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Abstract. Locality-sensitive hashing (LSH) is an established method
for fast data indexing and approximate similarity search, with useful
parallelism properties. Although indexes and similarity measures are key
for data clustering, little has been investigated on the benefits of LSH in
the problem. Our proposition is that LSH can be extremely beneficial for
parallelizing high-dimensional density-based clustering e.g., DBSCAN, a
versatile method able to detect clusters of different shapes and sizes.

We contribute to fill the gap between the advancements in LSH and
density-based clustering. We show how approximate DBSCAN clustering
can be fused into the process of creating an LSH index, and, through
parallelization and fine-grained synchronization, also utilize efficiently
available computing capacity. The resulting method, IP.LSH.DBSCAN, can
support a wide range of applications with diverse distance functions, as
well as data distributions and dimensionality. We analyse its properties
and evaluate our prototype implementation on a 36-core machine with
2-way hyper threading on massive data-sets with various numbers of
dimensions. Our results show that IP.LSH.DBSCAN effectively complements
established state-of-the-art methods by up to several orders of magnitude
of speed-up on higher dimensional datasets, with tunable high clustering
accuracy through LSH parameters.

1 Introduction

Digitalized applications’ datasets are getting larger in size and number of features
(i.e., dimensions), posing challenges to established data mining methods such
as clustering, an unsupervised data mining tool based on similarity measures.
Density-based spatial clustering of applications with noise (DBSCAN) [11] is
a prominent method to cluster (possibly) noisy data into arbitrary shapes and
sizes, without prior knowledge on the number of clusters, using user-defined
similarity metrics (i.e., not limited to the Euclidean one). DBSCAN is used in
many applications, including LiDAR [25], object detection [20], and GPS route
analysis [33]. DBSCAN and some of its variants have been also used to cluster
high dimensional data, e.g., medical images [4], text [32], and audio [10].
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The computational complexity of traditional DBSCAN is in the worst-case
quadratic in the input size [26], expensive considering attributes of today’s
datasets. Nonetheless, indexing and spatial data structures facilitating proxim-
ity searches can ease DBSCAN’s computational complexity, as shown with KD-
trees [5], R-trees [15], M-trees [8], and cover trees [6]. Using such structures is sub-
optimal in at least three cases, though: (i) skewed data distributions negatively
affect their performance [20], (ii) the dimensionality curse results in exact spatial
data structures based on deterministic space partitioning being slower than linear
scan [34], and (iii) such structures only work for a particular metric (e.g., Euclidean
distance). In the literature, the major means for enhancing time-efficiency are
those of parallelization [2,3,13,24,33] and approximation [12], studied alone or
jointly [20,21,33]. However, state-of-the-art methods target Euclidean distance
only and suffer from skewed data distributions and the dimensionality curse.

Locality-sensitive hashing (LSH) is an established approach for approximate
similarity search. Based on the idea that if two data points are close using a cus-
tom similarity measure, then an appropriate hash function can map them to equal
values with high probability [1,9,17], LSH can support applications that toler-
ate approximate answers, close to the accurate ones with high probability . LSH-
based indexing has been successful (and shown to be the best known method [17])
for finding similar items in large high-dimensional data-sets. With our contribu-
tion, the IP.LSH.DBSCAN algorithm, we show how the processes of approximate
density-based clustering and that of creating an LSH indexing structure can be
fused to boost parallel data analysis. Our novel fused approach can efficiently
cope with high dimensional data, skewed distributions, large number of points,
and a wide range of distance functions. We evaluate the algorithms analytically
and empirically, showing they complement the landscape of established state-of-
the-art methods, by offering up to several orders of magnitude speed-up on higher
dimensional datasets, with tunable high clustering accuracy.

Organization: Section 2 reviews the preliminaries. Section 3 and Sect. 4
describe and analyse the proposed IP.LSH.DBSCAN. Section 5 covers the empirical
evaluation. Related work and conclusions are presented in Sect. 6 and Sect. 7,
respectively.

2 Preliminaries

System Model and Problem Description. Let D denote an input set of N
points, each a multi-dimensional vector from a domain D, with a unique iden-
tifier ID. Dist is a distance function applicable on D’s elements. The goal is to
partition D into an a priori unknown number of disjoint clusters, based on Dist
and parameters minPts and ε: minPts specifies a lower threshold for the number
of neighbors, within radius ε, for points to be clustered together.

