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Preface

DaWaK was established in 1999 as the International Conference on Data Warehous-
ing and Knowledge Discovery. It ran continuously under this name until its 16th edi-
tion (2014, Munich, Germany). In 2015 (Valencia, Spain) it was renamed the Interna-
tional Conference on Big Data Analytics and Knowledge Discovery to better reflect new
research directions in the broad and dynamically developing area of data analytics, but
it retained its DaWaK acronym. In 2022, the 24th edition of DaWaK took place during
August 22–24 in Vienna, Austria, back as a physical event following online editions in
2020 and 2021.

Since the very beginning, the DaWaK conference has been a high-quality forum for
researchers, practitioners, and developers in the field of data integration, data warehous-
ing, data analytics, and, recently, big data analytics. The main objectives of this event are
to explore, disseminate, and exchange knowledge in these fields through scientific and
industry talks. Big data analytics and knowledge discovery remain hot research areas
for both academia and the software industry. They are continuously evolving, fueled
by advances in hardware and software. Important research topics associated with these
major areas include data lakes (schema-free repositories of heterogeneous data), concep-
tual/logical/physical database design, theoretical foundations for data engineering, data
integration (especially linking structured and semi-structured data sources), big data
management (mixing relational tables, text, and any types of files), query languages
(beyond SQL), scalable analytical algorithms, parallel storage and computing systems
(cloud, parallel database systems, Spark, MapReduce, HDFS), graph processing, stream
and time series processing, IoT architectures, artificial intelligence/machine learning
algorithms, and applications of these solutions in industry.

DaWaK 2022 attracted 57 papers, from which the Program Committee selected 12
regular papers and 12 short papers, yielding an acceptance rate of 21% for the regular
paper category, of 27% for the short paper category, and of 42% overall. Each paper
was reviewed by at least three reviewers and in some cases up to four. The accepted
papers cover a variety of research topics on both theoretical and practical aspects. The
program included the following topics: (1) text analytics, (2) data warehousing and
OLAP, (3) feature selection algorithms, (4) time series processing, (5) schema discovery
and construction, (6) pattern discovery, and (7) machine learning algorithms. Thanks
to the reputation of DaWaK, selected best papers of DaWaK 2022 will be invited for a
special issue of the Data & Knowledge Engineering (DKE, Elsevier) journal. Therefore,
the PC chairs would like to thank the DKEEditor-in-Chief, CarsonWoo, for his approval
of the special issue.

We would like to express our sincere gratitude to all Program Committee members
and the external reviewers who reviewed the papers thoroughly and in a timely manner.
Finally, we would like to thank the DEXA conference organizers for their continuous
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support and guidance especially Ismail Khalil for providing a great deal of assistance
(as always), putting his experience at our disposal.

August 2022 Johann Gamper
Robert Wrembel
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An Integration of TextGCN
and Autoencoder into Aspect-Based

Sentiment Analysis

Yi-Hang Tsai, Chia-Ming Chang, Kun-Hsiang Chen, and San-Yih Hwang(B)

Department of Information Management, National Sun Yat-sen University,
Kaohsiung, Taiwan

d094020001@nsysu.edu.tw, syhwang@mis.nsysu.edu.tw

Abstract. Due to the rapid increase in User-Generated Content (UGC)
data, opinion mining, also called sentiment analysis, has attracted much
attention in both academia and industry. Aspect-Based Sentiment Anal-
ysis (ABSA), a subfield of sentiment analysis, aims to extract the
aspect and the corresponding sentiment simultaneously. Previous works
in ABSA may generate undesired aspects, require a large amount of
training data, or produce unsatisfactory results. This paper proposes a
Graph Neural Network based method to automatically generate aspect-
specific sentiment words using a small number of aspect seed words and
general sentiment words. It subsequently leverages the aspect-specific
sentiment words to improve the Joint Aspect-Sentiment Autoencoder
(JASA) model. We conduct experiments on two datasets to verify the
proposed model. It shows that our approach has better performance in
the ABSA task when compared with previous works.

Keywords: Aspect-based sentiment analysis · Attention mechanism ·
Autoencoder · Text graph convolution network · Text mining

1 Introduction

With the rapid growth of the Internet and mobile devices, people can easily share
their opinions on the Web. There are plenty of sources that users may express
their opinions and preferences on various venues, such as social media platforms,
online forums, and E-commerce websites. As it is time-consuming to manually
analyze sentiments from massive data, automatic approaches that make good use
of these data become imperative. Sentiment analysis or opinion mining intends
to solve the problem by measuring subjective opinions automatically. Intuitively,
sentiment analysis can be defined as a classification problem, namely classifying
documents (or sentences) into different sentiment polarities. Further works in this
line of research consider not only sentiment but also the aspect pertaining to the
sentiment in the documents (or sentences). This line of research is called aspect-
based sentiment analysis (ABSA). For instance, consider the sentence, “The
new iPhone 13 produces detailed images.” We may conclude that the sentence
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-12670-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12670-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-12670-3_1
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addresses the aspect “camera” and is positive because of the existence of the
aspect word “images” and the corresponding sentiment word “detailed.” Figure 1
shows some further examples and their expected aspect/sentiment output from
an ABSA model.

Fig. 1. An illustration of aspect-based sentiment model

Early approaches in ABSA used part of speech (POS) tagging and universal
dependencies techniques to identify the associations between aspect words and
sentiment words. For example, Hu & Liu [6] first compute the frequency of
nouns or noun phrases in documents to extract aspect words and then employ
universal dependencies to articulate sentiments by considering interconnected
sentiment words and aspect words. Likewise, consider the sentence “The laptop
price is very low.” The adjective word “low” modifies the noun “price,” which
indicates a positive sentiment polarity of the price aspect. However, this method
heavily depends on the accuracy of POS tagging and universal dependencies. It
is observed that these two techniques are less accurate under certain situations,
such as resource-light languages and casual writing.

Some approaches based on statistical models have been subsequently intro-
duced to solve the ABSA problem. Brody & Elhadad [2] present a Local Latent
Dirichlet Allocation (LDA) model to extract aspects, which works on sentences
instead of documents. The Local LDA separates sentences into different aspects.
A graph for each aspect is then constructed, where nodes are adjectives and con-
nected by the co-occurrence in conjunctions. Specifically, a conjunction relation-
ship is considered when two adjectives modify the same noun. Finally, sentiment
propagation on the graph is used to determine sentiment polarities of words.
Lin & He [8] proposed Joint Sentiment/Topic (JST) model, which is an exten-
sion of the LDA model and can detect document-level sentiment and extract a
mixture of topics simultaneously. Jo & Oh [7] propose the Aspect and Senti-
ment Unification Model (ASUM), which is similar to JST. The main difference
is that while JST allows the words of a document to be sampled from different
word distributions, ASUM constrains the model such that the words from the
same sentence must be sampled from the same word distribution. However, these
approaches are unsuitable for sentences or short reviews due to the strong statis-
tical constraint, resulting in a degraded performance in both aspect extraction
and sentiment classification.

In recent years, neural networks have shown their capability in various
machine learning applications, including ABSA. He et al. [4] use the autoen-
coder mechanism to find fine-grained aspects without supervision. Their model
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is shown to surpass LDA-based methods, yet desired aspects may not be gener-
ated by such an unsupervised method. Angelidis et al. [1] use a few aspect seed
words as user supervision to extract aspects of a text segment (i.e., a sentence or
a clause) and then employ a multiple-instance learning network model to learn
a segment-level sentiment predictor using a hierarchical, attention-based neu-
ral architecture. Nevertheless, the process requires substantial sentiment ratings
as training data. Zhuang et al. [12] build a joint aspect sentiment autoencoder
model to predict aspect and aspect-specific sentiment. To supervise the model,
they use aspect seed words and general sentiment seed words (e.g., good, bad,
excellent, and terrible). Experimental results show that more accurate aspect-
sentiment pairs can be obtained. However, we conjecture that better results may
be achieved if the general sentiment seed words are replaced by aspect-specific
ones. To do so, we propose a three-step approach in this work. The first step
(Aspect Extraction) identifies aspect associated to each text segment. The sec-
ond step (Aspect-based Sentiment Seed Word Generation) groups text segments
of each aspect and applies Text GCN [11] to derive sentiment seed words for
each aspect. In the final step, we modify the model proposed in [12] to take
as input the aspect seed words and aspect-specific sentiment seed words. The
experimental results confirm our conjecture and show that more accurate aspect-
specific sentiments can be obtained. In summary, our work makes the following
contributions:

– Our proposed approach, in contrast to many previous works, does not need
supervision and labeled data.

– We propose using a graph convolution network to develop the aspect-specific
sentiment words.

– Results on benchmark datasets (SemEval-2016) show that our approach
improve the performance of aspect-based sentiment classification.

2 Methodology

We first describe the process of our approach and then provide details for each
step. The architecture is shown in Fig. 2. We divide our approach into three
steps: 1) aspect extraction, 2) aspect-based sentiment word generation, and 3)
aspect sentiment detection. The aspect extraction step is to classify each sen-
tence into aspects using the MATE model [1]. Next, we modify the Text GCN
[11] to generate aspect-specific sentiment words. Finally, in the aspect-sentiment
detection step, we propose an Aspect Specific Sentiment Autoencoder model
(ASSA), which takes as input the aspect seed words and the aspect-based sen-
timent seed words obtained from the previous step. The ASSA model predicts
both aspect and the associated sentiment for each sentence segment.

2.1 Problem Description

We denote C as a corpus of all reviews, in which each review consists of several
sentence segments (s1, ..., sm), and each sentence segment si contains a sequence
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Fig. 2. Overall architecture of our approach

of words (wi
1, ..., w

i
n). Note that here we assume each sentence segment may

involve zero or more aspects while conveying the same sentiment. For example,
consider the sentence: “The room and the parking facility is nice, but the service
is poor,” which will be divided into two sentence segments: the first segment
discusses room and parking aspects with positive sentiment, and the second
segment focuses on the service aspect with negative sentiment. Let V ∈ R

v×d,
where v is vocabulary size and d is vector dimension of each word, indicates the
set of word vectors. We use As ∈ {0, 1}K to denote the aspects mentioned in a
sentence s, where K is the number of aspects. Each sentence segment s have a
polarity pols ∈ [0, 1], where 0 and 1 indicate Positive and Negative sentiments
respectively.

Our approach needs only a few aspect seed words and general sentiment
words. For a given sentence segment s, we can predict the combination of its
aspect labels and aspect-specific sentiment label (As, pols).

2.2 Aspect Extraction

To build a model for aspect extraction in an unsupervised way, we adopt the
Multi-seed Aspect Extractor (MATE) model [1]. MATE is a weakly-supervised
autoencoder for aspect extraction. In order to train the MATE model, some
aspect seed words need to be given. We briefly illustrate the architecture of the
MATE model which is shown in Fig. 3.

The MATE model is an autoencoder, which contains encoding and decoding
steps. The Sentence Embedding zs is transformed into the probability distri-
bution over K aspects, specified by ps in the encoding step. Pre-trained word
embeddings at the Word Embedding layer are used to encode sentence embed-
ding by attention mechanism. The MATE model makes the reconstructed embed-
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Fig. 3. Multi-Seed Aspect Extractor (MATE)

ding rs similar to sentence embedding zs in the decoding step by the linear
combination of aspect embedding matrix T ∈ R

K×d and the aspect distribution
ps. Note that each aspect embedding in T is obtained by weighted average of
embeddings of aspect seed words.

2.3 Aspect-Based Sentiment Words Generation

With the MATE model obtained from the last step, we can classify all the
sentence segments into aspects. Specifically, let ps be the aspect distribution of
a given sentence segment s. We conclude that s involves an aspect i if ps[i] is the
maximum of all elements. From all the sentence segments involved in an aspect,
we apply a graph convolution network approach, similar to the Text GCN [11],
to obtain the sentiment seed words for that aspect. In detail, we build a graph for
each aspect based on word co-occurrence and sentence-word relations, then learn
the representations for both words and sentence segments by value propagation
in the graph, as supervised by a few common sentiment words (e.g., good, bad,
excellent, and terrible).

Formally, consider a graph G = (V,E), where V (|V | = n) and E are sets of
nodes (i.e., words and sentences segments) and edges, respectively. In addition,
X is a matrix representing features of nodes, namely the embedding of each word
or sentence. The feature of a word is obtained from pre-trained word embedding,
and the feature of a sentence segment is by averaging all word embeddings in a
sentence segment. The adjacency matrix A of graph G describes the weights of
edges. The goal is to derive the polarity Z for each word given X and A.

Z = f(X,A) = softmax(ÃReLU(ÃXW (0))W (1)) (1)

where Ã = D̂− 1
2 ÂD̂− 1

2 with Â = A + I and I being the identity matrix, D̂ is
the diagonal node degree matrix of Â, and W (l) is a weight matrix for the l-th
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neural network layer. We set the matrix decomposition as the feature matrix of
our nodes.

In the adjacency matrix A, an edge between a sentence node and a word
node uses the term frequency-inverse document frequency (TF-IDF) value as its
weight. The weight between word nodes is calculated using point-wise mutual
information (PMI), a common measure for word associations [3].

In the original work [11], the Text GCN model is used to predict document-
level sentiment, but in our work, the goal is to classify each word sentiment. We
modify cross-entropy error over given general sentiment seed words (e.g., good,
great, bad, and terrible). The loss function is defined as follows:

L = −
∑

s∈seed

F∑

f=1

Ysf lnZsf

Here, F = 2 represents the two polarities (positive and negative), and Zsf is the
predicted weight to sentiment f for the seed word s. Ysf is the actual weight of
sentiment of the seed word s.

After the population of the Text GCN model, we will obtain the polarity
matrix Z, where each row contains the polarity vector of each word. To extract
sentiment words of each aspect, we retain only verbs, adverbs, nouns, and adjec-
tives based on Part-Of-Speech tagging. Then, the top 10% of frequent words
are removed. Finally, we choose the top five words with the highest polarity per
sentiment.

2.4 Aspect Sentiment Detection

Our goal is to identify the aspects and aspect-specific sentiment for a sentence
segment. As the final step, we modify the Joint Aspect Sentiment Autoencoder
(JASA) model [12] by employing the aspect-specific sentiment seed words instead
of the general ones, and call the resultant model Aspect Specific Sentiment
Autoencoder (ASSA). As illustrated in Fig. 4, the architecture of our ASSA
model is similar to the JASA model, which can identify aspects and the cor-
responding sentiments. In the following, we will describe how we modify the
aspect-specific sentiment reconstruction process.

The aspect and sentiment weight vectors are denoted pAs and pSs respectively.
In order to generate aspect-specific sentiment, we need to derive the pAS

s by
taking the outer product of these two vectors and flattening it into a joint vector,
as follows:

pAS
s = vec(pAs ⊗ pSs ),

where pAS
s ∈ R

2K describes the polarity of each of the two sentiments for each
of the K aspects.

To reconstruct rSs from pAS
s , we need to learn the embedding for each aspect-

sentiment pair from the corresponding aspect-sentiment words obtained from
the last step, collectively denoted TAS ∈ R

2K×d. Finally, we can reconstruct rSs
as follows:

rSs = TAST · pAS
s
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Fig. 4. Aspect Specific Sentiment Autoencoder (ASSA)

The JASA model places two regularizations, redundancy regularization, and
seed regularization. However, in their result, redundancy regularization is not
effective. So, we only use seed regularization to prevent each aspect (aspect t,
1 ≤ t ≤ K, is represented by the t-th row of TA) from deviating the weighted
average of embeddings for given seed words. Accordingly, this seed regularization
is the following:

CA(θ) =
K∑

t=1

[1 − sim(RA(t)
, TA(t)

)],

where RA denote the average embedding of seed words for each aspect. We use
the same way to calculate this regularization term for the aspect-sentiment part,
denoted as CAS(θ).

In the objective function, besides reconstruction using loss and negative sam-
ples on the aspect, we also need to calculate the loss of sentiment prediction
function and add to the regularization term. The final objective function is to
minimize the total loss function that considers all above:

L(θ) = LA(θ) + LS(θ) + λ(CA(θ) + CAS(θ))

LA(θ) =
∑

s∈D

m∑

i=1

max (0, 1 − rAS zAS + rAS ni)

LS(θ) =
∑

s∈D

m∑

i=1

max (0, 1 − rSSzSS + rSSni),

where λ is the hyperparameter given to control the effect regularization term,
and ni is a negative sample.
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3 Experiments

3.1 Dataset

Restaurant: The public Yelp dataset contains 8,635,403 reviews on various
shops. We sample 50,000 reviews in the restaurant category for training our
models in the restaurant domain. To evaluate our model, we use SemEval-2016
[10] in the restaurant domain as the test data set, which contains 1,120 sentences
tagged to six aspects: ambience, drinks, foods, location, service, and restaurant.
In addition, each sentence is tagged to one of the three sentiments: positive, neu-
tral, and negative. To simplify the problem, we remove the aspect “restaurant”
and the sentiment “neutral”. As a result, we obtain a test dataset that has 937
sentences in the restaurant review domain. Statistics of the dataset are shown
in Table 1.

Table 1. Statistics of test dataset

Domain Aspect/Sentiment Type Number Percentage

Restaurant Aspect Ambience 103 11.02

Drink 45 4.81

Food 462 49.41

Location 15 1.6

Service 312 33.39

Sentiment Positive 601 64.28

Negative 336 35.94

Laptop Aspect Support 138 22.08

OS 50 8.00

Display 100 16.00

Battery 77 12.32

Company 80 12.80

Mouse 54 8.64

Software 67 10.72

Keyboard 59 9.44

Sentiment Positive 276 44.16

Negative 349 55.84

Laptop: Amazon product data [5,9] contain 7,824,482 reviews posted in the
category of Laptops. We sample 50,000 reviews for training our models in the
laptop domain. We also use SemEval-2016 in the laptop domain as the test data
to evaluate our model. We select below eight entity types from all 21 types: Bat-
tery, Company, Display, Keyboard, Mouse, OS, Software, Support, and exclude
“neutral” sentiment. Finally, we obtain a test dataset that has 625 sentences in
the laptop review domain. Statistics of the dataset are given in Table 1.
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3.2 Experimental Settings

We use NLTK to tokenize the restaurant and laptop domain training data and
train word spaces respectively. The embedding size is set at 300, and the window
size is 5. As for the parameters of the MATE model, the negative sample is set at
20 by default setting, and the learning rate is set at 10−5 for training smoothly.
The aspect seed words used for the restaurant and laptop domains are shown in
Table 2.

Table 2. Aspect seed word for both restaurant and laptop domains

Dataset Aspect Seed words

Restaurant Ambience Atmosphere, room, seating, environment, ambience

Drink Beverage, wines, cocktail, sake, drinks

Food Spicy, sushi, pizza, taste, food

Location Street, block, river, avenue, location

Service Tips, manager, waitress, servers, service

Laptop Support Service, warranty, coverage, replace, support

OS Windows, ios, mac, system, os

Display Screen, led, monitor, resolution, display

Battery Life, charge, last, power, battery

Company Hp, toshiba, dell, lenovo, company

Mouse Touch, track, button, pad, mouse

Software Programs, apps, itunes, photoshop, software

Keyboard Key, space, type, keys, keyboard

In the Text GCN model, the learning rate is set at 0.02, the number of units
in the first hidden layer is set at 150, and the dropout rate is set at 0.5. All
parameters follow the settings of the previous work [11]. The general sentiment
words are identical in both domains: “good”, “great”, “nice”, “best” and “amaz-
ing” for positive, while “gross”, “bad”, “terrible”, “hate” and “disappointed” for
negative. As for the parameter of our ASSA model, the negative sample is set at
20, the learning rate is set at 10−5. The same setting used in MATE to ensure fair
comparisons. According to previous work [12], the hyperparameter λ between 5
and 10 results in better performance, so here we set λ at 10.

3.3 Evaluation Metrics

For our classification task, we use four measures, including accuracy, precision,
recall, and F1-score. To clarify, the aspect extraction is a multi-class task, and
thus we apply macro-averaging on precision, recall, and F1-score.
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3.4 Experimental Results on Aspect Extraction

We compare our method with MATE [1] and JASA [12] on sentence-level aspect
identification using both datasets. For each sentence s, each model returns an
aspect vector (ps or pAs ). Since this vector is activated by softmax, we label the
maximum class to represent the predicted aspect (As). The result is shown in
Table 3. As can be seen, both JASA and ASSA perform better than MATE,
which could be attributed to the training of aspect and sentiment together. In
addition, ASSA has better performance in most cases, which shows the benefit
of using aspect-specific sentiment seed words.

Table 3. Experiment results of aspect extraction (%)

Dataset Method Accuracy Precision Recall F1

Restaurant MATE 68.98 65.97 55.66 55.60

JASA 69.31 67.58 55.92 56.23

ASSA 69.73 66.95 56.19 56.32

Laptop MATE 75.36 74.32 75.00 74.09

JASA 76.16 76.20 75.62 75.31

ASSA 76.96 77.34 76.48 76.50

3.5 Experimental Results on Aspect-Sentiment Identification

For aspect-sentiment identification, we compare our method with the JASA
model [12]. Additionally, we use a lexicon-based method as the baseline method
by using MATE to extract aspects and text GCN to generate the sentiment lex-
icon. To be more precise, we use the aspect-specific sentiment words output by
text GCN as the sentiment lexicon and account for the effect of negation words
(e.g., not, never, less, and so forth). The sentiment of a sentence is obtained
by aggregating the sentiment polarity of each constituent word. We name this
method Word Sentiment Polarity (WSP) for brevity. We evaluate the perfor-
mance of sentence-level sentiment identification on both Restaurant and Laptop
datasets, and the result is shown in Table 3. For each sentence s, ASSA model
returns an aspect-sentiment vector (pAS

s ). We select the aspect label from the
aspect vector (pAs ), then select the sentiment with the larger polarity score as the
predicted sentiment (pols). We use four measures for the binary sentiment clas-
sification task (positive and negative): accuracy, precision, recall, and F1-score.
As shown in Table. 4, both ASSA and JASA perform better than the baseline
method WSP. Comparing ASSA with JASA, the aspect-specific sentiment words
generated by Text GCN output by ASSA contributes to the improvement of sen-
timent classification accuracy on restaurant and laptop datasets by +1.8% and
+2.1% respectively.
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Table 4. Experiment results of sentiment identification (%)

Dataset Method Accuracy Precision Recall F1

Restaurant WSP 74.18 72.66 74.18 72.97

JASA 79.36 80.48 78.28 78.60

ASSA 81.18 81.84 79.84 80.34

Laptop WSP 65.28 61.86 68.74 59.95

JASA 78.88 77.83 79.20 78.17

ASSA 80.96 79.84 81.59 80.26

3.6 Discussion of Aspect-Based Sentiment Words

Table 5 and 6 show the sentiment seed words of each aspect generated by Text
GCN. For each aspect in the restaurant domain, we list distinctive sentiment
words. Notice that, we have “delicious”, “love”, “recommend”, “definitely” noted
as positive, and “disgusting”, “worst”, “awful”, “inedible”, “tasteless” noted as
negative in the “Food” aspect, which are quite accurate. However, the Ambience
and Drinks aspects have less significant words. We speculate that the perfor-
mance of seed word generation by Text GCN might be related to the size of
training data. As can be seen in Table 7 in Appendix, the number of sentences
in the “Food” aspect accounts for about 40% of the entire training data, which
is two to four times more than the others. Additionally, the two enormous (con-
sidering the size of training data) aspects in the Laptop domain also perform
well, namely the Support and Display aspects. Even though other aspects seem
less accurate, there are still some compelling cases. For example, the “macbook”
and “mac” are considered positive in the OS aspect. This matches the stereotype
that macOS has many advantages like stable, easy-to-use, and secure. Another
example is in the Mouse aspect, where “freezes” and “jumps” are regarded as
negative words, which are common problems related to computer mouses.

Table 5. The restaurant seed words generated by Text GCN

Aspect Sentiment Generated words

Ambience Positive Service, food, friendly, place, pad

Negative Dance, weird, completely, understand, head

Drinks Positive Food, service, awesome, recommend, ever

Negative Dry, rather, bottom, clearly, charged

Food Positive Delicious, also, love, recommend, definitely

Negative Disgusting, worst, awful, inedible, tasteless

Location Positive Food, love, favorite, place, always

Negative Filthy, dirty, broken, bouncer, smell

Service Positive Friendly, attentive, delicious, definitely, excellent

Negative Nasty, disgusting, rude, dirty, health
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Table 6. The laptop seed words generated by Text GCN

Aspect Sentiment Generated words

Support Positive Fast, light, keyboard, little, price

Negative Worst, dealing, refused, sucks, defect

OS Positive Fast, macbook, mac, price, laptop

Negative File, driver, page, click, frustrating

Display Positive Price, fast, love, perfect, pros

Negative Bios, driver, install, drivers, update

Battery Positive Price, account, num, life, laptop

Negative Surface, lid, left, glossy, area

Company Positive Price, fast, recommend, product, thanks

Negative Repair, worse, worst, issue, send

Mouse Positive Pros, gaming, price, love, num

Negative Freezes, random, entire, jumps, cursor

Software Positive Fast, laptop, price, works, loves

Negative Norton, annoying, click, return, constantly

Keyboard Positive Love, easy, computer, light, laptop

Negative Horrible, support, return, bar, cursor

4 Conclusion

In this paper, we propose using the graph convolution network to improve the
performance of the existing model [12] for the ABSA task. Our approach can
be divided into three steps. The first step is to use the MATE model to extract
aspects. For the second step, we propose to use Text GCN model to find aspect-
specific sentiment words. The final step is training the ASSA model with aspect-
specific sentiment seed words generated by the previous step to predict aspect
and sentiment on given sentences. In the experiments, we show that it is effec-
tive in aspect-specific sentiment classification through our three-step approach.
Moreover, our approach does not need supervision. Even though our proposed
approach performs well for the ABSA task compared to other methods, the sen-
timent lexicon generated by Text GCN has room for improvement. Our future
work includes improving Text GCN for generating better sentiment lexicon. In
addition, it may be instructive to integrate the three steps into a single model
for both efficiency and effectiveness.
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Appendix: Statistics of Results from MATE Model

Table 7. Statistics of results from MATE model

Domain Aspect Number Percentage (%)

Restaurant Ambience 5166 10.33

Drinks 5150 10.30

Food 19942 39.89

Location 9417 18.84

Service 10319 20.64

Laptop Support 8034 16.09

OS 6366 12.75

Display 8673 17.37

Battery 5444 10.90

Company 7125 14.27

Mouse 4064 8.14

Software 6845 13.71

Keyboard 3380 6.77
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Abstract. The biological literature is rich with sentences that describe causal
relations. Methods that automatically extract such sentences can help biologists
to synthesize the literature and even discover latent relations that had not been
articulated explicitly. Current methods for extracting causal sentences are based
on either machine learning or a predefined database of causal terms. Machine
learning approaches require a large set of labeled training data and can be suscep-
tible to noise. Methods based on predefined databases are limited by the quality
of their curation and are unable to capture new concepts or mistakes in the input.
We address these challenges by adapting and improving a method designed for
a seemingly unrelated problem: finding alignments between genomic sequences.
This paper presents a novel method for extracting causal relations from text by
aligning the part-of-speech representations of an input set with that of known
causal sentences. Our experiments show that when applied to the task of finding
causal sentences in biological literature, our method improves on the accuracy of
other methods in a computationally efficient manner.

Keywords: Causality extraction · Sequence alignments · Zero-shot learning

1 Introduction

Researchers who perform biological experiments convey their discovery in published
research articles, which contain descriptions of causal relations. This growing literature
provides an enormous amount of information and represents the current state of bio-
logical understanding. This documentation of scientific discovery can verify previous
experiments, provide insights to researchers [29], and motivate future research [23].

These corpora of biological text are growing at an exponential rate. Algorithms and
approaches are thus needed to extract the relevant information, allowing biologists to
understand and connect biological processes. Since researchers describe causal connec-
tions among biological entities in free-text research papers, it is logical to extract these
connections using natural language processing (NLP).

A causal assertion can be thought of as a relation between an agent and a target.
Often in biological studies, an agent is either passively observed or actively manipu-
lated, and a change or lack thereof is noted in a target. Although this type of result can
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be described across many different and sometimes nonadjacent sentences, this paper
focuses only on causal assertions appearing in a single sentence. This approach has the
advantage of limiting the search range for descriptions of causality and takes advan-
tage of existing methods that can reliably fragment documents into collections of sen-
tences [22].

Existing methods for causality extraction use either predefined knowledge bases,
word lists, other types of databases [6,17,25,27,33], or are based on statistical
techniques—often some form of machine learning [3,8,11,20]. Predefined knowledge
bases are of course limited by the quality of the knowledge base itself. Often, these
sources are manually curated and do not always contain all possible words or phrases
of interest. Additionally, they require exact matches to be useful. For instance, if a
knowledge base contains causal verbs and a potential causal sentence contains the mis-
spelled verb “cuases” (instead of “causes”), the sentence will be dismissed due to the
misspelling. These predefined knowledge bases are also not able to capture new words
or concepts, and they are not extensible to other tasks such as extracting causality from
text in other languages.

One solution to these problems is to use existing machine learning techniques. But
these approaches often require large amounts of labeled training data, something that
can be expensive and tedious to obtain. These barriers of time and cost are expanded
when the task is to discover more fine-grained details pertaining to causality, such as
that of finding the specific types of studies and outcomes that lend evidence for a causal
assertion. Additionally, the vocabulary for biomedical free text can be quite large, as it
contains not only common words but also domain-specific terms. This large vocabulary
set requires an even larger training data for the machine-learning model to predict the
necessary components for representing causal phenomena.

Thus, to automatically extract causal sentences, an approach is required that does
not suffer from limitations in the size of the training data, and that can be performed
efficiently. The approach presented in this paper is inspired by the analogy of the afore-
mentioned problem to that of comparing a set of genomic sequences in bioinformatics.

Though it may not be obvious, there is indeed a connection between aligning
sequences in genomic data and finding causal sentences in free text. While each sen-
tence may contain a unique set of words, the part-of-speech (POS) sequence of each
sentence is likely to be much more common. Breaking each sentence into its gram-
matical structures can thus help to identify patterns in the way that causal relations are
described. Thus, applying an alignment method to the grammatical structures of sen-
tences has the potential to discover similarities that may be missed by approaches that
focus only on words. We further illustrate this with the following example of three sen-
tences and their corresponding POS mappings (for brevity we replace the POS label
with a single character: P = pronoun, V = verb, D = determiner, A = adjective, N =
noun, PP = preposition):
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We noticed a rather large increase in insulin after eating.

P V D D A N PP N PP V

N P V D N PP N PP V

Today we observed an increase in melatonin after running.
N P V D N PP N PP V

We observed that we are running out of melatonin today.

P V PP P V V PP PP N N

Here the first two sentences are talking about two different things; yet both are causal
sentences. Their POS structures are similar. In comparison, the second and third sen-
tence share a lot of words, more so than the first and second sentences, yet their POS
representations have fewer matching elements, with long gaps in between matches.
Therefore, knowing that the second sentence is causal, we cannot determine whether
the third sentence is causal. It is our hypothesis that given a labeled set of causal sen-
tences C+ and non-causal sentences C−, a new sentence s is classified as a causal
sentence if its POS structure is most similar to a causal sentence and the similarity (S)
is above a threshold δ,

max
c∈C+

S(c, s) > max
c∈C−

S(c, s) ∧ max
c∈C+

S(c, s) > δ (1)

Our desired approach is to find causal relations by comparing the POS mappings of
unlabeled sentences to that of labeled sentences. A new causal sentence is discovered by
identifying the optimal number of alignments between the grammatical representations
of the sentences. We show this alignment approach can thus classify causal sentences
accurately and efficiently, and it has the potential to be used for other problems as well.
The intuition behind this approach is rather simple: that people tend to describe causal-
ity using a similar grammatical form. In our alignment setting this similar grammatical
form represents common subsequences—and the longer the common subsequence the
more likely two compared sequences are making the same causal assertion.

Existing methods of sequence alignment are insufficient for aligning POS represen-
tations of free text: either (1) they require the user to specify the number of local align-
ments [1] or (2) they introduce a gap penalty for each new local alignment [16], possibly
leading to erroneous alignments [1]. Given the nature of free text, it is unreasonable to
ask the users to pre-specify the number of local alignments. Here, we generalize existing
alignment algorithms by removing the need to specify these parameters, while keeping
the same algorithmic complexity in terms of both space and time. This generalization
allows us to efficiently apply the algorithm to text mining. The techniques presented in
this paper need not be limited to extracting causality. We recommend using our app-
roach for information retrieval tasks dealing with sequential similarity when the input
data set is too small to be sufficient for machine learning.



20 J. Wood et al.

2 Preliminaries

2.1 Sequence Alignments

Sequence alignment algorithms seek to assign a score for an alignment between two
strings (A and B). The two most popular algorithms are Smith-Waterman [30] (local)
and Needleman-Wunsch [24] (global). A local alignment is a maximal scoring align-
ment over the subsequences Ap, Ap+1, Ap+2, . . . , Aq and Bx, Bx+1, Bx+2, . . . , By . A
global alignment is the maximal scoring alignment over the A and B. Aligned strings
often contain one or more instances of an insertion (or, interchangeably, deletion),
which represents a single-character gap in the alignments. For example, with the align-
ments of the strings “BAT” and “BEAM” a global alignment could easily be:

global alignment:

B – A T
| | |
B E A M

B E A M
0 -1 -2 -3 -4

B -1 1 -1 -3 -4
A -2 -1 0 0 -2
T -3 -3 -2 -1 -1

with the “E” representing a deletion in the string “BEAM” and an insertion in “BAT”.
The “T” in “BAT” is aligned to the “M” in “BEAM”; since they are not the same,
this is referred to as a mismatch. To find the alignments, most algorithms use dynamic
programming with one or more two variable recurrence relations stored in a matrix.
We demonstrate the matrix using the alignment of “BAT” and “BEAM” and scoring of
match/mismatch S(Ai, Bj) = +

(−) 1 and indel score (Q) of −2 next to its the global
alignment above.

2.2 AGE

AGE [1] is an alignment algorithm that addresses the problem of optimally aligning
genomic sequences that contain large amounts of insertions or deletions; it addresses
the problem that tuning the parameters of the Smith–Waterman [30] and Needleman–
Wunsch [24] algorithms does not guarantee the optimal alignment of certain inputs.
AGE solves this problem by introducing a maximum matrix into the recurrence that
holds the maximum value of the equivalent location in the local alignment matrices.
This approach, coupled with two local alignments—one going forward from the left end
(L), and one going backward from the right end (R)—guarantees to locate the optimal
“split point” of the two left and right local alignments. This algorithm guarantees finding
the maximal left and right local alignments in quadratic time and space. Even though
the space is polynomial, AGE can be unusable with a large input size. To address this,
a linear space version can be formulated that achieves a memory bound of O(n) with
computation time remaining at O(n2).

2.3 Causality in Biological Literature

Much of biology is modeled as pathways, or signal cascades. Statements in the literature
that describe causal relations between phenomena thus help biologists to understand
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these causal chains. And gaps in the understanding of a causal chain—i.e., its missing
links—motivate hypotheses that then direct future research.

If an article is known to address the relation between two entities—e.g., a biological
agent, A, and a biological target, T , then sentences in the article that mention both A
and T are likely to describe that relation—for instance, in a results section that describes
a study’s empirical results, or in a discussion section that describes the study’s implica-
tions for the field.

Beyond simply stating that two entities are causally related, a sentence can also
state (1) the type of experiment that was performed on the two entities, and (2) the
result of the experiment. One way to express this type of biological evidence is with the
research map representation [29]: Each experiment is either an intervention (involving
an experimental manipulation) or an observation (involving no manipulation); within
these two classes, the change of the agent can be either positive or negative, yielding
four experiment classes: positive intervention (↑), negative intervention (↓), positive
observation (∅↑), and negative observation (∅↓). The results of these experiments are
categorized as either increase (+), decrease (−), or no-change (0) to indicate how the
target responded to a change in the agent.

2.4 Text Search and Extraction

A similar objective to causality discover is that of scientific search. This can be done
using syntactic patterns [28], patters over dependency graphs [31] or using preexist-
ing machine learning based methods [2,10,18]. Similarly, although not between sci-
entific texts, search between parallel texts can be done effectively though word align-
ments [32]. This analysis also showed the applicability to corpora across different lan-
guages.

Also akin to the goals of causality extraction is that of relation extraction. The
desiderata in relation extraction to discover relationships between different fragments
in text. One technique to causal discovery without labeled data is using a predefined
database [15]. Additionally, relation extraction has been shown to be inferred from side
information [9]. Using this method results were obtained in zero-shot learning environ-
ment. Other methods utilize graph-based techniques [5] or neural networks to achieve
superior improvements over baseline models [35].

Zero-shot learning can also be a setting in event extraction [21]. This allows extrac-
tion to be done in a way where annotation is not necessary—which is how event extrac-
tion is commonly done. In this setting transfer learning can be applied via neural net-
works to obtain results comparable to supervised methods.

3 Proposed Approach

The proposed approach, named OpBerg, builds upon the idea of the AGE algorithm:
it uses a similar strategy to find the optimal number of local alignments. This optimal
solution also uses our proposed concept of score length, whose definition is as follows:



22 J. Wood et al.

Definition: Score Length. We define the score length for the alignment of POS tokens
aiai+1 . . . ai+d1 and bjbj+1 . . . bj+d2 as the difference between the max score in the
alignment matrix at cell locations (i + d1, j + d2) and (i, j). As an example the score
length between “BA” and “AM” in Sect. 2.1 is (−2) − (−3) = 1.

A naive algorithm for solving the optimal alignment problem is to run the existing
AGE method on every possible number of local alignments that could reasonably occur.
To implement this approach, a new variable is introduced, k, which represents the cur-
rent number of local alignments to run on the given input sequences. The results of
these additions require an n factor increase in both running time and memory retention,
where n is defined as the size of the largest input POS token sequence. The running
time becomes O(n3) with memory required as O(n3).

It is intuitive to add a penalty (P ) for each additional increase in local alignments.
This penalty is needed since otherwise, the optimal alignment would always just match
individual POS tokens. Because this penalty is proportional to the number of local align-
ments, we make the penalty a simple linear constant. The maximum alignment score
can then be defined as:

Max
1≤k≤n

[P × k + M(|A|, |B|, k)] (2)

where A and B are the input POS token sequences mapped from two sentences. M is
the three-dimensional maximum matrix which holds the maximum alignment score for
each ai, bj , and k; where ai ∈ A and bj ∈ B.

A simple linear penalty constant reveals that returning one such alignment is not
a trivial and deterministic task. The linear penalty can be thought of as an additional
larger gap penalty, thus taking the form of a generalized global alignment [16]. It has
already been shown [1] that this can lead to improper alignments.

The question then becomes: What is the optimal number of alignments? For exam-
ple, a user may prefer to find an alignment that has only 1 large segment aligned and a
score of 28 over 10 alignments and a score of 29. To determine the correct number of
alignments, this work focuses on three major trade-offs:

1. Number of alignments.
2. Score length to break apart an alignment (α).
3. Min score length to start an alignment (β).

The naive algorithm solves the problem of finding the optimal number of local align-
ments, but it does so at a considerable cost. Opberg, the approach we present here, seeks
to reduce memory by a factor of n and execution time by a factor of n.

3.1 OpBerg

Note that during execution of the naive algorithm described above, once it is decided
that a new local alignment is a better choice, the optimal solution can then only be
of the same or more alignments. This allows us to reuse the existing M matrix and
shave off the k dimension, allowing for much simpler bookkeeping. We introduce a
new matrix L that represents the values of a local alignment. The M matrix then takes
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on the interpretation of a matrix whose values are the max of the previous max M
cell value and the corresponding L cell value. The optimal solution then can be in the
L matrix (that is, performing a local alignment) or in the M matrix (that is, moving
through the cells of the matrix and not decreasing in value). We use the notation that if
the optimal solution is in the L matrix, then it is in the “L” or “alignment” state; and
if the optimal solution is in the M matrix, then it is in the “M” or “max” state. Given
that there is only one L state, it is entirely possible for the optimal solution to transition
multiple times from the M state to the L state. We store the values of a transition in a
new matrix N which holds the point of a transition in and out of the M state. Another
matrix X holds the points of all transitions through the optimal solution.

The three trade-offs discussed above can be dealt with in various ways. To account
for the number of alignments, we can leave in the original penalty P , but instead of
considering this as a larger gap penalty, one can think of it as a value less than 1 and
possibly even 0 (with the original gap penalty greater than 1). By doing so, one can
easily gauge at what point a new alignment gap starts to weigh negatively on the score
and thus becomes less desirable.

To consider the minimum score length needed to break apart an alignment, we need
only to regard the point at which the algorithm exits the max state. If the current align-
ment has not dropped below the input score length α, then we will restrict the transition
until the appropriate threshold has been reached.

We can apply a similar intuition as breaking apart an alignment to that of staring
an alignment—with the change being the consideration of the entry into the max state
(as opposed to the exit from the max state). We will restrict the length as we do for
breaking apart an alignment, but a key difference happens when an alternative alignment
is nonexistent. For example, a user may prefer not to start a segment of only 3 matched
characters unless this is the max score out of any alternative alignments by a score of 3
matches. Therefore, we keep track of how a score length smaller than β influences the
score. That is, we do not necessarily want to discard these alignments unless there is a
better alignment available. A new parameter is introduced, γ(x), which allows the user
to specify a function to weigh how important a certain score length is when it is below
threshold but no higher scoring alternatives exist.

With these parameters, the algorithm is bound to a running time of O(n2) and mem-
ory requirements of O(n2). The trade-off between the alignment score and number of
jumps through the matrix to start a new local alignment is enforced by the penalty con-
stants P , α, β, and function γ(x).

Affine Gap. It should not always be the case that insertions and deletions (indels)
between the inputs are weighted equally, regardless of where they occur. For instance,
in certain causal sentences: a large cluster of indels may represent a tangential segment
of words. To capture these occurrences, an affine gap model that takes into account
segments of tangential words must be adapted to OpBerg.

For an affine gap, three matrices—representing a match/mismatch (LG), insertion
(LI ), and deletion (LD) transitions, respectively—must be used in place of the original
L matrix. The max matrix M cannot enter into any of these three states because it rep-
resents a jump through the inputs, so it remains the same. Also, since a local alignment
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must start and end with a match (diagonal move), the transition between the L states to
the M states can occur only through the new LG matrix. This also applies to the X and
N matrices, as they only must monitor jumps between the LG and the M matrices.

The recurrent relations needed for the affine gap OpBerg model are given in their
entirety as (we take the shorthand p to represent the previous entry, i.e. ip = i − 1):

LI(i, j) = Max

⎧
⎨

⎩

LI(ip, j) + E
LG(ip, j) + F
LD(ip, j) + F

⎫
⎬

⎭
(3)

HI(i, j)=

⎧
⎪⎨

⎪⎩

HI(ip, j) if LI(i, j)=LI(ip, j)+E

HG(ip, j) if LI(i, j)=LG(ip, j)+F

HD(ip, j) if LI(i, j)=LD(ip, j)+F

(4)

δ(i, j) = Max

⎧
⎪⎪⎨

⎪⎪⎩

0
LI(ip, jp) + S(ai, bj)
LG(ip, jp) + S(ai, bj)
LD(ip, jp) + S(ai, bj)

⎫
⎪⎪⎬

⎪⎪⎭

(5)

ψ(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ(i, j) if δ(i, j) = 0
HI(ip, jp) if δ(i, j) = LI(ip, jp) + S(ai, bj)
HG(ip, jp) if δ(i, j) = LG(ip, jp) + S(ai, bj)
HD(ip, jp) if δ(i, j) = LD(ip, jp) + S(ai, bj)

(6)

ε(i, j) =

{
M(ip, jp) + S(ai, bj) + P if δ(i, j) − ψ(i, j) ≤ α

−∞ otherwise
(7)

LG(i, j) = Max{δ(i, j), ε(i, j)} (8)

HG(i, j)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Max{M(ip, j),M(i, jp)} if LG(i, j)=0
HI(ip, jp) if LG(i, j)=LI(ip, jp) + S(ai, bj)
HG(ip, jp) if LG(i, j)=LG(ip, jp) + S(ai, bj)
HD(ip, jp) if LG(i, j)=LD(ip, jp) + S(ai, bj)
Max{M(ip, j),M(i, jp)} if LG(i, j)=M(ip, jp)+S(ai, bj)+P

(9)

LD(i, j) = Max

⎧
⎨

⎩

LI(i, jp) + F
LG(i, jp) + F
LD(i, jp) + E

⎫
⎬

⎭
(10)

HD(i, j)=

⎧
⎪⎨

⎪⎩

HI(i, jp) if LD(i, j)=LI(ip, jp) + F

HG(i, jp) if LD(i, j)=LG(i, jp) + F

HD(i, jp) if LD(i, j)=LD(i, jp) + E

(11)

ζ(i, j) =

{
LG(i, j) if LG(i, j) ≥ β

γ(LG(i, j)) otherwise
(12)
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M(i, j) = Max

⎧
⎨

⎩

ζ(i, j)
M(ip, j)
M(i, jp)

⎫
⎬

⎭
(13)

X(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X(ip, j) if LG(i, j) = LI(ip, j) + S(ai, bj)
X(ip, jp) if LG(i, j) = LG(ip, jp) + S(ai, bj)
X(i, jp) if LG(i, jp) = LD(i, jp) + S(ai, bj)
N(ip, jp) ∪ (i, j) if LG(i, j) = ε(i, j)
∅ if LG(i, j) = 0

(14)

N(i, j) =

⎧
⎪⎨

⎪⎩

X(i, j) ∪ (i, j) if M(i, j)=ζ(i, j)
N(ip, j) if M(i, j)=M(ip, j)
N(i, jp) if M(i, j)=M(i, jp)

(15)

where (i, j) represents the cell location in the respective matrix, the ith POS token in A
and the jth POS token in B. S is a function (neither reflexive nor symmetric) that takes
in two POS tokens and returns a score value. The extension gap penalty is represented
by E and the opening gap penalty by F . Even with the newly created matrices and
additional processing that must take place to populate the matrices, the running time
will be O(n2), with memory as O(n2).

4 Results

4.1 Classification

A useful feature of OpBerg is its ability to determine whether a sentence is a good match
to an existing labeled sentence; it thus captures the similarity between two sentences.
This similarity measure then can be used to classify whether the sentence is causal. Fur-
thermore, we seek the ability to classify a more diverse set of classes that are useful to
biologists. We test the ability of OpBerg to classify causality against the baseline meth-
ods of logistic regression (LR), support vector machines (SVM), naive Bayes classifier
(NBC), random forest (RF) [19], AGE, the local alignment algorithm (local), global
alignment algorithm (global), k-means clustering, density-based spatial clustering of
applications with noise (DBSCAN) [7], balanced iterative reducing and clustering using

Table 1. Datasets with their description, number of classes (C), documents (D) and sentences (S)
used in the evaluation of OpBerg in the classification experiment.

Name Description C D S

RM46 ResearchMaps collection of 46 neuroscience articles 2, 4, 7 46 200

LLL05 Causal sentences and papers extracted from the LLL05 Challenge 2 45 131

NDE27 Non-domain experts labeling of various PubMed articles 2 27 1,025

BioCause The biomedical discourse causality corpus and articles 2 20 1,000

RM6 Domain expert labeled set of articles from ResearchMaps 2, 4, 7 6 356
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Fig. 1. F-scores shown as a heatmap for OpBerg compared with baseline methods using POS
features of sentences, general word embeddings, and causal embeddings in order to determine
causality and other biological classes. The sums of the total F-score for each dataset is given in
the top most row. The total F-score for each model is displayed to the left of each heat map row.

hierarchies (BIRCH) [34], a feedforward neural network (NN), and a recurrent neural
network (RNN), convolutional neural network (CNN) and lastly a BERT based bidirec-
tional GRU with self attention (BERT+BIGRUATT) [18]. Other models were consid-
ered but are not shown due to brevity, not having significant differences between the
shown baseline models. These other considered models were: term frequency-inverse
document frequency (tf-idf), weakly supervised multilingual causality extraction from
Wikipedia [12], Max-Matching and Attentive-Matching causal embedding models [2],
and causal knowledge extraction through large-scale text mining [13]. Additionally
each model was considered using a bag of words input as well as a combination of
bag of words and parts of speech. These results are also omitted due to non significant
results (compared to other baseline methods). All baseline models were implemented
using their default parameters specified in their implementations. The various datasets
used are described by Table 1.

Experimental Setup. For each dataset that contains only causal sentences we query
the PubMed Central corpus for their respective articles. For each article we obtain the
sentences which are not like a causal sentence. We define similar as the global alignment
score and remove the top 5 most similar sentences to any causal sentence. All remaining
sentences are labeled as non-causal. The resultant number of sentences and articles for
each dataset is given in Table 1.

The hyperparameters for OpBerg were optimized using Bayesian optimization. For
each labeled input set we then trained OpBerg, and the baseline methods using 10-fold
cross validation. To obtain a classification probability for each alignment method, each
test sentence’s POS tokens (a) were compared to each POS-mapping of the sentences
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in the training set using the OpBerg algorithm. The highest matching score (Hm) was
taken as the best match for a given sentence’s POS string (b). If the best match belonged
to a causal sentence, a probability was given to the test item as P+(a,Hm), with P+

defined as:

P+(a,H) =
H

Max[S(ai, ai)] × |a| (16)

For each test input, we also recorded the highest matching score aligned to a causal
training sentence (Hc). If the best match was not a causal sentence, the probability was
given to be:

P−(a,H) = Min

{
1 − P+(a,Hm)
P+(a,Hc)

}

(17)

Inputs for all methods were made using part of speech (POS) features obtained by
the Stanford CoreNLP POS tagger, embeddings using the GloVe Wikipedia 2014 +
Gigaword dataset [26] and from a task-specific word embedding technique for causal-
ity [2].

In some of the datasets we were only able to obtain whether a sentence causal or
not. However, in the ResearchMaps datasets we were able to determine more numerous
classes of interest. The classes of interest were separated into three sets. The simplest
set was labeled whether a sentence was causal. In the second, we are given the qualita-
tive result of the experiment, i.e., increase, decrease, no change or non-causal. The most
diverse set consisted of 7 different classes describing biological phenomena [29]: a per-
mutation of the set negative or positive with the set of no change, increase, or decrease
together with a non-causal label.

Experimental Results. The F-score for all models and datasets is represented as a heat
map in Fig. 1. The intensity of each point is calculated with respect to other models in
the same dataset. We normalize the points to emphasize the model differences when
compared against the same data. To give a more global view of the discovered causality
per dataset, we give the sums of the total F-score for each dataset in the top most row.
To give an aggregate scoring of each model overall, the total F-score for each model is
displayed to the left of each heat map row.

In all but one dataset, OpBerg gives the highest F-score amongst each baseline
method. As we can see from Fig. 1, word embeddings do not improve the results much.
For some models there was an improvement but overall there was not. We hypothesis
this is because the nature of the text we are using. Many words which are important
to causality are very esoteric words which may be difficult to obtain good vector rep-
resentations for due to the lack of widespread use. We suppose a similar reasoning to
why more causal-tailored methods [2,12,13,18] perform poorly at this task. It is likely
OpBerg would not outperform these causal-tailored methods in general tasks of causal-
ity. However, in tasks in which esoteric terms and used, OpBerg may be well-suited to
outperform other methods, due to the other methods reliance on general terminology
for extracting causality (such as Wikipedia [12,26]).

Our results suggest alignments are a good technique in classifying causal sentences
when the training set size is low; and the best among these alignment algorithms is
OpBerg.
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5 Discussion

Opberg represents a new approach to solving difficult NLP problems. Opberg is not
meant to replace previous state of the art techniques in all datasets, rather it can be
the best approach when the classification is complex and only a small amount (in the
order of 102 to 104) labeled data exists. We maintain the effectiveness of Opberg over
other machine learning approaches [3,4,8,11,14,20] when the labeled training data is
small. If confidence is maintained in the quality of the knowledge source in covering the
input data, predefined knowledge methods [6,17,25,27,33] may be more appropriate.
In situations where an alternative method is preferred, Opberg can add value as an
additional learning feature. In fact, it is the vision of the authors that Opberg will be
most valuable to the research community as a complement to established approaches.

The benefits of Opberg come at an additional cost. The algorithm is complex, and
the context can be unfamiliar to both the trained computer scientist and/or bioinformati-
cian. One area that may be worth investigating is the use of graphics processing units
(GPU) to reduce the execution time. If the GPU processing power can be used, large
inputs sizes, such as the human genome, can be used as input to Opberg and results
determined in a reasonable amount of time.

The approach of POS sequence alignment has some weaknesses. For one the algo-
rithm does not take into account particles which may confer a different meaning than a
sentence without the particle. An example of this would be the two sentences: A does
have a positive effect on B. and A does not have a positive effect on B. Opberg does
not take into account the negating word and a comparison would result in a high score.
Another area for further research exploration is in entity extraction. Opberg may be
good at finding similar structured sentences but in identifying the key terms, it is lack-
ing. In real world applications, the authors envision to use Opberg in a pipeline with
entity extraction methods run on the output after Opberg “filtering” for small labeled
input sets.

6 Conclusion

This paper introduces a novel approach to causality discovery by considering align-
ments among POS mappings of sentences. This approach considers restrictions on
the score size to break apart an alignment and enforces a minimum length require-
ment while also considering the number of alignments. OpBerg discovers meaningful
alignments that are useful in finding semantic similarity of two causal sentences. The
improved model and efficient implementation make OpBerg the best model to use when
performing tasks that involve a small amount of labeled training data coupled together
with esoteric text, particularly in that of causal extraction of biological research papers.
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causal sentence detection. In: BioNLP@ACL 2019, pp. 292–297 (2019)

19. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3), 18–22
(2002)

http://www.lrec-conf.org/proceedings/lrec2008/summaries/87.html
http://www.lrec-conf.org/proceedings/lrec2008/summaries/87.html


30 J. Wood et al.

20. Lücking, A., Driller, C., Stoeckel, M., Abrami, G., Pachzelt, A., Mehler, A.: Multiple annota-
tion for biodiversity: developing an annotation framework among biology, linguistics and text
technology. Lang. Resour. Eval. 1–49 (2021). https://doi.org/10.1007/s10579-021-09553-5

21. Lyu, Q., et al.: Zero-shot event extraction via transfer learning: challenges and insights. In:
ACL/IJCNLP 2021 (Volume 2: Short Papers), Virtual Event, 1–6 August 2021, pp. 322–332.
Association for Computational Linguistics (2021)

22. Manning, C.D., et al.: The Stanford CoreNLP natural language processing toolkit. In: Asso-
ciation for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)

23. Matiasz, N.J., et al.: Computer-aided experiment planning toward causal discovery in neuro-
science. Front. Neuroinform. 11, 12 (2017)

24. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

25. Patro, J., Baruah, S.: A simple three-step approach for the automatic detection of exaggerated
statements in health science news, pp. 3293–3305 (2021)

26. Pennington, J., et al.: Glove: global vectors for word representation. In: A Meeting of SIG-
DAT, A Special Interest Group of the ACL, EMNLP 2014, Doha, Qatar, 25–29 October
2014, pp. 1532–1543. ACL (2014)

27. Saha, R., et al.: Using Tsetlin machine to discover interpretable rules in natural language
processing applications. Expert Syst. e12873 (2021)

28. Shlain, M., et al.: Syntactic search by example. In: ACL 2020, 5–10 July 2020, pp. 17–23
(2020)

29. Silva, A.J., Müller, K.R.: The need for novel informatics tools for integrating and planning
research in molecular and cellular cognition. Learn. Mem. 22(9), 494–498 (2015)

30. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol.
Biol. 147(1), 195–197 (1981)

31. Taub-Tabib, H., et al.: Interactive extractive search over biomedical corpora. In: Proceedings
of the 19th SIGBioMed Workshop on Biomedical Language Processing, BioNLP 2020, 9
July 2020, pp. 28–37 (2020). https://doi.org/10.18653/v1/2020.bionlp-1.3

32. Wada, T., et al.: Learning contextualised cross-lingual word embeddings and alignments for
extremely low-resource languages using parallel corpora. In: Proceedings of the 1st Work-
shop on Multilingual Representation Learning, pp. 16–31 (2021)

33. Wang, Z., Wang, H., Luo, X., Gao, J.: Back to prior knowledge: joint event causality extrac-
tion via convolutional semantic infusion. In: Karlapalem, K., et al. (eds.) PAKDD 2021.
LNCS (LNAI), vol. 12712, pp. 346–357. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75762-5 28

34. Zhang, T., et al.: BIRCH: an efficient data clustering method for very large databases. In:
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,
pp. 103–114 (1996)

35. Zhang, Y., et al.: ReadsRE: retrieval-augmented distantly supervised relation extraction. In:
SIGIR 2021, Virtual Event, Canada, 11–15 July 2021, pp. 2257–2262. ACM (2021)

https://doi.org/10.1007/s10579-021-09553-5
https://doi.org/10.18653/v1/2020.bionlp-1.3
https://doi.org/10.1007/978-3-030-75762-5_28
https://doi.org/10.1007/978-3-030-75762-5_28


Text-Based Causal Inference on Irony
and Sarcasm Detection

Recep Firat Cekinel(B) and Pinar Karagoz

Computer Engineering Department, Middle East Technical University, Ankara,
Turkey

{rfcekinel,karagoz}@ceng.metu.edu.tr

Abstract. The state-of-the-art NLP models’ success advanced signifi-
cantly as their complexity increased in recent years. However, these mod-
els tend to consider the statistical correlation between features which
may lead to bias. Therefore, to build robust systems, causality should be
considered while estimating the given task’s data generating process. In
this study, we explore text-based causal inference on the irony and sar-
casm detection problem. Additionally, we model the latent confounders
by performing unsupervised data analysis, particularly clustering and
topic modeling. The obtained results also provide insight for the causal
explainability in irony detection.

