
SLA-Aware Cloud Query Processing
with Reinforcement Learning-Based
Multi-objective Re-optimization

Chenxiao Wang1(B), Le Gruenwald1, and Laurent d’Orazio2

1 School of Computer Science, University of Oklahoma, Norman, OK, USA
{chenxiao,ggruenwald}@ou.edu

2 CNRS IRISA, Rennes 1 University, Lannion, France
laurent.dorazio@univ-rennes1.fr

Abstract. Query processing on cloud database systems is a challenging prob-
lem due to the dynamic cloud environment. In cloud database systems, besides
query execution time, users also consider the monetary cost to be paid to the cloud
provider for executing queries. Moreover, a Service Level Agreement (SLA) is
signed between users and cloud providers before any service is provided. Thus,
from the profit-oriented perspective for the cloud providers, query re-optimization
is multi-objective optimization that minimizes not only query execution time and
monetary cost but also SLA violations. In this paper, we introduce ReOptRL and
SLAReOptRL, two novel query re-optimization algorithms based on deep rein-
forcement learning. Experiments show that both algorithms improve query exe-
cution time and query execution monetary cost by 50% over existing algorithms,
and SLAReOptRL has the lowest SLA violation rate among all the algorithms.

Keywords: Query optimization · Cloud databases · Reinforcement learning ·
Query re-optimization

1 Introduction

In a traditional database management system (DBMS), finding the query execution plan
(QEP) with the best query execution time among those QEPs generated by a query opti-
mizer is the key to the performance of a query. However, in a cloud database system,
minimizing query response time is not the only goal of query optimization. As hard-
ware usage is charged on-demand and scalability is available to users, query execution
monetary cost also needs to be considered as one of the objectives for optimizing QEPs.
Meanwhile, the cloud providers need to minimize SLA violation rate in addition to
fulfilling the users’ requirements of query execution time and monetary cost for query
execution. Traditionally, the query optimizer evaluates the time and monetary costs of
different QEPs to derive the best QEP for a query before execution. These time and
monetary costs are estimated based on the data statistics available to the query optimizer
at the moment when the query optimization is performed. These statistics are often
approximate, which may result in inaccurate estimates for the time and monetary costs

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 249–255, 2022.
https://doi.org/10.1007/978-3-031-12670-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12670-3_22&domain=pdf
https://doi.org/10.1007/978-3-031-12670-3_22

250 C. Wang et al.

needed to execute the query. Thus, the QEP generated before query execution may not
be the best one.

To deal with this issue, there exist methods proposed to re-optimize queries during
their execution [1–3]. Ortiz and et al. [1] apply deep reinforcement learning (RL) to learn
a representation of queries, which can then be used in downstream query optimization
tasks. Marcus and et al. present work of a deep RL-based join optimizer, ReJOIN [2],
which orders a preliminary view of the potential for deep RL in this context. In these
techniques, QEPs are re-optimized multiple times by a deep RL model. Kipf [3] uses
Deep Neural Network (DNN) to learn cardinality estimates. Wu and et al. [6] have
proposedSample, a query re-optimization algorithm that updates data statistics estimated
from a sample of tuples collected during runtime. However, none of them addresses
monetary costs and SLA requirements for cloud databases at the same time. In this
paper, we present two algorithms, ReOptRL and SLAReOptRL, that use reinforcement
learning to perform multi-objective query re-optimization for query processing in an
end-to-end cloud database system. The algorithms employ a reward function designed
specifically for query re-optimization considering query execution time, money cost and
SLA requirements.

2 The Reinforcement Learning-Based Multi-objective Query
Re-optimization Algorithm (ReOptRL)

We choose RL instead of supervised learning methods because RL does not require
training data, which is a labeled dataset of past actions, to be available in advance to
train the learning model before the model can be used to predict future actions. There
are various kinds of RL algorithms that have been proposed. Q-Learning is one of the
popular value-based RL algorithms and using the Bellman equation [4].

