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Preface

This volume contains the papers presented at Euro-Par 2022, the 28th International
European Conference on Parallel and Distributed Computing, held in Glasgow,
Scotland, during August 22–26, 2022. As the coronavirus pandemic receded Euro-Par
2022 was primarily an in-person event, but with some provision for authors and
delegates to present, attend, and interact online.

For over 25 years, Euro-Par has consistently brought together researchers in parallel
and distributed computing. Founded by pioneers as a merger of the three thematically
related European conference series PARLE and CONPAR-VAPP, Euro-Par started
with the aim to create the main annual scientific event on parallel and distributed
computing in Europe and to be the primary choice of professionals for the presentation
of their latest results.

Since its inception, Euro-Par has covered all aspects of parallel and distributed
computing, ranging from theory to practice, scaling from the smallest to the largest
parallel and distributed systems, from fundamental computational problems and models
to full-fledged applications, from architecture and interface design and implementation
to tools, infrastructures, and applications. Euro-Par’s unique organization into topics
provides an excellent forum for focused technical discussion as well as interaction with
a large, broad, and diverse audience of researchers in academic institutions, public and
private laboratories, and industry. Euro-Par’s topics were always oriented towards
novel research issues and the current state of the art. Most topics became constant
entries, while new themes emerged and were included in the conference. Euro-Par
selects new organizers and chairs for every edition, giving opportunity to young
researchers and leading to fresh ideas while ensuring tradition. Organizers and chairs of
previous editions support their successors. In this sense, Euro-Par also promotes net-
working across borders, leading to the unique spirit of Euro-Par.

Previous conference editions took place in Stockholm, Lyon, Passau, Southampton,
Toulouse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes,
Las Palmas, Delft, Ischia, Bordeaux, Rhodes, Aachen, Porto, Vienna, Grenoble,
Santiago de Compostela, Turin, Göttingen, Warsaw, and Lisbon.

Thus Euro-Par in Scotland followed the well-established format of its predecessors.
The 28th edition of Euro-Par was organized by the School of Computing Science at the
University of Glasgow, with support from Heriot-Watt University, the University of
Edinburgh, and the University of Stirling.

Euro-Par 2022 accepted papers in the following nine topic areas:

– Compilers, Tools, and Environments
– Performance and Power Modeling, Prediction and Evaluation
– Scheduling and Load Balancing
– Data Management, Analytics, and Machine Learning
– Cluster and Cloud Computing
– Theory and Algorithms for Parallel and Distributed Processing



– Parallel and Distributed Programming, Interfaces, and Languages
– Multicore and Manycore Parallelism
– Parallel Numerical Methods and Applications

Submissions were also sought in two other topics areas. The High-performance
Architectures and Accelerators topic received and reviewed five submissions, but none
was considered strong enough for inclusion in the conference. The Parallelism in IoT/
Edge Computing topic received just two submissions, and these were considered under
other topics.

A total of 102 full papers were submitted by authors from 25 different countries. The
number of submitted papers, the range of topics, and the requirement to obtain high-
quality reviews mandated careful selection using a large pool of experts. The 102
members of the Program Committee (PC) combined with 108 external reviewers, to
give a total of 210 reviewers from 39 countries. The reviewers submitted 405 reviews,
with all but three papers receiving four or more reviews. The accepted papers were
selected in a two-phase process. Following discussion, each topic PC proposed sets of
papers for acceptance, discussion, and rejection. The papers from all topics were
reviewed and discussed in an online paper selection meeting on April 22, 2022. The
outcome was to select 25 papers to be presented at the conference and published in
these proceedings, a 24.5% acceptance rate.

To increase reproducibility of the research Euro-Par encourages authors to submit
artifacts, such as source code, data sets, and reproducibility instructions. In the noti-
fication of acceptance authors were encouraged to submit artifacts for evaluation. A
total of 12 artifacts were submitted in support of accepted papers and were evaluated by
the Artifact Evaluation Committee (AEC). The AEC successfully reproduced results
for 11 artifacts, or 44% of accepted papers. These papers are marked in the proceedings
by a special stamp, and the artifacts are available online in the Figshare repository. For
the first time, selected artifacts will also be published in a Euro-Par Special Issue of the
Journal of Open Source Software.

In addition to the technical program, we had the pleasure of hosting three distin-
guished keynotes.

– Ewa Deelman, USC Information Sciences Institute, USA
– José Duato, Polytechnic University of Valencia, Spain
– Domenico Talia, DIMES, University of Calabria, Italy

The conference program started with two days of workshops on specialized topics,
an Intel tutorial, and a Doctoral Symposium. Yehia Elkhatib coordinated the Doctoral
Symposium. Dora Blanco Heras and Jeremy Singer coordinated and organized the
workshops and tutorial as workshop co-chairs. After the conference, a selection of the
papers presented at the workshops will be published in a separate Springer LNCS
proceedings.

We would like to thank the authors, chairs, PC members, and reviewers for con-
tributing to the success of Euro-Par 2022. Similarly, we would like to extend our
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appreciation to the Euro-Par Steering Committee for its support. Our mentor, Paul
Kelly, provided valuable support and direction, and we are grateful for the wisdom and
resources shared by the Euro-Par 2021 team.

August 2022 José Cano
Phil Trinder
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Living in a Heterogenous World:
How Scientific Workflows Help Automate
Science and What We Can Do Better?

Ewa Deelman

University of Southern California, USA
deelman@isi.edu

Scientific workflows are now a common tool used by domain scientists in a number of
disciplines. They are appealing because they enable users to think at high level of
abstraction, composing complex applications from individual application components.
Workflow management systems (WMSs), such as Pegasus (http://pegasus.isi.edu)
automate the process of executing these workflows on modern cyberinfrastructure.
They take these high-level, resource-independent descriptions and map them onto the
available heterogeneous resources: campus clusters, high-performance computing
resources, high-throughput resources, clouds, and the edge.

WMSs can select the appropriate resources based on their architecture, availability
of key software, performance, reliability, availability of cycles, storage space, among
others. With the help of compiler-inspired algorithms, they can determine what data to
save during execution, and which are no longer needed. Similarly to compiler solu-
tions, they can generate an executable workflow that is tailored to the target execution
environment, taking into account reliability, scalability, and performance. WMS use
workflow execution engines to run the executable workflows on the target resources
providing scalability and reliability.

This talk will describe the key concepts used in the Pegasus WMS to help automate
the execution of workflows in distributed and heterogeneous environments. It will
explore potential use of artificial intelligence and machine learning approaches to
enhance automation. The talk will also help identify challenges that exist in adopting
novel approaches for science at the technological and social levels.

http://pegasus.isi.edu/


Effective Congestion Management for
Large-Scale Datacenters

José Duato

Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
jduato@disca.upv.es

Datacenters are essential for providing Internet services. As the number of client
requests per time unit and their complexity keep increasing, datacen-ters are adopting
computing solutions to scale with the demand, and provide appropriate support for
interactive services. In particular, computing accelerators (mostly GPUs, but also
TPUs, FPGAs, etc) have become very popular, and some recent designs even incor-
porate network ports in those devices to directly attach them to the interconnection
network. As system size increases, the cost of the interconnection network grows faster
than system size, thus becoming increasingly important to carefully design it to prevent
over-provisioning. However, by doing so, the network operation point moves closer to
saturation and sudden traffic bursts may lead to congestion. This situation is aggravated
by the recent introduction of flow control in datacenter networks to cope with RDMA
requirements, and network power management. The result is massive performance
degradation whenever some network region becomes congested. Moreover, perfor-
mance degradation may remain for long even after the traffic bursts that congested the
network have already been transmitted.

This keynote will show why congestion appears in an interconnection network,
how it propagates, and why performance may degrade so dramatically. Different kinds
of congestion will be identified. Also, a global solution to effectively address the
congestion problem will be proposed. It consists of several complementary mecha-
nisms that accurately identify the congestion sources and cooperate to address all kinds
of congestion, operating at different time scales. Some of these mechanisms have been
recently incorporated into commercial products and are being standardized.



Programming Big Data Analysis:
Towards Data-Centric Exascale Computing

Domenico Talia

University of Calabria, Rende (CS) 87036, Italy
talia@dimes.unical.it

Software applications today are strongly data driven. For this reason programming
models and tools and novel architectures have been recently studied and developed to
extract valuable information from Big Data, addressing data complexity, scalability,
and/or high velocity. Analytics and machine learning on Big Data sources are not
feasible through sequential algorithms to obtain in a reasonable time models and
patterns from huge volumes of data. For this reason, parallel computers, such as many-
and multicore systems, Clouds, and multi-clusters, along with parallel and decentral-
ized algorithms and systems are required to analyze Big Data sources and repositories.
In this direction Exascale computing systems represent the next step. Exascale systems
refer to high performance computing systems capable of at least one exaFLOPS, so
their implementation is representing a very significant research and technology move.
In fact, cluster computers and Cloud platforms used today can store very large amounts
of data, however they do not provide the high performance expected from massively
parallel Exascale systems. This is the main motivation for developing Exascale plat-
forms that will represent the most advanced model of supercomputers.

Data analysis solutions advance by exploiting the power of data mining and
machine learning techniques and are changing several scientific and industrial areas.
Therefore, it is vital to design scalable solutions for processing and analysis such
massive datasets. Scalability and performance requirements are challenging conven-
tional data storages, file systems and database management systems. Architectures of
such systems have reached limits in handling very large processing tasks involving
petabytes of data because they have not been built for scaling after a given threshold.
This condition claims for new hardware architectures and data analysis software
solutions that must process Big Data for extracting complex predictive and descriptive
models. To reach Exascale size, it is in fact required to define new programming
models and languages that combine abstraction with both scalability and performance
Hybrid models (shared/distributed memory) and communication mechanisms based on
locality and grouping are currently designed as promising approaches. Parallel appli-
cations running on Exascale systems require to control millions of threads running on a
very large set of cores. Such applications need to avoid or limit synchronization, use
less communication and remote memory, and handle with software and hardware faults
that could occur.

Implementing scalable data analysis applications in Exascale computing systems is
a very complex job and it requires high-level fine-grain parallel models, appropriate
programming constructs and skills in parallel and distributed programming.



Mechanisms are needed for expressing task dependencies and inter-task parallelism, for
designing synchronization and load balancing, handling failures, and properly manage
distributed memory and concurrent communication among a very large number of
tasks. Moreover, when the target computing infrastructures are heterogeneous and
require different libraries and tools to program applications on them, the programming
issues are even more complex. One of the most important aspects to ponder in
applications that run on Exascale systems and analyze big datasets is the tradeoff
between sharing data among computing elements and processing data locally to reduce
communication and energy costs, while keeping performance and fault-tolerance
levels. Scalable programming models based on basic operations for data intensive/data-
driven applications must include mechanisms and functions for parallel data access,
data-driven local communication, near-data synchronization, in-memory querying,
fault resiliency, data aggregation, and locality-based data selection. Reliable and high-
level programming models and their associated runtime must be able to manage and
provide implementation solutions for those operations through the exploitation of a
very large amount of parallelism on hundred thousand or millions of cores.

Exascale systems raise new requirements on application developers and program-
ming systems to target architectures composed of a very large number of homogeneous
and heterogeneous cores. General issues like energy consumption, multitasking,
scheduling, reproducibility, and resiliency must be addressed together with other data-
oriented issues like data distribution and mapping, data access, data communication
and synchronization. Programming constructs and runtime systems will play a crucial
role in enabling future data analysis programming models, runtime models, and
hardware platforms to address these challenges, and in supporting the scalable
implementation of real-world big data analysis applications. This keynote aims at
addressing these topics and issues.
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Topic 1: Compilers, Tools, and Environments

George A. Papadopoulos and Nick Brown

This topic addresses programming tools and system software for all kinds of parallel
computer architectures, ranging from low-power embedded high-performance systems,
multi- and manycore processors, and accelerators to large-scale computers and cloud
computing. Focus areas include compilation and software testing to design well-
defined components and verify their necessary structural, behavioral, and parallel
interaction properties. It deals with tools, analysis software, and runtime environments
to address the challenges of programming and executing the parallel architectures
mentioned above. Furthermore, the topic deals with methods and tools for optimizing
non-functional properties such as performance, programming productivity, robustness,
energy efficiency, and scalability.

The topic received eight submissions across the aforementioned subjects and papers
were thoroughly reviewed by the seven topic Program Committee members and
external reviewers. Each submission was subjected to rigorous review from at least four
peers and, after intensely scrutinizing the reviews, we were pleased to select three high-
quality papers for the technical program, corresponding to a per-topic acceptance rate
of 37.5%.

The first accepted paper “CrossDBT: An LLVM-based User-level Dynamic Binary
Translation Emulator” by Wei Li et al. deals with dynamic binary translation. A novel
LLVM-based emulator has been developed which enables guest machine code to be
directly lifted to LLVM IR and this produces high-quality machine code, ultimately
reducing runtime overhead compared against state of the art approaches. The second
paper “AutomaticMARTINI: The Little Match and Replace Tool for Automatic
Application Rewriting With Code Examples” by Alister Johnson et al. is concerned
with automated refactoring via metaprogramming. Specifically, this work describes a
new approach to code rewriting by providing advanced and semantic-driven rewrite
capabilities to users in a simple and natural way. Finally, the third accepted paper,
“Accurate Fork-join Profiling on the Java Virtual Machine” by Matteo Basso et al.
addresses the fork-join model for parallel programming. It presents a novel approach
for analyzing fork-join computations on the JVM, addressing the peculiarities of the
Java fork-join framework, including features such as task unforking and task reuse.

We would like to thank the authors who responded to our call for papers, the
members of the Program Committee and the additional external reviewers who, with
their opinion and expertise, ensured a program of the highest quality. Many thanks to
Phil Trinder for the tremendous overall organization of Euro-Par 2022 and his engaging
interaction.



Topic 2: Performance and Power Modeling,
Prediction and Evaluation

Jorge G Barbosa and Horacio González–Vélez

In recent years, a range of novel methods and tools have been developed for the
evaluation, design, and modeling of parallel and distributed systems and applications.
Furthermore, in addition to the classic resource-oriented notion, the term ‘performance’
has now been broadened to also encompass scalability and energy efficiency, as well as
system reliability and robustness.

The papers submitted to this topic represent progressive research on different
aspects of performance modeling, evaluation, and prediction, both for systems and
applications running on the whole range of parallel and distributed systems (e.g.
multicore and heterogeneous architectures, HPC systems, and clouds). That is to say,
the accepted papers provide an interesting horizon of novel research in distinct areas of
performance modeling, prediction, and evaluation, helping to bring together current
theory and practice.

This topic received 15 submissions, which were thoroughly reviewed by the 11
members of the topic Program Committee and external reviewers. Out of all submis-
sions, and after a careful and detailed discussion among committee members, we finally
decided to accept three papers, resulting in a per-topic acceptance rate of 20%.

We would like to thank the authors for their submissions, the Euro-Par 2022
Organizing Committee for their help throughout, and the Program Committee members
and the reviewers for providing timely and detailed reviews, and for participating in the
discussion and consensus carried out after the reviews were received.



Topic 3: Scheduling and Load Balancing

Dimitrios Nikolopoulos and Wolfgang Schreiner

New computing systems offer the opportunity to reduce the response times and the
energy consumption of the applications by exploiting the levels of parallelism. Modern
computer architectures are often composed of heterogeneous compute resources and
exploiting them efficiently is a complex and challenging task. Scheduling and load
balancing techniques are key instruments to achieve higher performance, lower energy
consumption, reduced resource usage, and real-time properties of applications.

This topic attracts papers on all aspects related to scheduling and load balancing on
parallel and distributed machines, from theoretical foundations for modeling and
designing efficient and robust scheduling policies to experimental studies, applications,
and practical tools and solutions. It applies to multi- and manycore processors,
embedded systems, servers, heterogeneous and accelerated systems, and HPC clusters
as well as distributed systems such as clouds and global computing platforms.

In this track 11 full papers were submitted, each of which received four reviews
from the eight Program Committee (PC) members and 25 external reviewers. On the
basis of this thorough feedback, we accepted three submissions, resulting in a per-topic
acceptance rate of 27%.

The chairs would like to sincerely thank all the authors for their high quality
submissions, the Euro-Par 2022 Organizing Committee for all their valuable help, and
the PC members and external reviewers for their excellent work. They all contributed to
making this topic and Euro-Par an excellent forum to discuss scheduling and load
balancing challenges.



Topic 4: Data Management, Analytics,
and Machine Learning

Ruggero G. Pensa and Nikos Ntarmos

Many areas of science, industry, and commerce are producing extreme-scale data that
must be processed—stored, managed, analyzed—in order to extract useful knowledge.
This topic seeks papers in all aspects of distributed and parallel data management and
data analysis. For example, cloud and grid data-intensive processing, parallel and
distributed machine learning, HPC in situ data analytics, parallel storage systems,
scalable data processing workflows, federated learning, and distributed stream pro-
cessing are all in the scope of this topic.

This year, the topic received nine submissions, which were thoroughly reviewed by
the seven members of the topic Program Committee (PC) and external reviewers. Out
of all the submissions, and after a careful and detailed discussion among committee
members, we finally decided to accept three papers, resulting in a per-topic acceptance
rate of 33%.

We would like to express our thanks to the authors for their submissions, the
Euro-Par 2022 Organizing Committee for their help throughout, the PC members and
the external reviewers for providing timely and detailed reviews, and for participating
in the discussion of the reviews were received.



Topic 5: Cluster and Cloud Computing

Ivona Brandic and Blesson Varghese

Cluster computing research deals with the efficient organization of large computer
systems at single geographic locations. Cloud computing, on the other hand, addresses
questions on the effective delivery of services that run across geographically distributed
clusters. Thus, there is an overlap of interests and problems addressed by both research
areas, which is the focus of this topic.

Important research topics on cluster computing focus on performance, reliability,
energy efficiency, and the design and use of novel processor architectures. Cloud
computing abstracts the hardware and system software details from the users and,
therefore, research issues include various forms of virtualization and their impact on
performance, resource management, and business models that address service provider
and user interests. Further, employing Cloud data centres and their advantages with
respect to reliability and load balancing along with the consideration of networks is of
interest to the community.

Leveraging local computing resources along with the Cloud, referred to as edge or
fog computing, has received growing interest in recent times.

This year, 10 papers were submitted to the track. Following a thorough discussion
of the reviews obtained from experts, the topic chairs accepted three submissions
resulting in a per-topic acceptance rate of 33%. The papers accepted address relevant
challenges in container, delay tolerance, and microservices-based cluster and cloud/
edge systems.

The topic chairs acknowledge the contributions of all authors who submitted their
research, the Euro-Par 2022 Organizing Committee for their support, the reviewers for
providing timely and high-quality reviews, and all who participated in the discussions.



Topic 6: Theory and Algorithms for Parallel
and Distributed Processing

Henning Meyerhenke and Ciaran McCreesh

Nowadays parallel and distributed processing is ubiquitous. Multicore processors are
available on smartphones, laptops, servers, and supercomputing nodes. Also, many
devices cooperate in fully distributed and heterogeneous systems to provide a wide
array of services. Despite recent years having witnessed astonishing progress in this
field, many research challenges remain open concerning fundamental issues as well as
the design and analysis of efficient, scalable, and robust algorithmic solutions with
provable performance and quality guarantees.

This year, a total of 16 submissions were received in this topic. Each submission
received four reviews from the 11 Topic Program Committee members. Following the
thorough discussion of the reviews, four original and high-quality papers were
accepted, giving a per-topic acceptance rate of 25%.

We would like to thank the authors for their excellent submissions, the Euro-Par
2022 Organizing Committee for their help throughout, and the PC members and the
external reviewers for providing timely and detailed reviews, and for participating in
the discussions that helped reach the decisions.



Topic 7: Parallel and Distributed
Programming, Interfaces, and Languages

Gabriele Keller and Hans Vandierendonck

Parallel and distributed applications require appropriate programming abstractions and
models, efficient design tools, parallelization techniques, and practices. This topic
attracted papers presenting new results and practical experience in this domain: efficient
and effective parallel languages, interfaces, libraries, and frameworks, as well as solid
practical and experimental validation.

The accepted papers emphasize research on high-performance, resilient, portable,
and scalable parallel programs via appropriate parallel and distributed programming
model, interface, and language support. Contributions that assess programming
abstractions and automation for usability, performance, task-based parallelism, or
scalability were valued.

This year, the topic received 11 submissions, which were thoroughly reviewed by
the six members of the topic Program Committee and external reviewers. After careful
and detailed discussion among committee members, we decided to accept three of the
submissions, giving a per-topic acceptance rate of 27%.

The topic chairs would like to thank all the authors who submitted papers for their
contribution to the success of this track, the Euro-Par 2022 Committee for their support,
and the external reviewers for their high-quality reviews and their valuable feedback.



Topic 8: Multicore and Manycore Parallelism

Massimo Torquati and Chris Brown

Multicore and manycore architectures are nowadays pervasive in all computing fields.
Yet, their intrinsic complexity creates several programming challenges when perfor-
mance, portability, and power efficiency are the most important metrics to optimize.
Programming complexity is further exacerbated when considering heterogeneous
platforms comprising thousands of heterogeneous cores. To use such systems effi-
ciently, algorithms must scale to a large degree of parallelism, utilize optimized data
structures and synchronization mechanisms, and leverage fine-tuned parallel runtimes
and frameworks capable of reducing parallel overheads. This topic seeks to explore the
programming of homogeneous and heterogeneous multicore and manycore systems. It
focuses on novel research and solutions in the form of programming models, algo-
rithms, concurrent data structures, libraries, runtime systems, and tools capable of
increasing programmability and performance of multi- and manycore systems in the
context of general-purpose, high-performance, and embedded parallel computing.

This year, six papers covering some of these issues were submitted. Each of them
was reviewed by four reviewers. Finally, one regular paper was selected. It focuses on
prediction models to estimate the slowdown effect of executing multiple concurrent
kernels on GPU devices. It proposes an enhancement of the Simultaneous Multikernel
distribution model to reduce the prediction error.

We would like to express our gratitude to all the authors for submitting their work.
We also thank the reviewers for their great job and useful comments. Finally, we would
like to thank the Euro-Par organization and steering committees for their continuous
support.



Topic 9: Parallel Numerical Methods
and Applications

Paolo Bientinesi and Michael Bane

The need for high-performance computing grows hand-in-hand with the need for
simulations and data analyses, ubiquitous across all domains of science, engineering,
finance, and life sciences. In turn, large-scale computations and analyses have to be
supported by efficient, scalable, and reliable algorithms and implementations that are
able to exploit modern computer architectures. Ultimately, end users will face a range
of algorithmic requirements regarding performance, accuracy, and energy consump-
tion. These requirements may potentially span a range of architectures including CPUs,
GPUs, and FPGAs, typically in a heterogeneous environment.

This topic provides a forum to discuss recent developments in the design and
implementation of parallel numerical algorithms. The submissions address algorithmic
design, performance analysis, and accuracy study, as well as integration of parallel
numerical methods in real-world and industrial applications. This year, the topic
received 12 submissions, which were carefully reviewed by the seven members of the
topic Program Committee with the help of external reviewers. Each submission
received four reviews which were then discussed among committee members. Ulti-
mately, two papers were accepted.

We would like to sincerely thank all the authors for their submissions, the Euro-Par
2022 Organizing Committee for all their valuable help, and especially all the reviewers
for their efforts. We feel that this topic and Euro-Par as a whole is an excellent forum to
discuss parallel numerical methods and applications.
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CrossDBT: An LLVM-Based User-Level
Dynamic Binary Translation Emulator

Wei Li, Xiaohui Luo, Yiran Zhang, Qingkai Meng, and Fengyuan Ren(B)

Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China

renfy@tsinghua.edu.cn

Abstract. Emulation of Instruction Set Architecture (ISA) is necessary
for a wide variety of use cases, such as providing the compatibility to exe-
cute programs compiled for a different ISA. This issue is usually solved
using Dynamic Binary Translation (DBT), where guest machine code is
translated to host ISA on runtime and Just-in-time (JIT) compilation
is performed to achieve high-performance emulation. QEMU, a famous
emulator, is developed to solve this issue, where Tiny Code Generator
(TCG) is constructed to translate guest binary code to TCG Interme-
diate Representation (IR), and then generate target ISA machine code
from TCG IR. Due to the limitations of TCG, some extensions, such
as HQEMU, use LLVM as the backend to optimize programs and gen-
erate high-performance machine code. However, HQEMU is limited by
its underlying implementation. That is, HQEMU still translates guest
binary code to TCG IR at first. In this paper, we develop a novel, LLVM-
based emulator, where guest machine code is directly lifted to LLVM IR
to reduce the extra overhead and produce high-quality machine code. We
evaluate our DBT emulator using BYTEmark benchmark and demon-
strating its ability to outperform the de facto standard QEMU DBT sys-
tem. The evaluation results confirm that our emulator delivers an average
speedup of 3.3x over QEMU across BYTEmark benchmark compiled for
x86-64 running on an ARMv8 platform, meanwhile, demonstrate that
our user-level DBT emulator can significantly reduce the overhead to
run a program on a cross-ISA system.

Keywords: Dynamic binary translation · Optimization · LLVM

1 Introduction

Over the past several decades, many popular ISAs have been created and the
CPU diversity in high performance computing has been increasing, for example,
PowerPC, x86, ARM and RISC-V. How to run programs compiled for one ISA,
especially closed-source programs, on another ISA platform is a technical issue.
User-level DBT is widely used to run Linux/BSD programs compiled for one
architecture on another target architecture and plays a prominent role in the
transition of ISA. Motivated by the need for ISA transition, a great amount
c© Springer Nature Switzerland AG 2022
J. Cano and P. W. Trinder (Eds.): Euro-Par 2022, LNCS 13440, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-12597-3_1
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of work focus on constructing a user-level/system-level DBT emulator such as
QEMU [3]. Apple develops Rosetta based on QuickTransit for PowerPC to x86
and Rosetta2 for x86-64 to ARM64. Intel also releases IA-32 execution layer
to improve the performance of 32-bit applications running on IA-64 systems.
The DBT emulator is also convenient for users to emulate some architectures
which they cannot access currently, especially as new features come into these
architectures which are not widely available for physical use yet, for example,
ARM releases an emulator for users to access SVE feature. A DBT system for
user-programs like QEMU works as follows: for initialization, the guest code
is mapped into the address space of the emulator and the virtual CPU state
is initialized. For translation, the guest code is divided and decoded to many
instruction basic blocks, lifting to a low-level IR. Code optimization can be
applied on IR and we compile IR to host architecture machine code, which will
be cached for performing JIT. Due to the limitation of TCG IR, QEMU utilizes
few optimizations and lacks the support of modern SIMD instructions (e.g. AVX,
AVX2, AVX512), resulting in the inefficiency of the generated code.

LLVM [19] is a compiler framework that can optimize programs during their
whole lifetime, including compile-time, link-time and run-time, where many pass
managers and JIT compilers are provided for optimization.

In this work, we present CrossDBT, our novel user-level DBT emulator, which
splits the whole process into two stages: the offline stage and the online stage to
overcome these issues. In the offline stage, architecture instructions are realized
by C++ functions and CrossDBT uses Clang to compile C++ functions to
LLVM IR functions. In the online stage, CrossDBT analyzes binary code by
an interpreter and divides guest instructions into basic blocks. With LLVM IR
functions from the offline stage, guest instructions are mapped into LLVM IR.
CrossDBT utilizes LLVM as a backend to optimize LLVM IR, generate high-
quality host machine code, and run the code by LLVM JIT.

We evaluate CrossDBT using an x86-64 guest model and a 64-bit ARMv8
host model and implement a DBT emulator outperforming QEMU by an average
speedup of 3.3x in BYTEmark benchmark.

Our main contributions are the following:

– We propose an efficient LLVM-based user-level DBT framework called Cross-
DBT, where guest machine code is directly lifted to LLVM IR in order to
avoid the extra overhead and loss of local information caused by translating
guest machine code to TCG IR at first.

– We design a two-stage process: offline stage and online stage in a DBT to
reduce the cost of compilation while maintaining code quality.

– We build an x86-64-to-ARMv8 user-level DBT emulator to demonstrate the
performance of CrossDBT. The x86-64-to-ARMv8 CrossDBT emulator is 3.3
times faster than QEMU in BYTEmark benchmark on average.

This paper is structured as follows: Sect. 2 introduces related works. Section 3
illustrates the CrossDBT architecture in details including the two stages.
Section 4 presents the performance evaluation. Finally, we summarize our find-
ings in Sect. 5.
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2 Related Work

DBT [24] is a compilation technique to support the execution of binary code for a
guest ISA on a host ISA. When the guest ISA and the host ISA are the same, we
call it as a same-ISA translator. A general purpose of the same-ISA translator is
to instrument binary code, which is referred as dynamic binary instrumentation
(DBI). When the guest ISA and the host ISA are different, we call it as a
cross-ISA emulator. There are two types of the cross-ISA emulator: system-level
DBT emulator running operating systems for any machine and user-level DBT
emulator running programs on any supported architecture (on the same OS).

Dynamic Binary Instrumentation. Valgrind [22] lifts code with superblock
granularity to VEX IR, where optimizations and modifications can be performed.
The instrumenter runs in the same address space as the instrumented pro-
gram. Dynamo [1] is a software dynamic optimization system that is capable
of improving the performance of an instruction stream. DynamoRIO [5,6] allows
for heavy-weight transformations and represents programs’ code in a low-level,
architecture-dependent IR with no optimizations applied. Pin [20] allows insert-
ing calls to functions in the instrumenting tool at any point in the program.
DBILL [21] first lifts the machine code to TCG, and then uses LLVM as back-
end to conduct optimizations. Instrew [14] overcomes the limitations of TCG
through directly lifting machine code to LLVM IR overcoming the limitations of
TCG IR.

System-Level DBT Emulator. QEMU [3], as a de facto industry standard, is
a typical system-level emulator. QEMU is composed of several subsystems: CPU
emulator (with software memory management unit), emulated devices, generic
devices, machine descriptions, debugger and user interface. For the translation
of machine code, QEMU lifts machine code to TCG IR with basic block granu-
larity and then can be compiled to target architecture machine code. For com-
plex instructions like SIMD instruction, QEMU uses helper C function to emu-
late. Embra [30] is a machine simulator for the processors, caches, and memory
systems of uniprocessors and cache-coherent multiprocessors. Transmeta CMS
[11] is a system-level implementation of x86 architecture comprising a native
VLIW microprocessor with aggressive speculation, hardware support and adap-
tive recompilation. MagiXen [7] is a prototype implementation of a Xen [2] vir-
tual machine monitor with an integrated binary translation that can run IA-32
virtual machines on Itanium platforms. PQEMU [12], an extension of QEMU,
tries to support multi-processor emulations to effectively utilize the underlying
parallelism presented by multi-core processors. HyperMAMBO-X64 [10] runs
the translator as a user program under the hypervisor and works with complete
transparency with regard to the virtualized system. Captive (2016) [27] exploits
existing hardware virtualization technology for improving the performance of
full-system cross-ISA emulation. Captive [28] performs DBT within the gener-
ated JIT compiler in a virtual bare-metal environment provided by a KVM [17]
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hypervisor, which enables us to realize the system-related and system-privileged
features not accessible to other DBT systems operating as user processes.

User-Level DBT Emulator. QuickTransit[18] allows software compiled for
one specific processor and operating system combination to be executed on a
different processor and/or operating system architecture without source code or
binary changes. Harmonia [23], an ARM-to-IA DBT tool, is based on open-source
QEMU utilizing register mapping and condition-code optimization. ISAMAP
[26] is a flexible instruction mapping driven by DBT, whose mapping mecha-
nism providing a fast translation between ISAs under an easy-to-use descrip-
tion. Walkabout [9] develops DBT techniques based on retargetability, separa-
tion of machine-dependent from machine-independent concerns and JIT com-
pilation. Walkabout is a framework for experimenting with DBT, as well as
other techniques such as interpreters, DBI tools and optimization. Yirr-Ma [29]
is an extension to a generated Walkabout machine emulator. Yirr-Ma is used to
experiment with two different DBT techniques: (1) translates hot source machine
traces using dynamic partial inlining of interpretation functions, (2) translates
hot source machine traces by JIT compiling an IR of the trace’s dynamic oper-
ational semantics. LLVM QEMU [8] addresses the limitation of TCG IR. The
guest machine code is first lifted to micro-operations, which are compiled to
LLVM IR. Then LLVM QEMU utilizes LLVM backend to optimize IR and gen-
erate host machine code. HQEMU [16] solves the performance problem of QEMU
by using a hybrid approach where only performance-sensitive sections are opti-
mized using LLVM. LnQ [16] achieves the performance improvement by directly
lifting machine code to LLVM IR and applying the chaining optimization such
as caches for predicting indirect jump and function returns. Due to the limita-
tions of TCG, HQEMU is not possible to further increase translation granularity
to allow more complex control flows and exploits more semantic information for
optimization. [13] implements a novel approach that adapts the Instrew/Rellume
[14] framework which directly lifts machine code to LLVM IR with function-level
granularity.

Summary. Many approaches are based on QEMU’s DBT [8,15,16] and other
binary translation systems [4,25] use LLVM as the backend to generate host
machine code from scratch. We further discuss these emulators and compare
them with our work. LLVM QEMU [8] lifts machine code to micro operations
of TCG IR at first. Each micro operation is implemented by C and compiled
into LLVM IR, which is used to generate host machine code by LLVM backend.
HQEMU [15] uses a hybrid approach where the entire code is also first trans-
lated using TCG and only performance-sensitive sections are then optimized
using LLVM. LnQ [16] achieves performance improvements over QEMU by lift-
ing guest code to LLVM IR. But they still have some limitations. As the machine
code is lifted first to TCG IR, LLVM QEMU and HQEMU suffer from two prob-
lems: (1) TCG IR loses the local context information of the original code, which
can be used for LLVM to optimize code, (2) The performance improvements
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are provided by LLVM and using TCG IR only costs more time with no bene-
fit. LnQ, which is an extension of QEMU, faces another problem that QEMU
focuses more on compatibility not performance and then doesn’t utilize many
specific optimizations for user-level DBT emulator. Table 1 describes the differ-
ences between CrossDBT and related work, clearly shows the novel features of
CrossDBT.

Table 1. The comparison between CrossDBT and related works

Tool Frontend Backend Translation Path Main Contributions

QEMU TCG TCG
Guest code→TCG IR→

Host code

System-level

emulation

LLVM

QEMU
TCG LLVM

Guest code→TCG IR→
LLVM IR→Host code

Lifting TCG IR

to LLVM IR

HQEMU TCG LLVM
Guest code→TCG IR→
LLVM IR→Host code

Optimizing

hot-spot sections

LnQ TCG LLVM
Guest code→LLVM IR→

Host code

Lifting binary

code to LLVM IR

CrossDBT Interpreter LLVM
Guest code→LLVM IR→

Host code

Two-stage

translation

3 DBT Emulator

3.1 Overview

In this section, we describe the main concepts of CrossDBT, which are composed
of two main stages as shown in Fig. 1: offline stage and online stage.

In offline stage, we implement the instructions of the target architecture
by C++ functions and then compile them to LLVM IR, which is discussed in
Sect. 3.2. The instructions are described in LLVM IR files for mapping in the
runtime. The online stage is discussed in Sect. 3.3. The DBT system itself runs
in host system as a process holding the heap and stack memory for the guest
application. The purpose to separate the DBT system into the offline stage and
online stage is for hiding the overhead of translating C++ functions to LLVM
IR and utilizing optimization. In online stage, CrossDBT only needs to load
the LLVM IR files produced on the offline stage. We use an x86-64-to-ARMv8
user-level emulator as an example to explain our CrossDBT framework in this
section. It is not difficult to port it to a new ISA. What we should do is to
emulate the instructions according to the manual of the new ISA without the
support of the vendors.
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Fig. 1. Overview of CrossDBT.

3.2 Offline Stage

ISA Description. To support a new ISA in CrossDBT, we first have to
acknowledge the ISA description according to the ISA developer’s manual such
as Intel 64 and IA-32 architectures software developer’s manual for x86-64. A
classical ISA includes these features:

– instruction types: data handling and memory operations, arithmetic and logic
operations, control flow operations, coprocessor instructions, complex instruc-
tions (e.g. floating-point arithmetic operations, atomic instructions and single
instruction multiple data (SIMD) instructions).

– instruction encoding: opcode formats, number and type of operands, imme-
diate value formats, operand addressing.

– instruction length: fixed length, variable length.
– register pressure: the availability of free registers at any point in time during

the program execution.
– register type: general-purpose registers, special registers (e.g. segment regis-

ters and EFLAGS registers in x86-64).

We should consider these features when designing the vCPU structure, which
includes general-purpose registers, extend control registers, system registers,
model-specific registers, SIMD registers and x87 registers for x86-64 ISA.

Instruction Emulation. We use the high-level programming language C++
to define instruction syntax and semantics. The instruction function is identified
by opcode, operand type and size. For simple instructions, we implement them
as shown in Fig. 2. For complex instructions, we design specific approach for each
type of complex instruction. For example, we utilize the interface provided by
LLVM to construct our atomic instructions. LLVM provides a uniformed inter-
face to realize atomic instructions for different ISA such as atomic fetch add
and atomic add fetch. SIMD and floating-point instructions, system calls are
discussed in Sect. 3.4 and Sect. 3.5.
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Fig. 2. The C++ functions for emulating instructions.

Fig. 3. The LLVM IR function compiled from the C++ function.

IR Generation. In order to get LLVM IR functions, we use Clang to compile
these instruction C++ functions to LLVM IR functions stored in LLVM IR files.
The LLVM IR functions are named, which can be loaded by name in online stage.
Figure 3 shows that a C++ function is compiled to a corresponding LLVM IR
function. Due to the implementation of C++ static polymorphism, the name of
the LLVM IR function is not the same as the name of C++ function. Thus, an
instruction description table is needed, where CrossDBT can get the LLVM IR
function of any instruction.