We aim for an efficient, scalable parallel solution, trading approximations
in the clustering with reduced calculations regarding the density criteria, while
targeting high accuracy. Our evaluation metric for efficiency is completion time.
Accuracy is measured with respect to an exact baseline using rand index [31]:
given two clusterings of the same dataset, the rand index is the ratio of the
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number of pairs of elements that are either clustered together or separately in
both clusterings, to the total number of pairs of elements. Regarding concurrency
guarantees, a common consistency goal is that for every parallel execution, there
exists a sequential one producing an equivalent result.

We consider multi-core shared-memory systems executing K threads, support-
ing read, write and read-modify-write atomic operations, e.g., CAS (Compare-
And-Swap), available in all contemporary general purpose processors.

Locality Sensitive Hashing (LSH)
The following defines the sensitivity of a family of LSH functions [17,23], i.e.,
the property that, with high probability, nearby points hash to the same value,
and faraway ones hash to different values.

Definition 1. A family of functions H = {h : D → U} is (d1, d2, p1, p2)-sensitive
for distance function Dist if for any p and q in D the following conditions hold:
(i) if Dist(p, q) ≤ d1, then PrH[h(p) = h(q)] ≥ p1 (ii) if Dist(p, q) ≥ d2, then
PrH[h(p) = h(q)] ≤ p2. The probabilities are over the random choices in H.

A family H is useful when p1 > p2 and d1 < d2. LSH functions can be combined,
into more effective (in terms of sensitivity) ones, as follows [23]:

Definition 2. (i) AND-construction: Given a (d1, d2, p1, p2)-sensitive family H
and an integer M, we can create a new LSH family G = {g : D → UM} by aggregat-
ing/concatenating M LSH functions from H, where g(p) and g(q) are equal iff hj(p)
and hj(q) are equal for all j ∈ {1, · · · ,M}, implying G is (d1, d2, p1M, p2M)-sensitive;
(ii) OR-construction: Given an LSH family G and an integer L, we can create a new
LSH family F where each f ∈ F consists of L gis chosen independently and uni-
formly at random from G, where f(p) and f(q) are equal iff gj(p) and gj(q) are equal
for at least one j ∈ {1, · · · ,L}. F is (d1, d2, 1 − (1 − p1M)L, 1 − (1 − p2M)L)-sensitive
assuming G is (d1, d2, p1M, p2M)-sensitive.

LSH structure: An instance of family F is implemented as L hash tables; the i-th
table is constructed by hashing each point in D using gi [9,17]. The resulting
data structure associates each bucket with the values for the keys mapping to
its index. LSH families can associate with various distance functions [23].

LSH for Euclidean distance: Let u be a randomly chosen unit vector in D. A
hash function hu(x) in such a family is defined as � x·u

ε �, where · is the inner
product operation and ε is a constant. The family is applicable for any number
of dimensions. In a 2-dimensional domain, it is (ε/2, 2ε, 1/2, 1/3)-sensitive.

LSH for angular distance: Let u be a randomly chosen vector in D. A hash function
hu(x) in such a family is defined as sgn(x ·u). The family is (θ1, θ2, 1− θ1

π , 1− θ2
π )-

sensitive, where θ1 and θ2 are any two angles (in radians) such that θ1 < θ2.

Related Terms and Algorithms DBSCAN: partitions D into an a priori
unknown number of clusters, each consisting of at least one core-point (i.e., one
with at least minPts points in its ε-radius neighbourhood) and the points that
are density-reachable from it. Point q is density-reachable from p, if q is directly
reachable from p (i.e., in its ε-radius neighbourhood) or from another core-point
that is density-reachable from p. Non-core-points that are density-reachable from
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some core-point are called border points, while others are noise [26]. DBSCAN can
utilize any distance function e.g., Euclidean, Jaccard, Hamming, angular [23].
Its worst-case time complexity is O(N2), but in certain cases (e.g., Euclidean dis-
tance and low-dimensional datasets) its expected complexity lowers to O(N log N),
through indexing structures facilitating range queries to find ε neighbours [26].

HP-DBSCAN [13]: Highly Parallel DBSCAN is an OpenMP/MPI algorithm,
super-imposing a hyper-grid over the input set. It distributes the points to com-
puting units that do local clusterings. Then, the local clusters that need merging
are identified and cluster relabeling rules get broadcasted and applied locally.