Q(St, at) ← Q(St, at) + α(Rt + ϒQ(St+1, at+1) − Q(St, at)) (1)

In Q-Learning, a table (called Q-table) is used to store all the potential state-action
pairs (Sn, an) and an evaluated Q-value associated with this pair. In Eq. (1), Q (St, at)
is an evaluated value (called Q-value) for executing Action at at State St. This value is
used to select the best Action to perform under the current state. In our scenario, there
are many available containers on which a single query operator can be executed. Thus,
many state-action pairs are in the Q-table potentially. Iterating a large Q-table incurs
extra time overhead which delays the query execution. To solve this issue, we apply
Deep Q Network (DQN) [4] as our reinforcement learning for query re-optimization.
DQNworks similarly toQ-Learning. Themajor difference is that, given a state, instead of
using the Q-table, it uses a neural network to estimate the Q-values for all the potential
actions. The input of the neural network is the current state. For the current QEP to
represent the current state, we use a one-hot vector adapted from the recent work [2] to
represent a QEP. The ReOptRL algorithm is given in Fig. 1. First, a query is submitted
to a query optimizer which generates the QEP (logical plan) for the query (Line 4). Then
the QEP is converted into a one-hot vector representation (Line 7). This vector is sent
to the RL model, which is a neural network. The RL model will evaluate the Q-values

SLA-Aware Cloud Query Processing with Reinforcement 251

for all the potential actions to execute the next available query operator (Line 8). Each
of these actions consists of two parts, a physical operator and a container (machine) to
execute the physical operator. Then the action with the best Q-value will be selected and
performed by the DBMS (Line 9). After that, the executed query operator is discarded
from the QEP (Line 10). The reward is updated with the time and monetary cost needed
to execute the operator and then the expected Q-value is updated by the Bellman Eq. (2)
with the updated reward (Lines 11–13). The weights of the neural network are updated
accordingly by the back-propagation method (Line 14). This process repeats for each
operator in the QEP and terminates when all the operators in the QEP are executed. The
query results are then sent to the user (Line 17).

Algorithm: Reinforcement Learning Based Multi-Objective Query
Re-Optimization (ReOptRL)

INPUT: SQL query, Weight Profile wp, Reward Function R (),
Learning rate α, Discount rate ϒ
OUTPUT: The query result set of the input query

1. t=0
2. Result = Ø
3. Qt= 0
4. QEP = QueryOptimizer(query)
5. while QEP≠ Ø
6. Op=next available operator in QEP
7. State St= convert QEP to a state vector
8. Actiont=RunLearningModel (St, wp)
9. Result=Result execute (Op, Actiont)
10. QEP=QEP-Op
11. Update RN=R (wp, Actiont.time, Actiont.money))
12. Obtain Q-value of next state Qt+1 from the neural network
13. Update Q-value of current state Qt = Bellman (Qt, Qt+1, Rt,)
14. Update Weights in the neural network
15. t=t+1
16. end while
17. return Result

Fig. 1. The ReOptRL algorithm

In ReOptRL, after an action is performed, the reward function is used to evaluate the
action. This gives feedback on how the selected action performs to the learning model.
The performed action with a high reward will be more likely to be selected again under
the same state. The reward function plays a key role in the entire algorithm. According
to the Bellman equation, if the reward of performing a previous action At-1 is high on
state St-1, the Q-value will also be high. This means that, given the same state, the action
with the good previous performance will have a higher chance to be selected. In our
algorithm, we would like the actions with low query execution time and monetary cost
to be the ones that will be more likely to be chosen. To reflect this feature, we define the
reward function as follows:

Reward R = 1

1 + (
Wt ∗Tq

op
) + (

Wm ∗Mq
op

) (2)

252 C. Wang et al.

whereWt andWm are the time and monetary weights provided by the user, and Tq
op and

Mq
op are the time and monetary costs for executing the current operator op in query q.
According to this reward function, the query is executed based on the user’s

preference.
which is either the user wanting to spend more money for a better query execution

time or vice versa. We call these two preferences Weights. These two weights defined
by the user are called Weight Profile (wp), which is a two-dimensional vector, and each
dimension is a number between 0.0 to 1.0. Notice that the user only needs to specify
one dimension of the weight profile, the other dimension is computed as 1-Weight
automatically. The detail can be found in our previous work [5].