3.3 Online Stage

The online stage of CrossDBT involves the analysis and running of the guest
application and is composed of three main phases: Instruction Decoding (ELF
Loader, Dispatch Engine, Interpreter), Mapping and Optimization, Execution
as shown in Fig. 4.
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Fig. 4. The architecture of instruction decoding phase.

Fig. 5. Instruction decoding phase analyzes ELF files and decodes instructions.

Instruction Decoding. The first phase in online stage is instruction decod-
ing, which is composed of ELF Loader, Dispatch Engine, Interpreter as shown
in Fig. 4. ELF Loader loads ELF files and extracts useful information like code
segment, data segment, the relocation table. After loading files, CrossDBT uses
dispatch engine to check whether this basic block of instructions has been cached,
where basic block is identified by the Program Counter (PC) of the first instruc-
tion. If the basic block is cached, the next phase is the execution phase. If not,
CrossDBT decodes instruction by the interpreter and the next phase is mapping
phase. The interpreter analyzes binary code according to ISA developers’ man-
ual. As a user-level emulator, CrossDBT only focuses on the emulation of normal
operations and ignores the privilege instructions, I/O operations. Figure 5 gives
an example to show how instruction decoding works.

Mapping and Optimization. During the mapping and optimization phase,
CrossDBT creates an empty LLVM IR function representing a basic block. For
each decoded function in the basic block, CrossDBT puts the corresponding
LLVM IR function (which was produced in the offline stage) in it. We should
optimize the LLVM IR function to generate high performance host machine
code. LLVM provides various kinds of LLVM IR pass manager for optimization
such as function inlining pass, instruction combining pass, loop vectorize pass.
In Fig. 6, we give an example to show the pipeline mapping the instructions in a
basic block to LLVM IR functions and optimizing LLVM IR functions by LLVM
pass managers.

Execution. There are two situations that CrossDBT gets into the execution
phase. The first situation is that CrossDBT tries to generate host machine code
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Fig. 6. Mapping and optimization phase generates LLVM IR from instructions.

Fig. 7. The generated host machine code from LLVM IR in Fig. 6.
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by LLVM backend after finishing mapping phase. CrossDBT passes the LLVM
IR function to LLVM JIT for code generation and code cache, notifies dispatch
engine that this basic block has been cached now. The next time coping with
this basic block, CrossDBT does not need to translate it again. The second case
is that CrossDBT tries to run the host machine code by the LLVM JIT for
the basic block cached. For this case, we don’t have to utilize extra operations.
Figure 7 shows an example of the generated host machine code.

LLVM has several JIT methods for users: JIT, MCJIT, ORCJIT. ORCJIT
is the newest JIT method provided by LLVM, which has many new technical
features such as JIT-linking, LLVM IR compilation, eager and lazy compilation,
concurrent JIT’d code and concurrent compilation. These features provide more
flexibility to organize the ORC layers to achieve better performance. Thus, the
JIT in CrossDBT is built by LLVM ORCJIT.

3.4 SIMD and Floating Point

SIMD instructions are widely used to process 3D graphics, although modern
graphics cards with embedded SIMD have largely taken over this task from
the CPU. Some systems also include permute functions that re-pack elements
inside vectors, making them particularly useful for data processing and compres-
sion. They are also used in cryptography. The trend of general-purpose comput-
ing on GPUs may lead to wider use of SIMD in the future. Even some glibc
functions (e.g. memcpy) use SSE instructions as default in x86-64 architecture.
QEMU 6.0.0 supports MMX, SSE, SSE2, SSE3, SSSE3, SSE4 instruction sets
by using helper functions to emulate. Due to the limitation of helper functions,
QEMU cannot utilize the hardware to accelerate SIMD instruction. CrossDBT
also implements MMX, SSE, SSE2, SSE3, SSSE3, SSE4 instructions by emula-
tion. However, with the optimization of LLVM backend, CrossDBT makes use
of the hardware for SIMD instruction to a certain degree.

x87 is a floating-point-related subset of x86 ISA. It originated as an exten-
sion of the 8086 instruction set in the form of optional floating-point coproces-
sors that worked in tandem with corresponding x86 CPUs. Most x86 proces-
sors since the Intel 80486 have had these x87 instructions implemented in the
main CPU, but the term is sometimes still used due to the feature of providing
80-bit floating-point number or the compatibility for 32-bit application. Mod-
ern processors have SSE/AVX instruction set extension providing floating-point
instructions which operate on a new independent registers, the XMM and YMM
registers. CrossDBT supports the floating-point operations supplied by x87 and
SSE instructions. There are notable differences in the method that floating-point
flags, NaNs, rounding modes and infinities are handled in specific architecture.
This incompatibility between floating point needs to be considered in some cases.
CrossDBT ensures that the guest vCPU state is accurate with how the guest
machine would normally operate. For example, a precision mismatch is handled
by utilizing software floating-point library such as 128-bit floating-point number
provided by compiler. Another example is about rounding modes that Fused
Multiply Add (FMA) instructions calculate a∗ b+ c with only once intermediate
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value rounding while using normal arithmetic operations would operate twice
intermediate value rounding.

3.5 System Call

A system call is the programmatic way in which a computer program requests
a service from the kernel of the operating system on which it is executed. Sys-
tem calls provide an essential interface between a process and the operating
system. Implementing system calls requires a transfer of control from user space
to kernel space, which involves some sort of architecture-specific feature. Thus,
system calls are different for x86-64 and ARMv8 architecture. CrossDBT needs
an immediate layer to translate system call and only deals with the situation
that guest and host both use the Linux OS. There are three cases about how to
translate a system call.

Directly Use Host System Call. The most part of system calls have the
same interface and the same semantics such as read and write. CrossDBT can
get the arguments from the guest registers and directly invoke the host system
call to achieve the goal.

Emulate by Host System Call. For some system calls, they have different
interface between x86-64 and ARMv8 such as stat, for which we should prepare
the arguments to call the host system call. For system calls having special fea-
tures such as clone, we need to pay more effort. CrossDBT uses fork to create
a new process and sets thread local storage, child tid, parent tid, child stack of
the child process. For creating a new thread, CrossDBT utilizes pthread libs to
construct a new thread and sets the necessary data of the thread, where a new
translation main loop is established to continue the translation. When the task
of thread or process is finished, CrossDBT uses exit syscall to close and sets
child tidptr to zero if needed.

Linux vDSO and Vsyscall. The vsyscall and vDSO (virtual Dynamic Shared
Object) are two mechanisms used to accelerate certain system calls in Linux.
The vsyscall is added as a way to execute specific system calls which do not
need any real level of privilege to run in order to reduce the system call over-
head. The kernel maps into user space a page containing the fast implemen-
tation of some system calls. However, this vsyscall mechanism has some lim-
itations: the memory allocated is small and allows only 4 system calls, and,
more important and serious, the vsyscall page is statically allocated to the same
address in each process, which causes a security problem. Then the vDSO offers
the same functionality as the vsyscall, while overcoming its limitations. The
vDSO is a memory area allocated in user space which exposes some kernel
functionalities at user space in a safe manner. For Linux kernel, if vDSO is
not supported, kernel falls back to the traditional system calls, which means
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Fig. 8. Performance of QEMU, CrossDBT and Native on BYTEmark (higher is better).

we don’t need to do anything. For glibc functions like gettimeofday, if vDSO
is not supported, these functions try to use vsyscall in x86-64, which we need
to cope with. The vsyscall always maps system calls into process space from
0xFFFFFFFFFF600000 to 0xFFFFFFFFFF600C00, where the gettimeofday,
time, getcpu system calls locate. They are emulated by the corresponding host
system calls in CrossDBT.

4 Experiment Results

To evaluate the performance of CrossDBT, we apply it on the BYTEmark bench-
mark, which is designed to expose the capabilities of a system’s CPU, FPU, and
memory system and also used to for the evaluation of similar systems [3]. We use
x86-64 as guest architecture and ARMv8 as host architecture. The performance
of CrossDBT is compared against a native compilation for ARMv8 as well as
against QEMU 4.2.0.

4.1 Setup

We conduct the following experiments in a single thread mode. Our ARMv8
target platform is based on Kunpeng 920-4826 CPUs, 64 KB L1 instruction
cache, 64 KB L1 data cache, 512 KB L2 cache, 48 MB L3 cache, 2.6 GHz
frequency and 192 GB memory, running Ubuntu Linux 18.04 with Linux Kernel
5.0.0-23. The native code is compiled with Clang+LLVM 11.0.0 and –O3.
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4.2 Results

We first compare the running performance of QEMU, CrossDBT and native
ARMv8. The result is shown in Fig. 8. The performance ranges from 1.46X to
7.26X, and CrossDBT is 3.3 times faster than QEMU on a geometric average of
BYTEmark benchmark.

On the one hand, the improvement is significant in benchmarks that have
heavy floating-point operations such as String Sort, Fourier, Neural Net and LU
Decomposition. On the other hand, CrossDBT doesn’t reach high improvement
on the benchmarks that have few floating-point operations.

The main reason of this improvement is the insufficient translation ability
of QEMU. TCG, the compiler of QEMU’s DBT, doesn’t support floating-point
operations or SIMD instructions and translates them into helper function calls,
which causes huge performance loss. Thus, CrossDBT gains much performance
improvement than QEMU on floating-point-intensive benchmark because Cross-
DBT utilizes LLVM backend to generate high quality code and make use of the
host hardware to accelerate SIMD instructions and floating-point operations.

Comparing CrossDBT with the native ARMv8, the extra overhead ranges
18.2% to 46.1% and 33.1% on geometric average. Coincidentally, the largest gap
is also happening on floating-point-intensive benchmark. This phenomenon indi-
cates that we need pay more effort on how to translate floating-point operations
and SIMD instructions better.

5 Conclusion

In this article, we developed a novel user-level DBT emulator, CrossDBT, that
directly lifts guest machine code to LLVM IR and utilizes LLVM backend to
optimize and generate target host machine code. CrossDBT is composed of two
stages: offline stage, where we implement guest instructions by C++ functions
and compile them into LLVM IR, and online stage, where we lift binary code to
LLVM IR and generate host machine code.

We demonstrate the performance of CrossDBT by using an x86-64 guest
running normal environment on ARMv8 host, where CrossDBT outperforms the
widely used QEMU across BYTEmark benchmark with on average 3.3 times.
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Abstract. Rewriting code for cleanliness, API changes, and new pro-
gramming models is a common, yet time-consuming task. Localized or
syntax-based changes are often mechanical and can be automated with
text-based rewriting tools, like sed. However, non-localized or semantic-
based changes require specialized tools that usually come with complex,
hard-coded rules that require expertise in compilers. This means tech-
niques for source rewriting are either too simple for complex tasks or too
complex to be customized by non-expert users; in either case, developers
are often forced to manually update their code instead.

This work describes a new approach to code rewriting which exposes
complex and semantic-driven rewrite capabilities to users in a simple
and natural way. Rewrite rules are expressed as a pair of parameterized
“before-and-after” source code snippets, one to describe what to match
and one to describe what the replacement looks like. Through this novel
and user-friendly interface, programmers can automate and customize
complex code changes which require a deep understanding of the lan-
guage without any knowledge of compiler internals.

As our prototype, MARTINI, is built on top of Clang, we can (con-
ceptually) handle all Clang’s input languages, including CUDA, SYCL,
and many other C/C++-based interfaces, like Kokkos and OpenMP. To
showcase usability, we implemented the clang-tidy rule “modernize-
use-nullptr” and a simple instrumentation example. To further illus-
trate the potential of MARTINI, we reimplemented HIPIFY, which trans-
lates CUDA to HIP. Compared to hipify-perl and hipify-clang from
HIPIFY, our version is easier to implement, more understandable, and
customizable. The latter allows us to outperform HIPIFY-generated code
by slightly modifying the translation rules of MARTINI-HIPIFY.
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1 Introduction

Rewriting and refactoring are common tasks that can take a great deal of time
if performed by hand on a large code base. Some of these tasks are easily auto-
mated with existing text-based search-and-replace tools, like the GNU stream
editor, sed, or C preprocessor macros. This is especially true if the rewrite is
localized and does not require any semantic information that is not also present
through syntax. However, once rewrites span code ranges or require semantic
reasoning, text-based tooling is inadequate or requires complex implementations
(for example, tracking balanced parentheses with extended regular expressions).
Traditionally, this is where compiler-based tooling comes in [10]. The compiler’s
frontend has parsing and semantic analysis capabilities that allow more com-
plete understanding of the source code and, consequently, semantic-based rewrit-
ing over most arbitrary code ranges. However, developing and customizing such
tooling requires a deep understanding of the compiler and its rewriting infras-
tructure (if it has one), which restricts the developer pool drastically [7,17]. In
the past, as long as the number of desired rewrites was small and customization
was not required, hard-coded rules in a compiler-based rewriting tool were suf-
ficient. Today, however, language standards are changing more rapidly and new
parallel programming models are constantly being developed.

Programmers who wish to keep their applications up-to-date must use a
streamlined refactoring process [19]. For instance, testing a new programming
model is an intriguing and often difficult proposition; parts might be a simple
matter of replacing one API with another, but most often complex changes have
to be made as well, especially the new model has any kind of parallelism. Other
rewriting tasks, such as adding instrumentation or error-checking asserts, are just
as time-consuming and important. These changes often follow patterns, however,
and if programmers are able to capture those patterns in some way, these tasks
seem like they should be able to be automated.

The complexity of capturing these patterns in the form of rewrite rules or
tasks is closely tied to the complexity of the semantic context necessary to

int* test() {
int* a = 0;
double b, *c;
b = 0;
c = 0;
return 0;
}

(a) Example snippet in which the 0-literal
is used for pointer and non-pointer values.

int* test() {
int* a = nullptr;
double b, *c;
b = 0;
c = nullptr;
return nullptr;
}

(b) The same snippet with the 0-literal re-
placed by nullptr in all pointer contexts.

Fig. 1. Example to showcase the “modernize-use-nullptr” clang-tidy rewrite rule,
which replaces 0-literal pointers with nullptr. While the initialization of a can be
reasonably found with text-based search-and-replace techniques, the other two replace-
ments require non-local, semantic reasoning.
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perform the transformation (e.g., nesting level of loops, lambda handling). A
tool to automate code rewriting must have the ability to access and understand
semantic context, allow the user to easily contribute semantic knowledge, and
utilize both in code replacements.

As an example, consider the “simple” rewriting task done by the clang-tidy
rule “modernize-use-nullptr”1. This rule replaces constants, like NULL and 0,
assigned to pointer variables with the C++11 nullptr keyword, which is both
safer and more readable. Figure 1 illustrates the changes clang-tidy can per-
form. The first replacement, where a is initialized to 0, could be done with a
text-based tool, like sed, although constructing a generic regular expression to
match arbitrary types and variable names could be tricky. However, the other
two replacements, in the assignment to c and the return statement, are diffi-
cult if not impossible to handle without semantic context. The physical distance
between the type of the variable and the 0-literal can cross file boundaries, and
most languages allow for various other complexities, like shadowing declarations
with different types. This semantic context is out of reach for purely text-based
search-and-replace tools.

Once a rewriting task reaches a complexity beyond the capabilities of search-
and-replace tools, programmers are often left with no choice but to develop spe-
cialized modules in a compiler, where the semantic information needed is most
readily available. The “modernize-use-nullptr” clang-tidy rule shown above is
one of many such modules implemented using the Clang compiler’s tooling infras-
tructure, which provides access to semantic information from the Clang AST.
The code for this rule, though, is roughly 125 lines of complex C++ and Clang
AST matchers (excluding comments and code to handle NULL macros) which
require Clang AST specific knowledge. Other rewriting software (ref. Sect. 6)
expects similar specialized knowledge, as it also directly operates on the AST.

For sophisticated code transformations, using a compiler front end is often
the only solution. However, we believe that this does not preclude a user-friendly
approach, since developers can often write what they want to happen, though
maybe not how it should happen. To this end, we developed a system built on
Clang and based on semantic matching and user-provided code replacements
that is accessible to the average programmer. Similar to regular expressions,
users can describe and customize code transformations naturally as “before-and-
after” snippets of C++ code, which correspond to the two expressions used in
search-and-replace schemes. The available context for searching and replacing is
not restricted to syntax, though; it also contains semantic information extracted
by a compiler. Our interface is designed to be intuitive for C++ developers by
restricting its syntax to modern C++ and requiring no knowledge of compiler
internals, unlike previous rewriting tools. It is also designed to give users a great
deal of control over which changes are applied and where.

Continuing the above example, we can mimic most of the functionality of
clang-tidy’s “modernize-use-nullptr” rule (except NULL macros) through the
three code pairs shown in Fig. 2. On the left hand side are the “matchers” which
describe what should be replaced, and on the right hand side are corresponding

1 https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html.

https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
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template <typename T>
[[clang::matcher("nullptr-decl")]]
auto null_match() {
[[clang::matcher_block]]
T* var = 0;

}

(a) Matcher for initializing a pointer-typed
variable to a 0-literal.

template <typename T>
[[clang::replace("nullptr-decl")]]
auto null_replace() {
[[clang::matcher_block]]
T* var = nullptr;

}

(b) Replacement using nullptr for the
matcher in Fig. 2a.

template <typename T>
[[clang::matcher("nullptr-asgn")]]
auto null2_match() {
T* var = nullptr;
[[clang::matcher_block]]
var = 0;

}

(c) Matcher for a 0-literal assignment to a
pointer-typed variable.

template <typename T>
[[clang::replace("nullptr-asgn")]]
auto null2_replace() {
T* var = nullptr;
[[clang::matcher_block]]
var = nullptr;

}

(d) Replacement using nullptr for the
matcher in Fig. 2c.

template <typename T>
[[clang::matcher("nullptr-ret")]]
T* null3_match() {
[[clang::matcher_block]]
return 0;

}

(e) Matcher for a pointer-typed return
statement using a 0-literal.

template <typename T>
[[clang::replace("nullptr-ret")]]
T* null3_replace() {
[[clang::matcher_block]]
return nullptr;

}

(f) Replacement using a nullptr for the
matcher in Fig. 2e.

Fig. 2. The three matcher-replacer pairs we used to mimic (most of) the functionality of
clang-tidy’s “modernize-use-nullptr” rule. Applied to Fig. 1a, the “modernized” version
in Fig. 1b is produced. The variable name var is a parameter of the matcher block, and
the original variable name in the matched program fragment (e.g., a, b, and c in Fig. 1)
is bound to it for use in the replacement. While our matchers are by default type-
agnostic, and hence fully polymorphic, we enable type-based reasoning for template
type parameters, here T. As a result, the matchers on the left are restricted to pointer-
typed values.

“replacers” which contain the desired code with references back to the matched
input. This example demonstrates how our approach provides semantic context
for code rewriting and allows the average programmer to automate more complex
rewriting tasks.

The main contributions of our work are:

– MARTINI, the Little Match and Replace Tool, an open-source2, extensible
code rewriting tool built on top of Clang’s tooling infrastructure.

– A C++ user interface, similar to an embedded DSL, that is both user-friendly
and customizable, unlike many previous similar tools.

2 https://github.com/ajohnson-uoregon/llvm-project/tree/feature-ajohnson/clang-
tools-extra/clang-rewrite.

https://github.com/ajohnson-uoregon/llvm-project/tree/feature-ajohnson/clang-tools-extra/clang-rewrite
https://github.com/ajohnson-uoregon/llvm-project/tree/feature-ajohnson/clang-tools-extra/clang-rewrite
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– A prototype alternative to the HIPIFY tool [11], which rewrites CUDA into
HIP, that is both easier to understand and customizable by the user.

– Further examples that showcase the versatility of MARTINI: custom
clang-tidy-like rewrite rules that do not require Clang AST knowledge, and
instrumentation code placement in 20 lines of code.

Known limitations of our prototype implementation include:

– The inability to describe generic type matching rules; our prototype generally
ignores types, which makes it fully polymorphic, however we honor certain
type constraints (e.g., is a pointer type) for template type parameters.

– The inability to declare optional expressions; for our case study we automat-
ically generated matcher and replacer pairs with varying argument counts.

– No support for matching function, class, or struct declarations.
– Very limited support for matching sequences of statements.

The rest of this paper is organized as follows. In Sect. 2 the design and imple-
mentation of MARTINI are described. The instrumentation example follows in
Sect. 3 before we discuss our HIPIFY clone in Sect. 4 with an evaluation in Sect. 5.
The discussion of future work in Sect. 7 follows the comparison to related work
in Sect. 6. Section 8 concludes.

2 Design and Implementation

We present MARTINI, a source-to-source transformation tool implemented using
Clang’s front end tooling infrastructure. To specify code modifications, users
provide two sets of C++ functions containing parameterized code snippets:
matchers and replacers (or transformations, which are a special form of replacer,
though we use the two terms interchangeably). Matchers describe which code
snippets to modify, and are distinct from Clang’s AST matchers. We will always
refer to the latter as AST matchers in this work to avoid ambiguity. Replacers
(and transformations) describe how matched code should be rewritten. Figure 3
illustrates the workflow of MARTINI. Our contributions, which include the AST
matcher generator, the replacer transform generator, and code rewriting func-
tionality, are highlighted through bold green outlines. We reused Clang’s AST
generation and AST matcher utilities, as well as some rewriting functionality.
The user provides the program source to be rewritten as well as the matchers
and replacers. The latter is shown as separate files but one file can contain any
number of matchers and replacers.

To declare matchers and replacers, we introduce the C++ attributes
described in Fig. 4 to Clang. Through the use of native C++ to embed control
annotations, we can work with an otherwise unmodified Clang. Similarly, users
can verify the validity of their snippets through existing source code verification
in the Clang front end (e.g., via clang++ -cc1 -verify). This is important as
we expect the user-given code to be valid in its respective language, e.g., CUDA,
since a Clang AST can only be generated for such inputs.
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Our AST matcher generator, shown in Fig. 3, “compiles” the statements in
the matcher block (ref. [[clang::matcher_block]] in Fig. 4) of functions anno-
tated as matchers (ref. [[clang::matcher("...")]] in Fig. 4) into a Clang AST
matcher. These AST matchers will match source code that has the same semantic
structure as the input code snippet, regardless of syntactic differences. Conse-
quently, potential hazards like arbitrarily complex sub-expressions, line breaks
and spacing, and inline comments, are automatically dealt with. Matchers are by
default parametric, but can also look for literal names (through the hasName()
AST matcher). Parameters are bound (via the bind() AST matcher) to the
source code they match.

Fig. 3. The workflow of MARTINI. Our contri-
butions are denoted with bold, green outlines.
The dashed green outline indicates we signifi-
cantly expanded existing functionality. Note that
the matchers and replacers need not be in separate
files. (Color figure online)

To turn a code snippet
into an AST matcher, the
snippet’s AST is traversed
and converted node-by-node
based on the node’s seman-
tics. For example, the AST
matchers generated for the
operands of a CallExpr node
(function call) are connected
via a hasArgument() AST
matcher to the CallExpr’s
AST matcher.

Replacers are read by the
replacer transform generator
also shown in Fig. 3. The AST
of the replacer does not need
to be stored as it can be
regenerated as needed. Thus,
only the source code of the
matcher block in a replacer
(ref. [[clang::replace("...")]] in Fig. 4) is kept.

Matchers and replacers are tied together through names in their respective
attributes written as string literals (ref. "<matcher_name>" and "<matcher�
list>" in Fig. 4). Replacers and transformations can be tied to any number
of matchers, and a single matcher can be tied to multiple replacers, e.g., both
insert_before and insert_after. A match found by a matcher will be rewrit-
ten with the code of the replacer with the matcher’s name in its list, with appro-
priate names and values in the code replaced with those from the match.

MARTINI takes in a specification file describing matchers and replacers,
performs AST matcher generation, parses the replacers, then uses the existing
AST matcher framework to search the user’s source code for matches. Matches
are processed in the order they are found, which is by top-down AST traversal.
When it finds a match, it uses Clang’s existing Rewriter utilities to replace any
identifiers in the replacement code with the code bound to that identifier by
the matcher. Finally, the location of the match in the source file is modified by
replacing the matched code range with the replacement code. An entirely new
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[[clang::matcher("<matcher_name>")]]
for matchers; identifies a function as a matcher specification with the given name.

[[clang::replace("<matcher�list>")]]
for replacers; identifies a function as a replacer associated with all listed matchers.

[[clang::insert_before("<matcher�list>")]]
for transformations; identifies a function as replacer that inserts code before a match.

[[clang::insert_after("<matcher�list>")]]
for transformations; identifies a function as replacer that inserts code after a match.

[[clang::matcher_block]]
for matchers, replacers, and transformations; identifies statement(s) to be matched,
replaced, or inserted. Outside code can provide declarations to ensure valid C++. If
not present, all statements are used, though support for this is incomplete.

Fig. 4. The MARTINI-specific C++ attributes used to declare matchers and replac-
ers in user-provided code snippets. Through use of native C++, MARTINI control
attributes are naturally embedded in the source and can be handled by an otherwise
unmodified Clang.

source file is produced to simplify experimentation with different transformation
specifications and preserve the original source in case of mishaps. We put very
few restrictions on the kinds of transformations users can write, even those that
may produce invalid C++ output, to give users as much flexibility as possible.
We have implemented a few safety checks for insert_before and insert_after
(for example, we will not insert code into the conditions of an if statement), but
in general users must verify the correctness of their rewritten code.

As mentioned, all identifiers, such as variables and function names, are treated
as matcher parameters unless they are marked as literals by the user. This means
users can choose to, e.g., match all functions that take two arguments and use
the name of the matched function as a parameter in the replacer. Alternatively,
a user can choose to match all calls to a specific function named foo that takes
two arguments by making foo a literal. An identifier is marked as literal through
a declaration in a special namespace (i.a., namespace clang_rewrite_literals
void foo(int a, int b); – note a and b are not literals as they are parameters,
not explicitly declared in the namespace), or by putting it in a special vector (i.a.,
vector<string> clang_rewrite_literal_names "foo";). We are considering
adding another attribute for declaring literals for users that do not want to use
the namespace or vector.

3 Case Study: Instrumentation

Profiling, for one reason or another, is something every application developer
wants to do at some point. However, maintaining a program version that per-
forms any form of logging is costly, especially given the varied kinds of logging one
might want to perform. While abstractions like templates, macros, and #ifdef
can help, applications making heavy use of them often redesign a multi-level DSL
with severe implications for long-term maintainability and readability. Given
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auto fn(auto);
auto LOG_FN(auto, auto) {}
auto LOG_LAMBDA(auto, auto) {}

[[clang::matcher("log_fn")]]
auto fn_call_matcher(int arg) {
fn(arg);

}
[[clang::replace("log_fn")]]
auto fn_call_replacer(int arg) {
LOG_FN(fn, arg);

}
[[clang::matcher("log_lambda")]]
auto lambda_call_matcher(int arg) {
auto lambda = [&](int){};
[[clang::matcher_block]]
lambda(arg);

}
[[clang::replace("log_lambda")]]
auto lambda_call_replacer(int arg) {
auto lambda = [&](int){};
[[clang::matcher_block]]
LOG_LAMBDA(lambda, arg);

}

(a) Matcher and replacer pairs for instrument-
ing a single argument function ("log_fn") and
a single argument lambda ("log_lambda").

int g(int);
void test() {
[&](int _){
g(g(_));

}(g(0));
}

(b) Non-trivial input example with
nested calls and a lambda invocation
which make it complex for text-based
search-and-replace tools. Such tools
would also struggle with newlines,
comments, and (malicious) strings,
such as: f(g("\"),q(\"")).

int g(int);
void test() {
LOG_LAMBDA([&](int _){

LOG_FN(g, LOG_FN(g, _));
}, LOG_FN(g, 0));

}

(c) The input from Fig. 5b rewrit-
ten by MARTINI with the shown
example-based rewrite rules. All
three function calls are replaced by
the "log_fn" rule while the lambda
invocation was modified by the
"log_lambda" rule.

Fig. 5. Example of how MARTINI can effectively instrument a code base with simple
example-based rewrite rules that are semantic context-aware.

easy to use, customizable, and fully automatic code rewriting, however, devel-
opers can instead create short-lived, special-purpose code versions on-demand
while keeping the core application code clean.

While we do not provide a full-fledged instrumentation suite yet, we show-
case the benefits of MARTINI for instrumentation tasks in Fig. 5. Through the
two simple before-and-after code snippets shown in Fig. 5a, users can easily cre-
ate a one-off program version that will log every call, including lambdas. As
shown in Fig. 5b and 5c, function calls and lambda invocations are replaced
by the macros LOG FN and LOG LAMBDA, respectively. Note that, to MARTINI,
there is no semantic difference between declaring a variable as an argument to a
matcher or replacer and declaring it outside a [[clang::matcher_block]]. We
demonstrate the former in this example.

Though contrived, this example clearly shows how the power of semantic
matching and the simplicity of example-based rewriting come together. Since the
rules are reusable, easily customizable, and maintainable by non-expert users,
instrumented code can be produced from the original application at any point.
Thus, one-off rewriting effectively reduces the maintenance burden while offering
more powerful capabilities than “baked-in” instrumentation solutions.
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4 Case Study: HIPIFY

For a realistic evaluation we performed a case study against HIPIFY [11], a state-
of-the-art source code rewriting tool that ports CUDA codes to the (very similar,
but more portable) HIP programming model. HIPIFY exists in two versions, as a
“legacy” perl script, hipify-perl, and as an extension to the Clang front end,
hipify-clang. Both versions have been used by researchers and application
developers to port code, with generally positive results [1,4,16].

// 31 lines of C++ code (removed)
OS << kern;
if (caleeDecl->isTemplateInstantiation())
OS << ")";

OS << ",�";

// Next up are the four kernel configur-
// ation parameters, the last two of
// which are optional and default to 0.

// Copy the two dimensional arguments
// verbatim.
for (unsigned int i = 0; i < 2; ++i) {
string sArg = readSourceText(*SM, config

->getArg(i)->getSourceRange()).str()
;

bool bDim3 = equal(sDim3.begin(), sDim3.
end(), sArg.c_str());

OS << (bDim3 ? "" : sDim3) << sArg << (
bDim3 ? "" : ")") << ",�";

}
// 31 lines of C++ code (removed)

Fig. 6. Excerpt of hipify-clang source trans-
lating CUDA kernel launches to HIP. The
replacement function alone (HipifyAction::
cudaLaunchKernel) is 73 lines (excluding com-
ments and helper functions). This snippet pretty-
prints the grid and block dimensions to the output
file. It still inspects the input code string (e.g., by
scanning for the string sDim3 = "dim3("), despite
AST matching of CUDA kernels being done ear-
lier elsewhere. This kind of string matching code
is hard to read, hard to modify, and overall fragile
as typedefs or syntactic deviations (e.g., spaces)
impact it easily.

To bootstrap our HIPIFY
clone, we used the rewrite
rules already defined in the
hipify-clang source. We lim-
ited our HIPIFY to CUDA’s
runtime API for now to keep
the number of matchers and
replacers manageable for debug-
ging our prototype. The exist-
ing tables from hipify-clang
allowed us to automatically
generate matcher-replacer pairs
for CUDA runtime calls and
types, including all simple
renames, such as cudaMalloc
to hipMalloc. However,
hipify-clang requires that
transformations more complex
than renaming, such as kernel
calls, be implemented explic-
itly with strong coupling to
the Clang AST. Figure 6 illus-
trates this with an excerpt
of the hipify-clang source
code for rewriting CUDA ker-
nel launches. These particular
lines pretty-print the thread
grid and block dimensions to
the output stream (OS). For
brevity we omit 62 lines of
this function, as well as all
helpers and the logic that
creates and applies the AST
matcher. Still, all of this com-
plexity is required just to replace CUDA kernel calls.
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In Fig. 7 we illustrate our alternative approach, which does not require any
interaction with an AST, or any other complexity. In Fig. 7a, the matcher for
a CUDA kernel launch with two kernel arguments and three launch parameters
is shown. Since we currently do not support optional arguments, we automat-
ically generate matchers and replacers for all supported numbers of arguments
and launch parameters explicitly with a script. While we will support such vari-
ability more concisely in the future, one can already see how our approach is
fundamentally simpler and more natural to non-compiler experts. Neither the
matcher nor the replacer require interaction with the AST or other compiler
internals, but all benefits over text-based search-and-replace approaches are pre-
served. For example, all matcher parameters (e.g., kern and nthreads) can
bind to arbitrary complex expressions in the user’s code. Figure 7b shows the
associated replacer pattern. The kernel name (kern), together with the launch
parameters (nthreads converted to dim3), are moved to argument positions in
HIP’s kernel launch function.

Importantly, the replacer pattern is written directly in the target language,
which makes it easy for any developer to change the argument order, adjust
default values (here, 0 in the HIP kernel launch), or modify the transformation
in other ways. As an example, the shown replacer will not only port a CUDA
kernel launch to HIP, but also double the number of threads to account for the
(usually) larger wave size on AMD GPUs compared to the warp size on NVIDIA
GPUs. The two characters added for this modification are highlighted in the
definition of nthreads3D in Fig. 7b.

While our prototype emits the literal code in the clang::matcher_block,
including the conditional that converts integer grid sizes to dim3 types, we intend
to add further capabilities to replacers such that compile-time constant expres-
sions like this can be simplified. In this example, the is integer condition can
be determined at replacement time, which would allow the ternary expression
to be simplified.

5 Evaluation

Our evaluation machine has two 14-core, hyperthreaded Intel Xeon(R) E5-2680
v4 CPUs running at 2.40 GHz, 128 GB of RAM, and two AMD Instinct MI100
GPUs. HIP codes were compiled using hipcc 4.4.21432-f9dccde4 based on AMD
Clang 13.0.0 and ROCm 4.5.2 and the same version of hipify-perl. We used
hipify-clang with git hash 61241a4 compiled using gcc 9.3.0 and the same
LLVM version as MARTINI, which is hash 4c2b57ae from LLVM’s main branch.

We compare translating a simple gravitational N-body simulation code3 from
CUDA to HIP with MARTINI-HIPIFY and AMD’s HIPIFY. It features four
variants: unoptimized (nbody-orig), struct-of-arrays (SOA) data layout (nbody-
soa), cache blocked (nbody-block), and unrolled loops (nbody-unroll).

3 https://github.com/harrism/mini-nbody.

https://github.com/harrism/mini-nbody
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__global__ void kern(int a1 = 0,
int a2 = 0, /* more args */) {}

template<int nblocks, int nthreads,
int shmem, int a1, int a2>

[[clang::matcher("launch2a3p")]]
auto launch_2_3_matcher() {
[[clang::matcher_block]]
kern<<<nblocks, nthreads, shmem

>>>(a1, a2);
}

(a) Matcher for a CUDA kernel launch
with three launch parameters and two
kernel arguments. As our prototype is a
work in progress, we opted to generate the
matchers for varying numbers of launch
parameters and arguments explicitly with
a script. A matcher has to be valid in the
source language, here CUDA, to allow (an
unmodified) Clang to generate an AST.
Depending on the situation, the user also
needs to provide additional declarations,
e.g., the kern (dummy) function, for the
same reason.

template<int nblocks, int nthreads,
int shmem, int a1, int a2>

[[clang::replace("launch2a3p")]]
auto launch_2_3_replacer() {
[[clang::matcher_block]] {
bool nthreadsIs1D = numeric_limits

<decltype(nthreads)>
::is_integer;

auto nthreads3D = nthreadsIs1D
? dim3(nthreads * 2 )
: nthreads;

hipLaunchKernelGGL(kern, nblocks,
nthreads3D, shmem, 0,
a1, a2);

}}

(b) HIP kernel launch replacement code for
the matcher in 7a. Replacers and matchers
are linked by the name, here "launch2a3p".
Non-literal variables that are used in both
act like capture groups in regular expres-
sions. The expression in the source code
that is bound to them by the matcher is
substituted into the end result at use loca-
tions in the replacer.

Fig. 7. Matcher/replacer pair for CUDA kernel launches with two kernel arguments
and three launch parameters.

5.1 Performance

Since we cannot compile and run both CUDA and HIP on the same device on
our testing machine, it would be unfair to compare the performance obtained by
the original CUDA and translated HIP codes. Therefore, we only compare the
performance of the automatically translated HIP codes created by hipify-perl,
hipify-clang, and MARTINI.

The performance we obtained for each translation is given in Table 1. Each
version was run for ten iterations, and the average and standard deviation run
times per iteration are presented in ms. As expected, all three translators gen-
erate very similar code with very similar performance for both medium and
larger-size problems, regardless of application version.

Interestingly, when we generated code that multiplied the number of threads
by two (“#Threads x2” columns in Table 1), as done in Fig. 7, performance
greatly improved on the larger problem size for all versions of the application
except nbody-orig (which is a naive implementation where little performance
gain is expected). Performance also improved on the smaller problem size for
nbody-block and nbody-unroll. These numbers are bolded in the table. This
is due to the wider thread waves on AMD GPUs compared to thread warps
on NVIDIA GPUs. hipify-perl and hipify-clang are unable to make these
kinds of changes easily, as we will discuss in Sect. 5.2.
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5.2 Usability

Both MARTINI-HIPIFY and AMD’s hipify-clang are command line compiler
tools, but while the core of hipify-clang4 is approximately 1,000 lines (exclud-
ing comments and newlines) of AST matchers and C++ making heavy use of
Clang internals, MARTINI-HIPIFY is 5,672 lines of simple CUDA/C++ (again
excluding comments and newlines), the vast majority of which was automat-
ically generated using tables in hipify-clang that convert CUDA names to
HIP names. Of the 712 matchers and replacers generated, 212 were for kernel
launches with varying numbers of launch parameters and arguments (this will
be reduced by at least an order of magnitude once optional arguments are imple-
mented), and the remaining 500 were for CUDA runtime functions and types.
Of those 500, only 46 needed to be fixed by hand due to problems our gener-
ator script had getting the correct types from the CUDA headers. As a rough
comparison of code complexity, all of the matchers and replacers in our HIPIFY
have a McCabe cyclomatic complexity [6] of 1, while AMD’s hipify-clang has
an average cyclomatic complexity of 6.7 (calculated with pmccabe).