PDS-DBSCAN [24]: An exact parallel version of Euclidean DBSCAN that uses a
spatial indexing structure for efficient query ranges. It parallelizes the work by
partitioning the points and merging partial clusters, maintained via a disjoint-
set data structure, also known as union-find (a collection of disjoint sets, with
the elements in each set connected as a directed tree). Such a data structure
facilitates in-place find and merge operations [18] avoiding data copying. Given
an element p, find retrieves the root (i.e., the representative) of the tree in which
p resides, while merge merges the sets containing two given elements.

Theoretically-Efficient and Practical Parallel DBSCAN [33]: Via a grid-based app-
roach, this algorithm identifies core-cells and utilizes a union-find data structure
to merge the neighbouring cells having points within ε-radius. It uses spatial
indexes to facilitate finding neighbourhood cells and answering range queries.

LSH as index for DBSCAN: LSH’s potential led other works ([27,35]) to consider
it as a plain means for neighbourhood queries. We refer to them as VLSHDBSCAN.

3 The Proposed IP.LSH.DBSCAN Method

IP.LSH.DBSCAN utilizes the LSH properties, for parallel density-clustering,
through efficient fusion of the indexing and clustering formation. On the high
level, IP.LSH.DBSCAN hashes each point in D, into multiple hash-tables, in such a
way that with a high probability, points within ε-distance get hashed to the same
bucket at least once across all the tables. E.g., Fig. 1a shows how most nearby
points in a subset of D get hashed to the same buckets, in two hash tables.
Subsequently, the buckets containing at least mintPts elements are examined,
to find a set of candidate core-points which later will be filtered to identify the
real core-points, in terms of DBSCAN’s definition. In Fig. 1a, the core-points
are shown as bold points with a dot inside. The buckets containing core-points
are characterized as core buckets. Afterwards, with the help of the hash tables,
ε-neighbour core-points get merged. E.g., the core-bucket in the rightmost hash
table in Fig. 1a contains two core-points, indicating the possibility that they
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Fig. 1. 1a shows nearby points get hashed to the same bucket at least once across hash
tables, whp. Core-points are the bold ones with a dot inside.

are within each other’s ε-neighbourhood, in which case they get merged. The
merging is done using a forest of union-find data structures, consisting of such
core-points, that essentially represent core buckets. As we see later, multiple
threads can work in parallel in these steps.

Key Elements and Phases. Similar to an LSH structure (cf. Sect. 2), we utilize
L hash tables (hashTable[1], · · · , hashTable[L]), each constructed using M hash
functions, chosen according to distance metric Dist and threshold ε (see Sect. 2,
Sect. 4).

Definition 3. A bucket in any of the hash tables is called a candidate core-
bucket if it contains at least minPts elements. A candidate core-point c in a
candidate core-bucket ccb is defined to be the closest (using function Dist) point
in ccb to the centroid of all the points in ccb; we also say that c represents ccb.
A candidate core bucket ccb, whose candidate core-point c has at least minPts
neighbours within its ε-radius in ccb, is called a core-bucket. A Core-forest is a
concurrent union-find structure containing core-points representing core buckets.

Lemma 1. Given a core bucket, its corresponding core-point c is a true core-
point according to DBSCAN.

The above follows from the definition of core-point in Definition 3. Next, we
present an outline of IP.LSH.DBSCAN’s phases, followed by a detailed description
of its parallelization and pseudo-code.
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In phase I (hashing and bucketing), for each i, each point p in D is hashed using
the LSH function gi and inserted into hashTable[i]. Furthermore, the algo-
rithm keeps track of the buckets containing at least minPts, as candidate core
buckets. In phase II (core-point identification), for each candidate core-bucket,
the algorithm identifies a candidate core-point. If at least minPts points in a
candidate core-bucket fall within the ε-neighbourhood of the identified candi-
date core-point, the latter is identified as a true core-point (see Lemma 1) and
inserted into the core-forest as a singleton. In phase III (merge-task identifica-
tion and processing), the algorithm inspects each core-bucket and creates and
performs a merge task for each pair of core-points that are within each oth-
ers’ ε-neighbourhood. Hence, the elements in the core-forest start forming sets
according to the merge tasks. In phase IV (data labeling), the algorithm labels
the points: a core-point gets assigned the same clustering label as all the other
core-points with which it forms a set in the core-forest. A border point (i.e., a
non-core-point located in the ε-radius of a core-point) is labeled the same as a
corresponding core-point, and all the other points are considered noise.