3 The SLA-Aware Reinforcement Learning-Based Multi-objective
Query Re-optimization Algorithm (SLAReOptRL)

AnSLA is a contract between cloud service providers and consumers,mandating specific
numerical target values which the service needs to achieve. Considering an SLA in
query processing is important for cloud databases. If an SLA violation happens, the
cloud service providers need to pay a penalty to their users in a form such as money or
CPU credits. From a profit-oriented perspective, cloud service providers would want to
keep the number of SLA violations as low as possible. Different cloud service providers
implement different SLAs with their users. Using time and monetary costs to execute a
query as the SLA requirements has been studied in [1]. We find them practical and more
specific to users and thus adopt the same SLA requirements in our work.

In particular, the reward function shown in Eq. (4) is extended from Eq. (2) to make
it possible to select the best action according to the SLA requirements:

Reward R = 1

1 + (
Wt ∗

(
Tq
op + Pt

)) + (
Wm ∗ (Mq

op + Pm
)
)

(3)

where Tq
op and Mq

op are the time and monetary costs for executing the current operator
op in query q

Pt = αop ∗ delay_time, Pm = αop ∗ exceeded_money
where αop is the operator impact rate of the operator type op

delay_time =
{

0
Tq
op − SLA.Tq

op if Tq
op > SLA.Tq

op
(4)

exceeded_money =
{

0
Mq

op − SLA.Mq
op if M q

op > SLA.Mq
op

(5)

In this reward function (Eq. (4)), Pt and Pm reflect the extra costs for executing
a query operator if the SLA is violated. If the SLA is not violated for executing every
operator, then this equation is the same as the reward function used in ReOptRL (Eq. (2)).
In Eqs. (4) and (5), delay_time is the amount of difference between the actual time to

SLA-Aware Cloud Query Processing with Reinforcement 253

execute a query operator and the maximum time allowed to execute this query operator
as specified in the SLA. The same idea applies to exceeded_money for monetary costs.
We use these two values to quantify the SLA violation on query execution time and
monetary cost. In Eq. (4), these two values are used to compute Pt and Pm. It shows that
the larger the number of SLA violations, the smaller the reward becomes. We build the
reward function this way so that the reward is related to SLA violations. Also, we use
the query operator impact rate αop to scale up the impact of SLA violations on different
types of operators.

4 Performance Evaluation

There are two sets of machines used in our experiments. A single local machine used
to train the machine learning model and to perform the query optimization. This local
machine has an Intel i5 2500K Dual-Core processor running at 3 GHz with 16 GB
DRAM. The second set consists of 10 dedicated Virtual Private Servers (VPSs) that
are used for the deployment of the query execution engine. The query optimizer and
the query engine used in the experiments are modified from the open-source database
management system, PostgreSQL 8.4. The data are distributed among these VPSs. The
queries and database tables are generated using the TPC-H database benchmark. The
database tables are populated with 1,000 GB data using the default data generator. We
run 50,000 queries and these queries are generated by the query templates randomly
selected from the 22 query templates from the benchmark.

We compare the performance results obtained when the following query re-
optimization algorithms are incorporated into query processing: 1) our two pro-
posed algorithms, ReOptRL and SLAReOptRL; 2) the algorithm where a query re-
optimization is conducted automatically after the execution of each operator in the query
is completed (denoted as ReOpt), which we developed based on the work presented in
[5]; 3) the algorithmwhere a query re-optimization is conducted by a supervisedmachine

0

10

20

30

40

50

60

70

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21

Av
er

ag
e

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(s

ec
)

Query Type

NoReOpt ReOpt
ReOptML Sample
ReOptRL SLAReOptRL

0

10

20

30

40

50

60

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21

Av
er

ag
e

M
on

et
ar

y
Co

st
 (U

S
Ce

nt
)

Query Type

NoReOpt ReOpt
ReOptML Sample
ReOptRL SLAReOptRL

(a) (b)

Fig. 2. Time (a) and monetary cost (b) performance for executing queries using different
algorithms

254 C. Wang et al.

learning model decision (denoted asReOptML). 4) the algorithm proposed in [6] where
query optimization uses sampling-based query estimation (denoted as Sample), and 5)
the algorithm that uses no re-optimization (denoted as NoReOpt).