Table 1. Execution time in ms of the HIP output code for the N-body benchmark.

MARTINI-HIPIFY AMD HIPIFY

Number Unmodifed #Threads x2 hipify-perl hipify-clang

Benchmark Particles Mean Stddev Mean Stddev Mean Stddev Mean Stddev

nbody-block 30000 319.65 5.42 104.62 0.11 319.62 3.44 318.73 6.34

300000 457.65 1.35 210.60 0.90 453.55 1.63 449.20 2.71

nbody-orig 30000 171.99 0.47 172.43 0.35 171.63 0.78 172.63 0.89

300000 415.97 2.11 418.35 0.75 414.98 2.72 416.91 2.38

nbody-soa 30000 198.45 1.66 197.19 1.78 205.60 1.19 205.38 2.40

300000 426.05 0.42 363.84 2.67 429.44 0.54 428.72 2.76

nbody-unroll 30000 332.87 2.08 180.71 0.61 334.45 1.98 335.24 2.36

300000 470.70 0.95 229.27 0.64 471.06 0.51 469.65 1.59

For a more concrete comparison, consider a user who wants to make a simple
modification to the translation of CUDA kernel calls into HIP: multiplying the
number of threads by two to improve performance on AMD devices, which gen-
erally have wider threading than NVIDIA devices. To do so with hipify-clang,
that user would have to 1) determine that HipifyAction.cpp is where most of the
translation is done, 2) find the function HipifyAction::cudaLaunchKernel(),
3) analyze the 73 lines of code in that function to find where the kernel configura-
tion is handled, and 4) determine where in the relevant string manipulation code
(shown in Fig. 6) to insert their *2. Without knowledge of the Clang AST and
Clang’s source manipulation libraries this is incredibly difficult, time-consuming,
and highly dependent on the (in-source) documentation of hipify-clang.
4 HipifyAction.cpp/.h and main.cpp.
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To do the same thing with MARTINI-HIPIFY, the user would only have to
modify the kernel call replacers similarly to what is shown in Fig. 7b. The replac-
ers are easy to find by searching for the HIP kernel launch function name, and the
modification could be done with a traditional search-and-replace tool. No under-
standing of Clang internals is necessary to modify MARTINI-HIPIFY. (It was
a simple matter for us to modify the script that generated MARTINI-HIPIFY
so all kernel call replacers looked like the one in Fig. 7b.) Other modifications,
for example, printing the size of all arrays allocated on the device, are similarly
intuitive.

6 Related Work

The most similar work to our own is Nobrainer [12,13], which also uses C/C++
code snippets and AST matchers to match application code and describe how
to modify it, and inspired some of our user interface. As the Nobrainer project
has existed for longer than ours, it supports more of the C++ standard. How-
ever, Nobrainer uses more restrictive and specialized syntax (e.g., to match a
single expression, the expression must be returned) and generally enforces more
restrictions on transformations than we do. They do this to ensure their trans-
formations are (type-)safe, but we opted to take a more lenient approach both to
simplify the implementation of our prototype and to give users more flexibility
in the transformations they can define. It’s easy to imagine cases where users
may want to change the type of an expression – in fact, we make heavy use
of this in our HIPIFY case study – but this is nearly impossible in Nobrainer.
Nobrainer rewrite rules are strictly before-and-after code snippets; ours allow
for more nuance with both insert and replace rules and the potential for adding
more control and logic around which transformations happen when. Nobrainer’s
design philosophy is to make matchers as specific as possible and force users to
add generality – they assume all names in a matcher are literals unless they are
specified as parameters and do their best to enforce safety. Our philosophy is
almost precisely opposite of that: our matchers are as general as possible and
users must add specificity, e.g., with literals, and we allow users to define any
transformations they wish with minimal restrictions on safety.

ClangMR [19] and the Clang Transformer library [2] are similar code rewrit-
ing tools implemented in Clang, but both of these use AST matchers (with a
few additions) as a user interface. Our tool is designed to provide similar func-
tionality but be usable by non-compiler experts.

Other code rewriting frameworks include the ROSE compiler [10],
Xevolver [17] (built on ROSE), and the Omni source-to-source compiler [7].
These tools provide more low-level interfaces than ours, and thus more precise
control over rewriting, but at the cost of requiring users to be compiler experts.
In particular, Xevolver provides an XML-based AST pattern matching inter-
face for describing code transformations and Omni requires users to write Java
classes that perform transformations on an XML representation of the AST.
Neither of these are very user-friendly, as users have to directly describe AST
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manipulations and use syntax specific to each tool. Our tool, on the other hand,
only requires knowledge of C++ and the semantics of a few new attributes.

7 Future Work

As mentioned earlier, our tool currently has very little support for types and only
supports the subset of Clang AST nodes necessary for HIPIFY, which mostly
focuses on CallExprs and their arguments. As more use cases and example
matcher/replacer sets are created, support for the full Clang AST, including
type matching, will be added, as well as an “easy mode” that does not require
the [[clang::matcher block]] attribute for one-line transformations, as done
in Fig. 5a. More interestingly, we plan to implement a way to denote parame-
ters in matchers as optional, e.g., for default arguments or overloaded functions,
and other ways to include more complex logic in transformations. For exam-
ple, returning to the transformation described in Fig. 7 and Sect. 5.2, if a user
wished to double nthreads only when the value of nthreads is small, that logic
could be encoded in the transformation itself, not in the code the transformation
produces. This would allow more complex rewriting tasks to be implemented suc-
cinctly in one matcher/replacer pair, instead of multiple matcher/replacer sets,
and also decrease the complexity needed in the code output.

Once we have support for more of the Clang AST and the tool is more
mature, we would like to conduct user studies for feedback on how we could
make the interface more user-friendly. We would like to do a direct comparison
to Nobrainer for these studies, but sadly Nobrainer is not open-source. We are
also looking at a few real-world use cases where we could work with applica-
tion developers to get their feedback. Other future use cases we are currently
considering include:

– Instrumentation, e.g. inserting calls to an instrumentation API [14] around
“interesting” code snippets (as defined by the user), or call stack tracing.

– Translating to/from other programming models, such as OpenMP → Kokkos,
or pragma translation for OpenACC ↔ OpenMP (which is not as simple as
it seems [3,9,15,18]).

– Common compiler optimizations, like loop unrolling.
– Other in-flight data analyses, such as checkpointing or in situ compression.

We are particularly interested in translating between various programming mod-
els and adding support for pragmas, since this would open up many interesting
use cases such as users defining custom pragmas.

Since MARTINI is based on the Clang AST and front end infrastructure,
there is also the possibility of expanding it to include other languages that use
Clang as a front end, including Cilk, Objective C/C++, and even Fortran once
the Flang [8] tooling infrastructure has matured.
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8 Conclusion

We have presented a new automatic code rewriting tool, MARTINI, built on
Clang, and provided a prototype re-implementation of HIPIFY that is easier to
understand and customize than the original. The user interface is pure C++
and designed for ease of use so that the average C++ programmer can write
their own code transformations without needing to resort to specialized compiler
tools. While our new tool currently only supports a subset of the Clang AST, we
are working to add more support and upstream our work into Clang. Our imple-
mentation can be found at https://github.com/ajohnson-uoregon/llvm-project/
tree/feature-ajohnson/clang-tools-extra/clang-rewrite.
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Abstract. The fork-join model for parallel computing has become very
popular and is included in the Java class library since Java 7. While
understanding and optimizing the performance of fork-join computations
is of paramount importance, accurately profiling them on the Java Vir-
tual Machine (JVM) is challenging due to the complexity of the API. In
this paper, we present a novel model for analyzing fork-join computations
on the JVM, addressing the peculiarities of the Java fork-join framework,
including features such as task unforking and task reuse. We implement
our model in a profiler that detects every spawned fork-join task, captur-
ing all task dependencies and aiming at collecting cycle-accurate task-
granularity data. We evaluate our profiler against a dedicated fork-join
profiler for the JVM, showing that our tool achieves higher profile accu-
racy and introduces less overhead.

Keywords: Fork-join Parallelism · Work Stealing · Accurate
Profiling · Task Granularity · Task Dependencies · Java

1 Introduction

The fork-join model for parallel computing has first been described in the
1960s [5,18] and has become popular with languages such as Cilk [2,8], imple-
menting an execution mechanism based on work stealing [3,4]. The Java class
library includes an implementation of the fork-join model since Java 7 [13], which
has become very popular. It is used not only for application-level fork-join com-
putations, but it is also at the core of many frameworks both for Java (e.g., it is
used in the Java Stream framework [19] for executing parallel streams) and for
other languages targeting the Java Virtual Machine (JVM), including Scala (e.g.,
Scala actors [10]), Groovy (e.g., GPars [31]), and Clojure (e.g., Reducers [30]).

As related work demonstrates [1,14,23,27], to understand the performance
of fork-join computations and optimize them, one needs dedicated profilers able
to capture metrics specific to the fork-join framework (e.g., focusing on task
stealing, nested task executions, and parent/child task relationships) as well
as task-granularity information (i.e., a measure of the amount of computations
performed by every task). Regarding the former category, to the best of our
c© Springer Nature Switzerland AG 2022
J. Cano and P. W. Trinder (Eds.): Euro-Par 2022, LNCS 13440, pp. 35–50, 2022.
https://doi.org/10.1007/978-3-031-12597-3_3
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knowledge, there is no profiler for the JVM that can collect such metrics on
the Java fork-join framework. Regarding the latter, while there are dedicated
tools for task-granularity profiling on the JVM [23,25], they suffer from high
overhead, resulting in serious measurement perturbations and inaccurate (and
possibly misleading) task-granularity profiles.

To bridge this gap, in this paper, we present a novel technique to accurately
and efficiently profile fork-join computations on the JVM. Differently from pro-
gramming languages such as Cilk, where the simplicity of the underlying fork-join
model facilitates the development of related profilers [11,14,27], in the case of
Java, accurately profiling fork-join computations is challenging, because the fork-
join framework is complex, supporting not only forking and joining of tasks, but
also task unforking and task cancellation, as well as task reinitialization (i.e., the
reuse of task instances). These features are also commonly used in practice (e.g.,
task unforking and task reuse are employed in some benchmarks [6]). Hence,
existing formal models for fork-join computations in Cilk cannot be used to cor-
rectly model the execution of an arbitrary fork-join computation permitted by
the Java API.

For this reason, we propose a new profiling model that captures any legiti-
mate use of the Java fork-join framework and allows a variety of relevant metrics
to be computed, such as e.g. number of workers, number of tasks stolen from/by
a given thread (task-stealing rate), task execution nesting, and task-reuse rate,
in addition to task granularity. Our model accurately detects the parent/child
relationships between tasks even when multiple fork-join computations concur-
rently execute in the same fork-join pool. Moreover, similarly to other estab-
lished profilers [14,28], our model allows one to analyze high-level information
related to load balancing and task dependencies. Such metrics and information
greatly enhance program comprehension and guide developers to optimize fork-
join computations, e.g., by identifying source-code locations where task reuse is
applicable.

We implement our model in a novel fork-join profiler for the JVM, named
wosp. Our tool minimizes data collection at profiling time and calculates key
metrics in a post-processing phase. Our profiles include task-granularity infor-
mation in terms of elapsed reference cycles1.

We compare the profiling accuracy and the overhead of wosp with FJProf [25].
To the best of our knowledge, FJProf is the only profiler specific to the Java
fork-join framework able to collect task-granularity data on fork-join tasks2.
Our evaluation results demonstrate that wosp achieves a much higher accuracy
of the collected profiling information while introducing a much lower profiling
overhead.

In summary, this paper makes the following contributions. We present a
novel profiling model that accurately captures a variety of relevant metrics on

1 Reference cycles are the clock cycles elapsed during an operation, collected at the
nominal processor frequency (regardless of frequency scaling). The paper uses the
term “cycles” to indicate “reference cycles” for short.

2 FJProf is a fork-join-specific version of the task-granularity profiler tgp [24].
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the Java fork-join framework as well as task-granularity data. We also present
wosp, an efficient profiler implementing our model (Sect. 3). We evaluate accuracy
and overhead of our profiler and compare it with the task-granularity profiler
FJProf [25], demonstrating that our profiler results in superior accuracy and
a much lower overhead than FJProf (Sect. 4). We complement the paper with
the necessary background information (Sect. 2), a discussion on related work
(Sect. 5), and our concluding remarks (Sect. 6).

2 Background

The Java implementation of the fork-join framework [13] is based on work-
stealing [3,4] and adopts a work-first [9] approach to scheduling. The main
entities composing the framework are tasks (implemented in class ForkJoinTask)
and the fork-join pool (implemented in class ForkJoinPool), to which tasks are
submitted.

The ForkJoinPool API allows developers to perform advanced tuning and
scheduling customizations by offering a rich set of features that go beyond the
fork-join primitives offered by other languages such as Cilk [2,8]. In this section,
we summarize these additional features, namely task reuse, unforking, and can-
cellation, and we describe their specifications. Unless otherwise noted, we use
the term task to indicate an instance of class ForkJoinTask [20], and we refer to
the execution of method ForkJoinTask.exec as task execution. Given two tasks p
and c such that p forks c (i.e., while a thread is executing p, it calls c.fork), we
refer to p as the parent of c and to c as the child (or subtask) of p.

Task Reuse. It is the reusage of the same task instance to perform multiple
executions instead of frequently allocating new tasks. This feature may be useful
when executing pre-constructed trees of tasks in loops. Internally, a call to the
method ForkJoinTask.reinitialize resets the internal state of the task, allowing a
subsequent fork. Note that the Java fork-join framework allows executing mul-
tiple forks on the same task instance only if the task is reinitialized (by calling
reinitialize) between each pair of forks [20]. Reinitialization is allowed only if the
task either 1) has never been forked, or 2) has been forked, executed, and all
joins of the task have completed. The API does not specify the behavior of reini-
tialization if the above conditions do not hold. As an example, reinitialization
is used in the implementation of the well-known task-parallel benchmark nbody
evaluated in Sect. 4.

Task Unforking. It is the unscheduling of a task which was previously forked
locally (i.e., in the parent task) which can help reduce the task-management over-
head of the framework. According to the Java documentation, a call to method
task.tryUnfork may return true (but is not guaranteed to do so) if task is the most
recently forked task by the current thread, and its execution has not already
started in another thread. A typical use of this method is to locally process
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tasks that could have been—but actually were not—stolen. As an example, task
unforking is used in the implementation of the benchmarks integrate and lud
evaluated in Sect. 4.

Task Cancellation. It is the cancellation of the execution of a task by the
user. This features enables optimizations related to specific problems, such as
short-circuiting a computation. A call to task.cancel may fail depending on the
internal state of the task, e.g., if the task has already completed. If successful,
and the task has not started executing when the method cancel is called, the
execution of the task is unscheduled and suppressed. After method cancel returns
successfully, the task cannot be used anymore, unless there is an intervening call
to task.reinitialize. Moreover, trying to join a cancelled task is not allowed (it
will result in a CancellationException). Note that this method is designed to be
invoked by other tasks. To terminate the current task, users can just use a return
statement or throw an unchecked exception from its computation method.

3 Profiling Technique

In this section, we present our technique for profiling the Java fork-join frame-
work. We first present our profiling model (Sect. 3.1) and then we outline its
implementation in the wosp profiler (Sect. 3.2).

3.1 Profiling Model

Here, we first define the focus and goals of our technique and describe the under-
lying profiling model using high-level events. With the model, we explain how we
produce execution traces, i.e., sequences of records which represent the profiled
events in an application. Our traces track the minimum amount of information
that allow a reconstruction of the parent/child relationship and the granularity
of each task offline, i.e., after the application has terminated. Then, we detail
how to compute task granularity and detect work stealing by reconstructing
the parent/child relationship using the generated traces. Finally, we map high-
level events (used in the model description) to concrete methods of the fork-join
framework.

Focus and Goals. Our goal is representing the parallel task computation tak-
ing place at runtime. Hence, we focus on the execution of tasks that have been
forked, i.e., tasks that have been arranged for parallel execution. We disregard
the sequential execution of children tasks, i.e., direct synchronous method invo-
cations. We incorporate the granularity of any direct synchronous method invo-
cations into the granularity of their parent tasks. On the other hand, a forked
task that happens to be sequentially executed by the forking thread would be
profiled separately. Also, we detect tasks that are forked, subsequently unforked,
and manually executed or canceled by the user. In addition, we detect reused
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Fig. 1. Finite state machine modeling the lifetime of a fork-join task.

tasks, too. We focus on legitimate and meaningful usages of the fork-join frame-
work; we do not model erroneous API usages. For example, we assume that
a task is not forked more than once unless the task has been completed and
reinitialized (which would be an illegal usage).

Task State Machine. We model each fork-join task as a finite state machine.
Figure 1 shows a graphical representation of the finite state machine where states
are represented using ellipses and transitions are represented with arrows. Transi-
tions produce trace record as output. The state machine consists of four states, all
of them final: INIT, FORKED, RE-INIT, and RE-FORKED. Above each state
transition, the notation “event/trace record ” specifies the event that triggered
the transition and the produced trace record. State transitions are triggered by
four events: fork, exec, cancel, and reinitialize. Event fork indicates task forking,
or, at a lower level, a push to a work queue, i.e., to the thread-local deque of tasks
owned by each fork-join thread that executes tasks in the fork-join pool (called
worker). Events exec, cancel, and reinitialize indicate task execution, cancellation,
and reinitialization, respectively.

After instantiation, a task begins its lifecycle in the initial state INIT. State
FORKED indicates that a newly created task has been forked due to the occur-
rence of a fork. State RE-INIT indicates that a task has been either reset due
to the occurrence of a reinitialize, executed due to the occurrence of an exec, or
cancelled due to the occurrence of a cancel. State RE-FORKED indicates that
a task has been forked after a reset, allowing us to track reused tasks.

Our model considers three different trace records: push[tid, prev-tid], clear[tid],
and run[tid, entry, exit]. We report the runtime values that each trace record
encapsulates within squared brackets. In Fig. 1, a special value “–” indicates that
a record value is not present for a specific transition. The notation ε indicates
that, for that transition, no profiling trace record is produced. In trace records,
tid refers to a unique ID associated to each task usage, i.e., to each sequence of
events that starts with a fork and may end with an exec or a cancel. Unique IDs
are newly generated upon the occurrence of each fork. This allows us to consider
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the same task instance associated to a different ID as a newly created task. To
avoid information loss, i.e., to enable the reconstruction of the exact lifecycle of
a task instance and to determine the task-reuse rate, upon each fork, the trace
record reports the previous ID prev-tid (if any). In this way, the lifecycle of a
task instance can be reconstructed by chaining fork events. We note that multiple
consecutive fork events can still be encountered during this reconstruction phase,
because a task can be forked, unforked, and then discarded. Ignoring unforks does
not lead to any information loss, as reported later in this section.

In the exec trace record, the entry and exit values represent the thread-local
reference cycles obtained when the execution started and finished, respectively,
enabling task-granularity analyses. In practice, the run[tid, entry, exit] trace
record is composed of two sub-records run_begin[tid, entry] and run_end[exit].
This allows us to reconstruct parent/child task relationships, as explained later.
We note that, even in case of nesting, i.e., run occurring within another run,
trace records run_begin and run_end are always balanced and hence it is not
necessary to report tid in run_end.

We note that our model does not employ an unfork event since an unforked
task will be either executed (producing an exec and hence a transition) or dis-
carded (producing no events and hence no information). Not explicitly consid-
ering task unforking allows us to reduce runtime overhead without information
loss. Under the assumption that a fork-join pool terminates and cancels all the
tasks that were forked but not executed before the shutdown of the JVM (as
the common pool automatically instantiated by the JVM does), the quantity
#push − #cancel − #exec gives the number of scheduled tasks that have nei-
ther been cancelled nor executed.

Work Stealing and Parent/Child Relationship. Since state transitions
may take place in different executing threads during the lifecycle of a task, each
trace record contains a reference to the thread that produced it. In practice,
instead of collecting traces per task, traces can be collected more efficiently
per thread. This allows us not only to analyze load balancing by manipulating
run trace records and the corresponding cycles, but also to determine when work
stealing takes place. If a push and a run associated to the same ID π are produced
by different threads t0 and t1, respectively, we can conclude that t1 has stolen
the task associated to π from t0.

Trace records of different tasks may be nested within the traces of the same
thread, i.e., trace records of a task c may appear between the run_begin and the
run_end records of another task p. We refer to the particular case of nested run
records as nested task executions. We refer to p as the outer task, and to c as the
inner task. Nested executions may take place in the fork-join framework either
because of nested parent/child executions (in wosp, in case of forking, unforking,
and subsequent execution) or because of helping. Indeed, in the fork-join frame-
work, workers help complete other tasks until the task being joined is done. As
a consequence, outer tasks may not be parent tasks of their corresponding inner
tasks. While nested executions provide insightful information about the actual



Accurate Fork-Join Profiling on the Java Virtual Machine 41

Table 1. Java methods corresponding to events in the task state machine (Fig. 1).

Event Triggering Java Methods

fork ForkJoinTask.fork ForkJoinPool.submit
ForkJoinTask.invokeAll ForkJoinPool.invokeAny
ForkJoinPool.invokeAll ForkJoinPool.execute
ForkJoinPool.invoke

exec ForkJoinTask.exec ForkJoinTask.quietlyJoin
ForkJoinTask.invoke ForkJoinTask.quietlyInvoke
ForkJoinTask.invokeAll ForkJoinPool.invoke
ForkJoinTask.join ForkJoinPool.invokeAll
ForkJoinTask.get ForkJoinPool.invokeAny

cancel ForkJoinTask.cancel ForkJoinPool.invokeAny
ForkJoinTask.invokeAll ForkJoinPool.shutdown
ForkJoinPool.invokeAll ForkJoinPool.shutdownNow

reinitialize ForkJoinTask.reinitialize

execution taking place at runtime, they do not allow to reconstruct parent/child
task relationships. In our model, a push of a task c occurring within the run of
another task p indicates that p is the parent task of c.

Mapping Java Methods to Events. For each event of the task state machine,
Table 1 reports the methods of the ForkJoinTask and ForkJoinPool classes that
may trigger such event. Internally, methods that map to fork invoke ForkJoin-
Task.fork, methods that map to exec invoke ForkJoinTask.exec, and methods that
map to cancel invoke ForkJoinTask.cancel. Methods that map to both fork and
exec (e.g., ForkJoinPool.invoke) first trigger fork and then exec. We note that
some methods (e.g., ForkJoinPool.invokeAll) trigger fork and exec/cancel for sev-
eral different tasks. We also note that cancel is conditionally triggered by some
methods that trigger also exec. For example, in ForkJoinTask.invokeAll, if any
task encounters an exception, the others may be cancelled.

We emphasize that the invocation of some methods, such as ForkJoinTask.join,
may lead not only to the execution of the task currently being joined but—
because of helping—also to the execution of other tasks, as previously explained.

Finally, the default implementation of methods ForkJoinPool.shutdown and
ForkJoinPool.shutdownNow (i.e., the methods used to terminate the ForkJoinPool)
cancel forked tasks that were not executed.

3.2 Implementation

We implemented our profiling technique in a novel profiler for the Java fork-join
framework called wosp. Here, we outline implementation details of our profiler.
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wosp is composed of three main components: the instrumentation, the tracing
agent, and the postprocessor. The instrumentation implements the state machine
and invokes the tracing agent to produce profiling traces. Then, after application
execution, the postprocessor decodes the traces to extract task information and
metrics. Below, we detail each component separately.

Instrumentation. To instrument the target application according to the
model, wosp relies on DiSL [16], a load-time out-off-process Java bytecode instru-
mentation framework that guarantees full bytecode coverage. To minimize run-
time perturbation and data collection, we perform minimal instrumentation. In
particular, we profile fork events by instrumenting the low-level methods push
and lockedPush defined in class ForkJoinPool.WorkQueue. We profile the events
exec, cancel, and reinitialize instrumenting methods exec, cancel, and reinitialize
defined in all the subtypes of class ForkJoinTask, respectively. We note that all
the methods associated to the events listed in Table 1, internally call the methods
we instrument. Hence, we do not need to instrument all of them individually. To
avoid expensive runtime typechecks, we efficiently determine all subtypes of class
ForkJoinTask at instrumentation-time leveraging the DiSL Reflection API [26].

Tracing Agent. Traces are produced by invoking native primitives of a JVMTI
agent attached to the executing JVM via JNI. To reduce contention, similarly
to related work [14], wosp produces thread-local traces. Our implementation
stores trace records in thread-local buffers that are pre-allocated (i.e., a certain
number of buffers is allocated at VM startup) and acquired the first time a thread
needs to store a trace record during the application execution. When an acquired
buffer is full, the executing thread can acquire another pre-allocated buffer. The
buffered data is dumped to files only at the shutdown of the JVM to avoid I/O
overheads during the execution of application code. Only if the pre-allocated
buffers are not enough, the agent dumps and allocates new buffers at runtime
(although none of the analyzed workloads required runtime buffer dumping and
allocation). While unique IDs associated to task usages are provided to the agent
via JNI calls, reference cycles are collected per thread directly in native code
using the PAPI [12] library. Binary files can be decoded by external applications
to perform analyses.

Postprocessor and Metrics. To analyze the traces, we implement a Java
application that reads the binary files and decodes their content by applying
the rules reported in Sect. 3.1. During trace decoding, the postprocessor keeps
a stack of run_begin records. Every time a run_begin record is encountered, it
is pushed on the stack; when a run_end record is encountered, the correspond-
ing run_begin record is popped from the stack, and the pair run_begin-run_end
allows calculating the task granularity. We measure task-granularity as the exclu-
sive measurement of reference cycles, i.e., the difference between the cycles stored
in the run_end and run_begin records, minus the sum of task granularity of the
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nested inner tasks. When a push[child-id] is encountered, if a run_begin[parent-id]
is on the top of the stack we can create the parent/child relation among tasks
(parent-id, child-id). Once the whole parent/child relation has been built, we can
reconstruct stolen tasks, i.e., a task is stolen if 1) it has a parent and 2) the
thread who executed the parent task is different from the thread who executed
the child task. After postprocessing, we report runtime metrics and information
including but not limited to: number of workers, task granularity, parent/child
task relationships (task dependencies), number of tasks stolen from/by a given
thread (task-stealing rate), load balance, task execution nesting, and task-reuse
rate.

4 Evaluation

In this section, we present our evaluation. We first describe our experimental
setup (Sect. 4.1). Then, we evaluate the accuracy of the profiles produced by
wosp and its profiling overhead (Sect. 4.2). In both cases, we compare our tool
with FJProf [25], a fork-join task profiler for the JVM, allowing dedicated task-
granularity profiling.

4.1 Experimental Setup

Here, we describe the benchmarks used in our evaluation and the testbed.

Benchmarks. Our evaluation targets the Renaissance [21] and Aeminium [6]
benchmark suites. We use the latest releases of Renaissance (v.0.14.0, released
on Jan. 31, 2022) and Aeminium (latest commit on the open-source repository [7],
dated Oct. 19, 2016) at the time of writing.

Renaissance includes one workload exercising fork-join computations, fj-
kmeans. From Aeminium, we consider all workloads which either make use of
the peculiar features of the Java fork-join framework (described in Sect. 2) or
execute a large number of fork-join tasks. For each workload, we focus only
on the steady-state iteration, i.e., a complete execution of the workload after
garbage-collector ergonomics and dynamic compilation have stabilized. We run
as many warm-up iterations as suggested by the developers of Renaissance [22]
and Aeminium [7].

Testbed. We run all the experiments on two machines M1 and M2. M1 is
equipped with an 8-core Intel Xeon E5-2680 (2.7GHz) and 128GB of RAM,
while M2 with a 18-core Intel i9-10980XE (3.00GHz) with 256GB of RAM.
M1 and M2 run under Linux, generic kernel versions 4.15.0-147 and 5.4.0-89,
respectively. We disable Turbo Boost and Hyper-Threading. The CPU governor
is set to “performance”. We use OpenJDK 17 (build 17.0.2+8-LTS) and PAPI 6.

4.2 Accuracy and Overhead Evaluation

Here, we evaluate the profiling accuracy and overhead of wosp and FJProf.
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Table 2. Results of the accuracy and overhead evaluation.

Workload Machine #Workers #Tasks Overhead factor Accuracy[%]

FJProf wosp FJProf wosp FJProf wosp

fj-kmeans M1 19 666,200 666,200 2.12 1.02 79.58 99.68

M2 19 666,200 666,200 2.75 1.02 78.19 98.84

fft M1 9 65,535 32,768 1.34 1.01 90.51 99.90

M2 19 65,535 32,768 1.13 1.02 97.56 99.70

doall M1 23 1,572,861 786,432 4.26 1.02 56.23 99.27

M2 23 1,572,861 786,432 10.43 1.04 41.42 98.47

heat M1 17 102,913 102,712 2.53 1.04 94.20 99.07

M2 19 102,913 102,712 4.95 1.09 74.76 99.95

integrate M1 20 731 501 3.60 1.07 55.61 97.31

M2 22 747 892 9.42 1.20 34.86 93.86

lud M1 18 28,367 39,853 4.51 1.05 55.14 99.95

M2 19 39,250 56,187 12.83 1.10 32.91 99.80

matrixmult M1 17 131,071 65,536 1.11 1.01 96.90 99.64

M2 20 131,071 65,536 1.77 1.11 85.66 99.47

mergesort M1 9 262,143 131,072 4.53 1.06 45.25 99.32

M2 19 262,143 131,072 8.59 1.09 28.43 99.58

quicksort M1 21 1,487,767 1,487,767 6.21 1.04 36.60 97.18

M2 25 1,487,767 1,487,767 10.54 1.02 23.74 97.82

pi M1 16 32,767 16,384 1.04 1.01 96.84 98.19

M2 20 32,767 16,384 1.03 1.01 97.34 98.54

fibonacci M1 14 11,405,773 5,702,887 20.45 1.12 16.86 90.20

M2 19 11,405,773 5,702,887 65.40 1.21 9.28 83.88

nbody M1 9 351 176 1.10 1.08 99.02 99.77

M2 9 351 176 1.18 1.14 99.10 99.99

Accuracy. We aim at comparing the total task granularity (i.e., the total num-
ber of cycles elapsed during task executions) accounted for all the profiled tasks
as reported by wosp and FJProf with the cycles elapsed by all fork-join com-
putations in a non-instrumented execution of a workload, i.e., the baseline. The
smaller the difference between the total cycles and the baseline, the higher the
profile accuracy.

Baseline Computation. Since all the selected workloads perform exclusively
fork-join computations, our baseline is computed as the total cycles elapsed
in the execution of a workload, which we approximate to the total fork-join-
computation cycles. We compute the baseline using PAPI, reading cycle counters
of the main thread and the workers, before and after the steady-state iteration.
Hence, our baseline reflects the total cycles elapsed by all threads involved in
fork-join computations.

Results. Table 2 shows the results of our evaluation on M1 and M2. For each
workload, we first report the number of workers (#Workers) and then the total
number of tasks (#Tasks) as reported by FJProf and wosp. Both values corre-
spond to the mean of 51 runs (rounded to integers).
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We then report the profiling overhead, which is computed as the overhead
factor, i.e., the execution time of an instrumented workload divided by the execu-
tion time of the workload without any profiling (considering also the means of 51
runs). To estimate accuracy, we use the relative error (RE), which is computed
from the mean of the baseline and the total cycles reported by each profiler. We
define accuracy as the quantity 1 - RE (shown as percentage). A RE of zero
would indicate the highest possible accuracy (100%).

Both FJProf and wosp, for the same workload and machine, report the same
number of workers. We note that the number of workers that execute tasks
does not depend only on the number of cores (and hence on the machine) but
also on the parent/child task relationships (and hence on the workload). While
the number of cores determines the number of preallocated workers that can
steal tasks, the fork-join pool creates a new worker whenever a task cannot be
executed because all the existing workers are blocked.

We note that the number of tasks reported by FJProf is twice (minus one)
the number reported by wosp for fft, doall, matrixmult, mergesort, pi, fibonacci,
and nbody. This is explained by the key differences in the profiling models imple-
mented by the two profilers. In the model of FJProf, a new fork-join task execu-
tion (and hence, a new task) is always detected upon a call to method ForkJoin-
Task.exec. In the model of wosp, a new fork-join task execution is detected upon
a call to method ForkJoinTask.exec, provided that the task has been previously
forked (as explained in Sect. 3.1). Indeed, differently from FJProf, our model
focuses only on the execution of tasks that have been arranged for parallel execu-
tion (i.e., explicit submission of a task to a fork-join pool). In the aforementioned
workloads, tasks split the work into two parts, creating two subtasks to carry
them out. One subtask is executed sequentially in the currently executing thread
while the other is forked and later joined. Since FJProf profiles the execution of
both subtasks whereas wosp disregards the execution of the first one (that is not
forked), the number of tasks profiled by wosp is half (minus one) the number
reported by FJProf. wosp detects less tasks than FJProf for all the evaluated
workloads, except in lud, which particular case is discussed later in this section.

For all the evaluated workloads, wosp always achieves both a higher accuracy
and lower overhead than FJProf. Our evaluation results show that FJProf intro-
duces a notably higher average3 profiling overhead (2.91× on M1 and 5.01× on
M2) than wosp (1.04× on M1 and 1.09× on M2). The highest overheads are expe-
rienced while profiling fibonacci (wosp: 1.12× on M1 and 1.21× on M2, FJProf:
20.45× on M1 and 65.36× on M2). These overheads can be explained by the
presence of many tasks, all of which have to be tracked by both profilers, leading
to the execution of substantial instrumentation code (in addition to the original
application code). In general, for the workloads that do not exercise peculiar
features of the Java fork-join API (which are discussed below), we find that the
higher the number of tasks, the higher the overhead.

3 Average overheads and accuracies across multiple workloads are computed using the
geometric mean.
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We note that both integrate and lud (i.e., the benchmarks that exercise task
unforking) show relatively high overheads for both profilers even if the reported
number of tasks is low. This is because both wosp and FJProf profile a substantial
number of forks (approx. 340 thousands for integrate and approx. 588 thousands
for lud, considering the average of 51 runs), indicating that most of the tasks are
unforked successfully and executed sequentially for both workloads. Both wosp
and FJProf avoid tracking tasks executed sequentially through methods that are
not ForkJoinTask.exec. As the execution of these tasks is sequential, their cycles
are included in the parent task but their execution does not increase the number
of tasks reported in Table 2. In summary, the profiling overhead of both profilers
increases in integrate and lud because they instrument abundant forking. Despite
the low number of tasks, the executed instrumentation code to detect the forking
is relevant and increases the profiling overhead.

We remark that lud is the only workload where wosp detects more tasks than
FJProf. We inspected the root causes that lead to this peculiarity and determined
that the overhead of FJProf can significantly affect the execution of the workloads
that internally rely on task unforking. Concretely, when lud is being profiled
by FJProf, method ForkJoinTask.tryUnfork succeeds more frequently as threads
are busy executing instrumentation code, instead of actively stealing (the latter
action is the behavior expected in an uninstrumented execution of the workload).
Since unforked tasks are executed sequentially and not via ForkJointTask.exec,
they are not accounted by both wosp and FJProf (and thus FJProf does not
increase the number of tasks as reported in Table 2 for this profiler).

The average accuracy achieved by wosp is 98.25% and 97.38% on M1 and M2,
respectively. In contrast, the average accuracy achieved by FJProf is 61.69% on
M1 and 47.74% on M2. The lowest accuracies are observed for fibonacci (wosp:
90.20% on M1 and 83.88% on M2, FJProf: 16.86% on M1 and 9.28% on M2).
Similarly to the overhead, the low accuracies are explained by the large number
of tasks that the workload executes (wosp: 5,702,887 tasks, FJProf: 11,405,773
tasks), whose execution has to be detected by both evaluated profilers, causing
the execution of significant instrumentation code. In general, we can see that the
higher the overhead, the lower the accuracy, as significant profiling overheads
result in more cycle-measurement perturbations.

Accuracies are generally lower and overheads higher on M2 than on M1. This
is explained by the number of CPU cores available in the respective machines
(M1 has 8 cores and M2 has 18), which may lead to higher contention on M2

(for some workloads, this is exacerbated by the increased number of workers
that need to be tracked by both tools). For instance, the overhead of FJProf for
fibonacci on M2 is more than three times the one experienced on M1. This is
explained because the tracing of task creation, forking, and execution in FJProf
is supported by ShadowVM [15], a system for instrumentation-based dynamic
analyses which aims at improving isolation and coverage. The ShadowVM is
executed on a separate JVM, such that there is inter-thread communication
for notifying relevant events (task creation, forking and execution). Via a Java
API, FJProf invokes primitives through an agent of the ShadowVM, which is
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attached to the JVM executing the profiled application. Even though this agent
employs thread-local buffers, the agent internally employs many threads, which
under contention compete with the workers of the Java fork-join framework
for resources. Moreover, these ShadowVM-related threads perform lock-based
synchronization, potentially generating a contention that can slow the profiled
application down, in particular when a large number of tasks is executed. In
contrast, wosp is less sensitive to contention, as it uses a minimal and special-
ized tracing agent that reduces runtime work and contention via efficient buffer
handling.

Overall, our evaluation results show that wosp achieves a notably higher
accuracy than FJProf, while incurring much less overhead. This highlights the
effectiveness of our profiling technique which uses a minimal instrumentation
and efficient tracing to reduce the perturbation of cycle measurements. We
have shown that reducing application perturbation is key to provide develop-
ers accurate task-granularity profiles, which otherwise would report inaccurate
(and potentially misleading) information describing fork-join parallelism. Con-
cretely, the low accuracy achieved by FJProf may lead to profiles that do not
reflect the actual granularity of the profiled tasks. The profiles may wrongly
indicate a task as too fine-grained or too coarse-grained, or may miss the actual
tasks with suboptimal granularity, making it impossible to locate and optimize
performance problems related to task granularity. On the other hand, wosp does
not suffer from this problem, given its high accuracy.

