clock cycles on
the Xeon processor whereas in hardware they can be trivially implemented in
one clock cycle. The observations related to the decoding latency between the
two types of systems is in line with the observations made on throughput. The
difference in terms of energy consumption per bit is more important. Factors are
in the range 315× up to 830×. This is due to the high-power consumption of
the Xeon processor when one core is active.

Table 3. Comparisons of software Gallager-E decoders with FPGA ones [16].

LDPC Xeon implementation FPGA implementation [16]
code # cores Γ (Mbps) Δ (μs) E (nJ/bit) #cores Γ (Mbps) Δ (μs) E (nJ/bit)

C1 1 220 6 819 1 620 2.1 1.94
C2 1 180 113 956 1 3060 10.7 1.15
C3 1 247 132 685 1 3020 6.8 1.13

C1 40 5460 10 61 65 40300 2.1 0.9
C2 40 4298 191 80 15 45900 10.7 0.97
C3 40 5446 248 63 15 45300 6.8 0.89

Multi-core execution modifies the previous acknowledgment. The throughput
difference is in this setup in range 5× to 11×. Indeed, the number of decoding
cores that can be instantiated in the FPGA is lower than the number of cores
in the Xeon processor, but at the same time, the Xeon working frequency is
approximately halved. Consequently, the power consumption per decoded bit
drops sharply for the Xeon solution because the power consumption is only
double when 40 cores are activated compared to 1 core configuration and the
throughput gain is thus over 20×. As a consequence, the difference in terms
of power consumption between the FPGA implementation and the multi-core
implementation varies finally from 52× to 82×.

This comparative section highlights the differences in terms of performance
between dedicated architectures on FPGA targets and more flexible software
solutions. As expected, dedicated hardware solutions are more energy efficient.
However the gap with optimized software-based implementations that are faster
to develop constantly decreases.

14 B. Le Gal et al.

5 Conclusion

In this paper, three parallelized software LDPC decoder implementations are
detailed. These software implementations implement the Gallager-E decoding
algorithm which is efficient for hard input decoding of LDPC codes contrary to
related work that manage soft-input values. The parallelization scheme applied
and arithmetic optimizations used to implement this algorithm on INTEL Xeon
multi-core target are detailed. Throughput up to 7,5 GBps is reported when 10
decoding iterations are executed. Finally, a comparison of throughput, latency
and power measurements is done with FPGA-based implementation to highlight
the efficiency of the proposer decoder implementations.

References

1. Andrade, J., Falcao, G., Silva, V., Sousa, L.: A survey on programmable LDPC
decoders. IEEE Access 4, 6704–6718 (2016)

2. Le Gal, B., Jego, C.: High-throughput multi-core LDPC decoders based on x86
processor. IEEE Trans. Parallel Distrib. Syst. 27(5), 1373–1386 (2016)

3. Checko, A., et al.: Cloud RAN for mobile networks - a technology overview. IEEE
Commun. Surv. Tutorials 17(1), 405–426 (2015)

4. Chen, J., Fossorier, M.: Near optimum universal belief propagation based decoding
of low-density parity check codes. IEEE Trans. Commun. 50(3), 406–414 (2002)

5. Gallager, R.: Low density parity-check codes. IRE Trans. Inform. Theory 8, 21–28
(1962)

6. Ghaffari, F., et al.: Efficient FPGA implementation of probabilistic Gallager B
LDPC decoder. In: Proceedings of ICECS, pp. 178–181, December 2017

7. Ghaffari, F., Vasic, B.: Probabilistic gradient descent bit-flipping decoders for flash
memory channels. In: Proceedings of ISCAS, pp. 1–5, May 2018

8. Giard, P., Sarkis, G., Leroux, C., Thibeault, C., Gross, W.J.: Low-latency software
polar decoders. J. Sig. Process. Syst. 90, 761–775 (2016)

9. Grayver, E.: Implementing Software Defined Radio. Springer, New York (2013).
https://doi.org/10.1007/978-1-4419-9332-8

10. Le, K., Ghaffari, F., Kessal, L., Declercq, D., Boutillon, E., Winstead, C.: A proba-
bilistic parallel bit-flipping decoder for low-density parity-check codes. IEEE Trans.
Circuits Syst. I Regul. Pap. 66(1), 403–416 (2018)

11. Le Gal, B., Jego, C.: Low-latency software LDPC decoders for x86 multi-core
devices. In: Proceedings of SiPS (2017)

12. Le Gal, B., Jego, C., Leroux, C.: A flexible NISC-based LDPC decoder. IEEE
Trans. Sig. Process. 62(10), 2469–2479 (2014)

13. Marchand, C., Boutillon, E.: LDPC decoder architecture for DVB-S2 and DVB-S2x
standards. In: Proceedings of SiPS, pp. 1–5, October 2015

14. Mitzenmacher, M.: A note on low density parity check codes for erasures and errors.
SRC Technical Note 1998-017 (1998)

15. Pignoly, V., et al.: High data rate and flexible hardware QC-LDPC decoder for
satellite optical communications. In: Proceedings of ISTC, pp. 1–5, December 2018

16. Pignoly, V., Le Gal, B., Jégo, C., Gadat, B.: Horizontal layered Gallager decoding
of low-density parity-check codes for wireless up-link optical space communication.
In: Proceedings of the ICECS, Glasgow, Scotland, 23–25 November 2020

https://doi.org/10.1007/978-1-4419-9332-8

High-Performance Gallager-E Decoders . . . on Multi-core Devices 15

17. Richardson, T.J., Urbanke, R.L.: The capacity of low-density parity-check codes
under message-passing decoding. IEEE Trans. Inf. Theory 47, 599–618 (2001)

18. Roberts, M.K., Anguraj, P.: A comparative review of recent advances in decoding
algorithms for Low-Density Parity-Check (LDPC) codes and their applications.
Arch. Comput. Methods Eng. 28, 2225–2251 (2020)

19. Unal, B., Ghaffari, F., Akoglu, A., Declercq, D., Vasić, B.: Analysis and implemen-
tation of resource efficient probabilistic Gallager B LDPC decoder. In: Proceedings
of NEWCAS, pp. 333–336, June 2017

20. Wadayama, T., Nakamura, K., Yagita, M., Funahashi, Y., Usami, S., Takumi, I.:
Gradient descent bit flipping algorithms for decoding LDPC codes. IEEE Trans.
Commun. 58(6), 1610–1614 (2010)

21. Wubben, D., et al.: Benefits and impact of cloud computing on 5G signal process-
ing: flexible centralization through cloud-RAN. IEEE Sig. Process. Mag. 31(6),
35–44 (2014)

Low Latency Architecture Design
for Decoding 5G NR Polar Codes

Oualid Mouhoubi(B), Charbel Abdel Nour, and Amer Baghdadi

IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238 Brest, France
{oualid.mouhoubi,charbel.abdelnour,amer.baghdadi}@imt-atlantique.fr

Abstract. Polar codes have been adopted as the coding scheme in the
control channel of the 3rd Generation Partnership Project (3GPP) New
Radio (NR) standard for 5G. However, the challenging requirements
introduced by the 5G control channel in terms of block length and code
rate flexibility render unsuitable most of the published hardware polar
decoder implementations. Indeed, these latter focused mainly on suc-
cessive cancellation decoders with ultra-high throughput, limited flex-
ibility and error correction capabilities. With stringent constraints on
end-to-end delay and error correction, the 5G NR context steers towards
low-latency list-based decoder architectures. In this context, we propose
an original flexible list-based hardware architecture for decoding 5G NR
polar codes that can support all the frame sizes and code rates defined
in 3GPP with a worst-case decoding latency below 24µs.

Keywords: 5G · polar codes · successive-cancellation decoding · list
decoding · low latency · hardware design

1 Introduction

Proposed in the last few years, Polar codes have been shown to achieve chan-
nel capacity in binary discrete memoryless channels, when the codeword length
N tends to infinity, using the low complexity successive-cancellation (SC) algo-
rithm [3]. However, performance starts to degrade at practical code lengths.
Hence, list-augmented SC decoding (SCL), where a list of L candidate codewords
are considered during decoding [20] and the most reliable codeword is chosen at
the end, improves the block error rate (BLER). Nonetheless, this comes at the
cost of additional latency, chip area occupation and reduction in throughput for
hardware implementations. In addition, the BLER of the SCL decoder can be
further improved by appending a cyclic redundancy check (CRC) to select the
most reliable codeword [15].

Being the cornerstone for all polar decoder types, several works have targeted
the improvement of throughput and latency of the SC decoder through the pro-
posal of solutions at both hardware design and algorithmic levels [4,16,19,22,23].
Through the introduction of specific decoders for constituent codes, simplified
successive cancellation decoding (SSC) was proposed in [2] as an alternative
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 16–28, 2022.
https://doi.org/10.1007/978-3-031-12748-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-12748-9_2

Low Latency Architecture Design for Decoding 5G NR Polar Codes 17

solution to reduce the latency. This latest work was then extended to the SCL
decoder in [9,18].

Polar codes have been adopted for the control channel of the enhanced mobile
broadband (eMBB) service of the 3GPP’s 5G new radio (NR) standard. The
control channel imposes block length and code rate flexibility levels far beyond
previously published polar code designs. Moreover, low BLER and low hardware
complexity added to a processing throughput and latency of 10 s of Mbps and
10 s of µs respectively are required [5].

Motivated by the need to provide a hardware-efficient polar decoder that
supports the required flexibility and latency levels for 5G NR, we propose in
this paper a novel hardware architecture targeting FPGA devices and offering
the following features:
– Downlink and uplink 5G NR control channel compliance with full rate and

frame size support ranging from N = 32 to N = 1024 bits.
– CRC-aided SCL decoder with a semi-parallel architecture [10] for best per-

formance.
– Dedicated specific constituent-code decoders for reduced latency.
– Measured FPGA-based worst-case decoding latency of 23.91µs, in compliance

with target 5G NR constraints.
– Favourable comparison with previously-published designs.

The above-mentioned features were obtained thanks to the following hardware
architecture-related contributions:
– Proposal and implementation of on-the-fly identifier for the number of con-

stituent codes in addition to their type and length.
– Introduction of an original special node list decoder capable of decoding all

identified constituent-code types.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview on polar codes and their decoding algorithms including fast decoding
techniques used by our decoder. The proposed on-the-fly identifier and special
node list decoder architecture are described in Sect. 3. Section 4 presents the
implementation results and comparisons. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 Polar Codes

Polar codes apply the channel polarization transform that divides the bit-
channels to either perfect or completely noisy channels. Then the polar code
allocates information bits to the K most reliable bit-channels while the remain-
ing bits are frozen, i.e., they are all set to a known value, usually ‘0’. For a
codeword length N = 2n, n ≥ 1, a (N,K) polar code is a block code with K
input bits and N output bits whose generator matrix G is the n−th Kronecker

power of matrix F =
[
1 0
1 1

]
, i.e., GN = F⊗n. The encoding process is performed

18 O. Mouhoubi et al.

j=0 j=1 j=2 j=3 j=4

j=2 j=3 j=4

Frozen

Rate-0
Info.

Rate-1
Repetition
SPC

(a) SC decoder tree (b) SC decoder pruned tree

v

v

Fig. 1. SC based decoder tree and its corresponding pruned tree of (16, 8) polar code.

by the matrix multiplication x = u.G where u = (u0, u1, . . . , uN−1) stands for
the sequence input vector consisting of information bits and frozen bits and
x = (x0, x1, . . . , xN−1) stands for the encoded vector.

With stringent constraints on rate flexibility and low decoding latency, polar
codes were chosen in 5G NR to encode the uplink and the downlink control infor-
mation over the physical uplink control/shared channels (PUCCH/PUSCH) and
the physical downlink control/broadcast channels (PDCCH/PBCH). Therefore,
they are required to support a wide range of information block length, encoded
block and mother polar code lengths. CRC bits are appended to the information
sequence. Three different CRC generator polynomials were carefully chosen for
the purpose of improving the error correction performance. Depending on the
physical control channels, CRC are differently initialized, scrambled and inter-
leaved. They are allowed to trigger the end of the decoding process if the CRC
check fails particularly during blind decoding. In addition to that, 3GPP decided
to integrate in uplink two types of Parity Check (PC) bits in the middle of the
encoded block. A so-called universal reliability sequence is used to determine
the set of the frozen, information, CRC and PC bit positions for each polar
code considered in 5G. With the intention of achieving the desired code rate R,
reordering the N encoded bits or improving the error correction capability of
polar codes, rate matching is the final step introduced in the encoding process
used in the 5G NR control channels [1].

2.2 Successive-Cancellation Decoding Based Algorithms

The decoding of SC algorithms can be performed through a binary tree as illus-
trated in Fig. 1a for (16, 8) polar code. It consists of log2N+1 stages where each
stage j comprises N

2j nodes and each node represents a polar code of length 2j .
The top tree node at stage j = log2 N includes the channel Log-Likelihood-
Ratios (LLRs) and the final Partial Sums (PS). At leaf nodes, the frozen and
information bits are represented by white and black circles respectively. A given
node v receives αv LLRs and produces βv PS. Assuming that the processing

Low Latency Architecture Design for Decoding 5G NR Polar Codes 19

of an activated stage can be performed in one clock cycle, the total number of
time steps required to decode one frame is: Lref = 2N − 2. This corresponds to
Lref = 30 in this example.

The major drawback of the SC algorithm resides in its inability to recover
from wrong bit estimates, especially at the early stages of decoding. A SCL
algorithm was proposed to avoid resorting to hard decisions when computing
partial sums during the sequential decoding phase. Hard decisions are replaced
by soft hypotheses for the error-prone bits identified by low reliability values.
This leads to the simultaneous exploration of several codeword candidates or
equivalently paths in the graph of Fig. 1a, each corresponding to one or more
varying bit-hypotheses. Hence, for each bit ui decoding step, both its possible
values 0 and 1 are considered and 2L new candidate paths are explored. However,
in order to break the exponential growth of the number of candidate paths, a
subset L of the most likely paths is set to survive. The choice is made by selecting
the L lowest path metric (PM) values. In terms of complexity, the SCL decoder
can be seen as the concatenation of L competing SC decoders. Assuming that
a path selection can be performed in one clock cycle, the latency of the SCL
decoder becomes TSCL(N,K) = 2N − 2 + K.

A simplified SC-based decoding algorithm (SSC) was presented in [2] in which
the tree search is pruned. In fact, a tree with only frozen bits at leaves does not
need to be traversed since its output is already known and is equal to an all-zero
vector. This type of node is referred to as Rate-0. Moreover, a tree with only
information bits can directly be decoded by applying a threshold decision at the
root node. This type of node is referred to as Rate-1. Furthermore, the authors
in [17] have identified two new types of nodes among the constituent codes of
rate 0 ≤ R ≤ 1. Hence, a repetition node (Rep) is a constituent code where all
the bits are frozen except for the last one and the single parity check (SPC)
node is a constituent code where at the exception of the first bit, all the bits are
information. The pruned tree of the Fast-SSC decoder is shown in Fig. 1b where
the four types of constituent codes are colored differently. This pruning technique
was then extended to the SCL decoder. A hardware-friendly PM computation
for Rate-0, Rep and Rate-1 nodes and for SPC node is presented in [8] and [7],
respectively.

3 Proposed Decoder Architecture

3.1 Proposed Special Nodes List Decoding Module

Instead of decoding every constituent code type individually, as it is the case in
[7], a special node list decoder which federates the common operations performed
by the different special nodes is proposed. Considering that the tree should be
traversed sequentially with a node by node processing schedule, special node
decoders are able to share most of the memory and the computational resources.
Hence, hardware duplication is avoided. The architecture of the special node list
decoder is portrayed in Fig. 2.

20 O. Mouhoubi et al.

Fig. 2. Proposed special node decoder architecture supporting different special node
types. (Color figure online)

Since the Rate-0 nodes comprise only frozen bits, no path splitting is needed
to estimate the NRate-0 bits. Only summing up NRate-0 values is needed. A tree-
structure fully parallel adder is preferred to this purpose in order to guarantee
no extra decoding latency. The complexity and the critical path of this adder
structure are high especially when the maximum size M defined for special nodes
is large. As long as P ≤ M , where P refers to the number of processing elements
(PE) used by each path, the computations on the special node LLRs take multi-
ple clock cycles and a maximum of P LLRs can be processed at a time. Therefore,
smaller tree-structure adder can provide the same computational speed as the
fully parallel adder. To this purpose, a sum-accumulate operation is used instead,
by introducing an accumulator register at the output of the adder in order to
limit the depth of the tree from log2 M to log2 P + 1 stages and reduce the
number of adders from M − 1 to P . As a result, NRate-0 values can be added up
during �NRate-0/P � clock cycles, where �x� represents the closest integer value
larger than x.

A Rep node of length NRep is identified by the presence of one information
bit and NRep − 1 frozen bits. However a minimum of two steps are required for
the estimate of the single information bit. The first one consists of updating
the path metrics as part of the path fork process including both 0 and 1 deci-
sions on the single information bit of the Rep node while the second consists of
sorting the PMs of split paths to perform path selection. Unlike NRate-0 codes,
two independent summations are needed by the Rep node. Indeed, according to
whether the bit estimation is considered to be 0 or 1, Rep decoder has to add up
all the negative valued or positive valued LLRs, respectively. For the purpose of
performing both summations in parallel, the Rate-0 node adders are duplicated.

Low Latency Architecture Design for Decoding 5G NR Polar Codes 21

Rate-1 nodes comprise only information bits which are decoded one-by-one
as in the SCL algorithm. For each bit estimate, paths are duplicated, sorted and
some of them are discarded. Since more than one bit is decoded in a row without
going back to PEs, the special node unit comprises a Pointer Memory Update
(PMU) unit that keeps track of the surviving paths from the beginning of each
Rate-1 and SPC nodes decoding.

A SPC node is identified by the presence of one frozen bit while all the
remaining bits are information. The least-reliable bit (LRB) is found as a first
step for decoding an SPC node. It corresponds to the minimum LLR value
at the top of the SPC tree node. An accumulation-minimum-finder tree-based
structure similar to the one used for the adder units of Rate-0 and Rep nodes
with P comparators is used in this regard. The even-parity check evaluation, in
turn, is performed through an accumulator-XOR tree-based structure using P
XOR gates, while the evolving even-parity constraint is performed for each of
the existing L paths after each bit estimate through L XOR gates and stored in
dedicated LRB registers. The final value of the latter is retained to preserve the
even-parity constraint and inserted within the estimated bit vectors directly in
its appropriate location provided by the minimum value index found in the first
step (green arrow in Fig. 2).

Except for a classical bit decoding case, more than one LLR are admitted
by the special node decoders. To avoid complexity due to write/read operation,
they are stored in a bank of parallel-load shift registers, as illustrated in Fig. 3.
Assuming P ≤M , they are seen as an array of M Qi-bits registers grouped in
M/P independent columns which can be accessed independently thanks to M/P
enable signals. Qi is the quantization level of the internal LLRs. LLR’s nodes are
stored in the same order they are produced, starting from the rightmost column
to the leftmost one during � 2j

P � clock cycles. During the special node decoding
phase, these registers are shifted both horizontally and vertically during the
decoding phase of Rate-1 and SPC nodes as follows:

– Vertical shift: LLRs are accessed one-by-one by shifting the rightmost P reg-
isters from top to bottom.

– Horizontal shift: After P − 1 vertical shift, the following P LLRs to access,
when they exist, are obtained by shifting registers of the different columns
horizontally from left to right.

Excluding the last loaded registers column, the remaining ones can accept their
LLRs from either their adjacent one or from input. This is made possible thanks
to P ·(M

P − 1
)

2-to-1 MUX. Since the least reliable bit in an SPC node is decoded
first, its LLR value should be skipped whenever it is encountered. To do this, the
LLR bank register in Fig. 3 is designed to output two adjacent LLR values instead
of one. A MUX is used to select the output based on the least reliable bit index.
When the PC bits are used in uplink, they are decoded using the length-5 cyclic
shift register (Fig. 2). To support path competition, the generated intermediate
paths read their values, i.e., LLRs, even-parity check and minimums by means
of crossbars. Newly estimated bits are temporarily stored in dedicated registers.

22 O. Mouhoubi et al.

A straightforward copy operation allows, by means of crossbars, to move all the
contents of each of the L surviving paths from a register to another after each
path selection. The process of PM sorting and bit estimation is repeated NRate-1

or NSPC − 1 times. The PM register is updated directly from the 2L sorter in
the same clock cycle. When all bits are estimated at their top tree nodes, the
source word bits are obtained through a polar encoder, the PMU updates the
pointer memory and the search procedure of the next nodes in the polar code
tree resumes. The partial sums needed to update LLRs are computed and the
CRC check process is resumed. In order to avoid extra latency, PS and LLR
computations are performed in parallel.

Fig. 3. Parallel-load shift registers of the top-node LLRs.

3.2 Memory Structure

LLR Memory: The SC decoding relies on dedicated memories to keep the
LLR values available for the computation units as long as they are needed.
Therefore, channel input LLRs are stored in a N × Qc bits register, where Qc is
the quantization level of the channel LLRs. However, internal LLRs are stored
in a dual-port RAM-based memory configured with one write port and one read
port. The total number of LLR updates at decoding stage j is equal to 2j .
However, only P LLR updates are allowed to be performed at once. Thereby,
for stages j where 2j > 2P , a total of 2j/(2P) time steps are needed before
proceeding to the lower stage while only one time step is needed for the other
stages. Given that the computed LLRs in PEs have to follow the bit-reversed
indexing scheme, the produced LLRs need a certain reordering before being
mapped back to PEs. To avoid the need for multiplexing them, the equivalent
operation is directly embodied in the control unit and two RAMs instead of one,
each of width PQi, are implemented for each path l. For higher stages, LLRs
are first stored in one RAM during half of the 2j/(2P) time period required
for computation before storing the remaining produced LLRs during the second
half of the time period in the other one. However, for lower stages, where LLRs
are produced during one time period, LLRs contiguity is ensured by adding a
specific permutation network. In addition, a L × PQi-bit buffer is used in order
to process these generated LLRs directly during the following clock cycle.

Low Latency Architecture Design for Decoding 5G NR Polar Codes 23

Pointer Memory: The SCL decoder can also be seen as L SC decoder cores
working in parallel with their own LLRs and memory resources. Nonetheless,
the cores may share the same LLRs at some stages due to path competition.
Thereby, to avoid copying the shared LLRs, a memory pointer is introduced and
stored instead. Hence, each SC decoder core can read its inputs from one of the
L RAM memories thanks to a permutation network. The used memory pointer
is a (log2 N −1)×L register array, where register at row j and column l stores a
pointer of log2 L bits indicating the index of the RAM where LLRs of path l at
decoding stage j are stored. The pointers are updated in two different situations.
First during path duplication/discarding. Second, to reset them to their initial
values when the stages at which they are processed is activated.

Path Memory: A LN array register is dedicated to store the values of the L
codeword bits after the PMs have been sorted and the surviving paths identified.
Being mutually independent, all registers can be accessed simultaneously. This
is made possible thanks to a N -bit enable vector. When a path l needs to be
duplicated, all its so far decoded bits are copied to the registers that have been
freed, due to path discarding, by means of N L-to-1 MUX. Enable signals are
generated by a log2N -to-N decoder which takes the currently decoding infor-
mation bit index as input. N MUXes are used to select between the copy/store
operation to perform and P -to-P crossbars are used to manage the flexibility in
decoding variable special node lengths.

3.3 Proposed On-the-Fly Rate-Flexible Decoding of Polar Codes

To apply dedicated special node decoders for the 5G NR polar code, the types
and sizes of the nodes within the current frame need to be provided. The large
flexibility in frame and code rate ranges leads to a large number of different frozen
bit sets. This increases the number of different special nodes, making it difficult
to store in memory their number and positions. To tackle this issue, we propose
a new method to identify the different special node structures (Rate-0, Rep, SPC
and Rate-1) on-the-fly directly in hardware without the need to store any list in
memory. Their determination is done from the frozen set and by merging different
lower size special nodes into a new special node type of larger size. For hardware
optimization purposes, we define a new special node type corresponding to the
only case where two bits from the frozen set do not represent any of the particular
constituent code listed above, i.e., the sequence {information, frozen} and is
called No type node. Henceforth, a unique binary sequence refers to both No
type and SPC nodes. However, assuming having additional information on their
size, these two special nodes can not be overlapped since SPC nodes start to be
considered from length-4 patterns.

Starting from a given frozen set, the structure of Fig. 4a is capable of deter-
mining the different special node types of length-2. For higher length nodes, the
structure of Fig. 4b intends to merge different lower size special nodes into a new
special node type of larger size based on a sequence vector indicating the type of

24 O. Mouhoubi et al.

Fig. 4. Proposed architecture for identification of constituent codes of different lengths:
(a) Length two elementary module identifier, (b) Length four and above elementary
module identifier, (c) Architecture of the special node identifier.

the nodes to merge. With one difference, a SPC node of length four is obtained
by merging a Rep and Rate-1 nodes of length two (highlighted in red) while an
SPC node of length greater than four is obtained by merging another SPC and
Rate-1 nodes, hence the presence of the MUX. Therefore, the two structures
of Fig. 4a and Fig. 4b represent the building blocks of the identifier intended to
determine the different supported special node types of any length.

The special and non-special nodes identified are stored together in register
arrays in the same order as they are searched during the decoding process. This
reduces the complexity of multiplexing the pattern compared to the case where
only valid ones are retained. Since the SC decoder is sequential, the special node
vectors V (Fig. 4c) are read from the register one at a time through a N

M ·(M − 1)
to-1 MUX. A log2 N -bit counter is used to generate the register-based memory
addresses. At each special node iteration search, the next pattern to read from
the registers array depends on the size and address of the previous one. The
complexity of the proposed architecture increases linearly with code length N .
But since the special nodes are searched only upon request, a low complexity
serial implementation is favoured. To do this, a N -to-M multiplexer is used to
process serially the frozen set bits in groups of M . The architecture of a serial
search of special nodes is depicted in Fig. 4c.

4 Synthesis Results and Comparisons

As a proof of concept, a decoder architecture fully compliant with the 5G NR
polar code has been designed. The proposed architecture is generic with respect
to the parameters P , L and M . An analysis of the impact of main code and
decoder design parameters, including P and M , on the latency and the hardware
complexity is proposed in [14]. In addition to the proposed special node list
decoding and special node identification unit, the architecture includes: L × P
Processing Elements (PE) to compute and update the LLRs, Multi-bit Partial

Low Latency Architecture Design for Decoding 5G NR Polar Codes 25

Table 1. Average and maximum latency measured by the proposed decoder.

Worst-case latency Average Latency

Physical control channel N # code cc [µs] cc [µs]

Downlink

64 435 146 1.35 121 1.11
128 3451 284 2.63 207 1.91
256 9452 483 4.47 376 3.47
512 2286 780 7.22 719 6.65

Uplink 1024 3491 2583 23.91 1914 17.72

Sum Network to produce PS, CRC bits calculation unit to perform CRC check
operations in the case of multi-bit decoding and which operates in parallel to the
decoding process. The Control unit integrates a finite state machine designed to
generate all the control signals needed for the different decoder components. In
order to manage candidates competition, crossbars were also designed whether
for copying data to some freed memory locations or to ensure a correct routing
of data as a result of the use of pointer memories.

The devised architecture has been described in VHDL. The FPGA used for
synthesis was a Xilinx Virtex 7-xc7vx485t device. The number of bits used to
represent internal LLR, PM and channel LLR values is Qi = 6, Qp = 7 and
Qc = 4, respectively. Eight PEs are instantiated in the architecture for each
of the L paths, where L = 8. The maximum size of special nodes M is set to
32. Internal LLRs and partial sum bits are stored in the FPGA dual-port Block
RAMs (BRAMs) while input LLRs and partial sum memory addresses are stored
using look-up tables (LUTs). Decoding latency is the main critical performance
metric when considering the 5G NR polar codes that protect the control channel.
A target end-to-end latency of 0.5 ms implies a physical layer latency of 50µs
[6,13]. Flexibility and low latency are the driving priority for the design of this
channel decoder, which is the main demanding component of the physical layer.

The latency for decoding one codeword is not constant and is highly affected
by the choice of the operating code length and code rate. In order to give a full
analysis of the latency, all combinations of code lengths and code rates ranging
from R = 1/8 to R = 5/6 are evaluated through simulations. Table 1 provides
the average and the worst-case latency for decoding one codeword. The latency
is measured in number of clock cycles (cc) and in µs considering the maximum
clock frequency fmax = 108 MHz. The results show that the maximum latency
recorded by the decoder is 23.91µs which is 2.1 times lower than the physical
layer latency constraint. This worst-case latency appears in the uplink scenario,
whereas it is only 7.22µs in the downlink.

Logic synthesis and performance results are summarized in Table 2. Imple-
mentations that are fully compatible with 5G code specifications, in terms of
code structure and flexibility, allow for direct and fair comparisons. Therefore,
the recently available Xilinx polar decoder [21] is the most relevant reference with
respect to the available decoder designs in the literature. Performance results
of Xilinx decoder are available, yet with no published details on the architec-
ture. Compared to this decoder, our proposed architecture has 60% and 70%

26 O. Mouhoubi et al.

Table 2. Comparison with several FPGA-based SCL Architectures.

Decoder [12] [11] This work Xilinx [21] This work

List size 4 8

Algorithm SCL SSCL1 SSCL2 N/A SSCL2

Flexibility Limited Limited High High High

Quantization (10,3) NA (6,7,4) 8 (6,7,4)

PE 64 64 8 NA 8

fmax (MHz) N/A 445.2 108 223 108

FPGA Device Stratix V Stratix V xc7vx485t xc7vx485t xc7vx485t

ALMs/LUTs 101160 8146 26049 45569 51262

FFs 13544 2862 12603 33063 20270

BRAMs 0 0 34 51.5 68

(N,K) (1024,512) (1024,512) (1024,512) (512,40) (1024,512) (512,40) (1024,512)

Latency (µs) 40643 1177 10.73 11.35 46.41 4.76 18.37

TP (Mbps) N/A 0.452 47.7 28.68 88.4 8.4 34.4

1 Stochastic SCL with 2-level decoding.
2 Simplified SCL with four constituent codes.
3 Number of clock cycles.

less decoding latency for the uplink (1024,512) and the downlink (512,40) polar
codes, respectively. Our design consumes 38% less Flip-Flops (FFs), but 11%
more LUTs and 25% more BRAMs. The throughput of the Xilinx polar decoder,
however, does not compare favorably with our architecture, yet still compliant
with the 5G NR requirement for this code used for the control channel.

In order to extend the comparison, we have considered recent designs that
targeted FPGA implementation with similar code length, yet not compliant with
5G NR polar codes. For that, a second configuration of our proposed architec-
ture has been designed and synthesized with L = 4 while keeping the number
of PEs per list unchanged. Compared to the folding polar decoder of [12] that
achieves comparable BLER, our decoder uses 74% less LUTs and 6% less FFs
while decoding the (1024,512) code in less than half the time (converted in clock
cycles). However, without any reported clock frequency, the latency comparison
is not complete. Compared to the stochastic SCL decoder of [11] targeting wear-
able and IoT devices with strict hardware constraints, our decoder, supporting
rate and frame size flexibility and providing better BLER performance, exhibits
109 times less latency while requiring 3.2 times and 4.4 times the numbers of
LUTs and FFs, respectively.

5 Conclusion

In this paper we proposed an original hardware architecture for decoding the
5G NR polar codes of the uplink and the downlink control information channel.
Thanks to a special node identifier, the proposed decoder continues to bene-
fit from tree pruning techniques to speed-up the decoding whilst maintaining

Low Latency Architecture Design for Decoding 5G NR Polar Codes 27

compliance with the 5G NR and the various defined combinations of code rate
and code length. Hence, measured throughput and latency values of the proposed
decoder obtained with FPGA target are able to meet 5G requirements. Moreover,
synthesis results have shown a hardware efficiency that compares favourably with
state-of-the-art FPGA implementations of polar decoders. Finally, the designed
architecture reduces the decoding latency compared to the recently available
Xilinx 5G polar decoder.

References

1. 3GPP: TS NR multiplexing and channel coding. Release 15 V15.6.0
TS, 38.212 (2019). https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3214

2. Alamdar-Yazdi, A., Kschischang, F.R.: A simplified successive-cancellation decoder
for polar codes. IEEE Commun. Lett. 15(12), 1378–1380 (2011)

3. Arikan, E.: Channel polarization: a method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory
55(7), 3051–3073 (2009)

4. Bian, X., Dai, J., Niu, K., He, Z.: A low-latency SC polar decoder based on the
sequential logic optimization. In: International Symposium on Wireless Communi-
cation Systems (ISWCS) (2018)

5. Egilmez, Z.B.K., Xiang, L., Maunder, R.G., Hanzo, L.: The development, operation
and performance of the 5G polar codes. IEEE Commun. Surv. Tutorials 22(1), 96–
122 (2019)

6. Fettweis, G.P.: The tactile internet: applications and challenges. IEEE Veh. Tech-
nol. Mag. 9(1), 64–70 (2014)

7. Hashemi, S.A., Condo, C., Gross, W.J.: A fast polar code list decoder architecture
based on sphere decoding. IEEE Trans. Circuits Syst. I Regul. Pap. 63(12), 2368–
2380 (2016)

8. Hashemi, S.A., Condo, C., Gross, W.J.: Simplified successive-cancellation list
decoding of polar codes. In: IEEE International Symposium on Information Theory
(ISIT), pp. 815–819 (2016). https://doi.org/10.1109/ISIT.2016.7541412

9. Hashemi, S.A., Condo, C., Gross, W.J.: Fast simplified successive-cancellation list
decoding of polar codes. In: IEEE Wireless Communications and Networking Con-
ference Workshops (WCNCW), pp. 1–6. IEEE (2017)

10. Leroux, C., Raymond, A.J., Sarkis, G., Gross, W.J.: A semi-parallel successive-
cancellation decoder for polar codes. IEEE Trans. Sig. Process. 61(2), 289–299
(2013). https://doi.org/10.1109/TSP.2012.2223693

11. Liang, X., Wang, H., Shen, Y., Zhang, Z., You, X., Zhang, C.: Efficient stochastic
successive cancellation list decoder for polar codes. Sci. China Inf. Sci. 63(10), 1–19
(2020). https://doi.org/10.1007/s11432-019-2924-6

12. Liang, X., Yang, J., Zhang, C., Song, W., You, X.: Hardware efficient and low-
latency CA-SCL decoder based on distributed sorting. In: 2016 IEEE Global Com-
munications Conference (GLOBECOM), pp. 1–6 (2016)

13. Maunder, R.G.: The 5G channel code contenders. ACCELERCOMM White Paper,
pp. 1–13 (2016)

14. Mouhoubi, O., Abdel Nour, C., Baghdadi, A.: On the latency and complexity of
semi-parallel decoding architectures for 5G NR polar codes. In: 11th International
Symposium on Signal, Image, Video and Communications (ISIVC) (2022)

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3214
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3214
https://doi.org/10.1109/ISIT.2016.7541412
https://doi.org/10.1109/TSP.2012.2223693
https://doi.org/10.1007/s11432-019-2924-6

28 O. Mouhoubi et al.

15. Niu, K., Chen, K.: CRC-aided decoding of polar codes. IEEE Commun. Lett.
16(10), 1668–1671 (2012)

16. Roy, S.J., Lakshminarayanan, G., Ko, S.B.: High speed architecture for successive
cancellation decoder with split-g node block. IEEE Embed. Sys. Lett. 13, 118–121
(2020)

17. Sarkis, G., Giard, P., Vardy, A., Thibeault, C., Gross, W.J.: Fast polar decoders:
algorithm and implementation. IEEE J. Sel. Areas Commun. 32(5), 946–957
(2014). https://doi.org/10.1109/JSAC.2014.140514

18. Sarkis, G., Giard, P., Vardy, A., Thibeault, C., Gross, W.J.: Fast list decoders for
polar codes. IEEE J. Sel. Areas Commun. 34(2), 318–328 (2016)

19. Shrestha, R., Sahoo, A.: High-speed and hardware-efficient successive cancellation
polar-decoder. IEEE Trans. Circuits Syst. II 66(7), 1144–1148 (2018)

20. Tal, I., Vardy, A.: List decoding of polar codes. IEEE Trans. Inf. Theory 61(5),
2213–2226 (2015)

21. Xilinx: IP Polar Encoder/Decoder (2021). https://www.xilinx.com/products/
intellectual-property/ef-di-polar-enc-dec.html#overview

22. Yuan, B., Parhi, K.K.: Low-latency successive-cancellation polar decoder archi-
tectures using 2-bit decoding. IEEE Trans. Circuits Syst. I Regul. Pap. 61(4),
1241–1254 (2013)

23. Zhang, C., Parhi, K.K.: Low-latency sequential and overlapped architectures for
successive cancellation polar decoder. IEEE Trans. Sig. Process. 61(10), 2429–2441
(2013)

https://doi.org/10.1109/JSAC.2014.140514
https://www.xilinx.com/products/intellectual-property/ef-di-polar-enc-dec.html#overview
https://www.xilinx.com/products/intellectual-property/ef-di-polar-enc-dec.html#overview

Efficient Software and Hardware
Implementations of a QCSP

Communication System

Camille Monière1,2(B), Bertrand Le Gal2, and Emmanuel Boutillon1

1 Lab-STICC, Université de Bretagne Sud, 56100 Lorient, France
{camille.moniere,emmanuel.boutillon}@univ-ubs.fr

2 IMS, Bordeaux-INP, 33400 Talence, France
bertrand.legal@ims-bordeaux.fr

Abstract. In wireless communications, frame detection and synchro-
nization are usually performed using a preamble, consuming bandwidth
and resources that are not negligible for small packets. Recently, a new
kind of preamble-free frame called Quasi Cyclic Small Packet (QCSP)
have been proposed. This paper studies the implementation of QCSP
transmission, both at the transmitter side and the receiver side. For
the latter, only detection, the most consuming task, is considered. Dif-
ferent parallelism levels and implementation strategies are detailed for
both software and hardware implementations. Several trade-offs between
throughput and resource usage are also discussed. Finally, the paper
demonstrates that the emission/reception process of a QCSP frame is
feasible at low hardware cost, which make the QCSP frame very attrac-
tive for Low Power Wide Area Networks (LPWAN).

Keywords: Real-Time Implementation · CCSK · Small Packets ·
Hardware · Software · Low Power Wide Area Network

1 Introduction

Transmitting small amount of data in an unsupervised communication network
is a real challenge, especially for Internet of Things (IoT) devices. For such
devices, a frame usually consists on a payload with additional redundancy (for
error-tolerance), preceded by a standardized preamble which help to the synchro-
nization task. Unfortunately, for short packets, the preamble size is no longer
negligible compared to the payload size. Indeed, if preamble-based methods allow
to greatly simplify the receiver complexity, thanks to the known parts of the
received waveform, the energy used during its transmission is simply wasted
from the communication point of view [13]. As an example, in IoT context such
as Massive Ultra Reliable Low Latency context, preambles already consume a
significant amount of bandwidth and energy [8]. Preamble-less strategies for the
transmission of short packets exist in the literature [3,4,16]. However, their effi-
ciency has been demonstrated only for positive SNR values.
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 29–41, 2022.
https://doi.org/10.1007/978-3-031-12748-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-12748-9_3

30 C. Monière et al.

A recently introduced preamble-less frame called Quasi Cyclic Small Packet
(QCSP) [5,15] have been proven to work at very low SNR (until −10 dB) solving
this issue. A QCSP frame is based on the association of a Cyclic Code Shift
Keying (CCSK) modulation and a Non-Binary Error Control Code (NB-ECC).
It is shown that a Miss Detection Probability (PMD) of 10−4 for a False Alarm
Probability (PFA) below 10−6 can be reached. Moreover, the proposed algorithm
is robust to frequency inaccuracies and receiver gain variations.

From an implementation point of view, the QCSP waveform has a low com-
putational complexity and a small memory footprint at transmitter side. This
feature is needed by IoT devices, that are constrained by power usage. The draw-
back is the increase in complexity of the detection and synchronization tasks in
reception. Although expected, given the lack of a preamble, it makes the imple-
mentation of a real-time receiver challenging.

In [5], the authors described the principle of sliding windows for QCSP
frame detection and compared the new method performance with the classi-
cal FFT method. Early results of software implementation were also given to
show the relevance of the method. This article extends this work, focusing on
the in-depth study of existing implementations of QCSP transmitter and detec-
tor, rather than algorithmic description. The article is structured as follows.
Section 2 first presents the system model, and then briefly exposes the detec-
tion methods presented in [5]. Section 3 details current architecture variations,
estimating and comparing their respective complexity. In Sect. 4, the analysis of
the parallelization schemes applicable to each evaluated detection approach is
reported. The results coming from transmitter and detector implementation on
CPUs and FPGA are reported and explained in Sect. 5, with the various tweaks
and optimizations involved. Finally, conclusions and perspectives are reported
in Sect. 6.

2 System Model

This section reviews the communication system and the associated detection
method presented in [5]. First, the QCSP frame is introduced. Then, transmitter
and receiver sides of the communication system are described.

Fig. 1. QCSP communication system model (Color figure online)

Efficient Implementations of a QCSP Communication System 31

The communication system is depicted in Fig. 1. The message sent M (K
symbols of p bits, each symbol being in [0, 1, . . . , q = 2p]) by the transmit-
ter is first coded using an Non-Binary Low Density Parity Check (NB-LDPC)
encoder into a codeword C (N symbols of p bits). Then, the NB symbols are
CCSK modulated using a binary pseudo random noise sequence P0 circularly
shifted (k-shifted P0 being denoted Pk) [7]. The resulting CCSK frame is mod-
ulated by Binary Phase-Shift Keying (BPSK) and over-modulated [15] allowing
blind symbol synchronization. This creates a QCSP frame F, which filtered by
a half raised cosine filter, resulting in an up-sampling by a factor O, and sent
to an RF device for transmission. During reception, samples are filtered by the
same filter, then O detectors works in parallel to allow future decimation. Each
one use CCSK based detection, described in [14] and summarized in the next
subsection. If a detection occurs, data associated with the highest-scoring over-
sampling hypothesis are given to synchronization, which removes any frequency,
time or phase inaccuracies. Log-Likelihood Ratios (LLRs) are computed from
the resulted synchronized frame during CCSK demodulation, which is the cor-
relation with P0 [2] (operator �). Finally, they are fed to an NB-LDPC decoder
to retrieve the received message.

This paper will focus on the implementation of a full real-time transmitter
(in green in Fig. 1) and of real-time detectors (in red in Fig. 1).

CCSK-based detection mainly consists in comparing a score function to a
threshold value U0. The score is computed using the last N × q received samples
(i.e. the length of a frame) at time n, equally divided in N sub-vectors Yn (vector
of y(n − i) for i ∈ [0, 1, . . . , q − 1]) of q samples. If the score value exceed the
threshold U0, a new frame arrival is assumed.

The score function Sω
n corresponds to a filter output that is maximized for a

frame that arrived at time n with a frequency offset f = ω
2πq . The first step is

to mitigate the frequency offset by multiplying term by term (operator �) Yn

with rotation vector Γω = {1, e−j ω
q , e−j 2ω

q , . . . , e−j
(q−1)ω

q } (i.e. a pure complex
sinusoidal of frequency −f). This operation gives Yω

n = Yn � Γω. A correlation
vector Lω

n is then computed as

Lω
n = (Yn � Γω) � P0. (1)

This vector is similar to an attempt of CCSK demodulation. The maximum
normalized absolute value of Lω

n (denoted Mω
n) is taken as an indicator of the

demodulation success. Sω
n results from the accumulation of Mω

n through an aver-
aging filter the size of a frame.