30.12%
50.76% 55.16%

65.70% 68.12% 71.32%

0%

50%

100%

SLAReOptRL ReOptRL ReOptML ReOpt Sample NoReOpt

SL
A

Vi
ol

at
io

n
Ra

te

Fig. 3. Average SLA violation rates when executing queries using different algorithms

From Fig. 2 (a) and (b), we can see that, for both the query execution time and
monetary costs, on average SLAReOptRL performs the best and ReOptRL performs
the second best among all the algorithms. Specifically, comparing with the baseline
NoReOpt where no re-optimization is conducted, the query execution time improvement
using SLAReOptRL is 45%, ReOptRL 39%, ReOptML 27%, ReOpt 13%, and Sam-
ple 10%, while the monetary cost improvement using SLAReOptRL is 62%, ReOptRL
52%, ReOptML 27%, ReOpt 17%, and Sample 5%. Especially, the monetary cost has
a significant improvement (SLAReOptRL and ReOptRl are 62% and 52% better than
NoReOpt, repsectively). Moreover, from Fig. 3, we can also find that by using SLARe-
OptRL, the SLA violation rate is the lowest one among the SLA violation rates caused
by all the algorithms. This shows the positive effect of considering SLA requirements
in re-optimization.

5 Conclusion

This paper presents two query re-optimization algorithms called ReOptRL and SLARe-
OptRL. Both use a reinforcement learning-based model to decide the physical query
operator and machines to execute an operator from a query execution plan (QEP) for a
query in a cloud database system. The experiments conducted using the TPC-H database
benchmark show that both SLAReOptRL and ReOptRL improve query response time
(from 12% to 45%) and monetary cost (from 17% to 62%) over the existing algorithms
In addition, we also find that when there are SLA requirements, SLAReOptRL performs
20% better than ReOptRL on SLA violation rate.

References

1. Ortiz, J., Almeida, V.T., Balazinska, M.: Changing the face of database cloud services with
personalized service level agreements. In: CIDR 2015 (2015)

2. Marcus, R., Papaemmanouil, O.: Deep reinforcement learning for join order enumeration. In:
aiDM 2018, pp. 1–4 (2018)

3. Kandi, M.M., Yin, S., Hameurlain, A.: An integer linear-programming based resource
allocation method for SQL-like queries in the cloud. In: SAC 2018, pp. 161–166 (2018)

SLA-Aware Cloud Query Processing with Reinforcement 255

4. Wiering, M., Otterlo, M.V.: Reinforcement Learning: State-of-the-Art. Springer Publish-ing
Company, Incorporated, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-276
45-3

5. Wang, C., Arrani, Z., Gruenwald, L., Laurent, D.: Adaptive time- monetary cost aware query
optimization on cloud DataBase. In: Big Data 2018, pp. 3374–3382 (2018)

6. Wu,W., Naughton, J.F., Singh, H.: Sampling-based query re-optimization. In: SIGMOD 2016,
pp. 1721–1736 (2016)

https://doi.org/10.1007/978-3-642-27645-3

	SLA-Aware Cloud Query Processing with Reinforcement Learning-Based Multi-objective Re-optimization
	1 Introduction
	2 The Reinforcement Learning-Based Multi-objective Query Re-optimization Algorithm (ReOptRL)
	3 The SLA-Aware Reinforcement Learning-Based Multi-objective Query Re-optimization Algorithm (SLAReOptRL)
	4 Performance Evaluation
	5 Conclusion
	References