Keywords: Irony detection · Causal inference · Clustering · Topic
modeling

1 Introduction

Traditional NLP models can achieve accurate prediction results using statisti-
cal correlations within data. However, performance of the conventional methods
mainly depends on the data distribution of the training and testing datasets.
For this reason, analyzing causal relationships which utilize the data generating
process are helpful to create robust models [8,31]. More specifically, causal infer-
ence is a way of generating counterfactual explanations in hypothetical scenarios
such as how the outcome variable is affected by an intervention on a treatment
variable. The causal inference has been applied to create inferences on imaginary
situations in several fields, but its practical applications in NLP have started to
gain attention.

The cause-effect relationships of linguistic properties can be examined using
causal inference by measuring the change in the outcome resulting from an inter-
vention on a treatment. Under an imaginary scenario, the potential outcomes
can be estimated by satisfying ignorability, positivity, and consistency assump-
tions (details given in Sect. 3.1). Usually, NLP applications rely on observational
data, so randomly assigning texts is not feasible. In other words, to satisfy the
ignorability assumption in observational studies while assigning treatment, there
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R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 31–45, 2022.
https://doi.org/10.1007/978-3-031-12670-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12670-3_3&domain=pdf
http://orcid.org/0000-0003-4574-5578
http://orcid.org/0000-0003-1366-8395
https://doi.org/10.1007/978-3-031-12670-3_3


32 R. F. Cekinel and P. Karagoz

should not exist any unobserved confounders (predict both treatment and out-
come). Identification is also another key aspect of causal inference for NLP,
which suggests that the linguistic properties can be expressed using proxy labels
[22,32,44]. Additionally, it is assumed that proxy labels can estimate the ground-
truth causal relation of linguistic properties.

Many state-of-the-art NLP models can be considered black-box models,
which receive text documents as input and generate an output dependent on
the task. Therefore, explaining and intervening in the predictions of such models
remain a challenging problem [5,8,35]. Some studies examined the applicability
of causal methods to interpret the black-box NLP models by generating coun-
terfactual statements [26]. These works can be classified as data perspective [38]
and model component perspective [14,27] where the former is related to coun-
terfactual statement generation and exploiting network artifacts is an example
of the latter.

In this study, we focus on irony and sarcasm detection problem, and explore
text-based causal inference by using the TextCause algorithm [32] to measure the
causal effect of linguistic properties on this problem. Irony and sarcasm detec-
tion refers to way of verbal expressions such that the one’s meaning is expressed
through signifying just the opposite. Therefore, the problem includes difficul-
ties and analyzing the causal relationships can provide insight for explainability
of the generated models and improving the detection performance. The main
contributions of this study can be summarized as follows:

– The causal effect of linguistic properties are examined in irony and sarcasm
detection tasks using the TextCause algorithm [32].

– Latent confounders within text documents are modeled by using K-Means
clustering and LDA topic modeling and their effects on the causal inference
are analyzed.

– The obtained results provide insight in terms of the causal interpretability
and explainability aspects.

2 Related Works

This study is built on top of the TextCause algorithm proposed by Pryzant
et al. [32]. The authors use DistilBERT [39] language model to adjust text and
they are inspired by Veitch et al.’s CausalBERT study [43] which adapts BERT
to adjust texts as a confounder. Additionally, they generate causal embeddings
using causal topic models, which were adopted from Blei et al. [1]. Keith et al. [17]
summarize the methods to adjust texts for causal inference. Moreover, Fong et al.
[11] discuss the required assumptions to use latent features of text as treatment.
In another study, they also use topic modeling to discover latent treatments in
texts [10]. Moreover, Wood-Doughty et al. [46] address the challenges of using
proxy treatments for causal inference.

Recently, Yang et al. [47] conduct a survey of existing causality extraction
methods for texts. Moreover, Feder et al. [8] provide a review of the use-cases of
text-based causal inference and discuss fairness, interpretability, and robustness
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aspects. Texts can be considered as treatment [32,48], confounder [17,43], out-
come [7] and even mediator [18] settings. Sridhar et al. [40] examine the causal
effect of tone on online debates. Koroleva et al. [21] propose a model to measure
the similarity of pairs of clinical trial outcomes and reports semantically using
BERT-based language models.

There exist comprehensive studies that review models to explain black-box
NLP models [5,8,26]. More recently, Chou et al. [4] also examine an in-depth
review of the studies on model-agnostic counterfactual algorithms and argue that
many such studies do not rely on causal theoretical formalism. Wang et al. [45]
utilize a causal approach to exploit the attention weights of a sentiment classifier.
Besides, perturbation-based approaches [23,35] have been used for explanation.
Another prominent and challenging text-based causal explanation method is
counterfactual statement generation [12,36,38] which requires manipulating text
in a meaningful manner. Therefore, instead of modifying the text itself, changing
its representation has emerged by [9,33]. Besides, Buyukbas et al. [2] work on
the same Turkish tweet dataset as in this study and examine the explainability
of transformer architectures using two popular explainability tools, LIME [35]
and SHAP [23] for irony detection task. Likewise, Hazarika et al. [15] propose
the CASCADE model that utilizes both contextual and content information to
improve the sarcasm detection performance significantly on SARC [19] dataset.

3 Background

3.1 Causal Inference

Typical NLP models use statistical associations to make decisions and estimate
the dataset’s distribution using the training data. On the other hand, causal
inference is an inverse problem that figures out the structural causal model of
the data generating process, which leads to more robust and invariant models.
Causal inference is about answering the counterfactual queries based on the
intervention of interest. However, the counterfactual outcomes do not exist in
the observational data in most cases. Therefore, the causal effect is the change of
outcome variable Y by the intervention on treatment X when all other covariates
are kept constant.

The initial step of causal inference represents the association between vari-
ables as Structural Causal Models (SCMs). The SCMs consist of directed acyclic
graphs (DAGs) and a mathematical problem formulation. The variables are rep-
resented as nodes, and edges represent the causal relationship between variables.

Definition 1 (Structural Causal Model). It consists of 3-tuples (U, V, E)
where U denotes a set of exogenous variables (independent from the states), V
denotes a set of endogenous variables (dependent to other states in the system)
and they are connected by a set of structural equations, E, where each equation
defines endogenous variables in terms of U and V.

After representing the causal model as a graph, interventions on a treat-
ment can be expressed using Pearl’s do-calculus notation [30]. Three rules of
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do-calculus which allow to simulate interventions on treatment to identify causal
relationships in DAGs are summarized below:

– Rule 1: Insertion and deletion of observations

P(Y |do(X), Z, W) = P(Y |do(X), Z), if W is irrelevant to Y

– Rule 2: Action/observation exchange

P(Y |do(X), Z) = P(Y |X, Z), if Z blocks all back-door paths from X to Y

– Rule 3: Insertion and deletion of actions

P(Y |do(X)) = P(Y), if there is no causal path from X to Y

The first rule suggests that we can omit variables W if it is irrelevant to
outcome Y. However, the second rule states that if variables Z blocks all backdoor
paths from treatment X to Y, we must condition on Z. Finally, the third rule
asserts that if there is no causal path from X to Y, we should not condition on
X. A causal inference framework can estimate the counterfactual outcomes by
making some assumptions that need to satisfy three criteria listed below:

– Ignorability : The treatment assignment and the counterfactual outcomes must
be independent by randomizing the treatment assignment. However, for obser-
vational data, it is not feasible. Therefore, softer conditional ignorability cri-
teria should be satisfied, which requires no unobserved confounders in the
dataset.

– Positivity : For all covariates, the probability of receiving treatment must be
greater than 0.

– Consistency : The outcome at unit i is only affected by the treatment at the
same unit.

3.2 NLP with Causality

Texts are inherently high dimensional, and by encoding texts using language
models, hidden factors such as topic, tone, and writing style can be discov-
ered. BERT [6], a bi-directional transformer-based language model, had a break-
through on NLP, which outperformed previous models on many tasks with sig-
nificant margins. However, Feder et al. [8] indicated that such models utilize
statistical relationships while making decisions. Therefore, their predictions can
be considered unreliable. Moreover, McCoy et al. [25] pointed out that these
language models may fail when the data distribution of the test set changes
significantly since these models rely on some statistical reasonings. As a result,
causal models are required to increase the models’ generalization performance.

Secondly, the reasoning of any model can be evaluated with sensitivity and
invariance tests. The former identifies how much minimal perturbation is neces-
sary to switch the model’s decision for the given sample. On the other hand, the
latter determines whether a change in a causally unrelated feature impacts the
model’s decision. These tests can be valuable to interpret the model’s robustness
by feeding counterfactual inputs. Besides, Veitch et al. [42] stated that invariant
models can perform better on different data distributions.
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3.3 Causal Model Explainability

Language models such as BERT [6] are not inherently explainable. According to
Moraffah et al. [26] exploiting network artifacts such as attention weights is one
approach to infer the decisions of a neural model. However, these approaches can
only describe token-wise information. In addition, perturbating instances near
decision boundary [23,35] is another way of interpretability. Yet, sentence-level
estimates of such models may not be so successful [8]. In other words, these
approaches may result in erroneous explanations to the decision-makers since
they compute correlations between features [4,20,37].

In this context, causal models can generate counterfactual instances which
can be used for interpretability [8]. For instance, a data sample’s prediction can
be compared with its counterfactual representative. More specifically, if a text
contains a concept, its counterfactual will not include that concept, and their
outputs can be compared to learn how the model makes decisions.

4 Methods

In this work, we investigate the causal inference for irony and sarcasm detection
problem, which involves text analysis. Therefore we apply text based causal
inference algorithm, TextCause, [32]. In addition to adapting TextCause to
irony/sarcasm detection problem, we extend the use of confounders by using
unsupervised data analysis.

4.1 Text-Based Causal Inference Using TextCause

TextCause, which is proposed by Pryzant et al. [32], employs the CausalBERT
model [43] that adjusts text for causal inference. The key innovation of the
TextCause algorithm is the assumption that neither the writer’s intent nor the
reader’s perception can be identified from observational data. Therefore, the
authors express the need to employ a proxy label T̂ to estimate the causal effect
of a linguistic property. In other words, they train a proxy classifier to capture
both the writer’s intent and the reader’s perception. The proposed structural
causal model is presented in Fig. 1. According to this structural causal model, a
writer writes a text W that contains a linguistic property T with other covariates
Z. A reader’s perception of that linguistic property is represented by ˜T and ˜Z
and affects the outcome Y which can be estimated using a proxy label T̂ . Besides,
the authors state that the bias due to proxy treatment decreases as the proxy
classifier’s accuracy increases. Therefore, for observational data, actual linguistic
property T can be measured using proxy labels T̂ .

The conditional ignorability assumption of causal inference requires that the
treatment assignment should be independent of the outcomes for observational
data. In other words, this assumption states that we need to adjust for all con-
founders to estimate the causal effect of the treatment. The causal effect can
be estimated using the Average Treatment Effect (ATE), which is formulated in
Eq. 1.
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Fig. 1. The causal model in [32]

ATE = E[Y ; do(T = 1)] − E[Y ; do(T = 0)] (1)

ATE can be expressed as the difference between the interventional outcome
(T = 1) and the counterfactual outcome (T = 0). However, text documents may
contain some hidden confounders, such as tone and writing style, so we need to
adjust the ATE for all confounders using Pearl’s backdoor-adjustment [29]. Since
the authors use proxy labels to estimate the ATE, the modified ATE estimation
is given in Eq. 2. The TextCause model uses DistilBERT to generate a repre-
sentation of texts and employs the special classification token, CLS, to approxi-
mate the confounding information Ẑ. Therefore, the ATE estimator relies on the
treatment, the language model representation of text and the one-hot encoding
of the covariates. As a result, the model learns two vectors that corresponds to
the language model representation and one-hot encoded covariates respectively.

ATEproxy = EW [E[Y |T̂ = 1, ˜Z = f(W )] − E[Y |T̂ = 0, ˜Z = f(W )]] (2)

In addition to the text adjustment, another contribution of the TextCause
algorithm is improving the recall of the proxy labels, which is motivated by lex-
icon induction [13] and label propagation [49]. The authors train logistic regres-
sion and pu-classifier models to predict proxy labels T̂ ∗ and relabel the instances
that labeled as T̂ = 0 but predicted as T̂ ∗ = 1. As a result, improved proxy labels
and texts are required to measure the causal effect. Additional covariates and
language model representation of a text should be adjusted as a confounder.
Hence, the TextCause algorithm utilizes both proxy label improvement and text
adjustment to estimate the causal effect of desired linguistic property.

4.2 Unsupervised Data Analysis for Determining Confounders

While applying text based causal inference on irony/sarcasm detection problem,
the categories or groupings within the text collection is considered as a con-
founder. In order to determine the subgroups, two different techniques1, topic
modeling and clustering, are used.

1 https://github.com/firatcekinel/Unsupervised-Data-Analysis.

https://github.com/firatcekinel/Unsupervised-Data-Analysis
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Topic Modeling. Topic modeling is a statistical method to discover latent top-
ics in a corpus. It is an unsupervised technique that examines semantic structures
in a text. Moreover, the topics represent a group of similar words that are deter-
mined by statistical models. A document can be a mixture of several topics with
different proportions based on a word’s appearance in one of the topics. There-
fore, a document can be classified using topic modeling based on the words’
relevance to the abstract topics.

Latent Dirichlet Allocation (LDA) [1] is one of the most popular topic mod-
eling techniques. It is a generative statistical model that uses the Dirichlet priors
for word-topic and document-topic distributions and represents documents as a
mixture of topics where the distribution over words determines the proportions.
Given a corpus with M documents where a document wi contains N-words and
α and β are the Dirichlet prior parameters, the probability distribution of a
document can be expressed as in Eq. 3. In this study, we lemmatized texts using
SpaCy2 and performed LDA to discover abstract topics that highlight several
aspects of the document collection.

P (D,α, β) =
∏M

m=1

∫

P (θm|α)(
∏N

n=1

∑

Zmn
P (Zmn|θm)P (Wmn|Zmn, β))mθm (3)

Clustering. Texts are inherently high-dimensional, so a text should be encoded
to a latent vector space. Sentence embeddings map sentences to vectors that can
measure semantic similarity between sentences or text summarization. Trans-
formers [41] made a remarkable impact on NLP tasks that passed previous
models with a substantial margin. Reimers et al. [34] introduce S-BERT, which
is a transformer-based sentence embedding model. S-BERT was built on top
of the pre-trained BERT [6] model but uses siamese and triplet networks to
extract semantically meaningful sentence embeddings. The S-BERT produces
large-sized vectors as sentence embedding, which should be transformed into a
lower-dimensional space for clustering. Dimensionality reduction techniques such
as PCA [16], and t-SNE [24] can be applied to transform high-dimensional data
into a lower-dimensional space by preserving the meaningful information in the
data.

Clustering is an unsupervised machine learning technique that groups similar
data instances together. K-Means clustering is one of the most popular clustering
methods that assign n data points to k clusters where each data point is assigned
to a cluster whose cluster center is the nearest. Since unsupervised models do
not have a ground truth, metrics such as the silhouette coefficient can measure
the clustering quality. This study uses S-BERT to encode texts in a fixed-size
latent space and applies dimensionality reduction using PCA or t-SNE. Finally,
the transformed data is given to a K-Means model to group semantically similar
texts.

2 https://spacy.io/.

https://spacy.io/
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4.3 Modeling Causal Inference for Irony and Sarcasm Detection

In this work, we explore the cause-effect relationship for irony and sarcasm detec-
tion on two scenarios. The treatments (T), outputs (Y) and confounders (Z)
considered in the scenarios are as follows.

Case 1. We measure the effect of writing sarcastic posts (T) on the popularity of
the post, number of likes, (Y) and consider subreddit category, cluster label (by
the K-Means model) and the topic category (by the LDA model) as confounder
(Z), separately.

Case 2. We examine whether putting an exclamation mark (!) affects irony
detection. In other words, we explore whether the exclamation mark (T) affects
the readers’ perception of a text as ironic (Y). The cluster label and topic cate-
gory were also considered confounder (Z) in this scenario.

5 Experiments

5.1 Dataset and Settings

The first dataset that we use in our study is a Self-Annotated Reddit Corpus
(SARC) [19] that contains 1.3 million sarcastic Reddit posts. It is a publicly-
available dataset, and statements that end with “/s” marker, a common sarcastic
marker of Reddit users, are annotated as sarcastic. Therefore, we can consider
that the dataset might contain some false negative statements, such that there
may be some statements that should be annotated as sarcastic but not marked as
such. Moreover, we should not assume that all Reddit users know such markers,
so the dataset might also contain some false positive statements. Secondly, we
use a Turkish tweet dataset for irony detection [3,28]. The dataset contains 300
non-ironic and 300 ironic tweets in Turkish, which were annotated manually.

The experiments are performed on Nvidia GeForce RTX 2080 Super GPU
with 8 GB memory. The computer also includes Intel i7-8700k CPU@3.7 GHz
with 12 cores. While implementing the model, Huggingface’s multilingual Dis-
tilBERT [39] is used. It is a lighter BERT model that performs very close to the
original model using significantly fewer parameters. Additionally, we performed
some validation experiments to adjust hyperparameters such as epoch and learn-
ing rate. In Sect. 5.2, we present only the results with the best hyperparameter
settings.
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Fig. 2. Number of reddit posts for each confounder settings

5.2 Results

Case 1 Results. In this experiment, we assume that the subreddit category,
topic label and cluster label affect the treatment and outcome, so we consider
these attributes as confounder.

Firstly, we gather the posts in “AskReddit” (Z = 0), “news” (Z = 1), “world-
news” (Z = 2), and “politics” (Z = 3) subreddits. If the posts’ score is above five,
we annotate them as “liked” comments. Besides if the posts’ score is below 0, we
annotate them as “disliked” comments. Overall, the number of comments satis-
fying these conditions are 37 K approximately. ,The number of popular (liked)
posts within each confounder is given in Fig. 2.

Secondly, we assume that the LDA topic models could be used as a con-
founder. We measure the coherence score for various topic counts and observe
that setting of 10 topics is a reasonable choice among a set of alternatives. The
coherence score of this setting is 0.312. Likewise, we apply K-Means clustering to
find optimal number of clusters with the collection of posts. According to Fig. 3,
K = 3 is sensible among the selected set of values according to elbow analysis.
Additionally, for K = 3, PCA and t-SNE plots are given in Fig. 4.

Finally, we measure the ATE score using the subreddit category, topic label,
and cluster label as a confounder. Since the TextCause model requires proxy
labels, we trained a BERT model using 400 K Reddit documents (80%–20%
train-val sets) from other categories. The accuracy of the proxy classifier on
the selected subreddits is 78.6%, and the f1-score is also calculated as 0.806. The
TextCause model measures the oracle ATE value using the ground truth sarcastic
label. The unadjusted ATE measures the treatment effect without adjusting for
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(a) Case 1 (b) Case 2

Fig. 3. WSS and silhouette plots

(a) PCA (b) t-SNE

Fig. 4. K-Means clusters of reddit comments

any covariates. The T-boost values consider improved proxy treatments using pu
classifier (to improve the recall for positive instances) and logistic regression. W
adjust is another estimator that adjusts for text. Moreover, the last two estimates
combine W adjust with T-boost.

We trained the TextCause algorithm for five epochs. According to the ATE
scores in Table 1, adjusting for the topic label, cluster label, and subreddit cate-
gory improves the ATE result. The oracle value suggests that the sarcastic writ-
ing style increases the chance of a post being liked between 6% and 10%. Addi-
tionally, the closest estimations are predicted by the T-boost reg model, and the
TextCause models’ subreddit and cluster label estimations are very close to the
oracle estimator. However, when we adjust for topic labels, the unadjusted ATE
estimator, which calculates ATE without adjusting for any covariate, becomes
the second closest estimator overall.
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Table 1. Case 1: Subreddit, topic and cluster labels were considered as confounder

Estimator ATEsubreddit ATElda ATEk−means

Oracle 0.0773 0.1029 0.0669

Unadjusted 0.1041 0.1041 0.1041

T-boost reg 0.0742 0.1037 0.0639

T-boost pu 0.0670 0.1005 0.0549

W adjust 0.0644 0.0659 0.0725

TextCause pu 0.0676 0.0776 0.0635

TextCause reg 0.0735 0.0719 0.0746

Fig. 5. Number of tweets for each confounder settings

Case 2 Results. In this experiment, we measure the effect of using an excla-
mation mark (!) on the irony. Since the treatment is evident, there is no need
for a proxy label. We evaluate the causal question on the Turkish irony dataset,
which is annotated by [3,28]. As in the first experiment, we consider the topic
and cluster labels as a confounder. Figure 5 indicates the number of tweets for
each confounder settings. According to the WSS and silhouette plots given in
Fig. 3, the highest silhouette score is measured when K = 2. The clusters pro-
jected with the PCA and t-SNE are presented in Fig. 6. On the other hand, for
LDA model, 10 topics settings is a reasonable choice since the coherence score
of this setting is measured as 0.7318.

We trained the TextCause algorithm for 15 epochs. According to the ATE
results that are presented in Table 2, the treatment has a considerable impact
on the posts’ irony. However, contrary to our expectations, there is an inverse
relationship between the treatment and the outcome. As seen in Fig. 5, this is
possibly due to that the number of ironic tweets that contain an exclamation
mark is just 17% (51 out of 300 tweets) of the all ironic tweets. In addition,
text adjustment for LDA topic labels estimates the closest prediction to the
oracle value. However, for cluster labels the unadjusted setting was the closest
among the all estimators. Note that, we do not present the results of the T-boost
estimators because proxy labels were not appropriate in this setting.
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(a) PCA (b) t-SNE

Fig. 6. K-Means clusters of tweets

Table 2. Case 2: Topic and cluster labels were considered as confounder

Estimator ATEk−means ATElda

Oracle −0.3955 −0.3451

Unadjusted −0.3889 −0.3889

W adjust −0.3506 −0.3383

TextCause pu −0.0581 −0.0570

TextCause reg −0.0292 −0.0204

6 Conclusion

This study addresses the application of causal inference to text analysis. Specif-
ically, we employ the TextCause algorithm [32] to estimate the causal effect of
sarcastic linguistic properties on a text’s popularity, and use of punctuations,
particularly (!) on understanding/detecting irony. Moreover, we perform unsu-
pervised data analysis using clustering and topic modeling and utilize these
methods’ output for the causal inference. According to the measurements, clus-
ter and topic labels may contain latent information on ironic linguistic properties
and the popularity of the posts. The results can be reexamined in-depth in terms
of explainability for future work. For instance, counterfactual statements that
do not contain a specific linguistic property can be generated and fed into the
causal-text model. The results can be examined in terms of invariance and sen-
sitivity.
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neural models for Irony detection on Turkish informal texts. In: 2020 28th Signal
Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE
(2020)

4. Chou, Y.L., Moreira, C., Bruza, P., Ouyang, C., Jorge, J.: Counterfactuals and
causability in explainable artificial intelligence: theory, algorithms, and applica-
tions. Inf. Fusion 81, 59–83 (2022)

5. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of
the state of explainable AI for natural language processing. In: Proceedings of the
1st Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Conference on Natural Language Pro-
cessing, pp. 447–459 (2020)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Egami, N., Fong, C.J., Grimmer, J., Roberts, M.E., Stewart, B.M.: How to make
causal inferences using texts. arXiv preprint arXiv:1802.02163 (2018)

8. Feder, A., et al.: Causal inference in natural language processing: estimation, pre-
diction, interpretation and beyond. arXiv preprint arXiv:2109.00725 (2021)

9. Feder, A., Oved, N., Shalit, U., Reichart, R.: Causalm: causal model explanation
through counterfactual language models. Comput. Linguist. 47(2), 333–386 (2021)

10. Fong, C., Grimmer, J.: Discovery of treatments from text corpora. In: Proceed-
ings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1600–1609 (2016)

11. Fong, C., Grimmer, J.: Causal inference with latent treatments. Am. J. Polit. Sci.
(2019)

12. Gardner, M., et al.: Evaluating models’ local decision boundaries via contrast sets.
In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
1307–1323 (2020)

13. Hamilton, W.L., Clark, K., Leskovec, J., Jurafsky, D.: Inducing domain-specific
sentiment lexicons from unlabeled corpora. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing. Conference on Empiri-
cal Methods in Natural Language Processin, vol. 2016, p. 595. NIH Public Access
(2016)

14. Harradon, M., Druce, J., Ruttenberg, B.: Causal learning and explanation of
deep neural networks via autoencoded activations. arXiv preprint arXiv:1802.00541
(2018)

15. Hazarika, D., Poria, S., Gorantla, S., Cambria, E., Zimmermann, R., Mihalcea, R.:
Cascade: contextual sarcasm detection in online discussion forums. In: Proceedings
of the 27th International Conference on Computational Linguistics, pp. 1837–1848.
Association for Computational Linguistics (2018). http://aclweb.org/anthology/
C18-1156

16. Jolliffe, I.: Principal Component Analysis. Springer, Cham (2002). https://doi.org/
10.1007/b98835

17. Keith, K., Jensen, D., O’Connor, B.: Text and causal inference: a review of using
text to remove confounding from causal estimates. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 5332–5344
(2020)

18. Keith, K., Rice, D., O’Connor, B.: Text as causal mediators: research design for
causal estimates of differential treatment of social groups via language aspects. In:
Proceedings of the First Workshop on Causal Inference and NLP, pp. 21–32 (2021)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1802.02163
http://arxiv.org/abs/2109.00725
http://arxiv.org/abs/1802.00541
http://aclweb.org/anthology/C18-1156
http://aclweb.org/anthology/C18-1156
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835


44 R. F. Cekinel and P. Karagoz

19. Khodak, M., Saunshi, N., Vodrahalli, K.: A large self-annotated corpus for sarcasm.
In: Proceedings of the 11th International Conference on Language Resources and
Evaluation (LREC 2018) (2018)

20. Kilbertus, N., Rojas Carulla, M., Parascandolo, G., Hardt, M., Janzing, D.,
Schölkopf, B.: Avoiding discrimination through causal reasoning. In: Advances in
Neural Information Processing Systems, vol. 30 (2017)

21. Koroleva, A., Kamath, S., Paroubek, P.: Measuring semantic similarity of clinical
trial outcomes using deep pre-trained language representations. J. Biomed. Inform.
100, 100058 (2019)

22. Lucy, L., Demszky, D., Bromley, P., Jurafsky, D.: Content analysis of textbooks
via natural language processing: findings on gender, race, and ethnicity in Texas
US history textbooks. AERA Open 6(3), 2332858420940312 (2020)

23. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

24. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11) (2008)

25. McCoy, T., Pavlick, E., Linzen, T.: Right for the wrong reasons: diagnosing syn-
tactic heuristics in natural language inference. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 3428–3448 (2019)

26. Moraffah, R., Karami, M., Guo, R., Raglin, A., Liu, H.: Causal interpretability
for machine learning-problems, methods and evaluation. ACM SIGKDD Explor.
Newsl. 22(1), 18–33 (2020)

27. Narendra, T., Sankaran, A., Vijaykeerthy, D., Mani, S.: Explaining deep learning
models using causal inference. arXiv preprint arXiv:1811.04376 (2018)

28. Ozturk, A.U., Cemek, Y., Karagoz, P.: IronyTR: Irony detection in Turkish infor-
mal texts. Int. J. Intell. Inf. Technol. (IJIIT) 17(4), 1–18 (2021)

29. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
30. Pearl, J.: The do-calculus revisited. In: Proceedings of the 28th Conference on

Uncertainty in Artificial Intelligence, pp. 3–11 (2012)
31. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect.

Basic Books, New York (2018)
32. Pryzant, R., Card, D., Jurafsky, D., Veitch, V., Sridhar, D.: Causal effects of lin-

guistic properties. In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 4095–4109 (2021)

33. Ravfogel, S., Prasad, G., Linzen, T., Goldberg, Y.: Counterfactual interventions
reveal the causal effect of relative clause representations on agreement prediction.
In: Proceedings of the 25th Conference on Computational Natural Language Learn-
ing, pp. 194–209 (2021)

34. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese
BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992 (2019)

35. Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine
learning. arXiv preprint arXiv:1606.05386 (2016)

36. Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond accuracy: behavioral testing
of NLP models with checklist. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 4902–4912 (2020)

37. Richens, J.G., Lee, C.M., Johri, S.: Improving the accuracy of medical diagnosis
with causal machine learning. Nat. Commun. 11(1), 1–9 (2020)

http://arxiv.org/abs/1811.04376
http://arxiv.org/abs/1606.05386


Text-Based Causal Inference on Irony and Sarcasm Detection 45

38. Ross, A., Wu, T., Peng, H., Peters, M.E., Gardner, M.: Tailor: generating and
perturbing text with semantic controls. arXiv preprint arXiv:2107.07150 (2021)

39. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

40. Sridhar, D., Getoor, L.: Estimating causal effects of tone in online debates. In:
International Joint Conference on Artificial Intelligence (2019)

41. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

42. Veitch, V., D’Amour, A., Yadlowsky, S., Eisenstein, J.: Counterfactual invari-
ance to spurious correlations: why and how to pass stress tests. arXiv preprint
arXiv:2106.00545 (2021)

43. Veitch, V., Sridhar, D., Blei, D.: Adapting text embeddings for causal inference.
In: Conference on Uncertainty in Artificial Intelligence, pp. 919–928. PMLR (2020)

44. Voigt, R., et al.: Language from police body camera footage shows racial disparities
in officer respect. Proc. Natl. Acad. Sci. 114(25), 6521–6526 (2017)

45. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level
sentiment classification. In: Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 606–615 (2016)

46. Wood-Doughty, Z., Shpitser, I., Dredze, M.: Challenges of using text classifiers for
causal inference. In: Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing. Conference on Empirical Methods in Natural Language
Processing, vol. 2018, p. 4586. NIH Public Access (2018)

47. Yang, J., Han, S.C., Poon, J.: A survey on extraction of causal relations from
natural language text. Knowl. Inf. Syst. 64, 1161–1186 (2022)

48. Zhang, J., Mullainathan, S., Danescu-Niculescu-Mizil, C.: Quantifying the
causal effects of conversational tendencies. Proc. ACM Hum. Comput. Interact.
4(CSCW2), 1–24 (2020)

49. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation (2002)

http://arxiv.org/abs/2107.07150
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2106.00545


Sarcastic RoBERTa: A RoBERTa-Based
Deep Neural Network Detecting Sarcasm

on Twitter
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Abstract. Sarcastic RoBERTa is an approach to recognizing sarcastic
tweets written in English. It is based on a pre-trained RoBERTa model
supported by a 3-layer feed-forward fully-connected neural network. It
establishes a new state-of-the-art result on the iSarcasm dataset, attain-
ing the F1 score of 0.526, and being not far from the human performance
of 0.616.

Keywords: Text classification · Sarcasm detection · RoBERTa ·
iSarcasm · SARC · Knowledge transfer

1 Introduction

Sarcasm is the use of remarks that clearly mean the opposite of what they say,
made in order to hurt someone’s feelings or to criticize something in a humorous
way [1]. Recognizing it purely from a short piece of text, such as a post on social
media, is an interesting research challenge. First, the notion itself is challenging,
not only for an algorithm but also for a human, as it requires disregarding the
literal meaning of a text in favor of the opposite meaning. Moreover, short pieces
of text lack context. In some cases, they may be, e.g., a response to some other
post offering some context, but frequently they rely on an implicit context known
both to the author and the intented readers, e.g., related to the current sports
events. Additionally, an utterance intended as sarcastic on one day may be read
as non-sarcastic only a few days later when some new facts become available.
Finally, as sarcasm purposefully twists and turns the meaning of language, its
form and intended understanding may vary from author to author to a much
greater extent than for straightforward utterances.

This work summarizes the results of a bachelor thesis by PM, PJ, JK, MH, done under
the supervision of DW and JP.
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In this work, we focus on detecting sarcasm in posts from Twitter1 – a popular
social media platform. Such posts are called tweets and are currently up to 280
characters long, including special-purpose parts, such as mentioning other users
with @ marker or tagging content with #. We leverage two datasets, iSarcasm
[17] and the Self-Annotated Reddit Corpus (SARC ) [13]. We describe them in
Sect. 2. We introduce Sarcastic RoBERTa, a deep neural network based on a pre-
trained deep neural language model RoBERTa [15], and describe its details in
Sect. 3, along with simpler models used for an ablation study. Sarcastic RoBERTa
establishes a new state-of-the-art result on the iSarcasm’s test set, attaining the
F1 score equal to 0.526, whereas human annotators scored 0.616. The details of
the evaluation are presented in Sect. 4. We discuss the related work in Sect. 5,
and conclude in Sect. 6.

The main contributions of the paper are as follows:

– we show that transformer models, in particular RoBERTa, are viable tools
for sarcasm detection;

– we present a training procedure leading to Sarcastic RoBERTa, a model
improving over the current state of the art by 0.062 on the F1 score;

– we publish the model for ease of reuse.

2 Datasets

In this paper, we employ two datasets: iSarcasm2 [17] and the Self-Annotated
Reddit Corpus (SARC ) [13]. iSarcasm is a dataset consisting of tweets IDs,
each assigned with a binary label indicating whether the tweet is sarcastic or
not. Additionally, each sarcastic tweet is assigned to one of the following cate-
gories of sarcasm: sarcasm, irony, satire, understatement, overstatement, rhetor-
ical question. The tweets were collected in a survey, where each participant was
supposed to link one sarcastic tweet of theirs and three non-sarcastic tweets.
The dataset is heavily biased in some aspects, as 97% of participants were from
the US and the UK, and over 72% were younger than 35 years old. The final
assignment of labels and categories was done by trained linguists, yielding 777
sarcastic and 3,707 non-sarcastic tweets. The authors split the dataset into a
training set and a test set in the proportion of 80:20. iSarcasm reveals that even
the problem of deciding whether a tweet is sarcastic or not is not an easy one.
In an experiment where three third-party annotators labeled the test set, with
their votes aggregated by the majority voting, they scored only 0.616 on the F1

score.
In this work, we disregard the sarcasm category and concentrate only on

deciding whether a tweet is sarcastic or not. We employed the Twitter API
to download the textual content of the tweets. As some of the tweets are no
longer available, the final dataset consists of 3535 tweets, i.e., 78% of the original

1 www.twitter.com.
2 https://github.com/silviu-oprea/iSarcasm.

www.twitter.com
https://github.com/silviu-oprea/iSarcasm
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dataset, divided into a training set of 2825 tweets (480 sarcastic) and a test set
of 710 tweets (119 sarcastic).

The other dataset, SARC, is a large corpus derived automatically from Red-
dit3, a social media platform for interest-focused communities. SARC consists of
533 M comments, out of which 1.34 M (i.e., 0.2%) are sarcastic. A comment was
labeled as sarcastic if it terminates with the marker /s, which is an established
way on Reddit to self-label sarcastic utterances. In an experiment using 100 pairs
consisting of a sarcastic and a non-sarcastic comment with the goal of deciding
which one is sarcastic, the majority voting over 5 human annotators attained
the accuracy of 92%. In this work, we use a balanced subset of SARC consisting
of about 1.01 M comments, available as the file train-balanced-sarcasm.csv
at https://www.kaggle.com/danofer/sarcasm.

3 Proposed Approach

Architecture. To construct Sarcastic RoBERTa, a binary classifier capable of
distinguishing between sarcastic and non-sarcastic tweets, we used an approach
inspired by [18]. The input of the classifier is a string of characters preprocessed
in such a way that every token starting with @ is replaced with a general @user
placeholder. Similarly, every URL is replaced with http token.

First, the input is passed through a tokenizer appropriate for a given
RoBERTa model that was obtained using the AutoTokenizer class provided
in the HuggingFace’s transformers library. This step transforms any sequence
into tokens known by RoBERTa. Each sequence is then padded to a length of
127 tokens.

Then, we use a Twitter pre-trained RoBERTa model [15]. The model is avail-
able in the HuggingFace repository4 as cardiffnlp/twitter-roberta-base. It
was trained on a corpus of 58M tweets and exhibited a non-negligible perfor-
mance improvement over the general purpose roberta-base model when com-
pared on the TweetEval benchmark [5].

We use the last hidden state of RoBERTa as an embedding representing the
input, and we apply to it a 1D-max-pooling layer with a kernel size of 20. Next,
we use two fully-connected feed-forward layers (resp. 800 and 20 neurons), each
followed by a dropout layer (p = 0.5) and the ReLU activation function. Finally,
the output layer consists of 2 neurons with the softmax activation function.

Training Protocol. We employed the cross-entropy loss and the Adam optimizer
[14] with a learning rate set to 10−5. First, we used randomly selected 400,000
examples from the balanced subset of SARC and pre-trained our model over
a single epoch using mini-batches of size 30. We then reset the optimizer and
trained the model over 80% of the training set of iSarcasm dataset for 15 epochs
using mini-batches of size 40. After each epoch, we saved the model along with
its F1 score on the validation set (the remaining 20%), and we selected the model
3 https://www.reddit.com/.
4 https://huggingface.co/.

https://www.kaggle.com/danofer/sarcasm
https://www.reddit.com/
https://huggingface.co/
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with the highest F1 score. It was the model after two epochs of training, and it
is available for download at https://bit.ly/3JpQWiF.

Ablation Study. To evaluate the influence of pre-training, we constructed two
alternative models, following the same architecture and training procedure,
except: (1) for the model denoted without SARC, with Twitter pre-training we
did not pre-train on the SARC dataset; (2) for the model denoted without SARC,
without Twitter pre-training we did not pre-train on the SARC dataset, and used
the roberta-base model instead of the one pre-trained on Twitter.

4 Evaluation

We use F1 score, precision, and recall calculated on the iSarcasm test set to
evaluate our model and its variants without pre-training. We report the scores
in Table 1. We also report the results of a baseline classifier constructed using
fastText [12]. For comparison purposes, we also report the best results from the
recent works of Guo et al. [9], Handoyo et al. [10], and the human score.

Table 1. Evaluation scores

Variant F1 Precision Recall

Sarcastic RoBERTa 0.526 0.507 0.546

without SARC, with Twitter pre-training 0.485 0.475 0.495

without SARC, without Twitter pre-training 0.401 0.408 0.394

fastText 0.258 – –

LOANT [9] 0.464 0.436 0.497

Handoyo et al. [10] 0.404 – –

Human annotation [17] 0.616 0.550 0.701

Sarcastic RoBERTa, employing pre-training on both the corpus of 58M
tweets, and the SARC dataset outperforms the current state-of-the-art
approaches by a fair margin. This underscores the importance of pre-training
and exhibits how powerful transfer learning is.

5 Related Work

Social media platforms are an interesting and important source of raw data for
researchers almost since their start. In particular, the problem of recognizing
sarcastic tweets was first posed by Davidov et al. in 2010 [6], who collected a
dataset of tweets and used distant supervision to label them according to the
presence of tags such as #sarcasm. Numerous attempts similar in spirit were

https://bit.ly/3JpQWiF
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undertaken over the years, e.g., by Barbieri et al. [4], Ptácek et al. [19], or
Bamman and Smith [3].

Another approach to labeling was to do it manually, either by experts or vol-
unteers (e.g., Abercrombie and Hovy [2]). Labeling using crowdsourcing, albeit
prevalent in other domains (e.g., Filatova used it to detect sarcasm in Ama-
zon reviews [7]), seems to be non-existent in this particular area. Some authors
used a combination of both approaches, where tweets were first filtered based
on used hashtags, and then the labels were manually verified (e.g., in Task 3 of
SemEval-2018 by Van Hee et al. [23]).

Initially, manually constructed features and simple classifiers were used in
the task, e.g., Davidov et al. used pattern mining and k-nearest neighbors (k-
NN). While these classical approaches are still used (e.g., in recent work by
Sundararajan and Palanisamy [22]), current solutions based on neural language
models are becoming more and more popular. For example, Ren et al. [20] used
a model based on a convolutional neural network (CNN), whereas Gregory et
al. [8] used recurrent neural networks and transformers.

Very recently Moores and Mago [16] published a survey about automatic
sarcasm detection on Twitter, offering a comprehensive view on the topic.

Besides sarcasm detection, there are numerous other similar tasks related
to recognizing non-verbal and contextual aspects of utterances. For example,
Janiszewski et al. [11] considered the problem of conversation breakdown in
social media, whereas Singh and Toshniwal [21] predicted the next geo-spatial
location of a user based on their tweets.

6 Discussion and Conclusions

In this work, we presented Sarcastic RoBERTa, a deep neural model for detect-
ing sarcastic tweets in English. The proposed solution, based on the RoBERTa
model, outperforms the current state of the art on the iSarcasm dataset by a
fair margin. While the attained F1 score of 0.526 may seem low at the first
glance, one must consider that whether some utterance is sarcastic depends on
its discourse context (e.g., a sentence sarcastic in one discourse is not necessarily
sarcastic in another), time context (e.g., an utterance may cease to be sarcastic
when new information is revealed), it differs from person to person (e.g., what
one sees as sarcastic, may not be sarcastic for another), and it differs between
the author of an utterance and its recipients (intended vs perceived sarcasm).

Due to some tweets being no longer available, our work only included a subset
of the original iSarcasm dataset. While we have no control over which tweets
disappeared, and thus believe this to be a random subset, the resulting dataset
may be simpler than the original one. Deciding whether this is the case would
require using one of the earlier approaches on the used subset, which was deemed
out of scope for this work.

The results of the ablation study presented in Sect. 4 underline how much
one can gain from transfer learning. First, simply replacing the basic RoBERTa
model with a model trained on tweets increased the F1 score by 0.084 by priming
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the model for the general language of tweets. Then, introducing additional pre-
training on SARC increased the score by another 0.041 by priming the model to
the phrases characteristic to sarcasm. Unfortunately, such pre-training is costly,
and we were unable to investigate the results of using, e.g., the whole SARC
corpus, or other sarcasm-related datasets.
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Abstract. We are presenting a fast and innovative approach to per-
forming approximate pattern-matching for plagiarism detection, using
an NDFA-based approach that significantly enhances performance com-
pared to other existing similarity measures. We outline the advantages
of our approach in the context of blockchain-based non-fungible tokens
(NFTs). After testing in real-world scenarios, we conclude that our app-
roach is suitable and adequate to perform approximate pattern-matching
for plagiarism detection, yet significantly faster and therefore more suit-
able for big data analysis.

Keywords: Plagiarism detection · Pattern-matching · Approximate ·
Blockchain · NFT · Automaton · Aho-Corasick · Sliding window ·
Similarity measurement

1 Introduction

Plagiarism is an important issue with respect to protecting intellectual property,
a crucial centerpiece in the academic community, as well as in various business
aspects. Plagiarism occurs whenever material is copied without the author’s
permission or approval. With the spread of the Internet, plagiarism becomes a
growing concern to authors developing original work. The blockchain industry
aims to resolve this problem through the use of non-fungible tokens (NFTs), a
market that has grown exponentially in the past few years [1,2].

2 Related Work

Numerous papers and approaches have been proposed to leverage plagiarism
detection, and improve existing techniques to identify potential scammers. For
example, in [3], the authors propose an approach based on tokenization and the
computation of a similarity score, making use of natural language processing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 53–58, 2022.
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(NLP) techniques. In [4], authors focus on a hybrid approach: by combining the
Jaccard and cosine distances, they recurse to machine learning (ML) and NLP,
corroborated with text mining and similarity analysis. Similar to the previous
approach, the authors recurse to tokenization. Saini et al. [5] had build a plagia-
rism detection using text mining methods and the cosine distance for computing
similarity. Putri et al. [6] propose a text-mining-based approach to plagiarism
detection using a Karp-Rabin variant of pattern-matching, involving a slightly
modified Jaccard similarity computation method and tokenization, to identify
the number of common words in the two texts being compared.

There are several classes and types of plagiarism. From a lexical perspective,
text mining is a common approach to performing plagiarism detection. From a
semantic perspective, as outlined before, there are approaches based on seman-
tics, particularly NLP and ML, that bring the concept of “understanding” of the
text contents into the picture, just as well. Our main focus in this paper is the
approach based on text mining utilizing the tokenization of input data, in order
to perform the mining process and assign a plagiarism degree between two dif-
ferent texts, and in particular to protecting intellectual property stored through
the form of an NFT that was already previously minted in the blockchain.

3 Implementation

Our approach is inspired by the Aho-Corasick [7] finite state machine, however
it differs significantly from it as it creates a new NDFA state machine, using
a sliding window concept at node-level, as well as a locally-applied similarity
measurement for the sliding window concept that we introduce. We modify the
failure transitions of the NDFA, and we are changing the entire heuristics of those
transitions so that we can apply inexact pattern-matching. In order to achieve
this, we allow the transitions from a certain state to have multiple outcomes
when parsing the same input characters. In order to start determining the output
of any given transition, we employed the usage of the sliding window concept,
accompanied by the computation of every possible suffix for every node in our
automaton.

Our proposed NDFA also adds a new pre-processing step, computed after
the failure functions calculation inside of the automaton. Here, for every node
in our automaton, we will start parsing every possible transition, or when that
is not possible, the failure transition linked to that node, so that in the end, we
compute all the viable suffixes (of a length equal to that of a fixed-length sliding
window) that emerge from that particular node. This approach effectively pro-
duces, for every node, a unique list of all possible matches from that particular
node forward, significantly reducing matching comparisons when the local opti-
mum is employed. Preprocessing complexity is O(W ∗ L ∗ SL) (W - number of
keywords, L - average length of a keyword, and SL - the sliding window length).

The nondeterministic behavior is properly highlighted in the actual process-
ing stage. At this stage, the novelty brought by this NDFA approach is the
possibility of applying local similarity measurements for approximate pattern-
matching at any given step inside the parsing of the automaton for the length of



Fast [...] Plagiarism Detection in Blockchain-Driven NFTs 55

Fig. 1. The non-deterministic multiple pattern matching automaton for the set of
keywords {AND, FIND, FINE, FAIL, FAIR, INTO}, using a sliding window of length
4. Parsed nodes used for computing suffixes are colour marked. (Color figure online)

the sliding window, instead of computing them at every position inside the input,
for the length of the entire keyword at the processing stage (Fig. 1). We chose
to focus on the Euclid, Hamming and Levenshtein distances, as the similarity
measures used for the local optimum threshold computation process.

By obtaining a locally determined result of the similarity metric applied at
any given node (between a concatenation of the node’s prefix and the suffixes, one
at a time), and the string of the same length resulting by parsing the input to get
to the respective node, we can decide if we move throughout the automaton with
an existing transition (similar to the exact match of the Aho-Corasick DFA), or
we jump to the mismatch transition, thus allowing multiple outcome states for
the same input. The distinction between the aforementioned cases is done by
an a priori definition of a local optimum threshold value for all the similarity
metrics results. We hypothesize that choosing a high value for this local optimum
threshold may result in certain keywords not being detected (false negatives),
while setting the value too low, might produce other matches than expected
(false positives). In order to try to mitigate the occurrence of false positives, we
also added an additional verification so no match is detected if more than a given
empirical percentage of the length is disjoint. The percentage is set based on the
maximum length of the keywords and the sliding windows. For example, for a
maximum keyword length of 10 characters, the existing similarity measurements
for approximate pattern-matching are using a percentage of 20%, while for the
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same keyword length size and a sliding window of 5, in order to have related
similarities, the percentage of our approach need to be set as 10%.

While NFTs may have become popular due to digital art (in particular,
photographs), they may also hold other types of information, including books,
various texts, novels, short stories, etc., all of which are meant to ensure that
specific form of digital art can be later traded or otherwise preserved in the
blockchain. In our proposed approach, in order for an NFT to be minted, its
associated digital data needs to be verified against plagiarism. After it passes
verification, it can be stored in the ledger as minted. For text-based NFTs, we
propose an approach where the original text is stored alongside the tokenized
text. This way, tokenized text can be verified using our proposed NDFA-based
approach against plagiarism, with other already-minted NFTs. As speed is a con-
cerning factor in all blockchain-drive platforms, our focus on this aspect becomes
stronger and more clear.

4 Experimental Results

We have performed our experiments on an AMD Ryzen 5 5600H CPU, with 16
GB of DDR4 RAM and a 512 GB SSD drive, running on Windows 10, and a
C programming language implementation of NFT text plagiarism detection in
our custom blockchain. For testing, we have used slightly modified versions of
the datasets created by Paul Clough (Information Studies) and Mark Stevenson
(Computer Science), at the University of Sheffield [8,9]. For scenario 1, we bench-
marked the performance of our approach using a pair of datasets of 75 patterns
to be found (of variable lengths, ranging between 4 to 15 characters), inside of
an input size of 2,450 KB (or in terms of book pages, approximately 2,000 book
pages and 376 NDFA nodes in total). For scenario 2, we used the same number
of patterns, but we doubled the lengths of the original scenario 1, obtaining a
total of 1,875 NDFA nodes. We also ran consecutive tests in order to empirically
determine the best local optimum threshold values, so that the results produced
by our approach match the ones produced by the classic similarity measurements
used: Euclid, Hamming and Levenshtein.

Figure 2 showcases how the outcome is influenced by changing the local opti-
mum threshold values. We correctly presumed that setting the value too high
will cause false negatives. Also, due to the increased number of false positives,
when the local optimum threshold is set too low, we would be dealing with an
additional set of false negatives. This is caused by partial matches both in the
sliding window and the input data, which produce better local similarity scores
as opposed to the global score, associated with the entire pattern. Therefore, we
recommend that the sliding window length is at least as high as the length of the
longest pattern in our set of keywords. In terms of accuracy, the number of false
negatives in Fig. 2 is a constant 1 achieved for the Euclidean similarity, through-
out the entire experiment. Both Hamming and Levensthein similarities return
no false negatives when the threshold value is set to 0.75, which seems to be
the best fit for the scenarios tested. The number of false positives remains con-
stant for the Euclidean similarity, but follows a decreasing trend as the threshold
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Fig. 2. Number of false negatives (FN) and false positives (FP), for various local thresh-
old values (0.5 to 0.95).

values get closer to 1 for the others (which, in theory, would produce the same
exact matching results as in the original Aho-Corasick DFA) - particularly, start-
ing with a threshold value of 0.85, both Hamming and Levenshtein similarities
produce no false positives.

(a) Throughput (Kbps) (b) Speed-up (× times)

Fig. 3. Performance comparison between classic similarity measures and our proposed
approach in both scenarios (S1 and S2)

For thorough testing, we have empirically observed that the longer the pat-
terns in the keyword set tend to be, the faster the speed-up achieved for the Lev-
enshtein similarity. The results for both scenarios are being outlined in Fig. 3. We
have observed significant run-time speed-ups for our proposed approach, com-
pared to the classic approaches. In particular, for the dataset tested in scenario
2, the Levenshtein similarity measurement throughput has improved to about
9.5× higher throughput, up from 2.5× higher throughput as in scenario 1. The
Euclid-driven similarity measurement has achieved a speed-up of about 9× in
both scenarios tested, and similarly the Hamming distance provided around 3×
higher throughput in our approach.
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5 Conclusions

In this paper, we have presented an innovative fast approach to performing
approximate-pattern matching for plagiarism detection, with particular applica-
bility to blockchain-driven, NFT-ready platforms and ecosystems. For our pro-
posed implementation, we have used our own NDFA-based automaton along with
a sliding window concept and local thresholds at node-level, for tracing partial
matches faster. We have tested our approach and concluded that it behaves suit-
ably similar to existing various other similarity measures used in text mining for
plagiarism detection, while obtaining a significant speed-up improvement of up
to 9.5× faster throughput.

This research was supported by the virtuaLedger project [10] and the MOISE
project number 240/2020, ID POC/398/1/1, financed by EU, Romanian govern-
ment and West University of Timisoara. The views expressed in this paper do
not necessarily reflect those of the corresponding project’s partners.
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Abstract. Skyline queries aim to identify a set of interesting objects
that balance different user-specified criteria, i.e., that have values as
good as possible in all specified criteria. However, objects whose val-
ues are good in only a subset of the given criteria are also included in
the skyline set, even though they may take arbitrarily bad values in the
remaining criteria. To alleviate this shortcoming, we study the decisive
subspaces that express the semantics of skyline points and determine
skyline membership. We propose a novel query, called decisive skyline
query, which retrieves a set of points that balance all specified criteria.
Our experimental study shows that the newly proposed query is more
informative for the user.

Keywords: Skyline query · Decisive subspaces · Decisive skyline query

1 Introduction

Skyline queries [1,5,8] constitute a powerful tool for data analysis and multi-
objective optimization, as they enable balancing of different (and often con-
flicting) criteria specified by the user. Such queries return a set of data points
(skyline points) that are not dominated by any other point in all dimensions.
A point p dominates another point q, if p is better than or equal to q in all
dimensions and strictly better than q in at least one dimension. Nevertheless,
the skyline set contains also points that fail to balance among all given criteria,
as we demonstrate in the following.

Example 1. (Motivating example) Assume that a tourist is interested in booking
a hotel with a low price, a good ranking based on the customers’ ratings, and
nearby the beach. To this end, the tourist performs skyline analysis using an
online hotel database in order to discover hotels that fulfill all criteria. In Fig. 1,
the hotels belonging to the skyline set of the hotel database are depicted. How-
ever, by inspecting this result set, we observe that several hotels have good values
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 61–73, 2022.
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Fig. 1. Hotels in the skyline of a hotel database.

on subsets of the available criteria only, but not all of them. For instance, City
Center Hotel is included in the result due to its rank (minimum value), despite
the fact that it has the second worst value in distance. Similarly, Paradise Hotel
has the lowest price, but it fails to balance the remaining two criteria. The same
holds for Sunset Hotel, which has the worst rank among the skyline points and
is included in the result set because of its combined values in distance and price.
However, had the user been really interested in such a hotel, she would have
specified as criteria only a subset of the dimensions, namely distance and price.
In this paper, we argue that the user needs a new query type that excludes from
its results set hotels that may have arbitrarily bad values. In this example, only
Panorama Hotel would satisfy the constraint imposed by this new query. We
call this new query type decisive skyline query.

As shown in the example, the skyline query always returns the data point with
the best value in one dimension, regardless of the values in the other dimensions,
as this point cannot be dominated by any other point. Put differently, the skyline
definition imposes “OR semantics” between the different criteria. In the hotel
database, the skyline set contains the hotels that are the best trade-offs among
(a) rank, price and distance, OR (b) rank, price, OR (c) price, distance, OR
have (d) the minimum price, OR (e) the minimum rank, OR (f) the minimum
distance. But this is not the objective of the user’s search, since the user is
looking for the best trade-offs among rank, price and distance.

An indirect consequence of the aforementioned “OR semantics” is that the
skyline cardinality [4,7,21] increases rapidly with the dimensionality of the data
space. The high cardinality of the skyline set originates from the fact that as
the number of criteria increases, the combinations of different criteria increase
exponentially. In turn, the probability that a point is dominated in all differ-
ent combinations decreases, thus leading to more skyline points. Intuitively, it
is more difficult to satisfy more criteria, therefore it would be expected that
with increasing the number of criteria, the result size should decrease (or stay
constant). Should we add too many criteria, none of the points will be able to
satisfy all of them, thus resulting into an empty result set. In contrast to this
intuition, the cardinality of skyline set increases with increasing dimensionality.



On Decisive Skyline Queries 63

Most existing approaches focus on the effect of the problem and try to
restrict the skyline cardinality, often motivated by the controlled output size
of top-k queries [6,13,19]. Towards this goal, different categories of approaches
have been recently proposed, including (1) selecting k representative skyline
points [10,12,16,17], (2) restricting the skyline cardinality by changing the dom-
inance relationship [2], and (3) ranking the skyline points based on different
metrics [3,11,18] or user-defined functions [9].