Parallelism and Algorithmic Implementation. We here present the par-
allelization in IP.LSH.DBSCAN (Algorithm 1), targeting speed-up by distributing

Algorithm 1. Outline of IP.LSH.DBSCAN
1: Input: dataset D, threshold minPts, radius ε, nr. of hash tables L, nr. of hash functions per table

M, metric Dist, nr of threads K; Output: a clustering label for each point in D
2: let D be logically partitioned into S mutually disjoint batches
3: hashTable[1],· · · ,hashTable[L] are hash tables supporting concurrent insertions and traversals
4: candidateCoreBuckets and coreBuckets are empty sets supporting concurrent operations
5: let hashTasks be a S × L boolean array initialized to false, indicating the status of hash tasks

corresponding to the Cartesian product of S batches and L hash tables
6: let G = {g : S → UM} be an LSH family suitable for metric Dist, and let g1, · · · , gL be hash

functions chosen independently and uniformly at random from G (Definition 2)
7: for all threads in parallel do
8: phase I: hashing and bucketing

9: while the running thread can book a task from hashTasks do
10: for each point p in task.batch do
11: let i be index of the hashTable associated with task
12: hashTable[i].insert(key = gi(p), value = ptr(p))
13: bucket=hashTable[i].getBucket(key = gi(p))
14: if bucket.size() ≥ minPts then candidateCoreBuckets.insert(ptr(bucket))

15: phase II: core-point identification (starts when all threads reach here)

16: for each ccb in candidateCoreBuckets do
17: let c be the closest point in ccb to ccb points’ centroid
18: if |{q ∈ ccb such that Dist(c, q)}| ≥ minPts then
19: c→ corePoint := TRUE and insert c into the core-forest
20: coreBuckets.insert(ccb)

21: phase III: merge-task identification and processing (starts when all threads reach here)

22: while cb := coreBuckets.pop() do
23: let core be the core-point associated with cb
24: for core-point c ∈ cb such that Dist(core, c) ≤ ε do merge(core, c)

25: phase IV: data labeling (starts when a thread reaches here)

26: for each core bucket cb do
27: let core be the core-point associated with cb
28: for each non-labeled point p in cb do
29: if p→ corePoint then p.idx = findRoot(p).ID
30: else p.idx = findRoot(core).ID
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the work among K threads. We also aim at in-place operations on data points
and buckets (i.e., without creating additional copies), hence work with pointers
to the relevant data points and buckets in the data structures.

Phase I (hashing and bucketing): To parallelize the hashing of the input dataset
D into L hash tables, we (logically) partition D into S mutually disjoint batches.
Consecutively, we have S×L hash tasks, corresponding to the Cartesian product
of the hash tables and the data batches. Threads can book a hash task and thus
share the workload through hashTasks, which is a boolean S×L array containing
a status for each task, initially false. A thread in this phase scans the elements
of hashTasks, and if it finds a non-booked task, it tries to atomically book the
task (e.g., via a CAS to change the status from false to true). The thread that
books a hash task htb,t hashes each data point p in batch b into hashTable[t]
using hash function gt. Particularly, for each point p, a key-value pair consisting
of the hashed value of p and a pointer to p is inserted in hashTable[t]. As entries
get inserted into the hash tables, pointers to buckets with at least minPts points
are added to candidateCoreBuckets. Since the threads operate concurrently,
we use hash tables supporting concurrent insertions and traversals. Algorithm
1 l.8–l.14 summarizes Phase I.

Phase II (core-point identification): Here the threads identify core-buckets and
core-points. Each thread atomically pops a candidate core bucket ccb from
candidateCoreBuckets and identifies the closest point to the centroid of the
points in ccb, considering it as a candidate core-point, ccp. If there are at least
minPts points in ccb within ε-radius of ccp, then ccp and ccb become core-point
and core-bucket, respectively, and ccp is inserted in the core-forest and the ccb
in the coreBucekts set. This phase, shown in Algorithm 1 l.15–l.20, is finished
when candidateCoreBuckets becomes empty.

Phase III (merge-task identification and processing): The threads here identify and
perform merge tasks. For each core-bucket cb that a thread successfully books
from the set coreBuckets, the thread merges the sets corresponding to the
associated core-point with cb and any other core-point in cb within ε distance.
For merging, the algorithm uses an established concurrent implementation for
disjoint-sets, with linearizable and wait-free (i.e., the effects of concurrent opera-
tions are consistent with the sequential specification, while the threads can make
progress independently of each other) find and merge, proposed in [18]. This
phase, shown in Algorithm 1 l.21–l.24, completes when coreBucekts is empty.