Since the resulting score is compared to a threshold U0, and provided that
the threshold U is adapted, the square roots involved in the calculus of in [5]
can be removed, thus simplifying the score function. Therefore, Mω

n results from

Mω
n =

max{|Lω
n(i)|2, i = 0, 1, . . . q − 1}
∑q−1

i=0 |y(n − i)|2 , (2)

and the score function is

Sω
n = Sω

n−q + Mω
n − Mω

n−Nq. (3)

32 C. Monière et al.

Sω
n being the score associated to the last N ×q samples, it must be computed

at least every q received samples, but can be computed up to q times. It leads to
the introduction of the parameter pΔ, power of 2 indicating the number of score
values computed every q samples for a rotation ω (i.e. pΔ = 1, 2, 4, . . . , q). It
should be noted that it also reduces the memory usage, since only N ×pΔ values
of Mω

n are needed. Finally, to ensure frequency-error tolerance, multiple score
Sω

n for different value of ω are computed in parallel. The number of rotation
hypotheses tested in parallel from −π to π is denoted pω, ranging from 1 to
theoretically any natural integer, but limited to 8 in practice, the detection
performance gain being minimal in regard to the resulting cost in complexity
for higher values [5]. The overall architecture that allows to compute a score Sω

n

is given in Fig. 2, and is called Score Processing Unit (SPU). The two existing
SPU architectures are summarized in the next section.

3 Score Processing Units

The legacy method [14] to compute the correlation (�P0 in Fig. 2) is depicted in
Fig. 3. This method, although proven and well documented, is not well suited for
continuous processing of incoming samples due to its computational complexity.
Indeed, to achieve the best performances (i.e. pΔ = q), for each arriving sample,
the q long FFT and IFFT must be reprocessed (except for the FFT of P0, which
is constant and thus can be stored in memory). Lowering pΔ may lessen the
computation complexity, without impacting detection performances too much.
In this case, a new correlation is produced every q

pΔ
new received data.

An optimized method to compute the correlations is introduced in [5]. This
approach computes the correlation in the time domain, using

Lω
n(k) = Lω

n−1(k − 1) + pkdω
n , (4)

with dω
n = (y(n)−y(n−q)ej ω

q)e−jn ω
q and pk = Pk(q−1), for k = 0, 1, . . . , q−1.

This new method, depicted in Fig. 4, is purely iterative, and uses the former
correlation result to compute the new one. To this end, an accumulation window
sliding through time is created. The q values of each correlation resulting from
those of the previous one, correlations must be fully computed for every sample.

Fig. 2. Complete elementary score processing unit for a given rotation ω.

Efficient Implementations of a QCSP Communication System 33

Fig. 3. FFT-based SPUs and their associated Δ-parallelism and ω-parallelism

Fig. 4. Time sliding SPUs and their associated Δ-parallelism and ω-parallelism

Correlations being computed at each new sample, it results in a fixed pΔ of q
for time sliding SPUs.

The complexity of each correlation method is summarized in Table 1. These
complexities are currently reported in terms of floating-point arithmetic/storage.
All proposed method complexities are directly proportional to pω, so this param-
eter has not been included in Table 1.

Different setups were considered for the correlation methods. Indeed, FFT
SPUs can either distribute or share the memory needed by packers. Since the
first SPU already stores the q last samples, the second just need q

2 samples more,
the third and the fourth need q

4 in addition, and so on. Concerning the time
sliding method, the last multiplication can be simplified by a simple conditional
negate operation, P0 being a {−1+1} binary sequence in the temporal domain.
It reduces by a factor q the number of complex multiplications (this method
reported as Time Sliding* in Table 1).

According to the values reported in Table 1, the time sliding architecture has
the lowest complexities when pΔ = q is considered (the best detection case).
However, pΔ can be lowered when using FFTs, which can result in a lower
complexity at the cost of low impact on detection performances. Exploration

34 C. Monière et al.

of impact the of pΔ value is detailed in [5]. At this point, no solution seems
clearly better than the other for real time implementation, because even if less
computations are required by the time sliding method, it also offers a lower-level
parallelism. This aspect is discussed in the following section.

4 Parallelization Strategies Applied to Detection Task

The detection task is the most demanding task of the receiver. Indeed, it pro-
cesses all received samples with complex detection algorithms. To achieve real-
time performances, the two detection methods must be parallelized to benefit
from multicore or FPGA features. Currently, the increasing processing perfor-
mance of multi/many-core devices, associated with easy-to-use programming
models [6,12], made the implementation of prototypes or real communication
systems possible. A software-based implementation may not achieve throughput
and energy efficiency of ASIC/FPGA implementations. However, it provides
flexibility, scalability and enables rapid prototyping for digital communication
systems. Nevertheless, achieving high performances is challenging and required
algorithm parallelization efforts.

Table 1. Complexity comparison depending on pΔ value (pω = 1)

Method pΔ value Add Multiply Memory

FFT [1, q[2pΔq log2(q) pΔq(log2(q) + 2) (pΔ−1
pΔ

+ pΔ)q

(distr. memory) q 2q2 log2(q) q2(log2(q) + 2) q2 + q + 1

FFT [1, q[like FFT like FFT
∑log2(pΔ)

i=0
q
2i

(shared memory) q like FFT like FFT 2q − 1

Time Sliding q q(1 + q) q2 2q

Time Sliding* q q(1 + q) q 2q

Several parallelism levels have been identified and reported. However, the
parallelization levels and strategies are influenced by the score method used,
the parameters, and the chosen implementation target. The current section first
focuses on identifying the system inherent parallelism levels and then details the
strategies used for software and hardware targets.

4.1 System Inherent Parallelism

Based on the system description and on Figs. 3 and 4, two coarse grain paral-
lelism levels are unmissable:

1. the Δ-parallelism (//Δ), related to pΔ,
2. the ω-parallelism (//ω), related to pω.

Efficient Implementations of a QCSP Communication System 35

The pair pΔ (in {1, 2, 4, . . . , q}) and pω (in {1, 2, . . . , 8}) impacts on
detection performances and on system complexity [5]. Computations performed
in pΔ × pω branches are data independent, allowing fully concurrent evaluation.

A third coarse grain parallelism results from the signal oversampling. It is
related to the oversampling factor O (thus noted O-parallelism). It could lead to
the execution of O detectors in parallel, each associated with one oversampling
hypothesis.

The three coarse grain parallelism levels enable a large set of setups. Indeed,
the overall detection task can be seen as a single task or can be split up to
O × pΔ × pω parallel sub-tasks.

4.2 Software and Hardware Parallelization

Nowadays, a software platform offers at least two parallelization features being
multi-threading (MT) and Single Instruction Multiple Data (SIMD). First, to
take advantage of MT, sub-tasks that can be executed in parallel are encapsu-
lated into threads. Threads are especially efficient for coarse grain-level paral-
lelism, involving small interdependent tasks or repetitive processing of different
data. This is typically the case for //O, //Δ (only with FFT-based SPUs) and
seems to be the case for //ω, regardless of SPU variations. However, as high-
lighted in the experimentation section, it is not straightforward when subtask
complexity is quite low (due to start/join time penalties). At the opposite, SIMD
vectorization is involved at the lowest level and requires identical computations
that can be applied to multiple data simultaneously. This is exactly the case
for //Δ in time sliding SPUs. Each correlation kernel can be seen as a parallel
computation for each chip of P0. FFT-based SPU can also benefit from SIMD
vectorization using, for instance, the FFTW3 library [10] that takes advantage
of such features.

An FPGA device offers more parallelization opportunities than multicore.
Indeed, processing elements are designed according to the task specification. It
enables to manage easily and efficiently low-level parallelism using sequential,
semi-parallel or fully parallel architectures internally. Then, at a higher level,
a heterogeneous set of custom processing elements can be allocated to manage
sub-tasks concurrently. However, a massive parallelism strategy consisting of
duplicating the processing elements is strongly limited by the amount of FPGA
resources. Consequently, controllers, memories and logical glue should be added
to the system to manage the spatial or temporal reuse of the processing elements.
Different SPU trade-off solutions were designed. In all of them, O × pω parallel
subsystems are allocated for throughput performance reasons as discussed in the
experimental section.

5 Implementation Results

The research project aims to implement a complete QCSP communication sys-
tem. This paper is focused on the transmitter on one hand, and on the first

36 C. Monière et al.

stage of reception, the detection task, on the other hand. Currently, multiple
targets are investigated for prototyping and deployment purpose. The Radio-
Frequency (RF) related tasks are performed by Ettus Software-defined Radio
(SDR) devices. Purposes of the resulting system are to validate the QCSP wave-
form, and to produce implementation complexity metrics. In this section, trans-
mitter performance levels are first reported. Detection-related performance levels
are detailed in a second time.

5.1 Transmitter Implementations

The QCSP waveform improves the communication efficiency by removing the
need of a preamble. It is an interesting feature for IoT devices, since those are
power constrained low-end systems. A performance evaluation of the emission
stack was done. It includes a NB-LDPC encoder, a CCSK mapper, a BPSK
modulator and over-modulator as shown in Fig. 1. From now on, sent data consist
of a word of 120 bits, or K = 20 symbols of p = 6 bits, leading to the use of
q = 26 = 64. The NB-LDPC code rate is Rc = 1

3 , which results in an emitted
frame of N = 60 symbols. These values give an effective code rate Reff = 1

32 for
the communication link, and results in a QCSP frame of 3840 chips.

Table 2. Performance of CCSK software stack on ARM cores.

Target Clock Length Chip rate Bit rate Latency

Board/CPU (GHz) (bits) (MChip/s) (Mbps) (μs)

Cortex-A53 1.4 120 89 2.78 43

Cortex-A72 1.5 120 200 6.25 19

Table 3. Performance of CCSK hardware stack on Xilinx FPGA.

Target Clock Arch. Chip rate Bit rate Latency Usage

Name / Serial (MHz) (id) (MChip/s) (Mbps) (μs) FF LUT BRAM

Artix 7 100 1 310 9.7 12 870 958 11

xc7a100tcsg324-1 2 86 2.7 88 374 401 12

Spartan 7 100 1 310 9.7 12 870 958 11

xc7s50ftgb196-1 2 96 3.0 80 373 409 12

The software stack was described in C language without leveraging MT nor
SIMD optimizations. For evaluation purpose, a set of low-end ARM CPU present
on Raspberry Pi boards were selected. Their properties and measured perfor-
mance levels are provided in Table 2. The achieved information throughput (i.e.

Efficient Implementations of a QCSP Communication System 37

the emission of a frame) on the ARM Cortex-A72 reaches up to 6.25 Mbps.
The latency needed to process a frame is equal to 19 µs. Such high through-
put on an embedded CPU is due to the low complexity of the encoding and
modulation stages. Indeed, the cost of CCSK mapping is low since it is only a
rotation, efficiently done by memory remapping and memory copy operations.
The throughput and latency parameters measured on the other ARM core are
lower, but remains high for the IoT context.

A solution to reduce transmitter power consumption is to design a dedi-
cated circuit to implement the transmitter stack. Consequently, a High Level
Synthesis (HLS) friendly C stack description has been designed. Thanks to fast
design exploration features provided by the Vivado HLS tool, different hardware
implementations have been designed for several low-end FPGAs. The hardware
complexity and the latency values are reported in Table 3. Two types of archi-
tectures are presented. They were obtained by inserting pragma directives, and
offer different throughput and complexity trade-offs. The slowest hardware stack
(Arch. 2 on Artix 7) is 15× more efficient than the best ARM-based implemen-
tation and consumes only 401 LUTs, 374 FFs and 12 BRAMs.

These hardware results highlight the low complexity feature of the transmis-
sion process for software and hardware based implementations. The QCSP trans-
mission stack has both low complexity and throughput above 1 Mbps, largely
fulfilling, for instance, the LPWAN requirements [1].

5.2 Detector Implementations

The receiver system was implemented on CPU and FPGA targets, however in
this case high-end devices are used in line with the much higher computational
complexity. Two distinct high-end devices were targeted for the evaluation of the
throughput and latency performances of the receiver: an Intel Xeon CPU and
a Xilinx Kintex 7 xc7k410tffg900-1, which is the FPGA bundled in the Ettus
X310 Universal Software-defined Radio Peripheral (USRP), used as RF receiver.
In any case, the //O is dealt by using O detectors in parallel, so only the results
for one detector are reported in this section.

Software Detector. The communication system reported in Fig. 1 has been
described in C++14 language. The software detector has been implemented for
the two detailed SPUs variations (FFT and time sliding), for several values of pΔ

and pω, and using two configurations for the time sliding. The high-end multi-
core system that has been selected for benchmarking is composed of a dual
socket Intel Xeon Gold 6148 CPU. It has 256 GB of RAM memory. Each Xeon
processor is composed of 20 physical processor cores that share a 28160 KB L3
cache memory. The working frequency of the CPUs is 2.60 GHz but the turbo-
boost feature enables cores to run up to 3.70 GHz when the heat dissipation
constraint is met. In this system description, the data values are manipulated
using single precision elements to avoid precision issues involved by fixed point
arithmetic. Consequently, the 12-bit data received from the USRP are converted
to float elements.

38 C. Monière et al.

The parallelization strategy described in the previous section was applied
to the C++ source codes. For FFT SPUs, the optimized library FFTW3 [10] is
called. This library has CPU detection capabilities, which allows it to execute
efficiently the FFTs. It internally uses all applicable CPU features (MT, SIMD,
and others). //Δ is implemented using the OpenMP API, with the FFT shared
memory approach described in Sect. 3. The use of OpenMP has been tested for
//ω as well. However, despite our best efforts, it always resulted in a slower
implementation.

At the opposite the time sliding correlation method is implemented only
thanks to handmade C/C++ codes. The sources are written using floating point
values as well, but first as close to the algorithm than possible. Software descrip-
tion was written in a way that takes advantage of GCC auto-vectorization fea-
ture, with even some specific software parts finely tuned with intrinsic SIMD
instructions.

Measured throughputs for different setups are reported in Table 4. Through-
put and latency were measured using the C++14 Chrono API. In Table 4 the MT
FFT uses pΔ threads. As it can be seen, the throughput performance depends
on the correlation method applied and the selected parameters.

Table 4. Chip rates, bit rates and latencies for different sets of parameters, with
N = 60, q = 64 and an effective rate Reff = 1

32
.

Method pΔ pω Chip Rate Bit Rate Worst Latency Best Latency

(MChip/s) (kbps) (ms) (ms)

FFT 8 4 2.2 69 3.5 1.7

8 1.3 41 5.8 2.9

16 4 1.1 34 6.8 3.4

8 0.68 21 11 5.7

MT FFT 8 4 5.1 160 1.5 0.77

8 4.1 130 1.9 0.93

16 4 3.8 120 2 1

8 3.1 97 2.5 1.2

Time Sliding 64 4 2.4 74 3.2 1.6

8 1.4 43 5.4 2.7

Time Sliding (optimized) 64 4 3.3 100 2.4 1.2

8 2.0 63 3.7 1.9

As expected, throughput are lower than transmitter ones, the receiver process
being more complex than the transmitter one [14]. On one hand, executed on
a single thread, the FFT-based detector is the slowest, achieving at most 2.2
MChip/s, while going as low as 0.64 MChip/s when pΔ = 16 and pω = 8. On
another hand, the throughput is improved up to 5.1 MChip/s by dedicating one

Efficient Implementations of a QCSP Communication System 39

physical processor core for each pΔ filter. Up to 160 kbps of information can
be processed as shown in Table 4 (MT FFT). Multi-thread execution provides,
in this configuration, a 2.3× speed-up that does not scale with pΔ value. This
performance gap is caused by the overhead incurred by the thread startup and
synchronization, due to the OpenMP API.

The time sliding approach, that provides the best detection performances
thanks to pΔ = q, achieves decoding throughput from 1.4 MChip/s when not
optimized, and up to 3.3 MChip/s when leveraging vectorization. A key point is
that the time sliding method only uses one processor core, and achieving nearly
the throughput of the MT FFT nevertheless, consuming at least 16× less CPU
resources.

The MT FFT based detection method delivers the highest throughput (5.1
MChip/s) when a large set of cores is available. However, this (pΔ, pω) setup
impacts on detection performance. Consequently, the time sliding approach offer-
ing higher detection performances and the same high throughput is the best
solution. These reception chip rates, which reach a few MChip/s (thus around a
hundred kbps), are already similar to those required in, for instance, the Low-
Rate Wireless Networks (LRWN) domain [1]. It makes the software receiver a
viable solution for the QCSP modulation evaluation.

Software implementations are bound to available CPU features. This is not
the case for hardware implementations, detailed in the next sections.

Hardware Implementations. The C++ detector source codes were rewritten
in C language using the authorized C synthesis subset [9] supported by Xilinx
Vitis HLS 2020 [17]. C descriptions, for both detection approaches, are config-
urable using #define and #pragma keywords, controlling the HLS design tool.
This highly configurable setup allows testing various architectural variation for
different values of pω or pΔ. These C models are synthesized using Vivado HLS
for the Xilinx Kintex 7 FPGA available in the X310 USRP.

Table 5. Hardware performance of the detector, clocked at 100 MHz

Method pΔ pω Chip Rate Bit Rate Usage

(MChip/s) (kbps) FF LUT BRAM DSP

FFT float 8 4 2.1 65 insufficient resources

FFT fixed 16b 8 4 2.6 81 25726 43206 950 380

8 2.6 81 51452 94468 1900 760

16 4 2.6 81 51452 94468 1900 760

8 2.6 81 102904 188936 3800 1520

Time Sliding float 64 4 9.1 284 144064 80836 79 383

8 9.1 284 insufficient resources

40 C. Monière et al.

Two variants were developed to implement the FFT-based architecture. They
were designed with high throughput at all costs as objective, instantiating pω

processing sub-chains in parallel. They have task pipelining features and parallel
processing. The difference is that the first variant use floating-point arithmetic.
However, it was requiring too many resources to be put on the chosen target.
The second variant has thus been implemented with fixed-point arithmetic, with
conservative quantification, to eliminate any risk of performance loss. The FFT
models used are derived from work presented in [11]. The floating-point FFT
detector reaches 2.1 MChip/s before place and route stage, the same throughput
as its software single-core counterparts. The failure to meet the resource con-
straints was expected, since floating-point arithmetic is known to cause issues
on hardware implementations. The fixed-point variant performed slightly bet-
ter, reaching a throughput of 2.9 MChip/s, this time without exceeding available
FPGA resources.

The time-sliding architecture has also been described using pipeline and par-
allel task execution approaches, as the FFT-based one. However, using the sim-
plification mentioned in the previous section, the computational complexity at
//Δ is significantly lower. This resulted in a throughput 3× faster than the best
FFT implementation, despite the use of floating-point arithmetic. More impor-
tantly, its throughput is 1.8× higher than the best software alternative, the MT
FFT, which was set up with pΔ = 8, while the hardware time-sliding detector
has a pΔ = 64, resulting in much higher detection performances. Unfortunately,
for pω = 8, it failed to meet the resource constraints. To solve this issue and to
improve further the architecture efficiency, a fixed-point implementation of the
time sliding detector architecture is planned.

6 Conclusion

The paper demonstrated that the QCSP emission and detection tasks can be
implemented in real time, allowing reliable transmissions at low SNR without
the need of a preamble. The resulting implementations reached throughput from
a few dozen kbps to a few hundred kbps, compatible with the LPWAN context,
on multicore and FPGA targets. They are especially suitable in a wireless sensor
network scenario, with low-end sensor nodes sending data to a higher-end server
node. Aside from the score function simplification, this paper also established
the time sliding approach as the best to implement the QCSP detection, and
detailed several ways to implement it. In the future, a fixed-point version of
the time-sliding hardware implementation will be developed to reduce hardware
cost and improve the throughput. In parallel, the remaining stages of the QCSP
receiver will be implemented to have complete communication system.

Efficient Implementations of a QCSP Communication System 41

References

1. IEEE Std 802.15.4-2020: IEEE Standard for Low-Rate Wireless Networks (2020)
2. Abassi, O., Conde-Canencia, L., Mansour, M., Boutillon, E.: Non-binary low-

density parity-check coded cyclic code-shift keying. In: Proceedings of WCNC,
Shanghai, China, April 2013. https://doi.org/10.1109/WCNC.2013.6555196

3. Azari, A., al.: Grant-free radio access for short-packet communications over 5G
networks. In: Proceedings of GLOBECOM (2017)

4. Bloessl, B., Dressler, F.: mSync: physical layer frame synchronization without
preamble symbols. IEEE Trans. Mob. Comput. 17(10), 2321–2333 (2018)

5. Camille, M., Kassem, S., Le Gal, B., Boutillon, E.: Time sliding window for the
detection of CCSK frames. In: Proceedings of SiPS. IEEE (2021)

6. Checko, A., et al.: Cloud RAN for mobile networks - a technology overview. IEEE
Commun. Surv. Tutorials 17(1), 405–426 (2015)

7. Dillard, G., et al.: Cyclic code shift keying: a low probability of intercept commu-
nication technique. IEEE Trans. Aerosp. Electron. Syst. 39(3), 786–798 (2003)

8. Durisi, G., et al.: Toward massive, ultrareliable, and low-latency wireless commu-
nication with short packets. Proc. IEEE 104(9), 1711–1726 (2016)

9. Fingeroff, M.: High-Level Synthesis Blue Book. Xlibris Corporation, Bloomington
(2010)

10. Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

11. Kastner, R., Matai, J., Neuendorffer, S.: Parallel Programming for FPGAs. ArXiv
e-prints (2018)

12. Mavromoustakis, C.X., Mastorakis, G., Dobre, C. (eds.): Advances in Mobile Cloud
Computing and Big Data in the 5G Era. SBD, vol. 22. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-45145-9

13. Polyanskiy, Y.: Asynchronous communication: exact synchronization, universality,
and dispersion. IEEE Trans. Inf. Theory 59(3), 1256–1270 (2013)

14. Saied, K.: Quasi-Cyclic Short Packet (QCSP) Transmission for IoT. Theses, Uni-
versité Bretagne Sud, March 2022

15. Saied, K., Ghouwayel, A., Boutillon, E.: Time-synchronization of CCSK short
frames. In: Proceedings of WiMob (2021)

16. Walk, P., et al.: MOCZ for blind short-packet communication: practical aspects.
IEEE Trans. Wireless Commun. 19(10), 6675–6692 (2020)

17. Xilinx: Vitis High-Level Synthesis User Guide UG1399 (v2021.1), June 2021

https://doi.org/10.1109/WCNC.2013.6555196
https://doi.org/10.1007/978-3-319-45145-9

Towards Lightweight Deep-Learning
Techniques

Dynamic Pruning for Parsimonious CNN
Inference on Embedded Systems

Paola Busia1(B), Ilias Theodorakopoulos2, Vasileios Pothos2, Nikos Fragoulis2,
and Paolo Meloni1

1 Università degli Studi di Cagliari, Cagliari, Italy
paola.busia@unica.it

2 Irida Labs, Magoula, Greece

Abstract. As a consequence of the current edge-processing trend, Con-
volutional Neural Networks (CNNs) deployment has spread to a rich
landscape of devices, highlighting the need to reduce the algorithm’s com-
plexity and exploit hardware-aided computing, as two prospective ways
to improve performance on resource-constrained embedded systems. In
this work, we refer to a compression method reducing a CNN computa-
tional workload based on the complexity of the data to be processed, by
pruning unnecessary connections at runtime. To evaluate its efficiency
when applied on edge processing platforms, we consider a keyword spot-
ting (KWS) task executing on SensorTile, a low-power microcontroller
platform by ST, and an image recognition task running on NEURAghe,
an FPGA-based inference accelerator. In the first case, we obtained a
51% average reduction of the computing workload, resulting in up to
44% inference speedup, and 15% energy-saving, while in the latter, a
36% speedup is achieved, thanks to a 44% workload reduction.

Keywords: Convolutional Neural Networks · Pruning · Hardware
acceleration

1 Introduction

Convolutional Neural Networks (CNNs) have reached outstanding levels of accu-
racy [1], favoring their success in multiple application fields, from natural lan-
guage processing, to image classification, and object detection. A turning point
was represented by the design of deeper and complex architectures [2], hav-
ing pushing requirements in terms of storage and computing capabilities. Their
deployment on edge resource-constrained systems, encouraged by bandwidth,
security, and privacy concerns, poses many challenges and has been a prolific
field of research. On the one hand, more efficient hardware architectures, specif-
ically targeting neural networks, have been designed. Industry and academia
have proposed multiple dedicated processors and accelerators [3–7] and embed-
ded GPUs [8], and heterogeneous computing systems exploiting FPGAs and
All-Programmable-SoCs to combine parallelism and flexibility [9,10]. On the
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 45–56, 2022.
https://doi.org/10.1007/978-3-031-12748-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-12748-9_4

46 P. Busia et al.

other hand, optimized software libraries, specifically targeting a class of devices,
have been developed and released, such as CU-DNN for NVIDIA platforms [11],
CMSIS [12], targeting class-M ARM low-power microprocessors, and ARM-NN
[13], targeting more high-end architectures. Moreover, multiple approaches have
been focusing on the simplification of the computing model, to reduce the foot-
print, or the computing workload of CNNs [14,15].

In this work, we mean to leverage the combination of such approaches. We
take as a reference a technique, proposed in [16], performing an online pruning
of a CNN’s connections, reducing the computational load associated with con-
volutional layers, based on run-time processing of the input data. We test its
implementation on a resource-constrained commercial platform based on ARM
Cortex-M, the ST SensorTile, considering a CNN for a keyword spotting (KWS)
task, and evaluating the obtained improvement in terms of execution time and
power consumption. We also present an image recognition use case, exploiting a
custom network architecture built for CIFAR-10 [17], to evaluate the feasibility
of dynamic pruning on a hardware-assisted computing platform, considering as
a target NEURAghe, an FPGA-based inference accelerator.

2 Related Work

The efficient execution of CNNs on resource-constrained systems requires care-
ful optimization, both of the computational workload and of the number of
accesses to the off-chip memory. The community has addressed this matter by
either designing shallower and optimized network architectures [18,19], or by
developing several compression techniques, reducing the number of network’s
parameters or the precision of their representation [20]. In Table 1 we list some
of the most recent works on network compression. For each one, we define in
Column 1 the dominant compression method resulting in most of the reported
advantages, while in Column 2 we report whether the compression strategy is
static or dynamic, thus evaluated at runtime based on the complexity of the
input to be classified. In Column 3 we define the granularity and structure level
of the pruning action. In Column 4 we report the performance metrics consid-
ered to evaluate and refine the CNN architecture, and finally in Column 5 we
list the hardware architectures considered for the analysis.

In [21], the authors present an hybrid neural network, combining the advan-
tages of Strassen representation for matrix multiplications [24] and of Bonsai
decision trees [25]. Their proposed compression method exploits ternary repre-
sentation for most of the weights in convolutional layers, keeping only a few
full precision weights, which can be further quantized to 16 or 8-bit precision.
The ST-HybridNet reaches 94.71% accuracy, using 2.4 MOPS and requiring
a 41.8 kB memory footprint. The compression method exploited in this work
is static, and its advantages are mainly due to compression through quantiza-
tion rather than connections pruning, and the possibility to replace most of the
resource-hungry multiplications with additions. Thus, it can be considered as an
orthogonal technique to classical pruning methods, and especially to dynamic

Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems 47

Table 1. Comparison with state of the art works on CNN compression.

Work Compression Static/ Structure Performance Hardware

Strategy Dynamic Level Metric Platform

Transformation, Accuracy,

[21] Quantization Static not applicable OPS, ✗

Footprint

Pruning, Group of Accuracy, ASIC,

[22] Quantization Dynamic channels OPS, GPU,

Power CPU

Group of Accuracy,

[23] Pruning Dynamic channels OPS, GPU

Power

Single Accuracy, FPGA,

this work Pruning Dynamic channel inference time, µC

Power

ones. Furthermore, the advantages of compression are only indirectly analyzed
in terms of OPS and footprint reduction, which cannot always be translated into
performance improvements, depending on the flexibility of the target library.

In [22], the authors explore channel gating as a dynamic pruning method, to
reduce at runtime the network’s complexity based on the input’s content. Given
a baseline network architecture, two different paths are identified, a base path,
and a conditional path. The first one is always computed, and such a partial sum
is exploited as an activation rule for the conditional path, which is either skipped
or selectively executed. In the case of skipped computations, the partial sum is
used as an approximation of the final value, thus the workload reduction is not
inherited by the successive layers. Thus, in the resulting channel gating networks
(CGNets) a structured pruning is enforced, which allows for efficient inference,
even on a hardware accelerator. The authors report a 2.8× FLOPS reduction on
ResNet-18, resulting in a 2.3× inference speedup on their CGNet accelerator.

In [23], the authors present a dynamic pruning strategy based on reinforce-
ment learning, exploiting a decision network to evaluate the pruning actions
on the convolutional layers of the network. For each layer, the output features
are grouped into a certain number, k, of sets, and the decision establishes how
many of such ordered sets are to be evaluated based on the desired trade-off
between performance and accuracy. Thus, it is still possible to define a base and
a conditional path, and the enforced pruning can be defined as structured.

In this work, we consider a dynamic pruning technique [16], which can be
exploited concurrently with other compression methods, to further reduce the
workload of an efficient network based on the content of the specific input to be
processed. Compared to [22,23], we focus on a less structured pruning strategy,
where the activation rule is applied independently to the single output features

48 P. Busia et al.

of a convolutional layer, and all the combinations can be in theory obtained. The
compression effect also impacts the following layers, resulting in fewer valid input
features to be computed in the successive convolutions. The work we reference
[16] represents an extreme case of dynamic pruning, thus we mean to evaluate
whether the resulting OPS reduction can still produce performance improve-
ment. We consider an efficient state-of-the-art library, as CMSIS-NN, enabling
it to support the selective evaluation of convolutional kernels, and finally evalu-
ate the advantages of the dynamic pruning on on-hardware direct measurements
of inference time and energy consumption. We also consider a convolution accel-
erator implemented on FPGA and evaluate how the workload reduction impacts
its performance.

In the following, we show that significant performance improvement can be
achieved by introducing the required support in the hardware architecture or
software library performing the convolutions. Our purpose is to:

– test the pruning method in [16] on two use-cases, KWS and image recognition;
– evaluate its effect on two reference hardware platforms, the ST SensorTile

and NEURAghe;
– present a method to estimate the Parsimonious Inference’s (PI) impact on

power consumption.

3 Reference Methodology

The common inspiration for pruning methods is CNN computations are often
redundant, and some of them can be skipped with little effect on the accuracy.
[16] focuses on convolutional layers, which represent the main source of workload
for several CNN architectures, and aims at adapting the complexity of the net-
work to the particular item to be classified. The approach exploits a specialized
training procedure, where the network model is changed into one enforcing PI
through dynamic pruning. As shown in Fig. 1, the network architecture is dis-
torted through the insertion of a dedicated software module, the Learning Kernel
Activation Module (LKAM), which can be associated with one or more convolu-
tional layers along the network. The LKAM reproduces a simple network model,
consisting of a 1× 1 convolution, average pooling, and a sigmoid activation,
followed by a threshold step. During the inference execution, this lightweight
processing is applied to the convolutional layer’s input features, resulting in a
set of activation flags, provided as an additional input. In detail, given a layer
with OF output features, the LKAM computes OF activation flags. At runtime,
convolution is evaluated only on the active output features, thus skipping the
computations associated with particular sets of weights. Since the LKAM output
is data-dependent, different levels of deactivation can be obtained for different
input items. The computation savings also involve the following layer, which
will receive a reduced number of valid input features. The LKAM parameters
are learned during the training procedure, aiming at preserving the network’s
accuracy while maximizing the sparsity of the activation flags. To that end, the

Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems 49

Fig. 1. a) Network architecture for the KWS use-case; b) Parsimonious model obtained
through retraining with LKAMs.

chosen loss function, Lt(w, b), needs to be modified through an additional term,
indicated as Laug(sw), to consider the LKAM output.

L(w, b, sw) = Lt(w, b) + Laug(sw)

Such new term is defined as:

Laug(sw) =
Gi

2m

∑

i

|swi|

where sw represents the LKAM output before the threshold is applied, m is the
length of such vector and Gi is a gain factor, that can be tuned independently
for each layer of the network. The tool output is a set of new models, integrating
different numbers of trained LKAMs in different positions. When a target accu-
racy is set, the selected model is the one with the highest deactivation percentage
within the target accuracy.

When trying to exploit this technique on hardware-aided or parallel com-
puting devices, the main challenge is posed by the need to selectively perform
computations, and keep track of the deactivated features when retrieving the
appropriate kernels to evaluate across the various layers of the network. A pos-
sible drawback is represented by the additional storage space required by the
LKAM’s parameters. Loss of precision, due to the need for data quantization,
is another issue to be considered in both the implementations evaluated in this
paper.

4 Reference Computing Platforms

We present in the following the main features of the platforms considered in this
paper, the ST SensorTile and NEURAghe, and the modifications we introduced
to support PI.

50 P. Busia et al.

4.1 SensorTile

The SensorTile is an IoT module, developed by STMicroelectronics, embedding
an 80 MHz ARM Cortex-M4 32-bit low-power micro-controller. The system archi-
tecture exploits a Real-Time lightweight Operating System (RTOS), supporting
multi-threading and scheduling of the different application tasks on defined tim-
ings. To reduce power consumption, it can switch between two main operating
states, run mode and sleep mode, exploited whenever possible in our application,
through a specific idle task that is entered every time none is pending.

Support for PI. Given the real-time constraints of the KWS task on Sen-
sorTile, we exploited CMSIS, a library specifically targeting Cortex-M Pro-
cessing Cores, including several NN utilities and designed to maximize perfor-
mance [12]. To obtain the results presented in the last section, we used the
basic version of the 8-bit square convolution function provided by the library,
“arm convolve HWC q7 basic” and customized it to make it able to receive and
use the deactivation information produced by the LKAMs. As a first attempt at
supporting PI, after scanning the activation flags we split the convolution exe-
cution into separate layers, of width given by the number of consecutive active
output features.

As shown in Fig. 2, where the execution time of layer Conv2 in Table 2 is
plotted as a function of the kernels’ deactivation percentage, such a solution
is not very efficient, preventing the processor to take advantage of the opti-
mized sequence of operations. As an alternative, we acted on the function itself,
to introduce the selective evaluation of computational units, while preserving
the computational efficiency. We replaced the weight tensor with an array of
addresses, each pointing to the active filtering kernels. During convolution exe-
cution, the read pointer of weights is assigned a new value from the next location
of the addresses tensor. As can be derived from Fig. 2, introducing kernel deacti-
vation inside a knowingly optimized function allows obtaining a linear speedup
with the deactivation percentage.

4.2 NEURAGHE

NEURAghe is a CNN inference accelerator that can be ported with different
parameters on different FPGA devices [10]. The results disclosed in this work
come from its implementation on a Xilinx Z-7020 SoC mounted on a Zedboard
by Digilent. It exploits a Convolution Engine (CE) embedding a matrix of multi-
pliers, and a programmable micro-controller, efficiently scheduling convolutions
and data transfers towards the local storage space accessed by the CE, dedi-
cated to the convolutional weights and activations. In this work, we only refer to
the hardware acceleration of convolutional layers, with kernel size 3× 3 or 5× 5.
When receiving the offload command, the micro-controller is provided with the
layer’s parameters, and the memory addresses from which to read the network’s
parameters and write the computed results. According to the internal structure
of the CE and the size of the local storage space, the micro-controller groups
the layer’s input and output features, and handles a task-level pipeline, made

Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems 51

Fig. 2. Execution time of Conv2 layer in the KWS network model, considering differ-
ent percentages of deactivated kernels and exploiting the two solutions developed to
support kernel deactivation.

up of three main stages: 1) load of weights and input features; 2) setup and run
of the CE; 3) store of the computed results. The disclosed results refer to a CE
implementation embedding a single SoP module, processing 2 output pixels per
cycle, and performing three convolutions with 3× 3 filtering kernels, or one with
5× 5 kernels, in 16-bit fixed-point precision.

Support for PI. To efficiently support PI, the hardware/software architecture
needs to selectively load only the sets of weights corresponding to active kernels,
while exploiting at best the hardware resources, by setting up the engine with the
optimal number of inputs and weights, from the scheduling point of view. First, the
layer’s description provided to the micro-controller is enriched with two fields, car-
rying kernel activation information, and consisting of two arrays of flags, storing
the output of the LKAM associated with the current layer, and with the preceding
one. Given such information, the micro-controller needs to program the CE to only
perform the computations corresponding to a valid input feature and active out-
put feature. Furthermore, in the baseline architecture, weight transfers are handled
in batches, while PI requires treating each kernel independently, to freely discard
those that have been deactivated. To enable this, we changed weight transfer gran-
ularity and added the memory-mapped programmable registers needed to control
the number of elements to be expected per transfer, and the position of the element
that should be interpreted as bias. We also introduced some changes in the mid-
dleware executed by the micro-controller, to evaluate the activation flags before
the data transfers are programmed. An outer loop scans the flags associated with
the input and output features: only when both flags are set to true the address is
evaluated, and the transfer is programmed. Finally, we introduced two inner loops
on the activation flags, to keep track of the number of programmed transfers, until
the necessary number of features, required to run the accelerator at full speed, has
been reached.

5 Experimental Results

5.1 KWS on SensorTile

To evaluate the advantages of PI in terms of power consumption, we selected a
KWS use-case, deployed on ST SensorTile. Classification is performed through a

52 P. Busia et al.

Table 2. Architectural model of the reference CNN for the KWS task.

Conv1; Input Size = 32 × 32 Kernel Size = 3 × 3

Convolution Input Features = 1 Output Features = 32

Conv2; Input Size = 16 × 16 Kernel Size = 3 × 3

Convolution Input Features = 32 Output Features = 64

Fc1; Fully Input Size = 64 × 8 × 8 Output Size = 64

Connected

Fc2; Fully Input Size = 64 Output Size = 10

Connected

Table 3. Accuracy of the baseline and PI version of the CNN for KWS.

Accuracy

Baseline 94,43%

PI 90,54%

Table 4. On-hardware measurements of power consumption and energy contributions
of the examined tasks, performed on the ST SensorTile.

Idle Power: Pidle = 28,78 mW

Audio Processing Energy Contribution: Epr = 3,48 mJ

CNN Classifier Energy Contribution: Ecnn = 8,67 mJ

simple CNN model architecture, trained on the Speech Commands dataset [26],
and whose structure is described in Table 2. We refer to the model enriched with
an LKAM associated with Conv2 as the PI model, resulting in the accuracy drop
reported in Table 3. Figure 3a reports the different percentages of deactivation
obtained over the dataset, showing an average deactivation of 51% of the convo-
lutional kernels in Conv2, and evaluated on a 16-bit implementation. To assess
how power consumption is affected, we refer to an 8-bit implementation, running
on the reference platform. We exploited the CMSIS library [12], introducing the
modifications described in Sect. 4.1 to support the selective evaluation of kernels.
Figure 3b reports the inference time as a percentage of the baseline execution
time, considering the kernels activation percentages in Fig. 3a. To translate pro-
cessing time savings into a reduction of power consumption, we considered a
simple application model, involving three main tasks:

– Get Data, performing data acquisition with the desired sampling frequency;
– Audio Processing, evaluating the Mel-spectrogram of the sampled audio, pro-

vided as input to the CNN;
– CNN Classifier, executing the network model for recognition.

The audio processing is performed by evaluating 32 Mel features through 32
temporal frames, covering 1s of sampled audio. Considering real-time execution,

Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems 53

Fig. 3. a)Kernel deactivation percentage through the Speech Commands dataset, and
average deactivation; b)Percentage execution time over the baseline model execution
time, for different kernel activation levels; c)Percentage energy saving over the baseline
model power consumption, for different percentages of kernel deactivation.

Fig. 4. Real-time inference cycle, considering the baseline model and a case of 50%
deactivation in Conv2, allowing to save power by entering the sleep mode.

processing and classification need to be performed periodically. Since the audio
processing time was evaluated to be 104 ms at an 80 MHz working frequency,
and the worst-case inference time, required by the baseline model without deac-
tivation, is 290 ms, we considered a fixed execution period of 400 ms. When
no software task is executing, the RTOS switches the operating state from run
to sleep mode. As shown in Fig. 4, the idle time grows with the percentage of
kernel deactivation produced by the input. The effect on the system’s power
consumption can be estimated through a simple model [27]:

P = Pidle + Egd × fgd + (Epr + Ecnn) × fpr

where fpr is the execution frequency of processing and classification, while with
Epr and Ecnn we refer to the energy contribution of the different tasks, that add
up to the idle power consumption of the system. Table 4 reports the idle power
consumption and the energy contribution of the considered tasks, evaluated by
measuring with an oscilloscope the current absorbed by the device in different
working conditions. Figure 3c reports the energy consumption, as a percentage of
Ecnn in Table 4, based on the fixed deactivation patterns in Fig. 3a, and referring
to a loop execution of the CNN classifier. The results in this section show that
the examined pruning method can produce remarkable hardware performance
improvements, despite the high level of granularity.

54 P. Busia et al.

5.2 CIFAR-10 on NEURAGHE

Here we explore the feasibility of applying PI on a hardware assisted architecture,
considering an image recognition task executing on NEURAghe, and exploiting
a simple network model, LeNet, trained on CIFAR-10 [17]. The network struc-
ture is summarized in Table 5. The PI version of the model was obtained by
associating LKAMs to the second and third convolutional layers, with an accu-
racy drop of around 3%. Table 6 reports three test cases, producing different
deactivation patterns, and resulting in a different inference speedup, evaluated
considering: 1) software execution on ARM Cortex A9 processor (667 MHz); 2)
hardware execution exploiting NEURAghe’s CE. As shown in the Table, in the
case of software execution the additional overhead introduced by dynamic prun-
ing is completely compensated by the reduction of computations to be performed,
producing significant advantages in the overall execution. When convolutions are
handled on FPGA, kernel deactivation still results in performance improvement,
but it is less effective, because of a programming overhead, whose burden does
not depend on the size of the workload.

Table 5. Architectural model of the considered LeNet for CIFAR-10.

Conv1; Input Size = 32 × 32 Kernel Size = 5 × 5

Convolution Input Features = 3 Output Features = 32

Conv2; Input Size = 16 × 16 Kernel Size = 5 × 5

Convolution Input Features = 32 Output Features = 32

Conv3; Input Size = 8 × 8 Kernel Size = 5 × 5

Convolution Input Features = 32 Output Features = 64

Fc1; Fully Input Size = 64 × 4 × 4 Output Size = 64

Connected

Fc2; Fully Input Size = 64 Output Size = 10

Connected

Table 6. Kernel deactivation percentage in the three test cases, and PI execution
speedup on ARM Cortex A9 (667 MHz) and NEURAghe Convolution Engine on Xilinx
Zynq Z-7020.