In this paper, we take a radically different approach. We address what we
consider to be the cause of the problem, and not the effect. To this end, we focus
on the semantics of skyline queries (first studied by Pei et al. [15]). Informally,
the decisive subspaces of a skyline point are responsible for the point being
part of the skyline set, i.e., its values in these dimensions qualify it as skyline
point. Capitalizing on this concept, we propose a novel query type, called decisive
skyline query. We investigate two variants of the decisive skyline query, the strict
variant, which returns only the subset of skyline points that have the full space as
decisive subspace, and the relaxed variant, which returns also points with decisive
subspaces that cover the entire data space. Interestingly, as a by-product, it turns
out that the decisive skyline query does not suffer from increased output size for
increased dimensionality. We emphasize that this is the first paper that focuses
on the significance of retrieving points based on the properties of their decisive
subspaces, since in [15] the aim was to find the subspace skyline points of all
subspaces.

The rest of the paper is organized as follows. In Sect. 2, we present the back-
ground knowledge for our approach, the necessary definitions and formally state
the problem. In Sect. 3, we present useful pruning properties for efficient com-
putation of the decisive skyline query, and we describe a novel index-based algo-
rithm. Section 4 follows presenting the results of the experimental evaluation.
Finally, we conclude the paper and sketch future research directions in Sect. 5.

2 Problem Formulation

Given a data set P on a data space D defined by a set of m dimensions
{d1, . . . , dm}, a data object p ∈ P is represented as an m-dimensional point
p={p[1], . . . , p[m]} where p[i] is the value on dimension di. A point p ∈ P dom-
inates another point q ∈ P , denoted as p ≺ q, if (1) on every dimension di,
p[i] ≤ q[i]; and (2) on at least one dimension dj , p[j] < q[j]. The skyline S(P ) is
a set of points which are not dominated by any other point in P . Without loss of
generality, we assume that skylines are computed with respect to min conditions
on all dimensions and that all values are non-negative.

The notion of skyline can be extended to subspaces. Each non-empty subset
U of D (U ⊆ D) is referred to as a subspace of D. The skyline of a subspace U ⊆ D
is a set SU (P ) ⊆ P which are not dominated by any other point on subspace
U . As shown in [15,20], the skyline set of the full space does not contain all the
subspace skyline points of the different subspaces. A skyline point q in SU (P ) is
either a skyline point in SV (P ) (assuming U ⊂ V ) or there exists another data
point p, such that p[i] = q[i] (∀di ∈ U), that dominates q on the dimension set
V − U .
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2.1 Intuition of Decisive Subspaces

Let us first assume that the distinct value condition holds, which means that no
two points share the same value in a given dimension (i.e., for any two points p
and q of P it holds that ∀di ∈ D : p[i] �= q[i]). In this case, any subspace skyline
point also belongs to the skyline set of the full space, which in turn simplifies
the definition of the decisive skyline queries. Under the distinct value condition,
the decisive subspace [15] of a skyline point p is defined as follows.

Definition 1. (Decisive subspace) For a skyline point p ∈ S(P ), a subspace U
of D is called decisive, if (1) p is a subspace skyline in U (p ∈ SU (P )), and
(2) there exists no subspace V ⊂ U such that p is a subspace skyline point in V
(�V ⊂ U such that p ∈ SV (P )).

A skyline point p can have multiple decisive subspaces. We use DecSub(p) to
denote the set of decisive subspaces for a skyline point p. If a point p has a
decisive subspace U ⊂ D, then this fact alone promotes p to become a full space
skyline, irrespective of p’s values in dimension set D−U . Obviously, such skyline
points may not balance the remaining dimensions.

To address the problems of the semantics of the traditional skyline operator,
we define the strict decisive skyline set DS(P ) as the set of skyline points that
have the full space D as their decisive subspace, i.e., DS(P ) = {p|p ∈ S(P )
and DecSub(p) = D}. Based on the definition of decisive subspaces for the case
of distinct values, a skyline point p belongs to the decisive skyline set, if there
does not exist any other subspace U ⊂ D for which p belongs to the subspace
skyline set (�U ⊂ D such that p ∈ SU (P )). We argue that decisive skyline points
are guaranteed to have good values in all given criteria, in contrast to subspace
skyline points.

The above definition imposes the semantics of decisive skyline sets in a strict
(or rigid) way. A more relaxed variant, denoted ̂DS(P ), is also defined as follows:
̂DS(P ) = {p|p ∈ S(P ) and

⋃

(∀Ui∈DecSub(p)) Ui = D}. This relaxed decisive
skyline set also includes points that belong to subspace skyline sets, as long as
their decisive subspaces cover the full space. Thus, the relaxed decisive skyline
points also balance all criteria, but possibly in different subspaces that cover the
full space. Also, notice that by definition DS(P ) ⊆ ̂DS(P ).

Example 2. Consider a data space D = ABC and a data set P defined in D
(Fig. 2(a)). All points are skyline points and Fig. 2(b) depicts their decisive sub-
spaces. For p7, subspace A is the decisive subspace, therefore the value of A is
sufficient to qualify p7 as a skyline point in the full space independently of its
values in the other dimensions. Similar for p2 and p5 the decisive subspaces are
B and C respectively. On the other hand, AC is also a decisive subspace for p2,
because p2 appears in the subspace skyline of AC, and AC is not a super-set of
B. Only point p3 has the full space ABC as decisive subspace, and this is the
only point in this example that belongs to the decisive skyline set DS(P ) = {p3}.
Points p1 and p2 may also be considered as good options, even though they do
not belong to DS(P ). For example, p2 has the best value in dimension B, but
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(a) Data set (b) DecSub

Fig. 2. Example of decisive subspaces.

also balances nicely dimensions AC, since it is in the subspace skyline in AC.
Points p1 and p2, together with p3, belong to the relaxed decisive skyline set
̂DS(P ) = {p1, p2, p3}.

2.2 Formal Definition of Decisive Subspaces

In the following, we withdraw the restriction on points taking distinct values. In
the general case, the main difference is that there may exist subspace skylines
that do not belong to the full space skyline points. Recall that a subspace skyline
point q ∈ SU (P ) is either a skyline point in the full space or there exists another
data point p, such that p[i] = q[i] (∀di ∈ U), that dominates q on the dimension
set D − U . If such a point p exists, then the remaining D − U dimensions are
important to determine whether q qualifies as a skyline point.

Definition 2. (Maximal set of non-distinct points) Given a set of points G and
set of dimensions U , we define as maximal set of non-distinct points the set:
O(G,U) = {pi|pi ∈ P, ∀dk ∈ U and ∀pj ∈ G : pi[k] = pj [k]}.

Based on the above definition, O(G,U) is the maximal set of points of P
with identical values with the points of G in U , i.e., there exists no other point
q ∈ P with this property. The following definition is equivalent to the definition
of [15].

Definition 3. (Maximal skyline group) Given a set of points G and set of
dimensions U , the pair {G,U} is called maximal skyline group and is denoted as
SG(G,U), if it holds that (1) ∀pi ∈ G it holds that pi ∈ SU (P ) (2) ∀pi, pj ∈ G
and ∀dk ∈ U pi[k] = pj [k] (3) �dk ∈ D − U such that ∀pi, pj ∈ G : pi[k] = pj [k]
(4) �pj ∈ P − G such that ∃pi ∈ G and ∀dk ∈ U : pi[k] = pj [k].

Intuitively, SG(G,U) is the maximal set of points with same values in U ,
these points are subspace skylines in U , and U is the maximal set of dimensions
for which this set of points coincide. In the following, we define the concept of
decisive subspaces for a maximal skyline group.
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Definition 4. (Decisive subspaces of maximal skyline group) Given a maximal
skyline group SG(G,U), a subspace V ⊆ U is called decisive for SG(G,U) if
(1) ∀pi ∈ G it holds that pi ∈ SV (P ) (2) O(G,V ) = G (3) �V ′ ⊂ V such that
conditions 1) and 2) hold for V ′.

2.3 Decisive Skyline Points

We denote the decisive subspaces of the maximal skyline group SG(G,D) as
DecSub(G). A decisive subspace V of SG(G,U) means that all points in G share
the same values in U and are in the subspace skyline set for every subspace V ′

such that V ⊆ V ′ ⊆ U . We cannot conclude if all points of G belong to the
skyline set of D, since depending on the remaining dimensions some of them
may be dominated. Only if they are incomparable in the remaining dimensions,
then all of them will belong to the skyline set. Skyline points that belong to a
maximal skyline group SG(G,D) that has the full space as a decisive subspace
are included to the skyline set based on the values of all given dimensions,
regardless if these points form groups in some subspaces.

Definition 5. (Strict decisive skyline points) A skyline point p belongs to the
strict decisive skyline set DS(P ) ⊆ S(P ) of a data set P , if there exists a max-
imal skyline group SG(G,D) such that p ∈ G and the decisive subspace of G is
the full space (DecSub(G) ={D}).
Definition 6. (Relaxed decisive skyline points) A skyline point p belongs to the
relaxed decisive skyline set ̂DS(P ) ⊆ S(P ) of a data set P , if there exists a
maximal skyline group SG(G,D) such that p ∈ G and the union of the decisive
subspaces of G is the full space (

⋃

∀Ui∈DecSub(G) Ui = {D}).

(a) Data set (b) SU (P ) (c) DecSub

Fig. 3. Example of decisive skyline set.

Example 3. Consider the data set P depicted in Fig. 3(a). The decisive subspaces
for each maximal skyline group SG(G,U) are shown in Fig. 3(c). We observe that
point p1 is the only point that belongs to the decisive skyline set. Point p3 has
B as decisive subspace. In turn, this means that p3 belongs to the skyline set
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independently of its values in the other dimensions. In this example, p3 has the
worst value of all points in dimension A. On the other hand, point p2 has AB
as decisive subspace and not A, even though it is subspace skyline in A. This is
because it coincides with p4 in A and they form a group {p2, p4} in that subspace.
Still, the value of p2 in dimension C does not influence whether p2 belongs to
the skyline set or not, thus this value can be arbitrarily high. Note that in this
small example, the strict and relaxed decisive skyline points are the same.

3 Decisive Skyline Algorithm

A straightforward way to compute the decisive skyline set is to compute all
maximum skyline groups and their decisive subspaces. Then, the points that
belong to a group that have the full space as a decisive subspace can be easily
determined. Computing all maximum skyline groups requires evaluating all 2m−
1 subspace skyline queries and requires multiple disk accesses on the same data.
We refer to this approach as Naive.

As we will show in the following, we develop an algorithm for computing the
strict decisive skyline set with two salient features. First, our algorithm avoids
evaluating all subspace skyline queries, and instead evaluates only m+1 skyline
queries. Second, assuming that data is indexed by a multidimensional index,
we define an appropriate query that allows our algorithm to traverse the index
at most once, retrieve a set of candidate points, and refine the result set in
main-memory.

One important observation is that the strict decisive skyline points (p ∈
DS(P )) are exactly those skyline points (p ∈ S(P )) that for any (m − 1)-
dimensional subspace U they are either dominated (p /∈ SU (P )) or share the
same values in U with another data point p′ (p′ =U p and p′ �= p). We denote
p′ =U p, if it holds that ∀di ∈ U : p[i] = p′[i]. However, in the simplest case
one skyline query and m subspace skyline queries need to be processed and the
index must be accessed multiple times. To avoid this processing overhead, we
identify a super-set of this set that can be efficiently retrieved by traversing the
index structure at most once.

Definition 7. (Enriched skyline) A point p ∈ P is said to partially dominate
another point q ∈ P on D, if (1) on every dimension di ∈ D, p[i] ≤ q[i]; and (2)
on at least two dimensions dj , dk ∈ D, p[j] < q[j] and p[k] < q[k]. The enriched
skyline of P is the set of points eS(P ) ⊆ P which are not partially dominated
by any other point.

The above definition assumes that the enriched skyline is defined on a data
space that contains at least two dimensions, i.e., |D| ≥ 2. An interesting observa-
tion is that the enriched skyline uses a slightly modified definition of dominance,
that can be supported by any skyline algorithm with marginal overhead, by
simply changing the function used for point dominance. We can prove that the
enriched skyline set is sufficient to compute the strict decisive skyline set DS(P ).



68 A. Vlachou et al.

3.1 Algorithmic Description

We design an efficient algorithm, called Decisive Skyline Algorithm and denoted
as DSA, for computing the strict decisive skyline DS(P ) of a set of points P .
The innovative features of our algorithm include that (a) DSA operates only on
a subset of the data set P , namely the enriched skyline set, that is both easy
to compute and guaranteed to include all decisive skyline points, and (b) DSA
computes the decisive skyline by efficient processing of the underlying subspace
skyline queries without the need to access the disk repeatedly. DSA extends the
well-known branch-and-bound (BBS) algorithm for skyline queries [14].

Algorithm 1. Decisive Skyline Algorithm (DSA)
input: The R-tree index R built on data set P
output: The decisive skyline set DS(P )

1: M ← null, B ← ∅ //M:main-memory R-tree, B:buffer
2: (S(P ),M) ← BBS(R, D)
3: for i = 1...m do
4: U ← D − di //U :current subspace of m − 1 dimensions
5: tmpDist ← −1
6: while has next point BBS(M, U) and S(P ) �= ∅ do
7: q ← next point of BBS(M, U)
8: if DistU (q) = tmpDist then
9: B = B ∪ q

10: else
11: for all p ∈ B do
12: if (p ∈ S(P )) and (�p′ ∈ B : ∀dk ∈ U p[k] = p′[k] and p[i] �= p′[i]) then
13: S(P ) ← S(P ) − p
14: end if
15: end for
16: B = {q}
17: end if
18: tmpDist ← DistU (q)
19: end while
20: end for
21: return S(P )

The pseudocode describing DSA is shown in Algorithm 1. The algorithm
takes as input a data set P indexed by an R-tree R and produces the decisive
skyline set DS(P ) as output. First, BBS is executed on the R-tree that indexes
P , and it populates the main-memory R-tree M with the enriched skyline points
(and only those). In addition, the skyline set S(P ) is retrieved (line 2). Notice
that the two parameters of the BBS() call in the pseudocode correspond to
the index used by BBS and the subspace which is processed respectively. Then,
DSA executes m subspace skyline queries on the main-memory R-tree M iter-
atively (lines 3–20). For each (m − 1)-dimensional subspace U , DSA exploits
the progressive property of BBS and retrieves subspace skyline points sorted by
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their distance to the origin in subspace U (line 7) and places them in a buffer B
(line 9). This guarantees that points with identical values in U will be processed
in a batch. Processing of a batch of points includes examining each point p in B
and checking whether it is a candidate point (lines 11–15). If so, then we test if
there exists another point p′ with identical values on the m−1 dimensions of U ,
but different on the last dimension. If such a point p′ does not exist, the point p
can safely be discarded from the candidate points (line 13). The same procedure
is repeated until all subspace skyline points are processed or the candidate list
(S(P )) gets empty (line 6).

DSA exploits the main-memory R-tree internally used by BBS, in order to
efficiently compute the decisive skyline set. Thus, DSA takes practically for free
the index structure that is constructed by BBS during the skyline computation,
thereby making the subsequent execution of subspace skyline queries extremely
efficient. Moreover, as all decisive skyline points belong to the skyline set, we
modify further BBS, so that only skyline points are reported as result (S(P )),
even though the main-memory R-tree indexes the enriched skyline points.

In practice, DSA processes m subspace skyline queries (of dimensionality
m− 1) using the main-memory R-tree, for excluding non-decisive skyline points
from the already computed skyline set by BBS. Notice that the main-memory R-
tree indexes only the enriched skyline points, therefore the execution of subspace
skyline queries is more efficient compared to processing on the entire data set P
on disk.

4 Experimental Evaluation

In this section, we provide an experimental study of the decisive skyline query.
All algorithms are implemented in Java and the experiments run on a machine
with 2x Intel Xeon X5650 Processors (2.66 GHz), 128 GB.

4.1 Qualitative Study

We perform skyline analysis on data extracted from DBLP, in order to discover
researchers with significant number of publications on a combination of confer-
ences. The data set contains data that reflect DBLP entries before 15/10/2008.
We use the authors as points represented in a multidimensional space defined
by the number of publications in selected conferences (dimensions). Major con-
ferences from different research areas are selected as criteria that need to be
balanced. We underline the strict decisive skyline points, while relaxed deci-
sive skyline points are shown using bold. Each researcher is represented as a 3d
point with values equal to the number of publications for each of the selected
conferences, and higher values are preferable.



70 A. Vlachou et al.

Table 1. ̂DS(P ): in bold, DS(P ): underlined.

Id Name SIGMOD PODS CIKM DecSub()

1 Divyakant Agrawal 14 7 11 {S, P, C}
2 Jeffrey F. Naughton 29 9 1 {S, P}
3 Amr El Abbadi 7 8 12 {P, C}
4 Jiawei Han 26 0 8 {S, C}
5 Dan Suciu 14 15 2 {P, C}
6 Serge Abiteboul 15 24 0 {S, P}
7 Michael J. Carey 36 3 0 {S}
8 Jeffrey D. Ullman 17 16 0 {S, P}
9 Divesh Srivastava 28 10 3 {S, C}, {P, C}
10 Yehoshua Sagiv 8 29 1 {P}
11 Christos Faloutsos 19 4 8 {S, P, C}
12 Raghu Ramakrishnan 28 14 1 {S, P}
13 Surajit Chaudhuri 33 8 0 {S, P}
14 Philip S. Yu 18 1 18 {C}
15 David J. DeWitt 33 1 1 {S, C}

Table 1 shows the skyline set for {SIGMOD, PODS, CIKM}. Divyakant
Agrawal and Christos Faloutsos are the strict decisive skyline points and they bal-
ance nicely all criteria, compared to the remaining skyline points. By inspecting
the result set, we observe that several researchers do not truly balance all given
criteria (dimensions). Instead, they may balance subsets of the dimensions only,
but not all of them. For instance, Jeffrey D. Ullman nicely balances SIGMOD
and PODS, but not CIKM. The same holds for both Serge Abiteboul and Raghu
Ramakrishnan, who are also experts in data management. On the other hand,
Yehoshua Sagiv is included in the result due to the extremely high number of
PODS publications. The decisive skyline query manages to exclude these points
from the result set, thus returning only points that truly balance all criteria. It is
likely that if a user were interested in only a subset of the criteria, she would have
posed a 2d query with only the criteria of interest instead. On the other hand,
Divesh Srivastava will be included in the relaxed decisive skyline set, because he
is a subspace skyline in subspaces {PODS, CIKM} and {SIGMOD, CIKM} that
cover the full space, thus he manages to balance all given criteria.

4.2 Performance of Decisive Skyline Algorithm

In the following, we study the cost of computing the strict decisive skyline query
(using DSA), compared with the cost of computing the skyline query (using
the BBS algorithm). Although in this latter experiment DSA and BBS compute
two different result sets, the experiment aims to answer the following interest-
ing question: how much is the overhead of computing decisive skyline points,
compared to the computation of the skyline set?
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Fig. 5. Comparison with algorithms for representative skylines.

In Fig. 4(a), we study the effect of increased dimensionality, using a synthetic
data set of 1M records following a uniform data distribution. We report the
average results over 10 different instances of the data set. When increasing the
dimensionality, the difference in response time between DSA and BBS is small
and increases slowly.

In Fig. 4(b), we vary the cardinality from 100 K to 1 M, and we observe that
the difference in time between DSA and BBS is small and constant, which is
the expected result since the major impact in DSA is the number of subspace
computations that is fixed in this setting. In summary, our finding is that DSA
retrieves the strict decisive skyline set with a slightly increased cost compared
to a state-of-the-art skyline algorithm (BBS [14]) that retrieves the traditional
skyline set.

4.3 Comparison with Representative Skylines

Thereafter, we try to answer the following research question: can the set of deci-
sive skyline points be obtained by existing algorithms proposed for representative
skyline computation?
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To this end, we compare our algorithm against two well-known skyline rep-
resentative algorithms, namely dominance-based representative (DoR) [10] and
distance-based representative (DiR) [17]. Both approaches take as a input the
number k of skyline points that are selected as representatives. In addition, we
use a Random algorithm that selects k representative skyline points from the
skyline set at random.

Figure 5(a) shows the number of strict decisive skyline points retrieved by the
representative skyline algorithms as the value of k increases. In this experiment,
the size of strict decisive skyline set is 192 and the skyline cardinality is 952.
As shown in the chart, both DoR and DiR fail to retrieve the decisive skyline
points. In fact, even a random selection of skyline points (Random) retrieves
more decisive skyline points than DoR and DiR. This demonstrates that the
existing skyline representative algorithms do not take into account the seman-
tics of the decisive skyline points and select completely different skyline points
compared to our approach.

Figure 5(b) shows the recall that each representative skyline algorithm
achieves, when using the strict decisive skyline points as correct result. As
depicted in the chart, the recall of the representative skyline algorithms is very
low, which demonstrates that these algorithms do not try (not even implicitly) to
identify decisive skyline points. In fact, even a random selection of skyline points
(Random) retrieves more decisive skyline points than DoR and DiR. This demon-
strates that the existing skyline representative algorithms select completely dif-
ferent skyline points compared to our approach.

5 Conclusions

In this paper, we exploit the semantics of skyline points and propose a new query
type, the decisive skyline query. Capitalizing on the concept of decisive subspaces,
we define two variants of the decisive skyline set that are subsets of the skyline set.
Points belong to the decisive skyline set due to their values in all user-specified cri-
teria and provide interesting trade-offs. As a positive by-product and in contrast
to skyline cardinality, the cardinality of the decisive skyline query is not signifi-
cantly affected by dimensionality, thus leading to smaller result sets even for high-
dimensional data. Our evaluation demonstrates the performance of our algorithm
and that the decisive skyline query returns interesting points to the user.

In our future work, we intend to perform an in-depth study of the theoretical
properties of decisive skyline queries and the cardinality of the decisive skyline set.

Acknowledgements. This work has been partly supported by the University of
Piraeus Research Center.

References
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Abstract. Materialized views (MVs) are an elegant redundant opti-
mization technique for analytical workloads. Numerous frameworks and
algorithms for selecting MVs have been propounded, and some are
deployed in commercial DBMSs. The central role of MVs in optimiz-
ing workloads has recently prodded researchers to revisit the problems
associated with them (selection, maintenance, adaptation) by proposing
AI techniques to tackle those issues. When deeply analyzing both tra-
ditional and AI-driven solutions for the MV Selection Problem (VSP),
we identify two main limitations: (1) the workloads used in experiments
comprise dozens of queries, which is at odds with modern analytical
projects involving large-scale workloads, and (2) Query Join Ordering
(QJO) is not integrated into the VSP solving process. In this paper, we
propose a framework named Safeness that tackles the VSP for large-
scale workloads with the incorporation of QJO, thanks to suffix arrays
initially introduced for string processing, enabling efficient algorithms
for data compression, repeat finding, etc. Firstly, we show the flexibility
of suffix arrays in coding analytical queries, capturing shareable subex-
pressions, and incorporating QJO. Secondly, an enumeration process of
different MV candidates is specified. Thirdly, a cost-driven algorithm for
selecting MVs under a storage budget is put forward. Finally, experi-
ments are conducted to evaluate the effectiveness and scalability of our
proposal.

Keywords: Materialized view · Suffix array · OLAP · Join order

1 Introduction

Materialized Views (MVs) are one of the most popular optimization tech-
niques in the world of data stores. In addition to improving query perfor-
mance, like classical optimization techniques (e.g., indexes, and data partition-
ing), MVs - if well selected - contribute to reducing redundant computations
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among queries [12]. This reduction is guaranteed by the smart exploitation of
shareable sub-expressions that may exist among queries, especially in the con-
text of modern analytical applications involving large-scale workloads [12]. The
usage of MVs requires a substantial budget including storage cost and mainte-
nance overhead [15]. Three main types of MVs exist (a) MVs with aggregates,
(b) MVs containing only joins, and (c) nested MVs whose definition is based
on other MVs and can reference base relation(s). The choice of the type of MV
depends on the strategy of the materialization. The process of selecting a set
of MVs is known as the MV Selection Problem (VSP). Its generic formalization
has 5 inputs of which 4 are mandatory: (i) a datastore schema, (ii) the deploy-
ment infrastructure (centralized/distributed) hosting the datastore, (iii) a set
of Non-Functional Requirements (NFR) (e.g., query performance, maintenance
cost, energy consumption, number of final VMs), and (iv) a set of Constraints
CsT (e.g., storage cost and pricing). The fifth one is optional and depends on the
type of VSP (static/dynamic). It represents the workload. The VSP consists in
selecting a set of MVs that optimizes NFR and satisfies C. VSP is NP-Complete,
even in its simplest form [13]. Although, there exist numerous algorithms pro-
posed by academia and industry dealing with the two types of VSP [15,18] in
centralized and distributed deployment platforms [7,9,12], the majority, not to
say all of them, of existing algorithms, uses the cost-driven vision widely adopted
by both traditional and learned query optimizers [2,5,12,15,24,26]. Once MVs
selected, initial workload queries are rewritten using views [11].

MVs and their surrounding problems (VSP, view maintenance, query rewrit-
ing) have proved to be a fertile field for research for many years. An in-depth
analysis of the literature helps us identify three main periods: (a) the “hot
topic” period characterized by researchers’ race to tackle MV problems after
the advent of data warehouses (DW). The presence of a session well displayed
on MVs in the program of the DaWaK conference from 1999 until 2006 is a
marker of this period. (b) The “maturity” period, in which we have seen major
advances in developing new classes of algorithms [15], studying the interaction
between MVs and other optimization techniques such as indexes and data par-
titioning [2,26], and the incorporation of MV selection algorithms in advisors
of major DBMS [5,26]. The proposed VSP algorithms in these two periods use
workloads with dozens of queries [12]. (c) The “scalability” period, characterized
by the arrival of Big Data and the multiplicity of users consuming it. These
considerations question the limitations of existing approaches to dealing with
large-scale workloads.

To the best of our knowledge, [6] is the first academic work that discussed
these limitations and recommended the usage of hypergraph structures to capture
shareable subexpressions. They evaluated their proposal by considering 10,000
queries. From an industry perspective, the recent Microsoft paper [12] revives
the VSP according to four aspects: (i) the availability of large-scale workloads
including tens of thousands of jobs in modern shared analytics clusters (ii) the
presence of significant redundant computations in jobs that can be reduced using
VMs. This phenomenon has also been also observed in real workloads of Alibaba
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Cloud [24]. (iii) The materialization of shareable subexpressions contributes to
saving up to 40% machine-hours in Microsoft clusters [12]. This represents a
spectacular saving in computation time [12] and as a consequence energy con-
sumption [18]. (iv) Selecting MVs for large-scale workloads passes through a
combination of two problems: Subexpression Selection (PSS) and V SP usually
studied separately [25]. PSS aims at producing a pool of parts of logical queries.
Its integration into VSP is highly recommended in analytical applications.

The two reference studies from both academia and industry [6,12] have had
the merit to prod research to revisit VSP. By analyzing them, we evidence two
important missing issues: (1) the usage of graph-driven modeling (AND-OR
DAG [9], Multiple View Processing Plan (MVPP) [22], and Hypergraphs [16])
to detect shareable subexpressions. These structures were widely employed in
periods 1 and 2. None one can dispute the fact that the construction and the
exploitation of graphs are time-consuming and require a high memory budget.
Distributed infrastructures have been used to overcome these drawbacks [12]. (2)
The variation of Query Join Order (QJO) is not explicitly integrated into the
process of solving VSP, despite the fact that it shows its impact on optimizing
queries [21] and selecting shareable query subexpressions [23].

In this paper, we propose Safeness – a new MV selection framework for large-
scale analytical workloads that involve joins across star and snowflake schemas,
selections, sorting, grouping and aggregations, and nested sub-queries [8]. Con-
trary to existing frameworks, Safeness integrates QJO and uses generalized suffix
arrays (GESA) known by their linear-time construction [14], and their capacity
in enabling efficient algorithms for detecting repeat finding in large-scale texts,
and plagiarism [4]. The usage of GESA in our context is not straightforward,
since it requires a real adaptation in terms of coding analytical queries, capturing
shareable subexpressions, and using them in our MV selection algorithm.

Our paper is organized as follows: Sect. 2 describes our related work. Section 3
shows how GSA is applied to analytical queries. Section 4 presents our suffix
array-driven framework Safeness for selecting MVs for large-scale workloads.
Section 5 validates our proposals. Section 6 concludes the paper.

2 Related Work

The process of selecting MVs borrows two major ideas from PSS [12] and multi-
query optimization problem (MQO) [20,21]: (1) the usage of graph-based model-
ing and (2) exploration strategies. In addition, V SP , PSS, and MQO are quite
similar and a few details distinguish them [12,23]. The V SP is much more gen-
eral than PSS since the former can consider computations that do not appear
in the workload queries. This increases the research space and complicates query
containment and materialized view rewrites [3,12]. The main difference between
MQO and V SP is that MVs are typically only transiently materialized for the
execution of a given query set [12]. Due to the availability of surveys and ency-
clopedia papers related to these problems [15,19], we will not present their state-
of-the-art, but we deeply analyze them to find missing issues that contribute to
revisiting them in the context of large-scale analytical workloads.
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V SP has been widely studied in the literature by academia and industry [2,6,
9,18,26]. Each existing algorithm is associated to an instantiation of our generic
formalisation (cf. Introduction). For instance, in [9], the authors consider query
performance as a NFR and view maintenance overhead as a constraint. In [18],
two NFR are considered to represent the performance and energy efficiency
of queries. The work conducted by Oracle [3] considers three constraints: (a)
the number of selected MVs must be small and with a reasonable size, (b)
they must contain large pre-computations of joins and grouping, and (c) can
rewrite a substantial number of current and future workload queries. It should
be noticed that the resolution of the V SP depends on the result of PSS. This
dependency is not always considered [12]. [22] is one of the pioneering works that
identified the strong connection between V SP and PSS in the context of small
OLAP workloads. The authors proposed an approach that consists in analyzing
the queries so as to derive common intermediate results which can be shared
among the queries. An 0–1 integer programming algorithm is used to generate
optimal MVPPs. It uses single rule-based query optimizations combined with
query tree merging techniques which aims to incorporate the individual optimal
query plans as much as possible in the MVPP. In [12], the authors focused on
PSS for large workloads and proposed an ILP-based formulation of V SP . The
BIGSUBS algorithm is given to select subexpressions to materialize. Its main
idea is to split the initial problem into two subproblems, where each one is
solved separately in an iterative manner. Several pruning strategies have been
proposed. A distributed implementation of BIGSUBS using SCOPE has been
proposed [12]. V SP , PSS, and MQO are more sensitive to QJO that may impact
dramatically the query sharing [21]. Their respective solutions assume that QJO
is known (e.g., usually they use the one delivered by the target datastore [24]).

Another finding of our analysis of existing works is that the management
of joins/projections/selections is not always. Two transformations are distin-
guished: (i) joins have priority over selections and projections, and (ii) all oper-
ations have the same priority. In the first transformation, selections/projections
are removed and put back after merging queries. Different selections defined on a
table are performed in a disjunctive form [22]. This transformation may increase
the number of shareable join subexpressions with large sizes. In the second man-
agement, queries are used without any transformation. This may decrease the
number of shareable join subexpressions [12,16].

3 Suffix Arrays for Large-Scale Workload Coding

Due to the novelty of using suffix arrays (SA) in the process of selecting MVs, a
presentation of its fundamental concepts is necessary. After that, we show how
SA is reproduced in large-scale workloads management.

3.1 Fundamental Concepts of Suffix Arrays

Definition 1. Let w be a string with length n defined over an alphabet Σ∪{#},
where # represents a special symbol (called sentinel) and not belonging to Σ.
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All symbols in Σ are larger than #. The j-th (1 ≤ j ≤ n) suffix of the w is a
substring [j . . . n]. The suffix associated to the whole string is called full suffix.
The SA of w (denoted by SAw) is an array of integers specifying the starting
positions of suffixes of w in a lexicographical order. Only the indices of suffixes
are stored in the SAw instead of whole suffixes satisfying the following property:
∀i ∈ 1 . . . n : w[SA[i − 1] . . . n] < w[SA[i] . . . n]

The SA of “banana#” and “banned#” are given respectively in Fig. 1 (a,b).
The SA of a string w is enhanced with the Longest-Common-Prefix (LCP)
array which forms Enhanced Suffix Array (ESA) [1]. An LCP contains the
lengths of the longest common prefixes of adjacent suffixes in SAw. More
formally, let lcp(u, v) be the length of the longest common prefix of strings
u and v, the LCP array of u is an array of integers such that LCP [k] =
lcp

(
u[SA[k − 1] . . . n], u[SA[k] . . . n]

)
(∀k ∈ 2 . . . n) and LCP[1] = 0. The ESA

of “banana#” and “banned#” is given in Fig. 1 (a, b). Till now, we only con-
sidered suffix array of a single string. In real life applications suffix arrays are
generalized to code a large collection of strings [1]. To do so, let us consider a
collection of N strings CS = {w1, w2, ..., wN} defined over an alphabet Σ∪{#}.
Each string wi (1 ≤ i ≤ N) is associated to a length ni. It is also indexed by an
integer representing its position in CS (called string position in CS). Let T be
the concatenation of all N strings: w1#w2#...#wN#, and separated by #.

Fig. 1. An example of GESA of banana and banned

Definition 2. The Generalized Enhanced Suffix Array (GESA) of T is an array
specifying the lexicographic ordering of all suffixes of T . It contains pairs of inte-
gers (i, j) that specifies the lexicographic order of all suffixes wi[j, ni] of strings
in CS (1 ≤ i ≤ N and j = SA[h] for h = 1 . . . |T |).
The GESA of T composed by “banana#” and “banned#” is represented by a
rich data structure composed by 5 entries: (a) indices representing all suffixes of
T , (b) suffixes of T , (c) a string position in CS, (d) SA, and (e) LCP (Fig. 1
(c)). The LCP entry is crucial for detecting redundant substrings over intra-
string or inter-strings. In intra-string case, the most popular studied problem is
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the detection of longest repeated substring of a string [10]. The highest value in
LCP (=3) (represented by a blue circle) in Fig. 1 gives the length of the longest
repeated substring ana# (of banana#). When several strings are considered,
detecting longest common substrings is largely studied [10], which corresponds
exactly to our studied problem.

Definition 3. A footprint substring represents the longest common substring
among several strings.

“ban” gives the footprint of banana# and banned#.

3.2 Application of Suffix Arrays to OLAP Queries

To code an OLAP query by a SA, an important hypothesis is given: selections
and projections are removed and put back in a push-down fashion once the MVs
are identified. To illustrate this coding let us consider the following example.

Example 1. Before detailing our example, we first, we overview Yang et al. app-
roach [22] (named Yang A) considered as a reference for solving the combined
PSS and V SP . Let us consider three-star schema queries (Q1, Q2, Q3) defined
on Star Schema Benchmark (SSB) composed of one fact table: Lineorder (LO),
and 4 dimension tables: Date (DA), Customer (Cu), Part (PA), and Supplier
(SU). Due to the lack of space, we consider only their algebraic expressions. We
assume that QJO is a priori known.

Q1 : Π(p1,p2,p3)

[
σ(cl2∧cl1∧cl3)(LO �� DA �� SU �� CU)

]
;

Q2 : Π(p4,p5,p6,p7)

[
σ(cl5∧cl6∧cl4∧cl3)(LO �� DA �� SU �� PA �� CU)

]
; and

Q3: Π(p8,p7)

[
σ(cl7∧cl3)(LO �� DA �� CU)

]
.

Yang A starts by constructing left deep trees of the queries by pushing up
selection operations (Fig. 2 (a). Secondly, these trees are merged by exploiting
shareable nodes (joins). This merging produces a unified graph called MVPP
(Fig. 2 (b)). Selections are pushed as far down as possible in the MVPP. Two
types of intermediate nodes are distinguished: (i) a node with fanout equal to
1 that represents a subquery of a query (the case of J2 and J3) and (ii) a node
with fanout greater than 1 that represents at the same time a subquery and
shareable subexpression (ex. nodes J0 and J1). If a node is shared by many
queries of a workload, its materialization may contribute to avoiding redundant
computations (J0 and J1).

To use SA to code our queries, we first generate our Alphabet Σ =
{0, 1, 2, 3, 4,#} that includes integers assigned to each table: LO ← 0,DA ←
1, SU ← 2, PA ← 3, CU ← 4). Then, each query is coded by a string. For
instance, Q1, after ignoring selections/projections, it becomes LO �� DA ��

SU �� CU , is coded as “0124” (Fig. 2 c). Each suffix starting from position 1
of any query string with a length greater than 2 represents a subexpression of
that query (Fig. 2 d). The concatenation of all strings related to our queries
produces the string T = “0124#01234#014#”. Its GESA is described in Fig. 2
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Fig. 2. Graph vs. Suffix arrays

(e). It can be used to identify shareable subexpressions and enable defining MV
selection algorithms based on the target NFR based on hints: (1) if query per-
formance overrides the others NFR, the materialization of the longest common
substrings among queries (“012” in our case) could be the best choice. The mate-
rialization of “012” optimizes only Q1 and Q2 (by saving 2 joins), and saves also
2 computations. (2) In the case that the reduction of the number of redundant
computations among queries is privileged, the materialization of any common
substring (“01” in our case) represents the best choice. The materialization of
“01” contributes to optimizing all queries (1 join is saved), and saving 3 com-
putations. Any common substring is called footprint join subexpression. Once
footprint join expressions are identified, selections and projections are put back.
The obtained expressions are called covering subexpressions. The longest com-
mon substring after varying the QJO of Q1 (“0142”) and Q2 (“01423”) is “014”.
The materialization of “014” optimizes all queries and saves 3 computations.
This shows the central role of QJO in PSS and VSP solving.

4 Safeness Framework for MV Selection

In this section, we present our framework Safeness to select MVs for a large
scale workload defined on a DW composed of a fact table F and L dimension
tables {D1, . . . , DL}. Safeness is composed of 7 components:
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1. Query parsing: Each SQL query of the workload is parsed in order to extract
its corresponding tables, selections, projections, and joins. Let SelQi

Dj
be the

set of selections of the query Qi defined on the dimension table Dj .
2. QJO module: Since one of our objectives is to measure the impact of QJO on

the VSP, we define three QJO strategies: (i) QJO delivered by PostgreSQL1,
Min2Max, and Fanout QJO. The hint behind the two last QJO is to minimize
the size of the intermediate result of the join. In Min2Max QJO, joins are per-
formed according to their sizes in ascending order, by ignoring the selections
that may involve dimension tables. Fan-out integrates these selections and
evaluates their effect on the fact table F in terms of reducing its size. More
precisely, for a query q having a selection predicate p defined on a dimension
table D, the fan-out(p) is computed as follows: Fan-out(p) = ||F�σp(D)||

||F || ,
where || || and � represent respectively the number of instances of a table,
and semi-join operation.

3. Construction of GESA: This is done for each QJO strategy. The con-
struction follows the same principle developed in Example 1 and thanks to
the eGSA algorithm [17] chosen for its efficiency guaranteed by the usage of
external memory when dealing with large collections.

4. Footprint Join Subexpressions Generation: This step consists in captur-
ing common substrings among query strings while integrating the semantics
of analytical queries stipulating that the fact table must occupy either the
first or second positions in any query string. Let GESA′ be a fragment of
the GESA structure. It contains only the set of full suffixes. The problem of
finding footprint subexpressions is equivalent to the classification of full suf-
fixes in classes, where each class contains full suffixes having the same value
of LCP. Figure 2 (f) shows the result of the classification, where two classes
are well identified, and separated by a cut. For each class, its footprint join
expression is generated. The substring “012” in Fig. 2 (f) is translated to a
join sequence LO �� DA �� SU .

5. Covering Subexpressions Generation: Let FP = {fp1, fp2, . . . , fpb} be
a set of all footprints obtained in step 4. Let Qfpj is a set of queries shar-
ing fpj . Each footprint is transformed to a covering expression by pushing
down selections defined on each table in disjunctive way. The covering join
subexpression

(
(LO �� Π(p1,p4)σ(cl2V cl5)(DA)) �� Πp2,p5σcl1V cl6(SU)

)
shown

in Fig. 2 (f) corresponds to the footprint subexpression LO �� DA �� SU after
pushing down selections and projections.

6. Benefit of covering subexpressions over the workloads: Since, we are
following a cost-based approach for selecting our MVs, we have to quantify
the benefit of each covering subexpression covj over each query of q

fpj

i ∈ Qfpj

(denoted by Bcovj (qfpj

i ). It is computed as follows: Let sj be the subquery
of q

fpj

i that matches fpj . Bcovj (qfpj

i ) = PC(sj) − AC(covj), where PC(sj)
and AC(covj) represent respectively the processing cost of sj and the cost

1 https://www.postgresql.org/docs/8.1/geqo-pg-intro.html.

https://www.postgresql.org/docs/8.1/geqo-pg-intro.html
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of accessing covj (if materialized). The total benefit of covj over Qfpj is:
Bcovj (Qfpj ) =

∑
q
fpj
i ∈Qfpj

Bcovj (qfpj

i ).

7. MV Selection: The previous steps gives a set of covering subexpressions
{cov1, cov2, . . . , covb}, where each covi has a total benefit Bi and a size zi. All
are MV candidates. By integrating the storage constraint C, our V SP can be
modeled as a knapsack problem and reduced to Integer Linear Programming

(ILP) as follows: maximize(
b∑

i=1

Bixi); subject to
b∑

i=1

zixi ≤ C, xi ∈ {0, 1}, i =

1, . . . , b

5 Experimental Study

In this section, we conduct intensive experiments by considering several large-
scale workloads to evaluate the effectiveness, the scalability, and the capacity of
detecting redundant computations of our proposal. Yang A [22] a graph-based
algorithm chosen as a baseline solution. For these experiments, we use a desk-
top machine with 8 GB of RAM and 4 cores of 2.4 GHz processors. We build
a synthetic workload generator based on the query templates of the SSB. Four
workloads with different sizes (10 000, 20 000, 30 000, and 40 000) are generated
and executed over a DW with 102 000 000 facts. The number of joins in each
workload varies from 1 to 4. The evaluation and access costs of each shareable
and covering subexpressions are measured by the PostgreSQL query optimizer.
Safeness is implemented using Python. The Python-embedded modeling lan-
guage for convex optimization problems2 is used to solve our ILP problem.

(a) (b)

Fig. 3. (a) QP (no storage limit), (b) QP (100% storage)

2 https://www.cvxpy.org/.

https://www.cvxpy.org/
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(a) (b)

Fig. 4. (a) QP by varying the storage, (b) Rate of optimized queries

Effectiveness. To evaluate the effectiveness of Safeness, we measure the query
performance (QP) of each workload with and without MVs whilst varying join
ordering strategies. In the first experiment, the storage constraint is not imposed.
Therefore, all covering subexpressions generated by our algorithm are material-
ized. The obtained results are depicted in Fig. 3 (a). They show that whatever the
size of the workloads, the MVs obtained by PostgreSQL and Fanout QJO give a
better improvement than those obtained by Min2Max QJO. Another important
result concerns our superiority of Safeness over Yang A in terms of scalability.
For instance, for 40 000 queries, Safeness achieves improvement rates of 51.51%,
51.48%, and 49.8% corresponding respectively to the PostgreSQL, Fanout, and
Min2Max QJO, whereas Yang A realizes 37.7% with the PostgreSQL QJO. In
our second experiment, we consider the storage constraint. Figure 3 (b) illus-
trates the QP costs achieved by Safeness under a storage reference constraint
equal to the total size of the underlying DW . Whatever the used QJO strategy
and the size of the workloads, Safeness is able to select beneficial MVs respecting
the storage budget, whereas Yang A completely fails in selecting MVs. Yang A
starts selecting MVs when the storage limit reaches 9 times the size of the DW
(Fig. 4 (a)). The trade-off between QP improvement and the storage constraint
satisfaction is mainly due to the fact that Safeness captures the longest footprint
subexpressions common to each class of queries. Covering subexpressions of that
class build upon these longest footprint subexpressions, if materialized, have the
smallest sizes. This is because their joins are performed on filtered tables by
pushing down only selections used by the class of queries. The performance of
these queries and redundant computation savings are inevitably guaranteed. In
Yang A, all intermediate nodes in MVPP are MV candidates whatever their
lengths. Moreover, these candidates are defined on tables, where each one is
filtered by pushing down its selections used by all queries, which increases the
size of MV candidates. This is the reason why Yang A fails in selecting MVs
for large workloads under a reasonable storage budget. Figure 4 (b) depicts the
saved computations achieved by Safeness and Yang A for a workload of 10 000
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queries and storage limit equal to the size of the DW . For instance, Safeness
selects MVs that can save 3 495, 3 730, and 5 241 redundant computations cor-
responding respectively to PostgreSQL, Fanout, and Min2Max QJOs. This is in
line with our discussion in Sect. 3.2 concerning the compromise between query
performance and saving redundant computation.

(a) (b)

Fig. 5. (a) GESA construction time, (b) Run-time of the VS Algorithm

Scalability. To assess the scalability of Safeness, we report the runtime of the
construction of the GESA (Fig. 5 (a)) and the runtime of both Safeness and
Yang A by varying our workloads (Fig. 5 (b)). Figure 5 (a) illustrates the time-
linearity of the construction algorithm of the GESA. More interesting, the con-
struction time is very small and is about 0.7 s for a workload of 40 000 queries.
Figure 5 (b) depicts the executions time of Safeness with three QJO strategies,
as well the execution time of Yang A by considering only one MVPP produced
by merging query trees using the PostgreSQL QJO. As we can observe, Safeness
scales up whenever the workload size grows and maintains a runtime linear to the
size of the workload. However, the execution time of the Yang A is proportional
to the number of queries, which penalizes its usage for large-scale workloads. For
instance, for the workload of 40 000 queries (with the PostgreSQL QJO), our
algorithm takes 37 min (on a single and classical desktop machine) to deliver the
best MVs that contribute to improving QP up to 51% (Fig. 3 (a)), while Yang A
requires more than 2 h to perform its MV selection with QP improvement rate
equal 37.7%.

Impact of QJO on MV Selection Algorithms. Our experiments show
clearly the real impact of QJO on the whole process of selecting MVs (Fig. 4
(a)). For instance, for a workload of 10 000 queries, Safeness selects MVs that
reduce QP up to 3.75% and 4.93% for a 20% of storage reference constraint, and
12.47% and 13.22% for 40% of storage reference limit, when using respectively
the PostgreSQL and FanOut QJO. However, under these storage constraints,
the Min2Max is an inappropriate QJO strategy since Safeness fails in selecting
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any MV. We observe also that when the storage limit varies, the quality of the
selected MVs varies, in turn, depending on the used join ordering. This result is
spectacular and reinforces our initial claim about the strong dependency between
QJO, VSP, MQO, and PSS.

6 Conclusion

In this paper, we revisited VSP in order to optimize the performance of mod-
ern analytical applications known for their large-scale workloads and to reduce
redundant computations. We took advantage of this revisit to integrate QJO in
the whole process of selecting MVs. This revisit allows both delivering a histori-
cal view of the evolution of MVs and their surrounding problems, analyzing the
state-of-the-art of VSP, MQO, PSS, and managing joins, selections, and pro-
jections when dealing with VSP. We believe that these findings will motivate
researchers to continuously revisit the VSP in the era of large-scale workloads.
To cope with the volume of queries, we substituted graph-driven modeling of
queries with the GESA data structure known for its efficiency in text process-
ing. Contrary to existing studies that consider the entire workload to materialize
views, our framework Safeness partitions it into several classes, where each one
contains queries sharing the longest subexpressions. The materialization of these
subexpressions will naturally optimize large-scale workloads and save redundant
computations. Our preliminary results are encouraging and are justified by the
consideration of dependencies among PSS, VSP, and QJO.

The nice ideas presented in this paper about the consideration of QJO in VSP,
the usage of GESA in coding analytical queries, capturing shareable subexpres-
sions and saving redundant computations among queries, open several directions:
(a) the implementation of recent AI algorithms for QJO and evaluation of their
impact on the selected MVs. (b) Providing an adaptive version of Safeness, by
considering the significant changes in the target workload. (c) The development
of GESA driven algorithms for selecting indexes for large-scale workloads.
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Abstract. Process model variants are collections of similar process
models evolved over time because of the adjustments that were made to
a particular process in a given domain, e.g., order-to-cash or procure-to-
pay process in reseller or procurement domain. These adjustments pro-
duce some variations between these process models that mainly should
be identical but may differ slightly. Existing approaches related to data
warehouse solutions suffer from adequately abstracting and consolidating
all variants into one generic process model, to provide the possibility to
distinguish and compare among different parts of different variants. This
shortcoming affects decision making of business analysts for a specific
process context. This paper addresses the above shortcoming by propos-
ing a framework to analyse process variants.

The framework consists of two original contributions: (i) a novel meta-
model of processes as a generic data model to capture and consolidate
process variants into a reference process model; (ii) a process warehouse
model to perform typical online analytical processing operations on dif-
ferent variation parts thus providing support to decision-making through
KPIs; The framework concepts were defined and validated using a real-
life case study.

Keywords: Process variant · Process warehouse · Business process
analysis

1 Introduction

Process model variants, as collections of similar process models, may evolve
over time because of the adjustments made to the same business process in a
given domain, e.g., order-to-cash or procure-to-pay process in reseller or procure-
ment domain. These adjustments produce some variations between these process
models. Surely, between business processes across department of the same orga-
nization, or across companies in a given industry many common activities are
frequently found. For example, typical process procure-to-pay often consists of a
business process that starts from the moment a procure invoice is received from
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a vendor after a customer places an order and fulfilled if the vendor has received
the corresponding payment. All these procure-to-pay processes include activities
related to receiving, invoicing and payment. They may look the same but they
slightly differ from each other. Especially, of great importance is having an infor-
mation on management of the work progress between different parts of different
variants and then select the most efficient one. Dedicated technologies lack on
effectively manage the information on processes encoded in process models and
process execution records [18]. For more than a decade process-oriented data
warehouse have been introduced as a solution on analysing effectively process
activities of an organization. Process Warehouses [2,9,17] are an appropriate
means for analysing the performance of business process execution using well
established data warehouse technology and on-line analytical processing (OLAP)
tools. A way to manage these variants is expressing all the variants in a single
process definition with the excessive use of XOR-Splits. The resulting processes
are large, difficult to understand and overloaded, and new process definitions
still comprise of all the past processes definitions they should replace.

To address these shortcomings we propose a process warehouse model which
allows to express a generalization hierarchy of processes to adequately capture
process variants. This generalization hierarchy can be generated from a meta-
model of business process models which introduces the notion of generic activities
which generalize a set of activities (e.g., pay by credit card, by check, or by
third-party (PayPal) could all be generalized to an activity payment). Based
on these given hierarchies of activities we can define generalization hierarchy of
processes for the “process” dimension of a process warehouse. This hierarchy can
then be used to roll-up or drill down when analysing the logs of the executions
of the various process variants and it makes it much easier to compare key-
performance indicators between different variants at different levels of genericity.
In this context, the main research question this paper addresses is:

RQ: How can a family of process variants be effectively and efficiently
analysed using a process warehouse approach?

Receive invoice

Place order

Pay by bank
transfer

Receive invoice

Pay by credit-card

Place order

+
Receive invoice

Place order

Pay by bank
transfer

Pay by credit-card

Payment

common

variation
<<variant_specialization>> <<variant_specialization>>

Fig. 1. An example of reference (global) process model abstracting multiple process
variants

This research question specifies the interoperability between business pro-
cess modelling, enactment and data warehouse research areas with the aim of
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analysing different variants in a multidimensional perspective. To identify how
effective (e.g. measure customer satisfaction for a product or process) and effi-
cient (e.g. measure time, cost and resource utilization) a business process is, a
process performance analysis is crucial. Moreover it helps in estimating process
improvement efforts. To understand how a reference or global process model is
constructed, let us consider a concrete example that refers to customer invoice
payments after ordering his/her goods or services. Figure 1 shows two variants
of the order-to-pay process represented Business Process Modelling Notation
(BPMN) [7]. These variants reflect two possibilities to pay: the first pay by
bank transfer (filling a bank statement), the other, pay by credit-card (check
customer balance). We show how a reference can be constructed by identify-
ing the commonalities and variability among them. The choice between pay
by credit-card or pay by bank transfer represents a variability in this process:
depends on different drivers such as type of invoice, type of goods etc. The two
variant activities are integrated to a new generic (abstract) activity named Pay-
ment as shown on the right-hand side of the figure. We use a stereotype named
�variant specialization� assigned to the generic connector between the generic
activity and the specialized activities. We present our method to deal with pro-
cess variants, specifically we design a meta-model to adequately capture process
variants by introducing two new notions of generic activities and generic pro-
cesses and to define specialization/generalization relationships between them.
This meta-model is an extension and alteration of this work [4] we published
years ago. The remaining of this paper is as follows: Sect. 2 gives the algorithm
developed to generate the process variant hierarchy, Sect. 3 reviews the literature
and Sect. 4 finally draws some conclusions.

2 Generate a Process Variant Hierarchy

In this section, we show how to apply the transformation sets of generic pro-
cesses and generic activities and afterwards represent them in a consolidation
hierarchy. We develop an algorithm to generate all activity steps of concrete
processes derived from generic processes of the Reference process model after
applying substitution of each generic activities with respective activity special-
izations. The steps of this algorithm are as follows: -Firstly, filter (procedure
filter Steps() is left out due to space limitation) only some specific occur-
rences after applying the sequential order of steps from concrete and generic
processes; -Secondly, we generate all steps of concrete processes derived from
generic processes after applying direct and non-direct specializations of GAs
as described in Algorithm 1. For each direct specialization of generic activities
we obtain respective activities from concrete processes as bounded activities.
Whereas, for non-direct specializations we use a breadth-first search strategy
to explore other activities starting from the specialized activity up to the last
activity of a concrete process. -Thirdly, after configuring the genericity levels
of the hierarchy by ranking rows according to lvl -(GAs absolute level) values.
Detail explanations of this algorithm is given in the publication in [5].
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Algorithm 1. Derive process variants hierarchy after applying direct and non-
direct specializations of GAs from generic processes
Input: all F iltered Steps ← filter Steps()

Output: A multiset PV Hierarchy with tuples {(act id, ga id, process id, lvl)}
Variables

step ID = πStepId (all F iltered Steps)

process ID = πP rocessId (all F iltered Steps)

activity ID = πActivityId (all F iltered Steps)

lvl = πlvl (all F iltered Steps) � step level

isGeneric = πisGeneric (all F iltered Steps) �isGeneric=1 i.e. step is a GA

1: procedure derive PV Hierarchy()

2: PV Hierarchy ← ∅ � multiset of process variants specializations

3: foreach step ID ∈ all F iltered Steps do

4: if activity ID is not null then � skip control element steps

5: if isGeneric = true then � check if step ID is a GA

� get direct GA’s specialization i. e. , an EA or SP

6: substituted step ← πActivityId σGenericActivityId=step ID(a is spec of ga)

7: bounded step a ← πS Bound.act id,step ID,process ID,lvl(ρSub S(substituted step) ×
ρS Bound(getBoundedStep of A(Sub S.ActivityId)))

� insert into multiset PV Hierarchy with current tuples

8: PV Hierarchy ← PV Hierarchy ∪ bounded step a

� get indirect GA’s specialization using breadth-first-search strategy

9: indirect step a ← πBF S.act id,step ID,process ID,lvl(ρS Bound(bounded step A) ×
ρBF S(Breadth First Search(S Bound.act id)))

� insert into multiset PV Hierarchy with current tuples

10: PV Hierarchy ← PV Hierarchy ∪ indirect step a

� derive and store process specializations

11: get concretePId of a for bounded step a

12: get concretePId of ind a for indirect step a

13: p is spec of gp ← p is spec of gp ∪
{(concretePId of a, process ID)} ∪
{(concretePId of ind a, process ID)}

14: end if

15: end if

16: get next step ID from all F iltered Steps

17: end foreach

� rename PV Hierarchy attributes set

18: PV Hierarchy ← πact id, ρga id/step ID, ρprocess id/process ID,lvl(PV Hierarchy)

19: return PV Hierarchy

20: end procedure

Algorithm 1 as described below generates all steps of concrete processes
derived from generic processes after applying direct and non-direct specializa-
tions of GAs. As a result, from all these process specializations after substitu-
tion operations we derive process variant hierarchy. Accordingly, Process Vari-
ant dimension in our process warehouse model stores records of this hierarchy.
Detailed information the interested reader may find in [3] thesis.
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3 Related Work

This section provides an overview of current process-oriented data warehouses
approaches to analyse business processes through the most important analy-
sis parameters which are elicited from the generic meta-model of business pro-
cesses. [2] proposes to derive a generic data warehouse structures from the meta
model of the BPMN, whereas [12] proposes a Sequence Warehouse (SeWA) archi-
tecture and OLAP tools to analyse data stemming from workflow logs but a con-
ceptual model for DW is missing. Approaches based on goal-oriented methodol-
ogy for requirement analysis in order to design a data warehouse were proposed
by [11,16,20]. A multidimensional data modelling for business process analysis
was proposed by [8,14,15,17]. During our research work we have found a num-
ber of relational and multidimensional data warehouse design used for process
mining analysis as well. According to approach in [1], process cubes notion is
presented to organize events and mined process models using different dimen-
sions. Authors in [19] introduced an event cube as a basis for process discovery
and analysis. A framework is further developed to realize a process cube allow-
ing for the comparison of event data in [13]. A hierarchy level was defined only
in the time dimension. For instance, multidimensional process mining can be
used to analyse the different versions of a sales process, where each version can
be defined according to different dimensions such as location or time, and then
the different results can be compared as proposed in [6]. Furthermore, authors
in [21] partition event logs into groups of cases called sublogs with homogeneous
features in a dynamic and flexible way, in order to manage comparisons between
models. Whereas, authors in [10] proposed an Abstract Argumentation Frame-
work (AAF) to support the “high-level” analysis that business analysts are used
to reason.