5 Related Work

Many tools originated both in industry and in academia to analyze various
aspects of parallel applications [17,29]. Most of these tools report low-level met-
rics from which it is hard to extract high-level aggregated metrics on fork-join
computations on the JVM, as these tools are not specific to profiling fork-join
tasks. Existing tools like CilkView [11], CilkProf [27], HPCToolkit [1], and steal-
tree [14] profile (or trace) high-level events in the application code (e.g., task
forking) to establish a parent/child relationship. Unfortunately, the profiling
model used by the aforementioned tools is not suitable for collecting detailed
metrics on fork-join computations the JVM, as it considers a simpler fork-join
model that lacks more complex features that are instead supported by the Java
fork-join framework (such as task reuse, unforking and cancellation).

To the best of our knowledge, only two existing tools target task-granularity
profiling on the JVM, i.e., tgp [23] (which targets generic tasks) and FJProf [25],
a version of tgp [23] specific to fork-join tasks. Due to their limited task model,
none of the two tools is able to track parent/child relationships between tasks,
making it impossible to reconstruct the whole tree of tasks’ execution. However,
it has been shown [1] that such a tree reconstruction is helpful in understanding
performance issues in fork-join applications. Moreover, due to their heavyweight
infrastructure, these tools incur high overhead and yield low profile accuracy.
While our evaluation focuses on FJProf, we expect comparable results on tgp, as
it employs a similar profiling model and infrastructure.
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Overall, our work is the first effort in modeling a profiler for the Java fork-
join framework that considers complex features, such as task unforking, task
cancellation, and task reinitialization. Moreover, wosp is the first tool capable of
low-overhead and cycle-accurate profiling of Java fork-join applications.

6 Conclusions

In this paper, we presented a novel profiling technique for fork-join applications
on the JVM. Our technique allows measuring the computations performed by
parallel task executions in terms of elapsed reference cycles, producing metrics
that ease understanding the behavior and performance of a Java fork-join appli-
cation.

The profiling model implemented in wosp minimizes the instrumentation
required to collect all the relevant profiling events from which many important
metrics can be computed. Our evaluation results show that the profile accu-
racy is 97.82% on average, while achieving an average overhead factor of 1.06×,
considering all evaluated workloads on two different machines. Our experiments
demonstrate that wosp notably outperforms FJProf, a fork-join task profiler for
the JVM (which shows an average accuracy of 54.27% and an average overhead
factor of 3.82×).

As part of our future work, we plan to conduct a large-scale characterization
of Java fork-join applications used in publicly available code repositories along
with exploring ways to optimize them, e.g., by identifying source-code locations
where task reuse is applicable. We also plan to extend wosp with a visualization
tool which can ease program comprehension. Moreover, we plan to release wosp
as open-source software.

Acknowledgments. This work has been supported by Oracle (ERO project 1332)
and by the Swiss National Science Foundation (project 200020_188688).
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CNRS, Toulouse INP, UT3, Toulouse, France

{mael.madon,georges.da-costa,
jean-marc.pierson}@irit.fr

Abstract. Digital technologies are becoming ubiquitous while their
impact increases. A growing part of this impact happens far away from the
end users, in networks or data centers, contributing to a rebound effect. A
solution for a more responsible use is therefore to involve the user. As a
first step in this quest, this work considers the users of a data center and
characterizes their contribution to curtail the computing load for a short
period of time by solely changing their job submission behavior.

The contributions are: (i) an open-source plugin for the simulator
Batsim to simulate users based on real data; (ii) the exploration of four
types of user behaviors to curtail the load during a time window, namely
delaying, degrading, reconfiguring or renouncing their job submissions.
We study the impact of these behaviors on four different metrics: the
energy consumed during and after the time window, the mean waiting
time and the mean slowdown. We also characterize the conditions under
which the involvement of users is the most beneficial.

Keywords: Demand response · User involvement · User-aware ·
Reproducible research · Parallel workload · Data center

1 Introduction

Digital technologies are increasingly contributing to global warming, for instance
through mining of their components, transport along their supply chains or elec-
tricity consumed during their use phase. A recent review of estimates [6] puts
this impact at 1.0-1.7 GtCO2e in 2020, i.e., 1.8%–2.8% of global greenhouse gas
emissions. The authors also argue that although progress in energy efficiency of
these technologies will probably continue, it will likely be outbalanced by growth
in usage, leading to an overall increase of the carbon footprint. This so-called
“rebound effect” seems difficult to fight within our research area (scheduling
and distributed computing) where the focus is on energy optimization that must
be effortless to end-users. On the contrary, we argue that users of digital tech-
nologies must be brought back into the loop, made aware of their impact and
empowered to mitigate it.
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Involving the user for environmental-aware scheduling in data centers has
two aspects. One is to consider user requests for more environment-friendly ser-
vices (e.g., guarantees, green labels) and try to achieve them. The other is to
consider the users as a lever for flexibility in the scheduling, i.e., they accept to
compromise occasionally on their quality of service to allow some optimizations.
The degradation can be spatial [9] (reducing the amount of resources allocated
for the jobs), temporal [16] (delaying their execution) or both [8].

This paper proposes an experimental analysis of such user levers in a context
of demand response management by investigating the following question: from
the users’ perspective, what is the room for maneuver to curtail the load on the
data center for a short period of time?

The rest of the article is organized as follows. We start by giving some back-
ground and discuss related works in Sect. 2. Section 3 presents our data cen-
ter model and lists the user behaviors studied for demand response. Section 4
describes the experimental setup for characterizing these behaviors. The results
are presented in Sect. 5 while Sect. 6 provides a discussion on the results and the
limitations of the study. Finally, we conclude in Sect. 7 and provide perspectives
for future works.

2 Background and Related Works

Context: Demand Response. Data centers are viewed as good candidates to par-
ticipate in demand response programs [17]. Large consumers of electricity, they
also have a more flexible load than other industrial facilities. Demand response
consists of adapting the electricity consumption in response to the availability of
production. For example, some electricity markets have Coincident Peak Pricing
programs, where industrial consumers are charged a very high price during the
time window when the most electricity is requested overall in the grid. These
peak pricing events last typically 15 min [18] or one hour [14] but are only known
afterwards, e.g., at the end of the month. The electricity supplier would only send
warnings to the consumer that a peak load event may happen in the next few
hours.

Involving the Users. Among the large body of work on energy-aware schedul-
ing in data centers, some authors have studied strategies involving the users.
Some works aim at providing guarantees to their users (“green offers” [7], “green
SLA” [1,10]) and commit to fulfilling them by classical methods (self-supply
of renewable energy [10], geo-distributed data centers with variable PUE and
energy mix [1,7]). More related to this paper, some works study user flexibility
as a lever for energy efficiency. For example, Guyon et al. [9] give to the users
the choice between three execution modes (big, medium, little) for their jobs.
Small execution modes request fewer resources but take longer to complete. They
achieve gains through spatial consolidation with a bin-packing algorithm. Org-
erie et al. [16] save energy through thermal-aware scheduling and smart resource
switch off by letting the users choose between different submission times on the
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basis of energy consumption estimations for each of the alternatives. A combi-
nation of both spatial and thermal consolidation is proposed in another work
by Guyon et al. [8] or in the All4Green project [2], where user involvement is
leveraged through contracts between the energy supplier, the data center and the
user. The latter work, also in a context of demand response, is the closest to our
approach. However, it integrates demand response mechanisms affecting the user
with mechanisms transparent to them (use of batteries, precooling, geographical
workload migration) so much so that the contribution of each user behavior to
the final results is difficult to identify.

The originality of our work is to focus on the user behaviors, which allows
providing a characterization of them. To the best of our knowledge, we are also
the only ones to consider the behavior of simply renouncing job submissions. It
is a radical behavior, but to be considered in a sufficiency approach.

3 Model

In our model, a demand response event will be represented by a time window of
few hours (called “demand response window”) during which the objective is to
reduce electricity consumption. The event is supposed unknown in advance. In
order to characterize the efficiency of different user behaviors to react to such
demand response event, we consider a data center to which users can submit
their jobs. At the interface between the two is the RJMS (Resource and Job
Management System), the scheduler in charge of job placement and resource
management. In this section, we describe the different components of our system.

3.1 Data Center

In the data center, we only take into account the energy consumption of the
multicore homogeneous machines. The power of a machine is Poff , Pson or Psof f

if the machine is switched off, switching on or switching off, respectively. When
a machine is switched on, its power is equal to Pidle + N ∗ Pcore with Pidle the
power drawn by an idle machine, N the number of cores in use (i.e., with a job
running on it) and Pcore the power drawn by each core.

A job is completely defined by its submission time, execution time and num-
ber of requested cores that we denote by size in the rest of this paper. The
scheduler decides the starting time for the job and the machine it will be exe-
cuted on. Note that the scheduler in our model only execute jobs on single
machines. We suppose perfect communication without latency.

3.2 Scheduler

The scheduler is a bin-packing scheduler with shutdown (same as Guyon et al. [8,
9]). It is a greedy algorithm trying to schedule (“pack”) all the jobs in the least
possible machines and shut down idle machines. To do so, it maintains and
updates two data structures: a queue of waiting jobs and a list of switched-on
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machines. The queue of jobs is sorted by decreasing size order – and by increasing
submission time (first come, first served) in case of a tie. The list of machines
is sorted by increasing order of available cores. Every time one (or more) job
is submitted or finishes, the scheduler goes through the job queue in order and
tries to find for each job the smallest machine where it fits. If no machine is
found that way, a new machine (if any) is powered on and the job is scheduled
on this machine. After that, we immediately shut down all idle machines.

3.3 Users

During the demand response window, users are asked to make an effort to curtail
the load in the data center. They do so by adopting different behaviors described
below and illustrated in Fig. 1.

Fig. 1. The five user behaviors studied

– rigid: replay jobs as in the original workload; Baseline for comparison.
– renounce: do not submit jobs originally submitted during the window.
– delay: delay all job submissions to the end of the window.
– degrad: divide the size of the jobs by two, rounded up. The execution time

stays the same. Note that the rounding implies that when only one core is
requested for a job, the job remains unchanged.

– reconfig: also divide the size by two, rounded up, but increase the execution
time to match the original computing mass. We make the hypothesis of perfect
speedup, i.e., a job executing on one core completes in exactly twice the time
than on two cores.

4 Experimental Setup

4.1 Software Used for Simulation

To simulate our system, we use Batsim [4], an open-source infrastructure and
resource management system simulator1 based on SimGrid2. We implemented
1 Batsim: https://batsim.org/.
2 SimGrid: https://simgrid.org with the energy plugin https://simgrid.org/doc/

latest/Plugins.html?highlight=energy#host-energy.

https://batsim.org/
https://simgrid.org
https://simgrid.org/doc/latest/Plugins.html?highlight=energy#host-energy
https://simgrid.org/doc/latest/Plugins.html?highlight=energy#host-energy
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the bin-packing scheduler for Batsim in C++. We also developed a plugin called
“batmen” to interact with simulated users and receive their job submissions.
For the purpose of this study, users replay an input workload trace except in
the demand response window, where they act according to their behavior. We
therefore implemented five user classes corresponding to the five behaviors of
Fig. 1. Our code is open source3. With this simulation tool, we designed and
conducted an experimental campaign, whose main details are given below. All
scripts are available to reproduce and analyze our results, either in our gitlab4

or in the Figshare repository [15].

4.2 Workload

We replay a real public workload trace containing the information about the
submitting user for each recorded job. We chose the 2-year trace from MetaCen-
trum (national grid of the Czech Republic), available in the Parallel Workload
Archive5. The platform is very heterogeneous and underwent majors changes
during the logging period [12]. For the purpose of our study, we perform the
following selection:

1. We truncate the workload to keep only 6 months (June to November 2014)
where no major change was performed in the infrastructure, and we remove
all the clusters whose nodes have more than 16 cores;

2. From this truncated workload, we remove all jobs with an execution time
greater than one day and all jobs with a size greater than 16. It leaves us
with a workload manageable with machines of a usual size, and without more
than one day of inertia.

4.3 Platform

The first selection step keeps a total of 6304 cores. The second selection step
excludes 2.7% of jobs from the truncated workload, representing 73.7% of the
mass (in core-hour). Consequently, we create a simulated platform adapted to
this load with 6304 ∗ (1 − 0.737)/16 = 104 homogeneous 16-core machines.
Power constants (Pidle = 100 W, Pcore = 7.3125 W, Poff = 9.75, Pson = 100 W
and Psoff = 125 W) for the servers and time to switch on (Tson = 150 s) and
switch off (Tson = 6 s) are measurements in Taurus Grid’5000 cluster from exist-
ing work [9].

4.4 Experimental Campaign

For the evaluation, we consider the following scenario. We imagine a data center
functioning at nominal load: some jobs are currently running and users can
3 Batmen repository: https://gitlab.irit.fr/sepia-pub/mael/batmen.
4 Experiments repository: https://gitlab.irit.fr/sepia-pub/open-science/demand-

response-user/-/tree/europar2022.
5 METACENTRUM-2013-3.swf available at https://www.cs.huji.ac.il/labs/parallel/

workload/l metacentrum2/index.html.

https://gitlab.irit.fr/sepia-pub/mael/batmen
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user/-/tree/europar2022
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user/-/tree/europar2022
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
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Fig. 2. Descriptive statistics for the 105 experiments. Red lines corresponds to the
infrastructure (1664 cores). (a) number of jobs submitted in window; (b) computing
mass (in core-hour) in window; (c) computing mass in window by number of submitted
jobs (1-h window); (d) computing mass in window by weekday (1-h window) (Color
figure online)

submit new jobs to the scheduler. Suddenly, the electrical grid sends an alert
to warn the data center manager that a consumption peak is detected in the
grid. The manager forwards this alert to his users who adapt their submission
behavior. At the end of the alert, the users return to a normal behavior (after
submitting all their delayed jobs, if any).

We conduct an experimental campaign on 105 different input data (the num-
ber of weekdays between Jun 1, 2014 and Oct 23, 2014). For each input data, we
simulate the aforementioned scenario, assuming that all users adopt the same
behavior during the demand response window. On three days of data center
operation, we make the demand response event arise at 16:00 on day 2, chosen
to be a weekday. This choice is justified by a characterization of 26 years’ coin-
cident peak pricing data [14], given that the MetaCentrum trace also displays
diurnal and weekday/weekend patterns. We study two lengths for the demand
response window: one and four hours. We also tried other starting times (drawn
at random) and other window lengths (0.5 and 2 h) but decided not to report
their results here as they are not leading to different conclusions.

The simulation starts one day before the event and stops one day after, to
ensure that the infrastructure runs at nominal load on day 2 and has absorbed the
event by the end of day 3 (the selected jobs in the workload having an execution
time lower than one day). In total, we launch nine simulations per experiment
(= input data): the baseline simulation with all users having a “rigid” behavior,
and the four other behaviors on the two window lengths. Descriptive statistics
on the experiments are displayed in Fig. 2.

The campaign launched in parallel on a 2× 8-core Intel Xeon E5-2630 v3
machine finished in less than two hours. Launched in France, and ran 2 times in
total, this has a carbon footprint of around 50 g CO2e (calculated using https://
green-algorithms.org v2.1 [13]).

https://green-algorithms.org
https://green-algorithms.org
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5 Results

5.1 Energy Metrics

Fig. 3. Energy consumed in each simulation. Y-axis: energy consumed (in kWh) dur-
ing the demand response window. X-axis: computing mass (in core-hour) during the
demand response window for the baseline behavior.

We recall our research question: by intervening only on the user’s side, what
energy gains can be expected by adapting one’s behavior for a few hours? Figure 3
displays the energy consumed during the demand response window for
every experiment and every behavior. Values are scattered by the total load of the
infrastructure during the window for the baseline behavior. For that behavior,
we note an almost linear relationship between infrastructure load and consumed
energy. Deviations from the linear line are due to situations favoring a more
or less good packing from the scheduler inside the 16-core machines. Behaviors
“renounce” and “delay” perform identically for this metric: users of both behav-
iors stop submitting inside the demand response window, resulting in a lower
energy consumption compared to the baseline. This gain is the best we can
expect. Behaviors “degrad” and “reconfig” display similar results. In addition,
one would expect a positive correlation between the load of the platform and the
relative energy gains of the four behaviors compared to the baseline. It would
translate into an increasing distance between the colored dots and the blue dots
in the graphs, as the load increases. Counter-intuitively, this does not seem to
happen.

The experimental campaign showing very scattered results, Fig. 4 displays
the relative energy gains for each experiment as box plots. We can read for
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Fig. 4. Energy metrics per behavior relatively to the baseline behavior. The green
triangle in the box plots indicates the mean. (Color figure online)

example that “renounce”, the most radical behavior, allows energy savings of up
to 33% in the window for a one-hour window, and 53% for a four-hour window.
The savings do not go up to 100% because jobs that were already there before
the window are still running in the infrastructure, which consumes energy.

In addition to the energy consumed within the window, Fig. 4 shows the
impact of the different behaviors on the energy consumed after the demand
response event, i.e., from 17:00 or 20:00 on day2 (depending on the window
length) to 24:00 on day3. For this second metric, “delay” performs very differ-
ently compared to “renounce”. All the jobs within the window get postponed,
resulting in an extra power consumption at the end of the window: +0.3% (resp.
+3.4%) on average for a 1-h (resp. 4-hour) window. This behavior remains neu-
tral with respect to overall energy consumption (within + after the window).
The behavior “reconfig”, which also keeps a constant mass of jobs compared to
the baseline, allows some optimizations. Up to 10% overall energy consumption
could be saved because the reconfigured jobs “fit better in the holes” left by
the available cores in the switched on machines. “Degrad” performs unsurpris-
ingly better in all respects, the users having accepted to reduce the mass of job
submitted.

Finally, we notice that the bigger the window, the better the energy
gains. This is due to inertia of the system: with a longer window, a behavior on
the submitted jobs has more time to make a difference compared to the residual
jobs that are still running in the infrastructure.
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5.2 Perceived Impact on the Scheduling

We use two usual metrics: mean waiting time and mean slowdown. Waiting time
is the time a user has to wait until her job starts running:

waitingtime = startingtime − submissiontime

Slowdown divides this extended completion time by the execution time:
slowdown = (finishtime − submissiontime)/executiontime.
For each experiment, we take the average waiting time (resp. slowdown) on

all jobs submitted between the beginning of the demand response window and
the end of the experiment (same period as metric energy in + energy after).
Figure 5 shows these results for the “rigid” behavior. We observe that for half of
the experiments, the mean waiting time is below one hour (3600 s) and the mean
slowdown below 25. These are experiments with an unsaturated infrastructure
and an often empty queue of waiting job. On the other hand, there are also cases
of high congestion (e.g., the seven outliers at more than 6h mean waiting time).

Fig. 5. Scheduling metric distribution for the 105 experiments, baseline behavior.

The results for the other behaviors are plotted in Fig. 6, as a percentage of
gain/loss compared to the baseline. Specifically for the behavior “delay”, we
provide both corrected and uncorrected metrics. The uncorrected slowdown and
waiting time are calculated in relation to the new (delayed) submission times,
while the corrected ones use the original submission times (from the baseline).
Note also that for the behavior “renounce” some jobs have been canceled, thus
the mean waiting time and slowdown is calculated on a subset of the jobs com-
pared to the other behaviors. From Fig. 6 it can be observed that the behav-
iors “renounce”, “degrad” and “reconfig” (in this order) affect the scheduling
positively on average. This is not surprising, as the first two behaviors reduce
the total mass of jobs to compute, and the third allows a better packing. Yet,
the scheduling gets worsened in a significant number of cases (around 50% for
“reconfig” and 25% for “degrad” and “renounce”), due to bad choices of the
scheduler.

The behavior “delay” stands out from the others as it affects the scheduling
negatively in most cases, even for the uncorrected metrics. It gets even worse
when including the extra waiting time from the delayed job in the calculation
of the corrected metrics. In fact, it is preferable in terms of waiting time and
slowdown that the job submissions are spread out throughout the time.
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Fig. 6. Scheduling metrics per behavior relatively to the baseline behavior

Fig. 7. Example of fluid and residual mass. (Thursday Jun 26 2014)
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6 Discussion

6.1 The Fluid-Residual Ratio: An Explanation of the Results

As seen previously in Fig. 3, the achievable energy savings in the demand
response window cannot be explained by the infrastructure load during that
window. In fact, it is possible that the load is very high because of a large mass
of job submitted before the window, although the load on which the users have
an influence is the mass submitted during the window. We call these two quan-
tities the residual mass, submitted outside the window, and the fluid mass,
submitted inside the window (Fig. 7).

Users, by accepting to “renounce” or “delay” their jobs, allow cutting the
energy consumption due to the fluid mass, which is roughly proportional to the
mass itself, as we saw before. In other terms, the gains during the window
are at most equal to the proportion of fluid mass in that window.
This is exactly what we see in Fig. 8 displaying the energy gains as a function of
the fluid-residual ratio. The red line indicates the best possible gains, which are
almost achieved by “renounce” and “delay” behavior (the non-linearity of the
energy model explaining the gap).

Fig. 8. Energy gains in function of the fluid-residual ratio. Only one plot for the behav-
iors “renounce” and “delay” because they are identical for this metric.
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In some cases, however, these behaviors don’t realize that gain: they are cases
of saturation, when many jobs are waiting in the queue. The removal of the
fluid mass is compensated by the execution of the awaiting residual mass.

For the “degrad” behavior, gains are expected to be of half the fluid mass at
most, as users divide their submitted mass by two. In practice, the results are
even more scattered and further away from their optimal (magenta line). This
is partially due to the saturation effect, but also to rounding (e.g., a job with
an original size of 3 will be submitted with size 2 and a job with size 1 remains
unchanged) and imperfect packing. The analysis for the behavior “reconfig” is
similar, with even less expected gains. Some experiments even make negative
gains: they are due to the greedy and non-clairvoyant scheduler taking bad deci-
sions for the future, like switching off a machine just before the submission of
new jobs.

6.2 Pros and Cons of Each Behavior

Table 1. Summary ranking of the four behaviors according to their impact on energy
consumption and scheduling metrics. The column “acceptability” is opinion-based, it
reflects the size of the effort asked from the user.

behavior energy in energy overall scheduling metrics acceptability

renounce 1st 1st 1st 4th

delay 1st 4th 4th 2nd

degrad 3rd 2nd 2nd 3rd

reconfig 4th 3rd 3rd 1st

Building upon what we learned from the results, we provide a summary
discussion on the characteristics of each behavior (see Table 1). To begin with,
the behavior renounce performs the best for all the metrics studied. We saw that
it actually reaches the optimal energy gains during the window for unsaturated
cases. This rank is not surprising considering the sacrifice required from the
user. Yet, we think that such a behavior is often overlooked in similar studies
and argue that environmentally aware users or users provided with a proper
incentive would do it. Moreover, some jobs running in data centers today might
not be indispensable.

On the other end of the spectrum, the behavior reconfig seems to be the
most acceptable to the users, as it does not decrease the mass initially submitted
and provides better waiting time and slowdown than “delay” for both the jobs
within and after the window. “Reconfig” is a good trade-off to achieve some
optimizations with a low effort from the user, especially in combination with
bin-packing schedulers and on/off policies (see [9]).

Delay also keeps the mass constant, which ranks it second behind “reconfig”
in terms of acceptability. Same as “renounce”, it reaches the optimal energy
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gains during the window. However, it introduces an overhead in overall energy
consumption and slowdown compared to the baseline behavior. Note that this
overhead would probably be less important in real life due to users adapting their
behavior if they experience congestion in the infrastructure. This is the limit of
blindly replaying past workload traces in simulations, as pointed by Feitelson [5].

Finally, the behavior degrad ranks second or third in all the categories of
Table 1. It remains an interesting trade-off between simply renouncing a job and
reconfiguring it at constant mass. Practical applications of this behavior are
optional features in an application that can be cut off if needed (e.g., recommen-
dations for e-commerce, alternative paths for mapping apps).

6.3 Interactions with Scheduling Systems

The work presented in this paper is rather theoretical and abstracts part of
the reality of production systems. For example, in real-world schedulers, it is
commun to have job priorities. In that case, the degradation of a low-priority
job would be less costly to the user compared to a high-priority job. The priority
of a job could be considered along with other criterias (e.g., magnitude of the
delay, size of the degradation) to define a utility metric in an attempt to quantify
the acceptability of a given behavior.

All in all, user submission behaviors remain one lever for energy saving among
others. It has the particularity of having some latency, which makes it not opti-
mal in a context of demand response without prediction. Therefore, taking into
account these behaviors inside the scheduler seems essential to make the
best of their potential and go beyond the fluid-residual limit. For example, by
allowing the scheduler to kill jobs, checkpoint them [3], or to suspend the wait-
ing queue. Decisions could be taken on behalf of the users, with a mecanism
of contract with the data center operator specifying the degradation the user is
willing to accept [2]. Nevertheless, it seems crucial for us to make these decisions
transparent to the user and involve them as much as possible, as this appears
as the main path towards a sufficient [11] use of our technologies.

6.4 Limitations

Model Simplifications. In our data center simulations, we do not take into
account the latency and bottleneck effects in the communications. Also, we
suppose perfect speedup in the model, i.e., a job executed on two cores will
take exactly twice longer than the same job executed on four cores. Finally, we
accounted only for the energy consumption of the CPUs, and neglected others
like memory, network or cooling. Hopefully, the powerful simulation tools that
we use (Batsim and SimGrid) will help us to overcome these simplifications in
future works.

Methodological Limitations. We see three major threats to the validity of our
method to answer the research question. First, we study only one scheduler (bin-
packing) while results with other common schedulers (FCFS, easy-backfilling...)
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would have been of interest. Second, we use only one input trace (MetaCentrum)
which comes from a research infrastructure and not a production cloud, and we
perform a selection from it (see Sect. 4.2) that might make us miss the big picture.
Finally, our study includes all the limitations related to the use of a simulation,
especially when dealing with human behaviors which are unpredictable.

7 Conclusion and Future Works

In this paper, we study four different ways for a user of a data center to curtail
her load for a certain period of time by changing submission behavior. These
behaviors are delaying, degrading, reconfiguring or renouncing the jobs during
the time period. We show experimentally through simulation on real world data
that these behaviors have a certain latency for decreasing the load on the infras-
tructure. Indeed, they cannot decrease the load due to jobs that are already
running on the infrastructure. Therefore, we define two quantities, the fluid and
residual mass, and discuss the experimental results according to the ratio of
these two quantities. We also discuss the pros and the cons of each behavior in
the light of their energy saving potential, impact on scheduling and acceptability
to the user. We hope that this work will pave the way for studies involving the
user more intensely.

Future work will focus on (i) improving the data center model to deal with
the model simplifications listed in Subsect. 6.4, (ii) proposing schedulers capable
of leveraging the efforts made by the user (e.g., through “green SLA”), (iii) elab-
orating on the user model to more realistically account for submission patterns
and response to feedback from the infrastructure (as proposed by Feitelson [5])
and (iv) going beyond the limited scope of demand response to reason on the
sustainability of the infrastructure as a whole.
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Abstract. Model factors provide initial insight into fundamental issues
of parallel applications. These metrics elaborate beyond conventional
HPC metrics to indicate whether an application suffers from systemic or
local load imbalances, or high cost for synchronization or data transfer.
The metrics are also useful to compare the parallel characteristics of dif-
ferent versions of the same application. This work proposes a model of
separating the impact factors of different layered parallelism paradigms.
In contrast to previous work in this area, we successfully separate all
factors and can prove all efficiency values to be between 0 and 1. While
we use MPI + OpenMP as an example in this work, the general concepts
also apply to layering other parallel programming paradigms. As a proof
of concept, we present a tool that collects the necessary performance
data and determines different critical paths in the execution without
measurable runtime overhead. We evaluate the methodology with syn-
thetic source code examples but also with a real-world application and
an application using the latest or future MPI and OpenMP features in
order to evaluate the methodology on applications with an overlap of
asynchronous computation and communication at the highest possible
concurrency.

1 Introduction

Multiple programming paradigms are becoming more common in contemporary
HPC codes than only relying on a single one [6]. While MPI, by and large, has
become a de facto for distributed memory parallelization, with increasing cores
fitted per node, combining it with shared memory paradigms has become crucial.
On the one hand, this reduces memory requirement per node as codes can look
at the subset of a problem at the MPI level while allowing cores on the same
node to use the shared resources.

Optimal use of these resources is a foremost concern of the relatively newer
hybrid codes. While performance metrics of each paradigm individually are well
studied, describing their interactions simply and predictably remains an open
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question. More often than not, the second paradigms get introduced after the
codes are relatively mature to take advantage of more modern architectures. As
a result, usually, one of them suffers more from the resulting inefficiencies.

The model-factors (Sect. 2) provide self-explaining components and are well
adapted for MPI and OpenMP separately. There are multiple methods to derive
the metrics (e.g., critical path analysis in Dimemas [5]). These methods use a
post-mortem simulation to derive the metrics. While these are the most accurate
with their model, they require significant computation.

Previous work [4] to quantify efficiency metrics of hybrid codes with hierar-
chical interactions between two HPC paradigms has proposed a subset of equiv-
alent hybrid metrics. However, this does not resolve the metrics fully and, in
principle, is not applicable for non-hierarchical codes yet. We propose a method-
ology to resolve the hybrid metrics to the full extent of such separate equivalent
metrics, also applicable to non-hierarchical codes. Our method works on the fly
with memory overheads in the order of a flat profiler, no measurable runtime
overhead, and the result is readily available right after the end of execution.
Furthermore, we show that the resulting breakdown is consistent.

This work constitutes of

– a proposed method for on-the-fly resolution of the communication efficiency
in a hybrid regime;

– a theoretical validation with synthetic examples of various possible scenarios;
– an implementation for OpenMP + MPI regime; and
– its applications on real-life codes and evaluation of overhead and performance.

In the following, Sect. 2 presents the fundamentals of model factors, and
Sect. 3 presents concept and our extension of the critical path technique.
Section 4 describes our methodology based on the terminologies described in
Sect. 3. Section 5 presents the extension of the model factors based on the
methodology described in the past sections. Section 6 contains the evaluation by
validation experiments with synthetic and real-life examples, and Sect. 8 presents
the conclusions from this.

2 Model Factors

Model factors or fundamental performance factors as introduced by C. Rosas
et al. [11] describe parallel efficiency as product of the impact factors load balance,
serialization efficiency, and transfer efficiency.

Load balance (LB) quantifies the balance of work load between the different
execution units. If all execution units have the same amount of work during the
observed time interval, load balance is 100%.

LB =
avg(ti)
max(ti)

(1)

The value ti represents the aggregated quantity (usually time) for each execution
unit i. Figure 1 shows execution traces with 75% load balance in (a) and 100%
in (b).
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Transfer efficiency (TE) reflects the cost of actual data transfer or synchro-
nization introduced by the parallel programming paradigms. On an ideal net-
work/bus with zero cost for synchronization, transfer efficiency would always be
100%.

TE =
runtimeideal
runtimereal

=
runtimeideal

runtime
(2)

In this context, runtimeideal is a simulated runtime from the application when
executed on an ideal network or bus with no latency and infinite bandwidth. Also,
thread-level synchronization has no latency on such a machine. Nevertheless, this
machine model does not impact the latency to shared memory from application
code. Both execution traces in Fig. 1 have an ideal runtime of 2 s and a real
runtime of 2.2 s. Therefore the transfer efficiency in both traces is 91%.

Serialization efficiency (SerE) reflects local load imbalances with synchronizing
dependencies to other execution units. The overall load balance can be perfect,
while locally alternating execution units wait for each other to proceed. If the
execution units always wait for the same unit to proceed, serialization efficiency
is 100% as this is accounted for in the load balance metric.

SerE =
max(ti)

runtimeideal
(3)

Trace (a) in Fig. 1 has 100% serialization efficiency because the second process
needs to wait on the first process consistently. In (b), the dependency chain
switches from the first to the second process, which results in 75% serialization
efficiency.

Parallel efficiency (PE) is the product of load balance, serialization efficiency,
and transfer efficiency.

PE = LB ∗ SerE ∗ TE =
avg(ti)
runtime

(4)

0.5 1.0 1.5 2.0

(a) 75% load balance

0.5 1.0 1.5 2.0

(b) 75% serialization efficiency

Fig. 1. Examples with two processes, two phases of useful execution (blue) and MPI
synchronization (red). Both cases show ideal runtime of 2 s and 91% transfer efficiency.
(Color figure online)

Both execution traces in Fig. 1 have the same parallel efficiency of 68% as the
product of 91%, 75%, and 100%. They differ is just the ordering of the factors.
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In this work, we use the term useful execution (UE) to characterize time spent
to execute the application code distinguished from time spent in parallel runtime
libraries such as OpenMP and MPI. For applications where parallel execution
does not require additional, possibly redundant calculations, the above defini-
tion of parallel efficiency matches the commonly used understanding of parallel
efficiency. All aggregated useful execution is equivalent to serial execution for
these applications.

Besides runtimeideal , all of the values are directly measured and can be col-
lected locally on each of the executing threads. The following section will explain
how we derive runtimeideal using critical path analysis.

3 Critical Path

Critical path analysis is used in different performance analysis tools targeting
parallel applications [1,8,13]. In these tools, critical path analysis aims to deter-
mine the critical path in parallel execution, possibly highlighting the critical
path in an execution trace and identifying bottlenecks on the critical path. The
tools need to explicitly identify the critical path through the application and
apply different algorithms to identify the critical path in the execution graph to
reach these goals. Often this analysis involves a forward and backward replay.
In contrast, it is sufficient to determine the critical path implicitly for our use
case, which significantly simplifies the problem.

Yang et al. [13] characterize the critical path as the “event path in the execu-
tion history of the program that has the longest duration”. In our work, we want
to use the term critical path in a broader sense and define the critical path for
the execution graph of an actually observed execution of the application. The
edges in the execution graph represent: a) thread-level synchronization, e.g.,
from OpenMP, b)process-level synchronization, e.g., from MPI communication,
or c) sequential execution within a process unit, e.g., executing application code
or parallel runtime code. Such execution graph is always directed and acyclic.

The critical path between two connected nodes in a directed acyclic graph is
the path with the highest sum of weights on the edges of the path.

Based on this definition, we can define various critical paths through an
execution graph by carefully selecting the weights for the edges. First, we want
to consider only the cost of useful execution and ignore all time in parallel
runtime libraries. The resulting critical path of useful execution (CUE) follows all
dependencies caused by synchronization but neglects the cost of communication
and synchronization.

Similarly, we can define graphs, where only time in the MPI or time in
the OpenMP runtime library is ignored. The critical path of outside MPI time
(COM) has zero weights for time spent in the MPI runtime. The critical path of
outside OpenMP time (COO) has zero weights for time spent in the OpenMP
runtime.

In the following, we will not only consider the global execution graph (G-),
but also process-local execution graphs (PL-) limited to the specific process and
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ignoring synchronization with other processes. For symmetry, we also consider
thread-local execution (TL-) as a special case that ignores all synchronization
with other execution units.

An important observation is that the critical path can follow a different path
for the same observed execution if the metric selected for the weights is changed.
As an example, we can look at the execution trace in Fig. 2(a). The metric PL-
CUE for this region is 2.0 and follows the second thread, which can be easier
seen in Fig. 2(b) where the MPI time is removed from the trace. The metric
PL-COO for this region is 2.5 and follows the first thread. The metric ignores
just the yellow OpenMP time.

4 On-the-Fly Critical Path Analysis

We are only interested in the sum of weights along the critical path for our
use case. Therefore, we can implement the critical path metric following the
concept of a Lamport clock [7]. Each execution unit has a local value of the
metric. The weight is added to the local value for each step in the execution
graph. Concrete synchronization in the execution graph can have different char-
acteristics. The simplest form is point-to-point synchronization, like a pair of
send and receive calls in MPI. Another form is barrier synchronization, where
each execution unit needs to arrive before all can continue. Finally, OpenMP
has several forms of channeled signal-wait synchronization, where the signaling
execution unit and the waiting execution unit do not know all synchronization
partners. An example is the synchronization of task execution with any of the
task synchronization constructs like barrier, taskwait, taskgroup, or depen-
dencies with other tasks. To evaluate the proposed metrics, we implemented a
prototype tool1 that supports all means of OpenMP and MPI synchronization.

4.1 Measuring Time

Each thread maintains a set of clocks to account for the different critical path
metrics introduced in the previous section. Depending on the instance of the
clock, the clock is stopped when entering an MPI API call (useful execution,
outside MPI) and started when leaving the MPI call. Similarly, useful execution
and outside OpenMP clocks are stopped and started when the execution enters
and leaves the OpenMP runtime code. For a parallel region, the primary thread
enters the runtime with the parallel-begin event. All threads start the execution
of the parallel region with the implicit-task-begin event. At the end of the region,
all threads encounter the implicit barrier and enter the runtime. Finally, the
primary thread continues execution after the parallel-end event.

1 https://github.com/RWTH-HPC/llvm-project/tree/criticalPath-Euro-Par.

https://github.com/RWTH-HPC/llvm-project/tree/criticalPath-Euro-Par


74 J. Protze et al.

4.2 Critical Path in OpenMP

The Archer runtime [9] solves a similar challenge for OpenMP-aware data race
detection, translating OpenMP synchronization into vector clock semantics, that
the data race detection tool ThreadSanitizer can understand. Following the con-
cept of synchronization clocks, initially introduced by FastTrack [3], all syn-
chronization with signal semantic updates the thread-local clock towards the
synchronization clock, and all synchronization with wait semantic updates the
thread-local clock from the synchronization clock. We adapt and extend the
Archer runtime to implement the Lamport clock updates for the OpenMP part
of our analysis. All clock updates are implemented as a maximum operation
using a compare-and-swap (CAS) loop.

In addition to tracking the synchronization, we integrate the time measure-
ment for time spent in the OpenMP runtime library into these OMPT callbacks.