Test 1 Test 2 Test 3

Conv 2 Conv 3 Tot Conv 2 Conv 3 Tot Conv 2 Conv 3 Tot

Deactivation 31.3% 31.3% 30.3% 43.8% 48.1% 45.3% 40.6% 40.6% 39.4%

ARM speedup 30% 27% 29% 43% 44% 43% 40% 36% 39%

CE speedup 19% 24% 22% 33% 36% 35% 31% 30% 30%

Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems 55

6 Conclusion

In this work, we presented the implementation of dynamic neural network prun-
ing through data-driven kernel deactivation on two resource-constrained plat-
forms, exploiting different computing units, SensorTile and NEURAghe. We
referred to two common application fields of CNNs, such as image recognition
and KWS, and considered custom network architectures. Referring to common
datasets, we found that the method allows an average deactivation of 51% of the
convolutional kernels in the KWS task. The experimental results show that the
reduced computational load creates the possibility to reduce the system’s power
consumption, up to 15% of energy-saving, corresponding to a 44% speedup. The
data on NEURAghe implementation show it is possible to exploit dynamic
deactivation even when adopting FPGA acceleration, although with less effective
improvements. In this case, a maximum 36% speedup due to a 44% deactivation
is obtained.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition

(2015)
3. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing

unit. In: ISCA 2017: Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 1–12, June 2017. https://doi.org/10.1145/3079856.
3080246

4. Azarkhish, E., Rossi, D., Loi, I., Benini, L.: Neurostream: scalable and energy
efficient deep learning with smart memory cubes. IEEE Trans. Parallel Distrib.
Syst. 22(2), 420–434 (2018)

5. Desoli, G., et al.: 14.1 a 2.9TOPS/W deep convolutional neural network SoC in
FD-SOI 28 nm for intelligent embedded systems. In: 2017 IEEE International Solid-
State Circuits Conference (ISSCC), pp. 238–239 (2017)

6. Movidius: Movidius neural compute stick: accelerate deep learning development at
the edge (2020). https://developer.movidius.com/

7. Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pp. 367–379 (2016)

8. NVIDIA: Nvidia deep learning accelerator (2020). https://developer.nvidia.com/
embedded/buy/tegra-k1-processor

9. Blott, M., Preusser, T., Fraser, N., Gambardella, G., O’Brien, K., Umuroglu, Y.:
FINN-R: an end-to-end deep-learning framework for fast exploration of quantized
neural networks. ACM Trans. Reconfigurable Technol. Syst. (TRETS) (2018).
https://doi.org/10.1145/3242897

10. Meloni, P., et al.: NEURAghe: exploiting CPU-FPGA synergies for efficient and
flexible CNN inference acceleration on Zynq SoCs. ACM Trans. Reconfigurable
Technol. Syst. (TRETS) (2018). https://doi.org/10.1145/3284357

11. NVIDIA: cuDNN (2020). https://developer.nvidia.com/cudnn
12. Lai, L., Suda, N., Chandra, V.: CMSIS-NN: efficient neural network kernels for

Arm Cortex-M CPUs. CoRR, abs/1801.06601 (2018). http://arxiv.org/abs/1801.
06601

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://developer.movidius.com/
https://developer.nvidia.com/embedded/buy/tegra-k1-processor
https://developer.nvidia.com/embedded/buy/tegra-k1-processor
https://doi.org/10.1145/3242897
https://doi.org/10.1145/3284357
https://developer.nvidia.com/cudnn
http://arxiv.org/abs/1801.06601
http://arxiv.org/abs/1801.06601

56 P. Busia et al.

13. ARM-NN (2020). https://www.arm.com/products/silicon-ip-cpu/machine-
learning/arm-nn

14. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.
In: ISCA 2016: Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 243–254, June 2016. https://doi.org/10.1109/ISCA.2016.30

15. Han, S., et al.: ESE: efficient speech recognition engine with sparse LSTM on
FPGA. In: FPGA 2017: Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pp. 75–84, February 2017. https://
doi.org/10.1145/3020078.3021745

16. Theodorakopoulos, I., Pothos, V., Kastaniotis, D., Fragoulis, N.: Parsimonious
inference on convolutional neural networks: learning and applying on-line kernel
activation rules. CoRR, abs/1701.05221 (2017). https://arxiv.org/abs/1701.05221

17. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009).
https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

18. Iandola, F.N., et al.: SqueezeNet: AlexNet-Level accuracy with 50x fewer param-
eters and <0.5 mb model size. CoRR, abs/1602.07360 (2016). http://arxiv.org/
abs/1602.07360

19. Zhang, Y., Suda, N., Lai, L., Chandra, V.: Hello edge: keyword spotting on micro-
controllers. CoRR, arXiv:1711.07128 (2017)

20. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: International
Conference on Learning Representations 2016, October 2015. https://arxiv.org/
abs/1510.00149

21. Gope, D., Dasika, G., Mattina, M.: Ternary hybrid neural-tree networks for highly
constrained IoT applications (2019)

22. Hua, W., Zhou, Y., De Sa, C., Zhang, Z., Suh, G.E.: Boosting the performance
of CNN accelerators with dynamic fine-grained channel gating. In: Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 52, pp. 139–150. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3352460.3358283

23. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural
Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://
proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-
Paper.pdf

24. Tschannen, M., Khanna, A., Anandkumar, A.: StrassenNets: deep learning with a
multiplication budget. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th Inter-
national Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 80, pp. 4985–4994. PMLR, 10–15 July 2018. https://proceedings.
mlr.press/v80/tschannen18a.html

25. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 KB
RAM for the internet of things. In: Precup, D., Teh, Y.W. (eds.) Proceedings
of the 34th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 70, pp. 1935–1944. PMLR, 06–11 August 2017.
https://proceedings.mlr.press/v70/kumar17a.html

26. Warden, P.: Speech commands: a dataset for limited-vocabulary speech recogni-
tion. CoRR, arXiv:1804.03209 (2018)

27. Scrugli, M.A., Loi, D., Raffo, L., Meloni, P.: A runtime-adaptive cognitive IoT node
for healthcare monitoring. In: Proceedings of the 16th Conference on Computing
Frontiers (CF 2019), pp. 350–357, April 2019. https://doi.org/10.1145/3310273.
3323160

https://www.arm.com/products/silicon-ip-cpu/machine-learning/arm-nn
https://www.arm.com/products/silicon-ip-cpu/machine-learning/arm-nn
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1145/3020078.3021745
https://doi.org/10.1145/3020078.3021745
https://arxiv.org/abs/1701.05221
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://doi.org/10.1145/3352460.3358283
https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.mlr.press/v80/tschannen18a.html
https://proceedings.mlr.press/v80/tschannen18a.html
https://proceedings.mlr.press/v70/kumar17a.html
http://arxiv.org/abs/1804.03209
https://doi.org/10.1145/3310273.3323160
https://doi.org/10.1145/3310273.3323160

DL-CapsNet: A Deep and Light Capsule
Network

Pouya Shiri(B) and Amirali Baniasadi

University of Victoria, Victoria, BC, Canada
{pouyashiri,amiralib}@uvic.ca

Abstract. Capsule Network (CapsNet) is among the promising classi-
fiers and a possible successor of the classifiers built based on Convolu-
tional Neural Network (CNN). CapsNet is more accurate than CNNs
in detecting images with overlapping categories and those with applied
affine transformations. In this work, we propose a deep variant of Cap-
sNet consisting of several capsule layers. In addition, we design the Cap-
sule Summarization layer to reduce the complexity by reducing the num-
ber of parameters. DL-CapsNet, while being highly accurate, employs
a small number of parameters and delivers faster training and infer-
ence. DL-CapsNet can process complex datasets with a high number of
categories.

Keywords: Capsule Networks · Deep CapsNet · Fast CapsNet

1 Introduction

Sabour et al. introduced Capsule Network (CapsNet) [1] as the new generation
of classifiers with several advantages over traditional Convolutional Neural Net-
works (CNNs). CapsNet is more robust to applying affine transformations and
detects images with overlapping categories easier than CNNs. CapsNet offers
competitive accuracy showing promising results on small-scale datasets such as
MNIST [2] and Fashion-MNIST [3]. On more complex datasets such as CIFAR-
10 and CIFAR-100 [4], however, the results are not as competitive. There have
been several works aiming at facilitating supporting datasets with a high number
of categories.

The basic computational unit of CapsNet is referred to as a capsule (a vec-
tor of neurons). CapsNet consists of a simple feature extractor including two
convolutional layers. The extracted features are then reshaped to vectors. These
vectors are multiplied by multiple matrices to produce the first level of cap-
sules referred to as Primary Capsules (PCs). The next layer of capsules (output
capsules) are generated out of PCs using an iterative algorithm called Dynamic
Routing (DR). In DR, all input capsules contribute to all output capsules but
with different weights. The output capsules are used for the classification. Cap-
sNet employs a simple decoder consisting of Fully-Connected (FC) layers to
regularize training by adding the reconstruction term to the loss function.
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 57–68, 2022.
https://doi.org/10.1007/978-3-031-12748-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_5&domain=pdf
http://orcid.org/0000-0002-8037-9481
https://doi.org/10.1007/978-3-031-12748-9_5

58 P. Shiri and A. Baniasadi

We propose a deep network to add support for more complex datasets. Mak-
ing networks deeper (stacking up layers) results in high generalization, and hence
is common. However, deeper networks have higher number of parameters (train-
able weights). This is critical as it affects the computation cost and the resources
required. Therefore, we take further measures to reduce complexity by develop-
ing a mechanism to reduce the number of capsules. This is achieved by replacing
multiple capsules with only a few using a summarization mechanism.

We introduce the Capsule Summarization (CapsSum) layer and summarize
the generated capsules into only a few. The reduction in the number of capsules
reduces the number of parameters and speeds up the network.

Deeper networks deeper usually have higher representation ability. There-
fore, we started by making the network deeper. Stacking several fully-connected
capsule layers with DR inferring the capsules from one layer to the next is com-
putationally expensive. Moreover, using the DR algorithm multiple times, leads
to poor learning in the intermediate layers [5]. However, there are different DR
alternatives, and as we show, employing a three-dimensional 3DR algorithm [6])
is a reasonable alternative.

We introduce Multi-Level Capsule Extractor (MLCE), that uses the 3DR
algorithm twice and includes two CapsSum layers. MLCE takes capsules as input,
and outputs a combination of high-level and low-level capsules. MLCE consists
of convolutional layers, CapsSum, and 3DR. It generates fewer capsules in two
levels that provide a robust part-to-whole representation and reduces the total
number of parameters in the network.

Networks based on CapsNet usually include a decoder to reconstruct the
input images and avoid over-fitting. In order to maintain accuracy, we carefully
employ an efficient decoder (class-independent decoder).

In summary, we propose DL-CapsNet as a deep, light and highly accurate
variant of CapsNet by using the MLCE module on top of a deep convolutional
sub-network, and employing an efficient decoder. Our contributions are:

– We develop a deep network achieving high test accuracy. DL-CapsNet includes
several capsule layers, and uses 3DR twice to make a high-level representation
of the input images. We achieve 91.23% accuracy for CIFAR-10 using a 7-
ensemble model.

– We reduce complexity by introducing the CapsSum layer. CapsSum reduces
the number of generated capsules by using a deep structure consisting of
several capsule layers. DL-CapsNet contains 6.8M parameters.

– We evaluated the network for CIFAR-10, SVHN, and Fashion-MNIST and
achieved state-of-the-art results. In addition, we support more complex
datasets. Using a 7-ensemble model for CIFAR-100, we achieve 68.36% accu-
racy.

The rest of this paper is organized as follows. The related works are presented
in Sect. 2. Section 3 reports the background. DL-CapsNet is presented in Sect. 4.
Experiments and results are presented in Sect. 5. The paper is concluded in
Sect. 6.

DL-CapsNet: A Deep and Light Capsule Network 59

2 Related Works

Several studies have improved the CapsNet networks. Yang et al. [7] proposed
RS-CapsNet. RS-CapsNet integrates Res2Net blocks to extract features in mul-
tiple scales. It also uses the Squeeze-and-Excitation (SE) block to emphasize
more useful features. In order to enhance the representation ability and reduce
the number of capsules, RS-CapsNet uses a linear combination of capsules.

Huang et al. proposed DA-CapsNet [8], which uses the attention mecha-
nism after the convolution layers and also after the primary capsules layer. DA-
CapsNet is highly accurate for SVHN, CIFAR10, FashionMNIST, smallNORB,
and COIL-20 datasets. DA-CapsNet outperforms CapsNet in image reconstruc-
tion.

Shiri et al. [9] proposed Quick-CapsNet (QCN) modifying the low-level fea-
ture extraction, resulting in only a few capsules. The reduction of PCs results
in a significant speedup at the cost of marginal loss of accuracy. QCN uses an
optimized decoder to improve the network generalization.

Shiri et al. [10] proposed CFC-CapsNet. CFC-CapsNet used a new layer for
creating PCs out of the extracted features. This layer results in fewer number of
capsules while improving accuracy. The reduction of number of capsules, reduces
the overall number of parameters as well as speeding up the network.

Deliege et al. [11] proposed HitNet which replaces a layer with a Hit-or-Miss
layer. Capsules in this layer are trained to hit or miss a central capsule. To this
end, a specific loss function is used. This network contains a reconstruction sub-
network synthesizing samples of images. The reconstruction sub-network can be
used as an augmentation method to avoid overfitting. HitNet uses ghost capsules
to detect mislabeled data in the training set.

He et al. [12] proposed Complex-Values Dense CapsNet (Cv-CapsNet) and
Complex-Valued Diverse CapsNet (Cv-CapsNet++). Both networks include a
complex-valued sub-network for extracting features in different scales. After-
wards, complex-valued PCs are created out of the extracted features. Cv-
CapsNet++ implements a hierarchy of three-level Cv-CapsNet model and hence
produces multi-dimensional complex valued PCs.

Chen et al. [13] propose a deep capsule network combined with a U-Net pre-
processing module (DCN-UN) which attempts to improve CapsNet for complex
datasets such as CIFAR-10 and CIFAR-100. A convolutional capsule layer is
developed based on local connections and weight-sharing strategies which allows
reducing the number of parameters. DCN-UN employs a greedy strategy to
develop the Mask Dynamic Routing (MDR) to improve the performance.

Ayidzoe et al. [14] introduce a less complex variant of CapsNet with an
improved feature extractor. They employ a Gabor filter and customized blocks
for preprocessing data leading to the extraction of the semantic information. This
results in enhanced activation diagrams and learns the hierarchical information
meaningfully.

Tao et al. [15] present an efficient and flexible network based on capsules
referred to as Adaptive Capsule CapsNet (AC-CapsNet). This network replaces
the primary capsules with an adaptive capsule layer. The adaptive values contain

60 P. Shiri and A. Baniasadi

both the spatial information of each capsule vector and the local relationship
among the neurons contained in the capsules.

This work takes a similar approach as the works explained above. However,
we take into account the network accuracy and size (number of parameters)
simultaneously. As we later show, we achieve the highest accuracy among the
state-of-the-art networks based on capsule.

3 Background

In this Section, we review background. We explain normal and 3D CapsCells,
the normal and the 3D routing algorithms, and the class-independent decoder.
These units along with the CapsSum and MLCE (explained in Sect. 4) build
DL-CapsNet.

3.1 Capsule Cell

Capsule Cells (CapsCells) were introduced by Rajasegaran et al. [16] as units
including a combination of several Convolutional Capsule (ConvCaps) layers and
a skip connection. The ConvCaps layer is a convolutional layer with its outputs
reshaped to capsules. Figure 1 shows a CapsCell, which includes three ConvCaps
layers. The output of the first layer is skip connected to the output of the last
layer. This is done to avoid the problem of vanishing gradients. In addition,
the skip-connection helps route the low-level capsules to high-level capsules.
The skip-connection either includes a ConvCaps layer, or implements the 3D
dynamic routing (3DR) algorithm. The former is called a normal CapsCell and
the latter is called a 3DR CapsCell.

Fig. 1. The architecture of a CapsCell with K = 3, D = 4 and Nv = 32. This unit
contains several ConvCaps layers and a skip-connection. For the 3DR CapsCells, the
skip connection performs the 3D dynamic routing operation.

Each ConvCaps layer has 3 parameters: K or the kernel size, D or the number
of values for each output vector (the dimensionality), and Nv or the number of
vectors per spatial location of the output feature map.

DL-CapsNet: A Deep and Light Capsule Network 61

3.2 Routing Capsules

In this Section we explain two routing capsule methods in subsequent layers:
Dynamic Routing (DR) and three-dimensional Dynamic Routing (3DR).

Dynamic Routing. In this method, all input capsules contribute to forming
any of the output capsules. DR finds a coefficient for each input capsule and
works as a routing method to relate the input capsules to the output capsules.
The coefficients are not trained. Instead, DR creates the output capsules itera-
tively during training based on the agreement between the input capsules.

Capsules in the lower-level (input capsules) need to decide how to send their
vector to the output capsules (higher-level capsules). This decision is made by
changing a scalar implying the weight of the capsule. This scalar is multiplied
by the vector and fed as input to the output capsules. The output capsules are
a weighted sum of the input capsules, with the weights determined by DR.

3D Dynamic Routing. DR routes capsules in a global manner, since all input
capsules contribute to all output capsules. The 3DR algorithm, performs the
routing locally. Capsules coming from nearby regions of the previous feature
map are routed together to output capsules. Figure 2 depicts how 3DR groups
the input capsules and routes them to the output capsules. A capsule in layer l,
predicts a cl+1 number of capsules. Therefore, for each capsule in layer l+1, there
are cl predictions. s and S denote the input and output capsules respectively,
and V̂ are the intermediate votes in the routing algorithm. Like DR, the weights
are iteratively inferred, and not trained.

Fig. 2. 3D-Routing method. Each capsule in layer l, predicts cl+1 capsules. As a result,
there are cl predictions for a capsule in layer l + 1. [6]

62 P. Shiri and A. Baniasadi

3.3 Class-Independent Decoder

CapsNet comes with a basic decoder based on Fully-Connected (FC) layers.
The output capsules are fed to this decoder to reconstruct the input images. To
regularize the training process and avoid overfitting, the reconstructed images
are compared to input images. The result is considered inside the loss func-
tion (reconstruction loss). We use the class-independent decoder introduced by
Rajasegaran et al. [6].

This decoder comes with two important benefits. First, it is based on decon-
volution. Deconvolutional layers capture spatial relationships better than FC
layers and include fewer number of parameters. Second, the decoder drops the
incorrect capsules and removes them from the reconstruction process which leads
to a more robust reconstruction. Sabour et al. [1] masked the incorrect capsules
with zeros. The class-independent decoder, discards the incorrect capsules com-
pletely. As for all different categories (classes) there is a fixed vector of data kept
and used for reconstruction, this decoder is class-independent as all classes are
treated similarly. Experiments show that class-independence makes the decoder
more robust [16].

4 DL-CapsNet

Fig. 3. DL-CapsNet architecture. The network includes two CapsCells, the MLCE
module.

Figure 3 shows the architecture of DL-CapsNet. The network consists of a con-
volutional layer, two normal CapsCells, MLCE, the DR section and the class-
independent decoder.

DL-CapsNet: A Deep and Light Capsule Network 63

DL-CapsNet uses a convolutional layer to extract very low-level features.
Features are reshaped to capsules. Afterwards, there are two normal CapsCells
to create richer capsules. The output of the second CapsCell is fed to the MLCE
module. MLCE is presented in the next Section. The capsules generated by
MLCE are used to infer the output capsules of the network using DR. Similar
to CapsNet, classification is done based on the output capsules. There are K
capsules where K is the number of classes in the classification task, and the
capsule with the highest length (L2 Norm) corresponds to the predicted class.
These capsules are also fed to the decoder network.

4.1 Capsule Summarization (CapsSum) Layer

Fig. 4. The capsule summarization layer. A total of w × w × 5 generated capsules are
summarized into w × w × Dout primary capsules using w × w Fully-Connected (FC)
layers. The first FC layer is shown.

We propose the CapsSum layer to reduce the number of generated capsules.
CapsSum is inspired by the Convolutional Fully-Connected CapsNet(CFC) [10].
As stated earlier, CapsNet includes a simple feature extractor including two con-
volutional layers. Originally, the extracted data is directly reshaped to capsules.
Alternatively, the CFC layer was proposed for translating the low-level extracted
features to fewer capsules, resulting in parameter reduction and network speed-
up. We customize and integrate the CFC layer in DL-CapsNet. We summarize
the generated capsules by the DeepCaps network to produce a new set of PCs.
To this end, we introduce a capsule summarization layer. Figure 4 shows how
this layer works. The nearby generated capsules are all flattened, and fed to a
fully-connected layer to produce a single capsule. This procedure is repeated for
all spatial locations in the generated capsules. There are a total of the S ×w×w
generated capsules each with Din elements. For each spatial location (i, j) where
i, j ∈ [1, w], a total of S capsules with Din dimensionality are collected, flattened
and fed to a single fully-connected layer to produce a single capsule with a dif-
ferent dimensionality Dout. It is noteworthy that the figure shows the procedure
for the first spatial location (1, 1). There are w × w fully-connected layers to

64 P. Shiri and A. Baniasadi

summarize the entire generated capsules to the PCs. The proposed layer, reduces
the number of capsules S times. Intuitively, each output capsule corresponds to a
set of nearby capsules. We reduce all those correlated nearby capsules to a single
capsule using a fully-connected layer. The reduction process includes trainable
parameters (contained in the fully-connected layer). However, the reduction in
the number of capsules outnumbers the increase in the parameters.

4.2 Multi-level Capsule Extractor (MLCE) Module

MLCE has two goals. First, to create a rich and robust representation of the
input images using the extracted capsules, and second, reduce network size (in
terms of the number of parameters).

To meet the first goal, we stack two 3DR CapsCells. 3DR is not as computa-
tionally expensive as DR due to performing the routing in a localized manner. As
a result, it is possible to stack two 3DR CapsCells to make a deep representation
of data.

To meet the second goal, we use CapsSum. The primary capsules are multi-
plied by weight matrices each of which corresponds to one of the categories in
the classification task. Therefore, reducing the number of PCs results in fewer
weight matrices and as a result fewer overall number of parameters. In addition,
the more primary capsules are in the network, the more computationally expen-
sive DR would become. The more primary capsules, the more time it takes for
the DR algorithm to infer the output capsules from input capsules We use two
instances of the CapsSum layer inside MLCE to reduce the number of generated
capsules number of PCs.

MLCE is depicted in Fig. 5. MLCE infers two sets (levels) of capsules from
the input capsules, and concatenates them to generate a combination of low-level
and high-level capsules. This module stacks two 3DR CapsCells. First, the input
capsules are fed to a 3DR CapsCell. The first set of output capsules (low-level
capsules) are formed by using a CapsSum layer on top of this 3DR CapsCell.
Afterwards, there is another 3DR CapsCell, and another CapsSum layer is used
to summarize the high-level capsules into a few capsules (high-level capsules).

The 3DR CapsCells create a robust part-to-whole representation of data by
localizing the routing process. Stacking two of these layers, results in creating
a deep representation of data. In addition, combining the output of the first
and second CapsCells ensures that the created capsules include both low-level
and high-level information which results in an increased generalization ability
of the network. On the other hand, the CapsSum layer improves the represen-
tation, reduces the number of parameters, and enhances network speed. We use
a CapsSum layer after each 3DR CapsCell. The combination of 3DR routing
and the CapsSum layer in two levels, enables the network to form a multi-level
representation of the input image.

DL-CapsNet: A Deep and Light Capsule Network 65

Fig. 5. The architecture of MLCE module. The module consists of two 3DR CapsCells
and two CapsSum layers.

4.3 Loss Function

Our loss function is similar to the one introduced by Sabour et al. [1] (margin
loss). This loss function considers penalties for incorrect predictions and disre-
gards predictions with a very high or very low probability:

Lk = Tk max(0,m+ − ||Vk||)2 + λ(1 − Tk)max(0, ||Vk|| − m−)2

In this equation, Lk is the loss term for capsule k, Tk is 0 for incorrect class and
1 otherwise, m+ and m− are used to disregard high or low probabilities, and
lambda is used for controlling the gradient at the start of the training.

5 Experiments and Results

In this Section, we explain the experiments and the corresponding results.

5.1 Datasets

We test DL-CapsNet for datasets commonly used for testing CapsNet and its
variants: Fashion-MNIST (FMNIST), SVHN, CIFAR-10 and CIFAR-100. Test-
ing CIFAR-100 is possible due to the small number of capsules generated by
the MLCE module. For SVHN, CIFAR-100 and CIFAR-10 datasets, the input
images are resized from 32 × 32 × 3 to 64 × 64 × 3 and for F-MNIST the orig-
inal images are used throughout the experiment. We do the resizing because
the images in these datasets include richer features compared to the F-MNIST
dataset.

66 P. Shiri and A. Baniasadi

5.2 Experiment Settings

We modify and use several units introduced in DeepCaps [6]. We implement
DL-CapsNet using the Keras implementation of DeepCaps1. We use a NVIDIA
2080Ti GPU for running the experiments. Following the DeepCaps implementa-
tion, we perform hard training in all the experiments. After training a network
for the first 100 epochs, we tighten the bounds of the loss function by changing
the values for m+ and m− and train the network for another 100 epochs. The
experiments are repeated 5 times. We report the average values due to the little
variation in the results. We used Adam optimizer with starting learning rate of
0.001. We also use an exponential decay (γ = 0.96) and batch size of 128.

5.3 Network Accuracy

Table 1 compares the network classification accuracy of DL-CapsNet to some
state-of-the-art CNN networks (shown in the top part of the Table), and some
recent and efficient variants of CapsNet (shown in the middle of the Table).
DL-CapsNet and other recent CapsNet variants fall behind powerful CNN net-
works such as BiT-M [17]. As the Table shows, DL-CapsNet achieves competitive
accuracy for all datasets compared to the state-of-the-art. To further improve
the classification accuracy, we use a 7-ensemble model of DL-CapsNet. In this
method, seven instances of DL-CapsNet are trained and the softmax outputs
are averaged to determine the final output of the network. Using this method,
DL-CapsNet reaches 91.29% and 68.36% accuracy for CIFAR-10 and CIFAR-100
datasets.

For datasets with a high number of classes such as CIFAR-100, the number of
parameters can be very high. Therefore, the DR algorithm can take a long time to
infer the output capsules. The 7-ensemble model of DL-CapsNet obtains 68.36%
accuracy for the CIFAR-100 dataset. For the rest of the datasets i.e. CIFAR-10,
SVHN and Fashion-MNIST, DL-CapsNet is among the powerful CapsNet-based
networks in terms of the accuracy (DeepCaps [16] and RS-CapsNet [7]).

5.4 Number of Parameters

Table 1 shows the number of parameters besides the network inference accu-
racy for each dataset. Some recent and powerful CapsNet and CNN variants
employ novel solutions for reducing the number of weights and include a signifi-
cantly fewer number of parameters. These networks however, obtain a lower accu-
racy compared to DL-CapsNet. For example, DCN-UN MDR abd AC-CapsNet
include 4.8M and 4.12M parameters for the CIFAR-100 dataset (compared to
11.2M in DL-CapsNet), however our proposed network achieves a slightly higher
accuracy. In addition, in contrast to other works, we also report the network
speed by showing how our network performs in terms of the network infer-
ence time.

1 https://github.com/brjathu/deepcaps.

https://github.com/brjathu/deepcaps

DL-CapsNet: A Deep and Light Capsule Network 67

Table 1. Classification accuracy of some state-of-the art CNNs (shown on top) and
the state-of-the-art CapsNet variants (shown in the middle) compared to DL-CapsNet
(shown on the bottom). We obtain competitive accuracy on all datasets.

Model CIFAR-100 CIFAR-10 SVHN FMNIST

DenseNet [18] 82.4%/15.3M 96.40%/15.3M 98.41%/15.3M 95.40%/15.3M

RS-CNN [7] 61.14%/2.8M 90.15%/2.7M 95.56%/2.7M 93.34%/2.7M

BiT-M [17] 92.17%/928M 98.91%/928M - -

DA-CapsNet [8] - 85.47%/- 94.82%/- 93.98%/-

CapsNet (7-ens) [1] - 89.40%/11.7M 95.70%/11.7M -

Cv-CapsNet++ [12] - 86.70%/2.7M - 94.40%/2.5M

CFC-CapsNet [10] - 73.15%/5.9M 93.29%/5.9M 92.86%/5.7M

HitNet [11] - 73.30%/8.9M 94.50%/8.9M 92.30%/8.9M

RS-CapsNet [7] 64.14%/16.8M 91.32%/5M 97.08%/5M 94.08%/5M

DCN-UN MDR [13] 60.56%/4.8M 90.42%/1.4M - 93.33%/-

Gabor CapsNet [14] 68.17%/22.6M 85.24%/10.4M - 94.78%/-

AC-CapsNet [15] 66.09%/4.12M 92.02%/1.26M 96.86%/1.26M -

DeepCaps (7-ens) [16] - 92.74%/13.4M 97.56%/13.4M 94.73%8.5M

DL-CapsNet 63.73%/11.2M 89.06%/6.8M 95.82%/6.8M 94.21%/6.4M

DL-CapsNet (7-ens) 68.36%/11.2M 91.29%/6.8M 97.09%/6.8M 94.72%/6.4M

5.5 Network Training and Inference Time

There are only few works in the CapsNet domain reporting the inference time.
In addition, providing a fair comparison requires using the same base implemen-
tation for CapsNet, and the same GPU. Only the DeepCaps [6] network satisfied
these two condition. Using a Geforce 2080Ti GPU, the inference in DL-CapsNet
takes 2.18 ms for a single 64 × 64 × 3 image of the CIFAR-10 dataset. This is
1.97x faster than DeepCaps, as it takes 4.30 ms for DeepCaps to do the same job.

6 Conclusion

We present DL-CapsNet as an efficient and effective CapsNet variant. Despite
the deep structure of the network, DL-CapsNet is still a light, yet highly accurate
network. Using a 7-ensemble model, DL-CapsNet achieves a competitive accu-
racy of 91.29% for the CIFAR-10 dataset using 6.79M parameters. With 68.36%
test accuracy for CIFAR-100, DL-CapsNet performs well on complex datasets
with a high number of categories.

Acknowledgment. This research has been funded in part or completely by the Com-
puting Hardware for Emerging Intelligent Sensory Applications (COHESA) project.
COHESA is financed under the National Sciences and Engineering Research Council
of Canada (NSERC) Strategic Networks grant number NETGP485577-15.

68 P. Shiri and A. Baniasadi

References

1. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic Routing Between Capsules. In: NIPS
(2017)

2. Lecun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/

3. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms, August 2017

4. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 and CIFAR-100 datasets (2009)
5. Xi, E., Bing, S., Jin, Y.: Capsule network performance on complex data.

10707(Fall), 1–7 (2017)
6. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S.,

Rodrigo, R.: DeepCaps: going deeper with capsule networks. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 10717–10725 (2019)

7. Yang, S., et al.: RS-CapsNet: an advanced capsule network. IEEE Access 8, 85007–
85018 (2020)

8. Huang, W., Zhou, F.: DA-CapsNet: dual attention mechanism capsule network.
Sci. Rep. 10, 11383 (2020)

9. Shiri, P., Sharifi, R., Baniasadi, A.: Quick-CapsNet (QCN): a fast alternative to
capsule networks. In: Proceedings of IEEE/ACS International Conference on Com-
puter Systems and Applications, AICCSA, November 2020

10. Shiri, P., Baniasadi, A.: Convolutional fully-connected capsule network (CFC-
CapsNet). In: ACM International Conference Proceeding Series (2021)

11. Deli, A.: HitNet: a neural network with capsules embedded in a Hit-or-Miss layer,
extended with hybrid data augmentation and ghost capsules, pp. 1–19 (2018)

12. He, J., Cheng, X., He, J., Honglei, X.: CV-CapsNet: complex-valued capsule net-
work. IEEE Access 7, 85492–85499 (2019)

13. Chen, J., Liu, Z.: Mask dynamic routing to combined model of deep capsule net-
work and U-net. IEEE Trans. Neural Netw. Learn. Syst. 31(7), 2653–2664 (2020)

14. Ayidzoe, M.A., Yu, Y., Mensah, P.K., Cai, J., Adu, K., Tang, Y.: Gabor capsule
network with preprocessing blocks for the recognition of complex images. Mach.
Vis. Appl. 32(4), 91 (2021)

15. Tao, J., Zhang, X., Luo, X., Wang, Y., Song, C., Sun, Y.: Adaptive capsule network.
Comput. Vis. Image Underst. 218, 103405 (2022)

16. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S.,
Rodrigo, R.: DeepCaps: going deeper with capsule networks (2019)

17. Kolesnikov, A., et al.: Big Transfer (BiT): general visual representation learning.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58558-7 29

18. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks, August 2016

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1007/978-3-030-58558-7_29

Comparative Study of Scheduling
a Convolutional Neural Network

on Multicore MCU

Petr Dobiáš1,2(B), Thomas Garbay3, Bertrand Granado3, Khalil Hachicha3,
and Andrea Pinna3

1 ETIS, UMR 8051, CY Cergy Paris University, ENSEA, CNRS,
95000 Cergy, France

2 ESIEE-IT, 8 rue Pierre de Coubertin, 95300 Pontoise, France
pdobias@esiee-it.fr

3 Sorbonne Université, CNRS, LIP6, 75005 Paris, France

Abstract. Convolutional neural networks (CNNs) are progressively
deployed on embedded systems, which is challenging because their com-
putational and energy requirements need to be satisfied by devices with
limited resources and power supplies. For instance, they are implemented
in the Internet of Things or edge computing, i.e. in applications using
low-power and low-performance microcontroller units (MCUs). Mono-
core MCUs are not tailored to respond to the computational and energy
requirements of CNNs because of their limited resources and power sup-
plies, but a multicore MCU could overtake these limitations. This paper
experimentally compares three algorithms scheduling CNNs on embed-
ded systems at two different levels (neuron and layer ones) and evaluates
their performances in terms of the makespan and energy consumption.
The results show that the algorithm called SNN outperforms other two
algorithms (STD and STS) and that the scheduling at layer level signif-
icantly reduces the energy consumption.

Keywords: Convolutional Neural Network · Embedded systems ·
Multiprocessors · Scheduling · Simulation experiments

1 Introduction

At present, convolutional neural networks (CNNs) are mainly used for visual
recognition and their utilisation is increasing. CNNs are ubiquitous and imple-
mented in applications like image understanding, mapping, medicine or self-
driving cars [15]. CNNs effectually provide solutions to different problems but
they require much energy and memory space. To take advantage of their perfor-
mances and deploy them in devices with limited power supplies, it is necessary
to reduce their requirements. This is currently a popular research topic, many
researchers focus on it [7] and it is discussed for example within the community
tinyML (tiny Machine Learning): https://www.tinyml.org/.
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 69–80, 2022.
https://doi.org/10.1007/978-3-031-12748-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_6&domain=pdf
https://www.tinyml.org/
https://doi.org/10.1007/978-3-031-12748-9_6

70 P. Dobiáš et al.

CNNs are usually implemented on specialised hardware, such as Field-
Programmable Gate Array (FPGA), or Application-Specific Integrated Circuit
(ASIC), e.g. Tensor Processing Unit (TPU). They can also be used on Graphics
Processing Units (GPU) but they are rather rare on Central Processing Unit
(CPU). The power consumption of TPUs and GPUs is rather high and conse-
quently these platforms are not suitable to be used on embedded systems with
limited power resources. As for FPGAs, the estimate of energy consumption is
not easy due to FPGA reconfigurations. The analysis of scheduling CNNs on
ASICs would be feasible but it would require focusing on only one application,
while we strive to obtain general conclusions. The comparison of CNN imple-
mentation on TPU, GPU and CPU was presented in [20].

Our research focuses on CPU. In particular, we consider low-power and low-
performance CPUs, which are intended for embedded systems and rarely used
in multicore systems. Thus, we consider a multiprocessor system based on the
ARM 32-bit Cortex-M4 processors whose features make the execution of CNNs
challenging. However, an achievement to implement CNNs on a battery-powered
embedded system using commercial off-the-shelf processors is very promising for
the use in energy-constrained applications, e.g. medical, industrial monitoring,
or the Internet of Things. An example of use is wildlife image processing [6].

The aim of this paper is to evaluate three algorithms to schedule CNNs on an
embedded system at two different levels (neuron and layer ones). In the paper:

– we assess the algorithm performances based on the makespan;
– we compare the results with the optimal solution provided by CPLEX solver;
– we measure the energy consumption of mathematical operations and we com-

pute the energy consumption required by the scheduling algorithms;
– we suggest which level and algorithm are more suitable when implementing

CNNs on an embedded system having limited power supplies.

The remainder of this paper is organised as follows. Section 2 summarises the
related work. Section 3 presents the task and system models and the scheduling
algorithms. Section 4 then introduces the experimental framework and Sect. 5
analyses the results. Section 6 concludes the paper.

2 Related Work

Firstly, this section summarises two main categories of strategies to schedule
dependent tasks. Secondly, it points out techniques to reduce the computational
and energy requirements of CNNs. Thirdly, it presents several energy models.

In general, scheduling of dependent tasks with communication costs is an NP-
complete problem even for unlimited resources [3]. The heuristics to deal with
such an NP-hard optimisation problem have already been proposed and they can
be classified into several categories [13]. Two main categories are list-scheduling
and cluster-scheduling [18]. In the studied context, the former method is mainly
used because it is intended for a limited number of processors.

Neural networks require many resources and have high energy consumption.
These constraints make their implementation on embedded systems with limited

Comparative Study of Scheduling a CNN on Multicore MCU 71

capabilities challenging. Several methods have already been proposed to reduce
the number of operations, energy consumption and memory requirements. Sur-
veys of such methods were presented in [2,7] and the authors of [11] benchmarked
three embedded platforms. To show that an implementation of neural networks
on MCUs is feasible, the paper [4] presents the design decisions behind Tensor-
Flow Lite Micro (TFLM), which is a machine learning interference framework
for running deep-learning models on embedded systems. The paper [19] aims to
improve CNN inference throughput on heterogeneous systems.

As for the energy model, Tiwari et al. [16] presented an instruction level
model. It considers that the power cost of the program can be expressed as the
sum of the power costs of executed instructions and the power cost of the inter-
instruction effects. These effects are due to the circuit state, resource constraints,
or cache misses. The idea of counting instructions to evaluate the energy con-
sumption is then reused, e.g. in [8]. The benefit of such a linear model is its
easy computation without detailed knowledge of device characteristics. If these
characteristics are available, a thorough estimation can be carried out using for
example a module called WiSeBat [1].

All in all, performances of algorithms and neural networks were separately
carried out many times but they were not analysed together. Our aim is to eval-
uate the makespan of studied algorithms and to assess the energy consumption
required to schedule CNNs on an embedded system deployed at edge computing.
Due to their limited resources, accelerators are not considered in our work.

3 Models and Algorithms

3.1 Task and System Models

Table 1 summarises notations and definitions employed in this paper.
We consider a neural network as a set of dependent tasks, which is modelled

by a directed acyclic graph (DAG), as shown in Fig. 1. Each DAG is charac-
terised by its arrival time and deadline. At neuron level, a DAG node represents
a neuron, while at layer level it represents a layer (having several instances
standing for neurons, independent among them within on layer), as depicted by
green rectangles in Fig. 1. The arrows in the DAG represent dependencies among
nodes. We implemented an algorithm generating a DAG for any neural network.

Each neuron is characterised by its execution time, expressed as the number
of operations. One operation represents a time unit in our research. The number
of operations depends on a layer. CNNs consist of three types of layers: convolu-
tional one, pooling one and fully-connected one. Table 2 summarises the number
of mathematical operations for one neuron for each layer.

The communication cost between two neurons is considered if two neurons
are scheduled on different processors, otherwise it equals 0. Its unit is also the
number of operations, although there are no mathematical operations during
communication.

The system has P homogeneous processor(s) sharing the same memory.
Nonetheless, the model can be easily extended to a system with heterogeneous
processors, as in [21]. The preemption and rejection of nodes are not authorised.

72 P. Dobiáš et al.

Layer 1

Layer 2 Layer 3

Layer 4

0 5 10 15 20 25 30

time (AU)

a d

et i et k
cik

Fig. 1. Directed acyclic graph (DAG) modelling a neural network

Table 1. Notations and definitions

Notation Definition Notation Definition

W Image width Px Processor x

H Image height a Arrival time of the DAG

D Image depth d Deadline of the DAG

F Size of the filter ni Node i

N # of nodes eti Execution time of ni

p # of paths in the DAG ci,j Communication cost between ni and nj

P # of processors succ (ni) Set of immediate successors (children) of ni

NL Neuron level start(ni) Start of the execution of ni

LL Layer level end(ni) End of the execution of ni

Table 2. Number of operations for one neuron at each layer

Layer Number of operations for one neuron

Convolutional F 2 · D multiplications, F 2 · D additions

Pooling 1 addition

Fully-connected W · H · D multiplications, W · H · D additions

3.2 Scheduling Algorithms

In our research, we consider three algorithms based on list-scheduling.

Scheduling Node by Node. This algorithm was first introduced approxi-
mately 20 years ago [3,17] but it is still often used today, e.g. [18]. We name it
Scheduling Node by Node (SNN) because it schedules nodes one by one in two
phases for a given DAG [17]: (1) node ordering by their decreasing value of rank,
which stands for the critical path from node ni to the exit node nexit and which
is defined as follows:

rank(ni) =

{
etexit, if ni is an exit node
eti + max

nj∈succ(ni)
(ci,j + rank(nj)) , otherwise

Comparative Study of Scheduling a CNN on Multicore MCU 73

and (2) node scheduling to a processor minimising the execution finish time of
the current node.

The complexity to compute the rank is O
(
N2

)
and the one to order nodes

is O (N log(N)). To map and schedule nodes, it takes O
(
N2P

)
. Consequently,

the overall worst-case complexity is as reads:

O
(
N2 + N log(N) + N2P

)
(1)

Scheduling by Task Decomposition. The second algorithm decomposes the
DAG into nodes having one or several instances and takes into account prece-
dence constraints among nodes [5,12]. We call it Scheduling by Task Decompo-
sition (STD). It also consists of two phases: (1) node assignment of individual
start times and deadlines, which are determined proportionately to the execution
time of each node with regard to the DAG arrival time and deadline; and (2)
node scheduling to any processor respecting the start time and deadline. During
the first phase, we distinguish two cases. In the former, we consider that assigned
start times are fixed and, consequently, nodes are independent. In the latter case,
the algorithm updates the start time of a node (child), once all of its preceding
nodes (parents) are scheduled. Therefore, the nodes are not really independent
because parents need to be scheduled before their children. A benefit is to reduce
the makespan. To compare both versions, the former case is denoted by STD
and the latter one by STDwU.

To evaluate the algorithm complexity, the assignment of individual start
times and deadlines requires defining a recursive function. This recursive function
considers a new path for each child and is called ListPaths. Its complexity (in
terms of addition) is as reads:

{
t(0) = 1

∀n, t(n) = (t(n − 1) + 1)N

Then, the complexity to compute the duration of each path is O (pN) and the
one to order paths according to its duration is O (p log(p)). Next, it takes O (pN)
to manage start times and deadlines and O (N log(N)) to order nodes according
to the “earliest deadline first” policy (and the “earliest arrival time first” policy
in case of tie). Finally, the complexity of scheduling is O (NP) without update
or O

(
N2P

)
with update.

The overall worst-case complexity without update is:

O (N · ListPaths + 2pN + p log(p) + N log(N) + NP) (2)

and the one considering the update of start times is:

O
(
N · ListPaths + 2pN + p log(p) + N log(N) + N2P

)
(3)

Scheduling by Task Stretching. The third algorithm is presented in [9] and
is called Scheduling by Task Stretching1 (STS). Its aim is to avoid parallel node
1 The word stretch refers to extent all nodes of the dependent task on only one pro-

cessor if possible.