Phase IV (data labeling): Each non-labeled core-point in a core-bucket gets its
clustering label after its root ID in the core-forest. All other non-labeled points in
a core-bucket are labeled with the root ID of the associated core-point. The process,
shown in Algorithm 1 l.25–l.30, is performed concurrently for all core-buckets.

4 Analysis

This section analytically studies IP.LSH.DBSCAN’s accuracy, safety and complete-
ness properties, and completion time. We provide sketch proofs to save space,
but formal proofs can be found in [19]. Figure 1b summarizes the notations.
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Accuracy Analysis
Let pε be the probability that two given points with maximum distance ε have
the same hash value using H (see Definition 1). Lemma 1 shows that any point
identified as a core-point by IP.LSH.DBSCAN is a true core-point in terms of
DBSCAN. The following Lemma provides a lower bound on the probability that
IP.LSH.DBSCAN identifies any DBSCAN core-point.

Lemma 2. Let c be a DBSCAN’s core-point. The probability that IP.LSH.DBSCAN

also identifies c as a core-points is at least 1−
(
1 − 1

χp
M(minPts−1)
ε

)L

, where χ denotes
the maximum number of points in any bucket.

Proof. (sketch) First note that with M hash functions per table (i.e., the AND
construction in Definition 2), the probability that two given points with max-
imum distance ε collide into the same hash bucket in a fixed hash table is pMε .
The probability that c gets identified as a core-point in a fixed hash table is at
leaset 1

χp
M(minPts−1)
ε because at least minPts-1 ε-neighbours of c must get hashed

to b, and c should be the closest point to the centroid of the points in b. Finally,
the probability that c gets identified as a core-point in at least one hash table
is computed as the complement of the probability that c does not get identified
as a core-point in any hash table.

Lemma 2 shows that the probability of identifying any DBSCAN core-point
can be made arbirtarily close to 1 by choosing sufficiently large L.

Lemma 3. Let c1 and c2 be two core-points identified by IP.LSH.DBSCAN.

1. If Dist(c1, c2) > ε, then IP.LSH.DBSCAN does not merge c1 and c2.
2. If Dist(c1, c2) ≤ ε, then the probability that IP.LSH.DBSCAN merges c1 and c2

is at least 2pMε − p2Mε .

Proof. (sketch) 1. follows directly from IP.LSH.DBSCAN’s algorithmic description
(see Algorithm 1 l.24). 2. follows from calculating the probability that c2 hashes
into the same bucket in which c1 is the representative, and vice-versa.

Safety and Completeness Properties
At the end of phase IV, each set in the core-forest maintained by IP.LSH.DBSCAN
contains a subset of density-reachable core-points (as defined in Sect. 2). Two
disjoint-set structures ds1, ds2 are equivalent if there is a one-to-one correspon-
dence between ds1’s and ds2’s sets. The following lemma implies that the outcomes
of single-threaded and concurrent executions of IP.LSH.DBSCAN are equivalent.

Lemma 4. Any pair of concurrent executions of IP.LSH.DBSCAN that use the
same hash functions, produce equivalent core-forests at the end of phase IV.

Proof. (sketch) Considering a fixed instance of the problem, any concurrent exe-
cution of IP.LSH.DBSCAN identifies the same set of core-points and core-buckets
with the same hash functions, hence performing the same set of merge operations.
As the concurrent executions of merge operations are linearizable (see Sect. 3)
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and merge operation satisfies the associative and commutative properties, the
resulting sets in the core-forest are identical for any concurrent execution.

It is worth noting that border points (i.e., non-core-points within the vicinity
of multiple core-points) can be assigned to any of the neighbouring clusters. The
original DBSCAN [11] exhibits the same behaviour as well.

Completion Time Analysis

Lemma 5. [adapted from Theorem 2 in [18]] The probability that each
findRoot and each merge perform O(log C) steps is at least 1 − 1

C
, where C

is the number of identified core-points by IP.LSH.DBSCAN.

Corollary 1. The expected asymptotic time complexity of each findRoot and
each merge is O (log C).

Lemma 6. The expected completion time of phase I is O( LMNd
K

); phase II and
phase III is bounded by O( LN log C

K
); phase IV is O( N log C

K
).

Theorem 1. The expected completion time of IP.LSH.DBSCAN is O( LMNd+LN log C
K

).