4 Conclusions

This paper proposed an algorithm that consolidates a family of process variants
into a hierarchy of a process warehouse solution to efficiently and effectively
analyse them. Current business process management systems and traditional
process warehouses lack on adequately abstracting and consolidating all variants
into one generic process model, to provide the possibility to distinguish and
compare among different parts of different variants. As a summary, based on the
consumption of PW in many business intelligence development and solutions, a
framework that allows process variants to be efficiently analysed can significantly
improve the state-of-art.
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Abstract. Not all real-world data are labeled, and when labels are not avail-
able, it is often costly to obtain them. Moreover, as many algorithms suffer from
the curse of dimensionality, reducing the features in the data to a smaller set is
often of great utility. Unsupervised feature selection aims to reduce the number
of features, often using feature importance scores to quantify the relevancy of
single features to the task at hand. These scores can be based only on the distri-
bution of variables and the quantification of their interactions. The previous lit-
erature, mainly investigating anomaly detection and clusters, fails to address the
redundancy-elimination issue. We propose an evaluation of correlations among
features to compute feature importance scores representing the contribution of
single features in explaining the dataset’s structure.

Based on Coalitional Game Theory, our feature importance scores include
a notion of redundancy awareness making them a tool to achieve redundancy-
free feature selection. We show that the deriving features’ selection outperforms
competing methods in lowering the redundancy rate while maximizing the infor-
mation contained in the data. We also introduce an approximated version of the
algorithm to reduce the complexity of Shapley values’ computations.

Keywords: Unsupervised learning · Features importance · Redundancy
reduction

1 Introduction

In machine learning, both feature selection methods and reduction of dimensionality are
often performed to increase interpretability and to reduce computational complexity.
As an example, for unsupervised applications such as clustering [5] or anomaly detec-
tion [14], the curse of dimensionality poses a major challenge. Unsupervised feature
selection enables the detection of data patterns, as well as the description of these pat-
terns using a concise set of relevant features [20,24]. The corresponding methods are
mostly based on the analysis of multivariate data distributions, pairwise correlations,
higher-order interactions among features, or pseudo-labels. The use of such complex
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Fig. 1. (a) Unsupervised Shapley values-based feature importance scores. (b) Shapley values con-
sider interactions within all possible subsets of features fis. In both figures, correlated subsets of
features are color-coded and features selected by the proposed algorithm are marked in red. (Color
figure online)

measures implies that both the selection as well as the interpretation of why some
features have been selected is challenging. On the one hand, selection requires basic
measures to quantify the interaction within a set of features [5,14,16]. On the other
hand, interpretation of higher-order interactions is non-straight-forward and requires
the decomposition of complex non-linear, higher-order, and multivariate measures to
feature importance scores.

In different application domains, raising understanding over the mechanisms of
underlying machine learning techniques has become a crescent necessity. Assigning
scores to features based on their contributions to the machine learning procedure plays
a decisive role to this end. Feature importance scores are prevalent in supervised learn-
ing, e.g., random forests. At the same time, for unsupervised tasks, the literature is
limited either to traditional scores [20,24] not sensitive to higher-order interactions, or
the scores are not easily interpretable higher-order correlation measures.

We propose new unsupervised feature importance scores decomposing the infor-
mation contained in the data using axiomatic game-theoretic properties. In particular,
Shapley values enable us to consider the interactions present in each possible subset of
features (Fig. 1(b)) and to assign importance scores to the single features accordingly.
Our approach consists of two steps. In the first step, we introduce a game-theoretic
solution to decompose the information contained in the dataset and assign importance
scores to the single features. The scores obtained consider complex higher-order feature
interactions, can be based on different correlation measures, and do not rely on specific
notions of clustering or anomalies. In particular, we use Shapley values [18] to get the
feature importance scores where features explaining the most information on the overall
dataset obtain a higher score. In the second step, we take care of a mechanism to reduce
the redundancy among features. To this end, feature importance scores are penalized
through an information-theoretic measure of correlation to yield a redundancy-free fea-
ture selection. Figure 1(a) displays how correlated features are ranked similarly before
applying the redundancy elimination step and how our method is capable of avoiding
selecting highly correlated features. In the experimental results, we show that our rank-
ing is achieving a redundancy free-ranking; the redundancy rate of the selected features
is kept low both in synthetic and real datasets.

As a final remark, the scores flexibly rely on different correlation measures and
are not bound to any clustering or anomaly detection goals. We choose to present the
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Table 1. Summary table of the competing methods and this paper.

versatile
quality notion

feature
ordering

iterative
selection

redundancy
awareness

higher-order
interactions

UDFS [25] ✗ ✓ ✗ ✓ ✓

MCFS [2] ✗ ✓ ✗ ✓ ✗

NDFS [11] ✗ ✓ ✗ ✓ ✗

SPEC [26] ✓ ✓ ✗ ✗ ✗

LS [8] ✓ ✓ ✗ ✗ ✗

PFA [12] ✓ ✗ ✗ ✓ ✗

FSFC [27] ✗ ✗ ✓ ✓ ✗

this paper ✓ ✓ ✓ ✓ ✓

results obtained using the total correlation; hence, the presented experimental results
are limited to discrete and categorical data. The procedure can be extended to mixed
datasets replacing the total correlation or applying discretization on continuous data.

2 Related Work

Dimensionality reduction helps avoid the curse of dimensionality and increases the
interpretability of data and machine learning techniques. Different methods analyze the
relationship among features, the class label, and the correlation among variables [23]
and get feature importance scores in order to allow for a more aware use of machine
learning by non-experts. Those scores are often not aware of correlations among vari-
ables, thus leading to a necessary integration of a redundancy awareness concept [19].

In 2007 game theory found application in supervised feature selection [6,15] where
the value function was defined as the accuracy or the generalization error of the trained
model; to the best of our knowledge, the approaches proposed in the recent years are
limited to labeled data. A recent paper [17] underlined how Shapley values spread
through machine learning; in particular, they appear in several techniques to increase
the overall interpretability of black-box models [13,21] and new insights on Shapley
values and their applications continue appearing in the literature [4].

As a downside, Shapley values are well known to be computationally expensive.
Several approximations found place in the literature, e.g., [1,3,22] among others; the
first attempt of a comprehensive survey of Shapley values’ approximations is repre-
sented by Rozemberczki et al. [17]. To reduce the computational run-time, we imple-
ment Castro et al. [3] approximation, i.e., the most common Shapley values’ approxi-
mation non relying on additional assumptions on the players.

As a parallel area of research, in recent years, unsupervised feature selection meth-
ods have raised strong interest in the community [10,20]. We selected a representative
sample within the vast number of unsupervised feature selection methods to compare
the performance of our approach. Among them, UDFS [25] creates pseudo-labels to
perform the feature selection in unlabelled data; MCFS and NDFS [2,11] concentrate
on keeping the clustering structure. LS [8] selects features by their local preserving
power. PFA [12] tries to eliminate the downside of PCA while keeping the informa-
tion within the data. Most of these algorithms tend to select features as a by-product of
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retaining a clustering structure in the data. Finally, FSFC [27] is meant to select only
non-redundant variables using a new definition of distance in the k-nearest neighbors.
Table 1 illustrates a summary of the properties of the various methods analyzed in com-
parison with our paper.

3 Feature Importance Measures

Consider a N -dimensional dataset containing D instances. We interpret each dimen-
sion as the realization set of a random variable, refer to the set of variables as F =
{X1, . . . , XN } and to each dimension Xi as ith feature or variable. Feature selection
methods often internally assign to subsets of features an importance score and output
the subset maximizing the mentioned score. We propose to rank features considering
their average contribution to all the possible subsets of features. The higher the aver-
age contribution of a feature is, the more convenient it is to keep it within the selected
features. Additionally, we will also introduce redundancy awareness in these scores.

Given a function that assigns a value to each subset of features, assessing the impor-
tance of single features is not trivial as each feature belongs to 2N−1 subsets of features.
In unsupervised contexts, we can assess the usefulness of a set of features measuring
correlations or clustering properties. Throughout the manuscript, we stick to a value
function that captures the maximal information contained in the data. Following this
choice, the approach presented is restricted to categorical tabular data. We compute
feature importance scores and obtain a ranking prioritizing features highly correlated
with the rest of the dataset.

3.1 Feature Importance Score

We obtain feature importance scores using coalitional game theory. Each game is fully
represented by the set of players F and a set function v that maps each subset A ⊆ F to
v(A) ∈ R. v is referred to as value function [18] and satisfies the following properties

1. v(∅) = 0,
2. v(A) ≥ 0 for any A ⊆ F , and
3. v(A) ≤ v(B) for any A, B ⊆ F such that A ⊆ B.

Working with unlabelled data, we can not rely on ground truth labels. Hence, we define
value functions relying on intrinsic properties of the dataset; we opt for a value function
measuring the independence of the features in A ⊆ F . One possible initialization for v
is the total correlation of A.

Definition 1. The total correlation C of a set of variables A ⊆ F is defined as

C(A) =
∑

X∈A
H(X) − H(A). (1)

H(A) is the Shannon entropy of the subset of discrete random variables A, i.e.,

H(A) = −
∑

�x∈A
pA(�x) log pA(�x) (2)

where pA(·) is the joint probability mass function of A.
H(X) is the Shannon entropy of X , i.e., H(X) = − ∑

x∈X pX(x) log pX(x).
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We choose the total correlation as it satisfies properties (2) and (3), it has an intuitive
meaning and can be easily extended such that it satisfies property (1).

Shannon entropy [7] measures the uncertainty contained in a random variable X
considering how uniform data are distributed: its value is close to zero when its prob-
ability mass function pX is highly skewed while, as the distribution approaches a uni-
form distribution, its value increases. Moreover, the Shannon entropy is a monotone
non-negative function and can be extended such that H(∅) = 0. We assume that all
features in F are discrete as the extension of Shannon entropy to continuous variables
is not monotone [9]. As a consequence of Shannon entropy’s properties, the total corre-
lation C(A) is close to zero if the variables in A are independent, and it increases when
they are correlated. To study the impact of adding a feature Y to A ⊆ F , we compute
the value function of the incremented subset v(A ∪ Y ) and compare it with v(A): The
difference v(A ∪ Y )− v(A) = H(A) +H(Y )− H(A ∪ Y ) is non-negative and mea-
sures how much A and Y are correlated. We refer to H(A) + H(Y ) − H(A ∪ Y ) as
marginal contribution of Y to A. If A and Y are independent, then the marginal contri-
bution of Y to A equals zero. Vice versa, the marginal contribution grows the stronger
the correlation between Y and A is. As importance score, we assign to Xi the average
of its marginal contributions and we refer to it as φ(Xi), i.e.,

φ(Xi) =
∑

A⊆F\Xi

1
N

(
N−1
|A|

) [H(A) + H(Xi) − H(A ∪ Xi)] (3)

corresponding to the Shapley value of the player Xi in the game (F , v) when v is the
total correlation. The general definition of Shapley values reads [18]:

Definition 2. Given a coalitional game (F , v) and a player Xi ∈ F , the Shapley value
of Xi is defined by

φv(Xi) =
∑

A⊆F\Xi

1
N

(
N−1
|A|

) [v(A ∪ Xi) − v(A)] .

It can be proven that the Shapley value is the only function that satisfies the Pareto
optimality, i.e.,

∑
Xi∈F φv(Xi) = v(F), the dummy, the symmetry and additive prop-

erties [18]. Moreover, Shapley values represent a fair assignment of resources to players
based on their contributions to the game. We use the scores φ(Xi) to rank the features
in the dataset F . However, Shapley values do not consider redundancies, and linearly
dependent features obtain equal Shapley values.

3.2 Importance Scores of Low Correlated Features

We use a dataset with three sets of correlated features (color-coded in Fig. 1(a)), and we
aim to select features from subsets with different colors; however, as we have already
underlined, correlated features are characterized by similar Shapley values. In partic-
ular, the three highest Shapley values are obtained by correlated features in the blue-
colored set. Before addressing the problem of redundancy-awareness inclusion in Shap-
ley values, we show that the Shapley values rank features that are not correlated with
the rest of the dataset in low positions.
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Algorithm 1. SVFS
1: procedure SVFS(F , ε)
2: S = ∅
3: while F �= ∅ do
4: while X ∈ F do
5: if H(X) + H(S) − H(S, X) > ε then
6: F = F \ X
7: else
8: F = F
9: S = S ∪ argmaxX∈F {φ(X)}

10: F = F \ S
return S

Algorithm 2. SVFR
1: procedure SVFR(F )
2: S = argmaxX∈F {φ(X)}
3: ordered = [ ]
4: ordered[0] = argmaxX∈F {φ(X)}, j = 1
5: F = F \ S
6: while F �= ∅ && j < N do
7: for X ∈ F do
8: rk(X) = φ(X) − H(X) − H(S) + H(S, X)
9: ordered[j] = argmaxX∈F {rk(X)}

10: S = S ∪ argmaxX∈F {rk(X)}
11: F = F \ S
12: j ++

return ordered

Theorem 1. Given a subset of features B ⊂ F that satisfies the following properties

1. for all Xj /∈ B and for all A ⊆ F \ {Xj}, H(A) + H(Xj) = H(A ∪ Xj)
2. for all Xi ∈ B and for all A ⊆ F \ {Xi}, H(A) + H(Xi) ≥ H(Xi ∪ A)

then φ(Xi) ≥ φ(Xj) for all Xi ∈ B and Xj /∈ B.
Proof. From (1) we know that, since the marginal contribution of Xj /∈ B to any A ⊆
F \ {Xj} is equal to zero, φ(Xj) =

∑
A⊆F\{Xj}

1
N(N−1

|A| )
· 0 = 0.

For any Xi ∈ F and A ⊆ F , we know that H(A ∪ Xi) ≤ H(A) + H(Xi) from
Shannon entropy’s properties [7]. Hence, all marginal contributions are non-negative.
Hence, φ(Xi) ≥ 0 = φ(Xj) for all Xi ∈ B and Xj /∈ B.

This concludes the proof.

Thus with total correlation as value function, Shapley values are non-negative and
equal zero if and only if the feature is non-correlated with any subset of features. More-
over, features highly correlated with other subsets of features get high Shapley values.
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4 Redundancy Removal

We address the challenge of adding redundancy awareness to Shapley values. For this
purpose, we develop a pruning criteria based on the total correlation and greedily rank
features to get a redundancy-free ranking of features while still looking for features
with high Shapley values. Feature selection based on this ranking selects the variables
ranked first by Shapley values which show little dependencies.

We propose two algorithms. The Shapley Value Feature Selection (SVFS) needs a
parameter ε representing the correlation among features that we are willing to accept;
hence, SVFS requires some expert knowledge on the dataset to specify the parameter ε
in an opportune interval. The Shapley Value Feature Ranking (SVFR) works automat-
ically with an included notion of redundancy. We show that the two algorithms lead to
consistent results in Sect. 6.5. At each step, both algorithms select the highest-ranked
feature among the ones left.

We use a total correlation-based punishment; In particular, H(A)+H(X)−H(A∪
X) ≥ 0 represents the strength of the correlation among X and A and it is equal to zero
if and only if X and A are independent.

SVFS’s inputs are the set of unordered features F and the parameter ε > 0; ε plays
the role of a stopping criterion and represents the maximum correlation that we are
willing to accept within the set of selected features. Whenever ε is high, we end up
with the ordering given by Shapley values alone; instead, for ε ≈ 0 the criterion can
lead to the selection of the only features which are uncorrelated with the first one. The
optimal range of ε highly depends on the dataset. We show that SVFS is robust w.r.t. the
choice of ε. At each iteration, SVFS excludes from the ranking the features Xs that are
correlated with the already ranked features S ⊆ F more than ε, i.e., H(X) + H(S) −
H(S, X) > ε, computes the Shapley values of all remaining features X and adds to S
the feature whose Shapley value is the highest. When there are no features left, it stops
and returns S.

SVFR takes as an input F and outputs a feature ranking without the need of any
additional parameter. The ranking is aware of correlations as each of the Shapley values
φ(Xi) is penalized using the correlation measure H(Xi)+H(S)−H(Xi ∪S) where S
is the set of already ranked features, and Xi is a new feature to be ranked. This algorithm
provides a complete ranking of features and can be prematurely stopped including an
upper bound of features we are willing to rank. The absence of the additional parameter
ε is the main advantage of SVFR over SVFS.

5 Scalable Algorithms

The size of P(F) being exponential in N , computing Shapley values involves 2N eval-
uations of the value function. We use approximated Shapley values to obtain scalable
versions of SVFR and SVFS. We implement three versions of the algorithms that differ
only in the computations of Shapley values used:

– full algorithm: it uses the full computation of the Shapley values
– bounded algorithm: consider only subsets up to size k fixed to compute the Shapley

values
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– sampled algorithm: it uses the approximation proposed by Castro et al. [3] based on
n random sampled subsets of features.

The time complexity for the sampled algorithm is O(D · n), for the bounded algorithm
is O(D · Nk) while for the full algorithm is O(D · 2N ) where N is the number of
features and D the number of samples in the dataset.

6 Experiments

We show that our feature ranking method outperforms competing representative feature
selection methods in terms of redundancy reduction. Metrics such as NMI, ACC, and
redundancy rate are often used in the previous literature to evaluate unsupervised feature
selection methods. NMI and ACC focus on the cluster structure in the data; therefore,
as clustering is not the goal of our approach, we compare it with the competing methods
using the redundancy rate. The redundancy rate of S ⊆ F is defined in terms of pairwise
Pearson correlations, i.e.,

Red(S) = 1
2m(m − 1)

∑

X,Y ∈S,X �=Y

ρX,Y (4)

where ρX,Y ∈ [0, 1] is the Pearson correlation of features X and Y . It represents the
averaged correlation among the pairs of features in S and varies in the interval [0, 1]: a
Red(S) close to 1 shows that many selected features in S are strongly correlated while
a value close to zero indicates that S contains little redundancy. In the experiments, we
use the redundancy rate as evaluation criteria re-scaling it to the interval [0, 100] via the
maximum pair-wise correlation to facilitate the comparison among different datasets.

6.1 Datasets and Competing Methods

We show a comparison against SPEC, MCFS, UDFS, NDFS, PFA, LS and FSFC [2,8,
11,12,25–27].

We use various synthetic and publicly available datasets: the Breast Cancer dataset,
the Big Five Personalities Test dataset1 and the FIFA dataset2. The datasets that we use
throughout the paper are all categorical or discrete. We consider subsets of the full
dataset in order to apply the full versions of the algorithms and investigate the perfor-
mance of the approximations of SVFR and SVFS at the end of the section.

6.2 Redundancy Awareness

We compare the feature selection results of our algorithm against the competitors by
evaluating the redundancy rate in Table 2. For the FIFA dataset, we select 15 features

1 The first 50 features in the Big Five dataset are the categorical answers to the personality test’s
questions and are divided into 5 personalities’ traits (10 questions for each personality trait).
To apply the full algorithm, we select questions from different personalities and restrict to
10000 instances.

2 We restrict to the 5000 highest-rated players by the overall attribute.

https://archive.ics.uci.edu/ml/datasets/breast+cancer
https://www.kaggle.com/tunguz/big-five-personality-test
https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset?select=players_20.csv
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Table 2. Redundancy rate of the sets of three selected features using the competing algorithms
and SVFR (highlighted in green color in the table) on different datasets. The lowest rates are
represented in bold characters.

Breast Cancer B5 balanced B5 unbalanced FIFA Synthetic

NDFS 36.30 22.11 20.75 18.97 1.49

MCFS 20.26 23.59 18.79 20.63 3.74

UDFS 33.59 28.13 35.18 57.73 4.06

SPEC 13.89 39.09 21.46 42.14 29.4

LS 7.05 28.83 58.25 48.28 100.00

PFA 5.10 23.22 34.28 57.42 35.84

FSFC 8.74 22.64 20.99 36.45 2.12

SVFR 6.68 15.65 18.02 14.79 1.51

from the entire data which characterize the agility, attacking and defending skills of the
football players; we keep the whole datasets for Breast Cancer and synthetic data; in
the case of the Big Five Personality Traits dataset, we select respectively 5 questions
from three different personality traits for the balanced dataset and 9 features from one
trait and 3 from other two personality traits in the case of the unbalanced dataset. In
order to avoid bias towards the random selection of personality traits and features in
the Big Five data, we average the redundancy rate over 30 trials on randomly selected
personalities and variables both in the case of the balanced and unbalanced setup.

In each column, bold characters highlight the lowest redundancy rate. We use SVFR
for ranking the features and select the three highest-ranked features. We consequently
specified the parameters of the competing methods in order to get a selection of features
as close to three features as possible. For FCFS we set k = 4 for BC dataset, k = 8 for
FIFA dataset, k = 8 for the synthetic data and for Big Five dataset we use different k at
each re-run such that the number of selected variables varies between 2 and 5 and then
we average the redundancy rates; for NDFS, MCFS, UDFS and LS we used k = 5 (k
being the number of clusters in the data); for the other competitors, we specify the num-
ber of features to be selected. Table 2 illustrates that SVFR outperforms the competing
methods in nearly all the cases. In particular, while SVFR achieves low redundancy
rates in all datasets, the competing algorithms show big differences in performance in
the various datasets. On the Breast Cancer data and the synthetic dataset respectively,
PFA and NDFS slightly outperform SVFR. However, they do not keep an average low
redundancy rate on the other datasets. For reproducibility, we make the code publicly
available3.

6.3 Relevance of Unsupervised Feature Selection and Effectiveness

In Fig. 2(a), each plot corresponds to a different subset of features of the Big Five
dataset, i.e., 10 features selected from three different personality traits. Running SVFS
with ε = 0.3 we detect correlated features and avoids selecting them together as shown
in the plots. Using the scaled versions of our algorithms from Sect. 5 we can extend the
approach towards the complete Big Five dataset.

3 https://github.com/chiarabales/unsupervised sv.

https://github.com/chiarabales/unsupervised_sv
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Fig. 2. (a) Barplot of Shapley values and respective feature selections by SVFS (ε = 0.3) in Big
Five dataset restricted to 10 features. Different personalities traits are color-coded in each plot.
(b) Barplot of Shapley values for Breast cancer data; in green, the ordering of features’ selection
by SVFS when ε = 0.5. (Color figure online)

Table 3. Orderings of selection given by SVFS for various ε and first 8 ranked features by SVFR.
Features are color-coded in order to simplify the visualization.

Big Five Synthetic Data Breast Cancer

ε = 0.2 [11, 0, 5] [8, 7, 0] [2, 0, 8]
ε = 0.3 [11, 0, 10] [8, 7, 2] [2, 0, 4, 6]
ε = 0.4 [11, 0, 14] [8, 7, 3] [2, 0, 4, 8, 6]
ε = 0.5 [11, 0, 14, 9] [8, 7, 3] [2, 0, 3, 8, 6]
ε = 0.6 [11, 0, 14, 5] [8, 7, 3] [2, 0, 3, 8, 6]
ε = 0.7 [11, 0, 14, 13] [8, 7, 3] [2, 0, 3, 4, 8, 6]
ε = 0.8 [11, 0, 14, 13] [8, 7, 3, 0] [2, 0, 3, 4, 5, 8, 6]
SVFR [11, 0, 5, 10, 12, 8, 6, 2] [8, 7, 3, 0, 6, 5, 2, 10] [2, 0, 4, 6, 8, 5, 1, 3]

Figure 1(a) represents the Shapley values of features in a 12 dimensional synthetic
dataset where subsets of correlated features are color-coded. We measure the ability of
the algorithm in selecting features from different subsets of correlated features; SVFS
selects one feature from each subset of correlated features. In particular, when ε =
1, SVFS achieves this goal by selecting {f8, f7, f3} while the ranking given by the
Shapley values alone is {f8, f10, f11} which belong to the same subset of correlated
features. This nicely underlines the inability of Shapley values to detect correlations
and the necessity of integrating correlation-awareness to perform a feature selection.

Our unsupervised feature selection allow to construct more efficient psychologi-
cal tests avoiding redundancies and reducing the number of questions that need to be
answered without losing too much information.

6.4 Interpretation of Feature Ranking

We apply SVFS when ε = 0.5 to the Breast Cancer dataset. In Fig. 2(b), the result-
ing Shapley values and the ordering of selected features are displayed. The selection



Unsupervised Features Ranking via Coalitional Game Theory 107

Table 4. recall@k for k ∈ {1, 3, 5} comparing a random ranking and the rankings given by
SVFR using the sampled and bounded algorithms to the full SVFR ranking. We show results for
FIFA and Big Five datasets restricted to 15 features randomly chosen. Bold text highlights the
best approximation.

k = 1 k = 3 k = 5
BIG5 Random 0.04 0.19 0.33

Sampled 0.04 0.37 0.49

Bounded 0.08 0.56 0.55

FIFA Random 0.06 0.24 0.35

Sampled 0.00 0.33 0.40

Bounded 1.00 0.67 0.80

Fig. 3. Redundancy rates of the selected features’ sets as a function of ε for SVFS (bullets points
connected by the dashed line) and for 3, 4, and 5 selected features when using SVFR.

resulting from SVFS shows a low redundancy rate while the selected features (e.g., the
size of the tumour, age, and the number of involved lymph nodes) are clearly in line
with domain knowledge on risk factors for disease progression (label). Furthermore,
the comparison with the ranking without redundancy awareness nicely highlights the
importance of our approach to avoid redundancies when possible.

6.5 Comparison Among the Proposed Algorithms

In Fig. 3, we plot a comparison among SVFS and SVFR w.r.t. the redundancy rate on
three datasets with different values of ε. As benchmarks, we use for SVFR the selection
of 3, 4 and 5 features respectively while for SVFS, ε varies in the interval [0, 1.4] with
steps of size 0.1.

Using the number of features as a stopping criterion in SVFR would produce con-
sistent results to SVFS: as an example, using the breast cancer data the ranking given by
SVFR, i.e., [2, 0, 4, 6, 8, 5, 1, 3], is consistent with the selection given by SVFS respec-
tively using ε = 0.2 and ε = 0.6, i.e., [2, 0, 8] and [2, 0, 3, 8, 6]. Table 3 shows a full
comparison among the SVFR and SVFS on three different representative datasets. We
recommend applying SVFS when no previous knowledge of the data is available and
it is hard to establish an optimal range for ε. Vice versa, one could apply SVFR when
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Fig. 4. Log-log plots of the run-time as a function of the number of features for the approximated
and full SVFS (ε = 0.5, D = 1000). The full SVFS is stopped with 20 features.

the expertise in the dataset domain allows determining a reasonable number of features
as stopping criterion or the observation of the ranking given can provide insights to the
non-expert on which features to keep and which can be discarded for further analysis.

6.6 Run-Time Analysis

As a consequence of the full computation of Shapley values, the run-time of SVFR and
SVFS increases exponentially with the number of features as shown by Fig. 4. Using
the approximated algorithms, this growth turns out to be slower. In particular, when
using the sampled algorithm, the run-time increases only linearly with the number of
features while the growth of the bounded algorithm’s run-time is polynomial in the
number of features. In the additional material, we show the log-log plot of the run-time
for increased number of samples in the dataset. For each algorithm, we use random
subsets of the Big Five dataset and average over 10 trails.

We further compare the rankings of the approximated and full algorithms using the
recall@k metric interpreting rankings of the full version of SVFR as ground truth. We
use the Big Five dataset, randomly selecting 5 questions from 3 different personalities
and average the scores over 100 trails (see Table 4). Overall, the results for the approxi-
mated algorithms clearly outperform random ordering - but still deviate often from the
full versions. It is worth to note that the bounded algorithm using subsets up to size 5
performs better than the sampled version.
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7 Conclusions

In the paper, we develop a new method to assess feature importance scores in unsuper-
vised learning, bridging the gap between unsupervised feature selection and cooperative
game theory. We integrate Shapley values with redundancy awareness making use of an
entropy-based function to get feature importance scores.

We present two algorithms: SVFS implements feature selection using a redundancy
aware criterion while SVFR assigns a ranking to each feature while being aware of
correlations with previously ranked features. We show how the results of the two algo-
rithms are consistent and state-of-the-art regarding their application. Our feature selec-
tion methods outperform previously proposed algorithms w.r.t. the redundancy rate.
We additionally introduce approximated versions of the algorithms that are scalable to
higher dimensions.

Additional Material

(See Fig. 5 and Table 5).

Fig. 5. Log-log plot of the run-time for the full SVFS with ε = 0.5 as a function of the number
of the samples D and fixed number of features.

Table 5. Summary of the datasets’ structures.

Features Samples

Breast Cancer dataset 9 286

Big Five dataset 50 1013558

FIFA20 dataset 46 15257

Synthetic dataset 12 10000
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Abstract. Multi-label learning is a special supervised pattern classifica-
tion issue, in which an instance is possibly associated with multiple class
labels simultaneously. As various real world applications emerge contin-
uously in the big data field, more attention has been paid to stream-
ing data forms recently, i.e., instance, feature and label streams. In this
paper, we focus on multi-label online streaming feature selection (OSFS)
problem, whose features arrive sequentially over time, and instances and
labels are given, to choose an optimal subset of features dynamically.
Alpha-investing method is one of the most cited embedded-type single-
label OSFS techniques, which mainly involves the linear regression model
as its classifier. In this paper, we generalize such a technique to build two
new multi-label OSFS algorithms (simply ML-AIBR and ML-AIMOR),
which are based on binary relevance (BR) decomposition way and multi-
output regression (MOR), respectively. To the best of our knowledge,
such two algorithms are the first proposed embedded-type OSFS tech-
nique for multi-label streaming features so far. Our extensive experi-
ments conducted on six benchmark data sets demonstrate that our two
proposed methods performs better than three existing algorithms. Spe-
cially, our ML-AIMOR could filter out more irrelevant and redundant
features effectively.

Keywords: Multi-label learning · Feature selection · Streaming
features · Online learning · Alpha investing

1 Introduction

Multi-label learning is a particular supervised classification task in which an
instance could belong to multiple class labels at the same time and thus the
classes are no longer exclusive to one another [4,14,23]. Nowadays, such a
paradigm covers many real-world applications, for example, text categorization,
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music emotion classification, image annotation, bioinformatics and so on [4,14].
Traditional multi-label learning mainly deals with an off-line learning setting
where all data are available in advance for learning. Therefore, there exist two
possible limitations. On the one hand, those existing multi-label classification
methods are impractical for large-scale applications in big data area since all
data are needed to be stored in memory. On the other hand, it is non-trivial to
adapt those off-line classifiers to sequential data [14,14,23]. In this case, online
multi-label learning paradigm is proposed, which is to cope with various stream-
ing data [28].

In multi-label learning, a collected data set is usually described via three
dimensions: instance, feature and label, which correspondingly results in three
streaming data forms: instance stream [19,28] (directly as data stream widely),
label stream [10,11], and feature stream [8,9], when one dimension extends
sequentially over time and the remained two dimensions are fixed.

As various real-world applications emerge continuously, their feature dimen-
sion goes much and much higher, which inevitably includes some irrelevant,
redundant and noisy features. This situation usually costs more computational
resources, and builds more complicated learning models and even deteriorates
classification performance. To this end, lots of dimensionality reduction methods
have been introduced under off-line setting in the past ten years, which involves
feature extraction (FE) [21,24,25] and feature selection (FS) [6,18,21]. The for-
mer is to construct some secondary features via combining original features lin-
early or nonlinearly, and the latter to choose a most discriminative subset from
all given original features. In order to remain feature physical meanings and
enhance learning model interpretability, some researchers pay more attention to
FS techniques and further extend them from static data to streaming ones [9,10].
In this paper, we focus on online streaming feature selection methods (OSFS),
which tackles the feature selection problem under an online manner, where the
features arrive sequentially over time.

In [9], according to fuzzy mutual information as relevance and redundancy
evaluation indices, an OSFS method (i.e., MSFS) is proposed, which consists
of two steps: online relevance analysis to decide whether a new arrived feature
is selected or discarded, and online redundancy analysis to remove a redundant
feature among selected features. Following this two-step analysis principle, the
OM-NRS [12] substitutes neighborhood rough set for fuzzy mutual information
[9]. The ML-OSMI is built via combining label spectral granulation with mutual
information in [22]. In the I-SFS [17], via mutual information based relevance
and redundancy, two objectives are optimized by multi-objective cuckoo search
techniques, i.e., maximizing the difference between the relevance and redundancy
in the selected features and minimizing difference between the redundancy to the
relevance of unselected features.

The aforementioned three methods assume that the features arrive one-by-
one over time. When a group of features are extracted sequentially, several group
feature selection methods are built. With neighborhood symmetrical uncertainty
and neighborhood mutual information, the literature [13] proposed a group OSFS
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method (OMGFS). Via integrating neighborhood mutual information, dynamic
sliding window and feature repulsion loss, Li et al. are to construct another
group OSFS approach (SF-DSW-FRL) [8]. In [16], a three-phase filtering process
is proposed, where an evolutionary-based particle swarm optimization (PSO)
is applied to the group of incoming features in a multi-objective optimization
setting, the redundancy of features selected in the current group to the already
selected features is checked, and those features in the already selected feature
list that becomes non-significant on the selection of newly arrived features are
discarded. In [17], the multi-objective cuckoo search technique is alternatively
applied to the group of incoming features to build a corresponding G-SFS from
I-SFS.

Usually, existing FS methods for both single-label OSFS [1,5] and off-line
multi-label FS [6,18], are generally categorized into three groups: embedded,
wapper and filter. According to this partitioning rule, the aforementioned multi-
label OSFS methods all belong to filter-type FS techniques. Therefore, designing
and implementing some non-filter multi-label OSFS are still an open issue.

Among existing single-label OSFS methods, alpha-investing technique [29]
has become one of the most widely-recited embedded-type FS methods [1,5],
which is based on linear regression, likelihood ratio test and adaptive threshold.
In this paper, we generalize such an approach to deal with multi-label OSFS
problem via two ways. One is to decompose a multi-label problem into sev-
eral binary subproblems via binary relevance (BR) trick [4] at first, then execute
single-label alpha-investing procedure for a new arrived feature independently for
each binary subproblem, and finally decide whether to choose this feature. The
other is to consider the multi-label problem as a multi-output regression (MOR)
problem to replace single-output regression one in alpha-investing. Therefore,
two multi-label OSFS methods are proposed in this paper, which are concisely
referred to as ML-ALBR and ML-ALMOR respectively. To the best of our knowl-
edge, such two multi-label OSFS algorithms are the first proposed embedded-
type OSFS techniques so far. Our extensive experiments on six benchmark data
sets demonstrate that our proposed OSFS methods are more effective, compared
with three existing FS techniques (i.e., PMU [7], RF-ML [20] and MLNB [26]).

The rest of this paper is organized as follows. The Sect. 2 is to construct
our new embedded-type multi-label OSFS methods (i.e., ML-AIBR and ML-
ALMOR). The extensive experiments are conducted on six benchmark data sets
in Sect. 3. Finally, our conclusions and future work are given in Sect. 4.

2 Multi-label Online Streaming Feature Selection
Algorithms via Extending Alpha-Investing Strategy

This section consists of four sub-sections: preliminaries, single-label alpha-
inverting method, and two multi-label OSFS methods respectively based on
binary relevance decomposition and multi-output regression, to introduce two
novel multi-label online streaming feature selection (OSFS) methods.
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2.1 Preliminaries

On multi-label OSFS, we assume that the size of training set (N) and the num-
ber of class labels (C) are fixed, whereas the dimensionality of features (D) is
increasing gradually over time and even goes to be infinite. Let the dynamic
feature index set be F = {f1, ..., ft, ...} in which the feature ft arrive at time t,
and the static label index set be L = {l1, ..., lC}. At time t, a multi-label training
data can be depicted using a dynamic real feature matrix X ∈ RN×t

Xt = [xt1, ...,xti, ...,xtN ]T =
[
x1, ...,xj , ...,xt

]
(1)

and a static binary label matrix Y ∈ {0, 1}N×C

Y = [y1, ...,yi, ...,yN ]T =
[
y1, ...,yj , ...,yC

]
(2)

where the i-th instance is represented by its column feature vector xti = [xt1, ...,
xti]T ∈ Rt and label vector yi = [yi1, ..., yiC ]T ∈ {0, 1}C , xt ∈ RN is the t-th
arrived feature vector at time t, and yj ∈ {1, 0}N is the j-th label vector.

Since the features flow continuously one-by-one, multi-label OSFS is to
choose an optimal discriminative subset of the predefined size d from the
available feature set at time t (generally d < t), via removing those irrelevant
and redundant features, which finally is used to learn a multi-label classifier:
g(x) : Rd → {0, 1}C , to predict the binary labels for unseen instances.

2.2 Alpha-Investing Method for Single-Label OSFS

Alpha-investing algorithm [29] is a typical single-label OSFS technique [1,5],
which consists of three key factors: linear regression, likelihood ratio test and
variable threshold (i.e., α).

For single-label classification problem, the above label matrix (2) is reduced
into a column vector y = [y1, ..., yN ]T , and at time t the linear regression [3]

y = wT
t x̄t + et (3)

is regarded as a linear classifier, where x̄t = [1,xT
t ]T is an extended instance

feature vector, wt ∈ Rt+1 is weight vector including a bias term, and et is
model error satisfying the standard normal distribution with the variance σ2

t

(i.e., N(0, σ2
t )).

Based on the feature matrix (1) and label vector (y), a squared error sum is
defined as

Et =
∥
∥y − X̄twt

∥
∥2

2
(4)

where || · ||2 is 2-norm of vector, and X̄t = [1,Xt] ∈ RN×(t+1) and 1 is an unit
column vector with all one elements.

Let the gradient vector of Et with respect to wt be zero (i.e., ∇Et = 0), the
optimal weight vector w∗

t is obtained as follows

w∗
t =

[
X̄T

t X̄t

]−1
X̄T

t y. (5)
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Correspondingly, the minimum squared error sum becomes

E∗
t =

∥
∥y − X̄tw∗

t

∥
∥2

2
(6)

and the variance is
σ2

t =
E∗

t

N
(7)

Assume that one feature subset St is chosen at time t. When at time t + 1,
a new feature ft+1 arrives, its corresponding E∗

t+1 is estimated via (6) similarly.
In this case, the probability p-value of likelihood ration test is calculated as

pt+1 =

(
1√
2πσ2

t

)t

exp
(
− E∗

t

2σ2
t

)

(
1√
2πσ2

t

)t

exp
(
−E∗

t+1

2σ2
t

) = exp
(

E∗
t+1 − E∗

t

2σ2
t

)
(8)

which implies that a smaller p-value will indicate a greater contribution of
this arrived feature to the linear regression model. When this p-value is less
than a threshold α (i.e., pt+1 < α), this arrived feature would be selected, i.e.,
St+1 = St ∪ {ft+1}.

Further, alpha-investing algorithm adjusts this threshold α dynamically. Let
β0 be an initial probability of false positive. At time t + 1, the threshold is set
to αt = βt/2(t + 1) at first. If the pt+1 < αt and the feature ft+1 is chosen, the
β is increased as follows

βt+1 = βt + αδ − αt (9)

where αδ < 1 is a user predefined constant, otherwise

βt+1 = βt − αt, (10)

which decreases the threshold when this feature is discarded. Such a alpha-
investing rule is to control the threshold (α) adaptively for adding new arrived
features, so that when a new feature is added to regression model, one invests α
increasing the wealth, raising the threshold, and allowing a slightly higher future
chance of incorrect inclusion of sequential features.

Therefore alpha-investing algorithm combines linear regression, likelihood
ratio test and floating threshold to build an embedded-type OSFS approach.
In addition, two user-defined constants are set to β0 = 0.5 and αδ = 0.5 in its
experiments [29]. In the next two sub-sections, we will generalize this alpha-
investing method to tackle multi-label OSFS issue.

2.3 Multi-label Online Streaming Feature Selection via Combining
Alpha-Investing with Binary Relevance

In multi-label learning, a widely-used strategy is to partition a multi-label clas-
sification problem into one or more single-label classification subproblems that
are dealt with using various single-label techniques [4,14,23]. Among existing
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Algorithm 1.Multi-label online streaming feature selection with alpha-investing
and binary relevance (ML-AIBR)

Input: Label matrix Y , and initial false probabilities β0 = 0.5, and αδ = 0.5
Procedure
Initialize the feature matrix as an unit column vector X0 = [1],

selected feature subset S0 = {}, βj
0 = β0(j = 1, 2, ..., C) and t = 0

Do the following loop procedure
Get a new feature ft+1 with its feature vector xt at time t + 1
Update the feature matrix Xt+1 = [Xt,x

t]
For j = 1, 2, ..., C

Construct a training subset {Xt+1,y
j} for the k-the label

Set αj
t = βj

t /2(t + 1).
Calculate its p-value pj

t+1

If pj
t+1 < αj

t (to choose this feature)
Add this feature subset, St+1 = St ∪ {ft+1}
Update βj

t+1 = βj
t + αδ − αj

t

Else (to discard this feature)
Update βj

t+1 = βj
t − αj

t

End if
End for
t = t + 1

Until no feature arrives
Output: Selected feature subset S

decomposition ways, binary relevance (BR) is the most popular decomposition
strategy, which separates a C-label problem into C independent binary subprob-
lems. For the above training set ((1) and (2)), at time t, we could obtain C
binary subsets:

{Xt,yj |j = 1, 2, .., C}. (11)

We execute the feature selection step in alpha-investing method for each
binary subset, and then decide whether such an arrived feature ft+1 is selected
or not. Once this feature ft+1 is selected from the j-th binary subset, we add
such a feature to selected feature subset, i.e., St+1 = St ∪ {ft+1} and increase its
corresponding threshold βj

t according to (9). Otherwise, only the threshold βj
t

is decreased adaptively via (10). Finally, we construct an embedded-type multi-
label OSFS method via combining alpha-investing and binary relevance, which
is simplified as ML-AIBR in this paper and summarized in Algorithm 1.

2.4 Multi-label Online Streaming Feature Selection via Combining
Alpha-Investing with Multi-output Regression

Multi-output regression [2] is a generalized form of the classical single-output
regression, which is to deal with more than one real output problem. Generally,
multi-label classification with multiple binary labels could also be regarded as a
special case of multi-output regression [15].
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Algorithm 2.Multi-label online streaming feature selection with alpha-investing
and multi-output regression (ML-AIMOR)

Input: Label matrix Y, and initial false probabilities β0 = 0.5 and αδ = 0.5
Procedure
Initialize the feature matrix X0 = [1], selected feature subset S0 = {} and t = 0
Do the following loop procedure

Get a new feature ft+1 with its feature vector xt at time t + 1
Update the feature matrix Xt+1 = [Xt,x

t]
Construct a training set {Xt+1,Y}
Set αt = βt/2(t + 1).
Calculate its p-value pt+1 using (18)
If pt+1 < αt (to choose this feature)

Add this feature subset, St+1 = St ∪ {ft+1}
Adjust βt+1 = βt + αδ − αt

Else (to discard this feature)
Adjust βt+1 = βt − αt

End if
t = t + 1

Until no feature arrives
Output: Selected feature subset S

In this sub-section, we will substitute multi-output regression for singe-
output one to extend alpha-investing for multi-label OSFS case.

For the above multi-label training set ((1) and (2)), we define C regression
functions:

yj = wT
jtx̄t + ejt, j = 1, ..., C (12)

as a multi-label linear classifier, where wjt ∈ Rt+1 is a weight vector for the j-th
label, and ejt is the j-th model error satisfying the standard normal distribution
with the variance σ2

jt (i.e., N(0, σ2
jt)).

Correspondingly, the total squared error sum is depicted as follows

Et =
1
C

C∑

j=1

∥
∥yj − X̄twjt

∥
∥2

2
=

1
C

∥
∥Y − X̄tWt

∥
∥2

F
(13)

with
Wt = [w1t,w2t, ...,wCt] ∈ R(t+1)×C (14)

where || · ||F is the Frobenius norm of matrix. Similarly, the optimal weight
matrix W∗

t is achieved
W∗

t =
[
X̄T

t X̄t

]−1
X̄T

t Y (15)

and then the minimum total squared error sum and the total variance are esti-
mated as

E∗
t =

1
C

∥
∥Y − X̄tW∗

t

∥
∥2

F
(16)

and
σ2

t =
E∗

t

N
(17)
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Table 1. Statistical information of six used multi-label data sets.

Data set Training
instances

Testing
instances

Features Labels Label
cardinality

Arts 2000 3000 462 26 1.636

Business 2000 3000 438 30 1.588

Health 2000 3000 612 32 1.662

Recreation 2000 3000 606 22 1.423

Reference 2000 3000 793 33 1.169

Social 2000 3000 1047 39 1.283

At time t + 1, a new feature ft+1 arrives, we utilize E∗
t (16) and σ2

t (17) to
replace these two quantities in (6) and (7) to calculate the p-value

pt+1 = exp
(

E∗
t+1 − E∗

t

2σ2
t

)
(18)

to decide whether to select this feature ft+1, and then to adjust the β value adap-
tively according to (9) and (10). We integrate the single-label alpha-investing
method with the multi-label regression to build a new multi-label OSFS algo-
rithm, which is simply named as ML-ALMOR, and is summarized in Algo-
rithm2. Compared with the aforementioned ML-AIBR, this ML-AIMOR con-
siders multi-label OSFS problem as an entire ones, rather than several separated
subproblems.

3 Experiments

In this section, we will evaluate our proposed two multi-label OSFS algorithms
(ML-AIBR and ML-ALMOR), and three existing FS methods (PMU [7], RF-ML
[20] and MLNB [26], on six multi-label benchmark data sets.

In our experiments, we download six Yahoo benchmark data sets: Arts, Busi-
ness, Health, Recreation, Reference and Social, from Mulan library1. The Table 1
lists their main statistical information, including the numbers of training and
testing instances, dimensionality of features, number of labels, and label cardi-
nality (i.e., average label size). These data sets have been widely used to evaluate
multi-label OSFS techniques in [9,12,13]. Although these data sets are originally
not streaming feature format, we regard them as streaming features over time
via their natural arranged orders, as in [9,12,13], to conduct our comparison
experiments.

On the other hand, we choose three FS methods (PMU [7], ReliefF-ML [20]
and MLNB [26] as our compared techniques, which have been used in the exper-
iments comparison in [9,12,13,16,17]. PMU [7] implements a FS procedure by

1 http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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Fig. 1. Two metrics with the different number of selection features on arts
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Fig. 2. Two metrics with the different number of selection features on business

maximizing the dependency between features and labels measured by multivari-
ate mutual information. RF-ML [20] extends traditional single-label FS approach
ReliefF to deal with multi-label FS problem, whose smoothing factor is set to
1 and the number of nearest neighbor instances is 10. MLNB [26] uses PCA to
eliminate irrelevant or redundant features via some smallest eigenvalues, then
select an optimal feature subset via genetic algorithm.

After executing FS procedure, multi-label k-nearest neighbor classifier (ML-
kNN) [27] is used as our baseline classifier, whose smoothing factor is 1 and
k = 10. There are more than 20 classification performance evaluation metrics
in [4]. Due to the limited space, in this study, we choose two metrics (average
precision and ranking loss) to compare and evaluate our two proposed methods
(ML-ALBR and ML-ALMOR), and three existing techniques (PMU, RF-ML and
MLNB). For a well-performed FS technique, its corresponding average precision
is high, whereas the ranking loss is low.

We investigate these two metrics as functions of the different number of
selected features, where the numbers of selected features are from 5 to the fixed
number (230, 260, 330, 301, 410, 460 for six data sets on Table 1 according to
their different size of original feature sets) with a step 5.

The experiments are shown in Figs. 1, 2, 3, 4, 5 and 6 where the left and right
subplots corresponds to average precision and ranking loss, respectively. From
these figures, we observe that:
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Fig. 3. Two metrics with the different number of selection features on health
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Fig. 4. Two metrics with the different number of selection features on recreation
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Fig. 5. Two metrics with the different number of selection features on reference

(i) As the number of selected features increases, the average precision values
increase and the ranking loss decrease gradually, respectively.

(ii) In order to outperform three existing feature selection methods, our pro-
posed method ML-ALBR selects more features.

(iii) Compared with three existing methods and ML-AIBR, our proposed algo-
rithm ML-AIMOR only selects fewer features, to achieve a competitive per-
formance.

These experimental results demonstrate that our two proposed online stream-
ing feature selection methods are effective, compared with three existing feature
selection techniques.
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Fig. 6. Two metrics with the different number of selection features on social

4 Conclusions

In this paper, we extend the traditional online streaming feature selection
method: alpha-investing, through two effective ways: binary relevance decom-
position and multi-output regression to deal with multi-label streaming feature
selection problems, resulting in two effective multi-label online streaming feature
selection approaches. To the best of our knowledge, they are two first proposed
embedded-type online feature selection algorithms for streaming features. Our
extensive experiments on six benchmark data sets validate the effectiveness of
our proposed techniques, compared with three existing feature selection tech-
niques, according to two widely-used performance evaluation metrics (average
precision and ranking loss).

In future, we will evaluate and compare our proposed methods with more
benchmark data sets and more state-of-the-art feature selection approaches.
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Abstract. Feature selection is an essential preprocessing procedure in
data analysis. The process refers to selecting a subset of relevant features
to improve prediction performance and better understand the data. How-
ever, we notice that traditional feature selection methods have limited
ability to deal with data distribution over protected features due to data
imbalance and indeed protected features are selected. Two problems can
occur with current feature selection methods when protected features are
considered: the presence of protected features among the selected ones
which often lead to unfair results and the presence of redundant fea-
tures which carry potentially the same information with the protected
ones. To address these issues, we introduce in this paper a fair feature
selection method that takes into account the existence of protected fea-
tures and their redundant. Our new method finds a set of relevant fea-
tures with no protected features and with the least possible redundancy
under prediction quality constraint. This constraint consists of a trade-
off between fairness and prediction performance. Our experiments on
well-known biased datasets from the literature demonstrated that our
proposed method outperformed the traditional feature selection meth-
ods under comparison in terms of performance and fairness.

Keywords: Feature selection · Fairness · Protected features · Bias ·
Machine learning

1 Introduction

Feature selection (FS) is a popular dimensionality reduction technique for pro-
cessing large dataset. The main objective of any FS method is to select a subset
of relevant features from the input data that helps improving model’s prediction.
Fairness is another quality of the prediction model which can be of high impor-
tance for the usability of the model. Some specific features, known as protected,
could induce problems when dealing with fairness and it has been proved [1] that
protected features can lead to unfair decisions against minority groups.

According to [2], protected features are features that are of particular impor-
tance either for social, ethical or legal reasons when making decisions. Some
examples of protected features are: sex, race, age, religion. With existing feature
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selection methods, two major problems are identified among the selected features
which are: (1) protected features whose presence leads to biased results and (2)
the presence of redundant features to the protected whose deletion leads to a
loss in the prediction performance. In this study, redundancy is considered in
the sense of correlation between non-independent features and the fact that the
latter can be strongly correlated with others enabling a classifier to reconstruct
them. Thus, in our work, we focused on these two problems identified among
selected features that directly affect performance and fairness. In order to solve
this, we introduce a method that allows to obtain the best trade-off between
performance and fairness. Our method finds a set of relevant features without
protected feature and with the least possible redundancy which maximizes the
performance while ensuring fairness of the model obtained.

For our contributions in this work: (1) we introduce a more flexible way to
use threshold for redundancy analysis by defining a threshold space instead of
using a single value which could be subjective, (ii) we define an outcome-fairness
algorithm for dealing with protected features in decision support algorithm which
takes into consideration redundant features while making decisions on fairness,
so that the overall performance remains high.

In Sect. 2, we summarize the different existing methods to tackle the issues
identified with their limitations. Section 3 presents our new approach to deal with
protected features, redundancy and fairness issues. The experimental results are
described and analyzed in Sect. 4 of the full paper available here.

2 Related Work

Various feature selection methods were proposed to deal with the problem of
redundancy and protected features. Here we look at those who deal with redun-
dancy analysis and those who deal with protected features.

For the first category, authors have introduced in [3–5] different strategies to
deal with redundancy in feature selection. However, when analyzing the methods
cited above, we found that they inappropriately remove redundancy because they
require users to set a single-defined threshold. As so, feature redundancy depends
on the threshold set, that being said, different thresholds led to different sets of
redundant features; thus, different models.

For the second category, we noticed the work in [6,7] where different strate-
gies were used to handle the problem posed by protected features. These meth-
ods mostly focus on removing completely all the protected features. Again, we
noticed various limitations to the approaches cited above trying to improve fair-
ness while considering protected features. The approach of [6] of completely
removing protected features may not solve the problem because there may be
redundant features or even proxies to the protected that can reveal the same
information. We notice the same observation for the work in [7], where redun-
dant features to the protected are also ignored; this is dangerous in terms of fair
outcomes when dealing with decisions problems involving minority groups.

Given the limitations of these above methods, there is a need for more in-
depth research to overcome these limitations. Thus, we propose a new feature

https://github.com/gdorleon/Paper_Annex/blob/main/Fair_FS.pdf
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selection method which allows the building of efficient and fair models without
protected feature and with the least possible redundancy. Our new method is a
trade-off between performance and fairness.

3 The Proposed Method

Here we present our approach with the different steps are illustrated in Fig. 1.
Our method takes as input a dataset divided into protected and unprotected
features. Then, it performs a redundancy analysis based on a defined thresh-
old space (S). Following the redundancy analysis, two subsets of features are
obtained: a list of non redundant features (N) and a list of redundant features
(R). These two lists are used subsequently to train various models using all
possible partitions between (N) and (R). The partitions are created by adding
combinations without duplication from (R) to (N). Each partition is used to
train a model, then for each model obtained, we calculate its f-score, its fairness
and a trade-off score (Δ). We will keep as final model the one which has the
highest trade-off (delta) score, i-e, the most efficient and fair one. With this new
method, we propose an efficient solution to the problem related to protected and
redundant features on performance and fairness. This method makes it possible
to take into account i) redundancy, ii) protected features and iii) fairness. For a
detailed explanation of the proposed method, please read the full paper here.

Fig. 1. The proposed approach and its different stages

3.1 Algorithm of the Proposed Method

Algorithm 1 shows the process of the proposed method. Let N be the set of
non-redundant features, we denote by fi a feature of N . Let P the set of known
protected features or designated by a system expert before any analysis, we
denote by pi any feature of P . The algorithm takes as input two lists: the list
of non-protected features N and the list of protected features annotated P from
the input dataset. We use the following defined parameters: t the step (t = 0.05)
to iterate over S and the hyper-parameter space (S = [0.5, 1.0]). We start by
initializing the values of Fmax, Mmax, d, t and the empty list R (line 2–6). For

https://github.com/gdorleon/Paper_Annex/blob/main/Fair_FS.pdf
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each hyper-parameter (threshold) d in S, we compute redundancy between the
list P and N , if any redundant feature is found according to d, it is added to
R then removed from N (line 7–16). Using N , we iteratively increment over all
possible partitions cr of R to train all possible models using all the partitions
between the lists N and R, evaluate them and calculate their delta according to
the specified formula (17–25). Then we decrement, start over using a new value
of d until all possible value in the hyper-parameter S have been used (line 27).
For the output of the algorithm, we have Fmax, the max of all the delta, and
Mmax: the list of features constituting the model which led to Fmax.

Algorithm 1: Pseudo-code of the proposed method
Input: N, P // Non protected and protected Features
Output: Fmax, Mmax //max performance & feature list

1 Begin
2 t ← 0.05 //iteration step over S
3 d ← 1.0 //highest threshold value in S
4 R ← { } //redundant list
5 Fmax = 0 //max(Δ) to maximize
6 Mmax ← { } //feature list of Fmax
7 while d ∈ S do
8 //finding redundant features
9 for fi ∈ N do

10 for pi ∈ P do
11 if |compute corr(pi, fi)| ≥ d then
12 R ← {fi} ∪ R
13 N ← N \ {fi}
14 end if
15 end do
16 end do
17 //search for the best model with the best tradeoff
18 for cr ∈ partition(R) ∪ { } do

19 compute f̂ using N ∪ cr
20 compute Δ using eq. (1)
21 if Δ ≥ Fmax then
22 Fmax ← Δ

23 Mmax ← f̂
24 end if
25 end do
26 d ← d - t
27 end do
28 End
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4 Experimental Setup

We carried out our experiments with the goal of comparing the results obtained
with our method with other Feature Selection methods. For that, two other exist-
ing feature selection methods were used for comparison: mRMR [3] and FCBF
[4]. In particular, this comparison was made based on 3 criterion (performance,
fairness and the delta score) using a classification task.