74 P. Dobiáš et al.

execution and thus to save energy consumption by switching off idle processors.
The algorithm schedules all nodes on one processor and chooses to use more
processors only whenever necessary in order not to miss deadlines. Contrary to
[9], we do not consider preemption in order to reduce the algorithm complexity.

This algorithm is composed of two phases: (1) assignment of individual start
times and deadlines for each node (similar to STDwU), and (2) node scheduling,
which distinguishes two cases. Depending on whether all nodes can be accom-
modated by one processor and respect their start times and deadlines, (i) nodes
are scheduled to only one processor, or (ii) as many nodes as possible are placed
on one processor and the remaining nodes, which were not scheduled on the first
processors, are placed on additional processors.

The complexity of Case (ii) is the same as the one of STD expressed in (2).
Using only one processor, the complexity of Case (i) is reduced and is as follows:

O (N · ListPaths + 2pN + p log(p) + N log(N) + N) (4)

3.3 Mathematical Programming Formulation

We define the mathematical programming formulation of the studied scheduling
problem as follows (the notation is summed up in Table 1):

Minimise max
ni∈{Set of nodes}

(end(ni)) subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1) if nj depends on ni, end(ni) � start(nj)
2) if nj depends on ni, and ni ∈ Px and nj /∈ Px, end(ni) + ci,j � start(nj)
3) ∀ time t,∀ processor Px, Card(nodes executing) � 1
4) (ni and nj) ∈ Px ⇒ end(ni) � start(nj) or end(nj) � start(ni)

The objective function is to minimise the makespan, i.e. the schedule length.
The first constraint guarantees that node dependencies are verified. The second
constraint considers communication costs unless nodes are scheduled on the same
processor. The third constraint expresses that only one node can be scheduled
per processor at the same time. The last constraint forbids overlaps of nodes on
one processor.

4 Experiments

4.1 Experimental Framework

In this paper, we analyse the results making use of:

– a small CNN consisting of 2 convolutional layers (K = 2 filters of size F = 3,
stride S = 2 and amount of zero padding P = 1), 1 pooling layer (spatial
extent F = 3, stride S = 2) and 1 fully-connected layer (K = 5 filters) and
with the image size (W × H × D) = (7 × 7 × 3) at input;

– LeNet5 2 composed of 7 layers with the image size (W × H × D) = (32 ×
32 × 1);

2 http://yann.lecun.com/exdb/lenet/.

http://yann.lecun.com/exdb/lenet/

Comparative Study of Scheduling a CNN on Multicore MCU 75

– ShuffleNet V2 presented in [10] with the image size (W × H × D) = (224 ×
224 × 1)

– VGG16 presented in [14] with the image size (W ×H ×D) = (224 × 224 × 3).

The parameters considered by our simulator are summarised in Table 3.
To compare our results, resolutions of the mathematical programming formu-

lation (described in Sect. 3.3) were carried out in CPLEX solver3 and computed
based on the same data set.

As for the metrics, we make use of the makespan, which is the length of the
schedule, i.e. the elapsed time between the beginning of the execution of the first
scheduled node and the end of the execution of the last scheduled node. It is
expressed as the number of operations as presented in Table 2. We also count the
numbers of addition, subtraction, multiplication and division carried out during
the execution of scheduling algorithm to schedule one DAG, which allows us to
compute the energy consumption for a given algorithm.

4.2 Computation of Energy Consumption

Although more sophisticated models exist to evaluate the energy consumption,
like [1], we consider a simple energy model which does not require any detailed
parameters. Thus, the model is based on the number of mathematical operations.
The number of instructions in assembler language required for each operation
is the same for all considered operations, as indicated in Table 4. Moreover, the
results of [1] show that the model we use overestimates the energy consumption.
Therefore, we consider that our results represent a worst-case energy consump-
tion and that real energy consumption is lower than this computation.

We made use of a Nucleo-144 development board with STM32L496ZG micro-
controller based on the ARM Cortex-M4 processor and powered by V = 3.3 V .
We measured the current on the jumper JP5(IDD) using an AimTTi multime-
ter 1908P. For each mathematical operation, we ran the code with an infinite
while loop within which a given mathematical operation (using random values)
was executing. We also measured the current when no mathematical operation
was implemented to compute the current dedicated to a given mathematical
operation. We carried out 5 measurements and averaged the obtained values
which are summed up in Table 4. The data type considered in our operations is
floating-point (32-bit).

To measure the voltage, we used measurements provided by ULINKplus
adapter and noted that V = 3.305 V .

The energy consumption for one mathematical operation Eop is defined as:

Eop = V · (Iop − Inone) · 1

f
=

3.305 · (Iop − Inone)

32.000 · 106
(5)

The overall energy consumption related to scheduling is the sum of all energy
consumption of all mathematical operations realised by a scheduling algorithm.

3 https://www.ibm.com/analytics/cplex-optimizer.

https://www.ibm.com/analytics/cplex-optimizer

76 P. Dobiáš et al.

Table 3. Simulation parameters

Parameter Symbol Value(s)

Number of processors P 1 – 10

DAG arrival time a 0

DAG deadlinea d X · (DAG critical path)

Execution time of ni eti see Table 2

Communication cost between ni and nj ci,j 5 operations
a Small CNN: X = 20, ShuffleNet V2: X = 500, LeNet5: X = 1 000,
VGG16: X = 1 000 000

Table 4. Average current at f = 32.000 MHz and number of instructions

Operation Measured current Iop (mA) Number of instructions

None 4.286 0

Addition 4.760 6

Subtraction 4.768 6

Multiplication 4.671 6

Division 4.671 6

5 Results

In this section, we analyse the algorithm performances when scheduling different
CNNs at neuron level and then at layer level. The DAG details are summed up
in Table 5. The sum of execution times of all nodes (not taking into account any
communication cost) is shown by dotted lines in Fig. 2a, 2b and 2d.

5.1 Neuron Level

Figure 2a depicts the makespan as a function of the number of processors for
a small CNN at neuron level. When a system has only a few processors, the
deadline is not satisfied, the DAG is not schedulable and no curve is plotted for
a given algorithm. It can be seen that SNN achieves the shortest makespan and
it is followed by STDwU. For these two algorithms, the higher the number of
processors, the lower the makespan due to more resources available because the
system load remains the same. Since STD does not update the assigned start
times, the makespan is longer when compared to SNN and STDwU and its
makespan is almost independent of the number of processors. As the makespan
of STS is shorter than the overall number of operations (2038 operations), more
than one processor are used. Moreover, STD, STDwU, and STS provide a
solution only for systems with more than 2 processors and STD requires at least
4 processors. Actually, if a system has a lower number of processors, the deadline
is not satisfied and therefore a provided solution is not considered.

Comparative Study of Scheduling a CNN on Multicore MCU 77

Table 5. Parameters of neural networks

Parameter Small CNN ShuffleNet V2 LeNet5 VGG16

Critical path tcp (operations) 95 56 1 560 133 435

Deadline d (operations) 1 900 280 000 1 560 000 1.33435 · 1011
Sum of exec. times (operations) 2 038 244 447 834 616 3 094 2059 008

In Fig. 2a, we also plot a magenta dotted curve showing the optimal solution
based on the mathematical formulation and provided by CPLEX solver. This
curve overlaps with SNN, which demonstrates that this algorithm delivers a
nearly4 optimal solution without testing all possibilities as CPLEX solver does.

The number of mathematical operations necessary to carry out by each algo-
rithm to schedule one DAG (figure not presented in this paper) is one order
of magnitude lower for SNN than for the other algorithms because SNN does
not need to scour the whole DAG to determine all paths and assign individual
start times and deadlines to nodes. Using these numbers of operations and (5),
we compute the energy consumption. The scheduling process requires 7.593 pJ ,
384.0 pJ , 384.0 pJ and 388.5 pJ respectively for SNN, STD, STDwU and STS.

While all algorithms provide results for small CNNs, only SNN do it for real
CNNs. This means that STD and STS are not suitable for scheduling of real
CNNs at neuron level due to their complexity expressed in (2), (3) and (4). The
complexity is exponential because of the recursive function listing all paths.

5.2 Layer Level

To overcome the unsuitability of STD and STS at neuron level, we focus on
scheduling at layer level, which is more coarse-grained. In general, the results
at layer level are qualitatively similar to the ones at neuron level and almost
independent of the size of the CNN. Only the makespan of STD can vary more
significantly because it depends on the deadline value set by user.

As an example, Fig. 2b plots the makespan as a function of the number of
processors for LeNet5 at layer level. We note that SNN and STDwU achieve
the shortest makespan and that STD and STDwU provide a solution only for
systems with more than 5 processors. The makespan of STS is always equal to
the overall number of operations (834 616 operations), which means that only
one processor is used. As for STD, the value of makespan is higher than the
overall number of operations, which is due to the fact that the algorithm does
not update assigned start times and deadlines. We remind the reader that their
values were determined proportionally to the execution time of each node with
regard to the DAG arrival time and deadline.

4 Although in Fig. 2a the solution delivered by SNN overlaps with the optimal solution
based on the mathematical formulation, it may happen that the optimal solution
slightly outperforms SNN in different scenarios (results not presented in this paper),
for example when communication costs are higher.

78 P. Dobiáš et al.

Fig. 2. Comparison of different CNN at neuron and layer levels

Figure 2c plots the numbers of addition, subtraction, multiplication and divi-
sion necessary to carry out by each algorithm to schedule one DAG representing
LeNet5. The obtained values are independent of the number of processors. All
algorithms have the same order of magnitude of the mathematical operations.
The values of STS are slightly higher due to the computation of task stretching.

To show that the algorithms can deal with any CNN, Fig. 2d depicts the
makespan of SNN at layer level for three different CNNs as a function of the
number of processors. It can be seen that the more complex the neural network,
the longer the makespan and that the trend remains the same.

5.3 Neuron Level vs. Layer Level

We thoroughly evaluated the makespan for each scenario and noted that the
more complex the CNN, the smaller the difference in the makespan between
neuron and layer levels. For example, the makespan of LeNet5 at layer level is
longer by at most 1.0% when compared to the one at neuron level.

The role of communication cost is independent of the chosen level and depends
on the algorithm. For SNN and STDwU, the higher the communication cost,
the longer the makespan. While this difference is important for small CNN, it is

Comparative Study of Scheduling a CNN on Multicore MCU 79

Fig. 3. Energy consumption at neuron level (NL) and layer level (LL)

almost negligible for real CNNs due to low communication to computation ratio.
The communication cost when STD and STS are used has minimal impact on the
makespan because these algorithms do not update the start times.

As for the energy consumption, Fig. 3 plots the required values of each algo-
rithm for small CNN and LeNet5 at neuron and layer levels. Since the layer
level is more coarse-grained, the model at layer level carries out less computa-
tions than the one at neuron layer and the energy consumption is significantly
reduced: for small CNN (SNN by 56%, STDwU, STD and STS by 99%) and
for LeNet5 (SNN by 85%).

6 Conclusion

The paper studied three algorithms to schedule convolutional neural networks
(CNNs) on an embedded system with limited resources and power supplies. Its
aim is to compare these algorithms, and to evaluate their performances in terms
of the makespan and energy consumption on low-power and low-performance
CPUs. These algorithms are Scheduling Node by Node (SNN), Scheduling by
Task Decomposition (STD) and Scheduling by Task Stretching (STS).

The simulation results show that scheduling at layer level reduces the energy
consumption without worsening the performances when compared to scheduling
at neuron level. As for algorithm performances, SNN and STDwU function well
to reduce the makespan and STS minimises the number of processors turned on.
Furthermore, SNN achieves the shortest makespan and is close to the optimal
solution based on the mathematical formulation and delivered by CPLEX solver.
Therefore, embedded systems based on multicore central processing units (CPU)
are suitable for executing CNNs.

Our future work is about to implement the studied algorithms on a platform
based on RISC-V processors to further analyse their performances.

References

1. Bramas, Q., et al.: WiSeBat: accurate energy benchmarking of wireless sensor
networks. In: Forum on Specification and Design Languages, pp. 1–8 (2015)

80 P. Dobiáš et al.

2. Capra, M., et al.: Hardware and software optimizations for accelerating deep neural
networks: survey of current trends, challenges, and the road ahead. IEEE Access
8, 225134–225180 (2020)

3. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization.
Springer (2000). https://doi.org/10.1007/978-1-4612-1362-8

4. David, R., et al.: TensorFlow lite micro: embedded machine learning on TinyML
systems (2021). https://arxiv.org/abs/2010.08678

5. Devaraj, R., Sarkar, A., Biswas, S.: Fault-tolerant preemptive aperiodic RT
scheduling by supervisory control of TDES on multiprocessors. ACM Trans.
Embed. Comput. Syst. 16, 87:1–87:25 (2017)

6. Elias, A.R., et al.: Where’s the bear? - automating wildlife image processing using
IoT and edge cloud systems. In: IEEE/ACM Second International Conference on
Internet-of-Things Design and Implementation, pp. 247–258. ACM (2017)

7. Goel, A., et al.: A survey of methods for low-power deep learning and computer
vision (2020). https://arxiv.org/abs/2003.11066

8. Konstantakos, V., et al.: Energy consumption estimation in embedded systems.
IEEE Trans. Instrum. Meas. 57, 797–804 (2008)

9. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on
multi-core processors. In: 2010 31st IEEE Real-Time Systems Symposium, pp.
259–268 (2010)

10. Ma, N., et al.: ShuffleNet V2: practical guidelines for efficient CNN architecture
design (2018). https://arxiv.org/abs/1807.11164v1

11. Qasaimeh, M., et al.: Benchmarking vision kernels and neural network inference
accelerators on embedded platforms. J. Syst. Archit. 113, 101896 (2021)

12. Saifullah, A., et al.: Parallel real-time scheduling of DAGs. Tech. Rep. WUCSE-
2013-25, Department of Computer Science and Engineering, Washington Univer-
sity, St. Louis (2013). https://openscholarship.wustl.edu/cse research/101

13. Shahsavari, M., et al.: Task scheduling policies in general distributed systems: a
survey and possibilities. In: 22th Annual Workshop on Circuits, Systems and Signal
Processing (ProRISC) (2011)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2015). https://arxiv.org/abs/1409.1556

15. Stanford University: Lectures CS231n: Convolutional Neural Networks for Visual
Recognition (2020). http://cs231n.stanford.edu/

16. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: a first step
towards software power minimization. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 2, 437–445 (1994)

17. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13, 260–274 (2002)

18. Wang, H., Sinnen, O.: List-scheduling versus cluster-scheduling. IEEE Trans. Par-
allel Distrib. Syst. 29, 1736–1749 (2018)

19. Wang, S., et al.: High-throughput CNN inference on embedded ARM Big.LITTLE
multicore processors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39,
2254–2267 (2020)

20. Wang, Y., Wei, G., Brooks, D.: Benchmarking TPU, GPU, and CPU platforms for
deep learning. CoRR (2019). http://arxiv.org/abs/1907.10701

21. Zheng, Q., Veeravalli, B., Tham, C.K.: On the design of fault-tolerant schedul-
ing strategies using primary-backup approach for computational grids with low
replication costs. IEEE Trans. Comput. 58, 380–393 (2009)

https://doi.org/10.1007/978-1-4612-1362-8
https://arxiv.org/abs/2010.08678
https://arxiv.org/abs/2003.11066
https://arxiv.org/abs/1807.11164v1
https://openscholarship.wustl.edu/cse_research/101
https://arxiv.org/abs/1409.1556
http://cs231n.stanford.edu/
http://arxiv.org/abs/1907.10701

Design Automation and Optimization
Techniques for Embedded Hardware

and Software

Influence of Dataflow Graph Moldable
Parameters on Optimization Criteria

Alexandre Honorat1(B) , Thomas Bourgoin2, Hugo Miomandre2,
Karol Desnos2 , Daniel Menard2, and Jean-François Nezan2

1 Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
alexandre.honorat@inria.fr

2 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, 35000 Rennes, France
{thomas.bourgoin,hugo.miomandre,karol.desnos,daniel.menard,

jean-francois.nezan}@insa-rennes.fr

Abstract. The integration of static parameters into Synchronous
Dataflow (SDF) models enables the customization of an application func-
tional and non-functional behaviours. However, these parameter values
are generally set by the developer for a manual Design Space Exploration
(DSE). Instead of a single value, moldable parameters accept a set of
alternative values, representing all possible configurations of the appli-
cation. The DSE is responsible for selecting the best parameter values to
optimize a set of criteria such as latency, energy, or memory footprint.
However, the DSE process explodes in complexity with the number of
parameters and their possible values.

In this paper, we study an automated DSE algorithm exploring multi-
ple configurations of a dataflow application. Our experiments show that:
1) Only limited sets of configurations lead to Pareto-optimal solutions
in a multi-criteria optimization scenario. 2) How individual parameters
impact on optimization criteria are determined accurately from a limited
subset of design points. The approach was evaluated on three image pro-
cessing applications having from hundreds to thousands configurations.

Keywords: Design Space Exploration · Moldable Parameter · SDF

1 Introduction

Designing signal processing applications requires an ever-increasing amount of
time and resources, as well as a careful choice of the appropriate target hardware
architecture, along with the corresponding software optimizations. On the hard-
ware side, embedded systems are limited by their memory and processing power
capabilities, as well as by power consumption and heat dissipation constraints.
On the software side, applications for embedded systems are usually written with
procedural languages such as C. As C is a relatively low-level language, it offers

This work was supported by DARK-ERA (ANR-20-CE46-0001-01).
A. Honorat, T. Bourgoin and H. Miomandre—Equal contribution.

c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 83–95, 2022.
https://doi.org/10.1007/978-3-031-12748-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_7&domain=pdf
http://orcid.org/0000-0001-5875-7258
http://orcid.org/0000-0003-1527-9668
https://doi.org/10.1007/978-3-031-12748-9_7

84 A. Honorat et al.

the possibility to maximize the utilization of a given hardware resource through
hardware-specific optimization, but at the cost of specialized cumbersome code.
This widens the software productivity gap between the developer productivity
and the code complexity required to fully exploit hardware resources [4,8].

Dataflow Models of Computation (MoCs) and associated design tools exist
to bridge the software productivity gap. A piece of software described with a
dataflow graph [11] is composed of a set of actors, representing computational
entities, connected by First-In First-Out queues (Fifos). A Fifo transports data
tokens between actors which consume, process and produce said data tokens.
An actor is executed when its input Fifos contain the required number of data
tokens. The production and consumption of data tokens for each actor execu-
tion is specified by a set of firing rules. Thus, dataflow semantics exposes task
and data parallelism of data-driven computations. Design tools use the dataflow
representation of an application to efficiently handle the allocation of hardware
resources when deploying software on specific target hardware architectures, such
as Multi-Processor System-on-Chips (MPSoCs).

This paper focuses on statically parameterized dataflow MoCs which allow
both functional and non-functional behaviour of the application to be customized
at compile time. We propose moldable parameters, that we have implemented for
the first time within a dataflow MoC. Contrary to regular parameters, which hold
a unique value or expression, moldable parameters are associated with a set of
alternative values, each resulting in a different configuration of the application.
The main contribution of this work lies in the study of how these moldable
parameters impact on criteria such as latency, throughput, energy consumption
and memory footprint.

In order to study the influence of moldable parameters, we have implemented
a Design Space Exploration (DSE) algorithm to find the Pareto-front of multi-
ple application configurations of the same dataflow graph. Considering a multi-
objective optimization problem with independent criteria, the Pareto-front is the
set of configurations providing the best trade-offs between the optimized criteria.
This DSE is completed by a set of scripts used for analyzing and classifying how
the different moldable parameters impact on each optimization criterion. The
DSE and parameter analysis have been executed on three real-world computer
vision applications: Sobel filtering, stereo-matching and Scale-Invariant Feature
Transform (SIFT) [12]. Results of these analyses show that: 1) only a limited set
of configurations belong to the Pareto-front, and 2) how moldable parameters
impact on optimization criteria are determined accurately from a limited subset
of configurations. These results lay the ground for the design of low-complexity
DSE heuristics responsible for finding automatically the Pareto-efficient config-
urations of a set of functional and non-functional application parameters.

Related works on parameterized dataflow MoCs and resource allocation for
static dataflow MoCs are presented in Sect. 2. Section 3 presents the concept of
moldable parameters. Finally, Sect. 4 studies how moldable parameters impact
on optimization criteria, and Sect. 5 concludes this paper.

Influence of Dataflow Parameters on Optimization Criteria 85

2 Context and Related Work

In the semantics of most static dataflow MoCs, the production or consumption
rate on each data port of an actor is defined by a fixed integer value [11], or some-
times by a sequence of integer values [2]. In practice, when editing a dataflow
graph, it is easier to specify the production and consumption rates of actors
by using symbolic expressions made of mathematical operators and functions
applied to a list of pre-defined parameters associated to the graph. While the
use of such parameterization mechanism is common in many dataflow frame-
works, parameters are generally not part of the dataflow MoC semantics, and
symbolic expressions are replaced by their resolved values before any analysis or
execution of the graph. There exists a few parametric dataflow MoCs with a well
defined parameterization semantics, as surveyed in [3]. Nevertheless, these para-
metric MoCs mostly integrate parameters in their semantics to support dynamic
reconfiguration of the application graph during its execution. In this paper, we
focus on static parameters whose values can be resolved statically without exe-
cuting the application. After describing the model used in the present work, this
section presents related work about the resource allocation for static dataflow
MoCs.

2.1 Static PiSDF MoC

The parameterized dataflow MoC studied in this paper is the Parameterized
and Interfaced Synchronous Dataflow (PiSDF) MoC [7] whose semantics is
depicted in Fig. 1a. Configuration in the Parameterized and Interfaced Syn-
chronous Dataflow (PiSDF) MoC is based on explicit parameters, which are
nodes of the graph associated to a scalar value. The integer production and con-
sumption rates of actors and the number of initial data token in Fifos, known
as delays, can be specified with expressions depending on those parameters. If
all rates of an actor are evaluated to zero, it is not executed. Moreover, the
Parallel and Real-time Embedded Executives Scheduling Method (PREESM)
tool [13] implementing PiSDF also supports parameterized expressions of the
actor execution times and energy specifications; and parameter values can be
used as input argument to actor function calls in its code generation process.

Fig. 1. An example of PiSDF graphical representation.

86 A. Honorat et al.

By changing the value of a parameter, it is possible to modify the functional
and non-functional behaviour of an application. Non-functional parameters only
impact on intrinsic properties of an application such as its degree of paral-
lelism and granularity, tuned by data production and consumption rates; and its
pipeline depth, tuned by the size of delays. Functional parameters impact on the
extrinsic properties of an application, such as its Quality of Service (QoS). For
example, a functional parameter can control the resolution of processed images
or the bounds of an iterative process, through the modification of data produc-
tion and consumption rates or number of delays. Functional parameter may also
cause the execution of alternative code implementations for actors with differ-
ent time or energy properties, through time and energy expressions associated
to each actor and through actor parameter input. While the semantics of the
PiSDF MoC also allows actors to set dynamically the values of graph param-
eters, in this paper we will focus only on static parameters whose alternative
values are known at compile time.

Figure 1b depicts a graph implementing a simple video filtering algorithm,
using elements from the PiSDF semantics in Fig. 1a. Each iteration of the graph,
starting by an execution of the ReadFrame actor and ending by an execution of
the Display actor, corresponds to the processing of a new frame.

Four parameters influence the behaviour of this application:

– h,w P N
˚ are two functional parameters controlling the height and width,

respectively, of the images processed by the algorithm.
– {N P N

˚ | h mod N “ 0} is a non-functional integer parameter controlling
the number of slices in which the input image is split before being processed
by the N data-parallel firings of the Sobel, Dilation and Erosion actors.

– B P {0, 1} is a non-functional Boolean parameter controlling the presence
of delays between the Sobel and Dilation actors. When enabled, these
delays separate the computations of the graphs into two pipeline stages, thus
increasing the parallelism and throughput of the application, at the expense
of greater memory requirements and latency.

2.2 Resource Allocation for Static Dataflow MoCs

Software synthesis is the process translating a dataflow graph into executable
code for a complex computing platform, such as a heterogeneous MPSoC [1]. To
do so, software synthesis allocates all the hardware resources needed to support
the execution of the dataflow graph. Among other tasks, the software synthesis
is in charge of:

– Scheduling and mapping, which orders the individual firings of actors, and
assigns these firings to the processing element handling them [5];

– Allocating the memory needed to store the data produced and consumed by
actors near their processing elements [6];

– Communication routing which ensures the availability of data and the syn-
chronization of computations [10];

Influence of Dataflow Parameters on Optimization Criteria 87

– Configuring the computing platform appropriately to optimize the application
execution, for example by tuning the Dynamic Voltage and Frequency Scaling
(DVFS) configuration of the cores, or by selecting the appropriate scheduling
strategy of the supporting operating system [15].

Each one of the aforementioned tasks is a complex, often NP-hard, optimiza-
tion problem. Indeed, each resource allocation choice made during the software
synthesis potentially impacts many optimization criteria such as the latency and
throughput of the application, its energy consumption or its memory footprint.
Because the resource allocation problem and optimization criteria are deeply
entangled, each design decision, or each change in the dataflow graph can have
intricate consequences on the different optimization criteria. For example, aug-
menting the parallelism of a dataflow graph by pipelining it will increase the
throughput of the application, at the expanse of larger latency and memory
footprint. To make all the resource allocation choices, the DSE process relies on
abstract models or on means of hardware simulations for predicting rapidly the
optimized criteria depending on the design decisions made. Resource allocation
heuristics produce their results in a time ranging from a fraction of a second to
hours, depending on their complexity and the desired quality of their outcome.

Most related work on DSE for applications modelled with static dataflow
graphs assumes that the dataflow graph is fixed before entering the DSE pro-
cess, thus evaluating multiple solutions given by the resource allocation solvers.
When exploring different application configurations with such a DSE process,
the developer must manually modify the application graph, possibly by changing
its static parameters, and re-start the whole DSE process for each configuration.
Only few works consider exploring design choices on the application model itself,
exploiting the dataflow MoC semantics. MASES [16] is one of them; it optimizes
the throughput, latency and processor utilization of applications represented
with a restriction of Synchronous Dataflow (SDF) where it automatically adds
software pipelining. Another tool [14] supports DSE deciding to enable actors
or not, for an extended version of SDF with dynamic actors. In our work, the
DSE exclusively refers to the domain of parameter configurations: it explores the
multiple configurations of an application while considering a single target hard-
ware architecture and a single resource allocation solution to each configuration.
Next section introduces the moldable parameters supporting this DSE process.

3 Moldable Parameters

This section introduces moldable parameters, which can hold multiple expres-
sions. Once evaluated, those expressions provide the different possible applica-
tion configurations. To the best of our knowledge, this work represents the first
attempt to define and integrate such moldable parameters in a dataflow MoC.
After motivating the use of moldable parameters, this section presents their
semantics and discusses their influence on DSE and multi-criteria optimization.

88 A. Honorat et al.

3.1 Moldable Parameters Semantics

Parameters in the PiSDF MoC may be used to set various characteristics of
the application: data production and consumption rates on Fifos, delay sizes,
execution times and energy per actor firing, and even actor static integer input
argument. Tuning PiSDF regular parameters holding a single expression is cum-
bersome for developers since they have to set the right expression of a parameter
manually in order to run the application analysis or code generation for a specific
application configuration. Instead, moldable parameters hold multiple alterna-
tive expressions so that developers do not have to set them multiple times. Most
importantly, moldable parameters make it possible to automatically run analyses
on all possible application configurations.

Moldable parameters are a simple extension of parameters as defined in the
PiSDF semantics [7]. Each moldable parameter holds a list of symbolic expres-
sions, separated by semi-colons. The first expression is the default one, so that
moldable parameters can always be used as regular parameters. Much as regular
parameters, symbolic expressions held by moldable parameters can be a mere
static integer value or a complex expression depending on other parameters and
using mathematical operators and functions.

In this work, we consider only static parameters, which means that parameter
values never depend on any actor output. Moreover as parameters may depend
on other parameters, cyclic dependencies are forbidden, and thus parameters
and their dependencies eventually form a tree whose root parameters only hold
integer values. A parameter configuration of the application dataflow graph is
obtained by selecting and evaluating for each moldable parameter a single expres-
sion among the list of available ones. When not specified, the word parameter
refers to both regular and moldable parameters.

3.2 Relation with Multi-criteria Optimization Problem

In order to select the most suitable parameter configuration, a developer will
often consider multiple criteria: throughput, end-to-end latency, memory foot-
print, energy consumption, or any QoS metric. Evaluating the optimization cri-
teria for each configuration takes from a fraction of a second to hours whereas
most configurations are irrelevant, as we shall see in Sect. 4. Moreover the domain
of possible configurations is the Cartesian product of the expressions of mold-
able parameters, so the size C of the configuration domain to explore explodes
with the number of expressions held by moldable parameters. If denoting P the
set of moldable parameters and |p| the number of expressions held by p P P,
then C “ ś

pPP |p|. Hence, there is a critical need for algorithms automating the
search for the best configuration, while exploring only a subset of all possible
configurations. When a moldable parameter holds only integer values, an option
is to sort these values and explore only a representative sample of it.

As moldable parameters may be either functional or non-functional, their
influence on the criteria to optimize are not always clear and they might compen-
sate each other even when looking at a single criterion. In a multi-criteria opti-
mization problem, only the points of the Pareto-front are relevant and multiple

Influence of Dataflow Parameters on Optimization Criteria 89

ones can be considered optimal. In the PREESM tool [13] supporting moldable
parameters, it is also possible to automatically select a single best configuration
if given a priority ordering of the aforementioned criteria. The criteria will be
minimized1, or forced to stay below a given threshold. However in the context
of this paper, the criteria are neither ordered nor weighted, thus there is a priori
no single best configuration. Yet the criteria to consider for the Pareto-front
should be picked carefully: they should not be entirely dependent on other ones.
For example energy and power are not considered together with the throughput
since the power is computed by multiplying the energy by the throughput in
PREESM. Next section experimentally studies the influence of moldable param-
eters on all criteria, except QoS ones for practical reasons.

4 Multi-criteria DSE with Moldable Parameters

This section presents experiments on three use-cases. The influence of moldable
parameters on the behaviour of the chosen criteria is first evaluated through an
exhaustive DSE; results are then compared with a non-exhaustive DSE.

4.1 Use-Cases: Sobel, Stereo and SIFT Applications

Three common computer vision applications have been used for experiments:
Sobel, stereo and SIFT2. They all contain the following moldable parameters:

– image width: QoS parameter holding 2 possible values for the resolution;
– AspectRatioDenominator: QoS parameter holding 2 possible values (but

fixed for stereo);
– parallelismLevel: non-functional parameter holding 3 values and setting

the degree of parallelism of most compute intensive actors;
– delayRead and delayDisplay: non-functional parameters enabling a pipeline

stage after the image read and the result display respectively, it is used only
in the corresponding delay size expressions;

– NumeratorFrequency: non-functional parameter simulating 12 processor fre-
quencies and used only in expression specifying each actor timing and energy.

The execution times of actors have been measured on a JetsonTX2 board for
their default configuration: maximum image size and processor frequency, no
pipeline, and minimum degree of parallelism. In this work, the latency is mea-
sured as the strictly positive number of graph iterations required to process a
bundle of data tokens from end-to-end, that is the full software pipeline depth
controlled by the delayRead and delayDisplay parameters. The Power criterion
is the sum of all actor energy specifications weighted by their number of firings,
and then multiplied by the throughput. The actor timing expressions are linear

1 For the throughput, its reciprocal is considered so that it can be minimized.
2 Code is available upon request. For SIFT, see a similar version here: https://github.
com/preesm/preesm-apps/tree/master/SIFT.

https://github.com/preesm/preesm-apps/tree/master/SIFT
https://github.com/preesm/preesm-apps/tree/master/SIFT

90 A. Honorat et al.

to the amount of processed data and inversely proportional to the frequency set
by the NumeratorFrequency parameter. The actor energy expressions are linear
to the amount of processed data and quadratic to the frequency.

While Sobel contains no other moldable parameter, stereo and SIFT have
extra ones to enable some specific actors in the data path or to specify a QoS
metric. In particular stereo can be configured with 10 different numbers of dis-
parities used to control the accuracy of the computed depth map. The SIFT
application is the most complex one containing 57 actors and 121 Fifos dis-
patched into 4 levels of hierarchy and representing between 200 and 550 actor
firings for each processed image, depending on the graph configuration. The
moldable parameters specific to SIFT are:

– nKeypointsMaxUser: QoS parameter holding 9 possible values for the maxi-
mum number of keypoints to detect;

– imgDouble: QoS parameter enabling one resolution upsampling.

4.2 Raw DSE Results

For each configuration, the application is scheduled on an homogeneous archi-
tecture with 4 cores. A list scheduling algorithm [9] is used, followed by a static
memory allocation [6]. The DSE takes a few seconds to 6 h to sequentially explore
all the configurations within the PREESM framework, respectively for Sobel and
SIFT. The Pareto-front is defined for 4 criteria: either Power or Energy, plus
Latency, Throughput´1 and Memory, respectively denoted PLTS and ELTS.
The Pareto-front of SIFT in the domain (Power, Throughput´1, Memory) is
represented in Fig. 2 for a latency value of 2, that is 2 pipeline stages.

Fig. 2. Pareto-front (Power, Throughput´1, Memory) of SIFT for a latency of 2.

While some purples clusters, especially around the (0.5, 0.5) coordinates,
seem to be strictly dominated by blue and yellow clusters below them, they

Influence of Dataflow Parameters on Optimization Criteria 91

actually boast a smaller memory footprint; the Pareto-front is correct. This
slightly smaller memory footprint of purple clusters comes at the cost of worse
Throughput´1 and power consumption. Besides, the developer is most prob-
ably interested in only one point of each cluster, thus the number of rele-
vant DSE points on the Pareto-front is even more reduced. A manual analysis
of the point configurations reveals that all the clusters of points of the same
colour are produced by the parameter nKeypointsMaxUser. Also, the parameter
NumeratorFrequency creates the twelve clusters of each colour. Similar results
were observed for other latency values and for other applications, but are not
presented due to lack of space. The automatic discovery of clusters and of their
relation to a specific parameter is an interesting direction for future work.

As the DSE takes up to 6 h (for SIFT), it is important to know if it really
worth it to explore all the configurations. To answer this main question, we
answer two corollary ones: Q1 only the points on the Pareto-front are relevant
for the developer, but how many are they among all configurations? Q2 is it
possible to explore only a subset of the configurations to get the influence of
each moldable parameter on each criteria?

Q2 will be answered in Sect. 4.4 by applying the analysis detailed in Sect. 4.3
on a subset of the expressions held by moldable parameters: if expressions are
mere integer, only Npts are retained for the analysis. Regarding Q1, Table 1 gives
the total number of configurations and the number of points on the Pareto-front
for all applications and different values of Npts. While 20% of the points belong
to the Pareto-front of the smallest application (Sobel), this percentage goes down
to 1% and 2% for stereo and SIFT respectively. Note that the aforementioned
percentages are for the PLTS criteria and considering Npts “ all; they would
be even lower for the ELTS criteria.

Table 1. Number of points on the ELTS and PLTS Pareto-fronts and total number of
configurations for each application.

Sobel stereo SIFT

Npts ELTS PLTS total ELTS PLTS total ELTS PLTS total

all 81 119 576 24 63 5760 91 244 10368

4 – – – – – – 31 73 2048

3 19 36 144 8 29 768 23 56 864

2 11 19 64 4 25 128 12 26 384

4.3 Exhaustive Parameter Analysis

To evaluate the influence of a specific moldable parameter on a given criterion,
the variation of this criterion is classified depending on the variation of the
moldable parameter, with all other parameters being fixed. We classify moldable
parameters in 4 categories depending on their influence on the EPLTS criteria:

92 A. Honorat et al.

– Same Ñ: the criterion is constant as the parameter changes.
– Increase Õ: the criterion strictly increases as parameter value increases.
– Decrease Œ: the criterion strictly decreases as parameter value increases.
– Inconsistent ÕŒ: the variation of the criterion is not strictly monotonic while

the variation of the parameter value is monotonic.

Each parameter-criterion pair is evaluated on all parameter configurations.
If the behaviour of a criterion is consistent for all configurations, the appropriate
class is assigned to the parameter-criterion pair. Otherwise, the class is Incon-
sistent. It is implemented as Matlab scripts which run in less than a second
despite a high complexity: linear to the number of moldable parameters, to the
number of criteria and to the number of configurations.

Table 2. Influence of each moldable parameter on each criterion for exhaustive DSE
of SIFT. Circled results are erroneous classifications with Npts ď 3.

Moldable parameters Power Latency Throughput´1 Memory Energy

nKeypointsMaxUser ÕŒ Ñ ÕŒ ©Õ ÕŒ Õ
image width ÕŒ Ñ Õ Õ Õ

parallelismLevel Õ Ñ Œ ÕŒ ÕŒ
AspectRatioDenominator ÕŒ Ñ Õ Õ Õ

delayRead ÕŒ Õ ÕŒ ÕŒ Ñ
delayDisplay Õ Õ Œ ÕŒ Ñ

NumeratorFrequency Õ Ñ Œ ÕŒ Õ
imgDouble ÕŒ Ñ Õ Õ Õ

Results of this evaluation are shown in Table 2 for SIFT. Some criteria are
mostly independent of parameters, such as the Latency criterion, which only
depends of the delayRead and delayDisplay moldable parameters. This par-
ticular result is expected as only these parameters impact on the pipelining of
the application. At the opposite the energy evolves most of the time in the same
direction as the parameters, except for the two parameters adding delays, which
is also expected. On the other hand, the power and memory criteria exhibit a
mostly Inconsistent behaviour. So power and memory are not classified the
same way and while the power might be more relevant for the developer, its
intricate relation with the throughput makes it harder to classify. Results on
Sobel and stereo have a similar amount of Inconsistent parameter-criterion
pairs, also linked to the power and the delays.

The parameter imgDouble {0,1} controls the execution of an optional branch
of the PiSDF graph. This branch upsamples the input images to find keypoints
with a better accuracy. Larger input images imply more data to store and pro-
cess, hence the mostly negative influence of this parameter on the criteria shown
in Table 2. Consequently, as the QoS is not part of the studied criteria, the

Influence of Dataflow Parameters on Optimization Criteria 93

Pareto-front does not contain any points featuring the parameter imgDouble
with a value of 1. The same phenomenon is observed for image width and
aspectRatioDenominator: these parameters worsen the throughput and the
memory and energy footprints, so there is no point having the maximum reso-
lution on the Pareto-front. Similar results are obtained for the two other appli-
cations, with only a few exceptions about the resolution.

4.4 Faster Parameter Analysis

Here the goal is to reduce the number of configurations required to evaluate the
influence of a moldable parameter on a given criterion. We observe that despite
less configurations being evaluated, the results are similar to the ones described
in Sect. 4.3. The same set of 4 classes defined in Sect. 4.3 is used, and the analysis
is performed with the same Matlab scripts.

Instead of performing an exhaustive evaluation with every configuration, the
number of possible expressions that a moldable parameter can be set to is capped
arbitrarily according to Npts. Doing so, the DSE run time is greatly decreased
as the domain of configurations to evaluate, being the Cartesian product of less
expressions, decreases from the same ratio. This technique benefits the appli-
cations having moldable parameters holding numerous expressions. The class
corresponding to each parameter-criterion pair is then evaluated on the subset
of possible configurations. As all moldable parameters hold mere integer expres-
sions in our experiments, we arbitrarily select the minimum, median and maxi-
mum values if Npts “ 3 and equally distributed values otherwise. The choice of
which expressions to keep in the general case is yet an open question.

Table 2 also shows the results of the evaluation with Npts ď 3. For Npts ď 3,
all results are identical to the classification from exhaustive data, except for the
only erroneous parameter-criterion pair displayed within a circle. The number of
tested configurations for SIFT is reduced from 10368 to 864 for Npts ď 3. For
stereo, only 4 errors occur with Npts “ 2. No error occurs for Sobel.

The classification of a parameter-criterion pair as Inconsistent requires an
explicit divergent behaviour across multiple configurations. Consequently, lim-
iting the DSE to a smaller sublist of moldable parameter expressions, such as
Npts “ 2, increases the likelihood of parameter-criterion pairs misclassification
away from the Inconsistent class. Increasing Npts to 4 yields a classification
identical to the exhaustive analysis for SIFT, while testing only 1536 config-
uration out of 10368, representing 15% of the design space and an equivalent
analysis speedup of almost 7x. No error occurs for stereo with Npts “ 3, testing
432 configurations out of 5760.

5 Conclusion

This paper introduces the first use of moldable parameters in the semantics of
dataflow MoCs as a way to automatically explore different configurations of an
application in a multi-criteria optimization context. Results on three computer

94 A. Honorat et al.

vision applications reveal that only 1 to 20% of configurations obtained with
this technique belong to the Pareto-front. Finding these Pareto-efficient config-
urations is crucial for the developer. An analysis on how moldable parameters
impact on DSE criteria shows that only a limited subset of all configuration is
needed to classify accurately the influence of each parameter. This observation
gives credit to the design of smart DSE heuristics capable of finding Pareto-
efficient configurations without resorting to an exhaustive analysis.

References

1. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software synthesis from dataflow
graphs, vol. 360. Springer, NY (1996). https://doi.org/10.1007/978-1-4613-1389-2

2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow.
IEEE Trans. Signal Process. 44(2), 397–408 (1996)

3. Bouakaz, A., Fradet, P., Girault, A.: A survey of parametric dataflow models of
computation. ACM Trans. Des. Autom. Electron. Syst. 22(2), 1–25 (2017)

4. Castrillón, J.: Programming heterogeneous MPSoCs: tool flows to close the soft-
ware productivity gap. Ph.D. thesis, RWTH Aachen University, Aachen (2013).
Aachen, Techn. Hochsch., Diss., 2013

5. Castrillon, J., Leupers, R., Ascheid, G.: Maps: mapping concurrent dataflow appli-
cations to heterogeneous MPSoCs. IEEE Trans. Industr. Inf. 9(1), 527–545 (2013)

6. Desnos, K., Pelcat, M., Nezan, J., Aridhi, S.: Pre- and post-scheduling memory
allocation strategies on MPSoCs. In: Proceedings of the 2013 Electronic System
Level Synthesis Conference (ESLsyn), pp. 1–6 (2013)

7. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S., Aridhi, S.: PiMM: param-
eterized and interfaced dataflow meta-model for MPSoCs runtime reconfigura-
tion. In: Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pp. 41–48. IEEE (2013)

8. Ecker, W., Müller, W., Dömer, R.: Hardware-dependent software, pp. 1–13.
Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9436-1 1

9. Honorat, A., Desnos, K., Bhattacharyya, S.S., Nezan, J.F.: Scheduling of syn-
chronous dataflow graphs with partially periodic real-time constraints. In: Real-
Time Networks and Systems. Paris, France (2020)

10. Kang, S., Yang, H., Schor, L., Bacivarov, I., Ha, S., Thiele, L.: Multi-objective
mapping optimization via problem decomposition for many-core systems. In: 2012
IEEE 10th Symposium on Embedded Systems for Real-time Multimedia, pp. 28–37
(2012)

11. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

13. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J., Aridhi, S.: Preesm: a
dataflow-based rapid prototyping framework for simplifying multicore DSP pro-
gramming. In: 2014 6th European Embedded Design in Education and Research
Conference (EDERC), pp. 36–40 (2014)

14. Schwarzer, T., et al.: Compilation of dataflow applications for multi-cores using
adaptive multi-objective optimization. ACM Trans. Des. Autom. Electron. Syst.
24(3), 1–23 (2019)

https://doi.org/10.1007/978-1-4613-1389-2
https://doi.org/10.1007/978-1-4020-9436-1_1

Influence of Dataflow Parameters on Optimization Criteria 95

15. Wang, J., Roop, P.S., Girault, A.: Energy and timing aware synchronous program-
ming. In: International Conference on Embedded Software, EMSOFT 2016, p. 10.
ACM, Pittsburgh (2016)

16. Yu, W., Kornerup, J., Gerstlauer, A.: MASES: mobility and slack enhanced
scheduling for latency-optimized pipelined dataflow graphs. In: Proceedings of the
21st International Workshop on Software and Compilers for Embedded Systems,
pp. 104–109. SCOPES 2018, ACM, NY (2018)

QoS Aware Design-Time/Run-Time
Manager for FPGA-Based Embedded

Systems

Alexis Duhamel1,2(B) and Sébastien Pillement1

1 Nantes Université, CNRS, IETR UMR 6164, 44000 Nantes, France
{alexis.duhamel,sebastien.pillement}@univ-nantes.fr
2 Capgemini Engineering, R&I Department, Rennes, France

alexis.duhamel@capgemini.com

Abstract. Due to their performance and flexibility, dynamically recon-
figurable FPGA-based systems on chip find their uses in industry. Those
architectures require dynamic context management of their computing
resources to adapt to their environment.