4.3 Critical Path in MPI

For MPI, we implement the Lamport clock updates using communication piggy-
backing with additional communication calls on shadow communicators to avoid
interference with application communication. For collective communication with
barrier semantics in the application (e.g., barrier, allreduce, or alltoall) we
use a maximum all-reduction on all participating threads’ clocks. Similarly, we
use a broadcast of the root’s clocks for application calls like bcast or scatter
and a reduction on all participating threads’ clocks towards root’s clock for appli-
cation calls like reduce or gather. In contrast to OpenMP, time measurement
in MPI can simply be implemented by an RAII class with the scope of the whole
MPI wrapper function.

4.4 Implementation Challenges

In implementing the time measurement for G-COO and PL-COM/G-COM we
encountered two challenges. For G-COO, we conceptually need to measure time
intervals that start on one process and end on another process following the MPI
synchronization paths. Therefore, this metric is impacted by the problem of timer
offset (different timer value at the same moment) and dilation (different clock
rate, possibly changing over time) like all distributed time measurements [2]. Our
prototype accounts for timer offsets with a simple clock exchange during startup
but ignores timer dilation. All other metrics used in this work are process-local
and therefore only slightly affected by timer dilation. The ratio of values in
average calculations might not be exact. Since the local counter value and the
incoming counter value contain a started value, we can simply apply the max
function to the two running counters without stopping both counters before the
comparison.

For PL-COM and G-COM, we want to measure the time spent executing any-
thing besides MPI code. These metrics should explicitly contain the OpenMP
synchronization cost. Suppose the metric contains waiting time in barriers. In
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that case, the result can overestimate the synchronization cost if the MPI com-
munication happens on the critical path within the OpenMP parallel region as
in Fig. 2. Rather than considering the whole waiting time, the metric should
only capture the synchronization overhead. This overhead might be estimated
by the time the last thread arrives in the barrier until the first thread leaves the
barrier. Unfortunately, OpenMP barriers are also task scheduling points. The
tasks might also contain MPI communication leading to more skewed results.

5 Hybrid Model Factors

The general concept of the hybrid model factors is to break down the global
model factors into factors for each level of parallelism. In this paper, we focus
on the combination of MPI and OpenMP. The same concepts would also apply
to combinations of MPI and CUDA or the combination of more parallel pro-
gramming paradigms. Because of the implementation issues for critical outside
MPI (COM) described in the previous section, we focus on using critical outside
OpenMP (COO) to separate the cost for MPI and OpenMP parallelization.

5.1 Definition of Separated Model Factors

In the following, ti indicates TL-CUE on thread i ∈ T with T the set of all
threads in the execution. PT i ⊂ T contains all threads of process i ∈ P with P
being the set of all processes in the execution.

For load balance, we can calculate the threading load balance for each process
and then take the weighted average across all processes. The weighted average of
process-local averages in the numerator of the LB formula is equal to the global
average across all threads. Under this consideration, we can split the global load
balance into these two factors:

LBomp =
|T | · avg(ti∈T )

∑

j∈P

(|PTj | · max(tk∈PTj
))

and LBmpi =

∑

j∈P

(|PTj | · max(tk∈PTj
))

|T | · max(ti∈T )

(5)

0.5 1.0 1.5 2.0 2.5

(a) original parallel region

0.5 1.0 1.5 2.0 2.5

(b) outside MPI metric

Fig. 2. Example with two threads with a final barrier at the end (yellow). (a) The
upper thread contains some MPI communication (red). (b) Naive calculation of COM
would result in the same value for critical path as the actual runtime. (Color figure
online)
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For serialization efficiency, the question is what would be the maximum runtime
of the different MPI processes, if MPI data transfers took no time. At the same
time, this value should indicate the ideal process-local runtime of all processes.
Based on this consideration, we can use PL-CUE to split the global serialization
efficiency into two factors:

SerEomp =
max(ti∈T )

max(PL-CUEj∈P )
and SerEmpi =

max(PL-CUEj∈P )
runtimeideal

(6)

G-COO contains all potential waiting time for MPI communication, and all
synchronization, while OpenMP synchronization cost is dropped. Therefore, we
can use this metric to split the transfer efficiency into the following two factors:

TEomp =
G-COO
runtime

and TEmpi =
G-CUE
G-COO

(7)

5.2 Properties of Separated Model Factors

We want to highlight that all of our hybrid model factors are values from 0 to
1. In order to prove this claim, we first note that all values ti∈T = TL-CUE on
thread i ∈ T , PL-CUE, G-COO, and G-CUE represent time on different critical
paths of the execution. As such, they are always non-negative (zero or larger)
since execution can only evolve forward in time. The same holds for runtime
and runtimeideal of course. In the split of global load balance (5), we sum over
products of TL-CUE either with |T |, the number of all threads in the execution,
or with |PTi|, the number of threads of a process i. Since both thread counts
cannot be negative, the resulting products will always be non-negative. Note
that the average or maximum of a set of non-negative times is trivially also
non-negative. As all model factors in the split of global serialization efficiency
(6) and transfer efficiency (7) are simply quotients of non-negative times they
are also non-negative. To further prove that all of our model factors cannot be
larger than 1.0, we have to show that for each quotient, the numerator is less
than or equal to the denominator.

For TEomp we know that G-COO is the time on the global critical path only
considering useful execution and MPI execution. In contrast, runtime is the time
on the critical path additionally considering OpenMP execution. Thus we have
G-COO ≤ runtime.

Similarly, for TEmpi the G-CUE is time on the critical path only considering
useful execution while G-COO is time on the critical path considering useful
execution and MPI execution. Again we get G-CUE ≤ G-COO.

For SerEmpi assume runtimeideal < max(PL-CUEj∈P ). This means there
exists a process j ∈ P that needs more time to perform its useful execution
than given by runtimeideal. By definition of ideal runtime, this cannot be as
each process has to be finished with useful execution before the execution of
the whole application can end. So by contradiction we get max(PL-CUEj∈P ) ≤
runtimeideal.
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For SerEomp we can argue analogously assuming max(PL-CUEj∈P ) <
max(ti∈T ). This means there exists at least one thread that spends more time on
useful execution than any of the processes. However, this is not possible as each
thread cannot spend more time on useful execution than the corresponding pro-
cess it belongs to. So by contradiction we get max(ti∈T ) ≤ max(PL-CUEj∈P ).

For LBomp we can argue by definition of the average

|T | · avg(ti∈T ) =
∑

i∈T

ti =
∑

j∈P

⎛

⎝
∑

k∈PTj

tk

⎞

⎠ ≤
∑

j∈P

(|PTj | · max(tk∈PTj
)
)
.

For LBmpi we can argue that we have

for each j ∈ P : max(tk∈PTj
) ≤ max(ti∈Ti

)

and thus also
∑

j∈P

(|PTj | · max(tk∈PTj
)
) ≤

∑

j∈P

(|PTj | · max(ti∈T )) = |T | · max(ti∈T ).

6 Evaluation

In Figs. 3, 5, and 7 we show a breakdown of model factors in the way they impact
the overall parallel efficiency. From top to bottom, an additional model factor is
multiplied and plotted. We show transfer efficiency, serialization efficiency, load
balance, and parallel efficiency from top to bottom in all figures. The differently
colored areas highlight the loss in efficiency caused by the specific model factor.
The larger plot on the left shows the hybrid breakdown, where the corresponding
OpenMP factor is on top of the MPI factor. The two smaller plots on the right
show the separated breakdown for OpenMP and MPI. The parallel efficiency
at the bottom still separates the OpenMP from the MPI parallel efficiency.
Multiplying the two efficiencies results in the hybrid parallel efficiency shown
in the left plot. For randomly selected measurements we compared execution
time with and without tool. In no case we could see an overhead exceeding the
variation of execution time of these non-deterministic parallel applications.

6.1 Experiment Setup

All experiments are executed on exclusively reserved nodes of the Claix 2018
cluster with two Intel Xeon Platinum 8160 processors and 192 GB main mem-
ory. Hyperthreads are disabled; therefore, a node has 48 cores. Furthermore,
sub-NUMA clustering is enabled, leading to four NUMA nodes. In all cases
threads are pinned using OMP PLACES=cores and OMP PROC BIND=close. There-
fore, experiments with 6 and 12 threads execute on a single sub-NUMA domain.

We use IntelMPI 2018, which is the default MPI on Claix. To compile JuKKR
we use Intel 19.0 compilers. To compile the Blocked Cholesky Factorization use
a custom-built version of LLVM/clang derived from the main branch (0fd5f696)
just before the recent 14.0 release branch.
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6.2 Real-World Application JuKKR

We demonstrate the applicability of our methodology to real-world applications
by applying it to the KKRhost code of the Juelich KKR suite (JuKKR)2. The
JuKKR suite is a collection of codes solving problems in the field of density
functional theory by implementing the Korringa-Kohn-Rostoker Green function
method. The KKRhost code is a main building block of the whole JuKKR suite
to perform electronic structure calculations on periodic systems, for example,
crystalline solids. It is a highly parallel Fortran application with a hybrid of
MPI + OpenMP [12]. Thus it is a perfect candidate to evaluate our proposed
split of Load Balance, Serialization Efficiency and Transfer Efficiency into the
different levels of parallelism. The code iteratively computes the electron density
of the periodic crystal lattice under investigation until self-consistency. In each
self-consistency iteration cycle solving the algebraic Dyson equation constitutes
the hotspot of the application.

In the following, we analyze our prototype tool’s performance results for
the KKRhost code. Based on previous measurements, that are not shown here,
choosing 6 threads per process already showed a significant inefficiency due to
load imbalances on the OpenMP level, which increased even more, when further
scaling up the number of OpenMP threads. Thus, for the experiment shown in
this work we decided to fix the number of OpenMP threads per process to 6
and vary the number of MPI processes. The resulting breakdown of our hybrid
model factors for this strong-scaling experiment of the KKRhost code are shown
in Fig. 3. Keeping the number of OpenMP threads fixed also results in a constant

Fig. 3. Breakdown of hybrid model factors for JuKKR executed with 6 threads and
varying number of MPI processes

2 https://jukkr.fz-juelich.de/.

https://jukkr.fz-juelich.de/
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OpenMP load balance of 60%, as the OpenMP breakdown in the top right of
Fig. 3 reveals. This inefficiency is caused by the parallelization of the k-point
integration loop in the hotspot region of the code. In our 3D test case of a unit
cell containing four gold atoms, we have 1536000 k-points. For each k-point, an
LU decomposition of a small 32×32 matrix is computed using the multithreaded
version of the Intel Math Kernel Library (MKL). We found out that due to the
small matrix size, the Intel MKL does not make use of all 6 OpenMP threads. In
addition, the loop over all k-points is not parallelized with OpenMP so that other
parts of this loop are executed only by the main thread of the corresponding MPI
process. All in all, this leads to the observed load imbalances on the OpenMP
level.

6.3 Distributed Block Cholesky Factorization

In previous work [10] we proposed the concept of actual asynchronous MPI
communication. The proposal gets currently refined in the MPI forum with the
goal to introduce the feature as MPI continuations with MPI 5. To showcase
the benefits of such asynchronous MPI communication that can interact with
OpenMP tasks and task dependencies, we developed different versions of dis-
tributed Block Cholesky Factorization. For all experiments, we use a matrix
with rank 216 ≈ 131k, which is distributed into blocks of rank 29 = 512. The
blocks are distributed block-cyclic in both decomposition dimensions.

The base version of the code is block-synchronous. The execution trace in
Fig. 4 illustrates the execution of a smaller problem size with four processes
and four threads each. It alternates between communication and computation
phases to ensure that communication cannot conflict with reading and writing
data during communication. Only a single thread per process performs all com-
munication. Such parallelization can often be found in hybrid MPI + OpenMP
codes. In previous work, we studied the node-level behavior of the code and
found it to be sensitive to NUMA effects. Therefore we execute the code with
12 threads per process and scale the number of processes. Four processes fit
on a single node, while 128 processes are distributed to 32 nodes. The break-
down of model factors in Fig. 5 highlights the minimal overhead introduced at
the threading level. At the same time, transfer efficiency is responsible for most

Fig. 4. Execution trace of block-synchronous version of Block Cholesky Factorization
executed with four threads and four MPI processes. Red shows MPI communication,
light blue is OpenMP synchronization, purple represents dgemm tasks and green are
other tasks (Color figure online)
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Fig. 5. Breakdown of hybrid model factors for block-synchronous version of Block
Cholesky Factorization executed with 12 threads and varying number of MPI processes

of the drop in parallel efficiency. The observed MPI load imbalance is a result
of the block-cyclic domain distribution, where some processes consistently have
an extra block of work below the main diagonal. In this code version, the single
communicating thread blocks the other threads from running calculations. Look-
ing at the number of messages sent with increasing process count, we observe a
significant increase in data transfers. At the same time, the calculation time per
iteration scales down. This impact on the ratio of computation to communication
is reflected in the transfer efficiency.

The second version we consider for this evaluation makes use of the future
MPI continuations concept in combination with the OpenMP 5.0 concept of
detached tasks. Generally speaking, this combination allows to span a task
dependency graph across distributed memory nodes by treating MPI communi-
cation as dependency edges. Task dependencies enforce an ordering of commu-
nicating blocks and computing with blocks. Detached tasks combined with the
notification of completion from MPI continuations make the MPI communication
really asynchronous and fit them seamlessly into the process-local task depen-
dencies. The execution trace in Fig. 6 illustrates the execution with the same
parameters as in Fig. 4. In contrast to the block-synchronous version, we can
observe the impact of task dependencies on OpenMP serialization efficiency. Up
to 32 processes have enough computation work to sufficiently overlap communi-
cation and computation. Starting with 64 processes, the growing communication
time combined with reduced calculation time impacts the transfer efficiency and,
therefore, the parallel efficiency. To quantify the tool overhead, we execute the
16 nodes experiment 10 times with and without our tool. The mean execu-
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Fig. 6. Execution trace of the asynchronous version of Block Cholesky Factorization
executed with four threads and four MPI processes. The prototype implementation of
MPI continuations spawns an extra thread to notify the OpenMP tasks about comple-
tion of MPI communication.

Fig. 7. Breakdown of hybrid model factors for the asynchronous version of Block
Cholesky Factorization using detached OpenMP tasks executed with 12 threads and a
varying number of MPI processes

tion time and standard deviation with tool is 44.72 ± 0.92 s and without tool
is 44.68 ± 0.48 s. This means that the average tool overhead is smaller than the
spread of execution times caused by non-deterministic execution and influence
from hardware and network variances.

6.4 Synthetic Benchmark

To complement the evaluation of actual application codes, we also designed syn-
thetic benchmark codes to evaluate the expressiveness of the separated model
factors. Figure 8 shows three execution traces of hybrid execution with asymmet-
ric thread counts. In all cases we will ignore transfer efficiency mainly because
the MPI waiting time is only added to highlight the communication pattern.
Figures 8(a) and (b) have 100% serialization efficiency, because the first process
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Fig. 8. Examples with two processes, where the second process executes four threads.

has the full critical path. In Fig. 8(a) the total useful execution of 4 s is dis-
tributed to five threads in combination with a maximum useful execution of 2 s
this results in 40% load balance. The load within each process is perfectly bal-
anced, therefore the OpenMP load balance is 100% and the MPI load balance is
40%, which is also the result from consulting the formulas. The total load bal-
ance in Fig. 8(b) calculates to 70%. In this case the source of all load imbalance
is the distribution among the threads. In this figure we furthermore highlight,
that for the metrics it makes no difference, whether the MPI communication is
part of the OpenMP parallel region or in serial code outside any parallel region.

In contrast Fig. 8(c) shows a perfectly balanced execution trace, which suffers
mainly from serialization inefficiency. The critical path moves from one thread
to the next thread and intermediately also moves to the first process. If we would
remove the first process from the execution, the critical path would just follow
the chain of dependencies within the second process. In such case, we would
calculate the OpenMP serialization efficiency to 25%. Based on Formula 6, the
execution in Fig. 8(c) has the same OpenMP serialization efficiency. The 80%
MPI serialization efficiency can be interpreted as one process executes 80% of
the critical path. As a comparison, the separation proposed by Giménez et al. [4]

would calculate LBmpi =
0.5+2.7∗4

5
2.7 = 83.7% for the latter trace, which is the

weighted average of time outside MPI at the primary threads divided by the
maximum time outside MPI. With LB = 100%, we would get LBomp = 119%
while we would expect all model factors not to exceed 100%.

7 Future Work

In the following we will discuss two main topics for future work. The first aspect
is how an application developer might identify regions of interest. The other
aspect is how our approach might extent to other hybrid programming models
like offloading to accelerators.

7.1 Region-based Analysis

The default behavior of our prototype tool is to observe the whole execution of
a program. The starting point is either the MPI Init call or the initialization of
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the OpenMP runtime. Similarly, the end point is either the MPI Finalize call or
the finalization of the OpenMP runtime. Currently, our tool implementation also
allows the user to redefine the start and end point for the analysis. By calling
MPI Pcontrol(1) or omp control tool(1) the user can mark the start point
of the analysis. Respectively, calling MPI Pcontrol(0) or omp control tool(4)
marks the user-defined end of the analysis.

However, it is not possible to mark multiple regions right now. In the future
we plan to extend the capabilities of our tool to support collection of our pro-
posed model factors for multiple, possibly overlapping, regions, at the same time.
We also plan to allow aggregation of same regions that occur inside an iterative
loop, for example. In principle the user will be free to define arbitrary regions
for the analysis. For very small regions, e.g., a single OpenMP parallel region,
the expressiveness of our approach might be questionable because in this case
global synchronization between all processes is missing. Since our approach relies
on the critical path global synchronization is necessary to determine the critical
path correctly. These kind of use-cases will need a thorough investigation in the
future.

7.2 Accelerator Support

Many applications offload parts of their computation to accelerator devices by
using CUDA, OpenACC, OpenMP target offloading or others. In the current
state our approach does not support accelerator offloading. However, we can
identify similar synchronization points such as kernel launches or explicit waits
on memory copies. Based on these synchronization points we can also track the
implicit critical path along accelerator devices similar to a hybrid MPI+OpenMP
execution. Our separated model factors then need to be redefined to include load
balance, serialization- and transfer efficiency for accelerator execution accord-
ingly. In order to implement this extension in our prototype tool the popular
accelerator programming models mentioned above offer suitable interfaces that
can be used to track the required synchronization points. CUDA offers the CUDA
Profiling Tools Interface (CUPTI), OpenACC also offers a callback-based tool
interface for profiling and tracing events and for OpenMP target offloading we
can build upon our existing implementation of the OMPT interface.

8 Conclusions

Although our prototype collects the metrics on the fly, a post-mortem analysis
tool can calculate the same metrics from execution traces and therefore calculate
the separated model factors based on the formulas. As we showed in the evalu-
ation, collecting the metrics on the fly does not introduce measurable runtime
overhead since we store even less data than a stack profiling tool. We believe
that any tracing tool should be able to collect the information while tracing the
application without additional runtime overhead. We proved that all separated
model factors stay in the range between 0 and 1 as expected for efficiency values.
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In one example, our separation approach shows more consistent results than pre-
vious work. Finally, we used real-world applications as well as synthetic parallel
kernels to evaluate the expressiveness of the separated model factors.
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2. Doleschal, J., Knüpfer, A., Müller, M.S., Nagel, W.E.: Internal timer synchroniza-
tion for parallel event tracing. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 202–209. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87475-1 29

3. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI (2009)
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Abstract. With the advent of multi- many-core processors and hard-
ware accelerators, choosing a specific architecture to renew a supercom-
puter can become very tedious. This decision process should consider
the current and future parallel application needs and the design of the
target software stack. It should also consider the single-core behavior
of the application as it is one of the performance limitations in today’s
machines. In such a scheme, performance hints on the impact of some
hardware and software stack modifications are mandatory to drive this
choice. This paper proposes a workflow for performance projection based
on execution on an actual processor and the application’s behavior. This
projection evaluates the performance variation from an existing core of a
processor to a hypothetical one to drive the design choice. For this pur-
pose, we characterize the maximum sustainable performance of the target
machine and analyze the application using the software stack of the tar-
get machine. To validate this approach, we apply it to three applications
of the CORAL benchmark suite: LULESH, MiniFE, and Quicksilver,
using a single-core of two Arm-based architectures: Marvell ThunderX2
and Arm Neoverse N1. Finally, we follow this validation work with an
example of design-space exploration around the SVE vector size, the
choice of DDR4 and HBM2, and the software stack choice on A64FX on
our applications with a pool of three source architectures: Arm Neoverse
N1, Marvell ThunderX2, and Fujitsu A64FX.

Keywords: Performance Projection · Design space exploration · Arm
architecture · Roofline model

1 Introduction

In the pursuit of reaching the exaflops target, the CPUs are becoming more
complex both from hardware and software perspectives. Even when working on a
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multicore processor, it is essential to consider the single-core performance when
exploring all the possibilities in its design. Indeed, there are multiple choices
to make on the memory hierarchy side and the computational part with, for
example, vector units. Therefore, it is meaningful to study the impact of those
choices on the software stack and the applications. Considering we have access
to a source machine and the software stack of a hypothetical target machine,
how can we evaluate the impact of the differences between the machines and
software stacks on the application performance?

This paper proposes a methodology to evaluate this impact of single-core
performance from a source machine to a hypothetical target machine with a
dedicated software stack. By analyzing the differences between two architectures
and two binaries, this approach evaluates the performance from one machine to
another with a roofline-based model, leading to an interval of performance. The
obtained intervals analysis led to a study of the relevance of some hardware
modifications and their impact on software. We present such an exploration
around hardware vector sizes, various memory types, and different compilers on
3 Arm architectures (Marvell ThunderX2, Neoverse N1, and Fujitsu A64FX)
and 3 CORAL mini-apps (Lulesh, MiniFE, and Quicksilver).

Section 2 presents the related work while Sect. 3 describes the methodology
and its implementation. Then Sect. 4 presents the experimental environment
used for approach validation in Sect. 5 and parameter exploration on 3 Arm
architectures in Sect. 6.

2 Related Work

There are various approaches for evaluating the performance impact regarding
design-space exploration. The first one relies on cycle-accurate simulators [11]
leading to precise prediction but significant overhead (10000×). This drawback
is too limiting for exploring the performance impact on a whole mini-app.

Hence, analytical models can be used, leading to less precise but much faster
estimation. The main difficulty lies in defining the relevant metrics and obtaining
them. The choices and approximations made to obtain these metrics are different
in each model and result in differences in precision and speed. Some analytical
approaches choose to reduce the problem by being application-dependent [4].
However, our model can explore different applications as we want to charac-
terize diverse behavior in our applicative workload. Some of the application-
independent approaches choose to use simulation on a small scale [14] to have
a good prediction and limit the analysis time compared to a complete simu-
lation. Our approach does not rely on a simulator to get metrics but only on
the emulation of non-native ISA, which is much faster than fully simulating the
application. Furthermore, it allows exploring parameters on applications with a
larger input size. While it is possible to consider a hardware-independent repre-
sentation of the application [8,9], it is essential to look at the impact of software
stack targeting an architecture in an environment as recent and diverse as the
Arm HPC environment. The choices in the software stack have a non-negligible
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impact on performance, as shown on A64FX [5]. Therefore, our approach con-
siders that having access to the target machine software stack is necessary for
our model.

The idea of projecting the performance from a source machine to a target
machine is behind some machine-learning-oriented approaches [7]. One of the
current limitations is the low number of machines in the Arm environment,
making it hard to have a sufficient dataset necessary for training. However, we
could consider coupling our approach with machine learning as more and more
machines appear in the Arm HPC environment.

This article presents an analytical performance projection approach used for
design space exploration. It allows to take into account the differences in hard-
ware and in software stack when targeting a particular architecture. The explo-
ration around different hardware parameters in this article leads to a discussion
on the effectiveness and the limitations of the approach.

Fig. 1. Our performance-estimation workflow (Color figure online)

3 Workflow Presentation and Implementation

This section presents our approach and the methodology and its implementation
for validation and design-space exploration. Figure 1 presents the main workflow
in which the target and source machine characterization are represented in green
and red while the model analysis running on the source machine is black. The
first step is to get two binaries with the same source code: one with the software
stack of the source machine and the other for the target architecture. Both
binaries are then analyzed to gather the metrics directly on the source machine.

In the field of performance analysis, the Roofline model [18] is a well-known
representation to characterize the behavior of an application according to the
hardware limitations. So, we have chosen to use this representation to analyze
performance on our source machine and evaluate a target one. The model output
is a performance interval on the roofline representation of the target machine.
Moreover, it helps to understand the impacts of the software stack on the target
architecture.
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3.1 Hardware and Software Characterization

Our approach relies on two binaries (source and target) obtained through a ded-
icated software stack. We consider the hardware differences thanks to the maxi-
mum available bandwidth and peak sustainable performance of the machine. In
contrast, the differences brought by the software stack are visible in the metrics
we obtain by analyzing the binaries. We have chosen to consider their Opera-
tional Intensities (OI) and their floating-point instruction mix. Once we have
considered these hardware and software differences, we project the roofline anal-
ysis from the source machine to a hypothetical target architecture.

Hence, the first study is to obtain these hardware limitations imposed by
the peak memory bandwidth of all memory levels and the peak sustainable
performance of our core. These limitations are represented by the roofline (1)
of the Stream Triad bandwidth of each memory level BWSTREAM [13] and the
peak performance of High Performance Linpack (PerfHPL) [15]. This leads to two
regions: (i) memory-bound limited by the memory bandwidth and (ii) compute-
bound where the HPL peak performance represents the limit (see Fig. 2).

roofline(OI) = min{BWSTREAM × OI,PerfHPL} (1)

However, using HPL performance as a limitation is unrealistic because our
applications do not have the floating-point instruction mix to reach that perfor-
mance peak. Hence we have chosen to weigh this peak sustainable performance of
a single-core following the Eq. (2) in which we compare the application floating-
point operations per instruction to the maximum attainable on the machine
which is only FMA-type of instructions on full vectors. With such a ponder-
ation, the compute part of the roofline represents the maximum sustainable
performance for our application instruction mix.

PerfHPLponderated =
PerfHPL

2 × vector size
datasize

× Nfloating point operations

Nfloating point instructions
(2)

The next main component in our model is the Operational Intensity (OI).
Because we want to consider the bandwidth of the different memory levels, we
need to assess the bytes accessed in these memory levels in the OI as presented
in the Cache-Aware Roofline Model [6]. Hence, in a two cache-level machine, we
obtain the OI from L1 using the Eq. (3) with Bi the total of bytes accessed in
the cache level i.

OIL1 =
Nfloating point operations

BL1 + BL2 + BMain Memory
(3)

The OI from the L1 memory level is the same OI defined in the CARM
approach, and the OI of the main memory is the one used in the Original Roofline
Model.
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Fig. 2. Roofline representation: plain lines represent, from left to right, the rooflines
of L1, L2, and Main Memory for each machine (green is source machine, red is target
machine) with the peak sustainable performance obtained with HPL. The maximum
attainable performance weighted by instruction mix is in dotted for both machines.
(Color figure online)

3.2 Performance Projection

The projection uses the same idea as Kwack et al. for roofline projection [12]:
it considers the ratio between the performance (Perfsource) and one roofline
on the source machine at the OIsource (rooflinesource(OIsource)), and projects
this ratio on the target machine using the new OI and the new roofline
(rooflinetarget(OItarget)). This is presented in Eq. (4). Thus depending on the
OI value, the application is limited by the memory-level bandwidth or the core
peak performance.

Perftarget =
Perfsource

rooflinesource(OIsource)
× rooflinetarget(OItarget) (4)

This analysis results in multiple values because of all the OIs and rooflines,
forming a projection interval.

3.3 Methodology for Design-Space Exploration

We want to use this model to explore the parameters best reflected by this
projection approach. We can make such an exploration around different software
stacks and instruction mixes of the application. But we also consider hardware
parameters such as the memory type and bandwidth and the hardware vector
length. In the Arm environment, the exploration of the different vector sizes
is allowed by the vector-length-agnostic approach of the SVE (Scalable Vector
Extension) ISA of Arm architectures [17].

The model translates the hardware differences into rooflines used for projec-
tion, whereas the software stack and instruction mix changes are shown in the
OI and its peak compute performance.

However, hardware and software changes are often not dissociated because
one modification can impact the other. When we change the hardware vector
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size, we often observe a decrease in vectorization rate, affecting the instruction
mix of the application.

Technically, when we consider a different vector size, we multiply the maxi-
mum performance obtained with HPL by new vector size

old vector size and analyze the target
binary again to see the impact this change has on the instruction mix and OI.
When we consider different memory types, we do not need to run a new binary
analysis as we only change the value of the main memory bandwidth and project
performance with this new roofline, with this new value having the most signifi-
cant impact on memory-bound applications. For example, when we introduce a
HBM2 of A64FX on a DDR4 machine, we change the value of the main memory
bandwidth to the one we measured on A64FX.

Hence, when running the model with each of the new parameters, we will
obtain a different, or not, prediction interval. By comparing these intervals, we
can analyze the impact of the evolution of diverse parameters and their impact
on the performance of the application we study.

3.4 Implementation

As explained before, the machine characterization is obtained by running Stream
and HPL on our source machine. We assume we have access to these benchmarks
results or extrapolate this information on the source machine. For the analysis
of the binaries we obtain with the different software stacks, we need to gather
two kinds of metrics:

1. Instruction mix: number of floating-point instructions, total number of
accessed bytes, number of flops. We rely on the dynamic code instrumentation
with DynamoRIO [3] and ArmIE for SVE emulation [1] when changing the
vector length. ArmIE instrumentation client allows for an easy floating-point
instructions, FLOPs and bytes accessed count instruction per instruction,
even for emulated SVE instructions on a non-SVE architecture.

2. Memory usage: percentage of hits in every memory level. We rely on hardware
counters on the source machine but it is also possible to modelize a cache
thanks to an ArmIE memory instruction trace client.

Our implementation is explained in Fig. 3 adding precision to Fig. 1 with the
tool and benchmark used in our implementation.

4 Experimental Environment

This section describes the architectures and the benchmark applications used to
validate and experiment our model.

4.1 Architectures

We chose to use three different Arm CPUs to experiment with our approach: a
single-core of Marvell ThunderX2 (TX2), Arm Neoverse N1 (N1), and Fujitsu



Relative Performance Projection on Arm Architectures 91

Fig. 3. Description of the implementation flow.

Table 1. Single-Core Characteristics the 3 Test Machines.

Machine TX2 N1 A64FX

Performance (GFLOPS) 17.53 18.22 56.71

MM bandwidth (GB/s) 25.43 21.14 65.52

Vector size and ISA NEON 128 bits NEON 128 bits SVE 512 bits

Memory type DDR4 DDR4 HBM2

Compiler g++ 10.3.0 g++ 10.3.0 g++ 10.3.0

FCC 4.6.3

(clang mode)

Flags -O3 -ffast-math -O3 -ffast-math -O3 -ffast-math

-mcpu=thunderx2t99 -mcpu=neoverse-n1 mcpu=a64fx

A64FX (A64FX). Table 1 summarizes their characteristics and the results of
HPL and Stream benchmarks running alone on a full node we obtained. These
three architectures cover different parts of the Arm HPC environment, from the
server market (N1 and TX2 processors) to the HPC focus (Fujitsu A64FX). The
latter is currently the only Arm processor in production to use SVE vectors
of 512 bits. With HBM2 and longer vectors than N1 and TX2, the single-core
performance of a A64FX node is much higher when running STREAM and HPL
benchmarks.

4.2 Applications

We use three benchmarks of the CORAL and CORAL-2 Benchmark suites:
LULESH [10] , MiniFE [2] and Quicksilver [16].

LULESH (Livermore Unstructured Lagrangian Explicit Shock Hydrody-
namics) approximates hydrodynamic equations by using a regular cartesian mesh
to partition the spatial problem. Our test’s input is a mesh of size 1003.

MiniFE is a mini-application based on finite element methods that imple-
ment an iterative conjugate gradient solver. Our test’s input is a mesh of size
2563.
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Quicksilver is a CORAL-2 Benchmark suite mini-application that solves
a simplified dynamic Monte-Carlo particle transport problem. Our input is the
Coral 2 P1 1 input.

5 Model Validation

This Section validates the model using two close architectures (N1 and TX2)
by ensuring that the target performance is in the predicted interval obtained by
our workflow when using the same software stack (GCC). Figures 4, 5, 6, 7, 8
and 9 display the prediction interval obtained with the different projections. The
blue crosses represent these projections creating the interval depicted by the blue
dotted box. The source machine rooflines are green, and the target machine ones
are red. We analyze each application after initialization and before finalization.

5.1 LULESH

Figures 4 and 5 present the projection of LULESH from one machine to the
other. The maximum sustainable performance weighted by the floating-point
instruction mix (corresponding to the dotted rooflines) is a bit higher on TX2
than N1 despite having a lower maximum performance on HPL. The OIs of the
L1 memory level are similar on both machines. Situated in the TX2 memory-
bound region, the differences between the bandwidth and the projections in this
region create an interval that is not modified by the projections from the OIs of
L2 and main memory. This interval is higher when projecting from TX2 because
of the difference in L1 and L2 cache bandwidth. Because performances on both
machines are nearly equal, we are closer to the TX2 roofline hence we obtain a
better ratio which is then translated into a higher prediction interval. In both
figures, the interval we predict includes the actual performance measured on the
target machine, validating our approach in this application.

Fig. 4. Results on LULESH TX2 →
N1. (Color figure online)

Fig. 5. Results on LULESH N1 →
TX2. (Color figure online)
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5.2 MiniFE

MiniFE exploits vectorization on the two architectures. This better vectoriza-
tion rate is translated into a good performance of its instruction mix (see Figs. 6
and 7). Compared to LULESH, the OI of L1 is in the memory-bound region
of all rooflines on both machines. Once again, the interval we predict, only
being affected by the OI of L1, does not change whether we project from N1
or TX2. However, the N1 performance is higher (1.87 GFLOPS) than the TX2
performance (1.04 GFLOPS). Despite this difference in performance, our inter-
val includes the measured performance. We can suppose that, because we are in
the memory-bound region of the L1 and L2 cache levels, the better performance
of MiniFE on N1 may result from the higher bandwidth of these levels.

Fig. 6. Results miniFE TX2 → N1.
(Color figure online)

Fig. 7. Results miniFE N1 → TX2.
(Color figure online)

5.3 Quicksilver

Quicksilver is our application with the lowest OI and measured performances
on both machines (Figs. 8 and 9). The low performance may result from the
poor vectorization rate of this application, shown in the maximum performance
attainable by the instruction mix of both binaries. All the OI deducted from the
L1 are in the memory-bound region of all rooflines, while the OIs derived from
other memory levels are in the compute-bound regions. The prediction interval is
obtained because of the OI from L1, which includes the measured performances.
We observe higher performance on N1 (0.5 GFLOPS) than TX2 (0.4 GFLOPS).
This difference in performance may be due to the difference in cache bandwidth,
giving an advantage to the N1 core.

To conclude this validation, when we apply our model on the most similar
machine in our machine pool, the prediction interval we obtain always includes
the measured performance of our application. For the most memory-bound appli-
cation (MiniFE and Quicksilver), we also observe higher performance when run-
ning on an N1 core that may be enabled by the higher bandwidth of the cache
levels.
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Fig. 8. Results Quicksilver TX2 → N1.
(Color figure online)

Fig. 9. Results Quicksilver N1 → TX2.
(Color figure online)

6 Exploration on Different Parameters

This section will use our approach to explore different hardware and software
parameters. We have chosen to explore the different vector sizes allowed by
SVE on all three machines. Hence, we compare the performance projection from
a NEON machine (N1, TX2) to a hypothetical one with SVE with a vector
size of 128, 256, 512, 1024, and 2048 bits. Another parameter we explore is
the introduction of HBM2 for both DDR4 machines. Then, we combine these
parameters to compare hypothetical SVE512 + HBM2 machines with A64FX.
Finally, we observe the differences a change of software stack creates in exploring
different vector sizes on A64FX. The SVE512 value is not a projection for A64FX
in the following figures as it is native on this core.

6.1 Exploration on SVE vector sizes

One of the challenges in the design of future Arm core is the size imposed by
the hardware on SVE vectors and the impact this choice has on the performance
of the applications. We can obtain such a characterization with our model by
looking at how such a change impacts the maximum performance imposed by
hardware and the software stack.

Figure 10 shows that the impact of the vector size on LULESH depends on the
source machine. We observe that, when targeting A64FX and TX2 architecture,
the binary’s predicted performance benefits more from this increase in vector
size than when targeting N1. GCC does not vectorize LULESH as much when
targeting N1. Despite having a very similar source performance on native N1
and TX2, this difference in vectorization predicts lower performance on N1 than
TX2 with longer SVE vectors.

When doing this exercise on MiniFE (Fig. 11), we observe here a similar
behavior on all machines. A change in vector size impacts all the predicted per-
formances of our architectures. But this impact is not equivalent for all our archi-
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tectures. When comparing TX2 and N1, the predicted interval upper bound of
TX2 gains more performance at each step to reach a maximum of 10.2 GFLOPS.

The behavior of MiniFE when exploring vector size is opposed to Quicksilver
(Fig. 12). This application does not benefit from the change of vector size on
any architectures. On all architectures, GCC cannot vectorize the application,
meaning they do not benefit from this change of vector size. If we want to gain
performance on Monte-Carlo applications, increasing the vector size is not the
solution.

The predicted interval is smaller on A64FX than on the other two machines
on all these figures. This shows that there are not many differences when project-
ing performances with different bandwidths of these machines. We can suppose
it is because of the bandwidths of the A64FX being much higher, meaning the
OIs of our application are closer to the compute-bound region for all bandwidths.