To evaluate and compare the proposed method to existing methods, we pro-
ceeded to a learning task by considering a binary classification problem over the
4 datasets that we describe on Table 1. For this binary classification, Random-
Forest [8] and AdaBoost [9] were used as classifiers. Each model is trained and
evaluated using the classic cross-validation procedure. F1-score is used as mea-
sure to assess the performance of each trained model. For more details please
read the full paper here.

Table 1. Experimental datasets used

Dataset Observations Features Protected used

German credit scoring 100 9 1

Adult income 32561 15 2

Bank churn 10147 13 1

Loan approval 615 14 2

4.1 Results Analysis

The analysis of the results is based on two criterion: the number of selected
features and the trade-off score (fairness and performance). In general, on these
4 datasets, we get satisfactory results and we have maintained a good level
of performance (f1-score), a higher fairness guarantying a higher score for the
trade-off between f1-score and fairness.

Overall, the results of the experiments show that our method performs well
and our redundancy analysis guided by protected features gives a better perfor-
mance value in term of fairness and the trade-off score generally. For a detailed
results on selected features, read the full paper here.

5 Conclusion

In this article, we present a novel feature selection method to improve per-
formance and fairness in the case of protected features while considering their
redundant. To achieve our goal, we introduce a trade-off strategy between per-
formance and fairness. This new method, unlike existing methods allows in the
presence of protected and redundant features to obtain a model that is both
optimal and fair. The performance of our method is experimentally evaluated

https://github.com/gdorleon/Paper_Annex/blob/main/Fair_FS.pdf
https://github.com/gdorleon/Paper_Annex/blob/main/Fair_FS.pdf
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on four well known biased datasets. Compared to two other existing feature selec-
tion methods, we obtain satisfactory results. The comparative results obtained
show our method’s effectiveness in boosting fairness while maintaining a high
level of performance. Furthermore, with our method, we show that it is possi-
ble to comply with data privacy policy by not using protected features while
remaining efficient and fair.

Our future work should focus data distribution over protected and redundant
features and sort out the imbalance that can lead to bias.

Source Code: The full source code including data of our experiments is avail-
able on GitHub under request. This version of the work is a short paper, please
read the full paper here for more details on the proposed method and results.
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Abstract. An open research question in deep reinforcement learning is
how to focus the policy learning of key decisions within a sparse domain.
This paper emphasizes on combining the advantages of input-output hid-
den Markov models and reinforcement learning. We propose a novel hier-
archical modeling methodology that, at a high level, detects and inter-
prets the root cause of a failure as well as the health degradation of the
turbofan engine, while at a low level, provides the optimal replacement
policy. This approach outperforms baseline deep reinforcement learning
(DRL) models and has performance comparable to that of a state-of-
the-art reinforcement learning system while being more interpretable.

Keywords: Deep Reinforcement Learning (DRL) · Input-Output
Hidden Markov Model (IOHMM) · Predictive maintenance ·
Interpretable AI

1 Introduction

Predictive maintenance can be categorized as (i) Prognosis: predicting failure
and notifying for replacement or repair ahead of time (Remaining Useful Life or
briefly RUL is usually used as a prognosis approach, which is the estimation of
the remaining life of equipment or a system until it becomes non-functional [20]);
(ii) Diagnosis: predicting the actual cause of failure in the future through cause-
effect analysis, or (iii) Proactive Maintenance: anticipate and mitigate the failure
modes and conditions before they develop [6]. While proactive maintenance cap-
tures the root cause of potential failure, predictive maintenance performs an
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overall data analytics to be able to ensure scheduled maintenance. In this paper,
the aforementioned questions will be investigated in the context of predictive
maintenance of turbofan engines [4,18].

Reinforcement Learning (RL) is a natural approach to solving time series-
based stochastic decision problems, such as predictive maintenance [21], and
has recently shown promising results. RL systems learn by interacting with the
environment and can learn in an online setting without having the data set
beforehand [22]. However, when the key policy decision learned by an RL agent
is relatively rare in a data set (such as the decision of when to change the equip-
ment before failure while maximizing its use), the policy can be dominated by
irrelevant phenomena, resulting in inefficient training. At the same time, the
derived optimal policy does not provide interpretations or the root cause of
the failure, and therefore keeps humans out of the loop with limited collabora-
tive intelligence. Furthermore, in real-world industrial environments, RL learns
directly from the observed raw sensor data that does not provide information
about the unobserved hidden factors responsible for the decision-making of the
system such as its health, which can limit the RL agent to learning an optimal
policy.

An Input-Output Hidden Markov Model (IOHMM) [2,17] is a form of
Bayesian Network that involves probabilistic inference of latent variables. An
IOHMM extends the standard HMM model by integrating the dependencies of
various covariates (inputs) to the initial, transition, and emission probabilities
[1]. It can overcome the challenges faced by RL through (i) learning unobserved
states and interpretations based on those hidden states, (ii) combining multiple
correlated sensor data, (iii) defining the state of the system and its hierarchical
distribution based on its different levels of operation (normal, starting point of
failure, close to failure, etc.), and (iv) dimensionality reduction based on the
number of latent states that reduces the size and complexity of the raw data
[24]. To address the need for a more direct and specialized data-based opti-
mization, while maintaining the interpretability of the derived policies, we pro-
pose an unsupervised hierarchical modeling technique that combines a high-level
IOHMM with a low-level Deep Reinforcement Learning (DRL) methodology for
predictive maintenance.

Hierarchical modeling is a solution towards the sample-efficient RL, which
decomposes the enormous long-horizon state space into several specialized short-
horizon tasks. In the first step, the IOHMM prefilters large amounts of non-
relevant data generated during the normal running of the equipment and detects
the state at which failure is imminent. In the second step, the DRL agent learns
a policy on equipment replacement conditioned on these (close to failure) states.
Our experimental results indicate that the proposed state-/event-based approach
with dynamic data pre-filtering has comparable performance1 to prior work that
trains RL agents directly on the full data set, hence increasing the training
efficiency. Lastly, it allows for more explicit interpretability of the derived policies

1 performance indicates the ability to suggest replacement before failure with the use
of the maximum usable life as well as with the least number of failed equipment.
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by learning the latent state space. Specifically, the IOHMM learns the hidden
state representation of the system (xt) and the DRL constructs the state-action
pair modeling of the environment (st, at).

To evaluate our approach, we use the NASA Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS), turbofan degradation data sets [4,
18]. These data sets record the output from several engine units with multivariate
time series sensor readings and operating conditions discretized based on the
flight cycles within a run-to-failure simulation. The following subsets of these
data sets will be used in this paper: FD001 with 1 operating condition and 1
failure mode; FD002 with 6 operating conditions and 1 failure mode; FD003
with 1 operating condition and 2 failure modes; and, DS01 with ground truth
degradation values.

Structure: Section 2 provides the literature review. Section 3 frames predic-
tive maintenance as an RL problem. Section 4 proposes the novel methodology.
Section 5 explains the experimental setup. Section 6 provides the interpretabil-
ity aspect of the proposed methodology. Finally, Sect. 7 compares the proposed
architecture with the baseline and previous work.

2 Related Work

There have been several RL methodologies developed to optimize maintenance
decisions. For this task, the effectiveness of an explainable adaptive event-driven
RL strategy is shown in [13,15,16] where such agents can be deployed under
situation-dependent adaptations. RL in industrial applications as a predictive
maintenance strategy is shown in [11,14] where the model learns from both
its own experience through environment interaction as well as from the human
experience feedback. The work reported in [14,21] used turbofan engines [18] as
their case study for optimal maintenance decisions and discussed the limitations
of prior work. In particular, they highlight that prior work is often limited to
estimating the RUL of a system, giving no cause-effect relationship between the
failure and the components of the equipment.

In this paper, we take the Bayesian particle filtering approach (Monte Carlo
simulation combined with DRL) proposed in [5] as the representative of the
state-of-the-art DRL for industrial maintenance and use it as a benchmark for
our work. In this benchmark methodology, sequential Monte Carlo simulation is
used to map the raw sensor data into latent belief degradation states [21], and it
is over these latent belief states (rather than the raw sensor data) that the deep
reinforcement agent learns a policy for equipment maintenance.

Given the need for interpretable decisions, researchers have also investigated
the use of the Hidden Markov Model (HMM) for predicting the RUL of turbo-
fan engines. Recent research has demonstrated the effectiveness of HMMs both
towards the interpretation of fault points in terms of a correlation between a
sudden decrease in RUL and transition of HMM state, as well as in terms of
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predicting a failure event and degradation path [8,9]. In addition, the effective-
ness of Input-Output HMMs (IOHMMs), which are a more generalized version
of HMM, has been explored for the diagnosis of failure, prognosis, health sta-
tus, and monitoring of RUL of industrial components [10,19]. The effectiveness
of online HMM estimation-based Q learning that converges to a higher mean
reward for the Partially Observable Markov Decision Process (POMDP), where
certain variables are hidden (not directly observable), is mathematically proven
by [25].

Literature Gap and Research Contributions: The majority of the research
on predictive maintenance using RL focuses on the prognosis based on the
estimation of RUL from multivariate raw sensor readings. However, the inter-
pretability of the faults of the machine (at the equipment level) is missing. Fur-
thermore, realistic environments often have partial observability, where learning
from raw data might lead to suboptimal decisions. Additionally, RL encounters
learning inefficiency when trained with limited samples and in an online setting
[7]. In this paper, a novel methodology is proposed for maintenance decisions and
interpretability that is based on DRL. At a high level, an IOHMM is designed for
detecting imminent-to-failure states, while at a low level, a DRL is designed for
optimizing the optimal replacement policy. Furthermore, we present a compara-
tive analysis with prior work that demonstrates the effectiveness of the proposed
methodology in terms of both performance and interpretation.

3 Framing Predictive Maintenance as an RL Problem

In this section, the decision-making problem associated with optimal predictive
maintenance is framed as an RL problem.

3.1 Environment Dynamics and Modeling

The DRL framework for predictive maintenance proposed in [14] considers three
actions as a general methodology for any decision-making maintenance model;
hold 2, repair, and replace. The constraints can be the maintenance budget, and
the objective function can be the maximum uptime of the equipment. We pro-
pose a general framework for modeling such environments with state transitions
based on the actions selected under stochastic events (uncertainty of failure, and
randomness of replacement by new equipment) at any state, as illustrated in
Fig. 1. Although the general framework presented in Fig. 1 includes three actions
(hold, replace, and repair), the data sets used in the experiments reported in this
paper do not include data on repair actions and so for these experiments, the
action space consists of just two actions (hold or replace).

2 The action of hold means that the agent neither suggests to replace nor repair and
the system is healthy enough for the next operating cycle.
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Fig. 1. Dynamics of the model of the environment

3.2 Reward Formulation

For the maintenance decision having only replacement or hold actions, a dynamic
reward structure has been formulated as shown in Eq. (1) from [21]. In this
equation cr is the replacement cost, cf is the failure cost, t is the current cycle,
Tj is the final (failure) cycle, and rt is the immediate reward.

rt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, at = Hold & t < Tj ,

− cr
t , at = Replace & t < Tj ,

− cr+cf
Tj

, at = Hold & t = Tj ,

− cr+cf
Tj

, at = Replace & t = Tj .

(1)

3.3 Evaluation Criteria

To evaluate the performance of the RL agent, these numerical values were chosen:

Cost. The average optimal total return (Q̃∗) serves as a numeric value used and
compared with the upper and lower bounds of cost for such conditions [21].

Ideal Maintenance Cost (IMC) serves as the lower bound and the ideal cost
in such maintenance applications. It is the incurred cost when the replacement
action is performed one cycle before the failure, as shown in Eq. (2). In this
equation N denotes the number of equipment used for evaluation, E(T ) is the
expected failure state of the equipment.

φIMC ≈ N · cr

N · (E(T ) − 1)
≈ N · cr

∑N
j=1 (Tj − 1)

(2)

Corrective Maintenance Cost (CMC) serves as the upper bound and the max-
imum cost in such maintenance applications. It is the incurred cost when the
replacement action is performed after the equipment has failed as shown in
Eq. (3).

φCMC ≈ (cr + cf )
E(T )

≈ N · (cr + cf )
∑N

j=1 Tj

(3)
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Average Optimal Cost ( Q̃∗) is the average cost that the agent receives as its
performance on the test set as shown in Eq. (4). In this equation r(s, a) denotes
the immediate reward as formulated in Eq. (1), Q∗(s′, a′) denotes the optimal
action value of the next state-action pair, and γ is the discount factor.

Q̃∗(s, a) =
1
N

∑ [
r(s, a) + γ max

a′
Q∗ (s′, a′)

]
(4)

Average Remaining Useful Life (R̃UL) before replacement. It quanti-
fies; how many useful cycles are remaining on average when the agent proposes
the replacement action. Ideally, it should be one according to our defined criteria.

4 Proposed Methodology (SRLA)

The proposed hierarchical methodology integrates an IOHMM and a DRL agent.
Within this hierarchical model, the purpose of the IOHMM is to identify when
the system is approaching a desired (in our case: failure) state. Once the IOHMM
has reached this failure state, the DRL agent’s task is to optimize the decision on
when to replace the equipment to maximize its total useful life. This IOHMM-
DRL model allows for state- or event-based optimization. This further allows
for a more efficient DRL training, since the training data set is restricted to
the imminent-to-failure states. Figure 2 illustrates the proposed model which we
name Specialized Reinforcement Learning Agent (SRLA).

Fig. 2. Specialized Reinforcement Learning Agent (SRLA).

The DRL training and optimization process is relatively standard. We use
Deep Learning (DL) as a function approximator that generalizes effectively to
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enormous state-action spaces through the approximation of unvisited states [3]
as shown in Eq. (5). In this equation Li denotes the loss function, yi is the TD
target; which is the sum of the observed one-step reward and the discounted
next Q (action) value conditioned on the current state and action, Q(s, a) is the
estimation of the Q value of the current state-action pair parameterized by θ.

Li (θi) = Ea∼μ

[
(yi − Q (s, a; θi))

2
]
;

yi := Ea′∼π

[
r + γ max

a′
Q (s′, a′; θi−1) | St = s,At = a]

(5)

At a high level, an IOHMM is used, where the objective of training optimiza-
tion is to identify the model parameters that best determine the given sequence
of observations conditioned on the given input. In the context of industrial set-
tings, these inputs are the operating conditions that heavily influence the state of
the system and control the system’s behavior. Parameter γ is the vector defining
the probability of being in each hidden state at a particular time xt = Si; given
the input U , the observation sequence Y , and the parameters of the trained
model λ (initial state, transition, and emission probability matrices conditioned
on the input (U) as well), as shown in Eq. (6). Parameter δ from Eq. (7) in this
context is used to predict the health degradation state sequence of the equip-
ment, where the last cycle of each equipment determines the failure state. The
inference algorithm for the SRLA is described in Algorithm A.1 of Appendix A.

γt(i) = P (xt = Si | U, Y, λ) (6)
δt(i) = max

x1,··· ,xt−1
P [x1 · · · xt = i, Y1 · · · Yt | U, λ] (7)

4.1 Interpretability with IOHMM

Beyond the performance considerations of the model, the IOHMM component
provides a level of interpretability in terms of identifying failure states, the root
cause of failure, and stages of health degradation. Based on the state sequence
distributions predicted by the IOHMM from Eq. (7), each state of a particular
event can be decoded, such as the failure mode or degradation stage, as shown in
[8]. To discover the most relevant sensor readings corresponding to these failure
states that triggered the IOHMM to predict such a state, feature importance
is performed that leads to the root cause failure analysis. Raw sensor readings
are used as the input feature for the model and IOHMM state predictions are
used as the target. After fitting the model, the importance of each sensor can
be extracted for each IOHMM state. Apart from the failure event hypothesis, it
is necessary to measure the health state of the equipment at different points to
generate an alarm for the user when the equipment reaches a critical point of its
lifetime. The interpretations are based on the critical points along the equipment
degradation curve as shown in Fig. 3 and the range of observed IOHMM states.
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Fig. 3. Health degradation curve of equipment, taken from [12]

5 Experimental Setup

The two baseline systems defined in this paper are distinguished and designed
by varying each of these four stages: (i) input, (ii) feature engineering, (iii) RL
architecture, and (iv) output. The summary of the training parameters is shown
in Appendix A.1 of Appendix A.

Baseline 1: Sensor Data + Operating Conditions: (i) Raw sensor data
and operating conditions as the input, (ii) Standard normalization as the feature
extraction module, (iii) DNN as the RL architecture, and (iv) Action policy at
the output. It is used to set the failure cost to be used for the rest of the
experiments.

Baseline 2: Sensor Data + Operating Conditions + IOHMM: (i) Raw
sensor data and operating conditions as input, (ii) MinMax normalization and
IOHMM as the feature engineering module, (iii) RNN as RL architecture, and
(iv) Action policy, RUL estimation, and unsupervised clustering and interpreta-
tion based on events at output; as shown in Fig. 4. Its significance is to determine
the optimal number of IOHMM states to be used in the experiments. Implemen-
tation of IOHMM is done through a library [23]. This baseline uses the output of
the IOHMM (probability distribution) as the input to the DRL agent, whereas
SRLA uses the raw data as the input to the DRL agent during the state of
specialization.
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Fig. 4. IOHMM posterior probabilities as the input to DRL.

5.1 Setting the Hyperparameters for the Models

This section describes the experiments used to determine the hyperparameters
(i) cost of failure (cf ) and (ii) number of IOHMM states. The effectiveness of
the architectures has been evaluated as described in Sect. 3.3. The data set used
for this part of the experiment is FD001, which is split into an 80:20 (train:test)
ratio.

Calculating the Cost of Failure. The reward function (Eq. (1)) for the RL
agent requires the specification of cost of failure (cf ) and cost of replacement
(cr). However, the NASA C-MAPSS data set does not specify these parameters.
To fix these values, we train Baseline 1 using a range of different cf , while fixing
cr and then comparing and identifying the cf that minimizes the average of
total optimal cost per episode (Q̃∗). cr is fixed (100) and the comparison is
based on the different cf values of 25, 500 and 1000, as shown in Table 1. It
was observed that as cf increases, Q̃∗ becomes closer to the ideal cost, and, at
the same time, the number of failed units decreases to 0%. However, the agent
becomes more cautious, suggesting replacement action earlier in the lifetime of
the engine; thereby, increasing the average remaining cycles. In the context of
predictive maintenance of safety-critical systems, it is more important to avoid
failure at the expense of replacing equipment a few cycles before its remaining
useful life. Therefore, cf of 1000 was chosen for the rest of the experiments.

Calculating the Number of Hidden States. Baseline 2 was used to find
the number of states of the IOHMM model that maximizes the likelihood of our
state space and the performance of the DRL through an iterative process. We
evaluated the performance of the model as the number of states varied between
10, 15, and 20 states. The model trained through IOHMM gives the posterior
probability distribution for every state as shown in Eq. (6), which is then fed
as an input to the DRL agent to be able to learn the optimal maintenance
(replacement) policy. The experiment was carried out on the test set using the
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failure cost of 1000 and with the same parameters as the previous experiment for
a better evaluation. 15 states of the IOHMM showed better performance results
than the rest, and so in the rest of our experiment, we use 15 as the number of
states for IOHMM model.

Table 1. Comparative evaluation and hyperparameter search.

Failure

cost

Avg

Q*
IMC CMC R̃UL

Failed

units

Baseline 1

25 0.54 0.45 0.56 2.4 45%

500 0.61 0.45 2.68 7.5 5%

1000 0.49 0.45 4.92 7.0 0%

Baseline 2

IOHMM

states

10 0.54 0.45 4.92 24.2 0%

15 0.49 0.45 4.92 6.8 0%

20 0.53 0.45 4.92 20.2 0%

6 Experiment 1: Interpretations Based on Hidden States

Data sets FD001, FD003, and DS01 are used in this section using the IOHMM
for event-based hypothesis and state interpretations. The experiments performed
here are to address the question of whether the introduction of the hidden states
can help towards interpretability.

6.1 Interpretability - Failure Event Hypothesis

Due to the unavailability of the ground truth for other state mappings in FD003,
just the failure states (last cycle state) were mapped in this experiment. Each
failure state in the dataset is annotated with one of the 2 failure modes (HPC
and fan degradation); however, the ground truth for the engines corresponding
to which failure mode is not provided. Analyzing the failure states revealed two
IOHMM states that corresponded to the failure event, which might be based
on the two failure modes. To validate this hypothesis, the analysis was repeated
with FD001, where there is only one failure mode defined in the description of
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the data set, and this analysis showed that only one IOHMM state was observed
to be the failure state for each engine. This suggests that it is possible to map
IOHMM states to failure events within the health state of the equipment.

Using the feature importance methodology described in Sect. 4.1, features
(sensor readings) with a relatively higher score (based on feature importance)
were selected from each class (failure states depicted by IOHMM). Further, the
corresponding actual sensor information and description were extracted from
[18] as described in Table 2. From the background information from the sensor
descriptions, it was observed that the sensor importance for the two different
IOHMM states showed a concrete failure event interpretation that corresponded
to the failure described in the data set (HPC and Fan degradation), as hypoth-
esized in Table 3.

Table 2. Feature to sensor description.

Feature Sensor Description

5 P30 HPC outlet pressure

8 epr Engine pressure ratio

10 phi fuel flow : HPC pressure

13 BPR Bypass ratio

Table 3. Sensor importance to failure event.

IOHMM

state

Important

sensor

reading

Failure event

hypothesis

(interpretation)

9 BPR Fan degradation

14 P30, epr, phi HPC degradation

6.2 Interpretability - State Decoding and Mapping

The second version of the NASA C-MAPSS data set [4] was used here to evaluate
the state interpretability of IOHMM throughout the engine life, a subset of which
is shown in Fig. 5, where the red trend represents the IOHMM state prediction
based on Eq. (7). The data set has the ground truth values of the engine’s state
per cycle, the Boolean health state value is represented by the blue line with state
1 being healthy and 0 being unhealthy, the RUL is represented by the yellow
line, and the green curve represents the health degradation curve. Based on the
reference health degradation curve from Fig. 3, and the range of IOHMM states
observed during those conditions, we were able to associate different IOHMM
states with different equipment conditions as shown in Table 4.
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Fig. 5. State decoding and mapping for data set DS001.

Table 4. Interpretability of the IOHMM state to equipment conditions.

Equipment condition IOHMM states

Normal equipment 0–2

Potential fault point of equipment 2–4

Failure progression 4–6

Fault point of equipment function 6–7

Failure 7
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7 Experiment 2: Comparison of SRLA with Prior Work

Data set FD002 is used in this experiment for the comparative evaluation with
baselines and prior work [21].

7.1 Comparative Evaluation and Results

As seen in Sect. 6.2, the IOHMM can align its states and state transitions with
the relevant health states of the engine; however, the definition and alignment
of the states were not fine enough to replace the engine with just one cycle
before the failure. Therefore, DRL is used to refine the granularity after state
distribution based on IOHMM, resulting in a hierarchical model. To evaluate
the performance, the results are compared with the two baseline systems and
the Particle Filtering (PF) based-DRL (Bayesian particle filtering) framework
proposed by [5]. In their experiments [5] used 80 engines as the training set and
20 as the test set out of 260 engines. However, the engines were selected ran-
domly; therefore, an exact comparison with the average agent cost could not be
made. Therefore, the ratio of the Ideal Maintenance Cost (IMC) to the average
agent cost (Q̃∗) was compared in Table 5. As shown, Baseline 2 performs better
than Baseline 1 and SRLA outperforms baseline systems and has a compara-
tive performance with the PF + DRL methodology with the added benefits of
interpretability.

Table 5. Comparison of the proposed methodology with baseline systems and [21].

Methodology ˜Q∗ IMC CMC IMC/˜Q∗ Failure R̃UL Interpretations

Baseline 1 6.87 0.64 7.02 0.09 90% 2.6 No

Baseline 2 0.77 0.64 7.02 0.83 0% 23.0 Yes

PF + DRL [15] 2.02 1.93 20.80 0.96 0% - No

SRLA 0.69 0.64 7.02 0.94 0% 6.4 Yes

8 Conclusion and Future Direction

In this paper, a new hierarchical methodology was proposed utilizing the hid-
den Markov model-based deep reinforcement learning allowing the functionality
of interpretability in the stochastic environment along with defining an opti-
mal replacement policy and estimating remaining useful life without supervised
annotations. Therefore, such a model can easily be used in industrial cases where
the annotation of the fault type is difficult to obtain and the human supervisor
in the loop can help define the state distribution according to the event-based
analysis. To test the effectiveness of the model, the NASA C-MAPSS (turbofan
engines) data sets versions 1 and 2 were used. It was compared with baseline
models and prior work of Bayesian filtering-based-deep reinforcement learning
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to evaluate the performance. Our results indicate that the IOHMM-DRL frame-
work outperforms the baseline DRL systems and has performance comparable
to the Bayesian filtering DRL approach, with the added benefits of interpretabil-
ity and a less complex system model. In the future, the proposed hierarchical
architecture of IOHMM-DRL will be applied to other open data sets along with
real-world case studies to measure its robustness.

A Algorithms and Training Parameters

Algorithm A.1. Specialized Reinforcement Learning Agent (SRLA)
STEP I: IOHMM Training
Input:
n: number of hidden states
Y : output sequences
U : input seauences
Output: λ: model parameters (initial, transition, and emission probability)

STEP II: Viterbi Algorithm (IOHMM Inference)
Input: λ, U , Y
Output: δt(i) = maxx1,··· ,xt−1 P [x1 · · · xt = i, u1 · · · ut, y1 · · · yt | λ]

STEP III: DRL Training
Input:
δs: specific event (such as failure)
St: ut + yt

Enviroment Modeling
Deep Reinforcement Learning
Output: Q̂*(St, At)

STEP IV: SRLA Inference
Input: λ, Q̂*(St, At), St: (Ut, Yt)
Step II, Interpretations Based on Hidden States
δ → Specialized state (Xs) → Us, Ys

if St in Xs then
Q̂*(st, at)
Environment Model

else
at = do nothing (hold)

end if
Output: Q̂*(δt, st, at)
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A.1 Training Parameters

The summary of the DL framework within the RL architectures is as follows:
(a) Deep Neural Network (DNN) consisting of a total of 37,000 training param-
eters and fully-connected (dense) layers with 2 hidden layers that have 128 and
256 neurons, respectively, with ReLU activation. (b) Recurrent Neural Network
(RNN) consists of 468,000 training parameters and fully connected (LSTM) lay-
ers with 2 hidden layers having 128 and 256 neurons, respectively. The output
layer consists of the number of actions the agent can decide for decision-making
with linear activation. The parameters of the DRL agent are as follows: discount
rate = 0.95, learning rate = 1e−4, and the epsilon decay rate = 0.99 is selected
with the initial epsilon = 0.5.
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Abstract. A mechanism to support the prioritisation of multi-variate
pathology data, in the absence of a ground truth prioritisation, is pre-
sented. The motivation is the ever increasing quantity of pathology data
that clinicians are expected to consider. The fundamental idea, given a
previously unseen pathology result and the associated pathology history,
is to use a deep learning model to predict future pathology results and
then use the prediction to classify the new pathology result according to a
pre-defined set of prioritisation levels. A further challenge is that patient
pathology history, expressed as a multi-variate time series, tends to be
irregularly time stamped and of variable length. The proposed approach
used a Recurrent Neural Network to make predictions and a bounding
box technique for the classification. The approach was evaluated using
Urea and Electrolytes pathology data. The operation of the proposed
approach was also compared with previously reported approaches, and
was found to outperform these previous approaches.

Keywords: Data ranking · Multivariate time series · Deep learning ·
Pathology data

1 Introduction

Pathology results play an important role for decision making in any clinical
environment. Clinicians use pathology results to diagnose patient conditions and
decide on best next measures. Large amounts of pathology results are generated
on a daily basis. For many conditions, such as kidney disease, pathology results
are generated at regular intervals, sometimes over many years. Many pathology
results comprise a set of values, not just one; in other words they are multivariate.
The amount of pathology data that clinicians are expected to look at on a daily
bases presents a significant information overload problem. A problem that is
compounded by our ever increasing technical ability to collect pathology data;
not helped by the recent COVID-19 pandemic which has put further strain
on resources. In order to solve the problem, it is suggested that some form of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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automated pathology result prioritisation is required, and that this can best be
achieved using the tools and techniques of machine learning whereby results can
be classified using a prioritisation scale of some kind. However, the challenge of
the application of deep learning to pathology data is the absence of a “ground
truth”, a set of examples illustrating what a priority pathology result looks like,
and what it does not look like. The reason for this is the resource required to
generate such a ground truth.

There has been some previous work directed a pathology result prioritisa-
tion in the absence of a ground truth [7,8]. In [8] it was assumed that high
priority pathology results equated to anomalous priority results and hence an
anomaly detection mechanism was adopted. However, given a large number of
priority pathology results these would no longer be considered to be anomalous
and therefore not be prioritised. In [7] a proxy ground truth was used based
on the known outcomes of previous patients; whether they became emergency
patients, in-patients, out-patents or remained with their General Practitioner
(GP). The proxy ground truth was used to train a deep learner. Some improve-
ment was reported over the work presented in [8]. However, the way the proxy
ground truth was calculated meant that possible correlations between different
pathology values were not considered.

An alternative pathology result prioritisation mechanism, to that given in
[7] and [8], is presented in this paper directed at patients that have conditions
where pathology results, each comprised of a set of values, are generated as an
ongoing part of a care programme. In other words we have time series of previous
pathology results. The fundamental idea is to predict whether the next pathology
result in the sequence will be out of the anticipated normal range with respect
to the pathology test under consideration. To be more specific, the use of an
RNN-based pathology result forecasting model is advocated to predict follow-
on results which can then be compared to the expected range. To distinguish
prioritisation levels, a novel “Bounding Box” mechanism, which can distinguish
between levels of prioritisation, is proposed. For the evaluation presented later
in this paper three prioritisation levels were considered: high, medium and low.
However, the bounding box technique will also work with any numbers of levels
of two or more.

From the foregoing, the hypothesis that this paper seeks to establish is that
there are patterns (trends) in a patients’ historical pathology data which can be
considered to be markers that are indicative of future pathology values. To act
as a focus for the work the application domain of Urea and Electrolytes (U&E)
pathology testing was considered. The proposed approach was evaluated using
U&E data provided by Arrowe Park Hospital in Merseyside in the UK. This
application domain was selected because it is the most commonly undertaken
biochemistry test used to provide essential information on renal function.

The remainder of this paper is organised as follows. A review of relevant
previous work is presented in Sect. 2. This is followed, in Sect. 3, by a review of
the Urea and Electrolytes pathology application domain, used as a focus for the
work. The proposed approach is considered in Sect. 4, and the evaluation of the
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proposed approach in Sect. 5. The paper is concluded in Sect. 6 with a summary
of the main findings and some suggested directions for future work.

2 Previous Work

The broad area of research into which the work presented in this paper falls, is
that of big data prioritisation [12], where the aim is to determine which data
items take priority over other data items. Data prioritisation can be applied
in many areas [1,6,10], while in the medical area, the concept is more similar
to patient triage [3] or prognosis [2], which supports decision-making through
predicting the severity or risk of a given patient’s condition. There has been
some previous work directed at using machine learning for patient triage [4,
5,14]. In [4] various forms of multinomial Logistic Regression (LR) were used:
multinomial LR, eXtreme gradient boosting (XGBoost), random forests (RFs)
and Gradient-Boosted Decision Trees (GBDTs) were explored to identify high-
risk emergency department patients with suspected cardiovascular disease. In
[5], natural language prediction methods were adopted to predict admission to a
Neurosciences intensive Care Unit. In [14] a machine Learning based AutoScore-
Derived triage tool was developed for predicting mortality risk after patients
admitted to emergency departments. Most of the work aimed at predicting triage
adopted supervised learning using a predefined training data labeled by domain
experts, a resource intensive process which does not scale up to give general
applicability. One of the challenges for the prioritisation of pathology data is the
absence of training data.

Another challenge of time series pathology data is that it is usually irregular
[15]; the spacing of observations is not constant. Most time series prediction
methods, the technology adopted with respect to the approach presented in this
paper, assume unit-spaced (regular) time series data [11]. Pathology time series
data also tends to be multivariate in nature; the time series have more than one
time-dependent variable. Each value depends not only on its past values but also
the values for the associated variables. There are very few reported studies where
irregular time series have been used directly. The majority of studies adopt some
form of imputation so that spacing is of a unit length to ensure that time series
are all of the same length. Or alternatively some form of padding and masking
is used [13]. A number of alternatives are considered later in this paper.

3 U&E Testing Application Domain

The work presented in this paper is focused on Urea and Electrolytes pathology
test data, U&E testing. U&E testing is usually performed to confirm normal
kidney function or to exclude a serious imbalance of biochemical salts in the
bloodstream. The U&E test data considered in this paper comprised five values
per record: (i) Bicarbonate (bi), (ii) Creatinine (cr), (iii) Potassium (po), (iv)
Sodium (so) and (v) Urea (ur). The measurement of each is referred to as a
“task”, thus we have five tasks per test. Abnormal levels in any of these tasks
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may indicate that the kidneys are not working properly. However, a one time
abnormal result does not necessarily need to be prioritised. A new task value
that is out of range for a patient who has a previous recent history of out of
range task values, but the latest result indicates a trend back into the normal
range, may not be a priority result. Conversely, a new task value that is within
the normal range for a patient who has a history of normal range task values,
but the latest result indicates a trend heading out of the normal range, may need
to be prioritised. Given a new set of pathology values for a U&E test we wish
to determine the priority to be associated with this set of values.

The U&E data used for evaluation purposes with respect to the work pre-
sented in this paper comprised a set of clinical patient records, D = {P1, P2, . . . },
where each record Pi ∈ D was of the form:

Pi = 〈PatientID,History, TestResult, ReferencedRange〉 (1)

where: (i) PatientID is the ID for the patient in question; (ii) History is a set
previously obtained pathology results expressed as a set a multivariate time
series T = [t1, t2, . . . ], where each ti ∈ T comprised a 5-tuple of the form
〈vbi, vcr, vpo, vso, vur〉, (iii) TestResult is a current previously unseen pathology
result R also comprised of an n tuple of the form 〈vbi, vcr, vpo, vso, vur〉, and (iv)
ReferencedRange is a set of bounds defining the normal range for the patient
in question for the values associated with each task represented as two sets,
L = [l1, l2, . . . ] and U [u1, u2, . . . ], where L holds the minimum (normal low)
values and U holds the maximum (normal upper) values. There is a one-to-one
correspondence with T . The normal low and high dimensions indicate a “band”
in which pathology results are expected to fall given a healthy patient. These
bands vary from task to task, will not be the same for each patient and may
change for a given patient over the course of time. A training record Pi ∈ D will
also include a task label c taken from a set of classes C.

4 Prioritisation for U&E Pathology Patients Results

The fundamental idea, for prioritising pathology results, presented in this paper
is that prioritisation can be achieved by predicting whether future patient pathol-
ogy results will be out of the normal range. An overview of the proposed process
is given in Fig. 1. The process commences with a new multi-variate pathology
result R = 〈v1, v2, . . . , vn〉. This is combined with the pathology history of the
patient in question to give a time series T = [t1, t2, . . . , R]. This is then passed
to a prediction model where the next set of results P = 〈v1, v2, . . . , vn〉 is pre-
dicted. A bounding-box technique is then used to classify R according to P .
Thus, Fig. 1, there are two main stages within the overall process:

1. Future Result Prediction: The process of predicting future pathology
results given a new, previously unseen, multi-variate pathology result and
the pathology result history for a given patient.
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2. Bounding Box Classification: The process of assigning a priority level to
a previously unseen pathology result using the predicted future pathology
results.

Each of the above is discussed in further detail in the following two sub-sections.

Fig. 1. Schematic outlining the proposed pathology
data prioritisation process

Fig. 2. LSTM architecture for
future pathology results pre-
diction

4.1 Future Results Prediction

There are a range of prediction mechanism that could have been adopted with
respect to Stage 1 of the proposed process, a Long Short Term Memory (LSTM)
mechanism was adopted. The architecture of the proposed LSTM is showed
in Fig. 2. From the figure it can be seen that the proposed LSTM comprised
four layers: (i) the input layer which receives a time series T which includes
the new pathology result R of interest, (ii) the padding layer where the time
series were transformed from irregular time series to regular time series, (iii) the
hidden layer comprised of LSTM cells arranged in two sub-layers, and (iv) the
fully connected layer where the predicted future test results are generated. The
hidden layer is where the training takes place. The training set is divided into a
set of overlapping input/output samples. During training, each sample forms a
prediction step in the overall LSTM model generation process. The hidden layers
compute the intermediate results and pass them on to the next iteration, which
makes it possible for the network to maintain memory of the state of earlier
historical records, so that the effect of the early results can be considered for the
prediction.

The adopted LSTM architecture comprised 16 cells arranged in two sub-
layers in the hidden layer, and n neurons in the output layer for predicting a
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set of n pathology task values (n = 5 with respect to the U&E data set used
to evaluate the proposed approach). The “input shape” of the data is a time
series T = [t1, t2, . . . ], where each point t1 comprises a n-tuple. An important
aspect of training a LSTM network is the iterative updating of weights using the
training data. To achieve this, the Adam stochastic gradient descent was used.
The adopted loss function was the Mean Squared Error (MSE) loss function.
The structure and parameters used were selected a as consequence of a number
of preliminary experiments (not reported here), and because these had been
adopted in related work [9].

4.2 Bounding Box Classification

Once a set P = 〈v1, v2, v3, ..., vn〉 of predicted test results have been obtained,
derived from a new pathology result to be prioritised, the next step is to assign a
priority class to the new pathology result. As noted earlier, the prioritisation idea
considered in this paper is to use the normal range associated with a particular
task and patient. The normal range will vary from task to task and from patient
to patient, but in each case will be defined by a minimum and maximum value.
Thus, the normal range “zone” is defined by a n dimensional bounding box,
where n is the number of tasks and each side will equate to the normal range
associated with a task defined by the minimum and maximum value for the task
in question. If a predicted pathology result falls entirely within this bounding box
the pathology result will be deemed to have a “low” priority. Anything outside
can then be labelled as “high” priority. However, a binary classification (high-
low) is considered too coarse a classification; we require more than one class label
for results that fall outside of the “low priority bounding box”. In this paper we
will consider a three class prioritisation, C = {high,medium, low}. Thus if a
pathology result falls outside of the “low priority bounding box” it will be either
medium or high priority. The question is how this can best be calculated. One
idea is to simply calculate the Euclidean distance from the geometric centre of
the low priority bounding box and use a threshold of some kind to distinguish
high priority pathology results from low priority results. However, this will mean
that the distance from a pathology result close to a corner of the bounding box
to the geometric center, will be treated the same as a result some way away
from a side of the bounding box. Thus to distinguish between medium priority
and high priority pathology result a second bounding box, the “medium priority
bounding box” was defined by expanding the low priority box by a factor χ.

The pseudo code for the Bounding Box Comparison approach is given in
Algorithm 1. Note that the algorithm assumes n = 5. The inputs to the algo-
rithm are: (i) a predicted pathology result P = {v1, v2, . . . vn}, (ii) the set
L = {li, l2, . . . ln} of low normal range values, (iii) the set U = {ui, u2, . . . un} of
upper normal range values and (iv) the expansion factor χ to be applied. The
algorithm commences, line 2, by defining a default class of “high”. Then, line
3, the algorithm determines whether P falls inside the low priority bounding
box using a function inNormalZone. This returns a result tuple comprised of a
set of binary values, 0 = inside and 1 = outside. In the U&E case the tuple is
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Algorithm 1. Bounding Box Comparison
1: input P , L, U χ
2: class = high � Default class
3: result = inNormalZone(P, U, L) � Determine if P in normal range
4: if result == 〈0, 0, 0, 0, 0〉 then
5: class = low � Predicted point entirely within normal zone
6: else
7: result = 〈1, 1, 1, 1, 1〉
8: for ∀vi ∈ P do
9: offset = (ui − li) × χ

10: if (ui + offset) ≥ ti ≥ (li − offset) then
11: resulti = 0
12: end if
13: end for
14: if result == 〈0, 0, 0, 0, 0〉 then
15: class = medium � Predicted point entirely within medium zone
16: end if
17: end if
18: return class

of size n = 5, but it can be any other values according to the type of pathol-
ogy under consideration. If the resulting tuple equates to 〈0, 0, 0, 0, 0〉 then P is
entirely within the low priority bounding box and allocated the class “low” (line
5). Otherwise the result tuple is set to 〈1, 1, 1, 1, 1〉 (line 7) and we proceed to
expand the low priority bounding box in each direction in an iterative manner
(lines 8 to 13). On each iteration the expansion is conducted using an offset
applied to each normal low and upper value. The offset, with respect to each
task is calculated as shown in Eq. 2, where li ∈ L, ui ∈ U , and χ is a predefined
multiplier (factor). On each iteration (line 10), ti ∈ R is compared with the
expanded range and the outcome added to the result tuple. On completion, if
the tuple equates to 〈0, 0, 0, 0, 0〉 the new pathology record P is allocated the
class “medium” (line 15). Otherwise the default class, “high”, is used. The class
is then returned (line 18). It is easy to see how the process can be repeated and
further classes added if desired.

offset = (ui − l − i) × χ (2)

A value for chi can be established empirically. However, for the evaluation
presented here a proxy ground truth was used (more on this in Subsect. 5.1).
The proxy training data set was of the form presented in Subsect. 3. A value for
χ was then “learnt”, for each class, by clustering all potential χ values and then
determining the mid point between the two cluster centroids. For the evaluation
presented in the following section a binary classification scenario was considered
C = {c1, c2}. The adopted process is illustrated in Algorithm2. The input to
the algorithm is the training set D and the set of classes C (see Sect. 3). A value
for χ for each value vk in each time series Tj in each set of time series T for each
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patient record Di in D was calculated using the Equation 3 where uk and lk are
the upper and lower range limits associated with vk, and dist is the distance of
vk from the mid-point between uk and lk calculated as shown in Equation 4. The
average value χ for each class is calculated, lines 12 and 13 in Algorithm2. The
mean of the two averages is then the final value for χ to be used. For future work
the intention is to investigate the potential of using different values for chi for
different tasks. In the present study the same value of χ was used throughout.

Algorithm 2. Factor χ Generation
1: Input D, C
2: Chi = {Chi1, Chi2}
3: for Di ∈ D do
4: for Tj ∈ T, T ∈ Di do
5: for vk ∈ Tj do

6: dist = abs
(
vk − uk−lK

2

)

7: χ = 2×dist
uk−lk

8: Chii = Chii ∪ χ, i = class ID for class c ∈ Di

9: end for
10: end for
11: end for
12: avec1 = average(Chi1) � cluster centre for c1 ∈ C
13: avec2 = average(Chi2) � cluster centre for c2 ∈ C

14: χ =
avec1+avec2

2

15: return χ

χ =
2 × dist

uk − lk
(3) disti = abs

(
vk − uk − lK

2

)
(4)

5 Evaluation

The evaluation of the proposed approach is reported on in this section. For the
evaluation, as noted earlier, a U&E data set provided by Arrowe Park Hospital
in Merseyside in the UK was used. The data set was entirely anonymised and
ethical approval for its usage in anonymised form obtained by Arrowe Park
Hospital. Details concerning this data set are given in Subsect. 5.1 below. The
Objectives of the evaluation were

1. To investigate the most appropriate imputation strategy for addressing the
unequal length of the pathology time series to be considered.

2. To determine the overall performance of the proposed approach using a proxy
ground truth, as proposed in [7], and comparing with previously proposed
approaches.

The first is considered in Subsect. 5.2 and the second in Subsect. 5.3. The value
for χ was determined using the classifications in the training data. Five-cross
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validation was used through out. The average value for χ was found to be 0.57.
All the experiments were run using a windows 10 desktop machine with a 3.2 GHz
Quad-Core IntelCore i5 processor and 24 GB of RAM. For the LSTM, a GPU
was used fitted with a NVIDA GeForceRTX 2060 unit.

5.1 Evaluation Data Set

The evaluation data set used was provided by Arrowe Park Hospital in Mersey-
side in the UK. A general format of the data was presented in Sect. 3. The data
set comprised 3,734 patient records with five U&E task results (time series)
per patient. The operation of prediction models is typically conducted using a
test set that features known values for the variable to be predicted which can
be compared with the predicted values produced by the model. However, as
noted in the introduction to this paper such test data is typically not available
because of the resource required. Indeed this was the motivation for the work
presented in this paper. As also noted earlier, in [7] a proxy ground truth was
used. The same approach was therefore adopted with respect to the evaluation
of the proposed approach. The final destinations of the patients within the U&E
data set were used to create a proxy ground truth; whether they ended-up as
emergency, in or out patients; equating to high, medium and low priority respec-
tively (C = {high,medium, low}). The proxy ground truth data set comprised
255 patients with high priority, 123 with medium priority and 3,356 with low
priority, covering all five tasks.

5.2 Data Imputation

As noted earlier, the interval between pathology results (points in the multi-
variate time series), and the overall length of the pathology multi-variate time
series, was variable. This is illustrated, using the U&E data set, in Figs. 3 and 4.
Figure 3 shows the number of days between the individual patients considered.
For the figure the patients were ordered according to the maximal interval in
their pathology history and each given a sequential ID number. In Fig. 3, sequen-
tial ID numbers are listed on the x-axis, and maximal intervals on the y-axis.
From the figure it can be seen that the majority of patients have a maximum
pathology interval of less than 100 days. Figure 4 shows the range of time series
lengths. The figure was generated by grouping the time series lengths, in the
U&E evaluation data, into 10 bins of 6 starting with length 1, this covering time
series from 1 to 60. From, the figure it can be seen that the majority of time
series fell into the first bin, lengths 3 to 6.

LSTM model generation requires all time series to be of the same length. We
would also like our time series to reflect the correct spacing between pathology
results (we could have simply assumed a unit spacing). To engineer this we
experimented with five alternative strategies:

1. Mean imputation: Using the mean value in the time series to impute addi-
tional values.
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Fig. 3. Maximal interval in days per
patient

Fig. 4. Frequency of occurrence of differ-
ent time series lengths

2. Median imputation: Using the medium value in the time series to impute
additional values.

3. Mode imputation: Using the mode value in the time series to impute addi-
tional values.

4. Zero imputation: Using the value 0 to impute additional values.
5. Padding and masking: Skip missing time series values.

To evaluate these different strategies ‘loss plots” were generated for each strategy
as shown in Fig. 5. The number of epochs is given on the x-axis, and the loss in
terms of Mean Squared Error (MSE) on the y-axis (note the y-axis scale is differ-
ent for each graph). The same number of epochs was used in each case. The plots
show the “training history” of the LSTMs. Each plot shows the loss between the
training and test (validation) data as the model generation progressed. We want
the loss to be minimal once model generation is complete. From the figure it can
be seen that in all cases the training and test curves converge. Closer inspection
indicates that the “padding and masking” method achieved the minimum loss.

Table 1 gives the classification accuracy, precision and recall values obtained,
using the five imputation strategies when the proposed bounding box classifica-
tion was applied (best results in bold font). The reported results are averages
obtained using five-cross validation. From the table it can be seen that best
performance was obtained using padding and masking (confirming the results
from Fig. 5). As noted in Sect. 4, Padding and Masking is considered to offer
the advantage that it preserves the original length and irregular spacing of the
time series; this seems to be the most appropriate method for dealing with the
differing lengths of time series as it does not change the original information
provided by the data itself. Zero imputation produced the worst performance.

5.3 Overall Performance

Table 2 gives the best results from Table 1 compared to the results reported in
[7] and [8] where a very similar proxy ground truth was used; best results are
again highlighted in bold font. In [7] two classification models were considered a
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(a) Loss of using mean imputer (b) Loss of using median imputer

(c) Loss of using mode imputer (d) Loss of using zero imputer

(c) Loss of using padding and masking

Fig. 5. Performance comparison of the five alternative imputation strategies in terms
of LSTM model generation

Table 1. Performance comparison of the five alternative imputation strategies in terms
of accuracy, precision and recall

Imputation strategy Acc. Precision Recall

High Med. Low High Med. Low

Mean 0.56 0.60 0.51 0.53 0.59 0.59 0.75

Median 0.33 0.57 0.29 0.16 0.31 0.38 0.29

Mode 0.60 0.60 0.51 0.41 0.55 0.57 0.50

Zero 0.21 0.28 0.21 0.17 0.27 0.24 0.31

Pad. & Mask. 0.73 0.69 0.62 0.61 0.58 0.69 0.47

Ave 0.48 0.55 0.43 0.38 0.43 0.49 0.46
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k Nearest Neighbour model and an LSTM model, the best results for both are
included in Table 2. In a [8] an Anomaly Detection (AD) approach was proposed.
Two versions were considered, a point-based AD approach and a time series AD
approach. The best reported results for both are also included in Table 2. Note
that in [8] only average precision and recall were reported.

Table 2. Average Accuracy, Precision and Recall results compared with the results
reported in [7] and [8]

Method Acc. Precision Recall

High Med. Low High Med. Low

LSTM and bounding box 0.73 0.69 0.62 0.61 0.58 0.69 0.47

LSTM [7] 0.61 0.58 0.55 0.69 0.79 0.59 0.63

kNN [7] 0.60 0.42 0.51 0.85 0.70 0.55 0.75

Point-based AD [8] 0.34 0.35 0.43

Time series AD [8] 0.45 0.45 0.43

From Table 2 it can be seen that the proposed LSTM prediction coupled with
bounding box classification produced the best overall accuracy. Closer inspection
of the table indicates that good precision was obtained, using the proposed
method, with respect to high and medium priority classes. The poor performance
of the anomaly detection approaches (Point-based AD and Time Series AD)
is probably because anomalous pathology results do not necessarily equate to
priority pathology results.

6 Conclusions

The work presented in this paper was directed at multi-variate pathology data
prioritisation in the absence of a ground truth. This is typically the case because
of the resource required. A proposed approach has been presented that used
LSTM prediction couple with a novel bounding box classification mechanism.
The main contributions of this paper are: (i) the idea of using LSTM predicted
test results as a marker for prioritisation and (ii) the derived “bounding box”
technique for prioritisation classification. A further challenge was the irregu-
lar sampling interval of pathology data, and the variable length of the pathol-
ogy history associated with a given pathology result. A number of alternative
imputation techniques were therefore considered. The operation of the proposed
approach was compared with alternative techniques from the literature using
a proxy ground truth. The results indicated a better overall performance than
that achieved by earlier work. A best accuracy of 73% was obtained. Padding
and masking was found to be the most appropriate method for ensuring all time
series were of the same size. For future work the authors intend to investigate:
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(i) the generation of artificial evaluation data sets to provide for a more com-
prehensive evaluation, and (ii) a comprehensive collaborate with clinicians to
obtain feed back regarding the prioritisation produced and to test the utility
of the best performing mechanism in a real setting. The authors are currently
liaising with domain experts on the practical impact of the proposed pathology
data prioritisation mechanism presented this paper.
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Abstract. In this paper, we present an extensive collection of out-
lier/anomaly detection tasks to identify unusual series from a given time
series dataset. The presented work is based on the popular UCR time
series classification archive. In addition to the detection tasks, we pro-
vide curated benchmarks, an evaluation scheme and baseline results. The
resulting unusual time series detection collection is openly available at:
https://outlier-detection.github.io/utsd/.
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1 Introduction

Frustrated by the difficulty of evaluating and comparing rival time series clas-
sification approaches, Keogh and Folias introduced the University of California
Riverside (UCR) time series archive in 2002 [10]. The archive is continually
being expanded and currently contains 128 datasets [6]. Besides time series clas-
sification, another important time series data mining task is time series outlier
detection also referred to as time series anomaly detection [8]. We use the UCR
time series archive as a basis to define a range of outlier detection tasks and
benchmarks. An outlier or anomaly is frequently defined as “an observation (or
subset of observations) which appears to be inconsistent with the remainder of
that set of data” [1]. Time series outlier detection commonly refers to three sep-
arate tasks: (1) the detection of outlier points in time series, (2) the detection of
outlier subsequences in time series, and (3) the detection of outlier series, which
is the focus of our work. Hyndman et al. [9] refer to the detection of entire outlier
series as unusual time series detection, to differentiate the task from point and
subsequence outlier detection, which we adopt in the following sections.

2 Related Work

The evaluation of outlier detection algorithms has been identified as a constant
challenge in outlier detection research [4]. Lai et al. [11] recently introduced an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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extensive dataset collection for point and subsequence outliers in time series,
which focuses on synthetic data generation with a small number of real-world
datasets. The detection of unusual time series is another frequently described
task. To the best of our knowledge, there exists no standardized dataset collection
to evaluate outlier detection methods for such a task. Previous authors working
on this kind of task use synthetic or proprietary datasets [5,9,12,16], or (a small
selection of) repurposed time series classification datasets [2,3,13,15].

3 Dataset Collection

We further refer to the proposed collection of tasks and benchmarks as the
unusual time series detection collection (UTSD). Recall that the UCR time series
archive is continually being expanded, and we thus version the tasks and bench-
marks to account for future updates. We define the first version of the UTSD
collection as UTSDv1. Emmott et al. [7] define four requirements for the sys-
tematic construction of outlier detection benchmark datasets:

Requirement 1. Normal points should be drawn from a real-world process.
Requirement 2. Anomaly points should be drawn from a real-world process.
Requirement 3. Many benchmark datasets are needed.
Requirement 4. Benchmark datasets’ difficulties should be characterized.

To address the outlined requirements, we prepare curated benchmarks that con-
tain only a subset of the tasks in the collection, for example, by excluding syn-
thetic datasets, to fulfill requirements 1 and 2. Requirement 3 can be satisfied by
choosing a large enough selection of UCR datasets as a basis for the proposed
benchmarks. The UCR archive provides an overview of classification results,
which can be used as a measure of difficulty to fulfill requirement 4.

3.1 Detection Tasks

For each percentage p ∈ {2.5%, 5%, 10%} of outliers we define the following
detection tasks. We rank the classes of each dataset according to their class
count and class name order, which we define as the class normality, i.e., classes
with higher class counts are considered ‘normal’ and, if classes contain an equal
amount of elements, the lower class according to name is considered ‘normal’.
Note that integer values describe the class names in the UCR archive, allowing
us to define the class name order based on its value. For all outlier detection
tasks, the outlier class is defined as a random sample of all non-normal classes,
such that the final dataset contains at most p percent of outliers. As proposed by
[4], we attempt to mitigate the impact of randomization when downsampling by
repeatedly sampling each dataset ten times, resulting in ten different variants for
each task. Note that two datasets are treated differently based on their semantic
interpretation, namely the binary Strawberry and ItalyPowerDemand datasets.
The Strawberry dataset encompasses the minority class ‘Strawberry’ (authen-
tic samples) and the majority class ‘Non-Strawberry’ (adulterated strawberries
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and other fruits), which we define as outliers. The ItalyPowerDemand dataset
differentiates between the class ‘October to March’ (549 samples) and the class
‘April to September’ (547 samples). Because of the summer holidays in August,
the majority class shows outlier behavior; hence we choose it as the outlier class.

Single-Concept Normality. We define the single-concept normality task as
follows: The normal class is defined as the first majority class. There are cases in
which a percentage p would lead to a dataset with zero outliers; in this case, the
task is not available for the specific dataset and percentage. None of the datasets
initially contains less than 10% of outliers.

Multi-concept Normality. We define the multi-concept normality tasks as
follows: The normal classes are defined as the c first majority classes with c > 1,
which we compare to the base case c = 1. Therefore, multi-concept tasks are
only defined for datasets with at least three classes. The UCR time series archive
currently contains 86 such multiclass datasets.

3.2 Detection Benchmarks

The detection benchmarks are a curated selection of the proposed tasks, mak-
ing it easier to compare novel outlier detection methods to previously published
work. We provide a single-concept benchmark as well as a multi-concept bench-
mark. For both benchmarks, we define the following conditions:
1. The dataset must not contain missing values.
2. The dataset must not be created synthetically.
3. The dataset must not be a duplicate of another benchmark dataset.
4. The dataset must not contain less than two outliers.

Points 1 and 2 follow from the requirements proposed in [7]. Point 3 refers to
the fact that the UCR time series archive contains datasets that are very closely
related to each other, e.g., downsampled variants. The last point ensures that at
least one sample per class is contained in a stratified evaluation setting. We drop
all datasets that violate these conditions and do not prescribe additional data
preparation steps, e.g., for normalization or handling of missing values, other
than the steps already performed in the UCR time series classification archive.