Our manager dynamically changes the application quality scenarios to
fulfill the system’s constraints. Based on a hardware and software execu-
tion model, resources’ mapping and schedule can be switched at runtime
to maximize quality of service and guarantee the service execution.

In this work we intend to design such a manager with maximization
of user-defined quality of service (QoS) in constrained environments and
focus on continuity of service. The designed manager has been verified
within a simulated environment and profiled data from an actual imple-
mentation of an H264 encoder. Results show the manager can make the
targeted application run in constrained environment at the highest mod-
eled QoS achievable without service breaks.

Keywords: FPGA · Hardware Acceleration · Reconfigurable
Architectures · Runtime Management · Quality of Service · Reliability

1 Introduction

Embedded systems are used in aerospace, defense, automobile, or AI and address
lots of challenges. The performance and low energy consumption of such systems
are of industry’s interest. Their performance, especially for parallel and data
flow computing, has been shown to be significantly better than pure software
execution. FPGAs have shown better performance with less energy consumption
than GPUs [1], although their usage is more complex for application designers.

To cope with the resource limitation of statically reconfigured FPGAs,
researchers have been using the dynamic partial reconfiguration (DPR) tech-
nique. Reconfigurable Regions (RR) can be used to reconfigure parts of an FPGA
at run-time without interfering with the remaining logic elements. To try and use

c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 96–107, 2022.
https://doi.org/10.1007/978-3-031-12748-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_8&domain=pdf
http://orcid.org/0000-0002-7280-3094
http://orcid.org/0000-0002-9160-2896
https://doi.org/10.1007/978-3-031-12748-9_8

QoS Aware Application Manager for FPGA-Based Embedded Systems 97

of those hardware resources, run-time managers have been developed to optimize
system’s performance.

Heuristics-based managers partially solve the NP-Hard mapping and schedul-
ing problems of managing application tasks on the system resources. They must
account for resource sharing and handling of the control and communication
specifications of the system’s architecture. Finding near optimal solution to this
problem is crucial in order to benefit from performances and flexibility offered by
the DPR technique. If some works such as [2,3] have shown interest in Quality
of Service (QoS) oriented management of RRs, achieving run-time continuity of
service has yet to be accomplished.

In this work, we introduce a task-level hybrid design-time and run-time man-
ager for heterogeneous hardware-software reconfigurable systems. It is able to
dynamically change the application settings to maintain a high level of QoS
under evolving constraint levels on the system. The proposed runtime manager
considers continuity of service by trying to find a new application schedule and
enforce it before the application deadline.

The obtained simulation results from an implementation of our hardware-
software H264 video encoder show the constrained system is able to maintain
execution of the targeted application. It manages the modeled QoS level and
switches pre-evaluated mappings and schedules at run-time fast enough to keep
the deadline.

The remainder of this paper is as follows. Section 2 introduces the related
works. The used models are presented in Sect. 3 and 4. Our proposed approach
is described in Sect. 5. Section 6 show simulation results of our experiments.
Finally, conclusions are summarized in Sect. 7.

2 Related Works

The mapping and scheduling problems rely mainly on the architecture and appli-
cation models. Applications are usually defined by their task graph and task
properties, such as resource usage, execution times, etc. Task managers aim
to find a valid mapping of the tasks on the available heterogeneous system’s
resources. A specific schedule for a mapping can be determined by the operating
system to control the tasks and ensure their execution is deadlock-free. Task
scheduling on the resources have become decisive to maximize performances [4].
Multiple works such as [5,6] have studied multi-objective mapping and schedul-
ing problems with a focus on performance.

Because of the NP-hardness of the mapping and scheduling problem, previ-
ously cited works usually focus on a single optimized solution found at design-
time. While they are capable to find near-optimal solutions, it is at the cost of
execution times ranging from seconds to minutes even on a host computer. This
makes the systems unable to change solution at run-time. To answer the high
execution time and flexibility, hybrid managers have been introduced. Hybrid
managers includes two steps: design-time and run-time. The first step executes
the time-consuming heuristic on a host to generate, evaluate and prune solu-
tions. The second step running online executes a less compute-intensive heuristic

98 A. Duhamel and S. Pillement

using the pruned pre-evaluated solution space. This helps reducing the tim-
ing overhead introduced by such managers. Hybrid managers and real-time
approaches for self-reconfigurable systems have been studied in [7–10]. How-
ever, these approaches do not consider run-time changes in the application task
graphs induced by QoS parameters nor their impact on the system.

Finally, works in [11] introduce a model for a self-reconfigurable system that
considers its environment, the availability of computational resources to respect
a mission plan. Its goal is to maximize QoS with evolving user’s needs. This
work was made with the intent to be used conjointly with the run-time manager
described in [2]. The latter introduces an autonomic application version selector.
At run-time, this manager checks if the execution time is within user-set bounds
(or margin). If the application crosses the margin of maximum execution time
threshold, the application is replaced by a less compute-intensive version. The
application is upgraded if execution times are way smaller than the threshold.
This work however focuses only on the quality setting aspect and doesn’t answer
the mapping and scheduling problems at the resource and task level.

While existing application-level approaches regarding QoS management on
self-reconfigurable systems maintain near-optimal levels based on their respec-
tive objective function, the statically found solutions are designed for specific
scenarios. To withstand changing environments and real world unpredictable
constraints, an online management of the task/resources mappings and sched-
ules is necessary to guarantee continuity of service of a targeted application. We
address this problematic by introducing our approach based on task and resource
level hybrid management with application-specific user-defined QoS goal. The
emphasis is put on continuity of service at run-time through fast dynamic map-
ping and schedule run-time decisions.

3 Application and Quality of Service Models

In this work, the manager is restricted to one targeted application. Multi-
application management would require each application to have their own QoS
model, and consequently be treated separately by order of user-defined priority,
and will be studied as future works. The application must be designed in such
a way that a minimum QoS version of the targeted application can always be
executed on the system.

The application is modeled via multiple metrics associated to its task graph.
Metrics include a unique task identifier, a list of parent and children task iden-
tifiers (if any) and its profiled average execution time on software and/or hard-
ware resource. In this model, tasks are black boxes that can be executed either
on hardware and/or software resources.

The QoS model is the design-time objective function of our optimization
problem, which is to maximize QoS at run-time. As our proposed manager is
designed to be application-independent, this function is considered an input to
provide QoS parameters for the manager to interact with. This function returns
a quantifiable metric called relative preference (Qpref) which reflects user per-
ceived QoS and allows to objectively compare two application settings. Relative

QoS Aware Application Manager for FPGA-Based Embedded Systems 99

Fig. 1. Directed acyclic graph of the used video encoder. Sobel filter and AES encryp-
tion tasks expand the graph with optional modes of executions.

preference is a dimensionless value between 0 and 1 where a score of 0 is a service
break and 1 the best available setting.

We illustrate our work with a H264 video encoder example, which is repre-
sentative of data flow applications. Its task graph is introduced in Fig. 1 with
composition of optional modes of execution. The H264 encoder parallelly encodes
4 slices of the input image before applying an entropy encoder to the output
bitstream. The encoder computes 16 × 16 pixels macroblocks with 8-bit width
quantization for black and white images. The application encodes two frames at
once when running at 60fps. Continuity of service can be easily represented in
this case as no video frame should be dropped as a result of a failure in meeting
application deadlines, similarly to soft real-time behavior.

The QoS model of the H264 application is a function of image resolution
(360p or 480p), framerate (30 or 60 frames per second), optional presence of
filter and/or encryption tasks in the task graph. Additionally, the task graph
topology may differ between quality modes: scenarios of execution including
Sobel filtering and AES encryption expand the H264 task graphs and the QoS
model by introducing other parameters. A total of 10 scenarios have been defined
in Table 1 based on the used parameters, with their corresponding Qpref score.

The Qpref score has been computed using customized Eq. 1 to simulate a
user’s preference, although designers are free to use a more complex equation,
use empirically defined values and choose other QoS parameters to fit their
application. This equation extrapolates results from [12] regarding the impact
of perceived video quality and is provided as an input for the proposed method-

Table 1. Application scenarios of execution, ranked by Qpref score. Each scenario is
characterized by its unique combination of QoS parameters.

Scenario index 0 1 2 3 4 5 6 7 8 9

Number of tasks 5 5 5 5 6 6 6 6 7 7

Image resolution 360p 360p 480p 480p 480p 480p 480p 480p 480p 480p

Video framerate (fps) 30 60 30 60 30 30 60 60 30 60

Sobel filter No No No No Yes No Yes No Yes Yes

AES encryption No No No No No Yes No Yes Yes Yes

Qpref score 0.18 0.25 0.35 0.53 0.59 0.59 0.76 0.76 0.82 1.00

100 A. Duhamel and S. Pillement

ology. With ‘360p’ and ‘480p’ (similarly with ‘No’ and ‘Yes’) corresponding to
indices 0 and 1 respectively, we use parameters from Table 1. With r as image
resolution, f as video framerate, s and a as presence of sobel filtering and AES
encryption respectively:

Qpref (r, f, s, a) =
0, 75.r + 2, 5.f.10−2 + s + a

4, 25
(1)

Finally, we refer to continuity of service as a system’s ability to deliver a
minimum level of service (represented by its QoS model) of a targeted application
at run-time. The run-time manager focuses on a single application (represented
as a task graph) and shares the hardware and software resources with other
context applications that aren’t managed. As the latter occupy resources, their
effect on the system is seen by the run-time manager as a constraint on the
resources usage. This may cause an increase in execution times which could lead
to non-respect of execution time deadlines. To ensure continuity of service, the
manager dynamically changes the targeted application’s QoS scenario to find a
pre-evaluated solution that’s able to compute the application while respecting
the user-defined constraints, which in this paper is the execution time deadline
of the application.

4 System Model

We consider a generic targeted system architecture introduced in Fig. 2, compa-
rable to works such as [13]. In this work, we target a Zynq-7000 PYNQ-Z2 board
containing a FPGA, a CPU, and on-chip memories.

The FPGA part contains RRs and their respective control and communica-
tion static interfaces. Those interfaces are responsible for local management of
low-level control operations and data transfer between the RR logic and the hard-
ware communication infrastructure. The latter consists of a switch transferring
data between RRs and software threads via direct memory access. Management
of dynamic reconfiguration is done via the hardware manager which embeds an
ICAP controller such as [14].

Point-to-point communication between RRs is considered to reduce commu-
nication delays between hardware implementations of tasks. Such communica-
tions channels are controlled and monitored via a control register in the hardware

Fig. 2. Overview of the targeted reconfigurable SoC architecture. Colored blocks exe-
cute application-related functionalities. Striped blocks are out of this paper’s scope.
(Color figure online)

QoS Aware Application Manager for FPGA-Based Embedded Systems 101

manager. This ensures the OS libraries are aware of this daisy-chaining. When
receiving a new configuration order, the hardware manager configures the com-
munication infrastructure appropriately. Usual Linux OS services are used when
dealing with software application threads.

On the CPU, OS libraries such as Linux-based FOS [13] that we use in this
work controls the RRs using their respective control and status register. Dedi-
cated application software threads allow software task implementations execu-
tion. Finally, the run-time manager is our proposed software decision making
greedy-based algorithm. It sends its reconfiguration requests to the hardware
manager after making decision.

We consider heterogeneous RRs: they are different in available logic elements
and some tasks cannot be instantiated in all RRs. Because we use a design-
time mapping and scheduling algorithm to pre-evaluate solutions, the added
complexity of using heterogeneous RRs does not impact the run-time algorithm.
We target coarse-grained tasks being instantiated on the system. Coarse-grained
tasks is the most popular granularity and represent functions of an application.
This choice is motivated by a reduction of combinatorial explosion brought by
the HW/SW partitioning problem, as coarse-grain reduce the number of nodes
in a task graph. Also, coarse-grain tasks impose a lesser logic element overhead
versus fine-grained tasks models [15].

Similarly to the application model, we define metrics for the system resources.
For each computational resource is given the following metrics: nature of the com-
putational resource (hardware or software), a unique resource identifier, average
external memory access delays and reconfiguration time, including control and
interface timing overhead. Additionally, average communication delays between
computational elements are considers when computing schedules.

5 Proposed Hybrid Manager

Hybrid run-time managers have been introduced to cope with the NP-hardness
of the dynamically reconfigurable SoCs’ management. In this section, we describe
our proposed hybrid runtime manager, whose goals are i) to maximize the QoS
based on the user-designed QoS model at run-time without breaking the service,
and ii) to quickly find a suitable pre-evaluated solution to enforce it.

The manager comprises a design time and a run-time steps. The design time
step is responsible for mappings and schedules (i.e.; solutions) generation and
solution space reduction, after which an initial solution file is created. The run-
time step is responsible for the actual management of the system according to
the current monitored execution context. It is responsible for optimizing the QoS
with the pruned solution set from the initial solution file and information given
by the application designer. Figure 3 presents an overview of our approach.

5.1 Design Time Solution Generation and Evaluation

Given the system, application and QoS models, the mapping and scheduling
problems can be solved with heuristics to generate solutions by assigning tasks

102 A. Duhamel and S. Pillement

Theoritical mappings

Generation

Working evaluated schedules

Evaluation

Pruning

Initial
Solution

Set Potential service break

System monitor

Greedy-based heuristic

System, Application and QoS models Valid mapping and schedule

Fig. 3. Proposed hybrid manager overview. The design time and run-time step are
executed respectively on a host computer (blue) and on the embedded system (orange).
(Color figure online)

to the resources and computing a schedule. Input QoS and applications models
filter obviously invalid solutions, such as a mapping with a task located in a RR
that has no hardware implementation. We encourage the use of heuristics such as
genetic algorithms for solution generation as the exhaustive method generates
a large number of solutions growing exponentially with number of tasks and
RRs that will most likely be pruned off during the solution space reduction step
anyway.

The generated solutions are then evaluated by finding a schedule for the gen-
erated mapping. The schedule duration is obtained considering the tasks’ profiled
execution time on their assigned resource, the assigned resource reconfiguration
time (if any) and communication channels average delays. The scheduler makes
use of the reuse and pre-fetch techniques as introduced in [16]. The reuse tech-
nique consists in not reconfiguring an already implemented task if it is the only
scheduled task for a resource. The pre-fetch technique consists in reconfiguring
an idling resource before the task is called. This parallelizes the reconfiguration
process with the execution of tasks and reduces the timing overhead introduced
by reconfiguration times. We also consider FPGA constraints such as communi-
cation and reconfiguration delays in the scheduling process. After evaluation, a
solution is characterized by:

– Its corresponding QoS scenario and Qpref score from the QoS models;
– Its pre-evaluated profiled execution time;
– A mapping matrix M of dimension n × m, with m being the number of

resources and n the number of tasks. Element Mi,j is 1 if task i is assigned
to resource j, else 0;

– A communication channel matrix C of dimension m×m whose element Ci,j

is 1 if a task assigned to resource i requires a communication channel with a
task assigned to resource j, else 0.

Finally, a pruning of the solution space ends the design time step. Solutions
that don’t satisfy execution time deadlines are removed. For each QoS scenario,

QoS Aware Application Manager for FPGA-Based Embedded Systems 103

the solutions are ranked by their execution time, and the lowest ranked are
discarded in such a way that only a user-defined number of solution remains for
each setting. This ensures remaining solutions only include viable best solutions
for a given scenario.

5.2 Run-Time Management

While the initial solution set was evaluated at design time on free resources, their
actual run-time implementation will have to share the resources with context
applications. This affects the system in a way that could make those solutions
non compatible with the current context. This leaves the run-time problem to
find which best viable solution within the set can be implemented in the current
context.

The SoC’s CPU handles the run-time management. It is enabled whenever
the system monitor detects that the influence of other running programs on the
system may cause a service break in the next iteration. The system monitor
is a representation of the OS library that checks the execution status of tasks.
It keeps track of system resources in order to extract current CPU and FPGA
implementation application metrics. Finally, it looks for constraints violations.
The system monitor can be customized to the user’s requirements, such as mon-
itoring energy usage, chip temperature, and so on. In this work, the system
monitor checks the execution time metric for each encoded frame. If the system
monitor observes execution times crossing the deadline minus a user-defined
margin (similarly to [2]), a downgrade is requested to the heuristic to find a new
solution. If no such request is sent the run-time manager defaults to check for
an application upgrade.

Application downgrade refers to the process of lowering the QoS in order to
avoid service breaks. Assuming that no implementation of the present setting
would allow the program to meet deadlines, a less resource-intensive setting is
chosen. An application upgrade, on the other hand, tries to increase QoS. Down-
grades must be made as quickly as possible in order to execute the newly found
solution on the current iteration. Upgrades can be delayed until the following
iteration as the current application implementation runs fine but sub-optimally.
This allows more time to identify a better solution and avoid making frequent
QoS-impacting changes. Thus high upgrade decision times do not cause service
breaks.

Once the decision to upgrade or downgrade has been made, the run-time
manager uses a Greedy-based heuristic to identify a new compatible solution
of the application. The initial solution file’s reduced solution space contains a
database of solutions meant to execute the managed application in the targeted
QoS scenarios and using different resource combinations. At equal QoS score,
some solutions provide a shorter application makespan or require more or less
resources than others.

The greedy-based heuristic parses the pruned solution set with an upgrade or
downgrade goal. Some solutions may no longer be implementable because their

104 A. Duhamel and S. Pillement

required resources are being used by other context applications, and includ-
ing the targeted application tasks in the schedule of this resource would cause
the application to miss deadlines. We refer to remaining solutions that can be
instantiated as compatible solutions. Because they favor exploitation over explo-
ration, greedy algorithms typically find solutions faster than optimal methods.
The algorithm stops when it has found one viable solution. As future works, a
second round of search using a more compute-intensive algorithm could be done
to look for a more long-term compatible solution.

For each solution, the greedy-based heuristic checks if a solution fits given the
current system resources occupied by context applications and services. To do
so, it tests the pre-evaluated schedule of the solution on the current monitored
state of the system’s resources. If the whole schedule, which includes the solution
and the context application schedule, fits within the execution time deadline, it
is judged a compatible solution and the heuristic stops.

6 Experimentation and Results

6.1 Environment Model

The simulated system’s architecture comprises of 4 heterogeneous RRs. The
targeted board is a PYNQ-Z2 board which embeds Xilinx Zynq-7000 FPGA
and 650 MHz dual core ARM A9 CPU SoC. Partial bitstreams size were 650 KB
on average. Using 380 MBps reconfiguration bandwidth from [14], we profile
reconfiguration times at 1.70 ms on average. We measured an intra-software and
intra-hardware communication delay between resources equal to 0.01 ms, and
0.26 ms whenever a transfer between hardware and software occurs using Xilinx’s
DMA IP and the board’s DRAM.

We model the effects of context applications constraints on the system to ver-
ify the feasibility of our approach. The context execution time for each resource
represents the amount of time we consider it to be completely unavailable for
the application. Random context execution simulates the unpredictability for
the runtime manager of those context constraints. The context execution time
of each resource is simulated using a normal distribution centered at half the
deadline d and scaled for values between d/4 and 3d/4.

6.2 Benchmark Application

We used the H264 encoder as benchmark application as defined previously. H264
tasks have been profiled in both hardware and software domain whenever pos-
sible. The encoder’s performance has been measured for two resolutions (480p
and 360p) with a deadline of 27 ms (margin considered). Its hardware perfor-
mance while running with a 100 MHz clock has been measured on the target
board using Xilinx’s Integrated Logic Analyzer (ILA) on a static FPGA design.
Execution times of the software implementation of the encoder’s tasks were mea-
sured on the targeted CPU using the C time library. The FPGA implementation

QoS Aware Application Manager for FPGA-Based Embedded Systems 105

Table 2. Number of solution in the initial solution file, ordered by scenario.

Scenario 0 1 2 3 4 5 6 7 8 9

Nb of solution 7871 5223 6947 2480 6366 3564 1215 2016 2215 110

Min. exec. (ms) 5.16 10.27 7.84 15.52 9.13 13.68 21.36 16.81 16.67 25.57

Avg. exec. (ms) 7.48 13.86 9.64 19.09 10.50 17.24 23.35 19.01 21.50 26.30

outperforming the CPU due to their specifications, we cannot use a full software
implementation. However, some scenario considering partial software implemen-
tation, albeit sub-optimal, can be executed to alleviate FPGA constraints in
some cases.

An exhaustive solution generation has been executed to generate all possi-
ble solutions at design time to avoid local optimums introduced by heuristics.
Because of combinatorial explosion, exhaustive approaches scale really badly
with the number of tasks in the task graph, number of resources, and number
of QoS scenarios. As mentioned in Subsect. 5.1, we encourage the use of heuris-
tics instead. Given our application and system models, 1’156’242 solutions have
been generated and pre-evaluated in 110 s on a host computer. After pruning,
38’007 solutions were kept (96.71% reduction) in the initial solution file. Table 2
shows the number of solution for each scenario, along with minimum and average
execution times.

The simulation environment and algorithms were written in Python for pro-
totyping purpose and executed on the PYNQ-Z2’s CPU.

6.3 Results

Table from Fig. 4 shows average resulting solution relative preference and deci-
sion time from our run-time manager over 100’000 encoder iterations compared
to the exhaustive optimal on the pruned set of solutions. As expected, the exhaus-

Fig. 4. On the left: average relative preference Qpref and decision time by algorithms
running on the targeted board’s CPU, averaged over 100’000 iterations. Illustrated on
the right: impact of the decision time on the lateness of the H264 application execution.

106 A. Duhamel and S. Pillement

tive algorithm returns a much higher decision time and fails to find solutions fast
enough to avoid service breaks (i.e.; the application cannot run after decision and
still meet the deadline, see illustration in Fig. 4). Our Greedy-based algorithm
manages to return an average relative preference 3.71% below optimal with a
much shorter decision time.

When performing a downgrade, we add the decision time to the makespan
of the found solution as the application starts running immediately after the
solution is found. Fast downgrading is required to allow continuity of service,
as a decision too long causes the application to break the deadline. Applica-
tion upgrades aren’t critical in this regard, as the application already runs fine,
although at a lower QoS scenario than optimal, and the found solution can be
executed at the following iteration. With this in consideration, no service break
were recorded on 100’000 iterations.

The run-time manager is able to run the targeted H624 encoder despite the
context tasks sharing the encoder’s resources. Solution changes frequently hap-
pened as simulated constraints changed at every iteration, which is an extreme
scenario as FPGA implementations tend to have fixed execution times. Such
changes in the mapping and scheduling can happen without seen effects on the
relative preference: the user cannot perceive when the H264 encoder runs on all
four RRs, or a mix of RRs and CPU. Differences between optimal and greedy-
based highlighted in this table focuses on the perceived QoS modeled by the
Qpref value.

Compared to other approaches such as [3,8] that aims to maximize user-
defined QoS, ours focuses on a task and resource level mappings and schedules,
taking in consideration the decision time to make a fast decision and ensure
continuity of service.

7 Conclusion

Our run-time manager aims to guarantee the execution of an application running
on a constrained systems. The manager offers task and resource-level run-time
management using relevant application and system models. The system archi-
tecture’s specificities are considered at design-time during solution generation.
We make use of a greedy-based heuristic to make fast decisions and ensure the
found solution can be executed on the remaining time before deadline.

Results show the proposed algorithm is capable of avoiding service breaks
while holding near-optimal QoS, illustrated by user-defined QoS scenarios, and
to adapt to the context induced constraints. Our approach is capable of dynami-
cally managing hardware and software schedule implementations of the targeted
application at run-time.

Future works include an implementation of the targeted architecture to study
the computational overhead of the run-time managers integrated on the FOS
FPGA designed OS and architecture. Multi-application management will also
be studied, as well as a way to preemptively find better schedules than greedy-
based to avoid frequent QoS-impacting schedule changes.

QoS Aware Application Manager for FPGA-Based Embedded Systems 107

References

1. Nurvitadhi, E., et al.: Can FPGAs beat GPUs in accelerating next-generation deep
neural networks? In: FPGA (2017)

2. Gueye, S.M.K., Rutten, E., Diguet, J.P.: Autonomic management of missions and
reconfigurations in FPGA-based embedded system. In: Conference on Adaptive
Hardware and Systems (2017)

3. Roy, S.K., Devaraj, R., Sarkar, A., Senapati, D.: SLAQA: quality-level aware
scheduling of task graphs on heterogeneous distributed systems. ACM Trans.
Embed. Comput. Syst. 20, 1–31 (2021)

4. Iguider, A., Bousselam, K., Elissati, O., Chami, M., En-Nouaary, A.: Heuristic
algorithms for multi-criteria hardware/software partitioning in embedded systems
codesign. Comput. Electric. Eng. 84, 106610 (2020)

5. Sun, Z., Zhang, H., Zhang, Z.: Resource-aware task scheduling and placement in
multi-FPGA system. IEEE Access 7, 163851–163863 (2019)

6. Biondi, A., Buttazzo, G.: Timing-aware FPGA partitioning for real-time applica-
tions under DPR. In: Adaptive Hardware and Systems (2017)

7. Chillet, D., Eiche, A., Pillement, S., Sentieys, O.: Real-time scheduling on hetero-
geneous system-on-chip architectures using an optimised artificial neural network.
J. Syst. Architect. 57(4), 340–353 (2011)

8. Weichslgartner, A., Wildermann, S., Götzfried, J., Freiling, F., Glaß, M., Teich, J.:
Design-time/run-time mapping of security-critical applications in heterogeneous
MPSoCs. In: SCOPES (2016)

9. Spieck, J., Wildermann, S., Teich, J.: Scenario-based soft real-time hybrid appli-
cation mapping for MPSoCs. In: Design Automation Conference (2020)

10. Abdi, A., Zarandi, H.R.: HYSTERY: a hybrid scheduling and mapping approach to
optimize temperature, energy consumption and lifetime reliability of heterogeneous
multiprocessor systems. J. Supercomput. 74(5), 2213–2238 (2018)

11. Hireche, C., Dezan, C., Mocanu, S., Heller, D., Diguet, J.P.: Context/resource-
aware mission planning based on BNs and concurrent MDPs for autonomous UAVs.
MDPI Sens. 18, 4266 (2018)

12. Debattista, K., Bugeja, K., Spina, S., Bashford, T., Hulusic, V.: Frame rate vs
resolution: subjective evaluation of spatiotemporal perceived QoS under varying
computational budgets. Comput. Graph. Forum 37, 363–374 (2017)

13. Vaishnav, A., Pham, K.D., Powell, J., Koch, D.: FOS: a modular FPGA operating
system for dynamic workloads. ACM Trans. Reconfigurable Technol. Syst. 13, 1–28
(2020)

14. Sultana, B., et al.: VR-ZYCAP: a versatile resourse-level ICAP controller for
ZYNQ SOC. Electronics 8, 899 (2021)

15. Jain, A.K., Maskell, D., Fahmy, S.: Are coarse-grained overlays ready for general
purpose application acceleration on FPGAs? In: IEEE International Conference
on Dependable, Autonomic and Secure Computing (2016)

16. Ramezani, R.: A prefetch-aware scheduling for FPGA-based multi-task graph sys-
tems. J. Supercomput. 76(9), 7140–7160 (2020)

Fixed-Point Code Synthesis Based
on Constraint Generation

Sofiane Bessäı1(B), Dorra Ben Khalifa1, Hanane Benmaghnia1,
and Matthieu Martel1,2

1 University of Perpignan, LAMPS Laboratory, 52 Av. P. Alduy, Perpignan, France
{dorra.ben-khalifa,

Hanane.Benmaghnia,matthieu.martel}@univ-perp.fr,
sofiane.bessai@etudiant.univ-perp.fr

2 Numalis, 265 Av. des États du Languedoc, Montpellier, France

Abstract. Fixed-point arithmetic is a well-known alternative to
floating-point arithmetic on embedded systems. It is used to reduce
some computation costs in terms of speed and power consumption on
certain platforms, e.g. medical devices, cars, and robots. In this article,
we present POPiX, a novel fixed-point program synthesis tool based on
static analysis. The originality of our method is to solve a system of
constraints generated from the program source code. Thus, the solution
of our constraints gives the new fixed-point formats while accomplishing
the accuracy required by the user. Basically, POPiX takes as input an
imperative program running in floating-point arithmetic and synthesizes
a new program coupled to a fixed-point library relying on integers only.
We evaluate POPiX on a collection of floating-point benchmarks com-
ing from FPBench. Results demonstrate the efficiency of our analysis by
achieving memory savings up to 75% with energy savings up to 3.5ˆ.

Keywords: Fixed-point arithmetic · code synthesis · precision
tuning · linear programming · static analysis

1 Introduction

Floating-point arithmetic is the dominant approximation to represent a large
spectrum of real numbers. Although it offers better precision, programmers do
not always need the high level of accuracy offered by the largest floating-point
formats. In addition, owing to its complex internal circuitry and the increased
memory requirements, floating-point arithmetic can be exorbitant in terms of
speed and power consumption on certain platforms such as mobile phones, video
game consoles, and digital controllers. To bridge this gap and since many embed-
ded architectures can be implemented using very low bit-width numbers, the
solution is to deploy the fixed-point arithmetic as an alternative to the floating-
point one as it can be efficiently realized using integer arithmetic. Fixed-point

This work is supported by La Région Occitanie under Grant GRAINE - SYFI: https://
www.laregion.fr.

c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 108–120, 2022.
https://doi.org/10.1007/978-3-031-12748-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_9&domain=pdf
https://www.laregion.fr
https://www.laregion.fr
https://doi.org/10.1007/978-3-031-12748-9_9

Fixed-Point Code Synthesis Based on Constraint Generation 109

numbers in a certain format maintain a fixed divisor (so the name fixed-point).
With this kind of arithmetic, the number of bits splits into two parts, respec-
tively named integer part and fractional part with a radix point that lies between
them. Besides, many fields have revived their interest in fixed-point arithmetic
when searching for cost effective hardware processors with less design effort.
For instance, machine learning algorithms and models have been recently imple-
mented using fixed-points with little accuracy loss [8,10]. The conversion of code
designed for embedded systems from floating to a fixed-point equivalent version
is a long-established problem addressed in the litterature [3–6,12]. Nevertheless,
rarely we found tools (except for [4]) that deal with adjusting the floating-point
formats in the original program before the conversion pass. Practically, pro-
grammers do not always need the high level of accuracy in the floating-point
formats. However, manually adapting the precision of the variables may require
considerable programming skill and application domain expertise. Given this
consideration, automating the task of adjusting the program variables precision
to improve its performance characteristics, before conversion, can help program-
mers to achieve performance benefits. Generally, this process of adjustment, also
called precision tuning, involves a user requirement of accuracy and a semantic
analysis of the program. The benefit of this tuning phase is to provide an opti-
mized mixed-precision programs and pieces of information indicating the most
suitable fixed-point data formats in the converted program.

The goal of this article is to propose POPiX: a new tool to transform a
given numerical floating-point program into semantically equivalent one that
exploits fixed-point computations with integers only. The key idea of this work
relies on a semantic modelling of the numerical errors propagation throughout
the floating-point program. In order to achieve the conversion, POPiX combines
two fundamental steps. The first step consists in generating an Integer Linear
Problem (ILP) from the original program in order to obtain the minimal formats
(number of bits before and after the radix point) which fulfill the accuracy
requirements. Basically, this is done by reasoning on the most significant bit and
the number of significant bits of the values. The ILP problem can be optimally
solved in one shot by a classical linear programming solver (LP) with no iteration.
To the best of our knowledge, this is the first work that interests in statically
synthetizing fixed-point code using an ILP formulation of the program. At the
end of the tuning phase, the second step collects each information provided by
the former step. The tool internally calls a fixed-point library to convert the
associated indications into ones that exploit fixed-point computation with the
number of bits required for each of the integer and the fractional parts. We
evaluate POPiX on a set of benchmarks coming from the FPBench community.
The POPiX source code, and all the data and results presented in this article
are publicly available at: https://github.com/sbessai/popix.

The remainder of this article is organized as follows. In Sect. 2 we present a
motivating example describing our approach. Section 3 provides all the technical
details about our new developed fixed-point code synthesis framework. Experi-

https://github.com/sbessai/popix

110 S. Bessäı et al.

Fig. 1. Left: tuned program generated with a pair |ufp, nsb| for each variable as high-
lighted in blue. Right: Program C generated with fixed point formats.

mental results are presented in Sect. 4. We discuss related work in Sect. 5, and
conclude in Sect. 6.

2 Overview

Before we dive into the technical details of our tool, we present in this section an
overview of our method using the example of a FIR low-pass filter code given in
Fig. 1. The starting point of our analysis is to assume that all the variables are in
a given IEEE754 precision (here we use single precision) and that a range is given
for the inputs of the program. In addition, the statement require nsb(res,8)
is a postcondition added by the user to specify that res must have 8 significant
bits at the end of the execution. POPiX first performs a range determination
by dynamic analysis for all the program variables at each control point. Based
on semantic equations, POPiX generates an ILP problem from the program
source code annotated with the results of the range analysis and the accuracy
requirement. This yields a system of constraints:

C =

⎧
⎪⎪⎨

⎪⎪⎩

nsb(+)�548 ą= nsb(res)�549 , nsb(res)�549 ą= nsb(if)�551 ,

nsb(res)�511 ą= nsb(res)�545 , nsb(res)�545 ą= nsb(+)�548 + 8 + carry() ´ 8

nsb(res)�545 ą= nsb(+)�548 + 8 + carry() ´ 8, nsb(res)�548 ą= nsb(res)�549 ,

nsb(aux0)�547 ą= nsb(+)�548 + 6 + carry() ´ 8, nsb(aux0)�543 ą= nsb(aux0)�547

⎫
⎪⎪⎬

⎪⎪⎭

(1)

Fixed-Point Code Synthesis Based on Constraint Generation 111

For instance, the system C of Eq. (1) below describes the constraints generated
for the addition and assignement statements for Line 23 of Fig. 1 (left hand
side). Some notations can be highlighted for the system of Eq. (1). First, each
variable of our program is assigned to a unique control point � P Lab in order to
determine easily their number of significant bits. Second, the function carry()
is used to compute if a carry bit can occur through the operation (returns 0
or 1). Concerning scalability, we generate a linear number of constraints and
variables in the size of the analyzed program («500 for the FIR low-pass filter
code). The solution to our system of constraints gives the minimal number of
bits needed with an accuracy guarantee on the results (highlighted in blue in
the left hand side of Fig. 1). If we take back Line 23 under discussion, the pair
|8, 10| denotes that the unit in the first place of variable res is 8 whereas it has
10 significant bits. More details about the nature of constraints that we generate
for the language of our input programs was detailed in [1].

Based on the tuning results, POPiX synthesizes the C code given in the right
hand side of Fig. 1. First, it selects the best format (int16 t, int32 t, etc.) for each
variable (this is called mixed-precision). For example, at lines 6 and 7, vectors x,
y and z are defined as int16 t variables while the vector derivCoeffs is defined
as int8 t. The data type selected by POPiX for each variable is the minimal
one enabling us to encode the fixed-point value following the formats coming
from the ILP solution. For example, the variable res has 10 significant bits
(lines 29 and 31 of Fig. 1) and can consequently be encoded into int16 t. POPiX
determines the initial formats xM,Ly of the variables occurring in the code
and synthesizes the alignments needed to change the formats, before performing
some operation. For example, the shifts performed at lines 29 and 30 are done
in order to align the operand of the addition of Line 31. Similarly, the shift of
Line 28 is done to obtain the right format for the result of the multiplication
of Line 27. Currently, the fixed-point operation are generated sequentially and
some additional optimizations could be done, for example by using only one shift
for lines 27 and 29.

3 Floating to Fixed-Point Programs Synthesis

POPiX workflow is based on two frameworks as depicted in Fig. 3: a developed
fixed-point library (Sect. 3.1) and a precision tuning framework (Sect. 3.2). In
the rest of this section, we explain how the combination of these features are
achieved and which benefits they provide.

3.1 Fixed-Point Arithmetic

Since fixed-point operations rely on integer operations, computing with fixed-
point numbers is highly efficient for embedded systems with small memories
and simpler CPUs. However, this arithmetic is more difficult to handle for the
developer. There exists some fixed-point libraries such as Libfixmath1, Fixmath2

1 https://code.google.com/archive/p/libfixmath/.
2 http://savannah.nongnu.org/projects/fixmath/.

https://code.google.com/archive/p/libfixmath/
http://savannah.nongnu.org/projects/fixmath/

112 S. Bessäı et al.

Fig. 2. Fixed-point representation of a in a format xM, Ly .

and FPM3, but we have developed our own library in order to dispose of all the
features we need such as mixed-precision, elementary functions, etc.

A fixed-point number is represented by a sign s P {0, 1}, an integer value
V P N in base 2 and a format xM,Ly as shown in Fig. 2. The number of bits
before, respectively after, the radix point is M P Z (respectively L P N). The
value of a fixed-point number is obtained by multiplying the integer value V by
the sign s and a scaling factor 2´L as follows:

a = (´1)s ˆ V ˆ 2´L . (2)

Example 1. The fixed-point number a = 3ă2,1ą corresponds to the value 1.5.
Using Eq. (2), we obtain a = (´1)0 ˆ 3 ˆ 2´1 = 1.5.

Let us note that the number of bits M of the integer part already presented in
Fig. 2 is computed through the unit in the first place (ufp) defined by

∀x P F, ufp(x) =

{
min{i P Z : 2i+1 ą |x|} = �log2(|x|)� if x ‰ 0,
0 if x = 0 .

(3)

Hence, the number of bits M before the radix point is given by

M = ufp(|a|) + 1 . (4)

Let W be the number of bits used to encode a. The number of bits L of the
fractional part of a is

L = W ´ M ´ 1 . (5)

The difficulty of the fixed-point representation is to manage the format xM,Ly
manually against the floating-point representation which manages it automati-
cally, thanks to the exponent. Let ∗ be a fixed-point elementary operation with
∗ P {‘, a, b, c} and let us consider the fixed-point numbers a, b and c such
that c = a ∗ b. For the addition and subtraction, the resulting format of c is
given by

xMc, Lcy = xmax (Ma, Mb) + 1, W c ´ max (Ma, Mb) ´ 1y . (6)

For the multiplication and division, the resulting formats of c are

xMc, Lcy = xMa + Mb, W c ´ Ma ´ Mb ą . (7)

3 https://github.com/MikeLankamp/fpm.

https://github.com/MikeLankamp/fpm

Fixed-Point Code Synthesis Based on Constraint Generation 113

Fig. 3. POPiX workflow.

and
xMc, Lcy = xMa + Lb, W c ´ Ma ´ Lby . (8)

For a fixed-point number c, the formats of c ! k and c " k are

xMc, Lcy = xMa ´ k, Lc + ky and xMc, Lcy = xMa + k, Lc ´ ky . (9)

The algorithms of these elementary operations are detailed in [11,12]. Let us
consider a fixed-point elementary function f P {abs, sqrt, sin, cos, arctan} and
the fixed-point number c = f(a). For the square root function, the value of the
result can be approximated by the digit recurrence iteration algorithm defined
in [12]. For f P {sin, cos, arctan}, Taylor’s formula is used to approximate the
result. For example, the corresponding formula of sine is sin(a) « a ‘ (((a b
a) b a) c 6). The order of the Taylor series development depends on the number
of significant bits needed for the result. In the following, we describe how we
compute the fixed-point numbers occuring in our programs.

3.2 Constraint Generation by Static Analysis

POPiX presents a novel static technique based on a semantic modelling of the
propagation of the numerical errors throughout the code. In practical terms,
our approach depends on two integer quantities: i) The ufp of the values (see
Eq. (3)); ii) A user requirement denoting the final accuracy wanted for the out-
puts. Hereby, the term accuracy refers to the number of significant bits required
by the user on a variable of the program, denoted by nsb. Formally, let x̂ be
the approximation of x in finite precision and let ε(x) = |x ´ x̂| be the absolute
error. So, if nsb(x) = k, for x �= 0, then we have

ε(x) ď 2ufp(x)´k+1 . (10)

An ILP problem can be generated from the program source code which can be
optimally solved by a LP solver (we use GLPK4, in practice). Concerning our
resulting data types, the key feature of our method consists in finding directly
the minimal number of bits needed at each control point of the original pro-
gram. Next, these precisions can be approximated to the upper number of bits
4 https://www.gnu.org/software/glpk/.

https://www.gnu.org/software/glpk/

114 S. Bessäı et al.

corresponding to an existing format int16 t, int32 t, etc. By way of illustration,
if a variable x has nsb(x) = 18 bits, then x is tuned to the int32 t format. After
solving the ILP problem, POPiX collects a new key information concerning the
optimized precisions (along with the ufp integer quantity already computed by
range analysis) in order to fully specify the fixed-point formats xM,Ly intro-
duced in Sect. 3.1. Finally, we call our fixed-point library to synthetize a fixed-
point version of the program with only integer numbers. Through this technique,
it is possible to achieve memory savings up to more than double with a precision
cost that depends on the original program being optimized and energy savings
up to 3.5ˆ (see Sect. 4).

Implementation Details. POPiX has been developed in JAVA and C++ and uses
the ANTLR tool v4.7.15 to parse the input programs. To be able to guarantee
that no overflows will occur in computations, we perform a range analysis by
launching the execution of the program a certain number of times in order to
determine dynamically an under-approximation of the range of variables by using
the ufp of the values. In the future, we plan to use a static analyzer. Nevertheless,
POPiX uses the simple imperative language below.

x P Id � P Lab � P {+, -, ˆ, ÷} math P {sin, cos, tan, arcsin, log, . . .}
Expr � e : e ::= c#p | x | e

�1
1 � e

�2
2 | math(e�1) | sqrt(e�1)

Cmd � c : c ::= c
�1
1 ; c

�2
2 | x = e�1 | while b�0 do c

�1
1 | if b�0 then c

�1
1 else c�2 |

create vector(v, s) | create matrix(m, r, c) | require nsb(x, n)

We denote by Id the set of identifiers and by Lab the set of control points
of the program used to assign to each element e P Expr and c P Cmd a
unique control point � P Lab. Fortunately, POPiX is able to handle loops, con-
ditionals and arrays. The declaration of vectors is expressed by the statement
create vector(v,s), while s denotes the size of the vector v. The declaration
of a matrix m is expressed by the statement create matrix (m, r, c), while r
and c denote respectively the number of rows and columns of the matrix. The
statement require nsb(x,n) indicates the minimal nsb n that a variable x must
have at a control point. The rest of the grammar is standard. Note that the
usual mathematical elementary functions are supported.