Fig. 10. Exploration of different SVE
vector sizes on LULESH

Fig. 11. Exploration of different SVE
vector sizes on MiniFE

6.2 Exploration on the Introduction of HBM2 on DDR4 Machines

Another characterization we make with our approach is to analyze the introduc-
tion of the HBM2 memory of A64FX on N1 and TX2, creating a hypothetical
machine with the same characteristics as our source machine with only the main
memory bandwidth being different in our model. The first observation on Figs. 13
and 14 is that the N1 core can be the one that benefits the most from this change
of main memory bandwidth on LULESH and Quicksilver. This leads to a higher
predicted upper bound on both applications on N1 despite LULESH having less
performance with DDR4 on this machine. We suppose this is due to the N1 core
having higher cache bandwidth and lower memory bandwidth than TX2. So the
memory bandwidth gain is higher for the N1 core, leading to more performance
gain for these applications. We also see that the lower bound of our predicted
interval does not change on both applications compared to DDR4. This is due
to the cache bandwidth of our hypothetical machine not being adapted to this
main memory bandwidth increase. Finally, our model cannot characterize the
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latency aspect of our applications, which may be an issue with the introduction
of HBM2 because of its latency access being higher than DDR4.

Fig. 12. Exploration of different SVE
vector sizes on Quicksilver

Fig. 13. Exploration of introduction of
HBM2 on LULESH

Fig. 14. Exploration of introduction of
HBM2 on Quicksilver

Fig. 15. Exploration of introduction of
HBM2 and SVE512 on LULESH

6.3 Comparison of Projections from N1 and TX2 with SVE 512
and HBM2 to A64FX

We combine both changes of parameters we made in the two previous subsec-
tions to compare the introduction of SVE 512 bits and HBM2 on N1 and TX2
and compare it with the A64FX architecture on two applications: LULESH and
Quicksilver. We choose to use GCC 10.3 on all 3 machines for this compari-
son presented in the Figures 15 and 16. We can observe the change introduced
by HBM2 to the interval predicted only with SVE512. Similarly, the use of
HBM2 impacts the N1 core the most on LULESH, even with SVE512. Even if
both machines can gain more performance, this leads to similar predicted perfor-
mance between N1 and TX2 despite LULESH not benefitting from vectorization
on N1. On MiniFE, the predicted performance is not as impacted on both appli-
cations.We only observe the predicted upper bound being higher by 0.6 GFLOPS
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on N1 and no change on TX2. This analysis shows it can be more impactful on
performance to increase vector size than increasing the main memory bandwidth
for MiniFE.

When we compare the projection on both applications to the performance
on the A64FX machine, we predict performance to be higher on N1 and TX2
architecture. We can suppose the introduction of HBM2 and SVE512 on these
machines changed their single-core roofline to be on par with A64FX, and GCC
is more efficient when targeting N1 and TX2 architecture than A64FX, causing
this higher predicted performance.

Fig. 16. Exploration of introduction of
HBM2 and SVE512 on MiniFE

Fig. 17. Vector sizes exploration with
GCC and FCC on A64FX on LULESH

6.4 Vector Sizes Exploration on A64FX with Different Software
Stacks

We have seen that GCC has a hard time obtaining performance on a single-core
of A64FX, and we want to compare it with the use of the Fujitsu Compiler
(FCC). Figure 17 presents this comparison when changing the vector sizes on
LULESH with GCC and FCC compilers. We do not have an interval with both
software stacks, meaning the OIs of both binaries are in the compute-bound
region of A64FX. However, we observe a different evolution of the predicted
value when increasing the SVE vector size. GCC binary gains more performance
when increasing vector size when compared to the FCC binary because it has
more vector usage. Despite this difference in vectorization, we observe higher
performance on FCC with SVE vectors from 128 bits to 512 bits, with the
last being the native vector size. We can suppose that FCC is more careful when
vectorizing the application because of its insight of the microarchitecture impact
of the A64FX, whereas GCC vectorizes a loop without considering it as much.
So we have better usage of an A64FX when compiling with the Fujitsu Compiler
than with GCC.
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7 Conclusion and Future Work

This article presents an approach for core design space exploration of a single
processor core using performance projection from a source machine. We have
chosen to consider the impact of the software stack of the target machine. The
workflow relies on binary analysis, hardware characterization, and the Roofline
model to obtain a performance interval on the target machine. Thanks to this
projection, we can characterize the impact of the differences between a single
core maximum performance, the bandwidth of all memory levels, and the cache
efficiency. We can also analyze the differences brought by the software stack on
the application with metrics such as the observed OI and maximum performance
of the instruction mix with the use of the SIMD mechanism. Thanks to an imple-
mentation using emulation for dynamic code instrumentation, we have validated
our model on a core of Marvell ThunderX2 and Arm Neoverse N1 architecture
for three CORAL mini-apps: LULESH, MiniFE, and Quicksilver. We followed
this validation work with an exploration around different SVE vector sizes and
the introduction of HBM2 memory on DDR4 machines for the three CORAL
applications. We used a pool of three different Arm core architectures for this
exercise: ThunderX2, Neoverse N1, and A64FX. We also analyzed the impact
of using different compilers (GCC and FCC) when exploring different SVE vec-
tor lengths on A64FX. To enhance the model, we plan to characterize some
microarchitectural features and parallelism at a full-node level.
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Abstract. Game engines are at the heart of the design of modern video
games. One of their functions is to keep a high frame rate by schedul-
ing the tasks required to generate each frame (image). These tasks are
organized in a soft real-time, parallel task graph, which is a scenario
very few works have focused on, or adapted scheduling algorithms to.
In this paper, we study the scheduling problem of game engines. We
model the tasks and the scheduling problem by profiling a commercial
game engine, adapt and compare different scheduling algorithms, and
propose two additional optimizations regarding the micro-scheduler and
the parallelization of targeted tasks.

Keywords: Scheduling · Video Game engine · Soft real-time · Task
programming

1 Introduction

The video game market is valued at over 100 billion USD [15], making it larger
than the HPC market, or even the movie and music industries combined. This
industry impacts computing both at the hardware and software levels. It pro-
duces and sells tens of millions of video game consoles yearly. Its games are
run on personal computers, consoles, smartphones, and even on Cloud gaming
servers. These games are more easily developed and ported to different platforms
thanks to a key software component called the game engine.

The game engine serves as a framework for game development. Video game
companies can license game engines, such as Unity, Unreal Engine 4, or Game
Maker: Studio, or produce their own. A game engine contains core software
components (such as the 3D rendering system or the collision detection system)
that can be extended and combined with different art assets and game logic to
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produce different games [12]. Moreover, game engines are responsible for man-
aging resources such as the memory, and for scheduling tasks. This makes the
optimization of game engines essential for the gaming experience of players.

The problem of scheduling in game engines has not been previously studied in
detail, and we have noticed that this problem includes uncommon characteristics.
For instance, although video games are soft real-time systems (with a video frame
being displayed every few milliseconds), their recurring tasks do not match exactly
with the models of periodic or sporadic task systems [16, Chapter 28]. Addition-
ally, although their tasks are parallel, they are neither malleable nor moldable [16,
Chapter 25]. With a better understanding of this problem, we could optimize the
schedule in game engines for the benefit of players and developers alike: with fewer
dropped frames, players can have a better gaming experience; with some extra free
time before having to display a frame, developers can include more detailed graph-
ics, physics, or AI, while mobile devices can operate at lower frequencies and save
battery, andCloudgaming servers candedicate less computing resources to a game.

In this paper, our goal is to understand and find solutions to the schedul-
ing problem of game engines. Working with a modern game engine as a case
study, we are able to model this problem and to adapt several scheduling algo-
rithms to it. Our experimental evaluation reveals performance improvements in
the game engine when answering the following three research questions: (I) “Can
scheduling strategies from the state of the art improve the performance of game
engines?”; (II) “Can changes in the scheduling mechanism of a game engine
reduce the performance gap between schedulers and the critical path?”; and (III)
“Can small changes to the task graph lead to performance improvements?”. Our
contributions include the model and evaluation metrics, the list of algorithms
adapted for this problem, and their experimental evaluation, which are all pre-
sented in Sects. 3, 4, and 5, respectively. Section 2 covers information on game
engines and related work, and Sect. 6 provides concluding remarks.

2 Background and Related Work

2.1 Background on Video Games and Game Engines

Video games work as soft real-time interactive simulations [12]. The frequency of
interactions is given by the frame rate, which defines how many frames (images)
are presented per second. Nowadays, the de facto standard dictates a frame rate
of 60fps, giving 1

60 s ≈ 16.667 ms for producing each frame. If this time is sur-
passed, a frame is dropped. Frequent frame drops degrade the gaming experience.

As a video game is built on a game engine, engineers will add, remove, or
adapt functionalities to their needs. Given the complexity of developing a game
engine, it is very common for large companies to maintain their own engines
for over a decade to capitalize on their know-how. Still, the cost of hand-tuning
all their features is exacerbated by the variety of gaming platforms and their
evolution (e.g., increase in the number of CPU cores available).

One way of reducing the required hand-tuning comes with the game engine
scheduler, which manages the execution of tasks (functionalities) by itself.
For instance, Unity provides its Job System [21] so engineers can write their
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own tasks with dependencies and let Unity schedule them. Meanwhile, Unreal
Engine 4 includes Tick Groups [22] to set when a task should be executed (e.g.,
before or after physics simulations). Our case study contains a task graph that
is executed for each frame. The structure of the graph is static for a single game.
Moreover, considering the transfer of knowledge through developer recruitment
in the video game industry [7] and game engines’ needs in order to create frames
(e.g., light, physics) [12], this results in a standardized architecture. In this con-
text, the graph’s structure changes very little between games (e.g., gameplay)
and companies, making our graph representative. This organization makes it
easier for multiple teams of engineers to work on their own functionalities. Addi-
tionally, each task is composed of one or more parallel subtasks, which is also
recommended on Intel’s Games Task Scheduler (GTS) [3].

2.2 Scheduling Problems and Algorithms

The game engine’s scheduler may find issues to keep the frame rate due to
resources being used by others (e.g., the operating system), for other tasks (load-
ing assets), or due to changes in the load of the game (e.g., additional objects
to render or AI agents to simulate). A change in load may mean not only a change
in the execution time of a task, but also to its number of subtasks. Although
high load episodes may be hard to anticipate (given the dynamic and interactive
nature of video games), load changes are usually gradual. A scheduler could ben-
efit from this by estimating the behavior of tasks based on recent frames in a way
similar to the use of the principle-of-persistence in periodic load balancing [1].
Conversely, estimations are avoided by GTS through work stealing [3].

Given the lack of studies on this scheduling problem, our efforts have been
dedicated to finding and adapting algorithms and heuristics proposed in other
contexts [2,8,10,13,14] (cf. Sect. 4). We find that there is value in bringing to
light new applications and knowledge on existing algorithms, as have done Benoit
et al. [5] for the asymptotic performance of the longest processing time (LPT)
heuristic for the case of tasks originating from uniform integer compositions.

Our scheduling problem has distinct characteristics that block the use of
techniques and heuristics used for scheduling traditional real-time or parallel
tasks [16]. Real-time scheduling most often considers independent, recurring
tasks. Such is the case on the work of Nascimento and Lima [17], where earliest
deadline first (EDF) heuristics are employed for scheduling soft and hard real-
time tasks in parallel resources. Nonetheless, the game engine contains dependent
tasks with an entire task graph to be computed for each frame. Additionally, the
absence of individual deadlines for tasks induces the frame’s end as a shared
due date, obstructing the use of EDF heuristics. Moreover, strong limitations
regarding memory and differences of constructions between video and 3D ren-
dering restrains our capacity to treat several frames simultaneously or to split
the image to render in block as done by Zhao and Liang [23]. Meanwhile, par-
allel task scheduling usually models tasks that use multiple resources simulta-
neously, but the game engine’s tasks follow a fork-join model internally. These
levels of tasks and subtasks are also reflected on GTS [3] with its macro- and
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micro-schedulers. An algorithm called DynFed was proposed to schedule par-
allel tasks with dependencies in real-time systems by Dai, Mohaqeqi, and Yi [9].
Nonetheless, it focuses on periodic, independent tasks whose parallel subtasks
have dependencies, while our scheduling problem contains tasks with dependen-
cies whose parallel subtasks are independent.

3 Scheduling in Game Engines

Our discussion of the scheduling problem in game engines is organized in three
parts: the task model; the scheduling problem at the scale of a single frame; and
the problem for multiple frames.

3.1 Task Model

A game engine performs multiple tasks to produce each frame (e.g., graphics
rendering and physics simulations [12]). These tasks have precedence constraints
that must be respected for their correct execution, which leads to their organi-
zation as a directed acyclic graph (DAG). Figure 1 represents the task graph of
our case study. It was extracted from a modern video game from Ubisoft and its
structure is reflected in other game engines and video games. The leftmost task
is the start of the frame and the rightmost its end. The path on the bottom of
Fig. 1 is composed of graphic tasks (all run in the same CPU core to dispatch
work to the GPU), while the other paths represent simulation and control tasks.

Fig. 1. A DAG representing game engine tasks (vertices) and their precedence con-
straints (edges, from left to right). Tasks in red are composed of multiple sequential
subtasks. (Color figure online)

Each task represents a functionality written by a given team in a given
moment in the lifetime of the game engine, so task interactions have to be
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kept simple. Internally, each task contains one or more independent, sequential
subtasks following a fork-join model as illustrated in Fig. 2. For our ≈ 100 tasks,
over 1000 subtasks can be computed at each frame. Both their number and exe-
cution time may change during the game execution. We refer to this effect as
the load of the frame.

Fig. 2. Fork-join parallelism inside a task. Each small circle represents one sequential
subtask.

In order to model and simulate the behavior of the game engine under differ-
ent loads, we profiled its tasks and subtasks on varied executions (>10 on differ-
ent maps of the game) and different phases (over 3000 frames). We obtained their
minimum, maximum, mean, and standard deviation values, and used them to
model timings as log-normal distributions [20] depending on the load. Equation 1
defines the processing time psubj of a subtask of task j with load l ∈ [0, 1] depend-
ing on pmin

j (l), pmax
j (l), μj(l), and σj(l) that are resp. the minimal, maximal,

mean, and standard deviation of the execution time under load l. Each value
was obtained for low (l = 0) and high (l = 1) loads, and intermediary values are
computed by a linear interpolation in l. We compute the processing time pj(l) of
task j by adding together the times of its subtasks in Eq. 2. In it, sj(l) represents
the number of subtasks of task j with load l, which is computed in a similar fash-
ion to other load-dependent parameters—i.e., sj(l) = �(1− l) ·sj,low + l ·sj,high�.

psubj (l) = pmin
j (l) + (pmax

j (l) − pmin
j (l)) log N (μj(l), σj(l)) (1)

pj(l) =
sj(l)∑

k=1

psubj (l) (2)

3.2 Scheduling Problem for a Single Frame

A simplified description of the scheduling problem for a frame can be shown
using Graham’s notation [11]. The machine environment is composed of parallel
and identical resources (CPU cores). The task characteristics and scheduling
constraints follow the model of Sect. 3.1. In short, our tasks have precedence
constraints, different processing times, and the same due date. For the objective
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function, we define Cj as the completion time of task j, its lateness Lj in Eq. 3
and its tardiness Tj in Eq. 4, where dj represents the due date of the task.

Lj = Cj − dj (3)
Tj = max(Lj , 0) (4)

Given the aforementioned characteristics, this scheduling problem can be
represented as P |prec, dj = d|Tmax, which is NP-Hard. Still, this does not cap-
ture all the details of our problem in practice, mainly due to imprecision on
the processing times of tasks. Our tasks are modeled using stochastic processing
times, and time-ware scheduling algorithms are mostly dependent on measure-
ments from previous frames to estimate the current frame’s behavior (i.e., its
load). This is not an issue thanks to the stability of the game engine and to
the minor effects of slight prediction disturbances in similar contexts [4]. In this
sense, using the notation Pj to represent stochastic processing times [6, Chapter
1], our scheduling problem would be closer to P |Pj , prec, dj = d|Tmax.

3.3 Scheduling Problem for Multiple Frames

The quality of a scheduling solution for multiple frames is based on its results for
each frame. Consider the total number of frames F and a given frame f ∈ [1, F ].
We denote the maximum tardiness of frame f as T f

max. Using this information,
we define three possible optimization metrics to minimize, namely the Slowest
Frame (SF ), the number of Delayed Frames (DF ), and the Cumulative
Slowdown (CS), represented in Eqs. 5, 6, and 7. The Slowest Frame represents
the moment with the worst frame rate to be noticed by a player. The number of
Delayed Frames quantifies the periods of reduced frame rate that can be noticed.
Lastly, the Cumulative Slowdown qualifies these periods with the amount of time
that surpasses the due date of each frame. Using these three metrics, we can
compare different scheduling algorithms for game engines.

SF = max
f∈[1,F ]

T f
max + d (5)

DF =
∑

f∈[1,F ]∧T f
max>0

1 (6)

CS =
∑

f∈[1,F ]

T f
max (7)

4 Exploring List Scheduling Algorithms

Given the absence of known solutions for our scheduling problem, we have
selected—and, sometimes, adapted—several scheduling algorithms used in other
contexts to our experiments. All of them follow a list scheduling strategy: When-
ever a resource becomes available, the macro-scheduler takes the task with the
highest priority and the micro-scheduler executes one of its subtasks. Besides
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its known benefits, list scheduling is also attractive for its ability to adapt to
changes in the number of resources available.

Table 1 lists the chosen algorithms, which we believe cover a wide range of
the behaviors seen in the literature. The algorithms are ordered according to the
way they compute task priorities. Local algorithms use only information from
the task to compute its priority, which leads to a lower complexity or overhead.
The opposite are global algorithms that tend to consider the paths in the task
graph. Online algorithms require information obtained at run time, while offline
algorithms can pre-compute task priorities. Finally, time-aware algorithms use
timing information to compute priorities.

The First In, First Out scheduler represents the original implementation
in the game engine and serves as the baseline. Regarding online algorithms,
SLPT (and SSPT) follows the same logic of LPT [10] (SPT [13]), but at a
subtask level (i.e., using psubj,k to choose which task has the priority). Instead of
using processing times to compute priorities, HRRN and WT use information
related to the moments a task becomes available in the priority queue in the
current frame (rj), its first subtask starts executing (bj), and its last subtask
finishes executing (Cj). HRRN uses these values to compute a response ratio for
the priorities as Cj−bj

Cj−rj
. WT computes the difference between the moment a task

becomes ready and the moment it starts executing (bj −rj). In both cases, tasks
with higher values are given a higher priority.

Offline algorithms try to prioritize tasks that may delay the completion of
the last task (exit node). HLF [14] prioritizes tasks in the longest paths to the
exit node, while HLFET [2] extends it with processing time estimations (the
mean times used in our model). CG [8] uses a labeling algorithm that has been
shown to be optimal for the problem P2|pj = p, prec|Cmax.

Our last algorithm, named DCP, combines global information online. It com-
putes the priority of a task in two ways. If task j is identified as part of the
critical path in the previous frame, it is added to the head of the priority queue.

Table 1. Characterization of tested scheduling algorithms.

Acronym Ref. Meaning Info. scale Priority comp. Time-awareness

FIFO First In, First Out — — —

LPT [10] Longest processing time first Local Online Previous frame

SPT [13] Shortest processing time first Local Online Previous frame

SLPT LPT at a subtask level Local Online Previous frame

SSPT SPT at a subtask level Local Online Previous frame

HRRN Highest response ratio next Local Online Prev. & curr. frame

WT Longest waiting time first Local Online Prev. & curr. frame

HLF [14] Highest level First Global Offline —

HLFET [2] HLF with estimated times Global Offline Mean

CG [8] Coffman-Graham’s algorithm Global Offline —

DCP Dynamic critical path Global Online Previous frame
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Else, task j is added to the queue with priority prio(j) after all tasks in the
critical path. prio(j) is computed in Eq. 8 using information from the previous
frame, the set of successors of task j in the graph as succ(j), and the number of
resources m. In short, the priority of a task is computed based on the highest
priority among its successors and the maximum between an estimation of its
parallel execution and its slowest subtask.

prio(j) = max
i∈succ(j)

prio(i) + max

( ∑sj
k=1 psubj,k

min(m, sj)
, max
k∈[1,sj ]

psubj,k

)
(8)

5 Experimental Evaluation

We conducted a series of experiments using an in-house simulator covering three
different scenarios based on the research questions brought up in Sect. 1. Follow-
ing the methods described in Sect. 5.1, the results of the experimental scenarios
are presented in Sects. 5.2, 5.3, and 5.4.

5.1 Details Regarding the Simulation and Statistical Evaluation

The experiments use an in-house scheduling simulator written in C++. Given a
complete description of the task graph (Sect. 3.1), the number of frames to simu-
late, the number of resources, a scheduling algorithm, and a random number gen-
erator (RNG) seed, it deterministically simulates the scheduling and execution
of all tasks. This enables direct comparisons between scheduling algorithms and
experimental scenarios. The simulation represents an ideal environment with no
overhead from the scheduling algorithm, data locality, or other sources of inter-
ference, trading realism for understandability. All parameters required to model
the tasks (Eq. 1) were obtained in a development machine from Ubisoft.

To test load variations, each simulation runs 200 frames with the load param-
eter starting at 0 and increasing linearly up to 1 in the 101st frame and then
decreasing linearly until it reaches 0.01 for the last frame. This provides a gradual
change of load while also generating a load peak. For each scenario and schedul-
ing strategy, we ran simulations using from 4 up to 20 resources. By regarding
results with fewer resources, we can also anticipate the effects of external inter-
ference (Sect. 2.2). Our standard case is set to 12 resources, as this is a common
number of cores in current gaming processors. In each situation, we varied the
RNG seed in the interval [1, 50]. Excluding Critical Path simulations, this rep-
resents a total of 200 × 50 × 17 × 11 × 3 = 5, 610, 000 frames.

For the statistical evaluation of our experiments, we first employed descriptive
methods to understand our results and to verify that no errors were present. We
then followed with inferential methods. Setting our tests to a 5% significance
level, we used Kolmogorov-Smirnov tests to check if samples came from normal
distributions for all metrics whenever relevant. In all tested cases, we could not
reject the null hypothesis that the results came from a normal distribution (all
p-values > 0.05). We then ran F-tests to compare the variances of relevant pairs
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of samples. Again, in all cases, we could not reject the null hypothesis that the
samples had the same variance. Given these statistical results, we used Student’s
T-test for all relevant comparisons discussed in the next sections.

All results were obtained on an Intel Core i7-1185G7 processor, with 32 GB
of LPDDR4 RAM (3200 MHz). The machine ran on Ubuntu 20.04.3 LTS (5.13.0-
1022-oem), and g++ 9.3.0 was used for the simulator’s compilation (−O3 flag).
The code used for this study is available online [18], as is a dataset containing
all simulation results and evaluation scripts [19].

5.2 Scenario I - Employing Scheduling Algorithms

We summarize the main performance results when scheduling tasks on
12 resources in Table 2 and Fig. 3 (small values the better). Table 2 shows the
values of Slowest Frame, Delayed Frames, and Cumulative Slowdown (rows)
computed for each scheduling algorithm (columns). These values represent the
averages over 50 executions. The first column presents FIFO (our baseline) and
the last column shows the values for the Critical Path. The general distribution
of values for the different metrics is illustrated as boxplots in Fig. 3.

The smallest improvements are achieved for the SF metric. This indicates
that, under the worst load conditions, no algorithm is able to avoid the large
increase in frame duration. Still, even the minor improvements achieved by WT
and CG are still statistically significant (p-values = 5.12×10−33 and 9.64×10−30,
resp.). This is not the case for LPT (p-value = 0.69). In any case, the average
SF for the Critical Path is only better than FIFO’s by a factor of 1.159, and
still 1.70 times larger than the desired frame duration (16.667 ms).

The scheduling algorithms provide more noticeable improvements for the DF
and CS metrics. This happens for strategies both local and global, online and
offline (Table 1). For instance, WT (local, online) reduced DF by a factor of 1.054
over the baseline (p-value = 4.16 × 10−21), as did CG (global, offline) (p-value
= 5.65×10−21). DCP (global, online) did the same by a factor of 1.055 (p-value
= 4.21 × 10−21). Interestingly enough, we cannot say that these three strategies
perform differently for the DF metric (all p-values > 0.05), but we can do so for
CS (all p-values < 0.05).

In order to better understand the effects of the scheduling algorithms on the
duration of the frames, Fig. 4 shows the frame duration reductions achieved by
LPT, WT, CG, and DCP as histograms. These values are obtained by subtract-
ing the duration of each frame scheduled by FIFO by the respective value for
each algorithm. These subtractions are done for each pair of frame number and

Table 2. Average metrics for all scheduling strategies on 12 resources.

FIFO LPT SPT SLPT SSPT HRRN WT HLF HLFET CG DCP Crit. Path

SF (ms) 32.88 32.87 32.40 32.37 32.78 32.37 32.39 32.48 32.54 32.38 32.38 28.37

DF (frames) 72.48 72.86 68.82 68.70 72.02 68.50 68.74 69.52 69.98 68.74 68.70 45.50

CS (ms) 375.30 376.83 344.37 343.12 370.86 342.99 342.52 349.52 353.69 343.17 342.87 171.40
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Fig. 3. Boxplots for the 3 metrics on 12 resources. Vertical axes start at different points
to emphasize differences.

RNG seed. The horizontal axis is organized in bins of 20µs truncated in a range
of −1000µs to 1000µs1. A positive reduction means that the algorithm reduces
the duration of a specific frame, thus improving performance.

Three relevant aspects can be noticed here. First, LPT (Fig. 4a) has most of
its frame duration reductions centered around 0ms, indicating that its decisions
lead to schedules very similar to FIFO. Second, the other illustrated strate-
gies have results mostly centered around 500µs with slightly different curves.
Although they make different decisions with varied effects on the duration of
each frame, they are still able to improve the performance of the game engine in
their own ways. Third, all scheduling strategies show values that are below 0µs,
demonstrating that no single algorithm is able to always improve performance.

Fig. 4. Histograms presenting frame duration reductions (in µs) compared to FIFO
(positive values mean shorter frame durations by the algorithms). Lines represent kernel
density estimations.

1 Some frame duration changes fall outside the illustrated range.
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Fig. 5. Average number of delayed frames
on different number of resources. The ver-
tical axis starts at 40 frames to emphasize
differences.

Fig. 6. Average duration of each frame
for CG on 12 and 20 resources, and for
the Critical Path.

Performance improvements can also be seen across different numbers of
resources. This is illustrated in Fig. 5, where the average DF of selected algo-
rithms (vertical axis) is shown from 4 up to 20 resources (horizontal axis). In
general, we can see that FIFO and LPT perform similarly, as do WT, CG,
and DCP among themselves with 6 or more resources. The absolute difference
between FIFO and other strategies tends to decrease when more resources are
available, going from about 7 frames on 4 resources down to under 2 frames on
20 resources. This shows that it becomes harder to saturate resources as their
numbers increase, which in turn reduces the delay seen on important tasks from
the critical path.

Even when scheduling tasks on 20 resources, a noticeable gap remains
between some of the best schedulers and the Critical Path. To better illustrate
this difference, Fig. 6 contrasts the frame duration of the Critical Path and CG.
The horizontal axis represents the simulated frames in order, while the vertical
axis represents their average durations for CG with 12 and 20 resources, and for
the Critical Path. Figure 6 exposes the change in frame duration following the
change in load (which peaks around frame 100). While the Critical Path starts
surpassing the due date with a load around 0.75, CG has the same issue for even
smaller loads depending on the number of resources. Although the increase from
12 to 20 resources reduces the gap between its timing and the optimal one from
4 ms down to 2 ms for the slowest frames, we were surprised that such a gap still
remained. This motivated the changes presented in the next scenario.

5.3 Scenario II - Subtask Scheduling

In search of a way to overcome the previous limitations, we have moved our
attention from the macro-scheduler to the micro-scheduler (cf. Sect. 4). Origi-
nally, the micro-scheduler takes the first non-executed subtask from the highest
priority task available. We have instead chosen to sort the subtasks in a task by
non-increasing order of execution time. We consider this is a feasible change to
the game engine because it does not affect the actual execution of the subtasks
nor the dependencies in the task graph. Additionally, developers can provide
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Table 3. Average metrics for all schedulers over 12 resources with sorted subtasks.
Percentage reductions are calculated in comparison to Table 2.

FIFO LPT SPT SLPT SSPT HRRN WT HLF HLFET CG DCP Crit. Path

SF (ms) 29.29 29.25 28.67 28.96 29.15 28.65 28.63 28.74 28.80 28.63 28.64 28.37

(% change) -10.93 -11.01 -11.52 -10.53 -11.08 -11.49 -11.60 -11.51 -11.49 -11.57 -11.57 -

DF (frames) 54.32 54.28 49.52 51.88 53.62 49.12 48.98 50.12 51.08 49.38 49.34 45.50

(% change) -25.06 -25.50 -28.04 -24.48 -25.55 -28.29 -28.75 -27.91 -27.01 -28.16 -28.18 -

CS (ms) 217.91 217.32 189.36 203.24 212.60 187.71 186.62 192.86 197.13 187.81 187.84 171.40

(% change) -41.94 -42.33 -45.01 -40.77 -42.67 -45.27 -45.52 -44.82 -44.27 -45.27 - 45.22 -

Fig. 7. Average values for all metrics for schedulers using sorted subtasks on different
numbers of resources.

clues of the most important subtasks statically or using simple internal param-
eters.

The performance results achieved in this scenario are summarized in Table 3.
Its additional rows show how much the metrics have been reduced in comparison
to Scenario I (Table 2). The improvements are noticeable for all scheduling algo-
rithms and metrics. For instance, the average SF for FIFO changed from 32.88 ms
to 29.29 ms, representing a 10.93% decrease in time (an improvement factor
of 1.123). This is greater than the benefits previously achieved by changing the
scheduling algorithms only. Still, in many cases, the algorithms show even better
gains, leading to greater cumulative improvements over FIFO.

If we focus our attention on strategies LPT, WT, CG, and DCP, we can
verify that their improvements over FIFO are all statistically significant (p-
values < 0.05), with the exception of the DF metric for LPT (p-value = 0.73).
WT leads to the same average SF as CG and DCP (p-values = 0.52 and 0.23,
resp.) while differing in the other metrics. Also, CG and DCP results cannot be
differentiated (p-values > 0.05), which contrasts with the results in Scenario I.

Table 3 also shows that the performance gap to the Critical Path is much
smaller than before, even though these results use 12 resources only. A better
visualization for different numbers of resources can be seen in Fig. 7. The best
schedulers here (WT, CG, and DCP) show trends similar to before, as they create
a gap between their performance and the baseline that decreases when many
resources are available. Yet, in this situation, the absolute differences in values
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are not strictly decreasing anymore, as FIFO seems to benefit more from the
sorted subtasks for small numbers of resources. For instance, comparing Figs. 7b
and 5, we can see that changing the micro-scheduler reduces DF on 4 resources
by about 5 frames for FIFO (from 138.26 to 132.9) but only 3 for CG (from
131 to 127.9). This effect later disappears when more resources are available.
Another difference from Scenario I comes from the fading gap between the best
schedulers and the Critical Path. If we consider CG running over 16 resources,
the average differences are 0.09, 0.82, and 3.97 for the SF, DF, and CS metrics,
respectively. The proximity of these results to the optimal solution highlights
the benefits of using scheduling algorithms and internal scheduling mechanisms
that are well-adapted to the problem being faced. It does not, however, lead by
itself to a situation where 60 fps can be achieved under the worst load situations.
We investigate additional means to improve performance in our final scenario.

5.4 Scenario III - Subtask Splitting

Given the near-optimal performance of the modified game engine scheduler,
the only way to achieve further improvements requires a new optimal. That, in
turn, demands changing the task graph. We have identified the two tasks with
the longest processing times and changed them to increase their parallelism.
For each of their subtasks, we run two subtasks, each with half of the original
processing time. This local transformation has no impact on the global task
graph nor to the total processing time of the tasks, and it does not affect the
majority of the tasks. Nevertheless, we are aware that these changes may not be
feasible in some game engines due to the nature of the tasks being computed.

The new performance results are summarized in Table 4. The additional par-
allelism leads to improvements for all scheduling strategies and metrics. When
compared to Scenario I, SF is decreased by about one quarter, DF is reduced
by over one half, and CS is reduced by about three quarters. When compar-
ing FIFO’s results in Scenarios II and III, these metrics are improved by fac-
tors of 1.174, 1.602, and 2.390, resp., which are proportionally larger than the
improvements seen from Scenario I to II.

When comparing the algorithms to FIFO, their general behavior remains the
same. For example, WT, CG, and DCP show better results than FIFO (p-values

Table 4. Average metrics over 12 resources with sorted subtasks and additional par-
allelism in two tasks. Reductions are calculated in comparison to Table 2.

FIFO LPT SPT SLPT SSPT HRRN WT HLF HLFET CG DCP Crit. Path

SF (ms) 24.94 24.92 24.32 24.60 24.81 24.31 24.29 24.40 24.45 24.30 24.32 22.99

(% change) -24.13 -24.18 -24.92 -24.02 -24.31 -24.90 -25.01 -24.86 -24.87 -24.97 -24.92 -18.97

DF (frames) 33.90 33.88 28.74 31.10 32.94 28.40 28.30 29.54 30.44 28.48 28.62 17.92

(% change) -53.23 -53.50 -58.24 -54.73 -54.26 -58.54 -58.83 -57.51 -56.50 -58.57 -58.34 -60.62

CS (ms) 91.19 90.80 73.35 81.35 87.45 72.39 71.87 75.47 77.65 72.42 72.75 41.81

(% change) -75.70 -75.90 -78.70 -76.29 -76.42 -78.89 -79.02 -78.41 -78.05 -78.90 -78.78 -75.60
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< 0.05). WT performed better than DCP (p-values < 0.05), but it performed
the same as CG for metrics SF and DF (p-values = 0.31 and 0.06, resp.).

Fig. 8. Average duration of each frame for CG and the Critical Path on different
numbers of resources and scenarios.

The additional parallelism increases the gap between the algorithms and the
new Critical Path. In general, the best performing algorithms running over 12
resources still show absolute differences of ≈1.5, 10.5, and 30.5 for the SF, DF,
and CS metrics, respectively. This is mainly caused by a lack of resources, as
12 is not enough to profit from the extra parallelism. Meanwhile, when using 20
resources, these differences are reduced to 0.2, 1.3, and 4.0, respectively. This
evolution can be visualized in Fig. 8, which shows the change in average frame
duration throughout the simulations for the three scenarios (similarly to Fig. 6).
The first gap between CG and the Critical Path is overcome just by sorting
subtasks, while the new gap requires using more resources. Overall, we can clearly
see that the improvements brought in each scenario makes the game engine more
robust to high loads, leading to a better gaming experience.

6 Conclusion and Future Work

In this paper, we have examined the scheduling problem of game engines. Using
as a case study a game engine extracted from a modern Ubisoft video game, we
have modeled the problem, chosen and adapted scheduling algorithms, and ran
an extensive experimental evaluation with an in-house simulator. Compared to
the original FIFO scheduler on 12 resources, the use of well-adapted algorithms
improved the proposed metrics of Slowest Frame, Delayed Frames, and Cumu-
lative Slowdown up by factors of 1.015, 1.058, and 1.096, resp. The proposed
change to the micro-scheduler increased these gains to factors of 1.148, 1.480,
and 2.011, with near-optimal results when using more resources. Finally, the
additional parallelism in two tasks led to total improvements by factors of 1.354,
2.561, and 5.222.

These results establish the potential contributions that well-adapted schedul-
ing algorithms (local and global, online and offline) and techniques can have on
the video game industry. Further research should be dedicated to see how these
results extend to other game engines, video games, and even other interactive



Exploring Scheduling Algorithms for Parallel Task Graphs 117

simulations. An implementation of the algorithms and techniques in an actual
game engine would enable an evaluation of the overhead of run time profiling,
online algorithms, and the management of the priority queue. Finally, the effects
of hardware heterogeneity (both for uniform and unrelated resources) remains
to be studied.

Acknowledgments and Data Availability.. The code used for this study is avail-
able online in Figshare [18]. The dataset containing all simulation results and evaluation
scripts is available online in Zenodo [19].
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Abstract. In this work, we address an online job scheduling problem in
a large distributed computing environment. Each job has a priority and a
demand of resources, takes an unknown amount of time, and is malleable,
i.e., the number of allotted workers can fluctuate during its execution. We
subdivide the problem into (a) determining a fair amount of resources for
each job and (b) assigning each job to an according number of processing
elements. Our approach is fully decentralized, uses lightweight commu-
nication, and arranges each job as a binary tree of workers which can
grow and shrink as necessary. Using the NP-complete problem of propo-
sitional satisfiability (SAT) as a case study, we experimentally show on
up to 128 machines (6144 cores) that our approach leads to near-optimal
utilization, imposes minimal computational overhead, and performs fair
scheduling of incoming jobs within a few milliseconds.

Keywords: Malleable job scheduling · Load balancing · SAT

1 Introduction

A parallel task is called malleable if it can handle a fluctuating number of work-
ers during its execution. In the field of distributed computing, malleability has
long been recognized as a powerful paradigm which opens up vast possibilities
for fair and flexible scheduling and load balancing [13,17]. While most previous
research on malleable job scheduling has steered towards iterative data-driven
applications, we want to shed light on malleability in a very different context,
namely for NP-hard tasks with unknown processing times. For instance, the
problem of propositional satisfiability (SAT) is of high practical relevance and
an important building block for many applications including automated plan-
ning [26], formal verification [18], and cryptography [20]. We consider malleable
scheduling of such tasks highly promising: On the one hand, the description
of a job can be relatively small even for very difficult problems, and the suc-
cessful approach of employing many combinatorial search strategies in parallel
can be made malleable without redistribution of data [27]. On the other hand,
the limited scalability of these parallel algorithms calls for careful distribution
of computational resources. We believe that a cloud-like on-demand system for
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resolving NP-hard problems has the potential to drastically improve efficiency
and productivity for many organizations and environments. Using malleable job
scheduling, we can schedule new jobs within a few milliseconds, resolve trivial
jobs in a fraction of second, and rapidly resize more difficult jobs to a fair share
of all resources – as far as the job can make efficient use of these resources.