Theorem 1 is derived by taking the asymptotically dominant terms in Lemma
6. It shows IP.LSH.DBSCAN’s expected completion time is inversely proportional
to K and grows linearly in N, d, L, and M. In common cases where C is much smaller
than N, the expected completion time is O( LMNd

K
); In the worst-case, where C is

O (N), the expected completion time is O( LMNd+LN log N
K

). For this to happen, for
instance, ε and minPts need to be extremely small and L be extremely large. As
the density parameters of DBSCAN are chosen to detect meaningful clusters,
such choices for ε and minPts are in practice avoided.

On the memory use of IP.LSH.DBSCAN: The memory footprint of IP.LSH.DBSCAN
is proportional to (LN + Nd), as it simply needs only one copy of each data
point and pointers in the hash tables and this dominates the overhead of all
other utilized data structures. Further, in-place operations ensure that data is
not copied and transferred unnecessarily, which is a significant factor regarding
efficiency. In Sect. 5, the effect of these properties is discussed.

Choice of L and M: For an LSH structure, a plot representing the probability of
points hashing into the same bucket as a function of their distance resembles an
inverse s-curve (x- and y-axis being the distance, and the probability of hashing
to the same bucket, resp.), starting at 1 for the points with distance 0, declining
with a significant slope around some threshold, and approaching 0 for far apart
points. Choices of L and M directly influence the shape of the associated curve,
particularly the location of the threshold and the sharpness of the decline [23]. It
is worth noting that steeper declines generally result in more accurate LSH struc-
tures at the expense of larger L and M values. Consequently, in IP.LSH.DBSCAN,
L and M must be determined to (i) set the location of the threshold at ε, and
(ii) balance the trade-off between the steepness of the decline and the completion
time. In Sect. 5, we study a range of L and M values and their implications on
the trade-off between IP.LSH.DBSCAN’s accuracy and completion time.
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5 Evaluation

We conduct an extensive evaluation of IP.LSH.DBSCAN, comparing with the estab-
lished state-of-the-art algorithms. Our implementation is publicly available [19].
Complementing Theorem 1, we measure the execution latency with varying num-
ber of threads (K), data points (N), dimensions (d), hash tables (L), and hash
functions per table (M). We use varying ε values, as well as Euclidean and angu-
lar distances. We measure IP.LSH.DBSCAN’s accuracy against the exact DBSCAN
(hence also the baseline state-of-the-art algorithms) using rand index.

Setup: We implemented IP.LSH.DBSCAN in C++, using POSIX threads and the
concurrent hash table of Intel’s threading building blocks library (TBB). We
used a c5.18xlarg AWS machine, with 144 GB of memory and two Intel Xeon
Platinum 8124M CPUs, with 36 two-way hyper-threaded cores [33] in total.

Tested Methods: In addition to IP.LSH.DBSCAN, we benchmark PDSDBSCAN [24],
HPDBSCAN [13], and the exact algorithm in [33], for which we use the label
TEDBSCAN (Theoretically-Efficient and Practical Parallel DBSCAN). As the
approximate algorithms in [33] are generally not faster than their exact counter-
part (see Fig. 9 and discussion on p. 13 in [33]), we consider their efficiency repre-
sented by the exact TEDBSCAN. We also benchmark VLSHDBSCAN, our version of a
single-thread DBSCAN that uses LSH indexing, as we did not find open implemen-
tations for [27,35]. Benchmarking VLSHDBSCAN allows a comparison regarding the
approximation degree, as well as the efficiency induced by IP.LSH.DBSCAN’s “fused”
approach. Section 2 covers the aforementioned algorithms.

Evaluation Data and Parameters
Following common practices [13,28,33], we use datasets with different charac-
teristics. We use varying ε but fixed minPts, as the sensitivity on the latter is
significantly smaller [28]. We also follow earlier works’ common practice to abort
any execution that exceeds a certain bound, here 9 × 105 sec (more than 24 h).
We introduce the datasets and the chosen values for ε and minPts as well as the
choices for L and M, based on the corresponding discussion in Sect. 4 and also the
literature guidelines (e.g., [23] and the reference therein). The default ε values
are shown in italics.

TeraClickLog [33]: Each point in this dataset corresponds to a display ad by
Criteo with 13 integer and 26 categorical features. We use a subset with over 67
million points, free from missing features. Like [33], we only consider the integer
features, and we choose ε from {1500, 3000, 6000, 12000} and minPts 100.

Household [12]: This is an electricity consumption dataset with over two million
points, each being seven-dimensional after removing the date and time features
(as suggested in [12]). Following the practice in [12,33], we scale each feature to
[0,10000] interval and choose ε from {1500, 2000, 2500, 3000} and minPts 100.