Cost Functions. Cost functions are given as optimization objective to the lin-
ear solver. Depending on which cost function is used, different criteria may be
considered for the tuning phase. POPiX currently handles the following cost
functions: CF1 Optimizes the sum of the number of significant bits of all the
variables at each control point of the program. CF2 Optimizes the sum of accu-
racies of only the variables assigned in the program. Compared to CF1, this cost
function minimizes the size of the variables and the number of bits needed for
the operators to store the intermediary results. Let us note that CF2 is used in
the experiments of Sect. 4. CF3 Minimizes the maximal accuracy needed in the
program, i.e. the worst accuracy at some control point of the tuned program.
This function is usefull to make a program fit in a certain format (for example all
variables in 16 or 32 bits.) CF4 Optimizes only the sum of the accuracies of the

5 https://www.antlr.org/.

https://www.antlr.org/

Fixed-Point Code Synthesis Based on Constraint Generation 115

arithmetic operators and elementary functions. This function is relevant from an
hardware point of view, for example to limit the size of the operators in FPGAs
[7]. CF5 Minimizes the number of type conversions. Indeed, type conversions
introduced by the mixed-precision tuning may slow down the execution of the
programs and one may prefer a compromise between memory savings and execu-
tion time. This function addresses this problem. Note that these cost functions
are modified when dealing with arrays: the tool multiplies the precision by the
number of elements and this process is done only once for each array instead of
several times for each use of arrays.

4 Experimental Evaluation

In this section, we conduct some experiments to show the effectiveness of our
code synthesis method presented in Sect. 3.

Experimental Metrics. In our experiments, our goal is to evaluate the benefits
of POPiX in terms of mixed-precision, memory savings and energy consumption
which are important metrics to validate our synthesis method. We also measure
the time of analysis spent by POPiX and the execution time of the fixed-point
progam with respect to the floating-point program in which we assume that all
variables are in single precision (32 bits) before the analysis. For our benchmarks,
we use applications from FPBench6, a synthetic benchmark for floating-point
performance. We run each program with three accuracy requirements arbitrarily
chosen by the user: 4, 8 and 16 bits which bound the relative error of the result.
All the results we report in this section where gathered on two machines: Ubuntu
20.04 LTS, with an 2.7 GHz i7 core and 16 GB of RAM and Ubuntu 20.04 LTS,
with a CPU AMD Ryzen 5 3500 u and 5.7 GB of RAM. Let us state that the
reason we use the Intel machine is to exploit the Jouleit7 tool in order to estimate
the power consumption of the CPU, RAM and integrated GPU.

Results Analysis. Table 1 shows the mixed-precision configurations obtained
after analysis in terms of number of variables or operations that we may tune
into int8 t, int16 t and int32 t and consequently the memory savings in terms of
number of bits. The second left-most column of Table 1 headed “call” refers to the
number of elementary functions in the code and the next column headed “op”
denotes the number of elementary operations. In this experiment, we assume
that 100% is the percentage of all variables initially in single precision. Clearly,
the memory savings compared to the initial number of bits for the majority of
the original programs is considerable reaching 75% for “CRadius” program for
a requirement of 4 bits. For instance, the “carbonGas” program has a total of
13 variables all in single precision before analysis. In the synthesized code we
obtain 7 variables tuned into int8 t and 6 variables in int16 t achieving a gain
in number of bits of 63,5%. Concerning “azimuth” program, our analysis failed
6 https://fpbench.org/.
7 https://github.com/powerapi-ng/jouleit.

https://fpbench.org/
https://github.com/powerapi-ng/jouleit

116 S. Bessäı et al.

Table 1. Mixed fixed-point formats in 4, 8 and 16 bits for the synthesized program
with the precentages of the number of bits saved.

4 bits 8 bits 16 bits

Program call op 8 16 32 % 8 16 32 % 8 16 32 %

azimuth 7 7 1 0 17 4.2 0 1 17 2.8 - - - -

carbonGas 0 7 7 6 0 63.5 2 11 0 53.8 1 1 11 9.6

CRadius 1 3 6 0 0 75.0 0 6 0 50.0 0 0 6 0.0

CTheta 1 3 4 0 3 42.9 0 4 3 28.6 0 0 7 0.0

doppler1 0 7 9 1 0 72.5 1 9 0 52.5 0 1 9 5.0

doppler2 0 7 9 1 0 72.5 3 7 0 57.5 0 3 7 15.0

doppler3 0 7 9 1 0 72.5 2 8 0 55.0 0 2 8 10.0

instantCurrent 3 18 7 14 7 43.8 3 18 7 40.2 0 3 25 5.4

jetEngine 0 29 7 18 5 47.5 3 15 12 32.5 0 3 27 5.0

LeadLagSystem 1 17 2 29 2 48.5 0 31 2 47.0 0 0 33 0.0

LowPassFilter 0 0 0 330 0 50.0 0 330 0 50.0 0 4 326 0.6

CX 1 3 2 0 4 25.0 0 2 4 16.7 0 0 6 0.0

CY 1 3 2 0 4 25.0 0 2 4 16.7 0 0 6 0.0

triangle12 1 9 7 6 0 63.5 0 12 1 46.2 0 0 13 0.0

turbine1 0 14 4 13 0 55.9 0 17 0 50.0 0 0 17 0.0

turbine2 0 10 10 3 0 69.2 0 13 0 50.0 0 0 13 0.0

turbine3 0 14 3 14 0 54.4 0 17 0 50.0 0 0 17 0.0

to infer mixed precision for a user accuracy requirement of 16 bits whereas it
reaches 4.2% and 2.8% respectively for requirements of 4 bits and 8 bits. Another
observation is that for a requirement of only 4 bits, 17 variables are tuned into
int32 t. A possible explanation of this result is the call to the elementary func-
tions in the code (call = 7) which can use intermediate variables that request
greater precision than the user accuracy requirement.

Figure 4 depicts the energy consumed by the execution of the benchmarks
for a requirement of 4 bits. We observe that the fixed-point version codes require
significantly less energy than the floating-point codes. For instance, the energy
saved on CPU and DRAM reaches « 43% for “carbonGas” program and more
than 75% for “jetEngine” program. Let us note that this observation is also valid
for the remaining user requirements with slight variations of savings. Finally, we
present the results in terms of speed for each of our benchmarks in Table 2. We
denote respectively by “tfloat”, “tsynthesis” and “tfix” the time of execution of
floating-point programs, the total synthesis time of POPiX and the execution
time of fixed-point programs all given in milliseconds. We visualize that the time
spent by POPiX for the majority of benchmarks is negligible not exceeding 342
ms for the “carbonGas” program (« 30 LOCs). Although our synthesis method

Fixed-Point Code Synthesis Based on Constraint Generation 117

Fig. 4. Measurement of the energy consumption (CPU and DRAM) of the floating-
point and fixed-point version of our benchmarks.

is fast (few seconds), we observe that the execution time remains the same for
the floating and fixed-point codes with negilible slow-down for some benchmarks.

5 Related Work

In recent years, many authors have investigated the possibility of automating
fixed-point code synthesis. A similar approach to our work is the TAFFO tool
proposed by Cherubin et al. [4]. TAFFO is a static precision tuning tool that
converts floating-point computations into a fixed-point version with comparable
semantics. The common point between POPiX and TAFFO is that the esti-
mation of the errors is generated by the precision tuning process. Meanwhile,
POPiX is much faster and takes only few seconds to synthesize the new fixed-
point formats of the program.

Another solution for code conversion was introduced by Cattaneo et al. [3].
Their method relies on a self-contained compiler transformation pass imple-
mented within LLVM to perform the conversion. Their tool was especially ded-
icated to MIOSIX, a real time operating system targeting embedded system.

The goal of the dissertation of Jha [9] is to give an algorithm for opti-
mal fixed-point expressions synthesis based on inductive synthesis. Two years
later, Darulova et al. [5] proposed a fixed-point program synthesis methodology
based on expression rewriting and genetic programming. Their algorithm uses

118 S. Bessäı et al.

Table 2. Execution time measurements obtained during the experiments.

4 bits 8 bits 16 bits

Program tfloat tsynthesis tfix tsynthesis tfix tsynthesis tfix

azimuth 1.91 340 1.8 301 2.6 233 3.2

carbonGas 0.17 342 0.29 233 0.31 201 0.46

CRadius 0.10 240 1.31 192 1.33 186 1.36

CTheta 0.38 203 0.56 223 0.57 273 0.57

doppler1 0.16 205 0.53 249 0.54 225 0.57

doppler2 0.24 188 0.28 225 0.29 207 0.30

doppler3 0.17 243 0.30 195 0.32 207 0.34

instantCurrent 1.01 264 1.99 265 2.36 273 2.73

jetEngine 0.34 294 1.18 264 1.24 276 1.82

LeadLagSystem 0.53 352 0.71 394 0.86 346 1.09

CX 0.43 178 0.29 208 0.37 175 0.52

CY 0.39 203 0.41 197 0.55 197 0.68

triangle12 0.17 199 1.57 208 1.63 203 2.53

turbine1 0.24 220 0.31 228 0.35 269 0.49

turbine2 0.28 246 0.49 222 0.61 212 1.01

turbine3 0.48 247 0.47 253 0.49 217 0.83

abstract interpretation to estimate the error bound of a fixed-point implemen-
tation. However, the latter two techniques provide pessimistic bounds for non-
linear expressions and are limited to straight-line programs. Coversely, Aslan et
al. [2] developed a tool that takes an n-bit fixed-point input and creates an m-bit
floating-point output with IEEE754 and custom formats.

In the context of polynomials, linear filters and signal processing algorithms,
the members of the DEFIS project [13] presented many approaches for fixed-
point code synthesis. To mention a few, the idea described in [6] works by infer-
ring high-level convolution operations from the original source code, and mod-
eling them as part of the program representation. In addition, Najahi et al. [12]
presented an automated approach to synthesize codes in fixed-point arithmetic
for some linear algebra basic blocks. They take a mathematical description of
the problem as well as the range of the input variables and generate fixed-point
code. Lopez [11] addresses the transformation of linear filters and controllers
into hardware operators using fixed-point arithmetic. His main contribution is
a complete error analysis, with respect to the internal word-lengths and the
formulation of the word-length optimization as a convex non-linear integer opti-
mization problem solved using appropriate heuristics. An extension of this work
to the full class of linear time invariant algorithms has been proposed in [14].

Fixed-Point Code Synthesis Based on Constraint Generation 119

6 Conclusion

In this article, we have presented a new method for fixed-point code synthesis
respecting an accuracy requirement imposed by the user. Our method is based on
a static analysis of the code implemented by means of system of constraints which
gives the minimal format needed to encode each value. Experimental results show
the performance of the codes synthesized in terms of execution time, memory
and energy savings on a set of benchmark related to embedded systems.

In the future we would like to validate our method by considering architec-
tures more commonly used in embedded systems. Also, we aim at generating
hardware instead of software fixed-point implementations, using FPGAs. Tar-
geting FPGAs has two justifications: this type of hardware is becoming more
and more popular today and it presents the advantage of allowing fully cus-
tom designs. Finally, for adoption reasons in real-world applications, we aim
at extending POPiX in order to handle full C programs via an integration to
LLVM.

References

1. Adjé, A., Ben Khalifa, D., Martel, M.: Fast and efficient bit-level precision tuning.
In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021. LNCS, vol. 12913,
pp. 1–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88806-0 1

2. Aslan, S., Oruklu, E., Saniie, J.: A high-level synthesis and verification tool for fixed
to floating point conversion. In: 55th IEEE International Midwest Symposium on
Circuits and Systems, MWSCAS, pp. 908–911. IEEE (2012)

3. Cattaneo, D., Di Bello, A., Cherubin, S., Terraneo, F., Agosta, G.: Embedded oper-
ating system optimization through floating to fixed point compiler transformation.
In: 21st Euromicro Conference on Digital System Design, DSD, pp. 172–176. IEEE
Computer Society (2018)

4. Cherubin, S., Cattaneo, D., Chiari, M., Agosta, G.: Dynamic precision autotuning
with TAFFO. ACM Trans. Archit. Code Optim. 17(2), 10:1–10:26 (2020)

5. Darulova, E., Kuncak, V., Majumdar, R., Saha, I.: Synthesis of fixed-point pro-
grams. In: Proceedings of the International Conference on Embedded Software,
EMSOFT, pp. 22:1–22:10. IEEE (2013)

6. Deest, G., Yuki, T., Sentieys, O., Derrien, S.: Toward scalable source level accuracy
analysis for floating-point to fixed-point conversion. In: The IEEE/ACM Interna-
tional Conference on Computer-Aided Design, ICCAD, pp. 726–733. IEEE (2014)

7. Gao, X., Constantinides, G.A.: Numerical program optimization for high-level
synthesis. In: Constantinides, G.A., Chen, D. (eds.), Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
210–213. ACM (2015)

8. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: Proceedings of the 32nd International Conference
on International Conference on Machine Learning, vol. 37, ICML 2015, pp. 1737–
1746. JMLR.org (2015)

9. Jha, S.: Towards Automated System Synthesis Using SCIDUCTION. PhD thesis,
University of California, Berkeley, USA (2011)

https://doi.org/10.1007/978-3-030-88806-0_1

120 S. Bessäı et al.

10. Lin, D., Talathi, S. and Annapureddy, S.: Fixed point quantization of deep convo-
lutional networks. In: Proceedings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48, ICML 2016, pp. 2849–2858.
JMLR.org (2016)

11. Lopez, B.: Implémentation optimale de filtres linéaires en arithmétique virgule fixe.
(Optimal implementation of linear filters in fixed-point arithmetic). PhD thesis,
Pierre and Marie Curie University, Paris, France (2014)

12. Martel, M., Najahi, A., Revy, G.: Trade-offs of certified fixed-point code synthesis
for linear algebra basic blocks. J. Syst. Archit. 76, 133–148 (2017)

13. Ménard, D.: Design of fixed-point embedded systems (DEFIS) French ANR
project. In: Design and Architectures for Signal and Image Processing, DASIP,
pp. 1–2. IEEE (2012)

14. Volkova, A.: Towards reliable implementation of digital filters. (Vers une
implémentation fiable des filtres numériques). PhD thesis, Pierre and Marie Curie
University, Paris, France (2017)

Optimized Hardware and Software
Implementations for Image Processing

and Health Applications

Data-Type Assessment for Real-Time
Hyperspectral Classification in Medical

Imaging

Manuel Villa1(B) , Jaime Sancho1 , Guillermo Vazquez1 , Gonzalo Rosa1 ,
Gemma Urbanos1 , Alberto Martin-Perez1 , Pallab Sutradhar1 ,

Rubén Salvador2 , Miguel Chavarŕıas1 , Alfonso Lagares3 ,
Eduardo Juarez1 , and César Sanz1

1 Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
{manuel.villa.romero,jaime.sancho,guillermo.vazquez.valle,
guillermo.vazquez.valle,gonzalo.rosa.olmeda,gemma.urbanos,

a.martinp,pallab.sutradhar,miguel.chavarrias,

eduardo.juarez,cesar.sanz}@upm.es
2 CentraleSupélec, CNRS, IETR UMR 6164, 35576 Rennes, France

ruben.salvador@centralesupelec.fr
3 Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12),

28041 Madrid, Spain
alfonso.lagares@salud.madrid.org

Abstract. Real-time constraints in image processing applications often
force their optimization using hardware accelerators. This is the case for
intraoperative medical images used during surgical procedures. In this
context, the challenge consists in processing large volumes of data while
employing high complexity algorithms in a limited period of time. Newly
developed algorithms must meet both quality-accurate and hardware-
efficient characteristics. In this work, we have evaluated the impact
of using different data types in a processing chain to classify tissues
from hyperspectral video in surgical environments. The software was run
on two different embedded CPU+GPU platforms. The results show an
improvement in performance by up to 9 times without increasing power
consumption by reducing the bit depth from 64 to 16. The impact these
reduction have on quality has been measured analytically, by calculating
the RMSE, and subjectively, by surveying neurosurgeons. In both cases
the results show a minimal impact on the overall quality.

Keywords: HSI · ML · tumor · video · embedded · GPU · real-time

1 Introduction

The use of different types of imaging techniques has proven its usefulness in
medicine since the first use of X-rays. Today, both image sources and image

This work was supported by the Regional Government of Madrid (Spain) through
NEMESIS-3D-CM project (Y2018/BIO-4826).

c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 123–135, 2022.
https://doi.org/10.1007/978-3-031-12748-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_10&domain=pdf
http://orcid.org/0000-0001-7000-6289
http://orcid.org/0000-0001-8767-6596
http://orcid.org/0000-0001-5821-0877
http://orcid.org/0000-0002-3236-1236
http://orcid.org/0000-0002-7478-996X
http://orcid.org/0000-0003-4715-6814
http://orcid.org/0000-0002-5731-5199
http://orcid.org/0000-0002-0021-5808
http://orcid.org/0000-0003-0280-3440
http://orcid.org/0000-0003-3996-0554
http://orcid.org/0000-0002-6096-1511
http://orcid.org/0000-0002-2411-9132
https://doi.org/10.1007/978-3-031-12748-9_10

124 M. Villa et al.

processing techniques continue evolving. These technologies are now combined
with machine learning (ML) techniques and immersive reality offering clinicians
useful tools for both diagnosis and treatment of a wide range of pathologies.
However, the inherent complexity of increasingly refined processing algorithms
makes real-time computing a challenge in this field of application. Moreover,
space constraints, power consumption and hardware performance must be taken
into account in controlled healthcare environments.

With regard to the use of diagnosis imaging, hyperspectral (HS) imaging
(HSI) has proven to be useful in assisting in the differentiation between differ-
ent types of tissues [1]. This is possible since HSI allows to establish correlations
between the spectral features and the materials captured in the scene. An exten-
sive review about HSI usage in medicine was done by G. Lu and B. Fei in [2].
In the field of neurosurgery, predictive models based on ML techniques can be
generated from the information provided by HS cameras [3]. Recently, new faster
snapshot HS sensors enable capturing HS video (HSV), opening the path to HSV-
classification systems [4]. For this reason, the design of the processing pipelines
must be highly efficient, making the best use of the available hardware resources
while not degrading, in an appreciable way, the quality of the images presented
to the healthcare professionals. Existing works in the scientific literature often
offer performances far from real-time [5].

The other battlefront therefore lies in the use that complex processing algo-
rithms require of the available hardware. In terms of both the implementation of
ML algorithms and image processing, graphics processing units (GPU) are show-
ing an almost unassailable market leadership. In [6], J. Sancho et al. presented
a GPU-accelerated multiview hyperspectral depth estimation tool for medical
imaging. In [7], a survey highlighting the impact of the GPUs in the magnetic
resonance images processing techniques and reconstruction is outlined.

In this work, we propose to make an efficient use of the hardware resources,
using heterogeneous CPU+GPU based embedded systems as target platforms,
by means of an effective software implementation. Specifically, an implemen-
tation of a complete HSV processing and classification suite based on the use
of half, float and double types has been made with a Support Vector Machine
(SVM) classifier. A specific data type is employed for the whole algorithm chain,
as combinations of different data types are not expected to improve the quality
or processing time. The test bench is composed of a set of HS videos captured in
real environments, i.e. a neurosurgery operating theatre. The results are grouped
to show the differences obtained in terms of accuracy, energy consumption, pro-
cessing time and classification differences. Additionally, a survey on the subjected
quality of each solution has been conducted.

2 Background

In Sect. 3, the proposed HSV processing chain is depicted. It has been improved
from the one presented in [4]. The background on which some of the blocks that
originally make up this chain are based is detailed below:

Data-type Assessment for Real-Time Hyperspectral Classification 125

1. Pre-processing chain: this stage is intended for generating a HS cube from the
raw snapshot capture. It begins with the cube conformation, a new arrange-
ment of the pixels depending on the filter pattern of the snapshot camera.
Then, it is calibrated using a white and black reference; in this way, the pixel
values are transformed to a percentage of reflectance. This calibrated cube
also needs a spectral correction that correct the artifacts introduced by the
spectral filter. Finally, this cube is normalized in order to adjust the light
energy received by the sensor.

2. Classification chain: although the purpose of this work is not the implemen-
tation of a classification model, this represents a fundamental part of the
proposed processing suite. To this end, the classification model and training
process used is based on G. Urbanos et al. work [3]. Where three ML-based
algorithms, Random Forest, SVM and Convolutional Neural Networks, are
compared regarding the accuracy when classifying brain tissues. It is worth
mentioning that while the classification results are promising, in some cases
the accuracy obtained slightly exceeds 60% for some tissues. This limited
result logically carries over to this solution. SVM classifier is essentially inte-
grated by several matrix-vector multiplications, which can be easily GPU-
accelerated.

3 Algorithm and Acceleration

The HSV-classification algorithm chain employed in this work is presented in
Fig. 1. As depicted, this is divided into two main stages, (i) a pre-processing
chain intended to generate a proper HS cube from the HS raw images and (ii) a
classification algorithm along with some additional processes.

Fig. 1. Algorithm chain. Boxes with dashed-lines represent stages only performed in
the half implementation of the algorithm chain.

This algorithm chain has been implemented and accelerated in two
CPU+GPU embedded platforms (see Sect. 4.1) and using three different data
types: double (64-bit floating point), float (32-bit floating point) and half (16-bit
floating point). This allows the analysis of three different scenarios where the
numerical accuracy is gradually lowered while improving the time-energy perfor-
mance. Due to the specific architecture of the GPUs employed, the acceleration
of float and double is similar, whilst the acceleration using half is significantly

126 M. Villa et al.

different. All the stages are further explained in the following subsections. As
a general remark, all the computation was performed in the GPU using the
corresponding data type, whilst in the CPU only the acquisition and the repre-
sentation is performed, always using an unsigned 8-bit integer.

3.1 Pre-processing Chain

This chain begins with the conformation of the HS cube from a raw capture
and its black/white calibration. The HS snapshot camera employed in this work
produces a video streaming of 2045×1085@170 FPS raw captures. These captures
present a 5× 5 pattern filter replicated in the image, meaning that the 25 pixels
included within these pattern filters are representing 25 different wavelengths.
For this reason, the HS cubes produced by this camera are reduced to 409× 217
spatially, and 25 bands spectrally. However, in order to fit the warp size of the
GPU (32 threads) and optimize the processing, these bands are padded to 32,
including zeros in the last 7 positions.

This rearrangement process is accelerated in the GPU in a kernel that makes
use of a single thread for each pixel in the raw HS image, meaning that every
thread is copying its HS raw value to a new memory position, given an index
transformation. The method chosen to store the HS cube is denominated band
interleaved pixel (BIP), given its benefits in the following processing stages. In
this method, all the bands of a HS pixel are located contiguous, and the following
HS pixel begins at its end. This is presented in Fig. 2, with differences between
double/float and half. In the former case, every memory position holds a sin-
gle value, and the information is stored as introduced before. In the later case,
half, every memory position holds an structure of two half values, denominated
half2 (accessed as .x and .y, respectively). In this way, the number of half2 is
halved compared to the double/float implementation. Although this data struc-
ture introduces a higher complexity, the GPU can greatly benefit from it. This is
due to the fact that the GPU is able to process a half2 as a float, i.e., to process
two half with the same time-energy cost as a single float.

In this process of rearrangement, the HS cube is black/white corrected before
saving it in the new memory position. This is done, as said before, with a thread
per pixel that first calculates the new index, then correct the pixel and finally
save it to the new position. The calibration is performed using a black calibration
image and a white calibration image following this formula:

HS′(x, y, λ) =
HS(x, y, λ) − B(x, y, λ)
W (x, y, λ) − B(x, y, λ)

(1)

The next stage is the spectral correction, intended to improve the spectral
quality of the HS cube by reducing the effect of the filter side undesirable spectral
lobes. To do so, all the bands for each HS pixel are multiplied by a correction
matrix that produces the corrected value for every band. This is a vector by
matrix multiplication formulated as:

Data-type Assessment for Real-Time Hyperspectral Classification 127

Fig. 2. HS cube in memory. Lighter boxes refer to even HS pixels, darker boxes refer
to odd HS pixels.

HS′(x, y, λ) =
Λ∑

i=0

HS(x, y, i) ∗ C(i, λ) (2)

C refers to the correction matrix and Λ refers to the number of bands, 32.
This stage is accelerated in a kernel that performs a warp multiplication in

every HS pixel. This is possible thanks to the padding to 32 bands explained
before and the BIP format used. With a thread addressing every HS cube posi-
tion, this allows (i) the coalesced access of memory, as 32 contiguous memory
positions are always read by 32 contiguous threads and (ii) the use of shuffle
warp operations, to share register data between threads in the same warp.

This process begins with a coalesced data load from every thread, which
means that every thread in a warp hold in a register a band from a HS pixel.
Then, the values in the 32 threads (that are shared between all of them) are
multiplied by the corresponding correction matrix vector, depending on the index
of the thread (that is the band number). This is repeated 32 times for every
thread so that the multiplication of a band by the correct factor is accumulated
in a thread register. Once this finishes, every thread in the warp has the corrected
value in that register, being able to store it with a coalesced write. In addition, as
the correction matrix is small enough (32×32), it is cached and quickly accessed
by every thread. This process is summarized in Fig. 3 for the first pixel and warp.
When using half numbers, the process is similar, with the difference that a warp
is correcting two HS pixels with the same number of operations as before.

The following stage is the normalization, where all the bands of an HS pixel
are normalized by the mean squared value of all its bands. This is expressed as:

M(x, y) =
1
Λ

√√√√
Λ∑

i=0

HS(x, y, i)2 −→ HS′(x, y, λ) =
HS(x, y, λ)

M(x, y)
(3)

This operation is performed in a kernel that makes use of the warp padding
as well. In this case, the benefits are similar as in the previous stage; memory

128 M. Villa et al.

Fig. 3. Spectral correction stage.

accesses are coalesced and warp shuffle operations allow sharing information
within the warp without the need of an explicit synchronization. This is employed
to, using a thread per pixel, first, load an HS pixel to a warp (32 threads read
32 bands), then, perform a warp reduction [8] to obtain the mean squared value
and finally, share this value to all the threads, which divide its initial pixel value
to the mean.

The last stage in the pre-processing is the transpose, needed to improve the
performance of the operations in the classification chain, given the low number
of classifiers/classes that would underuse the warp occupancy (compared to the
25 HS bands). The operation, performed in a kernel, is a memory rearrangement
between the previous format, BIP and the new format, band sequential (BSQ),
where all the pixels of a band are contiguous and bands appear sequentially. As
before, half values are grouped in containers of two, a half2; however, they are
also transformed to BSQ format. In this case, the band padding is not longer
needed but the rows need to be padded to an even number in order to maintain
the half2 structure. The new memory format is represented in Fig. 4.

Fig. 4. Transpose stage.

Data-type Assessment for Real-Time Hyperspectral Classification 129

3.2 Classification Chain

The first stage in the classification chain is SVM. This process is divided in
two different kernels: (i) score calculation, where the distance between every HS
pixel and the SVM hyperplanes from the model is calculated and (ii) probability
estimation, where using the distances, the probability of belonging to a class for
every HS pixel is estimated.

The score calculation kernel performs a matrix multiplication between the HS
pixel (with 25 bands) and all the SVM hyperplanes from the model in order to get
a distance per hyperplane. This is accelerated using a bi-dimensional grid where
the x dimension represents the linear spatial dimensions of the cube (409× 217)
and the y dimension represents the number of classifiers in the model. In this
kernel, every thread in x, y calculates a dot product between a HS pixel (x) and
a classifier (y) by means of a for loop that iterates through all the bands in the
HS pixel and the classifiers hyperplane. Finally, an offset is added to this value.
This is similar for the half version, which process two distances per thread. The
result of this process is a cube with the same spatial dimensions and a number
of bands equal to the number of classifiers/hyperplanes. Figure 5 depicts this
process.

Fig. 5. SVM stage. H refers to the maximum number of classifiers and K refers to the
number of spatial pixels (409 × 217).

The probability estimation kernel employs the sigmoid function to estimate
the probability of each class (not classifier/hyperplane) using the distances to
the hyperplanes. To do so, a bi-dimensional grid is employed. This addresses
a thread per HS pixel (cube spatial dimensions) in the x dimension and per
class in the y dimension. In this way, every thread calculates the probability
of belonging to its class (y index) using all the distances previously calculated.
As before, this is a per-pixel operation that is performed per two pixels in the

130 M. Villa et al.

half implementation. The result of this stage is a cube with the same spatial
dimensions and a number of bands equals to the number of classes.

In the next step, only in the half implementation, the probabilities from SVM
are transformed from half2 to half data containers. This means that the memory
structure at this point is equal to double/float, only changing the number of
bits per pixel. This is needed to perform the last part of the classification chain,
the spatial filter and coloring, whose performance is increased when the data in
memory has a real spatial ordering. The spatial filter performs a 3 × 3 window
gaussian filtering in every probability class map. This is done with a kernel
addressing a thread for each spatial dimensions of the cube that performs an
average value in the window. This is repeated for every class within the threads
and then the value is stored with the same structure.

Finally, this probabilities are converted to a color map with the last kernel.
This kernel works in two different modes (i) color using probabilities or (ii) color
for the max class. In the first one, a linear combination is performed using the
probability per class. In this way, the color of a pixel is a mixed color depending
on the probability and color label of each class. The second one only assigns
the color label of class with the highest probability. The two modes are used in
two scenarios: (i) subjective analysis, as mixed colours are more informative for
neurosurgeons (some parts of tumor edges may have less probability to be cancer
than an inner one) and (ii) objective comparison against the ground-truth, as
the ground-truth only contains pixels with labels, not a mix between them.

4 Experiments and Results

In order to test the processing chain, a set of 6 videos, obtained during 4 different
patient operations at Hospital Universitario 12 de Octubre (HU12O) in Madrid
(Spain), capturing a real brain tumor resection with 200 frames each is employed.
To classify those videos, an SVM model per video is trained using the remaining
5 videos. These videos have a ground-truth provided by the neurosurgeon in
charge of that operation using a labelling tool.

4.1 Platforms Features and Experiments

Two embedded platforms integrated by heterogeneous, General Purpose Pro-
cessor (GPP) and GPU, System-on-Chip (SoC) have been used to conduct the
experiments. The first one is a Jetson AGX Xavier platform and integrates 4
processing clusters, each one with 2 ARM cores running a maximum clock of
2.26 GHz. Each pack of two cores share 2 MB of L2 cache memory and have
access to 4 MB of L3 cache memory. This platform has 512 GPU cores with a
boost frequency of 1.37 GHz and 64 Tensor cores. The second one is a Jetson
Nano , and integrates 4 ARM cores with a maximum clock of 1.43 GHz alongside
128 GPU cores with a maximum operating frequency of 921 MHz and 2 MB of
unified cache memory.

Data-type Assessment for Real-Time Hyperspectral Classification 131

These platforms have different energy consumption profiles [9]. For this work,
two profiles have been selected for each one; (i) the one with the highest per-
formance and with the highest power consumption, denominated max, and (ii)
the one with the lowest performance and lowest power consumption, denomi-
nated min. For Jetson Xavier, max and min are set up to a maximum power
consumption of 30 W and 10 W, respectively. For Jetson Nano, max and min
are set up to 10 W and 5 W, respectively. Therefore, the experiments conducted
are the following:

(i) The whole processing chain has been run in the two platforms and with the
two different profiles.

(ii) For each platform and profile, three implementations of the processing chain
have been executed: using double, float or half data types.

(iii) The resultant video classification map is generated while the processing
time and the instantaneous power consumption is measured for the twelve
combinations (2 platforms, 2 profiles and 3 data types).

(iv) All the videos are compared to the ground-truth in order to get an accu-
racy result (focused to test numerical differences between data types). In
this work only the comparison for data types is presented (there are not
differences between platforms nor profiles). It is important to remark that
only the pixels of ground-truth are tested, not the whole image.

(v) The videos with different data types are tested in terms of numerical preci-
sion. To do so, the classification maps are scaled by a color label depending
on its SVM probability (see Sect. 3.2) and then they are compared in pairs
using root mean square error (RMSE) (double-float, float-half, double-half).
In this experiment the whole frame is compared.

(vi) The videos processed with different data types are presented in a survey of
10 cases to the neurosurgeon service of HU12O, to measure the subjective
differences and the medical impact between them. The survey was designed
following ITU-T P.800 recommendation and comparison category rating
methodology. In addition, 20% were control sequences. Neurosurgeons were
asked to rate different data type pairs of videos from -3 to 3.

4.2 Objective Results

The average of a 5-round execution frames per second (FPS) achieved for each
platform, profile and data type are depicted in the left side of Fig. 6. This chart
shows the differences in FPS between data type for every platform/profile com-
bination. Lowest confidence levels are also provided, highest levels slightly out-
perform the average. As expected, the processing time for each data type is
proportional to the number of bits employed. However, the proportion is not
always a factor of two; in the case of both platforms and profiles (with slight dif-
ferences), the float implementation performs around 5 times better than double
and the half implementation performs around 1.6 times better than the float one.
Comparing the double/float implementations, they use exactly the same number
of threads in every kernel, but processing two times the number of bits. This

132 M. Villa et al.

entails doubling the time accessing memory and the use of fp64 units, which
in this architecture is halved compared to fp32 units. In addition, in kernels
where register memory plays an important role the differences are even more
noticeable, resulting in an average of 5 times slower (a 64-bit register is the
composition of two 32-bit registers, slowing shuffle warp operations). Comparing
float/half implementations, in half, the number of threads is halved, accessing
every thread two half values (16+16 bits) and using a single fp32 unit to com-
pute them. The result is as processing the half number of threads, in terms of
computation. However, this only occurs to several kernels and there is a need
to convert from half to half2 and vice-versa, lowering the speed-up factor to
around 1.6. The comparison between platforms and profiles shows that the dif-
ference between profiles within Jetson Nano (Nano) is slight, as only the GPU
frequency is increased. However, in Jetson Xavier (XV), both GPU and memory
frequency are increased, showing a high increment in the number of FPS for every
data type. Finally, the differences between platforms come from four factors: (i)
the memory bandwidth is doubled, (ii) the memory/GPU frequency is higher,
(iii) the number of functional units is increased and (iv) the microarchitecture
is different. This complex scenario makes difficult the comparison.

In the right side of Fig. 6, the average power demand in Watts per case
is also shown. It can be observed significant differences, almost ×2 between
max and min profiles over Nano platform and ×3 in the case of the Xavier.
Moreover, the results show how the use of different data types may affect the
power demand by extra up to 10%. Comparing platforms, it is interesting to
notice that Jetson Xavier can utilize the same average power as a Jetson Nano
(given the appropriate profiles) while achieving a performance gain.

Fig. 6. Performance measured in FPS (left) and average power demand in watts (right).

In Table 1, the objective quality results are presented. This shows the dif-
ferences between data types using RMSE (8-bit precision) as metric and also

Data-type Assessment for Real-Time Hyperspectral Classification 133

the accuracy (number of correct pixels), compared to the ground-truth. As can
be seen, the difference between double-float is near 0 and the one between
double/float-half is barely 1, exposing that the classification maps are almost
equal for every data type. A similar result is extracted from the accuracy values,
which are almost the same for the three cases.

Table 1. Objective quality comparison. RMSE per data-type and accuracy compared
to the ground-truth obtained for each implementation.

Data type RMSE Accuracy

Double Float Half

Double 0 0.007 1.115 64.21%

Float - 0 1.116 64.21%

Half - - 0 63.89%

4.3 Subjective Results

The result of the proposed processing chain is a classified map painted with
colors the different kind of tissue captured in the scene. Figure 7 shows respective
frames of the resulting classification map comparing float-half and double-half
processing suits. As it can be observed, the differences are limited to a few pixels
barely noticeable after enlarging the image.

Fig. 7. Captured frame of a classification map, using different data type processing
chains. An enlarged region of interest (ROI) is provided.

Finally, a total of 10 surveys, totaling 76 valid comparisons between videos
were completed by neurosurgeons following the methodology described in

134 M. Villa et al.

Sect. 4.1 vi. 79% of the responses indicated that there was no difference between
videos processed with the half chain versus those processed with both double
and float. 12% of responses indicated that videos processed with double or float
were subjectively better than those processed with half.

5 Conclusions and Future Lines

In this work, a HSV-classification processing suite for use in surgical environ-
ments, optimized for embedded CPU+GPU platforms, has been presented. It
has been assessed in terms of performance, measured as FPS, and power con-
sumption, given three different data type implementations: double, float and half.
Two platforms have been used for the experiments: a high-performance platform,
Jetson Xavier, where it is observed that the half implementation achieved 8.9
times the performance of double type while maintaining the same power con-
sumption. This trend has been verified on the low performance platform, Jetson
Nano, where the half-based implementation offered 7.7 times higher performance
than double, while reducing energy consumption a 8%. The different data type
results were assessed using RMSE and the accuracy compared to a ground-truth.
A maximum degradation of 1.116 units (in a scale of 8-bits precision) and less
than 0.5% in accuracy was observed when using half instead of float or double
data types, showing a slight difference between the classification map for the
different data types. Subjectively, the differences are hardly appreciable. Addi-
tionally, a subjective survey has been conducted over a significant number of
neurosurgeons, showing no subjective differences between data types.

Further work will include more powerful and accurate classification models
in the processing chain. In addition, it is expected to implement and accelerate
other algorithms while conserving the real-time video constraint. Moreover, a
more detailed analysis of the results observed between the platform hardware
features and its impact on the objective results will be conducted.

References

1. Fabelo, H., et al.: An intraoperative visualization system using hyperspectral imag-
ing to aid in brain tumor delineation. Sensors 18, 430 (2018). https://doi.org/10.
3390/s18020430

2. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1)
010901 (2014). https://doi.org/10.1117/1.JBO.19.1.010901

3. Urbanos, G., et al.: Supervised machine learning methods and hyperspectral imag-
ing techniques jointly applied for brain cancer classification. Sensors 21(11), 3827
(2021). https://doi.org/10.3390/s21113827

4. Sancho, J., et al.: An embedded GPU accelerated hyperspectral video classification
system in real-time. In: XXXVI Conference on Design of Circuits and Integrated
Systems, Vila do Conde, Portugal (2021). https://doi.org/10.1109/DCIS53048.2021.
9666171

https://doi.org/10.3390/s18020430
https://doi.org/10.3390/s18020430
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.3390/s21113827
https://doi.org/10.1109/DCIS53048.2021.9666171
https://doi.org/10.1109/DCIS53048.2021.9666171

Data-type Assessment for Real-Time Hyperspectral Classification 135

5. Al-Sarayreh, M., et. al.: Deep spectral-spatial features of snapshot HS images for red-
meat classification. In: 2018 International Conference on Image and Vision Comput-
ing New Zealand (IVCNZ), pp. 1–6 (2018). https://doi.org/10.1109/IVCNZ.2018.
8634783

6. Sancho, J., et al.: GoRG: towards a GPU-accelerated multiview hyperspectral depth
estimation tool for medical applications. Sensors. 21(12), 4091 (2021). https://doi.
org/10.3390/s21124091

7. Wang, H., Peng, H., Chang, Y., Liang, D.: A survey of GPU-based acceleration
techniques in MRI reconstructions. Quant Imaging Med. Surg. 8(2), 196–208 (2018).
https://doi.org/10.21037/qims.2018.03.07

8. J. Luitjens. Faster Parallel Reductions on Kepler. NVIDIA developer blog 2014;
Online resource Accessed 21 Apr 11. https://developer.nvidia.com/blog/faster-
parallel-reductions-kepler/

9. NVIDIA Jetson Linux Driver Package Software Features. Clock Frequency and
Power Management. Release 32.6.1. NVIDIA documentation, 3 August 2021

https://doi.org/10.1109/IVCNZ.2018.8634783
https://doi.org/10.1109/IVCNZ.2018.8634783
https://doi.org/10.3390/s21124091
https://doi.org/10.3390/s21124091
https://doi.org/10.21037/qims.2018.03.07
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/

Exploring Fully Convolutional Networks
for the Segmentation of Hyperspectral
Imaging Applied to Advanced Driver

Assistance Systems

Jon Gutiérrez-Zaballa1(B) , Koldo Basterretxea1 , Javier Echanobe2 ,
M. Victoria Mart́ınez2, and Inés del Campo2

1 Department of Electronics Technology, University of the Basque Country,
48013 Bilbao, Spain

j.gutierrez@ehu.eus
2 Department of Electricity and Electronics, University of the Basque Country,

48940 Leioa, Spain

Abstract. Advanced Driver Assistance Systems (ADAS) are designed
with the main purpose of increasing the safety and comfort of vehi-
cle occupants. Most of current computer vision-based ADAS perform
detection and tracking tasks quite successfully under regular conditions,
but are not completely reliable, particularly under adverse weather and
changing lighting conditions, neither in complex situations with many
overlapping objects. In this work we explore the use of hyperspectral
imaging (HSI) in ADAS on the assumption that the distinct near infrared
(NIR) spectral reflectances of different materials can help to better sep-
arate the objects in a driving scene. In particular, this paper describes
some experimental results of the application of fully convolutional net-
works (FCN) to the image segmentation of HSI for ADAS applications.
More specifically, our aim is to investigate to what extent the spatial
features codified by convolutional filters can be helpful to improve the
performance of HSI segmentation systems. With that aim, we use the
HSI-Drive v1.1 dataset, which provides a set of labelled images recorded
in real driving conditions with a small-size snapshot NIR-HSI camera.
Finally, we analyze the implementability of such a HSI segmentation
system by prototyping the developed FCN model together with the nec-
essary hyperspectral cube preprocessing stage and characterizing its per-
formance on an MPSoC.

Keywords: hyperspectral imaging · scene understanding · fully
convolutional networks · autonomous driving systems · system on chip

This work was partially supported by the Basque Government under grants PIBA-
2018-1-0054, KK-2021/00111 and PRE 2021 1 0113 and by the Spanish Ministry of
Science and Innovation under grant PID2020-115375RB-I00. We thank the University
of the Basque Country for allocation of computational resources.

c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 136–148, 2022.
https://doi.org/10.1007/978-3-031-12748-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_11&domain=pdf
http://orcid.org/0000-0002-6633-4148
http://orcid.org/0000-0002-5934-4735
http://orcid.org/0000-0002-1064-2555
http://orcid.org/0000-0002-6378-5357
https://doi.org/10.1007/978-3-031-12748-9_11

Exploring FCNs for the Segmentation of HSI Applied to ADAS 137

1 Introduction

Today, thanks to the availability of small-size, portable, snapshot hyperspectral
cameras, it is possible to set-up HSI processing systems on moving platforms.
The use of drones for precision agriculture and ecosystem monitoring is probably
one of the most active and mature application domains [5]. The research into
how hyperspectral information can be used to develop more capable and robust
ADAS is, on the contrary, in its infancy [6,11,12]. HSI provides rich information
about how materials reflect light of different wavelengths (spectral reflection),
and this can be used to identify and classify surfaces and objects in an scene.
Thus, with the application of appropriate information processing techniques, HSI
can help to enhance the accuracy and robustness of current ADAS for object
identification and tracking and, eventually, can be used for scene understanding,
which is a step forward in the achievement of more capable and intelligent ADS
(Autonomous Driving Systems).