To meet these objectives, we propose a fully decentralized scheduling app-
roach which guarantees fast, fair, and bottleneck-free scheduling of resources
without any knowledge on processing times. In previous work [27], we briefly
outlined initial algorithms for this purpose while focusing on our award-winning
scalable SAT solving engine which we embedded into our system. In this work,
we shed more light on our earlier scheduling algorithms and proceed to propose
significant improvements both in theory and in practice.

We address two subproblems. The first problem is to let m workers compute
a fair number of workers vj for each active job j, accounting for its priority and
maximum demand, which result in optimal system utilization. In previous work
[27] we outlined this problem and employed a black box algorithm to solve it. The
second problem is to assign vj workers to each job j while keeping the assignment
as stable as possible over time. Previously [27], we proposed to arrange each job
j as a binary tree of workers which grows and shrinks depending on vj , and we
described and implemented a worker assignment strategy which routes request
messages randomly through the system. When aiming for optimal utilization,
this protocol leads to high worst-case scheduling latencies.

In this work, we describe fully distributed and bottleneck-free algorithms
for both of the above problems. Our algorithms have O(log m) span and are
designed to consistently achieve optimal utilization. Furthermore, we introduce
new measures to preferably reuse existing (suspended) workers for a certain job
rather than initializing new workers. We then present our scheduling platform
Mallob1 which features simplified yet highly practical implementations of our
approaches. Experiments on up to 128 nodes (6144 cores) show that our system
leads to near-optimal utilization and schedules jobs with a fair share of resources
within tens of milliseconds. We consider our theoretical as well as practical results
to be promising contributions towards processing malleable NP-hard tasks in a
more scalable and resource-efficient manner.

2 Preliminaries

We now establish important preliminaries and discuss work related to ours.

2.1 Malleable Job Scheduling

We use the following definitions [10]: A rigid task requires a fixed number of
workers. A moldable task can be scaled to a number of workers at the time of
its scheduling but then remains rigid. Finally, a malleable task is able to adapt
to a fluctuating number of workers during its execution. Malleability can be a

1 https://github.com/domschrei/mallob.

https://github.com/domschrei/mallob
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highly desirable property of tasks because it allows to balance tasks continuously
to warrant fair and optimal utilization of the system at hand [17]. For instance,
if an easy job arrives in a fully utilized system, malleable scheduling allows to
shrink an active job in order to schedule the new job immediately, significantly
decreasing its response time. Due to the appeal of malleable job scheduling, there
has been ongoing research to exploit malleability, from shared-memory systems
[13] to HPC environments [6,9], even to improve energy efficiency [25].

The effort required to transform a moldable (or rigid) algorithm into a mal-
leable algorithm depends on the application at hand. For iterative data-driven
applications, redistribution of data is necessary if a task is expanded or shrunk
[9]. In contrast, we demonstrated in previous work [27] for the use case of proposi-
tional satisfiability (SAT) that basic malleability is simple to achieve if the paral-
lel algorithm is composed of many independent search strategies: The abrupt sus-
pension and/or termination of individual workers can imply the loss of progress,
but preserves completeness. Moreover, if workers periodically exchange knowl-
edge, the progress made on a worker can benefit the job even if the worker is
removed. For these reasons, we have not yet considered the full migration of
application processes as is done in adaptive middlewares [9,16] but instead hold
the application itself responsible to react to workers being added or removed.

Most prior approaches rely on known processing times of jobs and on an
accurate model for their execution time relative to the degree of parallelism
[5,24] whereas we do not rely on such knowledge. Furthermore, most approaches
employ a centralized scheduler, which implies a potential bottleneck and a sin-
gle point of failure. Our approach is fully decentralized and uses a small part of
each processes’ CPU time to perform distributed scheduling, which also opens
up the possibility to add more general fault-tolerance to our work in the future.
For instance, this may include continuing to schedule and process jobs correctly
even in case of network-partitioning faults [2], i.e., failures where sub-networks in
the distributed environment are disconnected from each another. Other impor-
tant aspects of fault-tolerance include mitigation of simple node failures (i.e.,
a machine suddenly goes out of service) and of Byzantine failures [7] (i.e., a
machine exhibits arbitrary behavior, potentially due to a malicious attack).

2.2 Scalable SAT Solving

The propositional satisfiability (SAT) problem poses the question whether a
given propositional formula F =

∧k
i=1

( ∨ci
j=1 li,j

)
is satisfiable, i.e., whether

there is an assignment to all Boolean variables in F such that F evaluates to
true. SAT is the archetypical NP-complete problem [8] and, as such, a noto-
riously difficult problem to solve. SAT solving is a crucial building block for
a plethora of applications such as automated planning [26], formal verification
[18], and cryptography [20]. State-of-the-art SAT solvers are highly optimized:
The most popular algorithm named Conflict-Driven Clause Learning (CDCL)
performs depth-first search on the space of possible assignments, backtracks
and restarts its search frequently, and derives redundant conflict clauses when
encountering a dead end in its search [19]. As these clauses prune search space
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and can help to derive unsatisfiability, remembering important derived clauses
is crucial for modern SAT solvers’ performance [3].

The empirically best performing approach to parallel SAT solving is a so-
called portfolio of different solver configurations [14] which all work on the origi-
nal problem and periodically exchange learned clauses. In previous work, we pre-
sented a highly competitive portfolio solver with clause sharing [27] and demon-
strated that careful periodic clause sharing can lead to respectable speedups for
thousands of cores. The malleable environment of this solver is the system which
we present here. Other recent works on decentralized SAT solving [15,21] rely on
a different parallelization which generates many independent subproblems and
tends to be outperformed by parallel portfolios for most practical inputs [11].

2.3 Problem Statement

We consider a homogeneous computing environment with a number of intercon-
nected machines on which a total of m processing elements, or PEs in short, are
distributed. Each PE has a rank x ∈ {0, . . . , m − 1} and runs exclusively on
c ≥ 1 cores of its local machine. PEs can only communicate via message passing.

Jobs are introduced over an interface connecting to some of the PEs. Each
job j has a job description, a priority pj ∈ R

+, a demand dj ∈ N
+, and a budget

bj (in terms of wallclock time or CPU time). If a PE participates in processing a
job j, it runs an execution environment of j named a worker. A job’s demand dj

indicates the maximum number of parallel workers it can currently employ: dj

is initialized to 1 and can then be adjusted by the job after an initial worker has
been scheduled. A job’s priority pj may be set, e.g., depending on who submitted
j and on how important they deem j relative to an average job of theirs. In a
simple setting where all jobs are equally important, assume pj = 1 ∀j. A job
is cancelled if it spends its budget bj before finishing. We assume for the active
jobs J in the system that the number n = |J | of active jobs is no higher than
m and that each PE employs at most one worker at any given time. However,
a PE can preempt its current worker, run a worker of another job, and possibly
resume the former worker at a later point.

Let Tj be the set of active workers of j ∈ J . We call vj := |Tj | the volume of
j. Our aim is to continuously assign each j ∈ J to a set Tj of PEs subject to:

(C1) (Optimal utilization) Either all job demands are fully met or all m PEs
are working on a job: (∀j ∈ J : vj = dj) ∨ ∑

j∈J vj = m.
(C2) (Individual job constraints) Each job must have at least one worker and is

limited to dj workers: ∀j ∈ J : 1 ≤ vj ≤ dj .
(C3) (Fairness) Resources allotted to each job j scale proportionally with pj

except if prevented by C2:
For each j, j′ ∈ J with pj ≥ pj′ , there are fair assignments ω, ω′ ∈ R

+ with
ω/ω′ = pj/pj′ and some 0 ≤ ε ≤ 1 such that vj = min(dj ,max(1, �ω + ε�))
and vj′ = min(dj′ ,max(1, �ω′�)).

Due to rounding, in C3 we allow for job volumes to deviate by a single unit (see
ε ≤ 1) from a fair distribution as long as the job of higher priority is favored.
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3 Approach

We subdivide the problem at hand into two subproblems: First, find fair volumes
vj for all currently active jobs j ∈ J subject to C1–C3. Secondly, identify pairwise
disjoint sets Tj with |Tj | = vj for each j ∈ J . In this section, we present fully
decentralized and highly scalable algorithms for both subproblems. In Sect. 4.1
we describe how our practical implementation differs from these algorithms.

To assess our algorithms, we consider two important measures from parallel
processing. Given a distributed algorithm, consider the dependency graph which
is induced by the necessary communication among all PEs. The span (or depth)
of the algorithm is the length of a critical path through this graph. The local
work is the complexity of local computations summed up over all PEs.

3.1 Calculation of Fair Volumes

Given jobs J with individual priorities and demands, we want to find a fair vol-
ume vj for each job j such that constraints C1–C3 are met. Volumes are recom-
puted periodically taking into account new jobs, departing jobs, and changed
demands. In the following, assume that each job has a single worker which rep-
resents this (and only this) job. We elaborate on these representants in Sect. 3.2.

We defined our problem such that n = |J | ≤ m. Similarly, we assume∑
j∈J dj > m since otherwise we can trivially set vj = dj for all jobs j. Assuming

real-valued job volumes for now, we can observe that for any parameter α ≥ 0,
constraints C2–C3 are fulfilled if we set vj = vj(α) := max(1,min(dj , αpj)). By
appropriately choosing α, we can also meet the utilization constraint C1: Con-
sider the function ξ(α) := m−∑

j∈J vj(α) which expresses the unused resources
for a particular value of α. Function ξ is a continuous, monotonically decreasing,
and piece-wise linear function (see Fig. 1). Moreover, ξ(0) = m − n ≥ 0 and

Fig. 1. Volume calculation example with four jobs and m = 7. Five of the eight points
where ξ(α) is evaluated are depicted, three more (d3/p3, d1/p1, and d2/p2) are omitted.
In the interval [1/p2, 1/p1] we find α0 = 0.8 (red circle) where ξ(α) = 0. Job 4 is capped
at its demand (v4 = 2) and job 1 is raised to v1 = 1. The real-valued shares α0p2 = 1.6
and α0p3 = 2.4 are rounded to v2 = 1 and v3 = 3 as job 3 has the higher priority.
(Color figure online)
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ξ(maxj∈J dj/pj) = m − ∑
j∈J dj < 0. Hence ξ(α) = 0 has a solution α0 which

represents the desired choice of α that exploits all resources, i.e., it also fulfills
constraint C1. Once α0 is found, we need to round each vj(α0) to an integer.
Due to C1 and C3, we propose to round down all volumes and then increment
the volume of the k := m − ∑

j�vj(α0)� jobs of highest priority: We identify
J ′ := {j ∈ J : vj(α0) < dj}, sort J ′ by job priority, and select the first k jobs.

We now outline a fully distributed algorithm which finds α0 in logarithmic
span. We exploit that ξ′, the gradient of ξ, changes at no more than 2n values of
α, namely when αpj = 1 or αpj = dj for some j ∈ J . Since we have m ≥ n PEs
available, we can try these O(n) values of ξ(α) in parallel. We then find the two
points with smallest positive value and largest negative value using a parallel
reduction operation. Lastly, we interpolate ξ between these points to find α0.

The parallel evaluation of ξ is still nontrivial since a naive implementation
would incur quadratic work – O(n) for each value of α. We now explain how to
accelerate the evaluation of ξ. For this, we rewrite ξ(α) = m − ∑

j∈J vj(α) as:

ξ(α) = m −
( ∑

j :αpj<1

1 +
∑

j :αpj>dj

dj

︸ ︷︷ ︸
R

)

− α
∑

j : 1≤αpj≤dj

pj

︸ ︷︷ ︸
P

(1)

Intuitively, R sums up all resources which are assigned due to raising a job
volume to 1 (if αpj < 1) and due to capping a job volume at dj (if αpj > dj);
and αP sums up all resources assigned as vj = αpj (if 1 ≤ αpj ≤ dj).

This new representation only features two unknown variables, R and P , which
can be computed efficiently. At α = 0, we have R = n and P = 0 since all job
volumes are raised to one. If we then successively increase α, we pass 2n events
where R and P are modified, namely whenever αpj = 1 or αpj = dj for some
job j. Since each such event modifies R and P by a fixed amount, we can use a
single prefix sum calculation to obtain all intermediate values of R and P .

Each event e = (αe, re, pe) occurs at point αe and adds re to R and pe to P .
Each job j causes two events: ej = (1/pj ,−1, pj) for the point αpj = 1 where vj

stops being raised to 1, and ej = (dj/pj , dj ,−pj) for the point αpj = dj where
vj begins to be capped at dj . We sort all events by αe and then compute a prefix
sum over re and pe: (Re, Pe) = (

∑
e′�e re′ ,

∑
e′�e rp′), where “≺” denotes the

ordering of events after sorting. We can now compute ξ(αe) = m−(n+Re)−αePe

at each event e.2 The value of n can be obtained with a parallel reduction.
Overall, our algorithm has O(log m) span and takes O(m log m) work: Sorting

O(n) elements in parallel on m ≥ n PEs is possible in logarithmic time,3 as is
computing reductions and prefix sums. Selecting the k jobs to receive additional
volume after rounding down all volumes can be reduced to sorting as well.
2 If there are multiple events at the same α, their prefix sum results can differ but will

still result in the same ξ(α). This is due to the continuous nature of ξ: Note how
each event modifies the gradient ξ′(α) but preserves the value of ξ(α).

3 Asymptotically optimal sorting on communication networks [1] is of mostly theoreti-
cal value due to the large constant values involved. However there are quite practical
algorithms when n ∈ O(

√
m) or when spending O(log2 n) time is acceptable [4].
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Fig. 2. Left: Job tree Tj features ten workers {w0
j , w1

j , . . . , w9
j } due to the volume

vj = 10 assigned to j. Right: Volume update vj = 4 arrives. Consequently, all workers
with index ≥4 are suspended and the corresponding PEs can adopt another job.

3.2 Assignment of Jobs to PEs

We now describe how the fair volumes computed as in the previous section
translate to an actual assignment of jobs to PEs.

Basic Approach. We begin with our basic approach as introduced in [27].
For each job j, we address the k current workers in Tj as w0

j , w1
j , . . . , wk−1

j .
These workers can be scattered throughout the system, i.e., their job indices
0, . . . , k − 1 within Tj are not to be confused with their ranks. The k workers
form a communication structure in the shape of a binary tree (Fig. 2). Worker
w0

j is the root of this tree and represents j for the calculation of its volume
(Sect. 3.1). Workers w2i+1

j and w2i+2
j are the left and right children of wi

j . Jobs
are made malleable by letting Tj grow and shrink dynamically. Specifically, we
enforce that Tj consists of exactly k = vj workers. If vj is updated, all workers wi

j

for which i ≥ vj are suspended and the corresponding PEs turn idle. Likewise,
workers without a left (right) child for which 2i+1 < vj (2i+2 < vj) attempt to
find a child worker w2i+1

j (w2i+2
j ). New workers are found via request messages:

A request message r = (j, i, x) holds index i of the requested worker wi
j as well

as rank x of the requesting worker. If a new job is introduced at some PE, then
this PE emits a request for the root node w0

j of Tj . All requests for wi
j , i > 0

are emitted by the designated parent node w�(i−1)/2�
j of the desired worker.

In [27], we proposed that each request performs a random walk through a
regular graph of all PEs and is resolved as soon as it hits an idle PE. While
this strategy resolves most requests quickly, some requests can require a large
number of hops. If we assume a fully connected graph of PEs and a small share ε
of workers is idle, then each hop of a request corresponds to a Bernoulli process
with success probability ε, and a request takes an expected 1/ε hops until an idle
PE is hit. Consequently, to improve worst-case latencies, a small ratio of workers
should be kept idle [27]. By contrast, our following algorithm with logarithmic
span does not depend on suboptimal utilization.

Matching Requests and Idle PEs. In a first phase, our improved algorithm
(see Fig. 3) computes two prefix sums with one collective operation: the number
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Fig. 3. Examples for matching requests and idle PEs. White (gray) squares represent
idle (busy) PEs, spheres (diamonds) represent requests (idle tokens). Left: A prefix sum
(not depicted) numbers all requests and idle tokens, and each request (token) of index
i is sent to rank i. Each PE with a matching pair sends the request to the idle PE.
Right: A job j grows by multiple layers of Tj . Requests are sent along a tree structure
and child-parent relationships of Tj are encoded into the distributed requests.

of requests qi being emitted by PEs of rank < i, and the number oi of idle PEs of
rank < i. We also compute the total sums, qm and om, and communicate them
to all PEs. The qi and oi provide an implicit global numbering of all requests and
all idle PEs. In a second phase, the i-th request and the i-th token are both sent
to rank i. In the third and final phase, each PE which received both a request
and an idle token sends the request to the idle PE referenced by the token.

If the request for a worker wi
j is only emitted by its designated parent

w�(i−1)/2�
j , then our algorithm so far may need to be repeated O(log m) times:

Repetition l activates a worker which then emits requests for repetition l + 1.
Instead, we can let a worker emit requests not only for its direct children, but
for all transitive children it deserves. Each worker wi

j can compute the number k
of desired transitive children from vj and i. The worker then contributes k to qi.
In the second phase, the k requests can be distributed communication-efficiently
to a range of ranks {x, . . . , x + k − 1}: wi

j sends requests for workers w2i+1
j and

w2i+2
j to ranks x and x+1, which send requests for corresponding child workers

to ranks x + 2 through x + 5, and so on, until worker index vj − 1 is reached.
To enable this distribution, we append to each request the values x, vj , and the
rank of the PE where the respective parent worker will be initialized. As such,
each child knows its parent within Tj (Fig. 3) for job-internal communication.

We now outline how our algorithm can be executed in a fully asynchronous
manner. We compute the prefix sums within an In-Order binary tree of PEs [22,
Chapter 13.3], that is, all children in the left subtree of rank i have a rank < i and
all children in the right subtree have a rank > i. This prefix sum computation can
be made sparse and asynchronous: Only non-zero contributions to a prefix sum
are sent upwards explicitly, and there is a minimum delay in between sending
contributions to a parent. Furthermore, we extend our prefix sums to also include
inclusive prefix sums q′

i, o
′
i which denote the number of requests (tokens) at PEs

of rank ≤ i. As such, every PE can see from the difference q′
i − qi (o′

i − oi) how
many of its local requests (tokens) took part in the prefix sum. Last but not
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least, the number of tokens and the number of requests may not always match
– a PE which receives either a request or an idle token (but not both) knows of
this imbalance due to the total sums qm, om. The unmatched message is sent to
its origin and can re-participate in the next iteration.

Our matching algorithm has O(log m) span and takes O(m) local work. The
maximum local work of any given PE is in O(log m) (to compute the above k),
which is amortized by other PEs because at most m requests are emitted.

3.3 Reuse of Suspended Workers

Each PE remembers up to C most recently used workers (for a small constant
C) and deletes older workers. Therefore, if a worker wi

j is suspended, it may
be resumed at a later time. Our algorithms so far may choose different PEs
and hence create new workers whenever Tj shrinks and then re-grows. We now
outline how we can increase the reuse of suspended workers.

In our previous approach [27], each worker remembers a limited number of
ranks of its past (direct) children. A worker which desires a child queries them
for reactivation one after the other until success or until all past children have
been queried unsuccessfully, at which point a normal job request is emitted.

We make two improvements to this strategy. First, we remember past workers
in a distributed fashion. More precisely, whenever a worker joins or leaves Tj , we
distribute information along Tj to maintain the following invariant: Each current
leaf wi

j in Tj remembers the past workers which were located in a subtree below
index i. As such, past workers can be remembered and reused even if Tj shrinks
by multiple layers and re-grows differently.

Secondly, we adjust our scheduling to actively prioritize the reuse of exist-
ing workers over the initialization of new workers. In our implementation, each
idle PE can infer from its local volume calculation (Sect. 4.1) which of its local
suspended workers wi

j are eligible for reuse, i.e., vj > i in the current volume
assignment. If a PE has such a worker wi

j , the PE will reject any job requests
until it received a message regarding wi

j . This message is either a query to resume
wi

j or a notification that wi
j will not be reused. On the opposite side, a worker

which desires a child begins to query past children according to a “most recently
used” strategy. If a query succeeds, all remaining past children are notified that
they will not be reused. If all queries failed, a normal job request is emitted.

4 The Mallob System

In the following, we outline the design and implementation of our platform named
Mallob, short for Malleable Load Balancer. Mallob is a C++ application using
the Message Passing Interface (MPI) [12]. Each PE can be configured to accept
jobs and return responses, e.g., over the local file system or via an internal API.
The application-specific worker running on each PE is defined via an interface
with a small set of methods. These methods define the worker’s behavior if it
is started, suspended, resumed, or terminated, and allow it to send and receive
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application-specific messages at will. Note that we outlined some of Mallob’s
earlier features in previous work [27] with a focus on our malleable SAT engine.

4.1 Implementation of Algorithms

Our system features practical and simplified implementations solving the volume
assignment problem and the request matching problem. We now explain how and
why these implementations differ from the algorithms provided in Sect. 3.

Volume Assignment. Our implementation computes job volumes similar to
the algorithm outlined in Sect. 3.1. However, each PE computes the desired
change of root α0 of ξ locally. All events in the system (job arrivals, depar-
tures, and changes in demands) are aggregated and broadcast periodically such
that each PE can maintain a local image of all active jobs’ demands and pri-
orities [27]. The local search for α0 is then done via bisection over the domain
of ξ. This approach requires more local work than our fully distributed algo-
rithm and features a broadcast of worst-case message length O(n). However, it
only requires a single all-reduction. At the scale of our current implementation
(n < 103 and m < 104), we expect that our simplified approach performs bet-
ter than our asymptotically superior algorithm which features several stages of
collective operations. When targeting much larger configurations in the future,
it may be beneficial to implement and employ our fully distributed algorithm
instead.

Request Matching. We did not yet implement asynchronous prefix sums as
described in Sect. 3.2. Instead, we route requests directly along a communication
tree R of PEs. Each PE keeps track of the idle count, i.e., the number of idle PEs,
in each of its subtrees in R. This count is updated transitively whenever the idle
status of a child changes. Emitted requests are routed upwards through R until
hitting an idle PE or until a hit PE has a subtree with a non-zero idle count, at
which point the request is routed down towards the idle PE. If a large number of
requests (close to n) are emitted, the traffic along the root of R may constitute
a bottleneck. However, we found that individual volume updates in the system
typically result in a much smaller number of requests, hence we did not observe
such a bottleneck in practice. We intend to include our bottleneck-free algorithm
(Sect. 3.2) in a future version of our system.

4.2 Engineering

For good practical performance of our system, careful engineering was necessary.
For instance, our system exclusively features asynchronous communication, i.e.,
a PE will never block for an I/O event when sending or receiving messages. As
a result, our protocols are designed without explicit synchronization (barriers or
similar). We only let the main thread of a PE issue MPI calls, which is the most
widely supported mode of operation for multithreaded MPI programs.
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As we aim for scheduling latencies in the range of milliseconds, each PE must
frequently check its message queue and react to messages. For instance, if the
main thread of a PE allocates space for a large job description, this can cause
a prohibitively long period where no messages are processed. For this reason,
we use a separate thread pool for all tasks which involve a risk of taking a long
time. Furthermore, we split large messages into batches of smaller messages, e.g.,
when transferring large job descriptions to new workers.

5 Evaluation

We now present our experimental evaluation. All experiments have been con-
ducted on the supercomputer SuperMUC-NG. If not specified otherwise, we used
128 compute nodes, each with an Intel Skylake Xeon Platinum 8174 processor
clocked at 2.7GHz with 48 physical cores (96 hardware threads) and 96GB of
main memory. SuperMUC-NG is running Linux (SLES) with kernel version 4.12
at the time of running our experiments. We compiled Mallob with GCC 9 and
with Intel MPI 2019. We launch twelve PEs per machine, assign eight hardware
threads to each PE, and let a worker on a PE use four parallel worker threads.
Our system can use the four remaining hardware threads on each PE in order
to keep disturbance of the actual computation at a minimum. Our software and
experimental data are available at https://github.com/domschrei/mallob.

5.1 Uniform Jobs

In a first set of experiments, we analyze the base performance of our system
by introducing a stream of jobs in such a way that exactly npar jobs are in the
system at any time. We limit each job j to a CPU time budget B inversely
proportional to npar. Each job corresponds to a difficult SAT formula which
cannot be solved within the given budget. As such, we emulate jobs of fixed size.

We chose m and the values of npar in such a way that m/npar ∈ N for all runs.
We compare our runs against a hypothetical rigid scheduler which functions as
follows: Exactly m/npar PEs are allotted for each job, starting with the first
npar jobs at t = 0. At periodic points in time, all jobs finish and each set of PEs
instantly receives the next job. This leads to perfect utilization and maximizes
throughput. We neglect any kind of overhead for this scheduler.

For a modest number of parallel jobs npar in the system (npar ≤ 192), our
scheduler reaches 99% of the optimal rigid scheduler’s throughput (Table 1). This
efficiency decreases to 97.6% for the largest npar where vj = 2 for each job. As
the CPU time of each job is calculated in terms of its assigned volume and as the
allocation of workers takes some time, each job uses slightly less CPU time than
advertised: Dividing the time for which each job’s workers have been active by
its advertised CPU time, we obtained a work efficiency of η ≥ 99%. Lastly, we
measured the CPU utilization of all worker threads as reported by the operating
system, which averages at 98% or more. In terms of overall work efficiency η×u,
we observed an optimum of 98% at npar = 192, a point where neither npar nor
the size of individual job trees is close to m.

https://github.com/domschrei/mallob
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Table 1. Scheduling uniform jobs on 1536 PEs (6144 cores) compared to a hypothetical
optimal rigid scheduler. From left to right: Max. number npar of parallel jobs; max.
measured throughput θ, optimal throughput θopt (in jobs per second), throughput
efficiency θ/θopt; work efficiency η; mean measured CPU utilization u of worker threads.

npar θ θopt
θ

θopt
η u

3 0.159 0.16 0.991 0.990 0.981

6 0.318 0.32 0.994 0.990 0.983

12 0.636 0.64 0.993 0.991 0.984

24 1.271 1.28 0.993 0.992 0.985

48 2.543 2.56 0.993 0.993 0.985

96 5.071 5.12 0.990 0.993 0.986

192 10.141 10.24 0.990 0.995 0.985

384 20.114 20.48 0.982 0.995 0.983

768 39.972 40.96 0.976 0.992 0.980

5.2 Impact of Priorities

In the following we evaluate the impact of job priorities. We use 32 nodes (1536
cores, 384 PEs) and introduce nine streams of jobs, each stream with a different
job priority p ∈ [0.01, 1] (see Fig. 4 right) and with a wallclock limit of 300 s per
job. As such, the system processes nine jobs with nine different priorities at a
time. Each stream is a permutation of 80 diverse SAT instances [27].

As expected, we observed a proportional relationship between priority and
assigned volume, with small variations due to rounding (Fig. 4). By contrast,
response times appear to decrease exponentially towards a certain lower bound,
which is in line with the NP-hardness of SAT and the diminishing returns of
parallel SAT solving [27]. The modest margin by which average response times
decrease is due to the difficulty of the chosen SAT benchmarks, many of which
cannot be solved within the imposed time limit at either scale.

Fig. 4. Impact of job priority on mean assigned volume (left axis, blue triangles) and
response time (right axis, orange squares). The table shows the used priorities pj with
the corresponding mean assigned volume ṽj and mean response times in seconds. (Color
figure online)
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5.3 Realistic Job Arrivals

In the next set of experiments, we analyze the properties of our system in a more
realistic scenario. Four PEs introduce batches of jobs with poisson-distributed
arrivals (inter-arrival time of 1/λ ∈ {2.5 s, 5 s, 10 s}) and between one and eight
jobs per batch. As such, we simulate users which arrive at independent times
and submit a number of jobs at once. We also sample a priority pj ∈ [0.01, 1], a
maximum demand dj ∈ 1, . . . , 1536, and a wallclock limit bj ∈ [1, 600] s for each
job. We ran this experiment with our current request matching (Sect. 4.1) and
with each request message performing up to h random hops (as in [27]) until our
request matching is employed, for varying values of h. In addition, we ran the
experiment with three different suspended worker reuse strategies: No deliberate
reuse at all, the basic approach from [27], and our current approach.

Figure 5(left) shows the number of active jobs in the system over time for our
default configuration (our reuse strategy and immediate matching of requests).
For all tested interarrival times, considerable changes in the system load can
be observed during a job’s average life time which justify the employment of
a malleable scheduling strategy. Figure 5(right) illustrates for 1/λ = 5 s that
system utilization is at around 99.8% on average and almost always above 99.5%.
We also measured the ratio of time for which each PE has been idle: The median
PE was busy 99.08% of all time for the least frequent job arrivals (1/λ = 10 s),
99.77% for 1/λ = 5 s, and 99.85% for 1/λ = 2.5 s. Also note that

∑
j dj < m for

the first seconds of each run, hence not all PEs can be utilized immediately.
In the following, we focus on the experiment with 1/λ = 5 s. The latency

of our volume calculation, i.e., the latency until a PE received an updated vol-
ume for an updated job, reached a median of 1 ms and a maximum of 34 ms
for our default configuration. For the scheduling of an arriving job, Fig. 6(left)
shows that the lowest latencies were achieved by our request matching (h = 0).
For increasing values of h, the variance of latencies increases and high laten-
cies (≥50 ms) become more and more likely. Note that jobs normally enter a
fully utilized system, and have dj = 1. Therefore, the triggered balancing cal-
culation may render only a single PE idle, which heavily disfavors performing a
random walk. Regarding the latency of expanding a job tree by another layer,

Fig. 5. Left: Number of active jobs for interarrival times 1/λ of 2.5 s (top), 5 s (middle),
and 10 s (bottom). Right: System utilization (i.e., ratio of busy PEs) for 1/λ = 5 s at
a sliding average of window size 1 s, 15 s, and 60 s respectively.
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Fig. 6. Distribution over measured latency for the initial scheduling of a job (left) and
the expansion of a job tree by another worker (right), for inter arrival rate 1/λ = 5,
for a varying number h of random hops until a request message is routed along R.

Fig. 6(right) indicates that requests performing random walks have a high chance
to succeed quickly but can otherwise result in high latencies (>10 ms).

To compare strategies for reusing suspended workers, we divided the number
of created workers for a job j by its maximum assigned volume vj . This Worker
Creation Ratio (WCR) is ideally 1 and becomes larger the more often a worker
is suspended and then re-created at a different PE. We computed the WCR for
each job and in total: As Table 2 shows, our approach reduces a WCR of 2.14
down to 1.8 (−15.9%). Context switches (i.e., how many times a PE changed its
affiliation) and average response times are improved marginally compared to the
naive approach. Last but not least, we counted on how many distinct PEs each
wi

j has been created: Our strategy initializes 89% of all workers only once, and
94% of workers have been created at most five times. We conclude that most
jobs only feature a small number of workers which are rescheduled frequently.

Table 2. Comparison of worker reuse strategies in terms of worker creation ratio
(WCR, per job – median, maximum – and in total), context switches (CS, median per
PE and mean), the number of processed jobs within 1 h (Pr.), their mean response
time (RT), and the fraction of workers created on at most {1, 2, 5, 10, 25} distinct PEs.

WCR CS Pr [WC ≤ ·]
med. max. total med. mean Pr. RT 1 2 5 10 25

None 1.43 33.0 2.14 136 138.2 5923 153.40 0.87 0.90 0.94 0.97 0.992

Basic 1.40 31.5 2.07 134 135.3 5921 153.89 0.87 0.90 0.94 0.97 0.993

Ours 1.25 24.5 1.80 130 131.8 5939 152.33 0.89 0.91 0.94 0.97 0.993

6 Conclusion

We have presented a decentralized and highly scalable approach to online job
scheduling of malleable NP-hard jobs with unknown processing times. We split
our problem into two subproblems, namely the computation of fair job volumes
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and the assignment of jobs to PEs, and proposed scalable distributed algorithms
with O(log m) span for both of them. We presented a practical implementation
and experimentally showed that it schedules incoming jobs within tens of mil-
liseconds, distributes resources proportional to each job’s priority, and leads to
near-optimal utilization of resources.

For future work, we intend to add engines for applications beyond SAT into
our system. Furthermore, we want to generalize our approach to heterogeneous
computing environments and add fault tolerance to our distributed algorithms.
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Abstract. In this paper we study a scheduling problem arising from
executing numerical simulations on HPC architectures. With a constant
number of parallel machines, the objective is to minimize the makespan
under memory constraints for the machines. Those constraints come from
a neighborhood graph G for the jobs. Motivated by a previous result on
graphs G with bounded path-width, our focus is on the case when the
neighborhood graph G has bounded tree-width. Our result is a bi-criteria
fully polynomial time approximation algorithm based on a dynamic pro-
gramming algorithm. It allows to find a solution within a factor of 1 + ε
of the optimal makespan, where the memory capacity of the machines
may be exceeded by a factor at most 1 + ε. This result relies on the
use of a nice tree decomposition of G and its traversal in a specific way
which may be useful on its own. The case of unrelated machines is also
tractable with minor modifications.

1 Introduction

In this paper, we study the scheduling problem Pk|G,mem|Cmax previously
introduced in [12] where the number of machines is a fixed constant. This prob-
lem is motivated by running distributed numerical simulations based on high-
ordered finite elements or volume methods . Such approaches require the geomet-
ric domain of study to be discretized into basic elements, called cells, which form
a mesh. Each cell has a computational cost, and a memory weight depending on
the amount of data (i.e. density, pressure, . . . ) stored on that cell. Moreover, per-
forming the computation of a cell requires, in addition to its data, data located
in its neighborhood1. For a distributed simulation, the problem is to assign all
the computations to processing units with bounded memory capacities, while
1 The neighborhood is most of the time topologically defined (cells sharing an edge or

a face).
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minimizing the makespan. As an illustration of the previous notions, let us con-
sider Fig. 1(a) where a mesh and its associated computations are assigned onto
3 processing units. Each color corresponds to a processing unit and the total
amount of memory needed by each processing unit is not limited to the colored
cells but extends to some adjacent cells. An exploded view of the mesh is pic-
tured in Fig. 1(b), where we consider an edge-based adjacency relationship and
where the memory needed by each processing unit is equal to both colored and
white cells. In practice, efficient partitioning tools are used but the solutions
returned by these tools may not respect the memory capacities of the processing
units [14].

(a) (b)

Fig. 1. In (a), a 2D mesh and its computations are assigned onto 3 processing units.
In (b), an exploded view of the assignment with an edge-based adjacency relationship.

Formally, the scheduling problem under memory constraints is defined as
follows. We have a set of n jobs J , and each job j ∈ J requires pj ∈ N units of
time to be executed (computation time) and is associated an amount mj ∈ N of
memory. Jobs have to be assigned among a fixed number k of identical machines,
each machine l having a memory capacity Ml ∈ N, for l = 1, . . . , k. Additionally
we have an undirected graph G(J,E), which we refer to as the neighborhood
graph. Two jobs j ∈ J and j′ ∈ J are said to be adjacent if there is an edge
(j, j′) ∈ E in G. Moreover, to be processed each job j requires data from its
set of adjacent jobs, denoted by N (j) := {j′ ∈ J | (j, j′) ∈ E}. For a subset of
jobs J ′ ⊆ J , we note N (J ′) := ∪j∈J ′ N (j) \ J ′ and denote N [J ′] := N (J ′) ∪ J ′.
When a subset of jobs J ′ ⊆ J is scheduled on a machine, this machine needs to
allocate an amount of memory equal to

∑
j∈N [J ′] mj , while its processing time

is
∑

j∈J ′ pj . The objective is to assign each job of J onto exactly a machine,
such that the makespan (the maximum processing time over all machines) is
minimized and ensuring that the amount of memory allocated by each machine
is smaller than or equal to its memory capacity.

The scheduling problem under memory constraints embraces other well-
known NP-hard scheduling problems and cannot be solved in polynomial time
unless P = NP. Thus, one could be interested in developing approximation
algorithms. An α-approximation algorithm (for some α ≥ 1) for a minimization
problem is a polynomial-time algorithm that produces, for any given problem
instance I, a solution whose value is at most α times the optimum value. In
particular, a fully polynomial-time approximation scheme (FPTAS) is a fam-
ily of (1+ε)-approximation algorithms for all ε > 0 whose time complexity is
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polynomial in both the input size and 1/ε. Considering the scheduling problem
under memory constraints, one could wonder if approximation algorithms can
be obtained when the memory constraints are relaxed. For α ≥ 1 and β ≥ 1,
an (α, β) (bi-criteria) approximation algorithm returns a schedule with objective
value at most αC and with memory load at most βM , where C and M , respec-
tively, are the maximum computation time and the memory load of an optimal
schedule with respect to the makespan. Following the terminology of [15], a bi-
FPTAS for the scheduling problem under memory constraints is a FPTAS which
is a bicriteria (1 + ε, 1 + ε) approximation algorithm.

Related Problems. When mj = 0 for each job j, the problem
Rk|G,mem|Cmax becomes the scheduling problem Rk||Cmax for which several
approximations algorithms exist [3,6,8]. When the neighborhood graph has no
edges, the memory is bounded on each machine, and mj = 1 for each job j, we
get the scheduling machines with capacity constraints problem. Zhang et al. [9]
gave a 3-approximation algorithm by using the iterative rounding method. Saha
and Srinivasan [10] gave a 2-approximation in a more general scheduling set-
ting, i.e. scheduling unrelated machines with capacity constraints. Lately, Keller
and Kotov [11] gave a 1.5-approximation algorithm. Chen et al. established an
efficient polynomial-time approximation scheme (EPTAS) [13] for this problem
and, for the special case of two machines, Woeginger designed a FPTAS [7].