GeoLife [36]: From this GPS trajectory dataset, we choose ca 1.5 million points
as selected in [20], containing latitude and longitude with a highly skewed distri-
bution. We choose ε from {0.001, 0.002, 0.004, 0.008} and minPts 500, like [20].
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ε = 0.2π, minPts=100

Fig. 2. Visualizing the rand index accuracy of IP.LSH.DBSCAN as a function of L and M

MNIST: This dataset contains 70000 28× 28-pixel hand-written and labelled 0–9
digits [22]. We treat each record as a 784-dimensional data point, normalizing
each point to have a unit length (similar to [30]). We utilize the angular distance.
Following [29], we choose ε from {0.18π, 0.19π, 0.20π, 0.21π} and minPts 100.

The heat-maps in Fig. 2a–Fig. 2d visualize IP.LSH.DBSCAN’s rand index accu-
racy as a function of L and M. For TeraClickLog (Fig. 2a), {L= 5, M= 5}, {L= 10,
M= 5}, and {L= 20, M= 5} give 0.98, 0.99, and 1 accuracies, respectively. For
Household (Fig. 2b), {L= 5, M= 5}, {L= 10, M= 5}, and {L= 20, M= 5} give
0.92, 0.94, and 0.95 accuracies, respectively. For GeoLife (Fig. 2c), {L= 5, M= 2},
{L= 10, M= 2}, and {L= 20, M= 2} give 0.8, 0.85, and 0.89 accuracies, respectively.
For (Fig. 2d) dataset, {L= 58, M= 9}, {L= 116, M= 9}, and {L= 230, M= 9} give
0.77, 0.85, and 0.89 accuracy, respectively, computed with respect to the actual
labels.

Experiments for the Euclidean Distance

Completion Time with Varying K: Figure 3a, Fig. 3b, and Fig. 3c show the comple-
tion time of IP.LSH.DBSCAN and other methods with varying K on TeraClickLog,
Household, and Geolife datasets, respectively. PDSDBSCAN runs out of memory
on TeraClickLog for all K and on GeoLife for K ≥ 4, and none of HPDBSCAN’s
executions terminate within the 9 × 105 sec threshold. For the reference, in Fig. 3,
the completion time of single-thread VLSHDBSCAN is provided as a caption for
each dataset, except for TeraClickLog as its completion time exceeds 9 × 105

sec. The results indicate the benefits of parallelization for work-load distribution
in IP.LSH.DBSCAN, also validating that IP.LSH.DBSCAN’s completion time behav-
ior is linear with respect to L, as shown in Theorem 1. For higher dimensionality,
challenging the state-of-the-art algorithms, IP.LSH.DBSCAN’s completion time is
several orders of magnitude shorter.

Completion Time with Varying ε: The left Y-axes in Fig. 4a, Fig. 4b, and Fig. 4c
show the completion time of IP.LSH.DBSCAN and other tested methods using 36
cores with varying ε values on TeraClickLog, Household, and Geolife datasets,
respectively. PDSDBSCAN crashes by running out of memory on TeraClickLog
and GeoLife for all ε, and none of HPDBSCAN’s executions terminate within
the 9 × 105 sec threshold. The right Y-axes in Fig. 4a, Fig. 4b, and Fig. 4c show
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Fig. 3. Completion time with varying K. The comma-separated values corresponding to
IP.LSH.DBSCAN and VLSHDBSCAN show L, M, and the rand index accuracy, respectively.
PDSDBSCAN crashes by running out of memory in 3a for all K and for K ≥ 4 in 3c.
In 3a no HPDBSCAN executions terminate within the 9 × 105-sec threshold.
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Fig. 4. Completion time using varying ε with 36 cores. PDSDBSCAN crashes by run-
ning out of memory in 4a and 4c for all ε. None of HPDBSCAN’s executions terminate
within the 9 × 105 sec threshold in 4a. Right Y-axes show IP.LSH.DBSCAN’s rand index.

the corresponding rand index accuracy of IP.LSH.DBSCAN. The results show that
in general the completion time of IP.LSH.DBSCAN decreases by increasing ε. Intu-
itively, hashing points into larger buckets results in lower merge workload. Sim-
ilar benefits, although with higher completion times, are seen for TEDBSCAN.
On the other hand, as the results show, completion time of many classical meth-
ods (such as HPDBSCAN and PDSDBSCAN) increases with increasing ε.

