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Abstract. Discovering frequent patterns has been an important problem for
knowledge discovery. The efficient discovery of interesting patterns—such as
weighted periodic patterns—from big data has been crucial to the development in
newdomains.Due to their high velocity of data generation and collection, these big
data can form dynamic streams, which can be unbounded. Traditional approaches
to this problem consist of the reconstruction of the underlying structure, while
recent advances have shown new methods for dynamically updating the underly-
ing structure for each new window. In this paper, we present an enhanced sliding
window-based algorithm for mining weighted periodic patterns from dynamic
streams. Evaluation results show the effectiveness of this algorithm.
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1 Introduction

In the current era, big data [1] are everywhere.With advances in technology, highvolumes
of a wide variety of data are generated and collected at a high velocity for numerous real-
life applications and services (e.g., healthcare informatics [2], transportation analytics
[3–5], business analytics [6, 7], social network analysis [8–12]). Embedded in these big
data is implicit, previously unknown and potentially useful information and knowledge.
This calls for big data management [13–15], as well as big data analytics and knowledge
discovery [16, 17].

As an important big data analytics and knowledge discovery task, frequent pattern
mining [18–21] aims to discover frequently occurring sets of items (e.g., merchandise
items, events) from big data. Due to the continuous and unbounded nature of dynamic
data streams, their contents are usually captured in an underlying structure such as a suffix
tree [22], from which frequent patterns can be mined. Groups of data (e.g., sequence
of characters or a string) are usually discretized and represented by a single symbol
(e.g. a character) in the tree. Traditional approaches for data stream mining with sliding
windows reconstruct a suffix tree for every sliding of the windows, which can be costly.
To deal with this problem, a dynamic tree based solution to handle slidingwindow in time
(DTSW ) [23] was proposed to dynamically update and maintain the structure of the tree
for each modified window, keeping it suitable for pattern mining. Although the DTSW
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algorithm avoids reconstruction of suffix trees whenever the window slides, it introduces
another problem.When thewindow slides, the deletionmodule of the algorithm removes
the old batch from an explicit form of the tree, and insertionmodule inserts the new batch
to an implicit form of the tree. Hence, these insertions and deletions requires frequent
transformation of the tree between its implicit and explicit forms.

In this paper, we present a new algorithm to address this problem of tree transfor-
mations between its implicit and explicit forms. The algorithm eliminates the need to
transform the suffix tree leaving the tree in its implicit form at all times when the window
slides. Evaluation results show that our algorithm achieves a large performance increase
across all window sizes tested, with no significant increase in memory.

Key contributions of this paper include design of our enhanced slidingwindow-based
algorithm for mining periodic patterns, which are sequences that periodically occur at
least a certain amount of times. With our suffixList structure, our algorithm only needs
to maintain the implicit form of the suffix tree when capturing important information
from dynamic streams (rather than converting back-and-forth between the implicit and
explicit forms of the suffix tree as in the related works).

The remainder of this paper is organized as follows. The next section provides back-
ground and related works. Section 3 describes our enhanced sliding window-based algo-
rithm for mining periodic patterns from streams. Evaluation results are shown in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

2 Background and Related Works

A suffix tree [22] is a trie containing all the suffixes of a given sequence of characters,
or string. Figure 1 shows suffix trees—(a) in its implicit form and (b) in its explicit
form—for a string “abcabababc”. A suffix tree is in its explicit form when all suffixes
can be found by traversal from the root to a leaf node. An implicit suffix tree may contain
suffixes (which are implicit to an edge) that is they do not end in a leaf node, but rather
end within an edge. We can force a suffix tree to be in an explicit form by inserting a
unique character, usually a “$” or “#” to the end of the string.

Ukkonen’s algorithm [24] is a linear-time algorithm for the construction of an
implicit suffix tree. One can add a unique symbol on the end during construction to
create an explicit tree. See Fig. 1.

A sliding window only stores data relevant to a certain time frame. Since we use the
process of discretization to obtain a sequence of characters, we can form a “window”
around the characters we want to look at. These characters then make up the underlying
suffix tree. Consider an example with the string “abcabababc” and a window size of 3:

abc abababc a bca bababc ab cab ababc

where the characters proceeding the boxed characters (i.e., characters currently in the
window) may not have been received yet. In existing approaches, these suffix trees were
reconstructed at each window slide.

The Dynamic Tree Based Solution to Handle Sliding Window in Time Series
Data (DTSW) [23] handles updating of the suffix tree (rather than reconstruction) by
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Fig. 1. A suffix tree in its (a) implicit form (as plotted by Matplotlib) and (b) explicit form (as
plotted by Pydot).

the use of the insertion and deletion modules. The deletion module deletes characters
(the first character) from the beginning of the window. However, before deleting any
suffix from the suffix tree, the tree must be in its explicit form. To insert a new character
(representing an event) onto the end of the sequence, the insertionmodule needs to revert
back the tree from its explicit form to an implicit form for removing the unique symbol
and erasing all the effects created due to it. In other words, to insert into (or delete events
from) the suffix tree, the insertion and deletion modules need to convert the suffix tree
back-and-forth between its explicit and implicit form.