UTSDv1 Single-Concept Benchmark. We require that the normal class con-
tains at least 300 data points for the single-concept benchmark, which results in 39
possible datasets. Four of the datasets1 are simulated, ten of the datasets are con-
sidered duplicates2,3,4,5,6, and one dataset contains missing values7, which results
in 24 datasets for the single-concept benchmark as visible in Table 1.
1 CBF, ChlorineConcentration, Mallat and TwoPatterns.
2 FreezerSmallTrain is a downsampled version of FreezerRegularTrain.
3 FacesUCR is considered a duplicate of FacesAll.
4 MixedShapesSmallTrain is a downsampled version of MixedShapesRegularTrain.
5 DistalPhalanxOutlineAgeGroup, DistalPhalanxOutlineCorrect, MiddlePhalanxOut-
lineCorrect, and ProximalPhalanxOutlineCorrect are considered duplicates of the
PhalangesOutlinesCorrect.

6 UWaveGestureLibraryX/Y/Z are considered duplicates of UWaveGestureLibraryAll.
7 MelbournePedestrian.
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UTSDv1 Multi-concept Benchmark. In the multi-concept benchmark, we
compare c = 1 to c = 2 and c = 3. We only consider datasets with at least
100 data points in the first majority class, which results in 300 points with
c = 3 if the classes are distributed equally, resulting in 82 possible datasets.
Furthermore, we only consider datasets that contain at least two outliers for all
percentages and all numbers of concepts, leaving 34 possible datasets. Out of the
34 remaining datasets, five of them contain missing values8, three of them are
simulated9 and seven are considered duplicates10,11. This results in 19 datasets
for the benchmark as visible in Table 2.

Table 1. UTSDv1 single-concept benchmarks for different percentages p.

Dataset n-total n-normal p = 2.5% p = 5.0% p = 10.0%

CinCECGTorso 1420 355 9 18 39

Crop 24000 1000 25 52 111

ECG5000 5000 2919 74 153 324

ECGFiveDays 884 442 11 23 49

Earthquakes 461 368 9 19 40

ElectricDevices 16637 4275 109 225 475

FaceAll 2250 327 8 17 36

FordA 4921 2527 64 133 280

FordB 4446 2261 57 119 251

FreezerRegularTrain 3000 1500 38 78 166

HandOutlines 1370 875 22 46 97

ItalyPowerDemand 1096 547 14 28 60

MedicalImages 1141 594 15 31 66

MixedShapesRegularTrain 2925 754 19 39 83

MoteStrain 1272 685 17 36 76

PhalangesOutlinesCorrect 2658 1698 43 89 188

SemgHandGenderCh2 900 540 13 28 60

SonyAIBORobotSurface2 980 604 15 31 67

StarLightCurves 9236 5327 136 280 591

Strawberry 983 351 9 18 39

TwoLeadECG 1162 581 14 30 64

UWaveGestureLibraryAll 4478 560 14 29 62

Wafer 7164 6402 164 336 711

Yoga 3300 1770 45 93 196

3.3 Evaluation and Baselines

The most popular evaluation measure in unsupervised outlier detection is based
on the Receiver Operating Characteristic (ROC). A ROC can be summarized
8 AllGestureWiimoteX/Y/Z, MelbournePedestrian and PLAID.
9 Mallat, SyntheticControl and TwoPatterns.

10 DistalPhalanxTW and MiddlePhalanxTW are considered duplicates of Proximal-
PhalanxTW, which contains the largest sample count of the three datasets.

11 See Footnotes 3, 4 and 6.
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Table 2. UTSDv1 multi-concept benchmarks for percentages p and concepts c.

Dataset n-total n-normal p = 2.5% p = 5.0% p = 10.00%

CinCECGTorso 1420 355/710/1065 9/18/27 18/37/56 39/78/118

Crop 24000 1000/2000/3000 25/51/76 52/105/157 111/222/333

ElectricDevices 16637 4275/8462/11101 109/216/284 225/445/584 475/940/1233

EthanolLevel 1004 252/504/754 6/12/19 13/26/39 28/56/83

FaceAll 2250 327/600/787 8/15/20 17/31/41 36/66/87

FiftyWords 905 109/200/261 2/5/6 5/10/13 12/22/29

Haptics 463 100/200/293 2/5/7 5/10/15 11/22/32

InlineSkate 650 117/225/328 3/5/8 6/11/17 13/25/36

InsectWingbeatSound 2200 200/400/600 5/10/15 10/21/31 22/44/66

MedicalImages 1141 594/706/812 15/18/20 31/37/42 66/78/90

MixedShapesRegularTrain 2925 754/1435/1993 19/36/51 39/75/104 83/159/221

Phoneme 2110 238/387/532 6/9/13 12/20/28 26/43/59

ProximalPhalanxTW 605 252/428/526 6/10/13 13/22/27 28/47/58

SemgHandMovementCh2 900 150/300/450 3/7/11 7/15/23 16/33/50

SemgHandSubjectCh2 900 180/360/540 4/9/13 9/18/28 20/40/60

Symbols 1020 181/362/529 4/9/13 9/19/27 20/40/58

UWaveGestureLibraryAll 4478 560/1120/1680 14/28/43 29/58/88 62/124/186

WordSynonyms 905 200/315/387 5/8/9 10/16/20 22/35/43

Worms 258 109/154/198 2/3/5 5/8/10 12/17/22

Fig. 1. Baselines for the UTSDv1 single-concept benchmark for p ∈ {2.5%, 5%, 10%}
and the UTSDv1 multi-concept benchmark for c ∈ {1, 2, 3} and p = 5%.
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by a single value known as the area under the ROC curve (ROC AUC) [4].
We provide a k-nearest neighbor (k-NN) baseline detector as described in [14].
We do not employ additional data preprocessing but optimize the number of
neighbors for all k ∈ {1, 2, . . . , 100}. We report the mean ROC AUC score and
corresponding standard deviation over the ten randomly-sampled variants and
the best k for each dataset. Each score is the result of a repeated, two-fold,
stratified cross-validation, which we suggest as the default evaluation scheme.
Figure 1 shows the results for both benchmarks and the best value of k for a
task, which, in the case of draws, represents the higher value.

4 Conclusions

In this work, we present the first standardized collection of tasks and benchmarks
for the detection of unusual time series. The proposed UTSD collection will aid
future researchers in developing and comparing novel time series outlier detection
methods. To facilitate reproducibility, we publish all data and code at https://
github.com/outlier-detection/utsd/.
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Abstract. Nowadays, it is difficult for companies and organisations
without Business Intelligence (BI) experts to carry out data analyses.
Existing automatic data warehouse design methods cannot treat with
tabular data commonly defined without schema. Dimensions and hierar-
chies can still be deduced by detecting functional dependencies, but the
detection of measures remains a challenge. To solve this issue, we pro-
pose a machine learning-based method to detect measures by defining
three categories of features for numerical columns. The method is tested
on real-world datasets and with various machine learning algorithms,
concluding that random forest performs best for measure detection.

Keywords: Data warehouses · OLAP · Measure detection · Tabular
data

1 Introduction

Business Intelligence (BI) plays an important role in numerous companies and
organizations to efficiently support decision making processes. In classical BI
architectures, data from heterogeneous sources are integrated into a Data Ware-
house (DW) usually modeled in a multidimensional way, allowing decision mak-
ers to analyze data by On-Line Analytical Processing (OLAP) [11]. A multidi-
mensional DW organizes data according to analysis subjects (facts) associated
with analysis axes (dimensions). Dimension attributes may be ordered accord-
ing to their granularity (hierarchies) and each fact is composed of indicators
(measures).

With the development of information systems and the availability of numer-
ous open datasets, various data become much more accessible to enterprises,
organizations and even individuals, who have data analysis needs to help them
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take decisions [1]. However, the design of a DW is typically carried out manu-
ally, requires expert knowledge and BI experience [26], may be time-consuming
and costly. Thence, automating the DW design process is desirable to allow
businesses and organizations take advantage of BI.

There are different automatic or semi-automatic approaches for the design
of multidimensional DW schemas [25]. However most of these methods focus on
data sources with explicit schema: relational data with Entity-Relationship (ER)
schema, XML data with Document Type Definitions (DTDs), etc. Nevertheless,
tabular data such as spreadsheet data and Comma Separated Value (CSV) files
are very common in enterprises, and even more in the open data world. They
may also be DW data sources, but whose schema is not available. Building
dimensions and hierarchies for tabular data can be done by detecting functional
dependencies [32]. In the existing methods for other sources, measures are defined
manually by users or are detected with respect to data types (numerical values)
and cardinalities, which is impractical for tabular data without schema. Yet,
measures remain central elements in multidimensional models, as they are the
indicators that assess the analyzed activities. Therefore, measure detection
for automatic DW design from tabular data is an important task. To
the best of our knowledge, there is no specific approach addressing this challenge.

Tabular data may bear quite simple or very complex structures [2]. Simple
structures consist of one header row followed by rows containing data values.
Headers label the data rows below, while data rows contain tuples akin to rela-
tional database tuples. Most CSV files bear a simple structure, while spreadsheet
files and HTML tables can be more complex, e.g., cross tables [17]. Such tables
contain two or several dimensions, and may also contain several dimension lev-
els. Moreover, there also exists other complex structures such as concise tables,
nested tables, multivalued tables and split tables [17].

The data region can be extracted from a cross tables by some algorithms
[5,6,16,31] where measures are located. The other types of complex structures
can be converted into simple structures [6]. However, for simple-structured tab-
ular data, DW elements cannot be directly extracted either without a schema
or metadata, as the data do not bear a particular layout. Measures are usu-
ally numerical data, but numerical columns are not necessarily measures, since
there also exists descriptive numerical attributes. Thus, we intend to find the
numerical columns that conform to the characteristics of measures. We hypoth-
esize that there are differences in terms of features between numerical data that
are potential measures and those that are not. Therefore, in this paper, we
define specific features for numerical columns and propose a machine
learning-based method to automatically detect measures.

The remainder of this paper is organized as follows. In Sect. 2, we review the
related works about measure selection for automatic DW design. In Sect. 3, we
detail and discuss the measure detection process and the features we propose.
In Sect. 4, we present and interpret our experimental results. Finally, in Sect. 5,
we conclude this paper and hint at future research.
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2 Related Works

There are various methods dedicated to automatic or semi-automatic DW
schema design, with different measure selection approaches. Since the selected
measures should correspond to business requirements, in many methods [8,9,14,
27], they are assigned directly by the users.

In a semi-automatic method to model DW from E/R diagrams [13], the fact
table is selected by calculating the Connection Topology Value (CTV) of each
entity, which is a composite function of the topology value of direct and indirect
one-to-many relationships. Measures are still chosen manually by the user, but
the scope of the choice is reduced. Moreover, another approach fully automates
DW design from an E/R schema [22]. In contrast, some approaches aim at dis-
covering measures, including 1) selecting many-to-many relationships containing
numeric and additive non-key facts [15]; 2) analyzing business queries for data
items indicating business performance [4]; 3) basing on most frequently updated
entities [10]; or 4) selecting the numerical data that can be aggregated [30]. All
these approaches work in the context of automatic DW design based on E/R
schemas. However, the constraints and relationships mentioned in such methods
cannot be directly applied on tabular data.

Another trend is using knowledge-based methods for automatic DW
design [28]. Key information on measures and dimensions are extracted through
a Natural Language Processing (NLP) model based on sentences from the busi-
ness requirements. Candidate measures are all numerical column and are then
validated by some constraints in a predefined domain ontology and by checking
whether they can be aggregated. However, the method needs business require-
ments to train the NLP model. Defining the domain ontology is also difficult.

In summary, there is no specific method to automatically detect measures
from tabular data in the absence of schema and explicit business requirements.
Thus, we propose a machine learning-based method for measure detection from
tabular data.

3 Measure Detection

3.1 Overview

Figure 1 shows an overview of our measure detection process for tabular data.
If tabular data bear a complex structure, we use table structure detection algo-
rithms [5,6,16,31] to verify whether data lie in a cross table. If so, measures are
extracted from the data region, save aggregated values are excluded. Otherwise,
data are converted by the algorithm proposed in [6] into a simple structure that
is formally defined in Definition 2.

Definition 1. Measures are numerical and quantitative attributes of the anal-
ysis subject evaluating the activities of an organisation and that can be aggre-
gated with respect to dimensions. They can be additive, semi-additive or non-
additive [12].
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Fig. 1. Measure detection for tabular data

Definition 2. A tabular dataset of simple structure TS is defined as
{C,R,A,V}, where:

– C = {C1, C2, ...Cnc
} is a set of columns, where nc is the number of columns in

TS. For a given column Ci ∈ C, index i corresponds to the column’s position
in TS. The number of non-null values in column Ci is denoted as nt(Ci).
The number of non-null distinct values is denoted as nu(Ci);

– R = {R1, R2, ..., Rnr
} is a set of rows (excluding the first, header row), where

nr is the number of non-header rows in TS. For a given row Rj ∈ R, j
represents the index of the row corresponding to its position in TS;

– A = {AC1 , AC2 , ..., ACnc
} is a set of attribute headers. For a given attribute

header ACi
∈ A, Ci represents the column labeled by ACi

;
– V is a matrix of cell values whose dimension is nr ×nc. For a given cell value

VRj ,Ci
∈ V, Rj and Ci are the row and the column where the cell is located,

respectively.

In the following sections, we focus on measure detection for tabular data of
simple structure. Since measures are numerical, we regard all numerical columns
as candidates. Yet, preprocessing the dataset is necessary for the selection of
numerical columns. Then, to distinguish between measure and non-measure
numerical columns we extract features from numerical columns and use machine
learning classifiers to estimate whether they are measures.

3.2 Preprocessing

As candidate measures are numerical columns, we must first identify numerical
columns. If all values of a column are numerical, we easily identify numerical
columns. However, there are sometimes columns containing numerical values
with their unit, or columns containing both numerical and textual values used
for replacing empty cells. Such mixed values must lead to numerical columns
and require preprocessing.

Columns containing values with a unit are identified by verifying whether
each cell o bear the same structure, e.g., “text + number” or “number + text”.
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We also verify whether the text of each column is the same or if it is categori-
cal by using the algorithm proposed by [3]. Then, we extract numerical values
via regular expressions and tag the column as numerical. Eventually, numerical
columns containing empty values replaced by some text, e.g., “n/a”, “null” or
“unknown”, are treated as numerical, with textual values being removed.

3.3 Feature Extraction

After the preprocessing phase, we extract the numerical columns’ features. When
defining features, we analyze both general information and some statistical char-
acteristics of numerical columns. Since tabular data of simple structure are
usually relational and may exhibit specific column positional habits, we also
consider column inter-relationships. Features are thus subdivided into three cat-
egories: general features, statistical features and inter-column features. For a
given numerical column Ci, we define the following features.

General Features. These features reflect basic information on numerical
columns. Such general features may help check whether a numerical column is
likely to be quantitative and help evaluate business activities. General features
follow.

– Data type: type =
{

1 if type(Ci) = integer
0 if type(Ci) = float

, where type(Ci) is Ci’s data

type.

Intuitively, float data are more likely to be quantitative and to allow evaluat-
ing activities. For example, temperature, salary and sales amount are float data
can be considered as measures in most cases.

– Positive/Negative/Zero value ratio: rpos =
npos(Ci)
nt(Ci)

, rneg =
nneg(Ci)
nt(Ci)

,

rzero =
nzero(Ci)
nt(Ci)

, where npos(Ci), nneg(Ci) and nzero(Ci) are the number

of positive, negative and zero values in Ci, respectively, and nt(Ci) is the
number of non-null values in Ci.

These features may help identifying both qualitative and quantitative
columns. Qualitative data values, e.g., ID or zip code, are rarely negative or
equal to zero. Thus, when there are many zero and negative values in a column,
it is more likely to be a measure.

– Unique value ratio: runique =
nu(Ci)
nt(Ci)

.

The unique value ratio can reveal some typological information about a col-
umn. For example, in a descriptive dataset, IDs are always unique, so the unique
value ratio is always 1. In a dataset containing fact table data, keys and descrip-
tive data may be repetitive, but equal measures should be quite scarce.
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– Same digital number:

sdn =

⎧⎨
⎩

1 if ∀i ∈ [1, nt(Ci) − 1], ndRj ,Ci
= ndRj+1,Ci

∧ type(Ci) = integer
0 if (∃i ∈ [1, nt(Ci) − 1], ndRj ,Ci

�= ndRj+1,Ci
∧ type(Ci) = integer)

∨(type(Ci) = float)

where ndRj ,Ci
is the number of digits in cell value VRj ,Ci

, which is calculated as

ndRj ,Ci
= floor(log

VRj,Ci

10 ) + 1.
This feature tells whether all the values of an integer column have the same

number of digits. If it is the case, the column is likely to be a nominal number [3]
representing the name or identifier of an element that cannot be a measure. For
example, the French social security number always contains 15 digits.

Statistical Features. Since candidate columns are numerical, statistical fea-
tures must be considered. They can indeed reflect the distribution of column
values. Statistical features follow.

– Average/Minimum/Maximum/Median/Upper quartile/Lower qu-
artile values: avg = avg(Ci), min = min(Ci), max = max(Ci), median =
median(Ci), upquar = upquar(Ci) and lowquar = lowquar(Ci) represent
the average, minimum, maximum, median, upper quartile and lower quartile
of Ci, respectively.

We consider these basic statistical metrics as features. In some specific
columns, their values always vary in a certain range. Using these features can
thus be helpful for capturing such statistical behaviours.

– Coefficient of variation:

coevar =

⎧⎨
⎩

standdev(Ci) if avg(Ci) = 0
standdev(Ci)

avg(Ci)
if avg(Ci) �= 0

where standdev(Ci) is Ci’s standard deviation.
The standard deviation can depict the amount of dispersion of a column

values. Measures or descriptive attributes may have different degrees of disper-
sion, but by using the coefficient of variation, which is the ratio of the standard
deviation by the average, we achieve a standardized degree of dispersion. For
example, given two attributes “price of phone” and “temperature of city”, the
average price is much higher than that of temperature. A price variation of 10 is
relatively much lower than that of tempera. Since the coefficient of variation is a
ratio, when the average is equal to 0, it does not exist. Here, we define that when
the average is 0, the feature is equal to the standard deviation of the column.

– Range ratio: rrange =
max − min

nu(Ci)
.
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The range ratio calculates the range of values with respect to the number
of distinct values. It is useful to identify some ordinal data, even if they occur
repetitively. For example, if we have student numbers ranging from 1000 to
2000 in a tabular dataset, but also courses and grades, a student number may
occur many times while the range ratio is always 1 no matter the number of
occurrences.

Inter-Column Features. Measures are aggregatable and are normally accom-
panied with attributes by which they are aggregated, as per the “group by”
SQL clause. Typically, attributes linked to aggregations are located before mea-
sures in the source file. Therefore, we consider inter-column features that take
inter-column relationships into account in the whole dataset.

– Location ratio: rloc =
i − 1
nc − 1

.

In many tables, the identifier and some other basic information usually lie
at the beginning positions, while measures are usually in the latter positions.
Thus, we also take column location into account. However, different datasets
have different number of columns, so we must normalize the location feature as
a ratio ranging between 0 and 1.

– Numerical column ratio: rnum =
nnum

nc
, where nnum is the number of

numerical columns in the whole dataset.

The ratio of numerical column number by total column number is a table
feature. While there are tabular data that only contain descriptive information,
others include numerical columns that may be measures.

– Multiple functional dependencies:

severalfds =
{

1 if ∃fd ∈ fdset, (fd.rhs = ACi
) ∧ (size(fd.lhs) > 1)

0 else
where fdset is the functional dependency set of the dataset, fd.rhs is the
right hand side attribute of functional dependency fd and size(fd.lhs) is the
number of attributes in the left hand side of fd.

In existing methods that exploit data sources with schemas, many-to-many
relationships are usually employed for measure detection. In a DW, we usually
analyze a fact with respect to different dimensions and measure values depend
on dimensions’ primary keys. Thus, we consider whether there is a functional
dependency with ACi

depending on several attributes as a feature.
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– Numerical neighbor:

numn=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if (i = 1 ∧ type(Ci+1) ∈ num) ∨ (i = nc ∧ type(Ci−1) ∈ num)
∨(i �= 1 ∧ i �= nc ∧ type(Ci+1) ∈ num ∧ type(Ci−1) ∈ num)

0.5 if (i �= 1 ∧ i �= nc ∧ type(Ci+1) ∈ num ∧ type(Ci−1) �∈ num)
∨(i �= 1 ∧ i �= nc ∧ type(Ci+1) �∈ num ∧ type(Ci−1) ∈ num)

0 else
where num = {integer, float}.

In a tabular dataset, the columns describing similar information are often
clustered together. Measures are also likely to be located close together, meaning
that there are numerical columns in neighboring positions. Thus, we define this
feature to see if neighbors of a column are also numerical. If so, the column is
likely to be a measure.

4 Experimental Validation and Discussion

4.1 Experimental Conditions

Our experiments are conducted on an Intel(R) Core(TM) i5-10210U 1.60 GHz
CPU with a 16 GB RAM. We use 9 datasets in our experiments, from the
governmental open data sites of France (FR), Canada (CA), UK (UK) and
US (US), the French Development Agency (AFD), the New Zealand’s official
data agency (NZ), the American Center for Disease Control and Prevention
(CDC), the World Bank (WB) and Kaggle (KG). Each dataset contains numer-
ous tables with numerical columns on which features are extracted to feed the
algorithms. Moreover, they are classified into five domains (Table 3) including
Economy (ECO), Health (HLT), Government (GOV), Environment (ENV)
and Society (SOC). Complete information about these datasets are provided in
Appendix.

We apply the following widely used Machine Learning (ML) classification
algorithms [29] (available in Python 3.7): 1) an SVM classifier with an RBF ker-
nel (SVM), 2) a decision tree classifier based on the CART algorithm (DT), 3)
a random forest classifier (RF) and 4) a k-nearest neighbors classifier (KNN).
Deep learning models are not employed because they are more suitable for inter-
preting images, sounds and texts [18], while we analyze numerical columns.

We define the ground truth by analyzing each dataset context according to
its website’s description, header semantics and metadata. We also uphold the
criteria from Definition 1. Thence, for each dataset, we compute all our proposed
features (Sect. 3.3) for each numerical column, and label them to build training
and test sets. Empty values in columns are ignored and not counted.

4.2 Baseline Methods

Numerical Typology-Based Method (TP). In a previous work, we pro-
posed to select measures with respect to the type of numerical attributes [32].
Numerical data may be classified into nominal data, ordinal data, intervals and
ratios [3]. Algorithms can detect the different numerical types [3]. We identified
the columns of interval and ratio types as DW measures.
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Functional Dependency-Based Method (FDB). As we already mentioned,
in existing methods aimed at data with schemas, measures are selected in tables
exhibiting many-to-many relationships; in other words, columns that are func-
tionally dependent on dimension primary keys. With this idea in mind, we detect
functional dependencies (FDs) in tabular data and select as measures the numer-
ical columns that are functionally determined by several, other attributes. The
FD detection algorithm that we use is HyFD [21]. HyFD indeed achieves the
best performance against the seven most cited and important algorithms that
are tested in [19].

We employ the Metanome Web-based toolbox [20], which is developed by
the HyFD designers, to implement HyFD. Moreover, we use the Python library
selenium1 to feed input files in Metanom and get the FDs automatically. The
extracted FDs are also used for generating the values of feature severalfds.

4.3 Experimental Results

Algorithm Effectiveness. We run the two baseline methods from Sect. 4.2
and train models with our proposed features by four ML algorithms (Sect. 4.1)
on all datasets (Sect. 4.1). The ML algorithms are run by pycaret2 AutoML
Python library where the hyperparameters are tuned automatically. For the
model generality and feauture importance experiments, we run ML algorithms
from the sklearn3 Python library.

We use three performance metrics: Recall (R), Precision (P) and F-Measure
(F), as follows. Let Nmm and Nmn be the number of measures predicted as
measures and non-measures, respectively; and Nnm and Nnn the number of
non-measure predicted as non-measures and measures, respectively.

Then, R =
Nmm

Nmm + Nmn
, P =

Nmm

Nmm + Nnm
and F

=
2 × Precision × Recall

Precision + Recall
.

Table 1 shows the resulting values of R, P and F where the results of ML
algorithms are obtained through a 10-fold cross validation by merging all datasets
and randomly split them into 10 folds. The distribution of the cross validation
results is depicted in Fig. 2.

We observe that RF exhibits the best F-measure (94.82%) and the result
is not more dispersed than that of the other algorithms. Thus, RF shows the
best performance on the measure detection problem. We also observe that TP
and FDB do not have a good effectiveness when predicting measures, but FDB
performs better than TP. TP’s bad performance is due to: 1) interval and ratio
numerical columns are not all measures, e.g., longitude and latitude; 2) numerical
typology detection algorithm are not flexible enough to cope with real-world
data, because they are based on fixed rules. Regarding FDB, a numerical column

1 https://selenium-python.readthedocs.io.
2 https://pycaret.org/.
3 https://scikit-learn.org.

https://selenium-python.readthedocs.io
https://pycaret.org/
https://scikit-learn.org
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Table 1. Global results

TP FDB RF SVM DT KNN

R(%) 80.05 75.43 96.64 94.77 94.08 90.16

P(%) 73.57 77.50 90.89 78.44 88.44 87.61

F(%) 76.67 76.45 93.65 85.76 91.12 88.78

Recall Precision F-measure
0.7

0.8

0.9

1

RF SVM DT KNN

Fig. 2. Cross validation distribution

that is functionally determined by several other columns may not always be a
measure, either. For example, let us consider a table describing sale facts with
respect to customers and products, where sales’ amount is indeed a measure.
The customer ID is the customer dimension’s primary key, but the customer’s
name and email may uniquely identify a customer, and thus may functionally
determine the age of the customer, a numerical column that is not a measure.

Our ML-based measure detection method takes different types of features
(Sect. 3.3) into account and can thus better handle the above exceptions and get
better results.

Feature Category Effectiveness. To verify the effectiveness of each feature
category we propose, we test different combinations of feature categories with
our RF-based method. We first test single feature categories, combinations of
two categories and then we compare the effectiveness of all categories. The result
is shown in Table 2, where GE represents GEneral features, ST represents STa-
tistical features and IC represents Inter-Column features. ST exhibits the best
individual contribution. Yet, we can clearly see that combining feature categories
achieves better performance in terms of recall, precision and F-measure, than
using single feature categories. Ultimately, combining all feature categories yields
the best performance. The results of applying other ML algorithms can be found
in our github.

Table 2. Performance of feature categories and combinations with RF

GE ST IC GE+ST GE+IC ST+IC ALL

R(%) 88.10 94.27 92.68 95.30 93.67 91.93 96.64

P(%) 83.59 86.28 80.91 88.21 86.13 91.14 90.89

F(%) 85.69 90.01 86.37 91.57 89.67 91.50 93.65
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Fig. 3. Performance with respect to source and domain

Model Generality. To verify that the trained model achieved with our RF-
based method is generic, we train data by excluding the datasets of one sources
and test on them. We also carry out the same test by domain, i.e., economy
(ECO), health (HLT), government (GOV), environment (ENV) and society
(SOC). The results are shown in Fig. 3, where the charts above and below depict
the results by source and domain, respectively. By comparing with former results,
the difference of F-measure ranges from −5.02% to 4.23% for the test with
respect to the source and from −3.17% to 3.36% for the test with respect to the
domain. The trained model with the defined features is thus generic regardless of
the source and the domain of data. The results of applying other ML algorithms
can be found in our github4.

Feature Importance. To analyze our different features, we compute the per-
mutation importance (decrease in prediction accuracy when a feature is per-
muted [7]) of each feature for all ML algorithms. Figure 4 shows that the impor-
tance of a feature varies with respect to the algorithm. For example, with SVM
and KNN, some statistical features are more important than others, while with
RF and DT, the features bearing the highest importance values are more equally
distributed in each feature category. There are also features that bears negative
importance values with algorithms, but not every time, while they always have
positive importance values with other algorithms. There is no feature that always
bears zero or negative importance values with one given algorithm, which means
that all our features have a contribution to the ML classifiers. With RF, which
bears the best performance, the most important feature is the location ratio. By
checking the CSV files, we observe that most of the measures are situated at the
last part of the file, while most of the columns in the front part are descriptive,
which probably explains the importance of the location ratio.
4 https://github.com/Implementation111/measure-detection.

https://github.com/Implementation111/measure-detection
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Fig. 4. Feature importance

5 Conclusion and Future Work

In this paper, we propose a machine learning-based method for detecting OLAP
measures from tabular data. Our method is mainly dedicated to tabular data of
simple structure, since the case of complex structures has been addressed in the
literature. Some complex structures can also be converted to simple structures.
To fuel machine learning algorithms, we define three categories of features for
numerical columns in tabular data. We experiment with several real-world CSV
datasets and test four machine learning algorithms, among which Random Forest
performs the best. We also analyze how the features we build contribute to the
results.
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In the future, we aim at considering not only numerical measures, but also
textual measures [23]. Moreover, we only use CSV data in our experiments. Com-
plementing them with other types of tabular data, including complex-structured
data that are found in data lakes [24], could be relevant.

Acknowledgements. The research depicted in this paper is funded by the French
National Research Agency (ANR), project ANR-19-CE23-0005 BI4people (Business
Intelligence for the people).

Appendix: Dataset Information

In this appendix, we detail the information about the datasets we use in our
experiments. As mentioned in Sect. 4.1, these datasets come from different
sources: AFD5, CDC6, CA7, FR8, KG9, NZ10, UK11, US12, WB13. files
from AFD and FR are in French while the others are in English.

Table 3. Number of files by domains

Economy Health Government Environment Society

143 57 80 28 38

Table 4 shows information about each data source and all data sources
(Total), including the number of files (Nf ), the number of numerical columns
(Nc), the number of measures (Nm) and the ratio of number of measures by the
number of numerical columns (Rm). Figures in brackets are the minimums and
maximums. The original datasets and even more information about them can
be found in our github.

5 https://opendata.afd.fr.
6 https://data.cdc.gov.
7 https://open.canada.ca.
8 https://www.data.gouv.fr.
9 https://www.kaggle.com.

10 https://www.stats.govt.nz.
11 https://data.gov.uk.
12 https://www.data.gov.
13 https://data.worldbank.org.

https://opendata.afd.fr
https://data.cdc.gov
https://open.canada.ca
https://www.data.gouv.fr
https://www.kaggle.com
https://www.stats.govt.nz
https://data.gov.uk
https://www.data.gov
https://data.worldbank.org
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Table 4. Data source characteristics

AFDa CDCb CAc FRd KGe

Nf 7 28 23 30 106

Nc (min-max) 15 (1–4) 100 (1–4) 156 (2–28) 123 (1–38) 394 (1–17)

Nm (min-max) 8 (0–3) 70 (1–6) 113 (0–28) 39 (0–7) 271 (0–10)

Rm(%) 53.33 70.00 72.44 31.71 68.78

NZf UKg USh WBi Total

Nf 22 42 71 17 346

Nc (min-max) 62 (1–13) 137 (1–9) 311 (1–20) 84 (1–18) 1382 (1–38)

Nm (min-max) 8 (0–3) 99 (0–8) 194 (0–18) 63 (0–13) 900 (0–28)

Rm(%) 69.35 72.26 62.38 75.00 65.12
a https://opendata.afd.fr.
b https://data.cdc.gov.
c https://open.canada.ca.
d https://www.data.gouv.fr.
e https://www.kaggle.com.
f https://www.stats.govt.nz.
g https://data.gov.uk.
h https://www.data.gov.
i https://data.worldbank.org.

Finally, the datasets that we choose contain at least one numerical column
and can be used for DW creation. There were files that are used for other specific
purpose, e.g., machine learning, which are not suitable to DW creation. They
were thus discarded. There were also files with very poor data quality or com-
pletely lacking the information to understand the semantic meaning of columns,
which made difficult to tell whether a column could be a measure. Such files
were also discarded.
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Abstract. Detecting and analyzing dense subgroups or communities
from social and information networks has attracted great attention over
last decade due to its enormous applicability in various domains. A num-
ber of approaches have been made to solve this challenging problem using
different quality functions and data structures. A number of cohesive
structures have been defined as a primary element for community dis-
covery in networks. Unfortunately, most of these structures suffer from
computational intractability and they fail to mine meaningful communi-
ties from real-world graphs. The main objective of the paper is to exploit
some cohesive structures in one unified framework to detect high-quality
communities in networks. First, we revisit some existing subgraph models
by showing their limits in terms of cohesiveness, which is an elementary
aspect in graph theory. Next, to make these structures more effective
models of communities, we focus on interesting configurations that are
larger and more densely connected by fulfilling some new constraints. The
new structures allow to ensure a larger density on the discovered clusters
and overcome the weaknesses of the existing structures. The performance
studies demonstrate that our approach significantly outperform state-of-
the-art techniques for computing overlapping communities in real-world
networks by several orders of magnitude.

Keywords: Graph mining · Overlapping community detection ·
k-truss · k-edge-connected component

1 Introduction

In various real-world domains, graphs are explored to represent data and their
relationships such that nodes model the entities of interest and edges model
the relationships between these different entities [6]. The distribution of edges
in real graphs is often not uniform and it is often possible to discover highly
connected nodes. The automatic detection of these groups of nodes, called com-
munities, helps to identify some properties of real-world graph, such as sociology,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 189–201, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12670-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-12670-3_16


190 S. Jabbour et al.

bibliography, and biology, among others. Fundamentally, community detection
aims to partition a graph into clusters, typically a group of vertices with more
interactions amongst its members than the remainder of the network.

Various particular form of structures as communities in real-world networks
have been developed in the past. The most basic structure is the triangle which is
a clique of size 3. Since friends of friends tend to be friends themselves, many real-
world networks contain a large number of triangles [10]. Obviously, one can con-
sider maximal, w.r.t. set inclusion, cliques as communities in the graph. However,
finding maximal cliques in large graphs is computationally intractable. Addi-
tionally, the clique structure is too restrictive. Hence, other more relaxed forms
of cliques were proposed. Luce et al. introduced a distance-based model called
k-clique [15], and Alba et al. proposed a diameter-based model called k-club [4].
Generally speaking, these models relax the reachability among vertices from 1 to
k. However, they do not remove either the problems of enumeration or computa-
tional intractability. Other proposals focus on the degree constraint of the clique,
like k-plex [11] and k-core [19]. Unfortunately, the k-plex enumeration problem
is still NP-Complete since it restricts the subgraph size, while k-core is usually
not powerful enough for uncovering the detailed community structure although
it is computationally quite efficient [18]. Recently, a remedy to these limitations
was the edge triangle based model, namely k-truss decomposition [20], is more
suitable for social network analysis. In the same vain, the authors in [6] inves-
tigate the problem of discovering another structure that could approximately
model communities in social networks, namely k-edge connected. Unfortunately,
despite their structural properties, the aforementioned graph models are still
looser than real communities in networks and the results are not that cohesive,
i.e., the obtained groups might not be well-connected.

Herein, we focus in this paper on cliques, and the two widely used models of
pseudo-cliques, that is, k-truss, and k-edge connected models. This paper’s main
contributions are briefly as follows. We propose to exploit these structures in one
unified framework to detect overlapping communities in networks. To make these
structures more effective models of communities, we focus on interesting config-
urations that are larger and more densely connected by fulfilling some triangle
relationships. More precisely, we add additional vertices to the original structure,
so the obtained subgraph is more densely connected. We also study some proper-
ties of the proposed structures. We stress here that the new structures are generic
enough to encompass prior subgraph models. Lastly, extensive experiments on
several real-world graphs show that the proposed algorithm outperforms existing
techniques.

The remainder of the present paper is structured as follows. Section 2 intro-
duces some preliminary definitions and notations. In Sect. 3, we present our novel
cohesive subgraph models for overlapping communities discovery in large graphs.
Experimental evaluation on several real-world graphs to show the performance
of our proposed methods in Sect. 4. Finally, we draw conclusions in Sect. 5.
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2 Formal Preliminaries

We provide in this section basic notions of overlapping community discovery
problem and classical subgraph models used in the paper.

An undirected graph is a pair G = (V,E) where V is a finite set of nodes
(n = |V |) and E ⊆ V × V is the set of edges (m = |E|). A pair G′ = (V ′, E′)
is a subgraph of a given graph G if and only if E′ ⊂ E and V ′ ⊂ V . For a
node u ∈ V , the set of adjacents of u is Γ (u) = {v | (u, v) ∈ E}. A triangle,
denoted by Δuvw s.t. u, v, w ∈ V , is a cycle of length 3 in G. Given an edge
e = (u, v) ∈ E, the support of e in G is the number of triangles that contain e,
i.e., SupG(e) = |{w ∈ V | Δuvw ∈ G}|.

Nodes in real graphs are structured into interconnected vertices, commonly
coined communities or clusters. Note that these communities often overlap as
nodes can be contained in different communities. The overlapping community
discovery problem consists in splitting a network of interest into (overlapping)
communities for intelligent analysis. It has recently attracted significant atten-
tion in diverse application domains. Finding network communities is, therefore,
critical for characterizing the organizational structures and understanding com-
plex systems. A great deal of effort has been devoted to developing overlapping
community finding approaches (see [8,14] for an overview).

In networks, communities are generally associated with densely intercon-
nected subgraphs. Indeed, a cohesive subgraph is an important vehicle for the
detection of communities in real networks, such as biological networks, social
networks and collaboration networks. The most intuitive definition for a cohe-
sive subgraph is a clique in which each vertex is adjacent to every other vertex.
More formally,

Definition 1 (Clique). Let G = (V,E) be a graph. Then, G is a clique if and
only if ∀u ∈ V , |Γ (u)| = |V | − 1.

Definition 2 (Maximal clique). Let G = (V,E) be a graph and G′ = (V ′, E′)
a clique in G. Then, G′ is a maximal clique iff � ∃ G′′ = (V ′′, E′′) in G s.t. G′′ is
a clique and V ′ ⊂ V ′′. We denote by M(G) the set of all maximal cliques in G.

In real-world graphs, large communities hardly appear as cliques, and various
dense subgraph models have been studied over the year. The most relevant ones
that we adopt in this paper are k-truss, and k-edge connected models, which
have gained popularity to model overlapping communities in real-world networks
[2,3].

Definition 3 (k-truss). Let G = (V,E) be a graph and k be a positive integer
s.t. k ≥ 3. Then, G is a k-truss iff ∀ e ∈ E, SupG(e) ≥ k − 2.

Intuitively, a k-truss is a maximal graph such that each pair of vertices within
an edge has at least k − 2 common neighbors [7].

Definition 4 (k-edge connected). Let G = (V,E) be a graph. Then, G is
a maximal k-edge connected iff ∀u ∈ V , |Γ (u)| ≥ k and G is connected when
removed any k − 1 edges.
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Obviously, a maximal k-edge connected component is a connected neighbor-
hood graph that cannot be disconnected by removing less than k edges.

Unfortunately, despite their structural properties, the previous explicit struc-
tures are not suitable to model real-world communities. To tackle this issue, we
present in the next section a novel class of cohesive subgraph models for com-
munities detection in networks.

3 Novel Cohesive Models for Community Discovery

In this section, we propose three novel dense subgraph models which leverage on
a new type of cohesive components based on numerous existing structures. The
underlying intuition is that all the aforementioned subgraph structures are a for-
mal and strict way of defining accurate communities. Indeed, in the vast majority
of real-world graphs, one can clearly distinguish groups of vertices that are highly
connected. Furthermore, communities in social networks must be dense in terms
of triangles. In fact, social networks are known to contain more triangles than
expected by chance, which gives a community structure to the network. Such
these important triangle relationships are somehow neglected in the aforemen-
tioned structures.

In light of the above, we present three novel cohesive models based on the
principle that triangles are a good indicator of community structure. To do
so, we first start with existing cohesive structures as “seeds” for growing final
communities. For a good balance of our structures, we expand these seed sets
using a seeding strategy. In words, our approach relies on two steps: the first
step is to build initial communities that will be improved incrementally. These
initial communities are modeled using either clique, k-truss or k-edge-connected
structures. The second step is to grow clusters around seeds to refine the quality
of final communities. This can be done by adding additional vertices to the initial
communities while keeping the fundamental aspect of cohesiveness. Based on
the notion of triangle, we have opted for the following principle: given an initial
community C, any node of the original graph which forms at least n triangles
with C must be added to C. In other words, if there are at least two vertices
u and v in the initial community C such that u and v form a triangle with
an external node w, then w must be added to the community, i.e., C ∪ {w}. Of
course, since vertices in social networks can often belong to multiple communities
at once, the node w can be added to various subgroups.

Next, let us start with cliques as seeds. Communities based on large cliques
are often undesirable as many of the returned clusters have large overlapping
parts. This redundancy leads to various problems in both computational effi-
ciency and usefulness of maximal cliques. So, as a first step, we aim at providing
a concise and complete summary of the set of maximal cliques of a given network.
For this, let us recall below the notion of visibility proposed in [21].

Definition 5 (Visibility). Let G = (V,E) be a graph and S ⊆ M(G). The
visibility of a maximal clique C ∈ M(G) w.r.t. S, denoted by VS(C), is the
maximum ratio of coverage of C by any C ′ ∈ S, i.e.,
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VS(C) = maxC′∈S
|C ∩ C ′|

|C|
Given a ratio τ ∈ [0, 1], the main idea is to compute the τ -maximal clique

subset S ⊆ M(G), such that the visibility of each maximal clique C ∈ M(G)
w.r.t. S is at least τ , i.e., VS(C) ≥ τ (see [21] for an overview). τ -MCS is short
for τ -maximal clique subset from now on.

Based on the τ -MCS property, we are able to introduce our novel subgraph
model that enhances cliques by paying attention to cohesiveness. In order to do
so, we first define the following key concept:

Definition 6. Let G′ = (V ′, E′) be a subgraph of a graph G = (V,E). Then, the
support of a node u ∈ V \ V ′ w.r.t. G′, denoted as SupG(u,G′), is the number
of triangles formed by u with G′, that is, SupG(u,G′) = |{Δuvw | v, w ∈ V ′}|.

Based on Definition 6, we are now in a position to define the (τ, n)-MCS:

Definition 7. ((τ, n)-MCS). Let τ ∈ [0, 1] and n ≥ 0. A graph G = (V,E) is
(τ, n)-MCS if there exists a subgraph G′ = (V ′, E′) of G such that:

– G′ satisfies the τ -MCS property, and
– ∀u ∈ V \ V ′, SupG(u,G′) ≥ n.

Compared to maximal cliques, (τ, n)-MCS can significantly capture the inter-
esting and important structural information out the scope of τ -MCS. We illus-
trate this in Fig. 1.

Example 1. Consider the undirected graph G = (V,E) as shown in Fig. 1.
Obviously, G has two maximal cliques C1 = {1, 2, 3, 4, 5, 6, 7} and C2 =
{5, 6, 7, 8, 9, 10}. Now, by setting τ = 0.3, the τ -MCS of G is C1 which is not
suitable to directly model the whole graph as a cohesively connected community.
By the definition of (τ, n)-MCS, the entire graph forms a single community for
n = 1, since the vertices {8, 9, 10} are contained in at least one triangle with C1.
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10

Fig. 1. A simple undirected graph
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Now, despite the fact that a truss model is defined on the set of edges involved
in various triangle relationships, it fails to identify accurate communities over
graphs. Taking advantage of the triangle cohesiveness power, we propose a novel
k-truss model, which we called (k, n)-truss, defined as following.

Definition 8 ((k, n)-truss). Let n and k be two integers s.t. n ≥ 0 and k ≥ 3.
Then, a graph G = (V,E) is called a (k, n)-truss if there exists a subgraph
G′ = (V ′, E′) of G such that:

– G′ is a k-truss, and
– ∀ u ∈ V \ V ′, SupG(u,G′) ≥ n.

Intuitively, for the (k, n)-truss model, if two vertices have more common
neighbors (i.e., n ≥ 1), their relationship is stronger, which is overlooked in k-
truss model. The following result shows the relation between the k-truss and
(k, n)-truss models.

Proposition 1. Let n ≥ 0 and k ≥ 3 be two integers. Then, the following results
hold:

(1) If n = k, then a (k, n)-truss is a (k + 2)-truss.
(2) If n = 0, then a (k, n)-truss is a k-truss.
(3) If n > 0, then a (k, n)-truss is a ((k − 1), (n − 1))-truss.

Clearly, Item 2 of Proposition 1 ensures that a k-truss is a particular case of
the (k, n)-truss structure.

Example 2. Suppose the undirected graph represented by Fig. 2. This graph con-
tains two 4-truss highlighted with gray and blue color. We can see that many
vertices do not belong to these 4-truss despite their high connections. Now, if we
consider the (4,1)-truss model, we can clearly see that the vertices highlighted
with red color (resp. yellow color) are added to the blue (resp. gray) 4-truss,
since they formed at least one triangle with the 4-truss.
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Fig. 2. An example of graph with 4-truss and (4, 1)-truss models (Color figure online)
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In the following, we revisit the k-edge connected structure in light of our
triangle based cohesiveness strategy. So, on the basis of Definition 6, we introduce
the (k, n)-edge connected structure as follows.

Definition 9 ((k, n)-edge connected). A graph G = (V,E) is called a (k, n)-
edge connected with k ≥ 2 and n ≥ 0 if there exists a subgraph G′ = (V ′, E′) of
G such that:

– G′ is a maximal k-edge connected, and
– ∀u ∈ V \ V ′, SupG(u,G′) ≥ n.

That is, the (k, n)-edge connected model is a generalization of k-edge con-
nected with the proper parameter n. We would like to point out that n can make
the graph size of (k, n)-edge connected flexible by changing its value. Thus, the
following result holds.

Proposition 2. Let n ≥ 0 and k ≥ 2 be two integers. Then, the following results
hold:

(1) If n = 0, then a (k, n)-edge connected is a k-edge connected.
(2) If n ≥ 1, then a (k, n)-edge connected is a ((k − 1), n)-edge connected.

The main advantage of a (k, n)-edge connected over a k-edge connected is its
ability to gather closely related vertices in the same community.

Based on the novel cohesive models, we next design an algorithm to find
overlapping communities in a graph by setting the parameters k, n and τ . The
pseudo-code of the proposed algorithm is given by Algorithm 1. Given an input
graph G, the set of all overlapping communities can be detected in two steps. The
algorithm starts with the enumeration of seeds (Line 1). These seeds correspond
to the initial communities. To do this, we apply an appropriate algorithm to
enumerate the τ -MCS, the set of all k-truss or the maximal k-edge connected
subgraphs. Once the detection of the set of seeds to the fixed values of parameters
(i.e., k, n and τ) are performed, the algorithm tests for each seed G′ the set of
vertices outside G′ that can be assigned to G′ w.r.t. to the triangle based strategy.
Specifically, each node that forms at least n triangles with the seed G′ must be
added to G′. This process is repeated iteratively until all the vertices outside the
underlying seed are visited (Lines 3–9). The algorithm returns then all the final
communities of G (Line 11).

Proposition 3. Given an undirected graph G. Algorithm 1 returns exactly all
the overlapping communities in G.

4 Experimental Evaluation

As mentioned above, we propose to use our novel structures to detect overlapping
communities in networks. We experimentally evaluate our approach, and show
that the novel proposed subgraph models are efficient, and significantly improve
upon the state-of-the-art algorithms.
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Algorithm 1: Discovering Overlapping Communities via Subgraph Models
Data: G = (V, E): an undirected graph, k, n: integers s.t. k ≥ 2, n ≥ 1,

τ ∈ [0, 1]: a ratio
Result: C: the set of all communities in G

1 S ← Enumerate Seeds(G);
2 C ← S;
3 foreach G′ = (V ′, E′) ∈ S do
4 foreach u ∈ V \ S do
5 if SupG(u, G′) ≥ n then
6 V ′ ← V ′ ∪ {u}
7 end

8 end
9 C ← C ∪ G′

10 end
11 return C

Our experimental evaluation was conducted on several networks that cover
a variety of application areas and are briefly described in Table 1. All networks
have ground-truth communities (see column 3 of Table 1). We have also eval-
uated three large scale graph data (i.e., Amazon, DBLP, and Livejournal) to
demonstrate the scalability of our approach. We test the efficiency of our methods
using the two well-known scoring metrics F1-score [23] and Normalized Mutual
Information (NMI, for short) [12] defined by Eq. (1) and (2), respectively:

1
2

⎛
⎝ 1

|C∗|
∑

Ci∈C∗
F1(Ci, Ĉg(i)) +

1
|Ĉ|

∑

Ĉi∈Ĉ

F1(Cg′ (i), Ĉi)

⎞
⎠ (1)

H(X) + H(Y ) − H(X,Y )
(H(X)+H(Y ))

2

(2)

where H(X) and H(Y ) are respectively the entropy of the variable X and Y in
C ′ and C ′′. The joint entropy is denoted as H(X,Y ). When the two partitions
C ′ and C ′′ are equal, this variable is set to 1.

We compare our method against the following most well-known state-of-the-
art algorithms for discovering overlapping communities:

– Clique Percolation Method (CPM) [1]
– Scalable Community Detection (SCD) [17]
– Communities from Edge Structure and Node Attributes (CESNA) [24]
– Cluster Affiliation Model for Big Networks (BIGCLAM) [23]

For the CPM baseline, we consider the clique structure of size equal to 3.

Implementation Details: We implement (k, n)-truss, (k, n)-edge-connected
subgraph and (τ, n)-MCS with the methods introduced in [20], [21] and [3],
respectively. More precisely, we adapt and implement the methods in [20], [21]
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and [3] for our objective by taking into account the constraints required by
the new structures. Our experiments were run on a PC with an Intel Core i5
processors with 8 GB memory. We imposed 4 h time-out for all the algorithms.

Table 1. Properties of the tested datasets

Network Vertices/Edges #Truth communities Source

Karate 34/78 2 [22]

Dolphin 62/159 2 [16]

Railway 301/1224 21 [5]

Football 115/615 15 [9]

Book 105/441 3 [9]

Amazon 334863/925872 75149 [13]

DBLP 317080/1049866 13477 [13]

Live-journal 39979962/34681189 287512 [13]

4.1 Choosing the Best Value of Parameters

In our study, we consider several cohesive subgraph models. Note here that each
of the existing structures has a parameter, i.e., k for k-truss and k-edge-connected
and τ for τ -MCS. In fact, such parameters indicate how close the relationships are
between vertices of the community. For the novel subgraph models, in addition
to the previous parameters, we have to consider the additional parameter n to
fix the number of external vertices to be added to the seeds. Our aim in this
subsection is to select the best value of the parameters n, k and τ (i.e., giving the
best value of the average F1-Score). To do that, we discover the communities
on each considered network from Table 1, while varying k from 3 to 6 (for k-
edge-connected, (k, n)-edge-connected, k-truss, and (k, n)-truss), and τ from 0.1
to 1 for the two cohesive subgraphs τ -MCS and (τ, n)-MCS. We also set n to
1 (the least restrictive condition under which the vertices are added). Figure 3
summarises the relationship between the average F1-score and the parameters
for each cohesive subgraph model. We can clearly see from this figure that the
best average of F1-score is obtained for k = 4 for the two cohesive subgraph
models k-truss with a value of 0.420 and (k, n)-truss with a value of 0.481. Also,
the best average of F1-score is obtained for k = 3 for the two cohesive subgraphs
k-edge-connected with a value of 0.381, and (k, n)−edge-connected with a value
of 0.395. For both the cohesive structures τ−MCS and (τ, n)-MCS, the best
average F1-score is obtained for τ = 0, 3. Interestingly, we can observe that
the novel subgraph structures give the best values in terms of average F1-score
compared to the existing models. This observation confirms our intuition that
the new models of community discovery are more densely connected than the
existing subgraphs.
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Fig. 3. Average F1-score for the different subgraph models with n = 1

Table 2. Comparison of the different cohesive subgraph models

Comparison based on F1-Score

Dataset 4-truss (4, 1)-truss 3-edge-connected (3, 1)-edge-connected 0.3-MCS (0.3, 1)-MCS

Karate 0.523 0.822 0.572 0.666 0.374 0.804

Dolphin 0.404 0.519 0.642 0.642 0.281 0.454

Football 0.735 0.724 0.178 0.178 0.549 0.689

Railway 0.327 0.333 0.287 0.287 0.364 0.432

Book 0.644 0.675 0.560 0.560 0.197 0.340

Amazon 0.449 0.458 0.426 0.432 0.401 0.441

DBLP 0.184 0.186 0.176 0.177 0.420 0.416

Livejournal 0.094 0.129 0.209 0.217 0.096 0.122

Average 0.420 0.481 0.381 0.395 0.335 0.462

Comparison based on NMI

Dataset 4-truss (4, 1)-truss 3-edge-connected (3, 1)-edge-connected 0.3-MCS (0.3, 1)-MCS

Karate 0.255 0.364 0.000 0.000 0.189 0.488

Dolphin 0.195 0.258 0.000 0.000 0.108 0.225

Football 0.605 0.540 0.000 0.000 0.375 0.529

Railway 0.193 0.201 0.105 0.105 0.099 0.177

Book 0.340 0.399 0.242 0.242 0.100 0.145

Amazon 0.250 0.255 0.369 0.373 0.133 0.174

DBLP 0.146 0.144 0.154 0.152 0.213 0.212

Livejournal 0.044 0.068 0.213 0.224 0.144 0.162

Average 0.253 0.279 0.135 0.137 0.170 0.264

4.2 Comparison with Existing Cohesive Models

Our aim here is to assess the accuracy of the detected communities based on
the proposed structures compared to the existing ones. To do that, we conduct
an experimental comparison of the different cohesive subgraphs studied in this
paper using the metrics F1-score and NMI. As shown in Fig. 3, the best value of
k is 4 for k-truss and (k, n)-truss, k = 3 for k-edge-connected and (k, n)-edge-
connected, and the best value of τ is 0.3 for τ -MCS and (τ, n)-MCS. Table 2 gives
the different results obtained on each considered network. From the results, we
can clearly see that the (4, 1)-truss model performs better than 4-truss in terms
of F1-score and NMI on 6 out of 8 networks. We can also observe that (3, 1)-
edge-connected and (0.3, 1)-MCS outperform, respectively, the 3-edge-connected
and 0.3-MCS models, in both F1-score and NMI. In addition to that, (4, 1)-
truss outperforms 4-truss by 15.52% in terms of average F1-score and 10.27%
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in terms of average NMI. Besides, (3, 1)-edge-connected outperforms 3-edge-
connected by 3.67% in terms of average F1-score and 1.48% in terms of average
NMI. Furthermore, the (0.3, 1)-MCS model outperforms (0.3)-MCS by 37.91%
and 55.29% in terms of average F1-score and NMI, respectively. Overall, the
experiment results obtained in this subsection confirm that the (4, 1)-truss model
is able to find the best communities in real networks.

Afterwards, we have evaluated the performance of the (4, n)-truss model by
varying the value of the parameter n from 1 to 5. Table 3 shows the relationship
between n and the value of F1-score1. From Table 3, we can clearly see that
(4, 1)-truss has the highest score of F1-score among all the other (4, n)-truss
(1 < n ≤ 5). The value of F1-score decreases as n grows. This can be explained
by the fact that additional vertices around the seeds form at most one triangle
with these seeds. These vertices are added to the final communities.