HSI segmentation of real driving scenes is, however, challenging for a variety
of reasons. First, the spectral reflectance signatures of the different objects, e.g.
metallic white vehicles bodies and road marks, may be weakly separable. Second,
extracting spatial features that could help segmenting items with similar spectral
reflectances is difficult as a consequence of the enormous diversity of shapes,
view angles and scales. Finally, it should be always kept in mind that developed
segmentation algorithms need to be computed with very demanding latency
requirements on resource constrained onboard processing platforms.

In this article we describe some results of a research that investigates how
FCN can be applied to enhance the segmentation accuracy of images acquired
in real driving scenarios with a small-size mosaic snapshot hyperspectral cam-
era. We present a simple application example of scene understanding for the
separation of the drivable (tarmac) and non-drivable areas (identifying sky and
vegetation) in the acquired image sequences as well as for the recognition of road
marks, which could be used to enhance automatic lane keeping and trajectory
planning systems for ADS. Finally, we describe the rapid prototyping workflow
used to develop a functional HSI segmentation processing system on a Xilinx
Zynq UltraScale MPSoC, from algorithm exploration and model optimization
to the final implementation.

2 Experimental Setup

When dealing with a semantic segmentation problem, it is of utmost importance
to adapt the structure of the neural network to the unique characteristics of the
dataset. Thus, once the suitability of the dataset has been verified, a hyperpa-
rameter tuning and optimization process should be carried out on the neural
network.

2.1 The Dataset

As it is reported in [1], there are very few datasets of hyperspectral imagery
for ADAS and ADS applications, one of which is precisely presented in [1], HSI

138 J. Gutiérrez-Zaballa et al.

Drive. HSI Drive v1.1 contains 276 images of urban, road and highway scenarios
in diverse weather (sunny, cloudy, rainy and foggy) and lightning (dawn, midday,
sunset) conditions taken during Spring (121 images) and Summer (155 images).

The driving scenes have been recorded with a Photonfocus camera that
includes an Imec 25-band VIS-NIR (535 nm–975 nm) sensor based on a CMOSIS
CMV200 image wafer sensor. The global resolution is 1088× 2048 pixels with
5µm × 5µm size. However, as the spectral bands are extracted from a mosaic
formed by 5× 5 pixel window Fabri-Perot filters, the final resolution of the HSI
cubes is 216× 409× 25 [8]. This implies including a preprocessing stage in the
processing pipeline that is addressed in Subsect. 4.1.

The original labelling separates the scenes into 10 classes taking into
account the surface reflectances of the materials. Those classes are: Road,
Road Marks, Vegetation, Painted Metal, Sky, Concrete/Stone/Brick, Pedes-
trian/Cyclist, Water, Unpainted Metal and Glass/Transparent Plastic. Further-
more, it has to be noted that the labelling of the dataset has followed a weak
approach in order to provide the network with the most precise data. This means,
for example, that pixels that are in the junction of two or more surfaces have
been left out of the labelling process. However, these pixels do take part in the
training process of a convolutional network. In fact, the training of convolutional
neural networks with weakly labelled datasets is a line of research itself [10].

Spectral separability analysis measures the differences in the surface
reflectance patterns of the materials that belong to different classes, which is an
index of how well a semantic classifier could perform. One of the most common
criteria in remote-sensing applications is JeffreysMatusita distance [4]. It ranges
from 0 to 2 but does not have a linear interpretation as 0–1 values mean very
poor separability, 1.0-1.9 values account for moderate separability and 1.9-2.0
values indicate good separability [1].

Table 1. JeffreysMatusita (JM) interclass distances.

Road Road M. Veg. P. Met. Sky Conc. Ped. Unp. Met. Glass

Road 1.92 1.83 1.65 1.98 1.44 1.84 1.42 1.49

Road Marks 1.92 1.79 1.63 1.87 1.68 1.92 1.92 1.93

Vegetation 1.83 1.79 1.44 1.96 1.64 1.81 1.73 1.81

Painted Metal 1.65 1.63 1.44 1.91 1.48 1.70 1.35 1.48

Sky 1.98 1.87 1.96 1.91 1.97 1.98 1.98 1.80

Concrete 1.44 1.68 1.64 1.48 1.97 1.74 1.62 1.68

Pedestrian 1.84 1.92 1.81 1.70 1.98 1.74 1.79 1.66

Unpainted Metal 1.42 1.92 1.73 1.35 1.98 1.62 1.79 1.38

Glass 1.49 1.93 1.81 1.48 1.80 1.68 1.66 1.38

Mean 1.73 1.80 1.78 1.63 1.96 1.69 1.82 1.68 1.71

Table 1 sums up the JM interclass distances of the ten classes. As it can
be observed, the separability of some of the classes such as Road/Road Marks
(1.92), Road/Sky (1.98) or Road Marks/Unpainted Metal (1.92) is promisingly

Exploring FCNs for the Segmentation of HSI Applied to ADAS 139

high while classes like Road/Concrete (1.44), Road Marks/Painted Metal (1.63)
and Painted Metal/Unpainted Metal (1.35) show low separability indexes.

2.2 FCNs for HSI Image Segmentation

The neural network selected to perform semantic segmentation is a typical FCN
known as U-Net [9] which was originally intended for biological image segmen-
tation but has been widely used for other segmentation tasks, such as, precision
agriculture [10] and aerial city recognition [3]. The idea of using a FCN is to
combine the intrinsic spectral characteristics of the different classes with the
spatial relationships that should be extracted by the convolution operations.

We have adapted the original architecture of the U-Net [9] to the unique
characteristics of the dataset to achieve the best trade-off between segmentation
performance and computational complexity. With this aim we have performed a
grid search of the optimum combination of model hyperparameters by evaluating
the segmentation accuracy on a subset of 45 images selected from all possible
environment/weather conditions.

Depth
Concat.

Dropout Max
Pooling

Leaky
ReLU So max

Pixel
Classifica on

Layer 1x1x8 3x3x8 3x3x16 3x3x32
2x2x32 2x2x16

8
128x128x8

16 16

32 32

16 16

8 8 5 8

Convolu onal layers
3x3x25

UpConvolu onal
layers

64x64x16

16
64x64x16

8
128x128x8

Data
flow Copy

Fig. 1. Architecture of the modified U-Net.

The set of analyzed hyperparameters included: the size of the input image
patches, the overlapping between patches, the encoder depth and the number
of filters in the first convolutional block. In order to avoid an unaffordable opti-
mization time, we have consulted the typical values of the hyperparameters to
be optimized in the literature [10]. This way, a specific range has been set for
each hyperparameter. Specifically, the value of the encoder depth has been var-
ied between 2 and 4, the number of initial filters between 8 and 32 (in powers of
2), while for the patch size the values 64 and 128 have been evaluated.

140 J. Gutiérrez-Zaballa et al.

The values of the hyperparameters that have output the three best results
are: 2-3-4 for the encoder/decoder depth, 8-16-16 for the initial number of fil-
ters and 128-128-128 for the side of the square patch. According to the accu-
racy/complexity trade-off criterion we have selected the 2/8/128 set (Fig. 1 shows
the final architecture of the network). As a consequence of the size of the patch
and to benefit from the effect of overlapping, it has been decided to divide the
input test images in 18 (3× 6) patches.

3 Segmentation Results

The first experiment focuses on segmenting 3 classes: Road, Road Marks and
No Drivable (the remaining classes). The proposed low-complexity segmenta-
tion system would be aimed at a possible final system for the discrimination of
drivable and non-drivable zones, together with a lane-keeping aid.

In a second experiment we have added two additional classes to the model
training; Vegetation and Sky. These two categories have been selected due to
their satisfactory spectral separability indexes (see Table 1). The exploration of
more complex segmentation models including all classes in the dataset has also
been performed but obtained results are irregular and not concluding, and will
require further investigation.

In order to perform a neural network training over this dataset, the 276
images have to be divided into training, validation and test subsets. This division
has been performed as follows: 162 images for training, 57 for validation and 57
for testing, preserving class proportionality in all the three subsets.

The chosen metrics to evaluate the segmentation ability of the neural network
are accuracy, precision and intersection over union (IoU). As Eqs. 1, 2 and 3 show,
accuracy accounts for the false negatives (FN), precision takes into account the
false positives (FP) and IoU combines both aspects:

Ai =
TPi

TPi + FNi
(1)

Pi =
TPi

TPi + FPi
(2)

IoUi =
TPi

TPi + FNi + FPi
(3)

where i is the class index such that, for example, FNi accounts for the pixels
that have been predicted as not belonging to class i, but are actually part of
class i.

As a consequence of the dataset being heavily imbalanced (the number of
pixels in the test dataset is: Road 2,067,379; Road M. 99,426; Veget. 820,804;
Sky 163,127 and Other 363,345) it is useful not to only represent the global
metrics but also the mean values and, more specifically, the weighted scores. In
order to do that, some weighting factors, which are related to the inverse of the
frequency of the classes in the dataset, have been previously computed.

Exploring FCNs for the Segmentation of HSI Applied to ADAS 141

3.1 U-Net

Table 2 collects the performance, in accordance with the above mentioned met-
rics, of the modified U-Net and also the segmentation metrics after the over-
lapped patches have been joined to reconstruct the images to their original reso-
lution. The comparison depicts that the use of overlapping patches improves the
segmentation, specially the precision, compared to the case in which the patches
do not overlap. This is because neural networks tend to fail to predict the pixels
of the patch contours because they lack surrounding information.

Table 2. Performance of the modified U-Net (patches and overlapping patches) and
ANN on the 3-classes (up) and 5-classes (down) test datasets.

U-Net ANN

Patches

(128x128x25)

Rebuilt images from

overlapping patches

Pixels

(1x1x25)

Accuracy Precision IoU Accuracy Precision IoU Accuracy Precision IoU

Road 97.90 95.66 93.74 98.54 94.56 93.25 85.10 92.51 79.62

Road Marks 90.25 73.11 67.75 87.89 77.22 69.80 68.10 21.90 19.86

No Drivable 91.07 97.16 88.71 91.20 98.57 90.01 86.46 89.32 78.42

Overall 95.37 95.55 91.31 95.42 95.44 91.50 85.14 89.32 77.46

Mean 93.07 88.64 83.40 92.54 90.12 84.35 79.89 67.93 59.30

Weighted 90.60 75.71 70.27 88.54 79.43 72.60 70.04 29.36 26.27

Road 92.61 99.05 91.36 93.28 99.00 92.41 73.29 94.30 70.18

Road Marks 80.93 75.39 64.02 78.32 79.11 64.90 68.74 17.50 16.21

Vegetation 94.98 94.63 90.12 95.74 95.80 91.88 93.84 91.47 86.29

Sky 97.86 93.09 91.23 97.49 93.39 91.20 91.04 74.53 69.44

Other 84.97 62.71 56.45 84.83 64.59 57.90 56.18 42.94 32.17

Overall 91.79 93.29 86.47 92.75 93.80 87.66 77.02 85.24 68.45

Mean 90.18 84.98 78.64 89.93 86.38 79.66 76.62 64.15 54.86

Weighted 88.64 82.14 75.27 87.40 84.15 75.93 75.28 44.00 39.55

Analyzing the numerical results of the reconstructed images, it can be seen
that all the classes have a great IoU with the exception of the class Road Marks
which suffers from a low precision value; in the first experiment, in particular,
for every 100 TPs of its class there are 37 FPs. However, as Road Marks is the
minority class, this value does not affect the overall result as Fig. 2 shows.

Figure 2 also depicts how the proposed FCN perfectly segments a typical
driving scene (second column) for the 3-class experiment (second and third rows)
while it fails to correctly identify some pixels in challenging images such as
those where there are objects casting their shadows on the road (first column,
especially in the background) or overlapping objects (third column, where the
left side is populated with objects of different materials).

Table 2 also confirms the good segmentation of the 5-class experiment. The
global result can be seen in Fig. 2 where, once again, the overall segmentation
would be very useful in a lane-keeping system and would also allow the driver to

142 J. Gutiérrez-Zaballa et al.

Fig. 2. Comparison among the visible (first row), 3-class ground truth (second row),
3-class U-Net segmentation (third row), 5-class ground truth (fourth row) and 5-class
U-Net segmentation (fifth row) images of three different scenarios: urban (first column),
road (second column) and highway (third column).

have more information about the surroundings. For instance, it can be observed
that the system is now able to identify the presence of some objects in the no-
drivable sections of the images such as traffic signals, pedestrians and guardrails.

3.2 A Comparison with Baseline Spectral Classifiers

From the above described results it can be concluded that the contribution of
the spatial information provided by the convolution filters is, indeed, relevant
to overcome the limitations inherent to the spectral separability of the different

Exploring FCNs for the Segmentation of HSI Applied to ADAS 143

objects that can be present in real driving scenes. In order to get a more precise
picture of this contribution we have compared the obtained results to those
achieved with a baseline purely spectral classifier based on a three-hidden-layer
feedforward ANN. The exploration and optimization process carried out has
concluded with 25-25-100-100-3 being the best structure for the network. Table 2
gathers the metrics for the two experiments of the three-hidden-layer neural
network.

The results achieved by the ANN are, all in all, far from the ones associated
to the U-Net (specially in terms of the precision of the minority class), so it can
be confirmed that the joint use of spatial and spectral information is beneficial
for the segmentation ability of a neural network.

The difference in performance can also be explained in terms of model size
and computational complexity (MACs, Multiply and Accumulate operations):
while the ANN has only 13,855 parameters and performs 1,203,687,000 MACs
(13,625 MACs per pixel) during inference, the U-Net has 31,725 parameters (320
of them are non-trainable) and needs 2,543,321,088 MACs (141,295,616 MACs
per patch) to produce an output. The difference between the MACs ratio (2.11x)
and the parameters ratio (2.3x) affects the time needed to make the forward pass,
which will be assessed in the next section.

It is worth mentioning a relevant outcome relative to the significance of the
information provided by the spectral bands of the sensor. Despite the high cor-
relation observed between spectral bands in the dataset images, we have verified
that the reduction of the spectral bands used in the training of spectral classifiers
strongly conditions the achievable accuracy of the segmentation.

Fig. 3. Overall accuracy (%) as a function of the number of spectral channels.

As an example, Fig. 3 shows the overall accuracy results of a reference ELM
(Extreme Learning Machine) classifier for a different number of spectral bands
(ranging from just 1 to all the 25 bands). It can be noted that accuracy indexes
vary almost 40%. On the contrary, we have observed that reducing the spectral
bands in the training of the U-Net has not such a strong effect and the spatial
information can compensate to a great extent the reduction in the spectral infor-
mation provided as input. In particular, we have observed that when using just

144 J. Gutiérrez-Zaballa et al.

one spectral band (a gray level image, actually) the segmentation performance
has only degraded, in terms of overall accuracy, by 0.75% when that band is
the first principal component of a PCA (Principal Component Analysis) and by
1.75% when that band is just 1 of the 25 bands.

4 Workflow for Rapid Prototyping

As the implementation of this kind of neural networks in SoCs is a challenging
and time consuming process, we have decided to explore the use of high-level
automatic code generation tools to achieve a rapid prototyping of the system.

4.1 Image Preprocessing

Raw images acquired from mosaic snapshot cameras need to undergo a prepro-
cessing pipeline in order to be converted into hyperspectral cubes. This process,
which starts with raw image cropping and finishes with band normalization,
needs to be taken into account when characterizing the throughput of the whole
segmentation system. The rest of the steps are reflectance correction, partial
demosaicing (original resolution is not restored), band alignment and spatial
filtering. This processing has been codified in C language and compiled to be
executed as an embedded Linux application in the microprocessor of the MPSoC
as part of the HW/SW codesign for the implementation of the system.

Table 3. Mean execution time of the image-preprocessing Linux application.

Step Name Execution time (ms)

Image cropping 4.36

Reflectance correction 68.49

Partial demosaicing 30.15

Band alignment 22.41

Spatial filtering 202.65

Band normalization 26.06

Total 353.97

Table 3 shows the mean latency over 1000 iterations of the preprocessing
pipeline running on the Cortex A-53 Quadcore processor (which has NEON
SIMD extensions mandatory per core) in the Zynq MPSoC which reaches a
reasonable value of 353.97 ms.

Exploring FCNs for the Segmentation of HSI Applied to ADAS 145

4.2 Neural Network Deployment

The design, training, validation and test of the FCN has been performed using
MATLAB’s Deep Network Designer. For the segmentation system prototyping
process on the MPSoC we have used Vitis AI, a development platform for AI
inference on Xilinx hardware platforms. Since there is not a direct procedure for
the implementation of MATLAB-generated deep models we had to first export
the neural network to open neural network exchange (ONNX) representation
and then import it to Keras, our chosen framework, via onnx2keras, an ONNX
to Keras neural network converter [7]. The next steps are the freezing and quan-
tizating processes of the neural network that are necessary due to the fact that
Vitis AI favours integer computing.

The workflow continues by creating a Tensorflow inference graph from the
Keras model and by removing the unnecessary information from training and
saving only the required elements to compute the requested outputs. As it is
known, inference is computationally expensive and, in order to reach the high-
throughput and low-latency requirements of ADAS applications, a high memory
bandwidth is required. Vitis AI Quantizer exploits quantization and VAI Opti-
mizer applies channel pruning techniques to meet those issues.

According to [13], by converting the 32-bit floating point weights and acti-
vations to 8-bit integer format, Vitis AI quantizer can reduce computing com-
plexity without losing prediction accuracy and, as the fixed-point network model
requires less memory bandwidth, a faster speed is provided.

Finally, the product of the quantization is loaded at runtime in the system
composed by the ARM CPU and the DPU accelerator in the MPSoC by a Python
VART API. Although the quantization output of the 3-class experiment presents
no appreciable IoU degradation, it has to be stated that the 5-class quantized
model experiences a noticeable loss of performance on some images, an issue to
be addressed in the future by Quantization Aware Training or Finetuning [13].

Figure 4 shows the output of the deployed model and confirms its good overall
performance. In fact, the similarity between quantized and unquantized results
is 97.82%, 98.16% and 98.66%, respectively.

Fig. 4. Segmented images produced by the deployed model on the MPSoC.

In terms of throughput, the inference of the U-Net deployed in the Zynq
UltraScale+ MPSoC reaches a rate of 487.91 FPS when 2 DPUCZDX8G cores
(B4096 architecture) are involved, that is, an image (18 patches) is segmented

146 J. Gutiérrez-Zaballa et al.

every 36.89 ms (27 FPS). In [2] the FPS of some of the state-of-the-art neural
networks for segmentation are evaluated when run on a GTX 1080 Ti and range
from 5 to 23 FPS. However, if we add to it the time employed during the prepro-
cessing (Table 3), the throughput decreases to 2.55 FPS which can be considered
a good starting point but will need to be improved by accelerating by hardware
some of the preprocessing steps or changing the band extraction approach.

We have also benchmarked three different device types and evaluated their
performance in terms of throughput with comparative purposes: an Intel-Xeon
E5 1620 v3 Quadcore (CPU) and two embedded platforms such as a Jetson Nano
(GPU) and a Xilinx ZCU104 (FPGA).

Table 4. Throughput of the U-Net and ANN on different device types

U-Net (18x128x128x25) ANN (216x409x25)

Device type

Timing (FPS)
Mean Median Max Min Mean Median Max Min

CPU (Intel Xeon), FP32 1.49 1.51 1.62 0.19 2.49 2.51 3.29 1.28

GPU (Jetson Nano), FP16/FP32 10.70 10.76 11.80 3.07 17.74 17.90 19.50 6.12

FPGA (Zynq Ultrascale+), INT8 27.11 27.70 29.39 19.52 - - - -

Table 4 displays the mean, median, maximum and minimum FPS values of
1000 executions of the segmentation of one image with both neural networks on
each device. It shows, on the one hand, how the ANN is 1.66x faster compared
to the U-Net although we have to take into account that U-Net performs only
2.11x MACs to get a much better segmentation output. On the other hand, it
also confirms the benefits of using a dedicated custom hardware such as the DPU
included in the PL part of the MPSoC which outperforms the U-Net CPU and
GPU approaches (18.2x and 2.5x FPS ratios respectively) and even exceeds the
ANN GPU alternative (1.5x FPS ratio).

5 Conclusions

The incorporation of richer spectral information through HSI improves the seg-
mentation results of purely spectral models. Besides, it is confirmed that the
use of spatial information via convolution operations outperforms purely spec-
tral models, even when dealing with images as intricate and heterogeneous as
those that must be processed in real driving scenarios. However, the contribution
of the spectral information in spectro-spatial convolutional models needs to be
further investigated since our experiments reveal that the spectral information
is being overshadowed by the spatial information in the training process of the
FCN segmentation. We expect that the more effective incorporation of the spec-
tral information to the AI models should improve segmentation performance in
tricky situations such as when there are areas with shadows, there is degradation

Exploring FCNs for the Segmentation of HSI Applied to ADAS 147

in the materials to be segmented, there are surfaces with very high reflectance
in conditions of extreme lighting or there are multiple overlapping objects.

The improvement of the segmentation performance involves investigating
further modifications to the proposed U-Net such as using 3D convolutions or
applying multiscale convolution techniques to extract spatial features at different
scales. The use of different image preprocessing techniques (modifying the partial
demosaicing step, for example) and the addition of a postprocessing stage (not
to label pixels with uncertain prediction, for instance) will also be assessed, but
their applicability will always be subject to the demanding throughput require-
ments of ADAS/ADS.

In turn, a workflow which combines the use of MATLAB’s (Deep Learning
and Image Processing toolboxes) and Xilinx’s tools (AI development and deploy-
ment environments) for the rapid prototyping of AI applications has been set.
This will allow us to perform agile deployment characterization of future models
so as to rapidly evaluate their suitability to ADAS applications.

Finally, we have verified that the combination of an encoder-decoder FCN
and the prototyping platform (Zynq Ultrascale MPSoC) allows us to perform
the preprocessing of the cubes and the segmentation of the images in a rea-
sonable time for this kind of applications outperforming CPU-only and GPU
approaches. However, there are multiple pathways for future research, either in
terms of the acceleration of the cube generation (hardware acceleration of the
median filtering) or the optimization of the U-Net. At the same time, a deeper
investigation is required regarding the data transfer between memory and the
different components of the SoC to try to improve the throughput and reduce
the cost and consumption.

References

1. Basterretxea, K., Mart́ınez, V., Echanobe, J., Gutiérrez-Zaballa, J., Del Campo, I.:
Hsi-drive: a dataset for the research of hyperspectral image processing applied to
autonomous driving systems. In: 2021 IEEE Intelligent Vehicles Symposium (IV),
pp. 866–873 (2021). https://doi.org/10.1109/IV48863.2021.9575298

2. Courdier, E., Fleuret, F.: Real-time segmentation networks should be latency
aware. In: Proceedings of the Asian Conference on Computer Vision (2020)

3. Cui, X., Zheng, K., Gao, L., Zhang, B., Yang, D., Ren, J.: Multiscale spatial-
spectral convolutional network with image-based framework for hyperspectral
imagery classification. Remote Sens. 11(19), 2220 (2019)

4. Forestier, G., Inglada, J., Wemmert, C., Gançarski, P.: Comparison of optical sen-
sors discrimination ability using spectral libraries. Int. J. Remote Sens. 34(7),
2327–2349 (2013)

5. Govender, M., Chetty, K., Bulcock, H.: A review of hyperspectral remote sensing
and its application in vegetation and water resource studies. Water Sa 33(2), 145–
151 (2007)

6. Huang, Y., Huang, E., Chen, L., You, S., Fu, Y., Shen, Q.: Hyperspectral image
semantic segmentation in cityscapes. arXiv preprint arXiv:2012.10122 (2020)

7. Malivenko, G.: onnx2keras 0.0.24. https://pypi.org/project/onnx2keras/ (2021)

https://doi.org/10.1109/IV48863.2021.9575298
http://arxiv.org/abs/2012.10122
https://pypi.org/project/onnx2keras/

148 J. Gutiérrez-Zaballa et al.

8. Photonfocus: MV1-D2048x1088-HS02-96-G2. https://www.photonfocus.com/
products/camerafinder/camera/mv1-d2048x1088-hs02-96-g2

9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

10. Wang, S., Chen, W., Xie, S.M., Azzari, G., Lobell, D.B.: Weakly supervised deep
learning for segmentation of remote sensing imagery. Remote Sens. 12(2), 207
(2020)

11. Winkens, C., Sattler, F., Adams, V., Paulus, D.: Hyko: a spectral dataset for scene
understanding. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops, pp. 254–261 (2017)

12. Winkens, C., Sattler, F., Paulus, D.: Hyperspectral terrain classification for ground
vehicles. In: VISIGRAPP (5: VISAPP), pp. 417–424 (2017)

13. Xilinx: Quantizing the model. https://www.xilinx.com/html docs/vitis ai/1 4/
quantize.html#uim1570695919827 (2021)

https://www.photonfocus.com/products/camerafinder/camera/mv1-d2048x1088-hs02-96-g2
https://www.photonfocus.com/products/camerafinder/camera/mv1-d2048x1088-hs02-96-g2
https://doi.org/10.1007/978-3-319-24574-4_28
https://www.xilinx.com/html_docs/vitis_ai/1_4/quantize.html#uim1570695919827
https://www.xilinx.com/html_docs/vitis_ai/1_4/quantize.html#uim1570695919827

An Adaptable Cognitive Microcontroller
Node for Fitness Activity Recognition

Matteo Antonio Scrugli1(B) , Bojan Blažica2 , and Paolo Meloni1

1 Department of Electrical and Electronic Engineering (DIEE),
University of Cagliari, Cagliari, Italy

matteo.scrugli@unica.it
2 Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia

Abstract. The new generation of wireless technologies, fitness trackers,
and devices with embedded sensors can have a big impact on healthcare
systems and quality of life. Among the most crucial aspects to consider
in these devices are the accuracy of the data produced and power con-
sumption. Many of the events that can be monitored, while apparently
simple, may not be easily detectable and recognizable by devices equipped
with embedded sensors, especially on devices with low computing capabil-
ities. It is well known that deep learning reduces the study of features that
contribute to the recognition of the different target classes. In this work,
we present a portable and battery-powered microcontroller-based device
applicable to a wobble board. Wobble boards are low-cost equipment that
can be used for sensorimotor training to avoid ankle injuries or as part of
the rehabilitation process after an injury. The exercise recognition process
was implemented through the use of cognitive techniques based on deep
learning. To reduce power consumption, we add an adaptivity layer that
dynamically manages the device’s hardware and software configuration
to adapt it to the required operating mode at runtime. Our experimen-
tal results show that adjusting the node configuration to the workload at
runtime can save up to 60% of the power consumed. On a custom dataset,
our optimized and quantized neural network achieves an accuracy value
greater than 97% for detecting some specific physical exercises on a wobble
board.

Keywords: Adaptive system · Fitness activity tracking ·
Sensorimotor training · Low power electronics · Neural network ·
Remote sensing · Runtime

1 Introduction

The guidelines of the World Health Organization (WHO) in 2010 document,
excluding special cases, an average adult should engage in physical activity of mod-
erate intensity for at least 150 min per week and 75 min per week at high intensity
[1]. Tracking and encouraging good levels of physical activity can improve peo-
ple’s health [2]. Fitness tracker devices have had a rapid development in recent
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 149–161, 2022.
https://doi.org/10.1007/978-3-031-12748-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_12&domain=pdf
http://orcid.org/0000-0001-7441-1425
http://orcid.org/0000-0003-4597-5947
http://orcid.org/0000-0002-8106-4641
https://doi.org/10.1007/978-3-031-12748-9_12

150 M. A. Scrugli et al.

years, due to their ease of use, accuracy, and portability. Events in a trackable sig-
nal, although seemingly simple, can be difficult to identify and recognise within
the data stream. Deep learning is well known for reducing the study of features
that contribute to the recognition of different target classes and greatly increase
the classification accuracy, but in order to be used in low power devices a careful
software optimization is necessary.

In this work, we present a portable and battery-powered microcontroller-
based device applicable to a wobble board. Wobble boards are inexpensive and
easy-to-use tools to avoid ankle injuries or as part of the recovery process after
an injury (Fig. 1). The exercise recognition process was implemented through
the use of cognitive techniques based on deep learning.

Fig. 1. Wobble board used to validate our approach.

To manage the hardware/software configuration we have implemented a com-
ponent called ADAM (ADAptive runtime Manager), able to optimize device power
consumption and performance. ADAM creates and manages a network of pro-
cesses that communicate with one another via FIFOs. The morphology of the pro-
cess network varies depending on the operating mode (OM) in execution. ADAM
can be triggered by external environment re-configuration messages or by specific
workload-related variables in the sampled streams. When triggered, ADAM alters
the morphology of the process network by turning on or off processes and rearrang-
ing the inter-process FIFOs. Furthermore, depending on the new configuration, it
modifies the platform’s hardware configuration, adjusting power-related settings
such as clock frequency, supply voltage, and peripheral gating.

2 Related Work

Local processing is frequently used only for implementing simple checks on
raw data and/or marshaling tasks for wrapping sensed data inside standard
communication protocols, and the edge-computing paradigm is only marginally
exploited [3–5]. More complex and accurate algorithms, such as those based on

An Adaptable Cognitive Microcontroller Node for Fitness Activity 151

artificial intelligence or deep learning, must be targeted in order to properly
use cognitive computing at the edge. Their effectiveness on high-performance
computing platforms has been widely demonstrated. Nonetheless, how to map
state-of-the-art cognitive computing on resource-constrained platforms remains
an open question. To identify specific events in sensed data, an increasing num-
ber of approaches based on machine learning and artificial intelligence are being
developed. In [6] and [7] ANN (artificial neural networks) are used by the authors
to detect specific conditions in the proposed data. In [7], an ANN is used to deter-
mine the patient’s emotional state (happiness or sadness). In our previous work
[8], energy/power efficiency is improved using ADAM component, using near-
sensor processing to save data transfers, and dynamically adapting application
setup and system frequency to the OM requested by an external user and to
data-dependent workload.

In our use case, a CNN (Convolutional Neural Network) is used to identify
and recognize simple physical exercises performed on a wobble board. In [9,10],
the authors propose the use of a wobble board in creative way, to entice people to
its use, as it is very important in ankle rehabilitation. In a review of the concept of
patient motivation [11], the authors describe how motivation has been considered
in relation to rehabilitation associated with strokes, fractures, rheumatic disease,
aging, and cardiac and neurological issues. The limited motivation on the part
of some individuals may, at least in part, be ascribed to the tedious nature of
the ankle exercises and the inability to monitor one’s improvement throughout
the course of the training process [12].

A similar approach is considered in our work, the implemented system detects
and identifies some simple sensorimotor exercises performed on the wobble
board, giving a percentage of correct execution at the end of the exercise. As
far as we know, our system is the only one that applies state-of-the-art deep
learning-based techniques to recognize some specific movements on a wobble
board, managing hardware and software dynamically in order to minimize power
consumption.

3 Wobble Board and Node Architecture

We used a wobble board capable of 360◦ rotation (Fig. 1), the sensory node is
fixed in the upper-middle part. Since the device is battery powered and com-
munication is via a Bluetooth Low Energy module, no cable is used to interface
with the sensor node. We chose STMicroelectronics SensorTile microcontroller-
based platform, which is equipped with an ARM Cortex-M4 32-bit low-power
microcontroller. It takes advantage of the LSM303AGR accelerometer sensor
integrated into the Sensortile, only the two axes X and Y parallel to the floor
are taken into account and, for each sensor, it is necessary to make a calibration
that takes into account the offset on the acquired data. It was chosen to run
FreeRTOS on the node, to have more control over the running tasks due to its
ability to create a thread-level abstraction.

152 M. A. Scrugli et al.

3.1 Application Model

We chose a process network-based application structure. Tasks are modeled as
separate processes that communicate with one another via FIFO structures.
Using a software pipeline, processes can potentially be executed in parallel,
improving performance. When the topology of the network processes changes, a
change of OM occurs.

We identified four topologies of processes that can be combined in different
ways:

• Get data task : take data from the sensing hardware.
• Process task: it’s possible to have multiple tasks of this type, representing

multiple stages of in-place data analysis algorithm.
• Threshold task: filters data depending on the results of the analysis.
• Send task: is the task in charge of outwards communication to the gateway.

3.2 Adaptivity Support: The ADAptive Runtime Manager

A task within the process network was dedicated to the management of the plat-
form’s dynamic hardware and software reconfiguration. We have implemented
such reconfiguration in a software agent called ADAptive runtime Manager
(ADAM). ADAM can be activated on a regular basis by using an internal timer,
it monitors the system’s status, such as changes in workload. ADAM can react
to such input by changing the platform settings, performing various operations
such as enabling or disabling individual tasks of the sensor task chain or the
entire chain; deciding whether to put the microcontroller in sleep mode or not;
setting the operating frequency; and rerouting the data-flow managed by the
FIFOs based on the active tasks.

4 Designing the Application

In this work, a system is implemented that is able to recognize typical movements
in exercises that involve the use of a conventional wobble board (described in
Sect. 3) or, more simply, the wireless transmission of raw data acquired from the
sensor. The application model chosen for this use case provides two possible levels
of processing able to evaluate the nature of the movement. The OMs chosen for
the selected use case are shown in Fig. 2 and described below.

4.1 Operating Mode: Raw Data

This is the simplest OM, using only two tasks. It is possible to acquire data from
the sensor and send it via Bluetooth, with a sampling frequency 100 Hz. In order
to reduce the power consumption related to the transmission, it was decided to
encapsulate four samples taken from the sensor in a single low energy Bluetooth
packet. The Bluetooth packet has a size of 20 bytes, 4 bytes the timestamp, and
four pairs of data taken from the sensor at different instants of time, the data
pair is formed by the values relative to the accelerometer’s X and Y axis, each
with a size of 2 bytes.

An Adaptable Cognitive Microcontroller Node for Fitness Activity 153

4.2 Operating Mode: Basic Balance

This OM enables the first level of processing. The sampling rate is lowered to
100/7 Hz, which is more than sufficient to perform the analysis in this OM. How-
ever, given the storing signal frames and the size of the neural network (highly
dependent on the input size), higher sampling rate values lead to memory foot-
print issues for the selected reference platform. A simple algorithm calculates how
much, in percentage, the wobble board is in a balanced position. The extreme
cases, the analysis returns a value of 100% if the board remains horizontal within
a certain tolerance and 0% when the board remains in constant contact with the
ground. The result of the analysis is transmitted every second, this leads to a
significant energy saving due to the decrease of information that has to be sent
via Bluetooth, which is no longer used to transmit raw data.

Get data Balance CNN Threshold Send

Get data Balance CNN Threshold Send

Get data Balance CNN Threshold Send

Fig. 2. Application model. Top raw OM, middle balance OM, bottom CNN OM.

4.3 Operating Mode: CNN

Some exercises were selected which were not too complicated to be recognized
by deep learning techniques. Also in this case, a frequency of 100/7 Hz is ideal to
obtain good results with the neural network and have a not excessive workload.
The raw data related to the two X and Y axes of the accelerometer are used
as two different input features as input to the neural network. The balance task
remains active so that if a total stop of the table is detected, no CNN is exe-
cuted. Again, the result of the analysis is transmitted every second. Some typical
exercises recommended by Anders Heckmann [12] are those shown in Fig. 3.

154 M. A. Scrugli et al.

The correct execution of the exercise involves:

– Basic stance balance (Fig. 3.a): Stand on the board with the edges of
your feet on the outer edges of the board. Maintain a neutral spine and keep
your torso upright. Balance on the board by shifting your weight to prevent
any of the board’s edges from touching the floor. The goal is to maintain the
balance for 60 s.

– Side tilt (Fig. 3.b): Stand on the wobble board with your feet on the outer
edges. Stand upright in a neutral spine position. Tilt the board from left to
right by transferring your weight from your left leg to your right leg. Moving
in a slow and controlled manner, keeping an upright torso and tight core. The
duration of the exercise is 60 s.

Fig. 3. The four common wobble board exercises recommended by physiotherapist
Anders Heckmann [12]. (a) Balance while keeping as steady as possible. (b) Move
the board from side to side. (c) Move the board back and forth. (d) Clockwise and
counterclockwise circular movement. The Figure was extracted from [9]

– Forward/backward tilt (Fig. 3.c): Stand on the wobble board with your
feet on the outer edges. Stand upright in a neutral spine position. Tilt the
board to the front to touch the floor. Tilt it back onto the heels to touch
the floor behind you. Continue tilting forward and back in a slow, steady,
controlled motion for 60 s.

– Two leg tilts (Fig. 3.d): Stand on the wobble board with your feet on the
outer edges. Stand upright in a neutral spine position. In a combination of the
two previous exercises, you will roll the board in a 360-degree motion. Begin
by tilting the board to the left. When the board touches the ground on the
left, transfer your weight to the front to touch the floor. Now transfer your
weight to touch the floor to the right side. Complete the revolution by tilting
the board to the floor behind you. Keep your body centralized throughout.
You may need to balance with your arms as you get used to the movement.
Reverse the motion to move in the other direction. Continue for 60 s.

– Other: there is a fifth class that represents everything that is not foreseen
by the previous exercises, for example the fall from the table or the absolute
absence of movement.

An Adaptable Cognitive Microcontroller Node for Fitness Activity 155

4.4 Neural Network Design

We used a training procedure that included a static quantization1 step, the
source code is available in our public repository2. This process converts floating-
point weights and activations to integers, allowing the CNN to be implemented
using the CMSIS-NN optimized function library, which expects inputs with 8-bit
precision. We have chosen to force the value of the bias to zero, while for the
conversion of the weights we have inserted MinMax observers3, who have the
task of studying the outputs of each layer. Evaluating the distribution of the
output values of each layer allows the observer to establish a value of scale and
zero-point in order not to saturate these values using a quantized network. The
CMSIS-NN library’s functions for implementing convolution and fully connected
layers include output shifting operations for applying the Scale factor to the
outputs, with scaling values ranging from −128 to 127. In PyTorch, however,
the quantization procedure requires a Scale value that is not always a power of
two. As a result, we modified the CMSIS functions slightly to support arbitrary
scale values. This change resulted in a minor increase in inference execution
time. After testing inference with and without this modification, we calculated
an increase in execution time of 2.87%.

We used a design space exploration process to compare tens of neural network
topologies in terms of accuracy achieved after training and computing workload
associated with executing the inference task on SensorTile. Figure 4 shows the
selected convolutional network and the five selected output classes. All exercises
are one minute in length, each movement performed during the four different
exercises has a different duration. Generally, the longest exercise is the two leg
tilts. CNN does not analyze the exercise for its entire duration (60 s) at once,
the signal is divided into windows of 15 s duration, a good compromise between
temporal precision and distinction between the movements to be evaluated. The
maximum number of epochs was set to 30 and the Early Stopping (ES) algorithm
was chosen to avoid overfitting effects. This algorithm terminates the training
phase if it detects an increase in the loss value [13]; the loss is evaluated every
epoch, and a Patience value of 5 is selected, implying that the training terminates
only if a loss increment is detected for 5 consecutive epochs. Table 1 summarizes
the parameters chosen for training, while Table 2, shows the dimensions of the
various layers chosen.

1 https://pytorch.org/tutorials/advanced/static quantization tutorial.html.
2 https://github.com/matteoscrugli/deepwobbleboard.
3 https://pytorch.org/docs/stable/ modules/torch/quantization/observer.html.

https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
https://github.com/matteoscrugli/deepwobbleboard
https://pytorch.org/docs/stable/_modules/torch/quantization/observer.html

156 M. A. Scrugli et al.

21
5

X
-a
xi
s

Y
-a
xi
s

2 20
7

Conv 1

10
3 20 95

Conv 2

47

20 10
0

Fc 1

1

Fc 2

5

Input Convolution
+ ReLU

Max
pooling

Fully con-
nected
+ ReLU

Softmax

(B) Basic stance balance (FB) Forward/backward tilt

(S) Side tilt (R) Two leg tilts

(G) Other

Fig. 4. CNN structure and classes description.

Table 1. Hyperparameters used during the training phase.

Hyperparameter Value Hyperparameter Value

Epochs 30 Optimizer Adadelta

Batch size 32 Learning rate 1.0

Loss criterion Cross Entropy Rho 0.9

ES patience 5 ES evaluation Every epoch

Table 2. Model parameters.

Layer Input dimension Output dimension Input features Output features Kernel size

Convolutional 215 207 2 20 9

Max pooling 207 103 20 20 2

Convolutional 103 95 20 20 9

Max pooling 95 47 20 20 2

Fully connected 940 100 − − −
Fully connected 100 5 − − −

4.5 Data Augmentation and Generalization

Unfortunately, no datasets already used in the literature containing the selected
exercises were found. Therefore, a dataset was created with 12 one-minute record-
ings for each type of exercise (including class “other”). A random split of the
dataset was chosen in order to use 80% of the data for the training set and 20%
for the validation set. Operations such as translation, rotation and time dilation

An Adaptable Cognitive Microcontroller Node for Fitness Activity 157

of the signal in each direction can often greatly improve generalization [13]. An
exploration was made concerning the parameters used for all the agumentation
techniques selected, In this paper, the exploration phase of these parameters will
not be elaborated. Parameters were selected that led to better results during test
set inference and thus actually helped to improve the training phase of the neural
network.

We planned to expand our dataset in order to increase the generality of
the dataset and without necessarily resorting to the use of data augmentation
techniques.

In more detail, augmentation techniques are (also summarized in Table 3):

– Translation: During training, the window to the entire signal is shifted by
0.25 s per frame. For example, a 60-second recording with a translation of
0.25 generates a number of frames of (60 − 15)/0.25 + 1 = 181.

– Rotation: A rotation transformation was applied to the X and Y axes of the
sensor data, in our case we chose two rotations of ∠−4 and ∠4◦. For each
record, two more are then generated.

– Dilation: The sampling frequency of the signals in the dataset 100 Hz, but
the neural network is trained with 100/7 Hz signals. The size of the input
signal is therefore equal to �(15 × 100 + 7 − 1)/7� = 215. Time dilation
can be obtained by increasing or decreasing the downsampling while keeping
the input size to the neural network constant, in this case, two additional
downsampling values of 6 and 8 were chosen. For each recording, two more
are generated with different time dilations.

Table 3. Augmentation parameters.

Parameter Value

Traslation, temporal distance between frames 0.25 s

Rotation, X and Y axis rotation ∠−4, ∠0, ∠4

Time dilation, downsampling 6, 7, 8

5 Experimental Results

In this section, we will show the results obtained after the neural network training
and we will make a detailed analysis of the power consumption for each OM.

5.1 Neural Network Accuracy

After the training phase, an accuracy of 97.652% was measured on the valida-
tion set. Figure 5 shows the results of the training, showing how the windows
extracted from the validation set are classified. It is possible to notice that the
major difficulty for the network is to recognize in a correct way when the wobble
board is used with movements that do not match the four proposed ones.

158 M. A. Scrugli et al.

Fig. 5. Validation set confusion matrix, to the left the model with floating point weights
and to the right fixed point weights.

5.2 Power Consumption

We measured the power consumption for each OM, for this purpose the digital
oscilloscope ANALOG Discovery 2 was used to measure the voltage on the shunt
resistor placed in series to the power cable of the SensorTile node. Figure 6 shows
the result of the measurement.