Completion Time with Varying N: The left Y-axes in Fig. 5a, Fig. 5b, and Fig. 5c
show the completion time of the bench-marked methods using 36 cores on vary-
ing size subsets of TeraClickLog, Household, and Geolife datasets, respectively.
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Fig. 6. MNIST results with the angular distance (only IP.LSH.DBSCAN, VLSHDBSCAN,
DBSCAN support the angular distance). 6a shows IP.LSH.DBSCAN’s completion time with
varying K. The left Y-axes in 6b and 6c respectively show IP.LSH.DBSCAN’s completion
time with varying ε and N, using 36 cores. The right Y-axes in 6b and 6c show the
associated accuracy, computed with respect to the actual labels.

PDSDBSCAN runs out of memory on TeraClickLog subsets with N> 0.1 mil-
lion points and GeoLife subsets with N> 1 million points. The results empiri-
cally validate that completion time of IP.LSH.DBSCAN exhibits a linear growth
in the number of data points, complementing Theorem 1. The right Y-axes
in Fig. 5a, Fig. 5b, and Fig. 5c show the corresponding rand index accuracy of
IP.LSH.DBSCAN.

Experiments for the Angular Distance. For significantly high number
of dimensions, as a side-effect of dimensionality curse, the Euclidean distance
among all pairs of points is almost equal [23]. To overcome this, we use angular
distance. We only study methods that support such a distance: IP.LSH.DBSCAN,
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VLSHDBSCAN, and DBSCAN. Here accuracy is calculated against the actual labels.
Figure 6a shows completion time with varying K. The left Y-axes in Fig. 6b
and Fig. 6c respectively show completion time with varying ε and N, using 36
cores. The right Y-axes in Fig. 6b and Fig. 6c show the associated accuracies.
Note IP.LSH.DBSCAN’s completion time is more than 4 orders of magnitude faster
than a sequential DBSCAN and more than 3 orders of magnitude faster than
VLSHDBSCAN. Here, too the results align and complement Theorem 1’s analysis.

Discussion of Results. IP.LSH.DBSCAN targets high dimensional, memory-
efficient clustering for various distance measures. IP.LSH.DBSCAN’s completion
time is several orders of magnitude shorter than state-of-the-art counterparts,
while ensuring approximation with tunable accuracy and showing efficiency
for lower dimensional data too. In practice, IP.LSH.DBSCAN’s completion time
exhibits a linear behaviour with respect to the number of points, even for
skewed data distributions and varying density parameters. The benefits of
IP.LSH.DBSCAN with respect to other algorithms increase with increasing data
dimensionality. IP.LSH.DBSCAN scales both with the size of the input and its
dimensionality.

6 Other Related Work

Having compared IP.LSH.DBSCAN with representative state-of-the-art related
algorithms in Sect. 5, we focus on related work considering approximation. Gan
et al. and Wang et al. in [12,33] proposed approximate DBSCAN clustering
for low-dimensional Euclidean distance, with O(N2) complexity if 2d > N [7].
The PARMA-CC [20] approach is also suitable only for low-dimensional data.
VLSHDBSCAN [27,35] uses LSH for neighbourhood queries. However, the LSH
index creation in IP.LSH.DBSCAN is embedded into the dynamics of the clusters
formation. IP.LSH.DBSCAN iterates over buckets and it applies merges on core-
points that represent bigger entities, drastically reducing the search complexity.
Also, IP.LSH.DBSCAN is a concurrent rather than a single-thread algorithm. Esfan-
diari et al. [10] propose an almost linear approximate DBSCAN that identifies
core-points by mapping points into hyper-cubes and counting the points in them.
It uses LSH to find and merge nearby core-points. IP.LSH.DBSCAN integrates core-
point identification and merging in one structure altogether, leading to better
efficiency and flexibility in leveraging the desired distance function.

7 Conclusions

IP.LSH.DBSCAN proposes a simple and efficient method combining insights on
DBSCAN with features of LSH. It offers approximation with tunable accuracy
and high parallelism, avoiding the exponential growth of the search effort with
the number of data dimensions, thus scaling both with the size of the input and
its dimensionality, and dealing with high skewness in a memory-efficient way.
We expect IP.LSH.DBSCAN will support applications in the evolving landscape of
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cyberphysical system data pipelines to aggregate information from large, high-
dimensional, highly-skewed data sets [14,16]. We also expect that this method-
ology can be used for partitioning data for other types of graph processing and
as such this direction is worth investigating as extension of IP.LSH.DBSCAN.
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