Table 3. Experiment results of (4, n)-truss by varying the value of n

Dataset (4,1)-truss (4,2)-truss (4,3)-truss (4,4)-truss (4,5)-truss

Karate 0,822 0,523 0,523 0,523 0,523

Dolphin 0,519 0,427 0,404 0,404 0,404

Football 0,724 0,732 0,732 0,735 0,735

Railway 0,333 0,328 0,328 0,328 0,328

Book 0,675 0,647 0,649 0,648 0,644

Amazon 0,458 0,451 0,450 0,449 0,449

DBLP 0,186 0,112 0,087 0,043 0,021

Livejournal 0,129 0,089 0,050 0,29 0,012

4.3 Comparison with Baseline Algorithms

From the previous subsections, we can clearly observe that the (4, 1)-truss model
is the best one among all the cohesive subgraphs studied in this paper. Table 4
compares the (4, 1)-truss based community detection with the most prominent
state-of-the-art solutions for discovering overlapping communities. Regarding the
F1-score, it is easy to see that (4, 1)-truss outperforms the other four methods
in 5 out of 8 networks. In details, (4, 1)-truss outperforms every baseline with an
interesting margin on Karate, Dolphin, Book, Amazon and Livejournal dataset,
using F1-score. In terms of average F1-score, (4, 1)-truss outperforms CESNA by
44.87%, SCD by 24.77%, CPM by 26.57%, and BIGCLAM by 89.37%. Regarding
the NMI score, (4, 1)-truss outperforms the baselines we have selected in 5 out of
8 networks. According to the average of NMI, (4, 1)-truss outperforms CESNA
by 34.13%, SCD by 38.71%, CPM by 49.19%, and BIGCLAM by 125%.
1 Similar results have been seen for NMI metric.
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Table 4. Comparison with baseline algorithms

Comparison based on F1-score Comparison based on NMI

Dataset (4, 1)-truss CESNA SCD CPM BIGCLAM (4, 1)-truss CESNA SCD CPM BIGCLAM

Karate 0.822 0.046 0.574 0.439 0.369 0.364 0.231 0.366 0.216 0.182

Dolphin 0.519 0.284 0.311 0.404 0.206 0.258 0.137 0.145 0.195 0.081

Football 0.724 0.754 0.695 0.365 0.611 0.540 0.777 0.420 0.223 0.436

Railway 0.333 0.414 0.340 0.326 0.390 0.201 0.165 , 084 0.120 0.138

Book 0.675 0.512 0.452 0.538 0.201 0.399 0.332 0.282 0.280 0.105

Amazon 0.458 0.161 0.388 0.454 0.153 0.255 0.003 0.158 0.219 0.032

DBLP 0.186 0.059 0.303 0.413 0.091 0.144 0.003 0.146 0.220 0.031

Livejournal 0.129 0.018 0.096 0.102 0.013 0.068 0.008 0.016 0.022 0.002

Average 0.481 0.332 0.395 0.380 0.254 0.279 0.208 0.202 0.187 0.124

5 Conclusion

In this work, we focused on detecting overlapping communities in real-world net-
works. We first provided a detailed review of previous work in cohesive subgraph
models. Then, we proposed three new effective structures to model communities
in networks. The idea is to focus on interesting configurations that are larger
and more densely connected than existing structures. We further improved the
performance of the new structures by detecting the overlapping communities in
networks.

There are two open questions that might be worth to look at. The first
is about the parameters of the new structures. Possible improvements can be
obtained by designing better parameters to select additional vertices. Second,
we believe that an extension of our proposed approach to handle dynamic com-
munity detection in networks can be more helpful in real-life applications.
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Abstract. Keys for graphs specify the topology and value constraints
to uniquely identify entities in a graph in applications such as object
identification, knowledge fusion, deduplication, and social network rec-
onciliation. Despite their prevalence, existing key mining algorithms do
not consider graph keys with recursive key definitions, which capture
dependence between entities. We introduce GKMiner, an algorithm that
mines recursive keys over graphs. We show the efficiency and utility of
our discovered keys using large-scale, real data graphs.

Keywords: Graphs · Key · Knowledge graphs

1 Introduction

Keys uniquely identify an entity in applications such as deduplication, and entity
linking [5]. While keys have been extensively used in relational settings, recent
work has proposed keys for graphs such as PG-Keys [3], keys based on uniqueness
constraints [9], and GKeys [4], which include sub-entities, and their associated
(recursive) key definitions.

Despite their prevalence and utility, manual specification of keys is infeasi-
ble over increasingly large graphs. Existing key mining algorithms for graphs
include RDF triples, and variants for approximate and conditional keys such
as SAKey [10], and VICKEY [11], respectively, that prune the large space of
candidates by returning only keys satisfying desirable support, and conditional
constants. However, the discovered keys do not include sub-entities within its key
definition (e.g., the key for a university relies on a key for its city), and do not
permit specification of topological constraints. Consider the following example
from DBpedia that highlights these facets.

Example 1. Figure 1 shows a sample of the DBpedia knowledge graph [6] of three
colleges, five cities, and three countries. Consider graph keys with patterns P1

and P2 to identify college shown in Fig. 1. P1 uses name and motto, and P2

uses name and city. Note that city is a sub-entity, with its own unique key, that
is recursively defined with respect to city), which uses name and country (P3).
Similarly, country is a recursive key defined using name (P4). P2 (resp. P3) is
dependant to P3 (resp. P4), which reflects the recursiveness of graph keys [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 202–208, 2022.
https://doi.org/10.1007/978-3-031-12670-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12670-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-12670-3_17
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Fig. 1. Sample graph from DBpedia.

The above example highlights two points: (1) several keys are possible for
an entity, with varying topology and attributes. This requires defining key prop-
erties to identify frequent (well-supported) keys that are simple (involving the
fewest number of literals). Similar notions have been explored in the discovery of
relational keys. (2) The scale and complexity of existing property graphs exhibit
embedded entity relationships, and requirements to capture not only attribute
values, but structural requirements as part of the key definition. This necessitates
new techniques for mining graph keys to include the topology and the ability to
consider recursive keys. In this paper, we propose GKMiner, a new algorithm that
mines frequent, minimal graph keys, including recursive keys. GKMiner builds
upon our earlier work to include a new support metric, and optimizations to
improve the efficiency of the discovery process.

Contributions. (1) We define new properties for graph keys (support and
minimality), and formalize the graph key discovery problem. (2) We introduce
GKMiner, an algorithm that mines all recursive graph keys by using novel aux-
iliary structures and optimizations to prune unlikely key candidates. (3) Lastly,
we evaluate GKMiner over real graphs, and show its scalability and efficiency.

2 Preliminaries

Graphs and Graph Patterns. A directed graph G = (V,E,L, F ) where: (i) V
is a finite set of vertices; (ii) E ∈ V ×L×V , i.e., e = (u, l, v) represents an edge
from u to v with the label l ∈ L; (iii) L a finite set of labels; (iv) For a node v,
F (v) is a tuple specifying the set of attributes as (A1 = a1, ..., An = an) of v.
Each v ∈ V may have a label l ∈ L referred as v.type and a numeric id, denoted
by v.id. A graph pattern is a connected, directed graph P (uo) = (VP , EP , LP )
where (1) VP is a finite set of pattern nodes; (2) EP is a finite set of pattern
edges; (3) LP is a function which assigns a specific label LP (v) (resp. LP (e)) to
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each vertex v ∈ VP (resp. each edge e ∈ EP ). Pattern nodes VP may be: (1) a
center node uo ∈ VP , representing the key entity to mine; (2) a set of variable
nodes Vx ⊆ VP that map to an entity along with a type and an id; and (3) a set
of constant nodes Vc = VP \ ({uo} ∪ Vx) containing only constant values.

Graph Pattern Matching. Given two labels ι and ι′ from LP , we say ι
matches ι′, denoted as ι � ι′ if either ι = ι′ or ι = ‘ ’, i.e., wildcard matches
any label. Given a graph G and a pattern P (uo), a match h is a subgraph
G′ = (V ′, E′, L′, F ′

A), which is isomorphic to P , i.e., there exists a bijective
function h from VP to V ′ such that (i) for v ∈ VP , LP (v) � L′(h(v)); and (ii)
for each edge e(u, u′) ∈ EP , there exists an edge e′(h(u), h(u′)) ∈ G′ such that
LP (e) � L′(e′).

Graph Keys ( GKeys). A graph key consists of a pattern P (uo) for entity uo [4].
Given two matches h1 and h2 of P (u0) in G, (h1, h2) satisfies P (u0) denoted as
(h1, h2) |= P (u0), if (a){∀v ∈ Vx, h1(v).id = h2(v).id}; (b) {∀v ∈ Vc, L(h1(v)) �
L(h2(v))}; and (c){∀e ∈ EP , L(h1(e)) = L(h2(e))}; then h1(uo).id = h2(uo).id.
A graph G satisfies key P (uo), denoted as G |= P (uo), if for every pair of matches
(h1, h2) |= P (u0). Moreover, key P (uo) is a recursive key if it contains at least
one variable node v �= uo, otherwise, P (uo) is called a value-based key [4]. In
Fig. 1, P1(college) uniquely identifies college1 and college2 with different motto,
despite having the same name. P2(college) is a recursive GKey, dependent on
city of P3(city), and country of P4(country).

3 Discovering Graph Keys

We introduce two desirable properties of graph keys, formalize the graph key
mining problem, and then present the GKMiner algorithm and its optimization.

3.1 Key Properties

GKey Embedding. We say a GKey P (uo) = (VP , EP , LP ) is embeddable in
another GKey P ′(uo) = (V ′

P , E′
P , L′

P ), if there exists a subgraph isomorphic
mapping f from VP to a subset of nodes in V ′

P that preserves node labels/values
of VP , and all the edges that are induced by VP with the corresponding edge
labels.

Minimality. A GKey P (uo) is minimal if there exists no GKey P ′(uo) such that
P ′(uo) is embeddable in P (uo). A set Σ of GKeys with G |= Σ is minimal, if it
does not contain any redundant GKeys. A redundant GKey P (uo) exists in Σ, if
removing P (uo) from Σ results in a Σ′ that is logically equivalent to Σ, i.e., Σ′

uniquely identifies the same entities as Σ in G.
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Fig. 2. (a) S; (b) L with sup = 75%

Table 1. Comparative accuracy.

Type GKMiner SAKey

P/R/F1 P/R/F1

Book 0.99/0.07/0.13 1/0.03/0.06

Actor 1/0.36/0.52 0.99/0.27/0.43

Museum 1/0.21/0.34 1/0.12/0.21

Movie 0.99/0.12/0.21 0.99/0.04/0.08

Support. We define support of a GKey P (uo) as the number of unique entities
identified by P (uo) such that G |= P (uo) (denoted as |P (uo)|) over the total
number of instances of type uo in G (denoted as N), i.e.,, sup(P (uo)) = |P (uo)|

N .

k-bounded GKeys. For a given user defined natural number k, a GKey P (uo) is
k-bounded if size(P (uo)) ≤ k, where size(P (uo)) = |Ep| + size(P (vP ))∀vp ∈ VP .
A set Σ of GKeys is k-bounded, if each P (uo) ∈ Σ is k-bounded.

Problem Statement. Given a graph G, a type uo, a support threshold δ, and
a natural number k, mine all minimal k-bounded GKeys Σ of the node type uo,
such that for each GKey P (uo) ∈ Σ, P (uo) has the minimum support δ in G.

3.2 GKMiner Algorithm

GKMiner solves the aforementioned problem, we introduce its components next.

Summary Graph. We create an auxiliary structure, called a summary graph
S where for each node type in G, there exists a node in S. An edge exists
between two vertices u1, u2 ∈ S if there exists at least one edge between two
entities of the same type(s) in G. For each node u1 ∈ S, we define an attribute
u1.count that computes the total number of entities in G of type u1. Similarly,
for each edge e = (u1, u2), we define an edge counter, e.count, which sums all
edges in G with end points of type u1 and u2.. We use S to prune all edges
e = (u1, u2) where u2.count < (δ · e.count ). From the vertices in S, we further
prune attributes with frequency counts less than δ. The resulting S thus contains
nodes, edges, and attributes A = {A1, . . . , An} with frequency counts of at
least δ. For example, Fig. 2(a) shows the summary graph for Fig. 1, and the
frequency counts for each node type. Of the three colleges, one has the attribute
endowment, and all three have attribute name. Lastly, we create a candidate set
V = {v1, . . . , vn} of variable nodes in S connected to uo to facilitate candidate
key generation next. We refer the reader to our extended paper for details [2].
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Lattice L. To generate key candidates, we construct and traverse a lattice L.
At level l = 0, the root of L is a node x of type uo. For each level l, 1 ≤ l ≤ k,
we create a node in L representing all l-combinations of attributes and variable
nodes drawn from A and V, respectively. We add an edge from x to each node
at level l, representing a candidate GKey. Candidate GKey P (uo) at level l − 1
is connected via an edge to P ′(uo) at level l, if P (uo) is embedded in P ′(uo).
Figure 2(b) shows an example L, where the last leaf node represents a candidate
GKey with one attribute and two variables nodes.

GKMiner Algorithm and Optimizations. We introduce GKMiner, a sequen-
tial GKey mining algorithm that traverses lattice L level-wise to generate and
evaluate candidate GKeys (represented as nodes in L). We seek k-bounded GKeys
that satisfy the given support level δ. We implement two pruning strategies for
greater efficiency. First, we discover k-bounded GKeys, which is guaranteed by
construction of L for candidate keys without variable nodes. A variable node may
introduce a recursive key, and we must then check that size(P (uo)) ≤ k, and if
not, prune such candidates. Second, for all discovered keys (P (uo)), we prune all
its descendant nodes in L for minimality. We further optimize GKMiner by iden-
tifying attributes Ai from nodes v ∈ S with (high) cardinality that would serve
as (pseudo) key attributes. We maintain a hashmap for each attribute domain
of Ai, and only validate entity matches of P (uo) where duplicate values in Ai

occur. Clearly, if the cardinality of Ai is equal to the number of matches, we
have discovered a key attribute. We present the algorithm pseudo-code in [2].

Handling Recursive GKeys. A novel aspect of GKMiner is the discovery of
recursive keys. For a variable node of type t1, GKMiner is recursively invoked to
generate a lattice L(t1) for candidate key generation. The challenge of handling
recursive dependencies arises when keys for type uo are dependent on types
t1, t2, . . . tz which is then dependent on uo, thereby creating a cyclic dependency.
We handle such cases by managing an auxiliary dependency graph, D (VD, ED)
that creates a vertex for each dependent type t1, and an edge exists between
two vertices (t1, t2) ∈ ED if there exists a key dependence between their types.
We implement a cycle prevention strategy, similar to deadlocks prevention by
removing the last edge that created the cycle from L(ti) [8].

4 Experiments

Setup. We implement our algorithms1 in Java v17, using a Linux machine with
AMD 2.7 GHz CPU and 128 GB of RAM. We used two real graphs: (1) DBpedia
[6] with 5.04 M entities, 13.3 M edges, 421 and 584 distinct entity types and
labels, respectively; (2) IMDB [1] with 6.1 M entities, 21.3 M edges, with 7 types
(for brevity, results for IMDB are similar to DBpedia and can be found in [2]);
(3)DBpediaYago [11] with ground truth of linking entities between DBpedia [6]

1 https://github.com/mac-dsl/GraphKeyMiner.git.

https://github.com/mac-dsl/GraphKeyMiner.git


Discovery of Keys for Graphs 207

 0

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30

R
u

n
 t

im
e

 (
se

c)

(a) Vary #types

 0

 20

 40

 60

 80

 100

 120

 3  4  5  6  7  8  9  10

R
u

n
 t

im
e

 (
se

c)

(b) Vary k

 0

 200

 400

 600

 800

 1000

 1200

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
u

n
 t

im
e

 (
se

c)

(c) Vary sup

Fig. 3. GKMiner efficiency and effectiveness.

and Yago [7] with 6 types. Unless otherwise noted, we set default values of sup
= 10%, k = 5, and 30 and 7 node types over DBpedia and IMDB, respectively.

Baselines. We evaluate GKMiner with optimizations (Sect. 3) against two base-
lines: (1) GKMiner-NoOpt, GKMiner without optimizations; and (2) SAKey [10].

Exp-1: Vary #types. Figure 3a shows the runtime for varying number of types
on DBpedia. GKMiner is on average 30% faster than GKMiner-NoOpt, and 6 times
faster than SAKey, demonstrating the effectiveness of our optimizations.

Exp-2: Vary k. Figure 3b shows that runtimes increase for increasing k over
DBpedia due to the increased complexity of graph matching. On average,
GKMiner runs 33% faster than GKMiner-NoOpt.

Exp-3: Vary sup. Figure 3c shows, as expected, runtimes decrease for increasing
support due to more aggressive pruning of key candidates. On average, GKMiner
runs 66% faster than GKMiner-NoOpt.

Exp-4: Effectiveness of GKMiner. We evaluate the quality of the keys from
GKMiner against those from SAKey in an entity linking task using DBpediaYago
with a given ground truth [11]. Table 1 shows that both techniques produce
keys with high precision (over 98%), but low recall (less than 40%) due to data
incompleteness. However, our discovered recursive keys lead to an average 7%
and 9% gain in recall and F1-score, respectively, over SAKey. The results over
more types are reported in [2].

5 Conclusion and Future Work

We introduced GKMiner, an algorithm that discovers recursive keys over graphs.
Our evaluations highlight the scalability of our techniques, the benefits of our
optimizations, and the quality of our discovered keys. We intend to study the
discovery of conditional GKeys, and a parallel discovery algorithm for GKeys.
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Abstract. OPTIMA is a framework that enables querying the original
data on-the-fly without any materialization. It implements two different
virtual data models, GRAPH and TABULAR, to join and aggregate
data. OPTIMA leverages ontology-based data access and calls the deep
learning method to predict the optimal virtual data model using the
features extracted from SPARQL queries. Extensive experiments show a
reduction in query execution time of over 40% for the TABULAR model
selection, and over 30% for the GRAPH model selection. OPTIMA is
available on GitHub https://github.com/chahrazedbb/OPTIMA.

Keywords: Data virtualization · OBDA · Big data · Deep learning

1 Introduction

Data virtualization approaches tackle data integration challenges by creating a
virtual data model under which the heterogeneous formats are homogenized on-
the-fly without data materialization [4]. Ontology-Based Data Access (OBDA)
[5] approaches maintain data virtualization with practical knowledge representa-
tion models and ontology-based mappings. Existing solutions [1–3] use by design
a fixed model e.g., TABULAR as the only virtual data model1 to load and trans-
form the requested data into a uniform model to be joined.

Nevertheless, TABULAR virtual model can have downsides performances for
queries that involve many join operations on large data. While other data mod-
els such as GRAPH perform better for such queries. On the other hands, the
TABULAR model performs better for queries that involve selection or projec-
tion. Therefore, there is a need to support different virtual models and select

1 We denote GRAPH and TABULAR to distinguish between Virtual model and data
source models.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Wrembel et al. (Eds.): DaWaK 2022, LNCS 13428, pp. 209–215, 2022.
https://doi.org/10.1007/978-3-031-12670-3_18
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the optimal one depending on query behavior, thus saving operational execu-
tion time. In many cases it hard to predict the optimal virtual model since the
selection depends on many criteria such query plan, data model, size, operations.

To address this challenge, we develop OPTIMA, an extensible framework
that uses two Virtual model GRAPH and TABULAR and supports out-of-the-
box five data models sources property Graph, Relational, Tabular Document-
based and Wide-Columnar. To select the optimal virtual data model GRAPH
or TABULAR, we used one hot vector encoding to transform different SPARQL
features into hidden representations. Next, we embed these representations into
a tree-structured model, which we use to classify the virtual model GRAPH or
TABULAR that has the lowest query execution time. Experiments show that
OPTIMA reduces query execution time of over 40% for the TABULAR model
selection, and over 30% for the GRAPH model selection. We describe each com-
ponent of our system OPTIMA as illustrated in Fig. 1; followed by conducted
experiment and related work.

Fig. 1. OPTIMA architecture

2 OPTIMA: Optimal Virtual Model for Querying Large
Heterogeneous Data

2.1 Virtual Data Model Prediction

Built on top of OBDA components, this distinctive component implemented in
OPTIMA aims to select the optimal virtual data model GRAPH or TABULAR
based on the query behavior. The component receives as input the SPARQL
query and predicts the optimal virtual data model that has that the lowest exe-
cution time. The deep learning model starts first by breaking down the SPARQL
query plan into nodes. Each node includes a set of query features that signif-
icantly affect the query execution time (e.g., filter). The different features are
then encoded using one-hot vector. Next, we propose tree structured model that
takes as input the encoded features of SPARQL query to learn the representa-
tion of each sub-plan effectively and outputs the optimal virtual data model,
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GRAPH or TABULAR that has the lowest query execution time. Our model
consists of an embedding layer to condense the features’ vectors and an estima-
tion layer to estimate the optimal virtual data model. In addition, the model
includes an intermediate representation layer to capture the correlation between
the joined star-shaped queries. Once the optimal model is predicted, the rest
of the OBDA components and operations (e.g., join) follow the optimal virtual
model predicted GRAPH or TABULAR.

2.2 Query Decomposition and Relevant Entity Detection

This component decomposes the SPARQL query it into star-shaped queries.
More precisely, the query’s Basic Graph Pattern (BGP) is divided into set of
sub-BGPs, where each sub-BGP contains all the triple patterns sharing the
same subject variable. Those sub-BGPs sharing the same subject are called
star-shaped query. Next, this component analyzes each star-shaped query and
visits mappings file to obtain the data source’s path as well as the attributes
that are mapped to each element of the star-shaped query i.e., relevant entities.
This information then is passed to data wrapper to load relevant entities.

2.3 Data Wrapper

Once the sources and relevant entities are identified using mappings, data wrap-
per converts relevant entities (e.g., tables) from their original models to data
that comply with optimal virtual data model predicted which is actually the
data structure of the computation unit of the query engine. This conversion
occurs at query-time, which allows for the parallel execution of expensive opera-
tions, e.g., join. Query engines implement already wrappers called connectors to
convert data entities from the source to virtual data model, performing trans-
formation of data source e.g., relational model to virtual model e.g., GRAPH
(see Fig. 2a).

Fig. 2. (a) Transformation relational to GRAPH (b) Union temporary virtual TABU-
LARs

Each star-shaped query corresponds to one relevant entity and thus one single
virtual data model is created. This is the case when the relevant entity according
to the mapping could be retrieved only from one data source. Otherwise, if the
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relevant entity according to the mapping could be retrieved from multiple data
sources, then the virtual model for one relevant entity is the union of temporary
virtual model created for each source (see Fig. 2b). Below we describe the data
sources’ model transformation by wrappers into GRAPH and TABULAR.

– For the virtual data model of type GRAPH, the result of the star-shaped
query on Tabular and Relational models defined by CSV and MySQL respec-
tively is a table with specific columns. A virtual GRAPH is created form the
table. For each row of the table, a vertex is created that has the same label
as the table’s name (e.g., table ‘Person’ corresponds to all vertices with label
“Person”) in addition to the root vertex. Edges are created between vertices
and the root vertex whereas the properties of each vertex are the columns of
the table (e.g., column ’name’ corresponds to property ’name’) and the values
of the properties are the table’s cell information. Same process is applied for
property graph defined by neo4j, document-based and Wide-Column models
(e.g., JSON or XML file) defined by Cassandra and MongoDB.

– As for virtual data model of type TABULAR, a Virtual TABULAR is created
for each distinct graph that matches the pattern queried against Neo4j. The
Virtual TABULAR consists of a table with the same name as the label shared
by vertices. A default column ‘ID’ (of type string) is created to store each
vertex of same label (i.e., rows). A new row is inserted for each vertex with
different edge name into the corresponding table; For each distinct property
of the vertex, an additional column is created typed according to the property
extracted datatype. The cell information consists of the values extracted from
the vertex’s properties. There will be no edges between distinct graph pattern
due to the results returned by the graph property.

Fig. 3. (a) Join of temporary virtual GRAPHs (b) Multi-join algorithm of GRAPHs

2.4 Distributed Query Processor

Distributed Query Processor is the environment where queries are executed.
OPTIMA calls for Graphx and Apache Spark to use two different virtual data
models GRAPH and TABULAR, respectively. If deep learning predicts that the
optimal virtual model is of type GRAPH, then for each relevant entity, one vir-
tual GRAPH model is generated by wrappers. The wrappers use API to access
data source and perform transformation. OPTIMA joins those GRAPHs into a
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Final Virtual GRAPH (see Fig. 3a) using “multi-join algorithm” (see Fig. 3b)
or TABULARs into a Final Virtual TABULAR using “incremental join algo-
rithm”. This is by mean of connections between star-shaped queries. However,
GRAPH and TABULAR have different structures, for example, the interac-
tion with GRAPH is possible by means of Graph Pattern Matching operations
(Cypher-like), while the interaction with TABULAR is possible by SQL-like
functions. SPARQL and star-shaped queries operations (e.g., limit) are trans-
lated into Virtual Data model operations (e.g., “take” in case of Graphx).

3 Experimental Setup

We conducted an experimental study to evaluate OPTIMA performance com-
pared to the state-of-the-art SPARK-based Sequerall which uses dataframes (i.e.
TABULAR) as virtual data model. We used five tables, to enable up to 4-chain
joins. These tables are loaded in five different data sources Cassandra, Mon-
goDB, CSV, Neo4j and MySQL. Table 1 shows the described information about
data. We generated 5150 queries with 0–4 joins,0–45 selection, 0–16 filter, limit,
OrderBy. We take 4120 queries for training the model and 1030 queries for val-
idation. We run the evaluation on Ubuntu 64-bit with an Intel(R) Core(TM)
i7-8550U CPU @ 1.80 GHz, allocating 8 GB of RAM. We measure the time
taken by both systems from query submission to the delivery of the answer.

Table 1. Operations involved in queries.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

PROJECT ✓ 16 ✓ 5 ✓ 29 ✓ 45 ✓ 24 ✓ 45 ✓ 38 ✓ 38 ✓ 24 ✓ 34 ✓ 4 ✓ 6 ✓ 32 ✓ 34 ✓ 4 ✓ 5 ✓ 9 ✓ 45 ✓ 45 ✓ 5

FILTER ✓ 16 ✓ 12 ✓ 1 ✓ 5 ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 4 ✓ 2 ✓ 3

ORDERBY ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1

LIMIT ✓ 300 ✓ 2 ✓ 20 ✓ 4 ✓ 20 ✓ 20 ✓ 80 ✓ 10 ✓ 13 ✓ 19 ✓ 1000 ✓ 1000

DISTINCT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Time per query of OPTIMA & Squerall

Application Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

OPTIMA 1291 1254 730 10299 10199 1553 7104 8442 10094 4694 2575 233 4673 4487 2397 2881 1698 4607 2804 5648

Squerall 4098 2519 3091 10283 10191 7984 7089 8427 10088 4684 2561 1400 4644 4469 3885 2875 3314 8742 9059 7407

Time difference 2807 1265 2361 16 8 6431 15 15 6 10 14 1167 29 18 1488 6 1616 4135 6255 1759

Table 2 illustrates the execution time returned by the two aforementioned
applications. As can be observed, OPTIMA excels Squerall for queries that
involve multiple joins. The time difference ranges from 0 to 80000 millisecond
(ms). This difference is due to the predicted virtual data model e.g. Q19, Q20 in
which the machine learning predicted that the Virtual model of type GRAPH
is optimal. We observe also small difference in the execution time (ranging from
0 to 30 ms) in favor of Squerall compared to OPTIMA for queries that involve
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multiple projections e.g. Q7, Q10. This is explained by the fact that the opti-
mal virtual model is identical to Squerall’s, and both Squerall and OPTIMA
used the same APIs to call data (wrapper), however, the data model prediction
time added to OPTIMA makes it slightly slower than Squerall. Furthermore,
the average execution time of Squerall is greater than 4000 ms compared to the
average execution time of OPTIMA 2400 ms.

To check if the machine learning is reducing the overall execution time of
OPTIMA by selecting the optimal virtual data model. We illustrate first the time
taken by OPTIMA’s components: machine learning algorithm, query execution
over GRAPH model and query execution over TABULAR against SPARK-based
Squerall. We run OPTIMA and Squerall over 1030 query. The average execution
time of machine learning component is very short 12 ms while the average time
for GRAPH is 1320 ms and TABULAR is 2862 ms. Results show that for the
most queries the GRAPH is faster than TABULAR even with predictions time.

4 Related Work

Our study’s scope focuses on works that query large-scale data sources using
OBDA. Optique [2] is an OBDA platform that accesses both static and streaming
data. It implements relational model (implicitly a TABULAR) as virtual model
while querying data sources such as SQL databases. Ontario [1] focuses on the
query rewriting, and federation, with a strong stress on RDF data as input.The
virtual model used by Ontario is GRAPH model (explicitly an RDF). Squerall
[3] a recent and close work to OPTIMA leverages Big Data engines Apache
Spark and Presto to query on the fly large scale data sources. The virtual data
model imposed by Presto is TABULAR, while Apache Spark uses dataframe
as virtual model which is TABULAR. There is no work that (1) implements
different virtual models (2) selects optimal one based on query behavior.

5 Conclusion

We implemented OPTIMA - an ontology-based big data access system that
reduces query time execution by predicting the optimal virtual data model,
GRAPH or TABULAR based on query behavior. The effective deep learning
model built on top of OPTIMA’s architecture extracts significant features such
as the query plan, operations and predicts the optimal virtual data model that
has the lowest query execution time. Experiment showed a reduction in query
execution time of over 40% for the TABULAR model and over 30% for the
GRAPH model selection.
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Abstract. As a popular big data analytics and knowledge discovery task, frequent
pattern mining aims to discover frequently occurring sets of items (e.g., merchan-
dise items, events) from big data. Frequent patterns can be discovered horizon-
tally by transaction-centric mining algorithms or vertically by item-centric mining
algorithms.Regardless of theirmining direction (horizontal or vertical), traditional
frequent pattern mining algorithms aim to discover Boolean frequent patterns in
the sense that patterns capture the presence (or absence) of items within the dis-
covered patterns. However, there are many real-life situations, in which quantities
of items within the patterns are important. For example, the quantity of items may
also affect profits of selling the items within the discovered patterns. Hence, in
this paper, we present a quantitative vertical bitwise algorithm to mine frequent
patterns. This Q-VIPER algorithm first represents the big data as a collection of
bitmaps. Each item-centric bitmap captures the presence or absence of a transac-
tion containing the item, as well as the quantity of that item in each transaction.
With this representation, our algorithm then vertically mines quantitative frequent
patterns. When compared the existing MQA-M algorithm (which was built for
quantitative frequent pattern mining), evaluation results show that our quantita-
tive vertical bitwiseQ-VIPER algorithm takes shorter runtime tomine quantitative
frequent patterns.

Keywords: Frequent pattern mining · Quantitative data mining · Vertical pattern
mining · Bitmap

1 Introduction

In the current era, big data [1] are everywhere.With advances in technology, highvolumes
of a wide variety of data (which may be of different levels of varsity) are generated
and collected at a high velocity for numerous real-life applications and services (e.g.,
healthcare informatics [2], transportation analytics [3–5], business analytics [6, 7], social
network analysis [8–10]). Embedded in these big data is implicit, previously unknown
and potentially useful information and knowledge. This calls for big data management
[11–14], as well as big data analytics and knowledge discovery [15, 16].

As a popular big data analytics and knowledge discovery task, association rule min-
ing aims to discover rules that reveal interesting associations among the antecedents and
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consequents of the rules. Generally, these rules are mined by first discovering frequent
patterns and then using these discovered frequent patterns to form the rules. Frequent
pattern mining [17–20] aims to discover frequently occurring sets of items (e.g., mer-
chandise items, events) from big data. Given a series of transactions containing a set
of items, frequent pattern mining seeks to determine the sets of items, which occur in
a large number of transactions. In addition, we wish to discover interesting association
rules. Association rules state that whenever a certain set of items occurs in a transaction,
another set of items tends to occur in that transaction. The problems of frequent pattern
mining and association rule mining form the basis of many real-life applications such
as marketing in business, discovering biological patterns, studying human populations,
and web log mining. Frequent pattern mining has been extended to the mining of other
patterns such as network and graph mining [21–23], stream mining [24–26], uncertain
pattern mining [27–29], and utility pattern mining [30–32].

Frequent patterns can be discovered horizontally by transaction-centric mining algo-
rithms or vertically by item-centric mining algorithms [33–35]. The Apriori algorithm
[36, 37] is an example of horizontal transaction-centric frequent pattern mining algo-
rithms, with which data are represented as a collection of transactions. Each transaction
captures the presence or absence of items. Alternatively, frequent patterns can also
be discovered vertically. The VIPER (Vertical Itemset Partitioning for Efficient Rule-
extraction) algorithm [38] is an example of vertical item-centric frequent pattern mining
algorithms, with which data are represented as a collection of bitmaps. Each bitmap
for an item captures which transactions contain the specific item. A bit of 1 in the i-th
position indicates the presence of the item in the i-th transaction, whereas a bit of 0 in the
i-th position indicates the absence of the item from the i-th transaction. An advantage of
such a bitmap representation is that the size of bitmap collection is independent of the
density of the data. Dense data contain more 1 s than 0 s, and vice versa for sparse data.
The algorithm was shown to be efficient as it takes advantage of bitwise operations in
the mining process.

Regardless of their mining direction (horizontal or vertical), traditional frequent
pattern mining algorithms aim to discover Boolean frequent patterns in the sense that
patterns capture the presence (or absence) of items within the discovered patterns.While
traditional frequent pattern mining and association rule mining are useful in many con-
texts, they have a major limitation. This limitation is that in traditional frequent pattern
mining, we assume that every transaction either contains an item or does not contain the
item. In other words, an item is contained in a transaction 0 or 1 times. For this reason, we
can also refer to traditional frequent pattern mining as Boolean frequent pattern mining.
However, in many real-world scenarios, a transaction can contain an item more than one
time. For example, a person at a grocery store may buy multiple apples. To address this
shortcoming, the notion of quantitative association rule mining or quantitative frequent
pattern mining [39, 40] was studied. Quantitative frequent pattern mining is essentially
an extension of frequent pattern mining to allow transactions to contain an item more
than once. Rather than just trying to find items (which commonly occur in transactions),
there is a demand for discovering commonly occurring quantities of items. For example,
in Boolean frequent itemset mining, we may discover that bananas are a frequently pur-
chased item. In quantitative frequent pattern mining, we may discover that customers
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frequently purchase at least five bananas at a time. As another example, the quantity of
items may also affect profits of selling the items within the discovered patterns.

By discovering quantitative frequent patterns and quantitative association rules, we
can obtain more interesting results than we would if Boolean association rule mining
were used instead. In addition to receiving information about which items commonly
occur together in transactions, we also obtain information regarding how many of each
of those items tend to occur in transactions. MQA-M algorithm [39] extends the Apriori
algorithm to mine quantitative frequent patterns (aka itemexpsets) horizontally.

In this paper, we present a vertical bitwise algorithm to mine quantitative frequent
patterns (i.e., itemexpsets) vertically. The resulting Q-VIPER algorithm first represents
the big data as a col-lection of bitmaps. Each item-centric bitmap captures the presence or
absence of a transaction containing the item, as well as the quantity of that item in each
transaction. With this representation, our algorithm then vertically mines quantitative
frequent patterns. When compared the existing MQA-M algorithm (which was built
for quantitative frequent pattern mining), evaluation results show that our quantitative
vertical bitwise Q-VIPER algorithm requires shorter runtime to mine frequent patterns.
Our key contributions in this paper include our Q-VIPER algorithm and its pruning rules.

The remainder of this paper is organized as follows. We begin by presenting the
mathematical framework for quantitative frequent pattern mining in Sect. 2. We discuss
previously used algorithms of interest, such as the Apriori, MQA-M, and VIPER algo-
rithms. Then, we formally introduce our Q-VIPER algorithms in Sect. 3. Pseudo-code
and an example are provided for the algorithm. Section 4 contains analysis of the algo-
rithm and evaluation to compare our Q-VIPER with related works. Finally, we conclude
in Sect. 5.

2 Background and Related Works

Before describing our algorithm for quantitative frequent pattern mining, we formally
define quantitative frequent patterns and review relevant algorithms.

2.1 Vertical Boolean Frequent Pattern Mining with the VIPER Algorithm

Recall from Sect. 1 that the VIPER (Vertical Itemset Partitioning for Efficient Rule-
extraction) algorithm [38] is an example of vertical item-centric frequent pattern mining
algorithms, with which data are represented as a collection of bitmaps. Each bitmap
for an item captures which transactions contain the specific item. A bit of 1 in the i-th
position indicates the presence of the item in the i-th transaction, whereas a bit of 0 in
the i-th position indicates the absence of the item from the i-th transaction.

Let us discuss the difference between the horizontal transaction database and the
vertical transaction database. Horizontal transaction databases refer to the standard rep-
resentation of transactions, where a set of items is associated with each transaction [36,
37]. The Apriori algorithm uses the horizontal representation. On the other hand, one
can represent the transaction database in a “vertical” format [38]. A bitmap for an item
can represent a transaction database in a vertical format by putting a “1”-bit in the i-th
position indicates the presence of the item in the i-th transaction and a “0”-bit the i-th
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position indicates the absence of the item from the i-th transaction. For example, for
transactions T1 = {a, b} and T2 = {b}, the corresponding vertical representation of the
transaction database is bitmap(a) = [10 . . . ] and bitmap(b) = [11 . . . ]. Each bitmap
is of the same length, and its length equals to the number of transactions. The VIPER
algorithm makes use of the vertical representation.

Like the Apriori algorithm, let Ck and Lk be the sets containing candidate itemsets
and frequent itemsets respectively of size k. First, the VIPER algorithm determines
which itemsets are in L1. It then computes the support of any itemset simply by counting
(or summing) the number of “1”-bits in its corresponding bitmap. Mathematically, for
an itemset X , sup(X ) = ∑

i bitmap(X , i), where bitmap(X, i) denotes the i-th position
of bitmap of X. After computing the support for every item occurring in the transaction
database, L1 contains each item with a support greater than or equal to minsup.

After determiningL1, themain loop of theVIPER algorithm is be executed. This loop
is very similar in structure to the loop in the Apriori algorithm. Consider the first loop
iteration with k = 2. The first part of the loop involves generating Ck from Lk−1. This
uses the same candidate generation method in the Apriori algorithm (i.e., performing a
self-join on Lk−1 and pruning the resulting set). Next, it forms bitmap corresponding to
each itemset in Ck . Suppose that, for some itemset X ∈ Ck , W is an itemset containing
the first (k−2) items in X , y is the second last item in X , and z is the last item in X . Then,
X = W ∪ {y} ∪ {z}. The algorithm computes the bitmap of X as the cross-product of
(W ∪ {y}) and (W ∪{z}), i.e., bitmap(X, i)= bitmap(W∪ {y}, i)× bitmap(W∪ {z}, i)}.
Next, it computes the support of each pattern in Ck by summing the number of “1”-bits
in the resulting bitmap(X). The frequent patterns in Lk are computed as the candidate
patterns in Ck with a support that is at least minsup. At the end of a loop iteration,
increase k by 1 and continue iterating through the main loop (if necessary). The loop
stops iterating when Lk−1 is empty. In a similar fashion to the Apriori algorithm, all the
frequent patterns (

⋃
kLk ) are returned by the algorithm.

2.2 Quantitative Association Rule Mining

For quantitative association rule mining [39, 40], suppose that I = {i1, i2, · · · , im} is the
set of all items that can be found in a transaction database for some positive integer m,.
Then, a transaction can be represented as T = {(e1, f1), (e2, f2), · · · , (et, ft)} for some
positive integer t, where each ei ∈ I , such that ei �= ej whenever i �= j, and each fi is a
positive integer. The quantitative transaction database is D = (T1,T2, · · · ,Tn), which
is the set of all transactions. Each transaction has a unique numeric identifier TID.

An itemexp (short for item-expression) is an ordered triplet of the form (p,⊗, q),
where p ∈ I , ⊗ ∈ {=,≥,≤}, and q is a positive integer. We represent an itemexp as
(p ⊗ q). Then, an itemexpset can be defined as a set X = {x1, x2, · · · , xk} for some
positive integer k, where each xi = (pi,⊗i, qi) is an itemexp such that pi �= pj whenever
i �= j.

For a transaction T = {(e1, f1), (e2, f2), · · · , (et, ft)} and an itemexpset X =
{x1, x2, · · · , xk} with xi = (pi,⊗i, qi), T satisfies X if for every i ∈ {1, 2, · · · , k},
there exists some j ∈ {1, 2, · · · , t} such that pi = ej and the expression (fj ⊗i qi) is true.
For example, if T = {(a, 2), (b, 3), (c, 1)} and X = {(a = 2), (b ≥ 1)}, then T satisfies
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X . However, if T = {(a, 2), (b, 3), (c, 1)} and X = {(a ≤ 2), (c ≥ 2)}, then T does not
satisfy X because X requires c ≥ 2 but c only occurs once in T .

If an itemexpset X contains an itemexp of the form (p ≤ q) where p ∈ I and q is a
positive integer, then for a transaction T to satisfy X , the item p must still occur in T at
least once, even though 0 < q. In other words, the number of occurrences of item p in
T must be in the interval [1, q]. For example, if T = {(a, 1)} and X = {(b ≤ 2)}, then
T does not satisfy X , even though the number of occurrences of b in T is at most 2. By
including this restriction, many itemexpsets are prevented from being considered where
an item can occur zero times.

For an itemexpset X , the support of X (denoted sup(X )) is defined as the number
of transactions in D that satisfy X . Now, let minsup be some non-negative real number.
Then, X is a frequent (large) itemexpset if sup(X ) ≥ minsup.

Just as association rules can be defined for Boolean frequent pattern mining, they
can also be defined for quantitative frequent pattern mining. For two itemexpsets X and
Y , the association rule X ⇒ Y is interesting if:

• there are no common items between X and Y ,
• sup(X ∪ Y ) ≥ minsup, and
• for some confidence value minconf ∈ [0, 1], sup(X∪Y )

sup(X )
≥ minconf .

For example, it is possible for {(a ≥ 2)} ⇒ {(b ≤ 3), (c = 1)} to be an interesting
association rule if the support and confidence values are satisfied. However, {(a = 5)} ⇒
{(a ≥ 3)} cannot be an interesting association rule, since the item a appears on both
sides of the rule.

2.3 Horizontal Quantitative Frequent Pattern Mining with the MQA-M
Algorithm

TheMQA-M (Mining Quantitative Association rules with Multiple comparison opera-
tors) [39] is an algorithm for mining quantitative frequent patterns. The MQA-M algo-
rithm is very similar to the Apriori algorithm except that it is generalized to handle
quantitative transaction databases.

For any positive integer k, let Ck be the set of candidate itemexpsets containing k
itemexps and let Lk be the set of candidate itemexpsets containing k itemexps. Like in
the Apriori algorithm, Lk ⊆ Ck .

The MQA-M algorithm starts by generating C1. Suppose that item_max
[
p
]
repre-

sents the maximum number of times an item p appears in a transaction. For example,
if the quantitative database consists of transactions T1 = {(a, 1)} and T2 = {(a, 3)},
then item_max[a] = 3 because the highest number of times a appears in a transac-
tion is 3. Then, for each item p appearing in the quantitative transaction database,
add every itemexpset of the form {(p,⊗, q)} to C1, where ⊗ ∈ {=,≥,≤} and
q ∈ {1, · · · , item_max[p]}. The algorithm computes the support of each itemexpset
in C1 by iterating through the transactions and checking each itemexpset in C1 to see
if it should increment the support of that itemexpset. It increments the support of an
itemexpset if the transaction satisfies that itemexpset. Let k = 1. Then, L1 becomes the
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set of all itemexpsets with a support that is at leastminsup. The algorithm removes some
itemexpsets from L1 using two pruning rules [39]:

• Suppose that X contains an itemexp of the form (z ≤ r), where z is an item and r is
a positive integer. The first pruning rule states that if there is another itemexpset Y in
Lk with the same support as X which is the same as X except that (z ≤ r) is replaced
by (z ≤ r + 1), then Y can be pruned from Lk .

• Suppose that X contains an itemexp of the form (z ≥ r), where z is an item and r is a
positive integer. The second pruning rule states that if there is another itemexpset Y in
Lk with the same support as X which is the same as X except that (z ≥ r) is replaced
by (z ≥ r − 1), then Y can be pruned from Lk .

Similar to the Apriori algorithm, the MQA-M also has a main loop. It first runs the
loop with k = 2. The loop body begins with generating Ck from Lk−1. Ck is initially
generated using a self join on Lk−1, like in the Apriori algorithm. If 2 itemexpsets in Lk−1
have the same first (k − 2) itemexps, then it generates an itemexpset in Ck consisting
of those (k − 2) itemexps and the last itemexp in the 2 itemexpsets in Lk−1. However,
it imposes an additional restriction that it does not create an itemexpset in Ck where
there are 2 itemexps referring to the same item. For example, if L1 contains {(a = 1)}
and {(a ≥ 2)}, it does not form {(a = 1), (a ≥ 2)} in C2. After the join step, it prunes
itemexpsets from Ck with a subset containing (k − 1) itemexps where that subset is not
in Lk−1. It gets Lk from Ck using the same procedure that was used to obtain L1. Using
the two aforementioned pruning rules, it removes some itemsets from Lk . At the end of
the loop body, it increments k and repeats the previous steps (if necessary). The loop
terminates when Lk−1. is empty. Afterwards, it returns

⋃
k Lk , which contains all the

interesting frequent itemexpsets.

3 Vertical Quantitative Frequent Pattern Mining with Our
Q-VIPER Algorithm

3.1 Vertical Representation of Quantitative Data

To represent quantitative transaction databases in a vertical format, for each item that
occurs in the transaction database, we store it as a set of pairs. Each pair contains a
transaction ID associated with that item and the number of occurrences of the item
in the transaction. Since we are storing a pair, we can call these sets “pairsets”. For
example, if we have the transactionsT1 = {(a, 1)} andT2 = {(a, 3)}, then the transaction
database can be represented vertically using pairset(a) = {(T1, 1), (T2, 3)}. It is useful to
convert the quantitative transaction database to this vertical format when implementing
the Q-VIPER algorithm.

We can also define bitmaps for quantitative association rule mining. For any itemex-
pset X , bitmap(X ) is defined as the set of transaction IDs corresponding to transactions
which satisfy X . Going back to the example from the previous paragraph, we can deter-
mine that bitmap({(a ≥ 1)}) = [11 . . .] while bitmap({(a = 3)}) = [01 . . .]. When X is
an itemexpset containing at least 2 itemexps, we can break down X asX = W ∪{y}∪{z},
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whereW is an itemexpset with 2 fewer elements than X and y and z are itemexps. Like
bitmap for Boolean frequent pattern mining, we have:

• a recursive equation to compute the cross-product to indicate the presence (or absence
of transactions that contain the specific item, and

• another recursive equation to compute the minimum to indicate the quantity of the
specific item.

We use this recursive definition to generate bitmaps for itemexpsets containing at
least two “1”-bits when running the Q-VIPER algorithm. The support of an itemexpset
X can be computed simply by counting or summing the number of “1”-bits in its bitmap.

3.2 Q-VIPER Algorithm

Here, let us describe how our Q-VIPER algorithm discovers quantitative frequent pat-
terns vertically. For any integer k ≥ 1, define Ck to be the set of candidate itemexpsets
with size k and Lk to be the set of frequent itemexpsets with size k. First, we convert
the quantitative transaction database into a vertical format if it is not already. The ver-
tical format is useful for computing the bitmaps corresponding to the itemexpsets in
C1. The next step of our algorithm is to compute all itemexpsets in C1. Each of those
itemexpsets consists of a single itemexp of the form (item, operation, quantity), where
item is an item in the transaction database, operation ∈ {=,≥,≤}, and quantity ∈
{1, · · · , item_max[item]}. We compute item_max[item] as the maximum number of
times item appears in a transaction, over all transactions in the transaction database.
After computing C1, we compute the bitmap associated with each itemexpset in C1.
The bitmaps can easily be computed from the vertical representation of the quantitative
transaction database. We then compute the support of each itemexpset inC1 by counting
or summing the number of “1”-bits in its corresponding bitmaps. The itemexpsets in L1
are itemexpsets in C1 with a support ≥ minsup. Finally, we remove some itemexpsets
from L1 based on our two new pruning rules, which will be described in Sect. 3.3.

Next, we set k = 2 and begin executing the main loop. The first step in the main
loop body is to generate Ck using Lk−1. This can be done using the same method that
was used in the MQA-M algorithm. We initially create Ck by performing a self join
on Lk−1. If there are 2 itemexpsets in Lk−1 where the first (k − 2) itemexps in those
itemexpsets are the same and the last itemexp in those itemexpsets refer to different
items, then we add an itemexpset to Ck consisting of those first (k − 2) itemexps as
well as the last itemexp of both itemexpsets. Afterwards, we prune any itemexpset in Ck
that contains a sub-itemexpset with (k − 1) itemexps that is not in Lk−1. The next step
is to create bitmaps corresponding to every itemexpset in Ck . This can be done using
the recursive definition for bitmaps, which was discussed earlier. After computing the
bitmaps, we can easily compute the support of each itemexpset in Ck . Any itemexpset
in Ck with a support ≥ minsup is added to Lk . Using the two pruning rules, we remove
some uninteresting itemexpsets from Lk , if necessary. After pruning Lk , we have reached
the end of the loop body, so we increment k and repeat the main steps again if necessary.
The main loop stops running once Lk is empty. Our Q-VIPER algorithm returns

⋃

k
Lk ,

which contains all interesting frequent itemexpsets.
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3.3 Our New Pruning Rules for Q-VIPER Algorithm

As mentioned above, there are two pruning rules which we use to remove unnecessary
itemexpsets from Lk for each integer k ≥ 1. The pruning rules we use are more general
than the ones described in Sect. 2.3 (for the MQA-M algorithm). Our improved pruning
rules remove some uninteresting itemexpsets, which were not removed in the original
pruning rules.Assume thatX is an itemexpset inLk . Then, the pruning rules are described
as follows:

1. Suppose that X contains an itemexp of the form (z ≤ r), where z is an item and r
is a positive integer. The first pruning rule states that if there is another itemexpset
Y in Lk with the same support as X which is the same as X except that (z ≤ r) is
replaced by (z ≤ r + s) for some positive integer s, then Y can be pruned from Lk .

2. Suppose that X contains an itemexp of the form (z ≥ r), where z is an item and r is
a positive integer. The second pruning rule states that if there is another itemexpset
Y in Lk with the same support as X which is the same as X except that (z ≥ r) is
replaced by (z ≥ r − s) for some positive integer s, then Y can be pruned from Lk .

The difference between the original pruning rules and our new pruning rules is
that the new pruning rules can handle differences in quantity greater than 1. Instead of
considering itemexpsets of the form (z ≤ r + 1) or (z ≥ r − 1), we consider the more
general cases of (z ≤ r + s) or (z ≥ r − s) for some positive integer s. As a result, these
rules eliminate at least as many itemexpsets from Lk as the original pruning rules.

Example 1. Suppose that L2 contains {(a = 1), (b ≥ 3)} and {(a = 1), (b ≥ 6)} before
pruning and that those itemexpsets have the same support. Using the original pruning
rules that were used in MQA-M, neither itemexpset would be pruned. However, using
the new pruning rules, we would prune {(a = 1), (b ≥ 3)} from L2. �

As observed, our improved pruning rules are more powerful in removing redundant
frequent itemexpsets. See Fig. 1 for pseudo code of the resulting Q-VIPER algorithm.

Example 2. Suppose we set minsup = 2 and have 3 transactions in a quantitative
transaction database: T1 {a:2}, T2 {a:3, b:1}, and T3 {b:1}.

To generateC1, we note that item_max[a] = 3 and item_max[b] = 1, since the high-
est number of occurrences of a in a transaction is 3 and the highest number of occurrences
of b in a transaction is 1. For generating C1, we must generate every combination of
an item, comparison operation, and quantity. This gives us a total of 12 candidate item-
expsets. For each itemexpset in C1, we compute its corresponding bitmap. The support
of those itemexpsets is equal to the number of “1”-bits in the bitmap. We present the
itemexpsets X in C1, their bitmaps, and their supports in the first three column of Table
1.

Then,we can obtainL1 from this by only keeping the itemexpsets inC1 with a support
≥ 2 = minsup. Therefore, we initially get L1 with six itemexpsets (before pruning)—as
shown in the fourth and fifth columns—in Table 1.
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Q-VIPER algorithm (quantitative transaction database TDB, minsup threshold)
if (TDB is not in vertical format)
then convert TDB to vertical format

C1 = 
for each item in TDB do

Item_max[item] = max #items in a transaction
for each quantity in {1, ..., item_max[item]} do

add {item, operator, quantity} to C1

Bitmap[1] = createBitmap1 (TDB, C1)
computeSupport (C1, Bitmap[1])
L1 = {c C1 | sup(c) ≥ minsup}
applyOurPruningRules (L1)

for (k=2; Lk–1 ≠ ; k++) do
Ck = generateCandidate (Lk–1)
Bitmap[k] = computeBitmap(Ck, Bitmap[k–1])
computeSupport (Ck, Bitmap[k])
Lk = {c Ck | sup(c) ≥ minsup}
applyOurPruningRules (Lk)

return

Fig. 1. Pseudo code of our Q-VIPER algorithm.

Byour PruningRule 2, since both {(a ≥ 1)} and {(a ≥ 2)} are inL1 and have the same
support, the itemexpset {(a ≥ 1)} is no longer interesting and can be pruned. Therefore,
L1 ends up with the only five itemexpsets, as shown in the last two columns of Table 1.

Afterwards, themain loop is executedwith k = 2.Webeginwith the generationofC2.
The first step in generatingC2 is to do a self join onL1. In this scenario, thismeans getting
pairs of itemexps where the itemexps refer to different items. This yields 6 different
itemexpsets in C2. None of those itemexpsets is pruned because for all itemexpsets in
C2, there are no sub-itemexpsets which are not in L1. Computing the cross-product, we
then obtain the bitmap associated with each itemexpset in C2. Finally, the support for
those itemexpsets is computed by counting or summing the number of “1”-bits in the
bitmaps. The itemexpsets in C2, their bitmaps, and their supports are shown in Table 2.
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Table 1. Candidate and frequent itemexpsets of size 1.

C1 L1 before pruning L1 after pruning

X bitmap(X) sup(X) X sup(X) X sup(X)

{(a = 1)} [000] 0

{(a = 2)} [100] 1

{(a = 3)} [010] 1

{(a ≥ 1)} [110] 2 {(a ≥ 1)} 2

{(a ≥ 2)} [110] 2 {(a ≥ 2)} 2 {(a ≥ 2)} 2

{(a ≥ 3)} [010] 1

{(a ≤ 1)} [000] 0

{(a ≤ 2)} [100] 1

{(a ≤ 3)} [110] 2 {(a ≤ 3)} 2 {(a ≤ 3)} 2

{(b = 1)} [011] 2 {(b = 1)} 2 {(b = 1)} 2

{(b ≥ 1)} [011] 2 {(b ≥ 1)} 2 {(b ≥ 1)} 2

{(b ≤ 1)} [011] 2 {(b ≤ 1)} 2 {(b ≤ 1)} 2

Table 2. Candidate itemexpsets of size 2.

C2

X bitmap(X) sup(X)

{(a ≥ 2), (b = 1)} [110] × [011]T = [010] 1

{(a ≥ 2), (b ≥ 1)} [110] × [011]]T = [010] 1

{(a ≥ 2), (b ≤ 1)} [110] × [011]]T = [010] 1

{(a ≤ 3), (b = 1)} [110] × [011]]T = [010] 1

{(a ≤ 3), (b ≥ 1)} [110] × [011]]T = [010] 1

{(a ≤ 3), (b ≤ 1)} [110] × [011]]T = [010] 1

As all itemexpsets in C2 have a support< 2, L2 = ∅. Therefore, the pruning rules do
not remove any itemexpsets. SinceL2 is empty, the loop does not execute for k = 3. Thus,
the frequent itemexpsets returned by the algorithm only consists of the six itemexpsets
in L1. �

4 Evaluation

Toevaluate ourQ-VIPERalgorithm,we compared itwith the existingMQA-Malgorithm
[39]. The performance of the algorithms is assessed using four different quantitative
transaction databases:
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• two synthetic dataset: Here, we assume that there are n transactions and |I | different
items. Each item has a probability prob of occurring in a particular transaction, where
0 ≤ prob ≤ 1. If the item appears in the transaction, then the number of occurrences
of that item follows a Poisson(λ) distribution plus 1. We set n = 1000, |I | = 50,
and λ = 1. The values of prob for these two quantitative transaction databases are
0.2 and 0.8. These quantitative transaction databases considered as sparse and dense,
respectively, i.e.,

1 sparse synthetic dataset, with prob=0.2; and
2 dense synthetic dataset, with prob=0.8.

• two real-life datasets from UCI ML Repository [41]: Here, we modified the chess
and mushroom datasets to make them quantitative transaction databases. Whenever
an item occurs in a transaction, instead of it only occurring once, its number of
occurrences follows a Poisson(λ = 1) distribution plus 1, i.e.,

1 modified chess dataset; and
2 modified mushroom dataset.

The two algorithms for quantitative frequent itemset mining (i.e., MQA-M [39] and
our Q-VIPER) have been implemented in the Python language. The algorithms were
run on a Windows 10 Nitro AN515–55 laptop using an Intel® Core™ i5-10300H CPU
at 2.50 GHz and 8.00 GB RAM. To keep the comparisons between the three algorithms
fair, many of the same functions are used between the algorithms. Procedures includ-
ing generating candidate itemexpsets, determining frequent itemexpsets, and using the
pruning rules on the frequent itemexpsets are kept the same among all three algorithms.
When we implement the MQA-M algorithm, we use the improved pruning rules used in
Q-VIPER rather than the pruning rules originally used with MQA-M. This allows the
simulations to emphasize the differences between the algorithms.

We run the main code once for every quantitative transaction database. For each
of those quantitative transaction databases, we use a sequence of minsup values. The
sequence depends on the quantitative transaction database being used so that we see
interesting results and that the algorithms do not take too long to run. For each com-
bination of a quantitative transaction database and a value for minsup, the MQA-M,
Q-VIPER algorithms are be run and timed.