3 Our Sliding Window-Based Weighted Periodic Pattern Mining
Algorithm

The conversion between implicit and explicit form described by the DTSW is an unnec-
essary step. Hence, we keep the tree in its implicit form by proposing the idea of a
suffixList, an ordered list of all possible suffixes from the sequence of characters. The
initial tree is built with Ukkonen’s algorithm and the suffixList is created during con-
struction. We must also be able to maintain the active point in order to use Ukkonen’s
algorithm for insertion.

While the initial tree is being constructed using Ukkonen’s algorithm, we create a
suffixList—which is a list of all possible suffixes from the input string. We keep the
list in a sorted order so that it can be easily viewed and manipulated. When deleting a
character from S, we update our suffixList by removing the longest suffix. Then, we do
a simple traversal of the suffix tree, and remove the nodes associated with longest suffix.
In other words, we can use the suffixList to check what is supposed to be there and what
is not. The process is the same for both insertion and deletion. Essentially, we use our
updated suffixList, and check to make sure the necessary nodes are in the tree. Since
this algorithm is meant to keep the tree in implicit form only, there is no conversion step
from implicit to explicit for both insertion and deletion.

More specifically, the deletion module first deletes the longest suffix. Then, it
traverses the tree (by traversing only the portion that starts with the character being
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removed). On the suffixList, it checks each suffix that starts with the character to be
deleted. It goes down this tree path and updates the labels used by Ukkonen’s algorithm
if edge compression was used. It uses the existing structure of the tree and updates the
labels as necessary, and then deletes any excess nodes that would have in the end.

A special case for deletion would be when the deletion of the first character causes
two branches of the suffix tree to merge. For example, in string “abcbcbc”, if it deletes
‘a’ from the input string, then the branch of the tree with ‘a’ will be removed and subtree
under ‘a’ will be merged appropriately with ‘b’ branch in the tree. Otherwise, it simply
traverses down the appropriate branch and updates the labels of nodes to match the
suffixes as needed. Then, anything past the end will be deleted from the suffix tree.

The deletion module removes the longest suffix from the tree. Since the tree is in
its implicit form, this raises the problem of searching edges that may contain smaller
implicit suffixes within them as simply deletion of the longest paths leaf is not sufficient.
To check how much of the edge to delete, the removal of the longest suffix from the
suffixList is required. Then, a traversal checks all suffixes starting with the character
being deleted. Upon a node deletion, a cleanup must be performed. Otherwise, we find
the index of the longest and update the edge label to reflect the next longest matching
suffix along that path.

Moreover, it also has to update the active point if necessary.Whendeleting the longest
suffix, if the active node and edge is present when traversing to the longest suffix, then it
simply deletes to the active length. Otherwise, it removes the leaf safely. If it does delete
on an active point, then it decrements the remainder and finds the new active point from
the remainder.

Since we maintain the active point and remainder in the deletion module, the
insertion module simply runs Ukkonen’s algorithm on the new character.

4 Evaluation

To evaluate our algorithm, we compared with reconstruction and the existing DTSW
algorithm (which all implemented in Python). See Table 1 for differences among the
three algorithms. In the evaluation, we used 40 window slides in order to observe the
effect of how we may receive data in a stream. All tests were run on a Ryzen 7 3800X
8-Core (3.9 GHz) and 64GBRAM (3600MHz).We used several real-world test datasets
from theUCIMachine LearningRepository1. As results were consistent, we reported the
results—which were an average of 50 executions—for the individual household electric
power consumption dataset, which captures 2,075,259 events discretized into 13 types.

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Table 1. Summary of algorithms.

Algorithm Delete form Insert form

Reconstruct − −
DTSW Explicit Implicit

Our algorithm Implicit Implicit

When window size grew from 10 to 1,000 and 10,000, the amount of runtimes
required by our algorithm dropped from 42% to 22% and 15% of the runtimes required
byDTSW. In contrast, for the baseline reconstruction approach (denoted asReconstruct),
runtimes grew from 4.38 ms to 793 ms and 7,950 ms when window size grew from 10 to
1,000 and 10,000, respectively. In terms of memory, as the window size grows larger, the
number of characters remains the same. The space efficiency of the algorithms seem to,
on average, converge. For instance, with 40 windows, our algorithm consumed 97% and
99% of those required by DTSW when window size = 1,000 and 10,000, respectively.
See Fig. 2. To summarize, our algorithm consumes almost the same amount of memory
space as the existing DTSW (baseline), but our algorithm runs much faster than DTSW.

Fig. 2. (a) Runtime (in ms) and (b) memory (in MB) for sliding window performed over 40
windows with a window size of 10,000.

5 Conclusions

In this paper, we presented an enhanced sliding window-based periodic pattern stream
mining algorithm. It uses suffix tree to capture important contents of the dynamic streams,
from which periodic patterns are mined. It makes good use of implicit forms of the suf-
fix tree during deletion and insertion of tree branches due to the sliding of the window
capturing batches of the data streams. As such, it achieves shorter runtime and less mem-
ory space consumption when compared with the existing dynamic tree based solution
to handle sliding window in time (DTSW) algorithm. Evaluation results show that our
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algorithm outperformed related works. As ongoing and future work, we explore ways
(e.g., use the sliding suffix tree [25]) to further improve our algorithm.
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