Operating mode raw. This is the OM with the highest amount of data to be
sent via Bluetooth, the minimum system frequency to handle data traffic with
the Bluetooth module present in the SensorTile module is 8 MHz. In order to
optimize data sending via Bluetooth, four sensor acquisitions are merged for
each packet, reducing the data sending frequency 100 Hz 25 Hz.

Operating mode balance. In contrast to the previous one, this is the OM
where there is less data transmission, in fact, the evaluation of the exercise is
done every one second, invoking Bluetooth transmission at the same frequency.
It has been tested that a system frequency of 2 MHz is sufficient to meet the
real-time constraints, Fig. 6 shows the savings due to dynamic optimization of
the system frequency.

Operating mode CNN. It was chosen to send the information about the
classification result of the exercise every time the neural network inference is
performed. In order to correctly execute the neural network and at the same
time respect the real-time constraints, a system frequency of 4 MHz has been set.
The length of the input frame is obviously the same as that used during training,
while the distance between frames in this evaluation phase, as for operating
mode Balance, is one second. For this reason, the power consumption is data-
dependent and the worst case will thus be taken into account for the calculation
of power consumption. The maximum number of times a single data item is sent
via the Bluetooth module is equal to (60 − 15)/1 + 1 = 46, i.e., the number of
15-second frames that can be extracted from a 60-second signal considering the
frame-to-frame distance equal to one second.

An Adaptable Cognitive Microcontroller Node for Fitness Activity 159

Fig. 6. Power consumption for each OMs.

5.3 Power Consumption Model

We conducted a comprehensive set of experiments measuring energy consump-
tion in various setup conditions. The results were used to create a model that
highlighted the contribution of each task to the node’s energy consumption. The
energy values for each task in the process network are shown in Table 4, Table 5
instead shows the power consumption of the platform as a function of the chosen
system frequency.

Table 4. Summary of consumption and execution time for each task.

Task type Number of cycles Execution time (8 MHz) Energy contribution

Get data 841 105µs Eg = 2.96µJ

Get data + balance 1 550 + 841 300µs Egb = 3.76µJ

CNN 2 219 582 277ms Ec = 852.38µJ

Threshold 910 114µs Et = 2.73µJ

Send data ∼ 25 000 ∼ 3ms Es = 83.96µJ

Table 5. Summary of consumption of peripherals.

Device Power consumption

2 MHz 4 MHz 8 MHz

Platform in idle state 2.609mW 3.101mW 4.546mW

It is then possible to obtain the equations that estimate the consumption for
each OM:

Praw data OM = (Eg + αEs) · fs + Pidle , (1)
Pbasic balance OM = Egb · fs + (Et + Es) · fb + Pidle , (2)

Pcnn processing OM = Egb · fs + (Ec + Et + Es) · fc + Pidle . (3)

160 M. A. Scrugli et al.

In Eqs 1, 2 and 3, the following operators are used:

– fs is the sampling frequency,
– fc frequency of convolutional neural network activation,
– fb is the basic balance data sanding frequency,
– α−1 is the number of samples inserted in a BLE package,
– Pidle power consumption of the platform in idle state, depends on the system

frequency.

Figure 7 shows graphically the contribution of each task to the power consump-
tion of each OM.

Fig. 7. Estimation of energy consumption for each task of each OM.

6 Conclusion

We defined a hardware/software template for the development of a dynamically
manageable sensory node, which was addressed to perform in-place analysis of
sensed data. Its implementation has been tested on a low-power platform capa-
ble of recognizing simple movements on a wobble board using CNN-based data
analysis. The device can reconfigure itself based on the operating modes and
workload that are required. The ADAM component, which can manage device
reconfiguration, contributes significantly to energy savings. On a custom dataset,
a quantized neural network achieves an accuracy value greater than 97%. By
activating in-place analysis and managing the device’s hardware and software
components, we were able to save up to 60% on energy. This work demonstrates
the feasibility of increasing battery lifetime with near-sensor processing while
also emphasizing the significance of data-dependent runtime architecture man-
agement.

References

1. World Health Organization (WHO): Global recommendations on physical activ-
ity for health. https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf.
Accessed 11 Nov 2021

https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf

An Adaptable Cognitive Microcontroller Node for Fitness Activity 161

2. Abedtash, H., Holden, R.J.: Systematic review of the effectiveness of health-
related behavioral interventions using portable activity sensing devices (PASDs).
J. Am. Med. Inform. Assoc. 24(5), 1002–1013 (2017). https://doi.org/10.1093/
jamia/ocx006

3. Ghasemzadeh, H., Jafari, R.: Ultra low-power signal processing in wearable mon-
itoring systems: a tiered screening architecture with optimal bit resolution. ACM
Trans. Embed. Comput. Syst. 131, 9:1–9:23 (2013). http://doi.acm.org/10.1145/
2501626.2501636

4. Wang, C., et al.: A low power cardiovascular healthcare system with cross-layer
optimization from sensing patch to cloud platform. IEEE Trans. Biomed. Circuits
Syst. 13(2), 314–329 (2019)

5. Adimulam, M.K., Srinivas, M.B.: Ultra low power programmable wireless ExG SoC
design for IoT healthcare system. In: Perego, P., Rahmani, A.M., TaheriNejad, N.
(eds.) MobiHealth 2017. LNICST, vol. 247, pp. 41–49. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98551-0 5

6. Tabal, K.M.R., Caluyo, F.S., Ibarra, J.B.G.: Microcontroller-implemented artificial
neural network for electrooculography-based wearable drowsiness detection sys-
tem. In: Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C.
(eds.) Advanced Computer and Communication Engineering Technology. LNEE,
vol. 362, pp. 461–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
24584-3 39

7. Magno, M., Pritz, M., Mayer, P., Benini, L.: DeepEmote: towards multi-layer neu-
ral networks in a low power wearable multi-sensors bracelet. In: 7th IEEE Interna-
tional Workshop on Advances in Sensors and Interfaces (IWASI), pp. 32–37 (2017)

8. Scrugli, M.A., Loi, D., Raffo, L., Meloni, P.: A runtime-adaptive cognitive IoT node
for healthcare monitoring. In: Proceedings of the 16th ACM International Confer-
ence on Computing Frontiers, ser. CF 2019. Association for Computing Machinery,
pp. 350–357 (2019). https://doi.org/10.1145/3310273.3323160

9. Nilsson, N.C., Serafin, S., Nordahl, R.: Gameplay as a source of intrinsic motivation
for individuals in need of ankle training or rehabilitation. Presence 21(1), 69–84
(2012)

10. Blažica, B., Krivec, P.: Olok boardy - gamified sensorimotor training with afford-
able smart balance board. In: 3rd Annual Scientific and Professional International
Conference “Health of Children and Adolescent”, September 2019, p. 185 (2019).
https://www.hippocampus.si/ISBN/978-961-7055-73-3.pdf

11. Maclean, N., Pound, P.: A critical review of the concept of patient motivation in
the literature on physical rehabilitation. Soc. Sci. Med. 50(4), 495–506 (2000)

12. S.E. Asp, et al. (Eds.): WobbleActive (2007)
13. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning, ser. Adaptive Com-

putation and Machine Learning series. MIT Press (2016). https://books.google.it/
books?id=Np9SDQAAQBAJ

https://doi.org/10.1093/jamia/ocx006
https://doi.org/10.1093/jamia/ocx006
http://doi.acm.org/10.1145/2501626.2501636
http://doi.acm.org/10.1145/2501626.2501636
https://doi.org/10.1007/978-3-319-98551-0_5
https://doi.org/10.1007/978-3-319-24584-3_39
https://doi.org/10.1007/978-3-319-24584-3_39
https://doi.org/10.1145/3310273.3323160
https://www.hippocampus.si/ISBN/978-961-7055-73-3.pdf
https://books.google.it/books?id=Np9SDQAAQBAJ
https://books.google.it/books?id=Np9SDQAAQBAJ

Towards Real-Time and Energy Efficient
Siamese Tracking – A Hardware-Software

Approach

Dominika Przewlocka-Rus(B) and Tomasz Kryjak

Embedded Vision Systems Group, Computer Vision Laboratory,
Department of Automatic Control and Robotics, AGH University of Science

and Technology, Krakow, Poland
{dominika.przewlocka,tomasz.kryjak}@agh.edu.pl

Abstract. Siamese trackers have been among the state-of-the-art solu-
tions in each Visual Object Tracking (VOT) challenge over the past few
years. However, with great accuracy comes great computational complex-
ity: to achieve real-time processing, these trackers have to be massively
parallelised and are usually run on high-end GPUs. Easy to implement,
this approach is energy consuming, and thus cannot be used in many low-
power applications. To overcome this, one can use energy-efficient embed-
ded devices, such as heterogeneous platforms joining the ARM proces-
sor system with programmable logic (FPGA). In this work, we propose
a hardware-software implementation of the well-known fully connected
Siamese tracker (SiamFC). We have developed a quantised Siamese net-
work for the FINN accelerator, using algorithm-accelerator co-design,
and performed design space exploration to achieve the best efficiency-
to-power ratio (determined by FPS and used resources). For our net-
work, running in the programmable logic part of the Zynq UltraScale+
MPSoC ZCU104, we achieved the processing of almost 50 frames-per-
second with tracker accuracy on par with its floating point counterpart,
as well as the original SiamFC network. The complete tracking system,
implemented in ARM with the network accelerated on FPGA, achieves
up to 17 fps. These results bring us towards bridging the gap between
the highly accurate but power-demanding algorithms and energy-efficient
solutions ready to be used in low-power, edge systems.

Keywords: Siamese tracker · quantised neural networks ·
hardware-software implementation · energy efficient tracking · real time
tracking

1 Introduction

Visual object tracking is a component of many different advanced computer vision
systems, used, among others, in surveillance systems, advanced driver assistance
systems (ADAS), or autonomous vehicles, such as cars or drones. Due to the high
complexity of the considered problem – the tracked object can undergo changes,
c© Springer Nature Switzerland AG 2022
K. Desnos and S. Pertuz (Eds.): DASIP 2022, LNCS 13425, pp. 162–173, 2022.
https://doi.org/10.1007/978-3-031-12748-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12748-9_13&domain=pdf
http://orcid.org/0000-0002-5836-8604
http://orcid.org/0000-0001-6798-4444
https://doi.org/10.1007/978-3-031-12748-9_13

Towards Real-Time and Energy Efficient Siamese Tracking 163

such as rotations, occlusions, or different scene illuminations – it is still a research
area of very high activity, well documented each year by the Visual Object Track-
ing Challenge (or VOT Challenge). Tracking methods can be roughly divided into
classic (mean-shift, CAM-shift, KLT) and AI-based ones (including correlation fil-
ters). It is the development of deep learning that has allowed for significant progress
in the field of tracking, and nowadays top trackers are based on neural networks,
including the Siamese neural networks.Unfortunately, state-of-the-art trackers are
usually characterised with a very high computational complexity (resulting, inter
alia, from the very fact of using neural networks) and to achieve real-time process-
ing, these algorithms are accelerated using high-end and energy-inefficient GPUs.
At the same time, in many real-life applications, the real-time and energy-efficient
processing constraints have to be met while ensuring high-quality tracking. One
of the possible solutions is the acceleration of state-of-the-art trackers using SoC
FPGA (System on Chip Field Programmable Gate Arrays) platforms, which allow
for high parallelisation of computations, with low energy consumption. Neverthe-
less, this choice results in other challenges, mainly due to the limited number of
resources in FPGA devices. In view of the above, in this work we propose a fast
and energy-efficient hardware-software implementation of the SiamFC tracker [1],
achieving accuracy on par with that of its original counterpart. The main contri-
butions of this paper are:

– The hardware-software implementation of a Siamese tracker on the Zynq Ultra-
Scale+ MPSoC ZCU104 platform, with a detailed time analysis of the algo-
rithm components and a design space exploration showing the relation between
the power used (used resources) and the achieved speed (measured in FPS).

– The proposed algorithm-accelerator co-designed architecture of a Siamese
neural network, which resulted in tracking accuracy on par with the origi-
nal SiamFC approach, while significantly reducing the number of parameters
(thus calculations).

To the authors’ best knowledge, this is the first paper to give such a comprehen-
sive analysis of hardware-software implementation of the SiamFC tracker.

The remainder of this paper is organised as follows. In Sect. 2 we briefly
describe the concept of Siamese trackers and discuss related work. The pro-
posed quantised Siamese tracker and its hardware-software implementation are
presented in Sect. 3. The proposed tracker is evaluated both in software and
hardware, with extensive accuracy, time and power consumption analysis. The
obtained results are discussed in Sect. 4. The paper ends with conclusion and
future research proposals.

2 Siamese Tracking

A Siamese network is a Y-shaped network with two branches joined in one out-
put. It measures the similarity of the two inputs, thus it can be considered
as a similarity function. Many of the Siamese-based trackers rely solely on this
assumption. In general, we examine the following two inputs: the exemplar image

164 D. Przewlocka-Rus and T. Kryjak

of an object (from the first frame) and the region of interest (ROI), where we
presume that the target is present in the following frames. Each branch pro-
cesses one image, and their outputs are joined using correlation. This results in
a similarity map (or maps) between object features and ROI, based on which
the target can be located. Over the past years, this basic version of the Siamese
tracker has undergone many modifications, affecting both the tracking efficiency
and frame processing time; the most recognisable are described in Sect. 2.1.

2.1 Related Work

Fully convolutional Siamese trackers were first introduced in the paper [1]. Both
the object and ROI are processed by identical branches, based on the well-known
AlexNet DCNN (Deep Convolutional Neural Network) architecture. The feature
maps obtained are cross-correlated to produce a single heat map, determining
the location of the target centre. The ROI is analysed in multiple scales – the
one for which the heat map has the highest peak is chosen to rescale the previous
bounding box. A direct continuation of the research is presented in [2], where the
previous solution was extended with a correlation filter as an additional layer of
the Siamese network. To overcome the issue of too deep Siamese networks, in
[7], a dense block-based network architecture was proposed. Each dense block
is built of multiple convolution layers, the outputs of which are feed-forwarded
to all next blocks. In this way, both low-level and high-level features are cross-
correlated, which enhances the network’s generalisation ability. In addition, the
ROI branch was equipped with an attention module.

To avoid multiscale search, in [6] the Siamese-RPN framework was proposed.
It consists of the Siamese network for features’ extraction (ended with a cross-
correlation) and the two-branch Region Proposal Network: one for foreground-
background classification and the other for proposal refinement. In [5] the exten-
sion of SiamRPN was proposed. The output of the Siamese network is extended
to aggregate the outputs of the intermediate layers. This allows the similarity
map to be calculated using features learnt on multiple levels. Moreover, the cor-
relation layer is replaced with a depth-wise separable correlation, which results
in a multichannel similarity map with different semantic meanings for each chan-
nel. Also in this work, the authors proposed a different backbone than previously
used [1,2,6] – instead of AlexNet modification, they developed an appropriately
adjusted ResNet50 and pointed out the conditions to be met by deep networks
to be used in Siamese trackers.

In [9], the authors proposed a VGG-16 like backbone and indicated that the
most commonly used AlexNet has limited feature extraction capabilities. Unlike
[5,6] based on anchors, as well as [1,2] with multiscale search, the solution pro-
posed in [4] reformulated the tracking problem as a joint regression and classi-
fication task. Depth-wise correlation is applied to aggregated Siamese network
output (with outputs from intermediate layers), and then the result is passed
to two networks: one for foreground-background classification and the other for
bounding box regression. In [8], benefiting from depth-wise cross-correlation,
the authors proposed a new approach with the network output representing the

Towards Real-Time and Energy Efficient Siamese Tracking 165

binary segmentation mask for the target. This also enabled the prediction of
rotated bounding boxes.

The works listed above do not exhaust the progress that is constantly being
made in the field of Siamese-based trackers, but serve more as an overview of the
most important concepts: different backbones, dealing with scale changes with
multiscale search, anchors or bounding box regression, and finally the analysis
of output features of multiple levels. A summary of existing algorithms with a
description of current trends can be found in [3].

The listed algorithms are characterised with high tracking accuracy; however,
to achieve real-time processing, they are run on high-end GPUs. There are only
a few works on the low-power and real-time implementation of Siamese trackers.
In [11] the authors presented preliminary results on the optimisation of fully
connected Siamese networks for object tracking. With various experiments on
quantisation and backbone architecture, they showed that precision reduction
can positively affect the overfitting, thus also tracking accuracy. Similarly in [12]
the authors focused on optimisation of the size of the Siamese network’s architec-
ture which, however, significantly influenced the effectiveness of the tracker. On
the other hand, in the paper [13], the results on effective co-design for algorithm
and accelerator for AI on edge were presented, also for networks typically used
in Siamese trackers. In [10] the authors proposed a hardware-software imple-
mentation of a SiamRPN-like tracker in PYNQ (ZCU 104). The PS (Processor
System) part is used for system configuration, reading the input frames, com-
munication with accelerator, and displaying the results. In PL (Programmable
Logic) two networks are accelerated: Siamese and Region Proposal. The authors
report that their tracker runs with 36.7 FPS. Unfortunately, in the cited paper,
there is no information on resource usage or energy consumption, as well as it is
not clearly stated what network architecture was used and if (and how) it was
quantised, which both have a direct impact on hardware implementation feasi-
bility. Moreover, the tracker accuracy is not provided, nor is the comparison with
the baseline (software) solution. Similarly in [14] the authors proposed the hard-
ware implementation of a lightweight Siamese network using both pruning and
quantisation. The tracker, running on ZedBoard with a ZCU 102 core, achieves
18.6 FPS. However, since the article lacks a description of other than network
accelerator components, that is, acquisition of input data or post-processing of
network’s output to obtain the location of the target, it seems that the FPS rate
refers solely to the neural network (not the complete tracking system).

On the basis of this analysis, one can notice a significant progress in the
Siamese tracker domain (measured mainly by trackers’ accuracy), which, how-
ever, is not accompanied by equally extensive research on their embedded
devices’ deployment. The few existing works on hardware acceleration of Siamese
trackers lack of important details which makes them hard to compare. At
the same time, since in many applications we face the challenge of real-time
and energy-efficient processing, choosing such hardware may be necessary. This
directly motivates our research.

166 D. Przewlocka-Rus and T. Kryjak

Table 1. The proposed network architecture

Layer Kernel Filters No. Quantisation Maxpooling

Conv 1.1 3× 3 64 8 bits 2× 2

Conv 1.2 3× 3 64 4 bits 2× 2

Conv 2 3× 3 128 4 bits 2× 2

Conv 3 3× 3 128 4 bits -

Conv 4 3× 3 128 4 bits -

Conv 5 3× 3 128 8 bits -

3 Quantised Siamese Tracker

The most commonly used backbones for Siamese trackers are appropriate modifi-
cations of AlexNet or ResNet networks. Nevertheless in case of embedded devices
implementations, one of the key elements in network architecture selection is
most of all the accelerator design and its limitations (resulting also from the
limited on-board resources). In this work, for network acceleration, we use the
FINN framework [18,19] and the Zynq UltraScale+ MPSoC ZCU104 platform.
For algorithm-accelerator co-design, in particular, one has to take into account
the following factors:

– Computations precision, which results directly from the number of bits for
the coding of the weights and activations. Apart from the reduction of needed
memory, this also affects the number of resources used for arithmetical oper-
ations (e.g. floating point operations are far more complex than 8- or even
4-bit integer ones).

– Unified and small filters positively affect the possibility of computations par-
allelisation.

– Using a too deep network architecture can negatively affect the possibility of
parallelisation (or, in the extreme case, cannot be implemented on a given
platform).

– Custom and specific architectures may not be supported for the chosen FINN
accelerator.

– Careful tuning of the folding parameters can increase parallelisation, thus
decrease processing time, but at the cost of the number of resources used.

Given the above, we have designed a custom Siamese network architecture
presented in Table 1 (one branch) – for all layers, we used zero padding and
stride equal to 1. After each convolution layer, except for the last, there is a
batch normalisation layer. The input image, the ROI, is of size 238× 238× 3,
while the one representing the object to track (used for initialisation) is of size
110× 110× 3. The activations are quantised to 4 bits, while using 8 bits precision
for weights of the first and last layers allows to maintain high accuracy.

The proposed tracking algorithm is based on SiamFC [1], which does not
use the aggregation of outputs from intermediate layers, additional branches for

Towards Real-Time and Energy Efficient Siamese Tracking 167

Fig. 1. Overview of the proposed hardware-software system. A single branch of the
Siamese network is accelerated using the FINN framework in PL (FPGA). The Python
script is run on the ARM processor (PS), handling the input and output, communi-
cating with the accelerator and post-processing the network output.

classification or bounding box regression and other complex elements (for full
algorithm description please refer to the original work). It is especially important
given the choice of a FINN accelerator, which does not support most of these
operations straightforwardly. Obviously, this constrains the possibility of accel-
erating the best existing tracker and will be widely commented on in Sects. 4
and 5. Still, FINN allows to adapt the accelerator architecture to the chosen
network (unlike e.g. Vitis AI) – based on the properly prepared network graph
and folding parameters, the hardware (accelerator) is generated. Folding param-
eters control the level of computations parallelisation: for each layer, we can set
the number of simultaneously processed input channels (PE parameter) and the
number of aggregated output channels (SIMD).

3.1 Hardware-Software Implementation

In this paper, we use the hardware-software approach and divide the implemen-
tation of the tracker into the network accelerated in PL and the rest of the
tracking algorithm implemented in PS. The Python script is run in ARM, which
is responsible for: (1) input and output handling; (2) communication with FPGA
via a proper driver; (3) realisation of the tracker’s logic – cropping and scaling
the input image, and then post-processing the output of the network (determin-
ing the target location based on similarity map). An overview of the proposed
system is presented in Fig. 1. The software part of our tracker (in an ARM pro-
cessor) is run with Python 3 interpreter, using numpy, PyTorch, and OpenCV
libraries. The clock for the PL is set to 100 MHz.

4 Results

We have evaluated the proposed solution in two ways. Firstly, we have tested
the developed quantised tracker on different datasets and compared its accuracy
with the baseline model, as well as the original solution. Second, we have done
a design space exploration with different hardware settings to analyse the tracker
performance. The details of these experiments are summarised below.

168 D. Przewlocka-Rus and T. Kryjak

Table 2. Comparison of the performance of the tracker. The results were obtained using
the GOT 10k toolkit. The mean average overlap (mAO) metric takes into account the
potential class imbalance in the evaluation by updating the standard AO (denoting
the average overlaps between all ground-truth and estimated bounding boxes) with
weights proportional to the number of frames in each sequence [15] (s – scale)

Tracker VOT 2016

mAO

FP32 3s 0.362

FP32 1s 0.315

Quantised 3s 0.355

Quantised 1s 0.281

Original SiamFC [1] (3s) 0.385 †
† raw results downloaded from official
VOT2016 challenge [17]

4.1 Benchmark Results

To properly evaluate the proposed tracker, we have prepared two versions of the
network described in Sect. 3: floating point baseline and quantised. Both net-
works were trained in the GOT 10k dataset [15] (unlike the original SiamFC
tracker, trained on ImageNet), for 50 epochs, with an initial learning rate 1e−2,
reduced each epoch to a final value of 1e−5. Next, we conducted multiple exper-
iments to compare the tracker accuracy for different scenarios: floating-point
network, quantised network, and processing of single or three scales. The tracker
was evaluated on the VOT 2016 dataset for a proper comparison with the original
SiamFC [1].

Table 2 summarises the obtained results (we do not present the comparison
with other Siamese tracker FPGA accelerators since in previous works – sum-
marised in Sect. 2.1 – authors either do not report any accuracy results, or use
other metrics): (1) For the VOT 2016 benchmark with the proposed network, our
tracker achieves accuracy on par with the original SiamFC [1] when processing
3 scales regardless of the quantisation: the FP32 3s tracker is around 6% behind
the original, while the quantised 3s around 8%. However, it is crucial to notice
that the proposed network is far more compact than the AlexNet-based one.
Specifically, the AlexNet backbone has 3747200 parameters, while ours 554688,
which is around 6.7x less. (2) For our tracker, the best accuracy (measured by
mAO) is obtained using the FP32 3 scale network. Nevertheless, after quanti-
sation we observe only a slight decrease in accuracy - from 0.362 to 0.355 (less
than 2%). (3) The decrease in accuracy is greater after reducing the number
of processed scales from 3 to 1. For the FP32 network, the difference is around
0.032 (9%), while for the quantised one, even 0.074 (around 21%). Figure 2 shows
an exemplar output of the quantised 1 scale tracker.

Towards Real-Time and Energy Efficient Siamese Tracking 169

Fig. 2. Output from the quantised Siamese 1 scale tracker for ‘Dog’ sequence from
OTB.

Table 3. Different folding settings for the FINN accelerator

Layers’ (PE, SIMD)

1 2 3 4 5 6

V1 (32, 3) (32, 16) (16, 16) (8, 16) (8, 16) (8, 8)

V2 (32, 3) (32, 16) (16, 16) (8, 16) (8, 16) (16, 8)

V3 (32, 3) (32, 16) (16, 16) (16, 16) (16, 16) (16, 8)

V4 (32, 3) (32, 16) (16, 16) (16, 16) (16, 16) (16, 16)

V5 (32, 3) (32, 16) (32, 16) (32, 16) (32, 16) (32, 16)

V6 (32, 3) (32, 16) (32, 16) (32, 32) (32, 32) (32, 32)

4.2 Performance

To obtain the best network acceleration performance using FINN we performed
a design space exploration for choosing the right folding parameters (see Sect. 3).
The set parameters for six different experiments are summarised in the Table 3.
After hardware generation we analysed the used resources, power consumption,
and latency of the network input processing. The power consumption was esti-
mated using Vivado tools. The results are summarised in the Table 4.

For experiments V1, V2, V3 and V4 we gradually increase the number of,
first, PE elements, and then SIMD, which results in a slight decrease in the
used resources: mainly LUTs, responsible for arithmetical operations, but also
BRAMs. At the same time, we observe a stable but subtle increase in FPS, from
38 to 42, with a simultaneous increase in power consumption of around 0.5 W.
A considerable change was achieved after doubling the number of PEs in layers
3, 4, 5, 6 – for experiment V5, in relation to V4. The number of LUTs used
increased by around 18%, BRAMs 5%, FFs 5%, which accelerated processing
by around 7 FPS to 49 FPS, with an increase in power consumption of 0.6 W.
Interestingly, next experiments with increasing the level of parallelisation – V6,
where we double the number of SIMDs for layers 4, 5, 6 – caused considerable
increase in the used resources (over 90% available LUTs and BRAMs) and the
power consumption to almost 7W, while improving processing speed by only
0.6 FPS. The dependence between power consumption and the FPS achieved is
presented in Fig. 3.

170 D. Przewlocka-Rus and T. Kryjak

Table 4. Comparison of accelerated Siamese network performance for different fold-
ing configurations. When increasing the level of parallelisation (using the number of
PEs and SIMDs), we can observe both an increase in processing speed and power
consumption

Folding Resources FPS Power [W]

LUT FF BRAM LUTRAM

V1 40.45% 16.78% 46.31% 11.92% 38.46 4.5

V2 42.25% 17.44% 50.8% 12.1% 40.24 4.56

V3 46.66% 17.9% 50.8% 12.1% 41.31 4.81

V4 48.72% 18.6% 50.8% 12.16% 42.16 4.92

V5 66.87% 23% 55.29% 12.54% 49.03 5.5

V6 91.27% 28.66% 91.83% 13.58% 49.63 6.79

Fig. 3. Design space exploration for acceleration of Siamese network with power to
FPS ratio. The used power is tightly connected to the used resources presented in
Table 4.

Table 4 shows the results only for network acceleration and does not take
into account transfers to and from accelerator, as well as the rest of the tracker
computations. Careful time analysis for the complete software-hardware imple-
mentation, using the V5 accelerator, is presented in Table 5, from which we draw
several conclusions. (1) The network acceleration takes 50% of the time needed
to process the ROI. This also includes the time for packing the input data,
transferring them to the accelerator, from accelerator, and unpacking. In other
words, acceleration with data transfer enables the processing of a single ROI with
a speed of around 35 FPS. (2) Almost half the time for post-processing of the
network output (around 14% of total) is used for cross-correlation, while around
10% for target location (with, among others, cosine window filtration). (3) The
network input pre-processing (cropping and scaling ROI) takes relatively little
time. Much greater impact on the processing speed is the transfer of data from
the accelerator (and unpacking) than the transfer to the accelerator (including
packing) – 14% vs 2% of total time. Finally, the complete hardware-software
tracking system processes a frame with around 17 FPS.

Towards Real-Time and Energy Efficient Siamese Tracking 171

Table 5. Analysis of the average latency of each tracking stage for the V5 folding
version. The network acceleration with I/O data transfers achieves around 35 FPS,
while the complete tracking system operates at a speed of 17 FPS.

Stage Time [ms]

Crop & resize 0.0102

Input transfer 0.001

Network acceleration 0.0205

Output transfer 0.008

Cross correlation 0.0081

Upsampling 0.0011

Locating target 0.0057

Sum 0.0546

Total (measured)* 0.0587

Input preprocessing 0.0102 (18%)

FINN network transfer & execution 0.0295 (52%)

Network output processing 0.0149 (25%)

*with other additional operations

5 Conclusion

In this work, we have proposed a hardware-software implementation of a Siamese
tracker, based on [1]. Firstly, we have designed a Siamese neural network, which
architecture meets the chosen FINN accelerator constraints, and at the same
time allows our tracker to achieve the accuracy on par with the original SiamFC
solution, even for the quantised version. Second, we have performed a design
space exploration, increasing the level of paralellisation in FINN accelerator and
have shown the relation between the power consumption and tracker speed.
Finally, our tracker achieves around 17 FPS with 5.5 W power consumption.
The original tracker run on NVIDIA GeForce GTX Titan X with 250 W power
consumption, achieved 83 FPS [1]. We have also provided a time analysis of each
tracker component and pointed out the bottlenecks of the proposed solution. On
the basis of that, we draw two main conclusions for future work:

– Despite the fact that our tracker is on par with the original SiamFC, the
accuracy achieved is far behind the best existing Siamese tracking algorithms.
The next work should then be supplemented with different SoTA features,
such as bounding box regression or aggregation of features from different
levels. It is important to note that acceleration of such a network would not be
possible using FINN in a straightforward manner. Therefore, for future work,
it is planned to usethe FINN accelerator as one of the hardware components,
along with some other, custom solution for e.g. bounding box regression.

172 D. Przewlocka-Rus and T. Kryjak

– In the current version of the tracker, data transfer from the accelerator and
output analysis have a big impact on the latency of the solution (almost
40% of total time). Moving the post-processing to FPGA would significantly
improve the frame processing time, since the output transfer to PS would not
be needed, and, at the same time, the cross correlation could be parallelised.

Based on the above, we also want to pay attention to the fact that the progress in
developing more and more accurate tracking algorithms (including the Siamese-
based ones) is far beyond the progress in AI on edge deployment, especially for
available, ready-to-use accelerators. Such solutions usually do not support var-
ious advanced methods standard for software approaches, at least not without
a deep interference in the source code (which is still feasible only for rare open-
source solutions). Faced with the need to significantly reduce the energy demand,
both for deployment on low-power devices and for global needs, we believe that
continuous work on energy-efficient advanced vision systems is especially impor-
tant.

Acknowledgements. The work presented in this paper was supported by the
National Science Centre project no. 2016/23/D/ST6/01389 entitled “The development
of computing resources organisation in latest generation of heterogeneous reconfig-
urable devices enabling real-time processing of UHD/4K video stream”. The authors
would like to thank Joanna Stanisz and Konrad Lis for they supprort when working
with FINN, in particular on the reduction of the data transfer time to and from the
accelerator.

References

1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-
convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.)
ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48881-3 56

2. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.: End-to-end repre-
sentation learning for correlation filter based tracking. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

3. Ondrašovič, M., Tarábek, P.: Siamese visual object tracking: a survey. IEEE Access
9, 110149–110172 (2021)

4. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: SiamCAR: Siamese fully con-
volutional classification and regression for visual tracking. CoRR. abs/1911.07241
(2019). http://arxiv.org/abs/1911.07241

5. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of
Siamese visual tracking with very deep networks. CoRR. abs/1812.11703 (2018).
http://arxiv.org/abs/1812.11703

6. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with
Siamese region proposal network. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8971–8980 (2018)

https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-48881-3_56
http://arxiv.org/abs/1911.07241
http://arxiv.org/abs/1812.11703

Towards Real-Time and Energy Efficient Siamese Tracking 173

7. Abdelpakey, M.H., Shehata, M.S., Mohamed, M.M.: DensSiam: end-to-end
Densely-Siamese network with self-attention model for object tracking. In: Bebis,
G., Boyle, R., Parvin, B., Koracin, D., Turek, M., Ramalingam, S., Xu, K., Lin,
S., Alsallakh, B., Yang, J., Cuervo, E., Ventura, J. (eds.) ISVC 2018. LNCS, vol.
11241, pp. 463–473. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03801-4 41

8. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.: Fast online object tracking
and segmentation: a unifying approach. CoRR. abs/1812.05050 (2018). http://
arxiv.org/abs/1812.05050

9. Li, Y., Zhang, X.: SiamVGG: visual tracking using deeper Siamese networks (2019)
10. Cui, Z., An, J.: Heterogeneous Siamese tracking system based on PYNQ frame-

work. In: 2020 6th International Conference On Control, Automation And Robotics
(ICCAR), pp. 16–20 (2020)

11. Przewlocka, D., Wasala, M., Szolc, H., Blachut, K., Kryjak, T.: Optimisation
of a Siamese neural network for real-time energy efficient object tracking. In:
Chmielewski, L.J., Kozera, R., Or�lowski, A. (eds.) ICCVG 2020. LNCS, vol. 12334,
pp. 151–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59006-
2 14

12. Cao, Y., Ji, H., Zhang, W., Shirani, S.: Extremely tiny Siamese networks with
multi-level fusions for visual object tracking. In: 2019 22th International Conference
on Information Fusion (FUSION), pp. 1–7 (2019)

13. Hao, C., et al.: Effective algorithm-accelerator co-design for AI solutions on edge
devices. (2020). https://arxiv.org/abs/2010.07185

14. Zhang, B., Li, X., Han, J., Zeng, X.: MiniTracker: a lightweight CNN-based system
for visual object tracking on embedded device. In: 2018 IEEE 23rd International
Conference On Digital Signal Processing (DSP), pp. 1–5 (2018)

15. Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for
generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43,
1562–1577 (2021)

16. GOT 10k leaderboard. http://got-10k.aitestunion.com/leaderboard. Accessed 28
Mar 2022

17. Hua, G., Jégou, H. (eds.): ECCV 2016. LNCS, vol. 9914. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48881-3

18. Blott, M., et al.: FINN-R: an end-to-end deep-learning framework for fast explo-
ration of quantized neural networks. ACM Trans. Reconfigurable Technol. Syst.
11, 1–23 (2018)

19. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network
inference. In: Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 65–74 (2017)

https://doi.org/10.1007/978-3-030-03801-4_41
https://doi.org/10.1007/978-3-030-03801-4_41
http://arxiv.org/abs/1812.05050
http://arxiv.org/abs/1812.05050
https://doi.org/10.1007/978-3-030-59006-2_14
https://doi.org/10.1007/978-3-030-59006-2_14
https://arxiv.org/abs/2010.07185
http://got-10k.aitestunion.com/leaderboard
https://doi.org/10.1007/978-3-319-48881-3

Author Index

Abdel Nour, Charbel 16

Baghdadi, Amer 16
Baniasadi, Amirali 57
Basterretxea, Koldo 136
Benmaghnia, Hanane 108
Bessaï, Sofiane 108
Blažica, Bojan 149
Bourgoin, Thomas 83
Boutillon, Emmanuel 29
Busia, Paola 45

Chavarrías, Miguel 123

del Campo, Inés 136
Desnos, Karol 83
Dobiáš, Petr 69
Duhamel, Alexis 96

Echanobe, Javier 136

Fragoulis, Nikos 45

Garbay, Thomas 69
Granado, Bertrand 69
Gutiérrez-Zaballa, Jon 136

Hachicha, Khalil 69
Honorat, Alexandre 83

Jego, Christophe 3
Juarez, Eduardo 123

Khalifa, Dorra Ben 108
Kryjak, Tomasz 162

Lagares, Alfonso 123
Le Gal, Bertrand 3, 29

Martel, Matthieu 108
Martínez, M. Victoria 136
Martin-Perez, Alberto 123
Meloni, Paolo 45, 149
Menard, Daniel 83
Miomandre, Hugo 83
Monière, Camille 29
Mouhoubi, Oualid 16

Nezan, Jean-François 83

Pignoly, Vincent 3
Pillement, Sébastien 96
Pinna, Andrea 69
Pothos, Vasileios 45
Przewlocka-Rus, Dominika 162

Rosa, Gonzalo 123

Salvador, Rubén 123
Sancho, Jaime 123
Sanz, César 123
Scrugli, Matteo Antonio 149
Shiri, Pouya 57
Sutradhar, Pallab 123

Theodorakopoulos, Ilias 45

Urbanos, Gemma 123

Vazquez, Guillermo 123
Villa, Manuel 123

	 Preface
	 Organization
	 Contents
	I Software and Architecture for Telecommunication Systems
	High-Performance Gallager-E Decoders for Hard Input LDPC Decoding on Multi-core Devices
	1 Introduction
	2 LDPC Decoding Algorithm
	3 Parallelization Strategies
	3.1 Targeted Multi-core System
	3.2 SIMD Parallelization
	3.3 ILP Improvement
	3.4 Memory Compression
	3.5 SPMD Parallelization

	4 Experimentation Results
	4.1 Experimentation Setup
	4.2 Error Correction Performance
	4.3 Absolute Performances
	4.4 Comparison with FPGA-Based Decoder Implementations

	5 Conclusion
	References

	Low Latency Architecture Design for Decoding 5G NR Polar Codes
	1 Introduction
	2 Preliminaries
	2.1 Polar Codes
	2.2 Successive-Cancellation Decoding Based Algorithms

	3 Proposed Decoder Architecture
	3.1 Proposed Special Nodes List Decoding Module
	3.2 Memory Structure
	3.3 Proposed On-the-Fly Rate-Flexible Decoding of Polar Codes

	4 Synthesis Results and Comparisons
	5 Conclusion
	References

	Efficient Software and Hardware Implementations of a QCSP Communication System
	1 Introduction
	2 System Model
	3 Score Processing Units
	4 Parallelization Strategies Applied to Detection Task
	4.1 System Inherent Parallelism
	4.2 Software and Hardware Parallelization

	5 Implementation Results
	5.1 Transmitter Implementations
	5.2 Detector Implementations

	6 Conclusion
	References

	Towards Lightweight Deep-Learning Techniques
	Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems
	1 Introduction
	2 Related Work
	3 Reference Methodology
	4 Reference Computing Platforms
	4.1 SensorTile
	4.2 NEURAghe

	5 Experimental Results
	5.1 KWS on SensorTile
	5.2 CIFAR-10 on NEURAghe

	6 Conclusion
	References

	DL-CapsNet: A Deep and Light Capsule Network
	1 Introduction
	2 Related Works
	3 Background
	3.1 Capsule Cell
	3.2 Routing Capsules
	3.3 Class-Independent Decoder

	4 DL-CapsNet
	4.1 Capsule Summarization (CapsSum) Layer
	4.2 Multi-level Capsule Extractor (MLCE) Module
	4.3 Loss Function

	5 Experiments and Results
	5.1 Datasets
	5.2 Experiment Settings
	5.3 Network Accuracy
	5.4 Number of Parameters
	5.5 Network Training and Inference Time

	6 Conclusion
	References

	Comparative Study of Scheduling a Convolutional Neural Network on Multicore MCU
	1 Introduction
	2 Related Work
	3 Models and Algorithms
	3.1 Task and System Models
	3.2 Scheduling Algorithms
	3.3 Mathematical Programming Formulation

	4 Experiments
	4.1 Experimental Framework
	4.2 Computation of Energy Consumption

	5 Results
	5.1 Neuron Level
	5.2 Layer Level
	5.3 Neuron Level vs. Layer Level

	6 Conclusion
	References

	Design Automation and Optimization Techniques for Embedded Hardware and Software
	Influence of Dataflow Graph Moldable Parameters on Optimization Criteria
	1 Introduction
	2 Context and Related Work
	2.1 Static PiSDF MoC
	2.2 Resource Allocation for Static Dataflow MoCs

	3 Moldable Parameters
	3.1 Moldable Parameters Semantics
	3.2 Relation with Multi-criteria Optimization Problem

	4 Multi-criteria DSE with Moldable Parameters
	4.1 Use-Cases: Sobel, Stereo and SIFT Applications
	4.2 Raw DSE Results
	4.3 Exhaustive Parameter Analysis
	4.4 Faster Parameter Analysis

	5 Conclusion
	References

	QoS Aware Design-Time/Run-Time Manager for FPGA-Based Embedded Systems
	1 Introduction
	2 Related Works
	3 Application and Quality of Service Models
	4 System Model
	5 Proposed Hybrid Manager
	5.1 Design Time Solution Generation and Evaluation
	5.2 Run-Time Management

	6 Experimentation and Results
	6.1 Environment Model
	6.2 Benchmark Application
	6.3 Results

	7 Conclusion
	References

	Fixed-Point Code Synthesis Based on Constraint Generation
	1 Introduction
	2 Overview
	3 Floating to Fixed-Point Programs Synthesis
	3.1 Fixed-Point Arithmetic
	3.2 Constraint Generation by Static Analysis

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	Optimized Hardware and Software Implementations for Image Processing and Health Applications
	Data-Type Assessment for Real-Time Hyperspectral Classification in Medical Imaging
	1 Introduction
	2 Background
	3 Algorithm and Acceleration
	3.1 Pre-processing Chain
	3.2 Classification Chain

	4 Experiments and Results
	4.1 Platforms Features and Experiments
	4.2 Objective Results
	4.3 Subjective Results

	5 Conclusions and Future Lines
	References

	Exploring Fully Convolutional Networks for the Segmentation of Hyperspectral Imaging Applied to Advanced Driver Assistance Systems
	1 Introduction
	2 Experimental Setup
	2.1 The Dataset
	2.2 FCNs for HSI Image Segmentation

	3 Segmentation Results
	3.1 U-Net
	3.2 A Comparison with Baseline Spectral Classifiers

	4 Workflow for Rapid Prototyping
	4.1 Image Preprocessing
	4.2 Neural Network Deployment

	5 Conclusions
	References

	An Adaptable Cognitive Microcontroller Node for Fitness Activity Recognition
	1 Introduction
	2 Related Work
	3 Wobble Board and Node Architecture
	3.1 Application Model
	3.2 Adaptivity Support: The ADAptive Runtime Manager

	4 Designing the Application
	4.1 Operating Mode: Raw Data
	4.2 Operating Mode: Basic Balance
	4.3 Operating Mode: CNN
	4.4 Neural Network Design
	4.5 Data Augmentation and Generalization

	5 Experimental Results
	5.1 Neural Network Accuracy
	5.2 Power Consumption
	5.3 Power Consumption Model

	6 Conclusion
	References

	Towards Real-Time and Energy Efficient Siamese Tracking – A Hardware-Software Approach
	1 Introduction
	2 Siamese Tracking
	2.1 Related Work

	3 Quantised Siamese Tracker
	3.1 Hardware-Software Implementation

	4 Results
	4.1 Benchmark Results
	4.2 Performance

	5 Conclusion
	References

	Author Index