Figure 2 shows the runtimes of each of the two algorithms for a variety of values of
minsup for each of the four quantitative transaction databases. The runtime (in seconds)
is shown on the y-axis while the value of minsup is given on the x-axis. In all cases, our
Q-VIPER outperforms the existing MQA-M algorithm.
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Fig. 2. The runtimes of the existing MQA-M algorithm and our Q-VIPER algorithms for
quantitative frequent itemset mining for various minsup values.

5 Conclusions

In this paper, we presented our vertical quantitative frequent itemset mining called Q-
VIPER. This Q-VIPER algorithm first represents the big data as a collection of bitmaps.
Each item-centric bitmap captures the presence or absence of a transaction containing
the item, as well as the quantity of that item in each transaction. With this represen-
tation, our algorithm then vertically mines quantitative frequent patterns. During the
mining process, our new pruning rules reduce the mining space, and thus reduce the run-
time. When compared the existing MQA-M algorithm (which was built for quantitative
frequent pattern mining), evaluation results show that our quantitative vertical bitwise
Q-VIPER algorithm requires shorter runtime to mine frequent patterns. As ongoing and
future work, we explore ways to further enhance the mining of quantitative frequent
patterns and to extend this work to mine other quantitative patterns.
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Abstract. Discovering frequent patterns has been an important problem for
knowledge discovery. The efficient discovery of interesting patterns—such as
weighted periodic patterns—from big data has been crucial to the development in
newdomains.Due to their high velocity of data generation and collection, these big
data can form dynamic streams, which can be unbounded. Traditional approaches
to this problem consist of the reconstruction of the underlying structure, while
recent advances have shown new methods for dynamically updating the underly-
ing structure for each new window. In this paper, we present an enhanced sliding
window-based algorithm for mining weighted periodic patterns from dynamic
streams. Evaluation results show the effectiveness of this algorithm.

Keywords: Data mining · Periodic pattern · Stream mining · Sliding window

1 Introduction

In the current era, big data [1] are everywhere.With advances in technology, highvolumes
of a wide variety of data are generated and collected at a high velocity for numerous real-
life applications and services (e.g., healthcare informatics [2], transportation analytics
[3–5], business analytics [6, 7], social network analysis [8–12]). Embedded in these big
data is implicit, previously unknown and potentially useful information and knowledge.
This calls for big data management [13–15], as well as big data analytics and knowledge
discovery [16, 17].

As an important big data analytics and knowledge discovery task, frequent pattern
mining [18–21] aims to discover frequently occurring sets of items (e.g., merchandise
items, events) from big data. Due to the continuous and unbounded nature of dynamic
data streams, their contents are usually captured in an underlying structure such as a suffix
tree [22], from which frequent patterns can be mined. Groups of data (e.g., sequence
of characters or a string) are usually discretized and represented by a single symbol
(e.g. a character) in the tree. Traditional approaches for data stream mining with sliding
windows reconstruct a suffix tree for every sliding of the windows, which can be costly.
To deal with this problem, a dynamic tree based solution to handle slidingwindow in time
(DTSW ) [23] was proposed to dynamically update and maintain the structure of the tree
for each modified window, keeping it suitable for pattern mining. Although the DTSW
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algorithm avoids reconstruction of suffix trees whenever the window slides, it introduces
another problem.When thewindow slides, the deletionmodule of the algorithm removes
the old batch from an explicit form of the tree, and insertionmodule inserts the new batch
to an implicit form of the tree. Hence, these insertions and deletions requires frequent
transformation of the tree between its implicit and explicit forms.

In this paper, we present a new algorithm to address this problem of tree transfor-
mations between its implicit and explicit forms. The algorithm eliminates the need to
transform the suffix tree leaving the tree in its implicit form at all times when the window
slides. Evaluation results show that our algorithm achieves a large performance increase
across all window sizes tested, with no significant increase in memory.

Key contributions of this paper include design of our enhanced slidingwindow-based
algorithm for mining periodic patterns, which are sequences that periodically occur at
least a certain amount of times. With our suffixList structure, our algorithm only needs
to maintain the implicit form of the suffix tree when capturing important information
from dynamic streams (rather than converting back-and-forth between the implicit and
explicit forms of the suffix tree as in the related works).

The remainder of this paper is organized as follows. The next section provides back-
ground and related works. Section 3 describes our enhanced sliding window-based algo-
rithm for mining periodic patterns from streams. Evaluation results are shown in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

2 Background and Related Works

A suffix tree [22] is a trie containing all the suffixes of a given sequence of characters,
or string. Figure 1 shows suffix trees—(a) in its implicit form and (b) in its explicit
form—for a string “abcabababc”. A suffix tree is in its explicit form when all suffixes
can be found by traversal from the root to a leaf node. An implicit suffix tree may contain
suffixes (which are implicit to an edge) that is they do not end in a leaf node, but rather
end within an edge. We can force a suffix tree to be in an explicit form by inserting a
unique character, usually a “$” or “#” to the end of the string.

Ukkonen’s algorithm [24] is a linear-time algorithm for the construction of an
implicit suffix tree. One can add a unique symbol on the end during construction to
create an explicit tree. See Fig. 1.

A sliding window only stores data relevant to a certain time frame. Since we use the
process of discretization to obtain a sequence of characters, we can form a “window”
around the characters we want to look at. These characters then make up the underlying
suffix tree. Consider an example with the string “abcabababc” and a window size of 3:

abc abababc a bca bababc ab cab ababc

where the characters proceeding the boxed characters (i.e., characters currently in the
window) may not have been received yet. In existing approaches, these suffix trees were
reconstructed at each window slide.

The Dynamic Tree Based Solution to Handle Sliding Window in Time Series
Data (DTSW) [23] handles updating of the suffix tree (rather than reconstruction) by
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Fig. 1. A suffix tree in its (a) implicit form (as plotted by Matplotlib) and (b) explicit form (as
plotted by Pydot).

the use of the insertion and deletion modules. The deletion module deletes characters
(the first character) from the beginning of the window. However, before deleting any
suffix from the suffix tree, the tree must be in its explicit form. To insert a new character
(representing an event) onto the end of the sequence, the insertionmodule needs to revert
back the tree from its explicit form to an implicit form for removing the unique symbol
and erasing all the effects created due to it. In other words, to insert into (or delete events
from) the suffix tree, the insertion and deletion modules need to convert the suffix tree
back-and-forth between its explicit and implicit form.

3 Our Sliding Window-Based Weighted Periodic Pattern Mining
Algorithm

The conversion between implicit and explicit form described by the DTSW is an unnec-
essary step. Hence, we keep the tree in its implicit form by proposing the idea of a
suffixList, an ordered list of all possible suffixes from the sequence of characters. The
initial tree is built with Ukkonen’s algorithm and the suffixList is created during con-
struction. We must also be able to maintain the active point in order to use Ukkonen’s
algorithm for insertion.

While the initial tree is being constructed using Ukkonen’s algorithm, we create a
suffixList—which is a list of all possible suffixes from the input string. We keep the
list in a sorted order so that it can be easily viewed and manipulated. When deleting a
character from S, we update our suffixList by removing the longest suffix. Then, we do
a simple traversal of the suffix tree, and remove the nodes associated with longest suffix.
In other words, we can use the suffixList to check what is supposed to be there and what
is not. The process is the same for both insertion and deletion. Essentially, we use our
updated suffixList, and check to make sure the necessary nodes are in the tree. Since
this algorithm is meant to keep the tree in implicit form only, there is no conversion step
from implicit to explicit for both insertion and deletion.

More specifically, the deletion module first deletes the longest suffix. Then, it
traverses the tree (by traversing only the portion that starts with the character being
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removed). On the suffixList, it checks each suffix that starts with the character to be
deleted. It goes down this tree path and updates the labels used by Ukkonen’s algorithm
if edge compression was used. It uses the existing structure of the tree and updates the
labels as necessary, and then deletes any excess nodes that would have in the end.

A special case for deletion would be when the deletion of the first character causes
two branches of the suffix tree to merge. For example, in string “abcbcbc”, if it deletes
‘a’ from the input string, then the branch of the tree with ‘a’ will be removed and subtree
under ‘a’ will be merged appropriately with ‘b’ branch in the tree. Otherwise, it simply
traverses down the appropriate branch and updates the labels of nodes to match the
suffixes as needed. Then, anything past the end will be deleted from the suffix tree.

The deletion module removes the longest suffix from the tree. Since the tree is in
its implicit form, this raises the problem of searching edges that may contain smaller
implicit suffixes within them as simply deletion of the longest paths leaf is not sufficient.
To check how much of the edge to delete, the removal of the longest suffix from the
suffixList is required. Then, a traversal checks all suffixes starting with the character
being deleted. Upon a node deletion, a cleanup must be performed. Otherwise, we find
the index of the longest and update the edge label to reflect the next longest matching
suffix along that path.

Moreover, it also has to update the active point if necessary.Whendeleting the longest
suffix, if the active node and edge is present when traversing to the longest suffix, then it
simply deletes to the active length. Otherwise, it removes the leaf safely. If it does delete
on an active point, then it decrements the remainder and finds the new active point from
the remainder.

Since we maintain the active point and remainder in the deletion module, the
insertion module simply runs Ukkonen’s algorithm on the new character.

4 Evaluation

To evaluate our algorithm, we compared with reconstruction and the existing DTSW
algorithm (which all implemented in Python). See Table 1 for differences among the
three algorithms. In the evaluation, we used 40 window slides in order to observe the
effect of how we may receive data in a stream. All tests were run on a Ryzen 7 3800X
8-Core (3.9 GHz) and 64GBRAM (3600MHz).We used several real-world test datasets
from theUCIMachine LearningRepository1. As results were consistent, we reported the
results—which were an average of 50 executions—for the individual household electric
power consumption dataset, which captures 2,075,259 events discretized into 13 types.

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Table 1. Summary of algorithms.

Algorithm Delete form Insert form

Reconstruct − −
DTSW Explicit Implicit

Our algorithm Implicit Implicit

When window size grew from 10 to 1,000 and 10,000, the amount of runtimes
required by our algorithm dropped from 42% to 22% and 15% of the runtimes required
byDTSW. In contrast, for the baseline reconstruction approach (denoted asReconstruct),
runtimes grew from 4.38 ms to 793 ms and 7,950 ms when window size grew from 10 to
1,000 and 10,000, respectively. In terms of memory, as the window size grows larger, the
number of characters remains the same. The space efficiency of the algorithms seem to,
on average, converge. For instance, with 40 windows, our algorithm consumed 97% and
99% of those required by DTSW when window size = 1,000 and 10,000, respectively.
See Fig. 2. To summarize, our algorithm consumes almost the same amount of memory
space as the existing DTSW (baseline), but our algorithm runs much faster than DTSW.

Fig. 2. (a) Runtime (in ms) and (b) memory (in MB) for sliding window performed over 40
windows with a window size of 10,000.

5 Conclusions

In this paper, we presented an enhanced sliding window-based periodic pattern stream
mining algorithm. It uses suffix tree to capture important contents of the dynamic streams,
from which periodic patterns are mined. It makes good use of implicit forms of the suf-
fix tree during deletion and insertion of tree branches due to the sliding of the window
capturing batches of the data streams. As such, it achieves shorter runtime and less mem-
ory space consumption when compared with the existing dynamic tree based solution
to handle sliding window in time (DTSW) algorithm. Evaluation results show that our
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algorithm outperformed related works. As ongoing and future work, we explore ways
(e.g., use the sliding suffix tree [25]) to further improve our algorithm.
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Abstract. This paper presents an approach to explore sensor data and
learn rules based on the patterns detected in the data. Our approach is
a direct modification of the Apriori algorithm with a lookback mecha-
nism that allows us to consider specific temporal windows. The inferred
knowledge can be used to provide users with predictions based on histor-
ical data as well as personalized, explainable recommendations towards
achieving a goal.

Keywords: Activity recommendations · Data mining · Wearable
sensors data

1 Introduction

With the rapid proliferation of mobile technology, sensors and mobile devices
have become ubiquitous in every aspect of our lives. They can range from wear-
able devices capturing the movements and heartbeats of their users, to IoT
devices embedded in common appliances in homes, offices and vehicles. This
guarantees that there is a constant stream of new (sensor) data that can be
leveraged to extract interesting, but often implicit, information.

Wearable devices, such as Fitbit, have improved the way data can be col-
lected from a population, providing insights on the lifestyle of their users while
allowing the constant monitoring of their health-related conditions. For exam-
ple, wearable devices have been successfully used to collect data on blood glucose
levels in conjunction with physical activity to analyze hyperglycemic episodes
in diabetic patients [5]. The large amounts of collected data can help people
become more conscious of their health and aware of the possibilities to make
lifestyle improvements. However, it is not always easy to obtain useful insights
from these huge and semantically rich datasets. Fitbit data has been extensively
used in literature to examine which factors affect the physical activity habits
of college students [7], to study loneliness and social isolation [4] and even to
predict blood glucose levels in diabetic patients [3].

One important aspect of sensor data is that it is intrinsically temporal in
nature, since they capture events that happen in succession, labeling them with
a timestamp that indicates the exact time they occurred. Indeed, it is important
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to know not only which events have happened, but how long they lasted, and in
which order they occurred.

As a general use case we consider an application that records the daily phys-
ical activity data from Fitbit and correlates it with the sleep score, which is also
obtained from Fitbit. Various analytical methods have been developed to predict
the sleep quality: deep learning models have been successfully used to link daily
activity rates with sleep quality [6], although some studies have reported that
the correlation between physical activity and sleep quality is very weak and they
might be more independent than originally thought [2].

We propose a suitable algorithm that analyzes past data, then learns which
sequences of activities, along with their intensity, historically lead to our goal
and tries to suggest which set of actions is best to take next in order to have a
good night’s sleep, as well as the actions that should be avoided. The proposed
algorithm is extension of Apriori [1], which has been successfully used to infer
which types of activities are associated with different levels of loneliness [4]. In
our proposal, we aim at providing explainable recommendations [8], i.e., suitable
recommendations together with intuitive and understandable explanations, in
order to guarantee interpretability. The recommendation of activities to be per-
formed during the day has to be a personalized and dynamic process tailored
to a specific user. For that reason, we consider the frequent behaviours of each
individual user and not those of a community of users.

The main contributions of the paper are: (i) the extension of Apriori to mine
frequent sequential rules taking into account a relative notion of time (w.r.t. the
current instant), and discover association rules that correlate past events with a
specified future goal, and (ii) an algorithm to make both positive and negative
recommendations geared towards a parametric goal.

2 Background and Motivation

Apriori [1] is a well known algorithm for finding frequent itemsets from transac-
tional datasets; it reduces the search space by following the consideration that
all non-empty subsets of a frequent itemset must be frequent. Association rules
are represented as implications in the form X ⇒ Y , where X and Y are two arbi-
trary sets of data items such that X ∩ Y = ∅. The quality of an association rule
is usually measured by means of support and confidence. Support corresponds
to the frequency of the set X ∪ Y in the dataset, while confidence corresponds
to the conditional probability of finding Y , having found X and is given by
sup(X ∪ Y )/sup(X).

In our scenario we are interested in sequential pattern mining to identify
sequences of behaviours, labelled with a relative time unit, that occur frequently
and are correlated with good quality sleep during the current day. More formally,
a sequence is an ordered list of elements s = 〈e1, e2, . . . , en〉, where each et =
{i1, . . . , ik} is a collection of (unordered) items, related to the time unit t, of
physical activities or sleeping activity. The length of the sequence is the number
of elements in the sequence; in our use case the time unit is an interval composed
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of 24 hours of Fitbit tracking (i.e., the fitness activities carried out during the
day and the subsequent sleeping period). For simplicity we will call the time unit
day, thus, a sequence with cardinality n refers to the activities tracked by Fitbit
in a window of n days. We call k-sequence a sequence containing k items, each of
them labelled with the related time unit. The aim of sequential pattern mining
is to find all subsequences of a set of sequences with support greater than, or
equal to, a given threshold.

Figure 1 shows a simplified version of the Fitbit log, reporting, for each day
the user’s activities such as heavy physical activities (HA), light physical activ-
ities (LA), steps (ST), sleeping activity (SL) and their related intensities. The
duration of each (daily) activity has been discretized into 3 possible uniform
values (1: Low, 2: Medium, 3: Intense). Each day has associated in the log a
transaction of items, as the activities themselves are not ordered due to the
aggregated nature of Fitbit data.

Transactions

t0 HA:2, LA:1, ST:3, SL:2

t1 HA:3, LA:2, ST:3, SL:3

t2 HA:3, LA:1, SL:2

t3 HA:3, LA:2, ST:3, SL:1

t4 LA:1, ST:3, SL:2

t5 HA:1, ST:2, SL:3

t6 HA:3, LA:3, SL:3

t7 HA:3, SL:3

t8 HA:3, LA:3, ST:1, SL:1

t9 HA:2, LA:2, ST:3, SL:2

Time

Fig. 1. Fitbit log of a single user

Day-2 Day-1 Today

HA:2, LA:1, ST:3, SL:2

HA:2, LA:1, ST:3, SL:2 HA:3, LA:2, ST:3, SL:3

HA:2, LA:1, ST:3, SL:2 HA:3, LA:2, ST:3, SL:3 HA:3, LA:1, SL:2

HA:3, LA:2, ST:3, SL:3 HA:3, LA:1, SL:2 HA:3, LA:2, ST:3, SL:1

HA:3, LA:1, SL:2 HA:3, LA:2, ST:3, SL:1 LA:1, ST:3, SL:2

HA:3, LA:2, ST:3, SL:1 LA:1, ST:3, SL:2 HA:1, ST:2, SL:3

LA:1, ST:3, SL:2 HA:1, ST:2, SL:3 HA:3, LA:3, SL:3

HA:1, ST:2, SL:3 HA:3, LA:3, SL:3 HA:3, SL:3

HA:3, LA:3, SL:3 HA:3, SL:3 HA:3, LA:3, ST:1, SL:1

HA:3, SL:3 HA:3, LA:3, ST:1, SL:1 HA:2, LA:2, ST:3, SL:2

Fig. 2. Fitbit log related to a sequence of 3 days

Figure 2 shows the activities performed during 3 consecutive days. The col-
umn labeled “Today” is the log of all the data acquired from Fitbit up to today
and is a direct transposition of the data in Fig. 1. The last element of the col-
umn is the data extracted today, while the element immediately above is the
data from the previous day and so on. The column “Day-1” is the data acquired
until the day before today and it starts from the second line so that every ele-
ment maintains the temporal relationship with each element of the next column.
Intuitively, each row is also temporally ordered just like the columns, as each
element on line i of column k contains the data from the day subsequent to the
element on line i of column k − 1.

3 Mining Frequent Patterns for Recommending Activities

Given a transactional dataset D (e.g. the Fitbit log in Fig. 1), where each trans-
action has a timestamp i, D0 ≡ D (the current dataset shown in Fig. 1), D1
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extends D0 looking back 1 time unit, i.e., each transaction t′i ∈ D1 is the con-
catenation of ti−1 (if it exists) and ti in D0, and so on. In this way, we iteratively
build a dataset Dj , where each transaction t is related to a time window of length
j + 1 (as shown in Fig. 2). We can iteratively apply Apriori on the dataset Dj

(looking back of j time units) and in this case our algorithm analyzes a dataset
with a variable time window, or we can set the length of time window, e.g., n,
and apply Apriori on the dataset Dn−1. After mining the frequent itemsets, we
set a confidence threshold minconf and discover the association rules r with con-
fidence greater than or equal to minconf such that the consequent is the itemset
related to the target function at the time unit 0 (i.e., the current day). Indeed,
we are interested in determining the user’s past behaviours that influence the
values of a target function, which in our running example is the user’s sleeping
quality.

The pseudocode of our LookBackApriori algorithm is the following:

Algorithm 1. The LookBackApriori
Dj : dataset looking back of j time units
Ck: candidate itemsets of size k
Lk: frequent itemsets of size k
minsupp: support threshold
for (j = 0;Lk �= ∅; j + +) do

for (k = 1;Lk �= ∅; k + +) do
for each transaction t in Database Dj do

increment the count of all candidates in Ck+1 that
are contained in t

end for
Lk+1 candidates in Ck+1 with supp > minsupp

end for
end for
return

⋃
k Lk

The correlation between daily fitness activities and sleeping quality is repre-
sented with sequences of measurements MS = {I−n, . . . , I−2, I−1, I0}, where 0
is the current day, −k refers to k time units before, and each I−k is an item-
set of measurements, which have been discretized during a preprocessing phase.
We use the day as the time unit, which is comprised of the entire day’s physical
activities and the subsequent sleeping period. Note that a measurement sequence
MS may be incomplete, that is, it could lack some itemsets I−k (e.g., if the user
was not wearing the Fitbit at time unit −k).

We use the measurement sequences in our Fitbit scenario to study how his-
torical fitness and sleeping behaviours may influence the current day’s sleeping
quality and to recommend how to improve it or prevent it from getting worse
during the current day. For this purpose we need to be able to distinguish mea-
surements related to fitness activities (If−k) or to sleeping activities (Is−k).
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With data mining we infer association rules of the form

ri : I−n ∧ · · · ∧ I−2 ∧ I1 → Is0 [si, ci]

that shows, with support si and confidence ci, the correlation between the sleep-
ing quality (i.e., our target function) for the current day 0 (see the consequent
of the rule) and the activities performed looking back at most n days.

For example, a mined rule stating that after a day with medium heavy activ-
ity (HA : 2) and high heart rate (HR : 3) and the subsequent day with low light
activity (LA : 1), the predicted sleeping quality for the current day will likely
be medium (SL : 2), has the form

r : {HA : 2,HR : 3}−2 ∧ {LA : 1}−1 → {SL : 2}0 [sr, cr]

During the recommendation step of our methodology we build two sets of
rules R+(r) and R−(r), that contain the recommendations on the fitness activ-
ities that may lead to better sleeping quality and to worse sleeping quality,
respectively. On the current day 0 we can access the user’s Fitbit log and obtain
the data collected during the past n days, i.e., L = 〈I ′

−n, . . . , I
′
−2, I

′
−1〉.

For example, during the previous 3 days the user log may be:

L =〈{LA : 1, ST : 3, SL : 2}−3, {HA : 3, ST : 2, SL : 3}−2,

{HA : 3, LA : 3, SL : 3}−1〉

The rule r is the best rule for answering the query “Will I sleep well tonight?”
and is of the form r : I−n ∧ · · · ∧ I−2 ∧ I−1 → Is0 , with supp > sthreshold and
maximum confidence c w.r.t. other rules of the same form, and such that r ⊆ L.
Note that for the current time unit 0 the antecedent does not contain any itemset
related to the fitness activity (i.e., If0 ) because we assume the recommendations
are useful at the beginning of the time unit 0. If this is not the case, we could
mine rules having also an itemset If0 in the antecedent.

We say that a rule r is contained in the user log L (i.e., r ⊆ L) iff
∀i ∈ {1, . . . , n} I−i ⊆ I ′

−i, that is, every itemset in the rule is contained in
what the user has done in the past n days and stored in his/her log. Note that
independently from the log, a rule may be incomplete and contain itemsets only
for some days of the considered window of length n.

For example, the rule r1 : {HA : 3}−2 ∧ {HA : 3}−1 → {SL : 2}0 is
contained in the log L, whereas the rule r2 : {HA : 3}−3 ∧ {HA : 3}−2 ∧ {HA :
3}−1 → {SL : 2}0 is not contained in L because it is not true that the user
performed intense heavy activity 3 days ago. In this way, when the users receive
the rule r1, in the antecedent they can find an explanation of the reason why
their predicted sleep quality is medium.

The two sets of recommendations are:

R+(r) = {r | r : I−n ∧ · · · ∧ I−2 ∧ I−1 ∧ If0 → ˜Is0 with ˜Is0>Is0}

R−(r) = {r | r : I−n ∧ · · · ∧ I−2 ∧ I−1 ∧ If0 → ˜Is0 with ˜Is0<Is0}
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The set R+ is composed of the rules with the same past activities of r, but
with a suggestion of fitness activities for the current day (i.e., If0 ) and with
better sleeping quality in the consequent (i.e., ˜Is0 such that ˜Is0 > Is0). On the
contrary, the rules in R− are those with the same past activities of r, but with
a suggestion of fitness activities for the current day (i.e., If0 ) that may lead to
worse sleeping quality in the consequent. The order relation > depends on the
function we want to optimize.

An example of a negative recommendation in R− is the suggestion to avoid
heavy activities in the current day, since after three consecutive days of intense
heavy activities, the sleep quality tends to decrease.

4 Conclusions

In this paper we have introduced LookBackApriori, an algorithm to mine fre-
quent sequences in data and generate rules geared towards a specific goal. The
rules can be used to suggest actions to take and to avoid in order to reach the
goal, thus, they contain an explanation as well. As future work, we plan to infer
not just the frequent activity patterns, but also the average duration of each
activity correlated with external information (e.g., weather conditions).
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Abstract. Query processing on cloud database systems is a challenging prob-
lem due to the dynamic cloud environment. In cloud database systems, besides
query execution time, users also consider the monetary cost to be paid to the cloud
provider for executing queries. Moreover, a Service Level Agreement (SLA) is
signed between users and cloud providers before any service is provided. Thus,
from the profit-oriented perspective for the cloud providers, query re-optimization
is multi-objective optimization that minimizes not only query execution time and
monetary cost but also SLA violations. In this paper, we introduce ReOptRL and
SLAReOptRL, two novel query re-optimization algorithms based on deep rein-
forcement learning. Experiments show that both algorithms improve query exe-
cution time and query execution monetary cost by 50% over existing algorithms,
and SLAReOptRL has the lowest SLA violation rate among all the algorithms.

Keywords: Query optimization · Cloud databases · Reinforcement learning ·
Query re-optimization

1 Introduction

In a traditional database management system (DBMS), finding the query execution plan
(QEP) with the best query execution time among those QEPs generated by a query opti-
mizer is the key to the performance of a query. However, in a cloud database system,
minimizing query response time is not the only goal of query optimization. As hard-
ware usage is charged on-demand and scalability is available to users, query execution
monetary cost also needs to be considered as one of the objectives for optimizing QEPs.
Meanwhile, the cloud providers need to minimize SLA violation rate in addition to
fulfilling the users’ requirements of query execution time and monetary cost for query
execution. Traditionally, the query optimizer evaluates the time and monetary costs of
different QEPs to derive the best QEP for a query before execution. These time and
monetary costs are estimated based on the data statistics available to the query optimizer
at the moment when the query optimization is performed. These statistics are often
approximate, which may result in inaccurate estimates for the time and monetary costs
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needed to execute the query. Thus, the QEP generated before query execution may not
be the best one.

To deal with this issue, there exist methods proposed to re-optimize queries during
their execution [1–3]. Ortiz and et al. [1] apply deep reinforcement learning (RL) to learn
a representation of queries, which can then be used in downstream query optimization
tasks. Marcus and et al. present work of a deep RL-based join optimizer, ReJOIN [2],
which orders a preliminary view of the potential for deep RL in this context. In these
techniques, QEPs are re-optimized multiple times by a deep RL model. Kipf [3] uses
Deep Neural Network (DNN) to learn cardinality estimates. Wu and et al. [6] have
proposedSample, a query re-optimization algorithm that updates data statistics estimated
from a sample of tuples collected during runtime. However, none of them addresses
monetary costs and SLA requirements for cloud databases at the same time. In this
paper, we present two algorithms, ReOptRL and SLAReOptRL, that use reinforcement
learning to perform multi-objective query re-optimization for query processing in an
end-to-end cloud database system. The algorithms employ a reward function designed
specifically for query re-optimization considering query execution time, money cost and
SLA requirements.

2 The Reinforcement Learning-Based Multi-objective Query
Re-optimization Algorithm (ReOptRL)

We choose RL instead of supervised learning methods because RL does not require
training data, which is a labeled dataset of past actions, to be available in advance to
train the learning model before the model can be used to predict future actions. There
are various kinds of RL algorithms that have been proposed. Q-Learning is one of the
popular value-based RL algorithms and using the Bellman equation [4].

Q(St, at) ← Q(St, at) + α(Rt + ϒQ(St+1, at+1) − Q(St, at)) (1)

In Q-Learning, a table (called Q-table) is used to store all the potential state-action
pairs (Sn, an) and an evaluated Q-value associated with this pair. In Eq. (1), Q (St, at)
is an evaluated value (called Q-value) for executing Action at at State St. This value is
used to select the best Action to perform under the current state. In our scenario, there
are many available containers on which a single query operator can be executed. Thus,
many state-action pairs are in the Q-table potentially. Iterating a large Q-table incurs
extra time overhead which delays the query execution. To solve this issue, we apply
Deep Q Network (DQN) [4] as our reinforcement learning for query re-optimization.
DQNworks similarly toQ-Learning. Themajor difference is that, given a state, instead of
using the Q-table, it uses a neural network to estimate the Q-values for all the potential
actions. The input of the neural network is the current state. For the current QEP to
represent the current state, we use a one-hot vector adapted from the recent work [2] to
represent a QEP. The ReOptRL algorithm is given in Fig. 1. First, a query is submitted
to a query optimizer which generates the QEP (logical plan) for the query (Line 4). Then
the QEP is converted into a one-hot vector representation (Line 7). This vector is sent
to the RL model, which is a neural network. The RL model will evaluate the Q-values
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for all the potential actions to execute the next available query operator (Line 8). Each
of these actions consists of two parts, a physical operator and a container (machine) to
execute the physical operator. Then the action with the best Q-value will be selected and
performed by the DBMS (Line 9). After that, the executed query operator is discarded
from the QEP (Line 10). The reward is updated with the time and monetary cost needed
to execute the operator and then the expected Q-value is updated by the Bellman Eq. (2)
with the updated reward (Lines 11–13). The weights of the neural network are updated
accordingly by the back-propagation method (Line 14). This process repeats for each
operator in the QEP and terminates when all the operators in the QEP are executed. The
query results are then sent to the user (Line 17).

Algorithm: Reinforcement Learning Based Multi-Objective Query 
Re-Optimization (ReOptRL)

INPUT: SQL query, Weight Profile wp, Reward Function R (), 
Learning rate α, Discount rate ϒ
OUTPUT: The query result set of the input query

1. t=0
2. Result = Ø
3. Qt= 0
4. QEP = QueryOptimizer(query)
5. while QEP≠ Ø
6. Op=next available operator in QEP 
7. State St= convert QEP to a state vector
8. Actiont=RunLearningModel (St, wp)
9. Result=Result execute (Op, Actiont)
10. QEP=QEP-Op 
11. Update RN=R (wp, Actiont.time, Actiont.money))
12. Obtain Q-value of next state Qt+1 from the neural network 
13. Update Q-value of current state Qt = Bellman (Qt, Qt+1, Rt, )
14. Update Weights in the neural network       
15. t=t+1
16. end while
17. return Result

Fig. 1. The ReOptRL algorithm

In ReOptRL, after an action is performed, the reward function is used to evaluate the
action. This gives feedback on how the selected action performs to the learning model.
The performed action with a high reward will be more likely to be selected again under
the same state. The reward function plays a key role in the entire algorithm. According
to the Bellman equation, if the reward of performing a previous action At-1 is high on
state St-1, the Q-value will also be high. This means that, given the same state, the action
with the good previous performance will have a higher chance to be selected. In our
algorithm, we would like the actions with low query execution time and monetary cost
to be the ones that will be more likely to be chosen. To reflect this feature, we define the
reward function as follows:

Reward R = 1

1 + (
Wt ∗Tq

op
) + (

Wm ∗Mq
op

) (2)
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whereWt andWm are the time and monetary weights provided by the user, and Tq
op and

Mq
op are the time and monetary costs for executing the current operator op in query q.
According to this reward function, the query is executed based on the user’s

preference.
which is either the user wanting to spend more money for a better query execution

time or vice versa. We call these two preferences Weights. These two weights defined
by the user are called Weight Profile (wp), which is a two-dimensional vector, and each
dimension is a number between 0.0 to 1.0. Notice that the user only needs to specify
one dimension of the weight profile, the other dimension is computed as 1-Weight
automatically. The detail can be found in our previous work [5].

3 The SLA-Aware Reinforcement Learning-Based Multi-objective
Query Re-optimization Algorithm (SLAReOptRL)

AnSLA is a contract between cloud service providers and consumers,mandating specific
numerical target values which the service needs to achieve. Considering an SLA in
query processing is important for cloud databases. If an SLA violation happens, the
cloud service providers need to pay a penalty to their users in a form such as money or
CPU credits. From a profit-oriented perspective, cloud service providers would want to
keep the number of SLA violations as low as possible. Different cloud service providers
implement different SLAs with their users. Using time and monetary costs to execute a
query as the SLA requirements has been studied in [1]. We find them practical and more
specific to users and thus adopt the same SLA requirements in our work.

In particular, the reward function shown in Eq. (4) is extended from Eq. (2) to make
it possible to select the best action according to the SLA requirements:

Reward R = 1

1 + (
Wt ∗

(
Tq
op + Pt

)) + (
Wm ∗ (Mq

op + Pm
)
)

(3)

where Tq
op and Mq

op are the time and monetary costs for executing the current operator
op in query q

Pt = αop ∗ delay_time, Pm = αop ∗ exceeded_money
where αop is the operator impact rate of the operator type op

delay_time =
{

0
Tq
op − SLA.Tq

op if Tq
op > SLA.Tq

op
(4)

exceeded_money =
{

0
Mq

op − SLA.Mq
op if M q

op > SLA.Mq
op

(5)

In this reward function (Eq. (4)), Pt and Pm reflect the extra costs for executing
a query operator if the SLA is violated. If the SLA is not violated for executing every
operator, then this equation is the same as the reward function used in ReOptRL (Eq. (2)).
In Eqs. (4) and (5), delay_time is the amount of difference between the actual time to
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execute a query operator and the maximum time allowed to execute this query operator
as specified in the SLA. The same idea applies to exceeded_money for monetary costs.
We use these two values to quantify the SLA violation on query execution time and
monetary cost. In Eq. (4), these two values are used to compute Pt and Pm. It shows that
the larger the number of SLA violations, the smaller the reward becomes. We build the
reward function this way so that the reward is related to SLA violations. Also, we use
the query operator impact rate αop to scale up the impact of SLA violations on different
types of operators.

4 Performance Evaluation

There are two sets of machines used in our experiments. A single local machine used
to train the machine learning model and to perform the query optimization. This local
machine has an Intel i5 2500K Dual-Core processor running at 3 GHz with 16 GB
DRAM. The second set consists of 10 dedicated Virtual Private Servers (VPSs) that
are used for the deployment of the query execution engine. The query optimizer and
the query engine used in the experiments are modified from the open-source database
management system, PostgreSQL 8.4. The data are distributed among these VPSs. The
queries and database tables are generated using the TPC-H database benchmark. The
database tables are populated with 1,000 GB data using the default data generator. We
run 50,000 queries and these queries are generated by the query templates randomly
selected from the 22 query templates from the benchmark.

We compare the performance results obtained when the following query re-
optimization algorithms are incorporated into query processing: 1) our two pro-
posed algorithms, ReOptRL and SLAReOptRL; 2) the algorithm where a query re-
optimization is conducted automatically after the execution of each operator in the query
is completed (denoted as ReOpt), which we developed based on the work presented in
[5]; 3) the algorithmwhere a query re-optimization is conducted by a supervisedmachine
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Fig. 2. Time (a) and monetary cost (b) performance for executing queries using different
algorithms
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learning model decision (denoted asReOptML). 4) the algorithm proposed in [6] where
query optimization uses sampling-based query estimation (denoted as Sample), and 5)
the algorithm that uses no re-optimization (denoted as NoReOpt).
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Fig. 3. Average SLA violation rates when executing queries using different algorithms

From Fig. 2 (a) and (b), we can see that, for both the query execution time and
monetary costs, on average SLAReOptRL performs the best and ReOptRL performs
the second best among all the algorithms. Specifically, comparing with the baseline
NoReOpt where no re-optimization is conducted, the query execution time improvement
using SLAReOptRL is 45%, ReOptRL 39%, ReOptML 27%, ReOpt 13%, and Sam-
ple 10%, while the monetary cost improvement using SLAReOptRL is 62%, ReOptRL
52%, ReOptML 27%, ReOpt 17%, and Sample 5%. Especially, the monetary cost has
a significant improvement (SLAReOptRL and ReOptRl are 62% and 52% better than
NoReOpt, repsectively). Moreover, from Fig. 3, we can also find that by using SLARe-
OptRL, the SLA violation rate is the lowest one among the SLA violation rates caused
by all the algorithms. This shows the positive effect of considering SLA requirements
in re-optimization.

5 Conclusion

This paper presents two query re-optimization algorithms called ReOptRL and SLARe-
OptRL. Both use a reinforcement learning-based model to decide the physical query
operator and machines to execute an operator from a query execution plan (QEP) for a
query in a cloud database system. The experiments conducted using the TPC-H database
benchmark show that both SLAReOptRL and ReOptRL improve query response time
(from 12% to 45%) and monetary cost (from 17% to 62%) over the existing algorithms
In addition, we also find that when there are SLA requirements, SLAReOptRL performs
20% better than ReOptRL on SLA violation rate.
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Abstract. In the current era, big data are everywhere. With advances in technol-
ogy, high volumes of a wide variety of data are generated and collected in numer-
ous real-life applications and services. Embedded in these big data is implicit,
previously unknown and potentially useful information and knowledge. This calls
for data science. Among various data science tasks, clustering is an important
one. Although there have been techniques to improve the accuracy of k-means
clustering algorithms, many of them are applied independently. In this paper,
we present a k-means clustering algorithm with Mahalanobis distance. This is a
non-trivial integration of partitioning based clustering, correlation based cluster-
ing, and Mahalanobis distance. Evaluation results show our algorithm is more
accurate than the related works to cluster similar data.

Keywords: Data mining · Clustering · Machine learning · Unsupervised
learning · k-means · Mahalanobis distance

1 Introduction

In the current era, big data [1] are everywhere.With advances in technology, highvolumes
of a wide variety of data are generated and collected in numerous real-life applications
and services (e.g., healthcare informatics [2], transportation analytics [3–5], business
analytics [6, 7], social network analysis [8–12]). Embedded in these big data is implicit,
previously unknown and potentially useful information and knowledge. This calls for
big data management [13–15], as well as big data analytics and knowledge discovery
[16, 17].

In addition to frequent pattern mining [18–21], another important big data analytics
and knowledge discovery task is clustering [22–25]. It aims to group similar objects
together and distinguish them from dissimilar objects. It has been applied in numerous
applications [26–28] such as clustering similar sounding names or text [29, 30].K-means
[31, 32] is a popular technique within the family of partition clustering, partially due to
its simplicity and ease of use. It partitions the dataset X into k clusters (i.e., groups), and
each cluster contains at least one data point. Key contributions of this work include our
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design of our clustering algorithm, which incorporates Mahalanobis distance [33, 34]
into k-means clustering.

The remainder of this paper is organized as follows. The next section provides
background and related works. Section 3 describes our Mahalanobis distance based
k-means elliptical clustering algorithms. Evaluation results are shown in Sect. 4. Finally,
conclusions are drawn in Sect. 5.

2 Background and Related Work

Awidely used clustering technique is the k-means clustering algorithm [35, 36]. It aims
to partition a dataset X into k clusters, each cluster being represented by the mean value
of its data points. Its key ideas can be described as follows. First, each cluster Ci (where
1 ≤ i ≤ k) is initialized to be a set of points in X that are closer to the center ci of cluster
Ci than to that of other clusters. Then, for each cluster Ci, compute its new center of all
the points within Ci. Afterwards, repeats the aforementioned process until ci and Ci do
not change for any cluster.

While k-means is simple and easy to use, its performance depends on the initial
centroids and the distance function [37]. Initial centroids are often randomly chosen.
The (dis)similarity distance is often measured by Euclidean distance (aka L2-norm),
which can be defined as:

dist(X , Y ) =
√∑n

j=1

(
xj − yj

)2 (1)

where X = (x1, . . . , xn) and Y = (y1, . . . , yn) in Euclidean space R
n. For clustering

with Euclidean distance, it aims to minimize intra-class dissimilarity:

argmin
C

∑k

i=1

∑
x∈Ci

‖x − µi‖2 = argmin
C

∑k

i=1
(|Ci|Var(Ci)) (2)

where µi is the center (i.e., centroid) of Ci. Euclidean distance works well for spherical
clusters where every point is within a radius, but may not do so for elliptical clusters. As
some points would be significantly farther away than others, they may drift off and be
categorized into the wrong cluster. Besides Euclidean distance, other popular distance
functions [38] include:

• Manhattan distance (aka taxicab or L1-norm): dist(X ,Y ) = ∑n
j=1

∣∣xj − yj
∣∣

• Chebyshev distance (aka chessboard or L∞-norm): dist(X ,Y ) = max
j

∣∣xj − yj
∣∣

• Minkowski distance (akaLp-norm):dist(X , Y ) = p
√∑n

j=1

∣∣xj − yj
∣∣p. Hence, the three

aforementioned distances can be considered as special cases of Minkowski distance
(e.g., p = 1 to become Manhattan distance, p = 2 to become Euclidean distance, and
lim
p→∞ dist(X , Y ) to become Chebyshev distance).

As another alternative, Mahalanobis distance [33, 34] takes the correlation of a
dataset into account by using an inverse of a variance-covariance matrix of the dataset,
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which can be used to measure the number of standard deviations from one point to
another. Thus, it is unitless and scale-invariant. In general, Mahalanobis distance can be
defined as:

dist(X ,Y ) =
√
(X − Y )T S−1(X − Y ) (3)

where X , Y ∈ R
n and S is a positive-definite variance matrix (aka variance-covariance

matrix), in which:

• diagonal entries are variance of X, i.e., SXX = Var(X), and
• non-diagonal entries are covariance of X and Y, i.e., SXY = cov(X, Y ).

3 Our Clustering Algorithm

IncorporatingMahalanobis distance into the k-means algorithm is not as simple as calling
Mahalanobis distance instead of Euclidean distance. One needs to calculate the inverse
of the variance-covariant matrix, which cannot be calculated without clusters. This leads
to our first modification of the standard k-means, which is to initialize its clusters. Two
logical choices to initialize the first cluster are (a) randomly assign points to clusters,
or (b) use the first iteration of Euclidean distance based k-means algorithm to select the
initial clusters with given centroids. As it is vital to allow smarter centroid selection,
our algorithm selects the latter of the two choices. Euclidean distance is defined as in
Eq. (1). Our algorithm then calculates Euclidean distance of each point to each of the
initialized centroids, and assigns the point to its closest centroid.

After initializing the clusters, our algorithm then calculates the inverse variance-
covariance S−1 for each cluster. Note that variance-covariance matrix Sn×n is symmetric
and positive-definite, and can be computed by:

S(X , Y ) =
{
Var(X ) = cov(X ,X ) = E

[
(X − E(X ))(X − E(X ))T

]
ifX = Y

cov(X , Y ) = E
[
(X − E(X ))(Y − E(Y ))T

]
otherwise

(4)

where E(X) is the expected value (i.e., mean) of X. Next, our algorithm measures Maha-
lanobis distance of each point with a particular centroid point and its respective cluster
inverse variance-covariance. Here, it aims to minimize:

argmin
C

∑k

i=1

∑
x∈Ci

√
(x − µi)

T S−1(x − µi) (5)

where µi is the center (i.e., centroid) of Ci. Afterwards, it computes the new centroids
by calculating the mean of each cluster. Lastly, it checks if the previous centroids are
the same as the new centroids. If so, then it reaches convergence, and thus the clus-
tering is completed. Otherwise, it sets the previous centroids to the current ones, and
repeats the loop again. Whenever the loop starts again, the inverse variance-covariance
is recalculated. Figure 1 shows a pseudo code of the resulting algorithm.
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Algorithm Mahalanobis k-means 
Input: Dataset P of points, initial centroids C, number of clusters k
Output: Labels indicating which points are in which cluster, the final centroids
1:   cluster = initial_cluster(C) 
2:   while previous C is not the same do
3:      inverseVarCov = initial_inverseVarCov(cluster); cluster = []; labels = []
4:     for p in P do
5:      dists = []
6:       for c in C do dists.append(MahalanobisDist(p, c, inverseVarianceCovariance)) 
7:        labels.append(min(dists)); cluster[min(dists)].append(p) 
8:    new_centroids = []
9:    for c in clusters do new_centroids.append(mean of c) 
10:    check centroid and new_centroids
11: return label

Fig. 1. Pseudo code of our Mahalanobis k-means algorithm.

4 Evaluation

To evaluate our Mahalanobis distance based k-means algorithm, we compared our algo-
rithm with the existing Euclidean distance based k-means algorithm on several datasets.
Figure 2 shows visualization of two comparisons. For spherical clustering, both algo-
rithms successfully grouped all data points and formed the same three clusters as shown in
Fig. 2(a). However, for elliptical clustering, as shown in Fig. 2(b), the existing Euclidean
distance based algorithm failed to cluster the elliptical dataset correctly. In contrast, our
Mahalanobis distance based k-means algorithm clustered the data points correctly as
shown in Fig. 2(c).

Fig. 2. Results for (a) spherical clustering from both existing Euclidean distance based and our
Mahalanobis distance based k-means algorithm, (b) elliptical clustering from Euclidean distance
based k-means algorithm, and (c) elliptical clustering from our Mahalanobis distance based k-
means algorithm.

In terms of quantifiable results, our Mahalanobis distance based k-means algorithm
took around ~7 s to run, which was faster than its Euclidean distance based counter-
part. As for accuracy, our Mahalanobis distance based k-means algorithm achieved a
Rand index [39] and V-measure [40]—which were both bounded within 0.0 to 1.0—
that were 0.2 higher than its Euclidean distance based counterpart. Note that the Rand
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index measures the similarity between the ground-truth class assignment and our clus-
tering algorithm assignments of the same samples. V-measure is a harmonic mean for
measuring homogeneity (i.e., each cluster contains only members of a single class) and
completeness (i.e., all members of a given class are assigned to the same cluster).

5 Conclusions

In this paper, we presented a non-trivial integration of k-means clustering and Maha-
lanobis distance. Evaluation results show ourMahalanobis distance based k-means clus-
tering algorithm is more accurate than the related works. As ongoing and future work,
we explore ways to further enhance our algorithm and examine impacts of Mahalanobis
distance on other clustering techniques.

Acknowledgement. This work is partially supported by NSERC (Canada) & U. Manitoba.
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Abstract. The reduction of plant pest treatments contributes to a more
sustainable agriculture. However, to be effective, the application of these
treatments must be performed at the correct phenological stage of the
plants. In this paper, we present the comparison of physical and ML
models to predict the phenological stage of vineyards. The performance
of both shows an average R2 above 0.94. However, the physical models do
not generalize well and they cannot be easily improved by the inclusion
of new datasets as ML models do.

Keywords: Grapevine · Phenology prediction · Machine learning ·
IoT

1 Introduction

Achieving a sustainable agriculture requires a change in farming practices. The
disruptive fusion of technologies, such as the Internet of Things (IoT), Big Data
and Analytics (BDA), and Artificial Intelligence (AI) applied to agriculture and
live-stocking is known as Smart Farming (SF). SF follows the Industry 4.0 con-
cept and it can boost effective innovative actions towards more productive and
sustainable agricultural practices [13].

The treatment of pests is one of the practices that more easily can show the
benefits of application of SF for increasing farming sustainability because of its
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direct impact on ecosystems. However, to be effective, most of the treatments
should be applied at a given phenological stage [4].

As a first step to create pest risk prediction models, in this paper we focus on
predicting the phenological stages of grapevines and compare physical models
tuned by agronomists and ML models created by data scientists. Both kinds
of models are created in a real scenario and exploit different types of available
data. They predict eight phenological stages at which different types of pests
(mildew, powdery mildew, lobesia and botritis) can more heavily affect grape
yield quality and quantity.

The structure of the rest of this paper is as follows. Firstly, in Sect. 2, we
provide a theoretical background of phenology and physical and ML prediction
models. Secondly, in Sect. 3, we present the experimental evaluation that we
performed to evaluate and compare both types of models: we describe the geo-
graphical locations of the grapevines used in our work, the datasets used, and
the physical and ML models that we created, along with the evaluation of the
quality of the results they provide. Then, in Sect. 4, we reflect on the results
obtained to summarize the findings and conclusions, as well as to determine
opportunities of improvement.

2 Background of Phenology and Prediction Models

Phenology studies the relations between the life cycles of living beings, such
as plants, and environmental changes (e.g. climatic conditions, location, etc.).
Traditionally, phenology physical models rely on linear functions which only
consider the relation between the phenology stages and the temperature [22].
For vines, the two preferred prediction models are the Growing Degree Day
index (GDD) [3] and the Winkler Index (WI) [2].

More complex models were recently created. Generalized sigmoid models for
the prediction of three phenological stages (budburst, floration and veration)
were reported in [16]. Four models for predicting the remaining days until the
start of four phenological stages (budbreak, bloom, veraison, and harvest matu-
rity) were created by [18]. These models applied multiple regression on multiple
factors (temperature, soil degree days, solar radiation and photoperiod).

Nowadays, researchers can take advantage of BDA technologies for the
automation of the data capturing and processing of multi-sourced data [5]. Thus,
BDA technologies expand the number of variables that can be used by the mod-
els, benefiting both physical and ML-based models and improving their qual-
ity [8].

In particular, ML techniques can be used to better understand the structure
of time series, reduce the number of variables to be considered [19], or create
synthetic data for increasing the available training datasets [15]. Besides, these
techniques are used to extract patterns that can be used to classify informa-
tion [14].

In the context of our work, BDA and ML are applied to determine the phe-
nology evolution of plants [24] considering different data sources, such as field
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observations, field location and climatic data. These technologies also allow the
automatic tuning of the hyperparameters of the models; an example is provided
in [9], where manually-tuned models are compared with the ones obtained using
AutoML.

3 Experimental Set up and Evaluation

Our experiments compare the predictions made by the adaptation of WI models
to the areas of interest and the ML ones. The areas of interest are four wine
Protected Origin Denominations (POD): Calatayud, Campo de Borja, Cariñena
and Somontano. These PODs are in Aragón, a region in the north-east of Spain.
The altitude of their vineyards varies from 300 meters over sea level to 1000
meters.

Four grape varieties (Mazuela/Cariñena, Grenache, Tempranillo and
Chardonnay) are considered. Based on the phytopathological sensitivity of
grapevines eight key stages from the BBCH scale [12] were selected: 11, 15,
63, 65, 68, 71, 77 and 81.

Several data sets are considered by our models: the Spanish Cadastral Reg-
istry [21] (providing the geographical description of the fields), the Aragón Open
Data CAP registry [6] (linking the parcels to their varieties), the Red FARA
repository (that provides the timely observations of the phenology stages and
the pests) [7], and the SIAR database [20] (which offers the climatic station mea-
surements). Due to the limitation imposed by the deployment of the stations of
SIAR, we only considered data since the year 2009. We used data from the sta-
tions located at the PODs: the station of Borja (−1.507, 41.855) for Campo
de Borja; the station at (−1.614620, 41.362900) for Calatayud; the station in
Almonacid de la Sierra (−1.329960, 41.452080) for Cariñena; and the station of
Barbastro (0.112610, 42.013470) for the POD of Somontano.

3.1 Raw Data Pre-processing and Analysis

We transformed the data contained in the previously introduced datasets with
the guidance of agronomists and applying the DST methodology [11]. Besides,
the Red FARA’s phenological stage annotations were reduced to the eight stages
of interest: the twenty five stages having records were aggregated in the required
eight by grouping all the intermediate stages between two of them (e.g., we
consider the observations of the stages 12, 13 and 14 as observations of stage
11).

Then, we took advantage of available BDA capabilities to make several trans-
formations in all the available climatic variables: temperature, precipitation, rel-
ative humidity, solar radiation, wind speed and direction. More relevant transfor-
mations, as ML models variables selection later showed, are those related with
temperature: the calculation of the force units, the daily contributions to the
GDD and WI indexes, considering daily data (the conventional way) but also
the 30-min measurements provided by SIAR stations; the use of different base
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temperatures (4.5 ◦C and 10 ◦C) in the calculation of the daily contributions;
the consideration of the influence of temperatures higher than 30 ◦C; and the
accumulation of the daily contributions to the GDD and WI considering the
conventional dates (January the 1st and February the 1st), but also the start
of a new crop season (the first day of autumn having a maximum temperature
lower than 10 ◦C, when the grapevine enters into the dormancy stage); finally
we considered the influence of temperatures in the development of grapevines
by the calculation of the chilling cumulative hours using the models described
in [17,23].

The resulting dataset is composed of 94 different attributes with values of
daily data provided by the climatic stations and the different indexes obtained
considering the different combinations of the parameters in the previous list.
With this dataset we started to analyze its content and to create the models.

3.2 Experimental Results of the Physical Models

The objective of the physical models was to create one for each variety of interest
based on the WI. These models were created using data from the field obser-
vations of the phenology and the temperature provided by the stations of the
SIAR network during the period from 2009 to 2018. Furthermore, the data of
2019 was reserved for validation. For the calculation of the GDD and WI indexes
of each year, a base temperature of 10 ◦C and the accumulation of forcing units
started on February 1st were considered. The GDDs and WIs indexes for each
DOP were calculated and then joined with the phenology field observations of
each variety and year. The comparison of the merged data sets showed that the
WI had more solid behavior for the varieties and the areas of interest.

Linear regressions were applied to the WI on each of the resulting vari-
ety datasets for adapting the WI to the varieties of interest. The four models
obtained performed well achieving values of R2 ranging from 0.92 for Tempranillo
to 0.97 for Cariñena.

With the models obtained, the intervals of the WI at which each of the
phenological stage of the BBCH scale will be present were determined. Moreover,
given a known value of the WI, it is possible to know on which day the BBCH
would be achieved. However, this would require using weather forecasts and the
performance of the model would depend on the accuracy of those forecasts.

3.3 Experimental Results of the ML Models

The first ML phenology prediction models were created in three iterations on the
available data for the period 2015–2019, reserving 2018 data for validation. One
model per phenological stage of interest was created. These models predict the
number of remaining days needed from a date to reach the phenological stage of
the model. Moreover, the models were tuned to obtain a more accurate result
in the period between seven and twenty one days from the prediction day. The
hyperparameters were tuned using Optuna [1] during 250 trials.
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We used the Random Forest (RF) algorithm for obtaining our first 8 ML
models because of its explainability capabilities, although its performance is
rather low (resulting models provided an R2 of 0.8). For the second iteration, we
trained the new 8 models using an ANN (Artificial Neural Network) algorithm.
For optimizing the hyper-parameters of the models obtained we used Optuna
during 250 trials. As expected, these models performed better than the RF ones:
they had an average R2 of 0.91.

For stages 63 and 65, the R2 decreased until 0.78. On average, these stages
respectively occur around the 149th and the 155th day of the year. They can
happen in 6 days whereas two consecutive field observations are available in a
period between 4 and 12 days. In consequence, both stages can overlap, making
them indistinguishable for the ML models. Thus, it was decided to merge both
stages and to create a new ANN-based model. This increased the R2 for stage
63 from 0.88 to 0.97. The final values of R2 range from 0.91 for the BBCH stage
11 to 0.97 for the stage 68, having an average R2 of 0.96.

4 Conclusions and Future Work

This paper compared the results obtained from the tuning of the WI to the data
obtained from four wine PODs and the models obtained by the application of
RF and ANNs algorithms on these data. We created a physical model for each
variety of interest. Eights ML models were created, one for each of the phenology
stages of interest. Both kinds of models present similar values of R2, which are
over 0.94 on average.

To be able to predict, the physical methods depend on the weather forecast.
This links their accuracy to the precision of the forecast (currently the weather
can be predicted, with reasonable precision, no more than three days in advance).
Our ML models do not consider weather forecast data and they are optimized
for a time horizon between two and 3 weeks, which is the required time to be
useful for a pest prediction model. Because time (the number of days to stage)
is the dimension to predict, the accuracy of the models will be limited by the
dataset with a lower time resolution: the field observations.

Besides, the physical models must be fine-tuned for the specific geographical
areas where they are going to be applied. For example, the results for the wine
variety Tempranillo show this: its R2 ranges from 0.92 in DOP Calatayud to 0.97
in Campo de Borja. This could be solved by increasing the number of phenology
field observations, which requires one year collecting new data, or by considering
other new types of datasets (i.e., additional variables).

Although the R2 metric is easy to be calculated for physical and ML models,
other metrics, such as F1, recall or precision will provide better insights about
model performance when considered as classifiers.

The use of the DST methodology, for guiding and documenting the model
development processes, will allow us to replicate it for further improvements
of ML models and also to create the pest models. Following the road-map we
defined in [10], we are currently working on the improvement of the ML models
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by including additional data sets that contain weather forecasts and data derived
from Sentinel 2 hyperspectral images. Then, we will create the pest models.
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