Main Contribution. As the scheduling problem under memory constraints is
a generalization of those well-known scheduling problems, a reasonable question
is to know whether we can get approximation algorithms, which could depend on
some parameters of the neighborhood graph, when the number of machines is a
fixed constant. We answered this question in a previous paper [12] by providing a
fixed-parameter tractable (FPT) algorithm with respect to the path-width of the
neighborhood graph, which returns a solution within a ratio of (1 + ε) for both
the optimum makespan and the memory capacity constraints (assuming that
there exists at least one feasible solution). In this paper we extend this result
by providing a bi-FPTAS for graphs with tree-width bounded by a constant2.
Unlike the FPT algorithm which relies on the numbering of the vertices of the
neighborhood graph, the bi-FPTAS takes advantage of a nice tree decomposition
of the neighborhood graph and of its traversal in a particular way to bound the
algorithm complexity.

Outline of the Paper. We start by briefly recalling in Sect. 2 the definitions
of different notions useful in the sequel. We then provide in Sect. 3 an algorithm
that computes all the solutions to this problem. This algorithm consists of three
steps: build a nice tree decomposition of G(J,E); compute a layout L defining

2 For sake of readability, the result is presented for two machines but it can be extended
to any number of machines, as discussed in the conclusion.
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a bottom-up traversal of the nice tree decomposition; and use a dynamic pro-
gramming algorithm traversing the nice tree decomposition following L. Since
the time complexity of this algorithm is not polynomial in the input size, we
apply the Trimming-of-the-State-Space technique [1] in Sect. 4 obtaining a bi-
FPTAS for graphs with tree-width bounded by a constant. Finally, we give some
concluding remarks in Sect. 5.

2 Definitions

Throughout this paper we consider simple, finite undirected graphs. Let us start
by defining the notions of tree decomposition, tree-width and nice tree decompo-
sition. The notions of tree decomposition and tree-width were initially introduced
in the framework of graph minor theory [2]. For a graph G(J,E), let J(G) := J
be its vertices and E(G) := E be its edges. A tree decomposition for G is a pair
(T,X), where T := (J(T ), E(T )) is a tree, and X := (Xu)u∈J(T ) is a family of
subsets of J satisfying the following conditions:

1. For each j ∈ J(G) there is at least one u ∈ J(T ) such that j ∈ Xu.
2. For each {j, j′} ∈ E(G) there is at least one u ∈ J(T ) such that j and j′ are

in Xu.
3. For each j ∈ J(G), the set of vertices u ∈ J(T ) such that j ∈ Xu induces a

subtree of T .

To distinguish between vertices of G and T , the latter are called nodes. The
width of a tree decomposition is max(|Xu|−1 : u ∈ J(T )) and the tree-width of G,
noted tw(G), is the minimum width over all tree decompositions of G. Choosing
an arbitrary node r ∈ J(T ) as root, we can make a rooted tree decomposition out
of (T,X) with natural parent-child and ancestor-descendant relations. A node
without children is called a leaf. A rooted tree decomposition (T,X) with root
r is called nice if every node u ∈ J(T ) is of one of the following types:

– Leaf: node u is a leaf of T and |Xu| = 1.
– Introduce: node u has only one child c and there is a vertex j ∈ J(G) such

that Xu = Xc ∪ {j}.
– Forget: node u has only one child c and there is a vertex j ∈ J(G) such that

Xc = Xu ∪ {j}.
– Join: node u has only two children l and r such that Xu = Xl = Xr.

Note that a vertex of J(G) can be forgotten at most once in a node of J(T ).
Otherwise, it would conflict with the third condition listed in the definition of
a tree decomposition. We leverage this property later in the article. There is an
alternative definition to the nice tree decomposition where the root r and all
leaves u of T are such that Xr = Xu = ∅. But one can switch from one of these
decompositions to the other in a trivial way. A graph G(J,E) is illustrated on
Fig. 2(a) and a nice tree decomposition of this graph is presented on Fig. 2(b).
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Fig. 2. Example of a graph G(J, E) in (a) and a nice tree decomposition (T, X) of this
graph where X is composed of the sets X1, . . . , X10.

When G is a graph with tw(G) = h, where h is any fixed constant, we can
compute a tree decomposition of G in linear time with tree-width at most h [5].
Given a tree decomposition (T,X) of G(J,E) of constant width h ≥ 1, there is an
algorithm that converts it into a nice tree decomposition (T ′,X ′) with the same
width h and with at most 4n nodes, where n = |J(G)|, in O(n) times (Lemma
13.1.3 in [4]). In the rest of the article, we will consider a nice tree decomposition
obtained in this way.

Now, let us introduce the notion of layout of a nice tree decomposition (T,X),
which is simply a one-to-one mapping L : J(T ) → {1, . . . , |J(T )|}. We say that
a layout L defines a bottom-up traversal of a nice tree decomposition (T,X) if
for any edge {u, v} ∈ E(T ) such that v is a child of u one has L(v) < L(u). In
that case, we say that L is a bottom-up layout.

3 An Exact Algorithm Using Dynamic Programming

Briefly, our algorithm consists of three steps. First, we build a nice tree decom-
position (T,X) of the graph G(J,E) with bounded tree-width. Such a tree
decomposition can be obtained in polynomial time for graph G with tree-width
bounded by a constant (see Sect. 2). Then, we compute a specific layout L defin-
ing a bottom-up traversal of the nice tree decomposition. Finally, a dynamic pro-
gramming algorithm passes through the nodes following the previously defined
order L and computes a set SL(u) of states, which encodes partial solutions for
Gi = (Ji, Ei) a subgraph of G = (J,E), for each node u ∈ J(T ). In Sect. 3.1, we
start by presenting the dynamic programming algorithm where we detail how
the set of states SL(u) is computed depending on the type of node u. Then, in
Sect. 3.2, we give a proof of correctness of our dynamic programming algorithm
when the nodes of the nice tree decomposition are traversed in a bottom-up way.
Eventually, we compute the complexity of our dynamic programming algorithm
when the decomposition is traversed following the layout L. This layout is used
to bound the complexity of our algorithm and, being bottom-up, it is compliant
with the pre-requisite on proof of completeness.
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3.1 The Dynamic Programming Algorithm

The presentation of the dynamic algorithm is done for two machines, but it can
be generalized to a constant number k of machines, with k > 2. The dynamic
algorithm goes through |J(T )| phases. Each phase i, with i = 1, . . . , |J(T )|,
processes the node L−1(i) ∈ J(T ) and produces a set Si of states. In the sequel,
for sake of readability, we use the notation Zi := XL−1(i). Each state in the state
space Si encodes a solution for the graph Gi = (Ji, Ei), where Ji := ∪i

o=1Zo

with J0 = ∅, and Ei := Ei−1 ∪EZi
with E0 = ∅ and EZi

the set of all edges in E
which have both endpoints in Zi. For each phase i, we denote by JL(i) the set of
vertices of J(G) which have not been forgotten when going through nodes L−1(1)
to L−1(i). For convenience, we note JL(0) := ∅. Formally, JL(i) := Ji \ VR(i),
where VR(i) is the set of vertices that where removed in a Forget node o such
that L(o) ≤ i.

A state s ∈ Si is a vector [c1, c2, c3, c4, Ci] where:

– c1 (resp. c2) is the total processing time on the first (resp. second) machine
in the constructed schedule,

– c3 (resp. c4) is the total amount of memory required by the first (resp. second)
machine in the constructed schedule,

– Ci is an additional structure, called combinatorial frontier. For a given solution
of Gi(Ji, Ei), it is defined as Ci := (JL(i), σi, σ

′
i) where σi : JL(i) → {1, 2}

and σ′
i : JL(i) → {0, 1} such that σi(j) is the machine on which j ∈ JL(i)

has been assigned, and σ′
i(j) := 1 if the machine on which j is not assigned,

i.e. machine 3 − σi(j), has already memorised the data of j. Notice that
JL(i) ⊆ Ji and keeping into memory the combinatorial frontier with respect
to JL(i) rather than Ji is a key point in our algorithm in order to bound its
complexity.

In the following, we present how to compute Si from Si−1 depending on the
type of node L−1(i). For that, we present how states of Si are obtained from
an arbitrary state s = [c1, c2, c3, c4, Ci−1] ∈ Si−1. When L−1(i) is a Leaf node
with Zi = {j} or an Introduce node with j the vertex introduced, we note sa

(a = 1, 2) the state of Si obtained from s and resulting from the assignment of
j to machine a, and Ca

i the combinatorial frontier obtained from Ci−1 when j is
assigned to machine a.

Leaf. Let L−1(i) ∈ J(T ) be a Leaf of T with Zi = {j}. For each state of Si−1

we add at most two states in Si. If j ∈ JL(i − 1), it means that j has already
been assigned to a machine. Therefore, there is nothing to do and Si = Si−1.
Now, let us assume that j /∈ JL(i − 1). In this case, we must compute two new
states taking into account the assignment of j to machine one or two. We have

sa = [c1 + δa,1cj , c2 + δa,2cj , c3 + δa,1 mj , c4 + δa,2 mj , Ca
i ]

where δ is the Kronecker function (δi,j = 1 if i = j, and δi,j = 0 otherwise).
Since j /∈ JL(i−1), the new combinatorial frontier is obtained by extending Ci−1
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in adding new information related to j, i.e. σi(j) = a and σ′
i(j) = 0. Note that

we have σ′
i(j) = 0 because j was not assigned before phase i and EZi

= ∅.

Introduce. Let L−1(i) ∈ J(T ) be an Introduce node of T and j ∈ J(G) being
the vertex introduced. Again, for each state s of Si−1 we are going to add
at most two states to Si depending on j assignment. However, processing an
Introduce node differs from a Leaf because we may have to consider new edges.
This happens when Ei\Ei−1 	= ∅. There are two cases to consider. The first one
is when j ∈ JL(i − 1). In that case, job j has already been assigned on machine
a = σi−1(j). We add a state in Si for every state s in Si−1. Let Fa and F ′

a be
the set of edges such that

Fa = {{j, j′} ∈ EZi
: a 	= σi−1(j′) and σ′

i−1(j
′) = 0}, (1)

F ′
a = {{j, j′} ∈ EZi

: a 	= σi−1(j′) and σ′
i−1(j) = 0}. (2)

The set Fa represents the new edges in EZi
inducing additional amount of data

on machine a. The set F ′
a represents the new edges in EZi

inducing that mj

must be added on the machine not processing j. Note that some edges in EZi

may have already been considered in a previous node and that they can’t be a
part of Fa or F ′

a. Thus, we have

sa = [c1, c2, c3 + δa,1α
1
i + δa,2β

1
i , c4 + δa,2α

2
i + δa,1β

2
i , Ca

i ]

where αa
i =

∑
{j,j′}∈Fa

mj′ and βa
i = mj I�F ′

a 	= ∅� where I�A� is the indicator
function which returns one if condition A is satisfied and zero otherwise. Finally,
the combinatorial frontier of the new state sa is obtained from that of s by
updating, if necessary, the information of j and vertices j′ such that {j, j′} ∈ Fa.
If we have F ′

a 	= ∅, it means that j was not memorised by machine 3− a in state
s. However, this is no longer the case for sa as new edges have been taken into
account leading us to σ′

i(j) = 1 	= σ′
i−1(j). If we have Fa 	= ∅, then some vertices

processed by machine 3− a were not memorised by machine a in state s. Again,
this is no longer the case in sa following the inclusion of new edges leading us
to σ′

i(j
′) = 1 	= σ′

i−1(j
′) for every vertex j′ such that {j, j′} ∈ Fa.

Now, if j /∈ JL(i − 1) then we add two states in Si for every state s ∈ Si−1.
For a = 1, 2, we have

sa = [c1 + δa,1 pj , c2 + δa,2 pj ,

c3 + δa,1(mj +α1
i ) + δa,2β

1
i , c4 + δa,2(mj +α2

i ) + δa,1β
2
i , Ca

i ].

The way to obtain the first four coordinates of each new state in Si is similar
to the case where j ∈ JL(i − 1) except that we have to add pj and mj on the
machine processing j. In the case of the combinatorial frontier, updates defined
for j ∈ JL(i − 1) also apply and we have to add information related to j since
it was unknown so far. The added data is σi(j) = a and σ′

i(j) = I�∃j′ ∈ Zi :
{j, j′} ∈ EZi

and σi−1(j′) 	= a�.

Forget. Let L−1(i) ∈ J(T ) be a Forget node of T and j ∈ J(G) being the vertex
forgotten. This type of node is easier to handle than previous ones since we do
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not have to deal with new vertex or edges. The only thing to do is to withdraw
j from the combination frontier. Thus, for each state s ∈ Si−1 we add a state
s′ ∈ Si where the combinatorial frontier of s′ is equal to that of s from which
information on j was removed.

Join. Let L−1(i) ∈ J(T ) be a Join node of T . This type of node is even simpler
to deal with than the previous one. Once again, there are no new vertex or edges
to handle. Moreover, we do not forget any vertex. For each state s ∈ Si−1 we
add s to Si. Thus, we have Si = Si−1.

Our algorithm ends up by returning the state s = [c1, c2, c3, c4, C|J(T )|] ∈
S |J(T )| with c3 ≤ M1, c4 ≤ M2 and such that max{c1, c2} is minimum.

3.2 Algorithm Correctness

Now, let us present the proof of correctness of our dynamic programming algo-
rithm when the nodes of the nice tree decomposition are traversed in bottom-up.
We will prove our algorithm correctness by maintaining the following invariant:
the states in Si encode all the solutions for the graph Gi = (Ji, Ei), defined at
Sect. 3.1.

Initialization. Let us start with the first node encountered. Let G0 = (J0, E0)
be an empty graph and S0 be the set composed of the single state [0, 0, 0, 0, C0]
where C0 does not store information. The nodes being traversed in bottom-up,
the first node encountered is a Leaf. Let j ∈ J(G) be the vertex such that
Z1 = {j}. Since j /∈ JL(0) we have S1 = [(pj , 0,mj , 0, C1

1), (0, pj , 0,mj , C2
1)]

where, for a = 1, 2, Ca
1 is such that σ1(j) = a and σ′

1(j) = 0. These two states
encode the assignment of j on machines one and two when considering the graph
G1 = (J1, E1). Moreover, the combinatorial frontier obtained allows us to keep
in memory potentially necessary knowledge for graphs of which G1 = (J1, E1) is
a sub-graph. Thus the invariant is correct for the first node.

Maintenance. Now let us assume that the invariant holds for L−1(i−1) ∈ J(T )
and let us prove that it is still correct for L−1(i) ∈ J(T ).

Leaf. Let L−1(i) ∈ J(T ) being a Leaf with Zi = {j}. If j ∈ JL(i − 1) then our
algorithm states that Si = Si−1. In that case, the invariant holds because Gi =
(Ji, Ei) is equal to Gi−1 = (Ji−1, Ei−1). Now, if j /∈ JL(i) then our algorithm
adds two new states in Si for every state in s ∈ Si−1 to take into account the
assignment of j to machine one and two. Each new state is obtained by adding
pj and mj according to the assignment of j and the associated combinatorial
frontier is obtained by extending the combinatorial frontier of s with information
on j assignment, i.e. σi(j) = a and σ′

i(j) = 0. Since we are dealing with a Leaf
and j /∈ JL(i) we have Gi = (Vi−1 ∪ {j}, Ei−1). Therefore, the invariant holds.

Introduce. Let L−1(i) ∈ J(T ) being an Introduce node with j ∈ J(G) being
the vertex introduced. If j ∈ JL(i− 1) then our algorithm adds one new state in
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Si for every state in Si−1. A new state in Si is obtained from a state in Si−1 by
adding, if needed, some amount of data on machine one and two. Let a = σi−1(j)
and Fa and F ′

a be the sets defined in (1) and (2). We note F ′′
a the set such that

F ′′
a = EZi

\(Fa ∪ F ′
a).

Lemma 1. Let s be a state encoding a solution of a graph G′ = (J ′, E′). Then,
if we add an edge e = {j, j′} such that j ∈ J ′, j′ ∈ J ′ and e ∈ F ′′

a then s also
encodes a solution of the graph G′ = (J ′, E′ ∪ e).

Proof. The proof of this lemma is based on the fact that introducing such edge
does not make s inconsistent with graph G′ = (J ′, E′∪e). Let us begin by noting
that adding an edge e = {j, j′} ∈ F ′′

a does not require to modify the processing
times in s to make it a state encoding a solution of G′ = (J ′, E′ ∪ e). Indeed,
since s encodes a solution for G′ = (J ′, E′), the processing time induced by the
assignment of j and j′ has already been encoded. Now, suppose that e ∈ F ′′

a .
Then, we have either j and j′ that are assigned to the same machine, or j and j′

that are memorised by both machines. In either case, adding such an edge does
not require to modify the amount of memory or combinatorial frontier in s to
make it a state encoding a solution of G′ = (J ′, E′ ∪ e). ��

On the machine processing j, our algorithm adds mj′ for every vertex j′ ∈ Ji

such that {j, j′} ∈ Fa. Indeed, since j′ is on a different machine than j and
that this machine does not memorise j′, it is necessary to add mj′ on machine
σi−1(j) to take into account the edge {j, j′}. On the machine not processing
j, our algorithm adds mj if there is an edge {j, j′} ∈ F ′

a. Indeed, as j′ is on a
different machine than j′ and j is not memorised by this machine, it is necessary
to add mj on machine σi−1(j′) to take into account the existence of such an
edge. Finally, we update the combinatorial frontier information on vertex j if
F ′

a 	= ∅ and on vertices j′ such that {j, j′} ∈ Fa. Therefore, the states returned
by our algorithm encode solutions for the graph G′ = (Ji, Ei−1 ∪ Fa ∪ F ′

a ∪ F ′′
a )

and the combinatorial frontier is consistent with the addition of new vertices
or edges. According to Lemma 1, our algorithm encodes solutions for the graph
Gi = (Ji, Ei) since Ei = Ei−1 ∪EZi

and EZi
= Fa ∪F ′

a ∪F ′′
a . Thus, the invariant

holds.
Now, if j /∈ JL(i − 1) the proof of the invariant enforcement is similar to the

case where j ∈ JL(i−1). The difference lies in the fact that j is not yet assigned.
Thus, one must generate two new states in Si for each state in Si−1 and the
processing time, and amount of memory, of j must be added on the machine
processing j.

Forget. Let L−1(i) ∈ J(T ) be a Forget node of T and j ∈ J(G) being the
vertex forgotten. Here, our algorithm generates the states of Si by taking those
of Si−1 from which it removes information on vertex j from the combinatorial
frontier. First, let us note that Gi = (Ji, Ei) is equal to Gi−1 = (Ji−1, Ei−1)
and the invariant holds. Notice that since we traverse T in bottom-up, we know
that removing a vertex j implies that all edges linked to it have been explored.
Otherwise, it would lead to the violation of a property of the tree decomposition
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(the third listed in Sect. 2). Therefore, we can stop memorising the information
related to vertex j.

Join. Let L−1(i) ∈ J(T ) be a Join node of T . In that case, our algorithm
computes Si by retrieving the states of Si−1 without modifying them. Since we
have Gi = (Ji, Ei) equal to Gi−1 = (Ji−1, Ei−1) and no modification on the
combinatorial frontier is performed, the invariant holds.

Termination. Finally, from the first and second conditions listed in the
definition of the tree decomposition, we know that the graph G|J(T )| =
(J|J(T )|, E|J(T )|) is equal to G = (J,E). Since our invariant is valid for the
first node and during the transition from nodes L−1(i − 1) to L−1(i), our algo-
rithm returns an optimal solution for the scheduling problem under memory
constraints.

3.3 Algorithm Complexity

Let us now evaluate the time complexity of our dynamic programming algo-
rithm. Let Jmax

L := max1≤i≤|J(T )| |JL(i)|. Let psum :=
∑

j∈J(G) pj and msum :=
∑

j∈J(G) mj , then for each state s = [c1, c2, c3, c4, Ci] ∈ Si, c1 and c2 are inte-
gers between 0 and psum, c3 and c4 are integers between 0 and msum. The
number of distinct combinatorial frontiers is 4Jmax

L . Therefore, the number of
states is | Si | = O(p2sum ×m2

sum ×4Jmax
L ). The dynamic programming algorithm

processes all |J(T )| = O(n) nodes of the nice tree decomposition. Each state
in a phase can give at most two states in the next phase with a processing
time of O(Jmax

L ) to compute these states. Recall also that in the algorithm,
if two states s and s′ have the same components, including the same combi-
natorial frontier, then only one of them is kept in the state space. The time
complexity to test whether two states s and s′ are the same is thus propor-
tional to the length of the combinatorial frontier, and is therefore O(Jmax

L ). We
obtain that the overall complexity of the dynamic programming algorithm is
O(n × |Si | × (Jmax

L + | Si |Jmax
L )) = O(n × Jmax

L × (p2sum ×m2
sum ×4Jmax

L )2).
Notice that Jmax

L depends on the chosen layout L, and to minimize this com-
plexity it is therefore important to find a layout L with a small Jmax

L .

Lemma 2. There exists a bottum-up layout L of the nice tree decomposition
such that Jmax

L ≤ tw(G) log 4n�.

Proof. To prove that such a layout exists we present an algorithm which, when
applied to the root of the nice tree decomposition, computes a bottom-up layout
L such that Jmax

L ≤ tw(G) log 4n�. To ease the understanding of certain parts
of the proof, these parts will be illustrated on Fig. 3 where a tree with 174 nodes
is depicted.

The algorithm works as follows. We perform a depth-first search starting from
the root node, and when we have a Join node we first go to the subtree having
the greatest number of nodes. With this depth-first search we get a discovery
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Fig. 3. Illustration of the proof of Lemma 2 on a possible tree with 174 nodes.
The tree is labelled with a bottum-up layout L, and for notational convenience
we consider that L−1(i) = i for 1 ≤ i ≤ 174. Some subtrees are represented by
dashed triangles. On Figure (a) is depicted the tree. When considering node 166,
the set of critical nodes A = {166, 165, 160, 140, 100}. All nodes in A, excepting
the node 166, are left children of Join nodes, and these Join nodes are on the path
P = {174, 173, 172, 171, 170, 169, 168, 167, 166} between the root node 174 and the
node 166. On Figure (b) is depicted the reduced tree obtained by removing all nodes
in P which are not Join nodes, namely R. In each figure, the set of critical nodes A
associated to node 166 is green colored and the Join nodes in P are purple colored.
(Color figure online)

and finishing times for each node. The labeling is obtained by sorting the nodes
in increasing order of their finishing time.

Now, let us analyze Jmax
L on the layout returned by our algorithm. Recall

that we use the notation Zi := XL−1(i) and let us define the operator � such
that Zi � Zi+1 := Zi \ {j} if L−1(i + 1) is a Forget node, with j the vertex
forgotten, and Zi �Zi+1 := Zi ∪Zi+1 otherwise. Notice that JL(i) = �o≤iZo and
that if we have a set of consecutive nodes L−1(l), L−1(l + 1), . . . , L−1(u) such
that L−1(i + 1) is a parent node for L−1(i) (l ≤ i ≤ u − 1), then �u

i=lZi = Zu.
Moreover if this chain is maximal, i.e. L−1(u+1) is not a parent node of L−1(u),
then it means that the parent of L−1(u) is a Join node. For any node L−1(i), we
have JL(i) = �o≤iZo = ∪l∈AXl, with A a set of nodes, of minimum size, that
we call critical. This set of critical nodes A can be obtained by taking the last
node in each maximal chain over nodes L−1(1) to L−1(o). Thus, A is composed
of the current node L−1(i) along with other nodes whose parents are Join nodes.
Such set A is illustrated in Fig. 3(a) where we consider i = 166 and where the
nodes composing A are green colored.

For a Join node L−1(i) having two childrens L−1(l) and L−1(r), let denote by
Tl(i) and Tr(i) the corresponding subtrees. We will assume that |Tl(i)| ≥ |Tr(i)|
and therefore during the depth-first search we use, node L−1(l) will be examined
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before node L−1(r). We say that L−1(l) (resp. L−1(r)) is the left (resp. right)
children of L−1(i). By the way the depth-first search is performed, all nodes
in A, excepting the current node L−1(i), are left children of Join nodes, and
these Join nodes are on the path P between the root node and the current node
L−1(i). In Fig. 3(a), such path P contains the Join nodes purple colored.

Now, let us bound the number of Join nodes on the path P . First, we con-
struct a reduced graph by removing the nodes of R where R is the set of nodes
of P that are not Join nodes. Such a reduced graph is illustrated in Fig. 3(b). By
doing this set of deletions, we get a tree with fewer than 4n nodes (recall that
the nice tree decomposition we started from has at most 4n nodes). The number
of Join nodes is equal to the length of the reduced path P \ R which is log 4n�.
Indeed, starting from the root, each time we go on a node along this path the
number of remaining nodes is divided by at least 2.

Thus, we have proved that |A| ≤ log 4n� for any node L−1(i) labelled with
our algorithm. Recall that JL(i) = ∪l∈AXl, and moreover from the definition of
tree-width, we have |Xl| ≤ tw(G). Thus, we have |JL(i)| ≤ tw(G) log 4n� and
the proof is complete. ��

Using the previous defined layout, we obtain an overall complexity of
our dynamic programming algorithm of O(p4sum ×m4

sum ×tw(G) × log(n) ×
n2tw(G)+1 × 16tw(G)). The time complexity of this dynamic programming algo-
rithm being pseudo-polynomial (because of psum and msum), we are going to
transform it into a bi-FPTAS.

4 Application of a Trimming Technique

In this Section, we propose a bi-FPTAS derived from the algorithm presented in
Sect. 3. To transform the dynamic programming algorithm, we apply an approach
for transforming a dynamic programming formulation into a FPTAS. This app-
roach, called the trimming-the-state-space technique is due to Ibarra and Kim [1]
and consists in iteratively thin out the state space of the dynamic program by
collapsing states that are close to each other.

In the approximation algorithm, we are going to trim the state space by
discarding states that are close to each other. While carrying these states
deletions, we must ensure that the resulting errors cannot propagate in an
uncontrolled way. To this end, we characterize a notion of proximity between
states. We define Δ := 1 + ε/8n, with ε > 0 a fixed constant. Let us first
consider the first two coordinates of a state s = [c1, c2, c3, c4, Ci]. We have
0 ≤ c1 ≤ psum and 0 ≤ c2 ≤ psum. We divide each of those intervals into
intervals of the form [0] and [Δl,Δl+1], with l an integer value getting from 0 to
L1 := logΔ(psum)� = ln(psum)/ln(Δ)� ≤ (1+ 8n

ε )ln(psum)�. In the same way,
we divide the next two coordinates into intervals of the form [0] and [Δl,Δl+1],
with l an integer value getting from 0 to L2 := logΔ(msum)�. The union of
those intervals defines a set of non-overlapping boxes. If two states have the
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same combinatorial frontier and have their first four coordinates falling into the
same box, then they encode similar solutions and we consider them to be close
to each other.

The approximation algorithm proceeds in the same way as the exact algo-
rithm, except that we add a trimming step to thin out each state space Si. The
trimming step consists in keeping only one solution per box and per combinato-
rial frontier. Thus, the worst time complexity of this approximation algorithm is
O(L4

1×L4
2×tw(G)× log(n)×n2tw(G)+1×16tw(G)). We therefore get a bi-FPTAS

when the tree-width tw(G) is bounded by a constant.

Theorem 1. There exists a bi-FPTAS for the problem Pk|G,mem|Cmax when
the tree-width of G is bounded by a constant, which returns a solution within
a ratio of (1 + ε) for the optimum makespan, where the memory capacity Mi,
1 ≤ i ≤ k, of each machine may be exceeded by at most a factor (1 + ε).

For sake of readability, the proof is presented when k = 2. In the conclusion,
we mention the general case when k is any fixed constant. We denote by U i

(resp. T i) the state space obtained before (resp. after) performing the trimming
step at the i-th phase of the algorithm. The proof of this theorem relies on the
following lemma.

Lemma 3. For each state s = [c1, c2, c3, c4, Ci] ∈ Si, there exists a state
[c#1 , c#2 , c#3 , c#4 , Ci] ∈ T i such that

c#1 ≤ Δic1 and c#2 ≤ Δic2 and c#3 ≤ Δic3 and c#4 ≤ Δic4. (3)

Proof. The proof of this lemma is by induction on i. The first node we consider
is a Leaf of the nice tree decomposition and we have T 1 = S1. Therefore, the
statement is correct for i = 1. Now, let us suppose that inequality (3) is correct
for any index i − 1 and consider an arbitrary state s = [c1, c2, c3, c4, Ci] ∈ Si.
Due to a lack of space, proof of the validity of the Lemma when passing from
phase i − 1 to i is only presented for a node of type Introduce. Note that the
proof for other types of nodes can be derived from that of an Introduce node.
Let L−1(i) be an Introduce node with j ∈ J(G) being the vertex introduced. We
must distinguish between cases where j belongs to JL(i − 1) and where he does
not.

First, let us assume that j ∈ JL(i − 1). Then s was obtained from a state
[w, x, y, z, Ci−1] ∈ Si−1 and s = [w, x, y + δa,1α

1
i + δa,2β

1
i , z + δa,2α

2
i + δa,1β

2
i , Ca

i ]
with a = σi(j). According to the induction hypothesis, there is a state
[w#, x#, y#, z#, Ci−1] ∈ T i−1 such that

w# ≤ Δi−1w , x# ≤ Δi−1x , y# ≤ Δi−1y , z# ≤ Δi−1z. (4)

The trimmed algorithm generates the state [w#, x#, y#+δa,1α
1
i +δa,2β

1
i , z#+

δa,2α
2
i + δa,1β

2
i , Ca

i ] ∈ Ui and may remove it during the trimming phase, but it
must leave some state t = [c#1 , c#2 , c#3 , c#4 , Ca

i ] ∈ Ti that is in the same box as
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[w#, x#, y# + δa,1α
1
i + δa,2β

1
i , z# + δa,2α

2
i + δa,1β

2
i , Ca

i ] ∈ Ui. This state t is an
approximation of s in the sense of (4).

Indeed, its first coordinate c#1 satisfies

c#1 ≤ Δ(w#) ≤ Δ(Δi−1w) ≤ Δiw = Δic1, (5)

its third coordinate c#3 satisfies

c#3 ≤ Δ(y# + δa,1α
1
i + δa,2β

1
i ) ≤ Δ(Δi−1y + δa,1α

1
i + δa,2β

1
i )

≤ Δiy + Δ(δa,1α
1
i + δa,2β

1
i ) ≤ Δic3

(6)

and its last coordinate is the same as s. By similar arguments, we can show that
c#2 ≤ Δic2 and c#4 ≤ Δic4.

Now, let us assume that j /∈ JL(i − 1). In that case, the state s was
obtained from a state [w, x, y, z, Ci−1] ∈ Si−1 and either s = [w + pj , x, y +
mj +α1

i , z +β2
i , C1

i ] or s = [w, x+pj , y+β1
i , z +mj +α2

i , C2
i ]. We assume that s =

[w+pj , x, y+mj +α1
i , z+β2

i , C1
i ] as, with similar arguments, the rest of the proof

is also valid for the other case. By the inductive assumption, there exists a state
[w#, x#, y#, z#, Ci−1] ∈ T i−1 that respects (4). The trimmed algorithm gener-
ates the state [w#+pj , x

#, y#+mj +α1
i , z+β2

i , C1
i ] ∈ Ui and may remove it during

the trimming phase. However, it must leave some state t = [c#1 , c#2 , c#3 , c#4 , C1
i ] ∈

Ti that is in the same box as[w# + pj , x
#, y# + mj +α1

i , z + β2
i , C1

i ] ∈ Ui. This
state t is an approximation of s in the sense of (4). Indeed, its last coordinate C1

i

is equal to Ci and, by arguments similar to those presented for j ∈ JL(i − 1), we
can show that c#o ≤ Δico, for o ∈ �1, 4�. Thus, our assumption is valid during
the transition from phase i − 1 to i when i is an Introduce node.

Since the proof for the other type of nodes can be derived from the proof of
an Introduce node, the inductive proof is completed. ��

Now, let us go back to the proof of Theorem 1. After at most 4n phases,
the untrimmed algorithm outputs the state s = [c1, c2, c3, c4, C] that minimizes
the value max{c1, c2} such that c3 ≤ M1 and c4 ≤ M2. By Lemma 3, there
exists a state [c#1 , c#2 , c#3 , c#4 , C] ∈ Tn whose coordinates are at most a factor
of Δ4n above the corresponding coordinates of s. Thus, we conclude that our
trimmed algorithm returns a solution where the makespan is at most Δ4n times
the optimal solution and the amount of memory for each machine is at most
Δ4n its capacity. Moreover, since Δ := 1 + ε/8n, we have Δ4n ≤ 1 + ε for ε ≤ 2.

So we have presented an algorithm that returns a solution such that the
makespan is at most (1 + ε) times the optimal solution and the amount of
memory for each machine is at most (1 + ε) its capacity. It ends the proof of
Theorem 1.
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5 Conclusion

Given 2 machines and a neighborhood graph of jobs with bounded tree-width,
we have presented an algorithm that returns a solution, where the capacity of the
machines may be exceeded by a factor at most 1+ε, if at least one solution exists
for the scheduling problem under memory constraints. This algorithm consists
of three steps: construct a nice tree decomposition of the neighborhood graph;
compute a specific bottom-up layout L of the nice tree decomposition; and use
a transformed dynamic programming algorithm traversing the nice tree decom-
position following L. Using layout L, the output of our algorithm is generated
in polynomial time and is such that the makespan is at most (1 + ε) times the
optimal solution and the amount of memory for each machine is at most (1 + ε)
its capacity.

Although the algorithm is presented for 2 machines, it can be extended to
any number of machines as adding machines means increasing the number of
dimensions of a state. It would require to modify the combinatorial frontier
such that σ′

i(j) would be the machines on which j has not been assigned and
which have memorized the data of j. This would change the time complexity
to O(n × L2k

1 × L2k
2 × k × tw(G) × log(n) × n2(ktw(G)+1) × 16ktw(G) × k4tw(G))

where n is the number of phases; Lk
1 × Lk

2 is the number of boxes, Lk
1 × Lk

2 ×
k × tw(G) × log(n) is the processing time to compute if the states are the same;
and n2(ktw(G)+1) × 16ktw(G) × k4tw(G) is the number of distincts combinatorial
frontiers.

Now that we have provided a bi-FPTAS for graphs of bounded tree-width, it
would be interesting to look at graphs bounded by more generic graph parame-
ters like the clique-width and local tree-width. The latter is all the more inter-
esting as we know that planar graphs have locally bounded tree-width and can
be used to model numerical simulations on HPC architectures.
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Abstract. Memory usage is becoming an increasingly pressing bottle-
neck in the training process of Deep Neural Networks (DNNs), especially
when training on Graphics Processing Units (GPUs). Existing solutions
for multi-GPU training setups partition the neural network over the
GPUs in a way that favors training throughput over memory usage,
and thus maximum trainable network size.

We propose mCAP, a partitioning solution for pipeline-parallel DNN
training that focuses specifically on memory usage. It evenly distributes
Deep Learning models over the available resources with respect to per-
device peak memory usage. Our partitioning approach uses a novel incre-
mental profiling strategy to extract per-layer memory usage statistics. A
model-based predictor uses the profiling data to recommend a partition-
ing that balances peak memory usage. Our approach is DL-framework
agnostic and orthogonal to existing memory optimizations found in large-
scale DNN training systems. Our results show that our approach enables
training of neural networks that are 1.55 times larger than existing par-
titioning solutions in terms of the number of parameters.

Keywords: Deep Learning · Pipeline Parallelism · HPC

1 Introduction

Deep Learning (DL) has facilitated breakthroughs in many application domains,
including video analysis, natural language processing and speech recognition.
The popularity of neural networks in these domains can be attributed partly
to the development of new methods and algorithms, and partly to an increase
in available compute power. Increasing the “depth” of neural networks, i.e. the
number of hidden layers, often improves the performance of the models, as a
deeper network can learn more complex input-output relations. Increased com-
pute power has enabled training of deeper networks and has shortened the devel-
opment times of neural network architectures.
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However, as DL models, training datasets and individual training samples
continue to grow in size, memory usage becomes an increasingly pressing bot-
tleneck in Deep Neural Network (DNN) training. This bottleneck is especially
apparent when training on Graphics Processing Units (GPUs), due to their lim-
ited memory capacity. To limit memory usage, developers are forced to resort
to measures that severely reduce the effectiveness of their solutions, such as
downsampling input data, reducing training batch sizes or shrinking DL model
sizes. In some cases models cannot even be trained with such measures in place.
Examples can be found in research areas such as high resolution image- and
video-processing [5,6,15] and natural-language processing [13,16].

In this work, we present mCAP (memory-Centric Approach for Partitioning),
a partitioning approach for multi-GPU pipeline-parallel DNN training. Existing
pipelined training solutions, such as GPipe [7,9], PipeDream [11,13] and DAP-
PLE [5] prioritize training throughput when partitioning the model. This cre-
ates an imbalance in peak memory usage between devices, leading to a smaller
trainable model size. Our partitioning solution uses novel methods, incremental
profiling and model-based prediction, to evenly distribute DL models over the
available resources with respect to per-device peak memory usage, thus focusing
on the maximum trainable model size instead of other objectives. Our partition-
ing scheme targets intra-batch pipeline parallel training solutions and can be
adjusted to work with inter-batch pipelining systems as well. mCAP is orthogo-
nal to memory optimizations found in pipeline-parallel systems, such as efficient
scheduling of forward and backward passes [5,13] and more generic optimiza-
tions, such as compression, recomputation and swapping of intermediate data to
host memory [2,10,19].

Most existing partitioning and placement approaches aim to optimize
achieved throughput and do not consider per-GPU memory usage. PipeDream
and DAPPLE’s planners only focus on equal per-GPU processing time and high
throughput. GPipe leaves the task of partitioning the model to the programmer.
However, TorchGPipe [9] (an implementation of GPipe in PyTorch) contains an
automatic partitioner that optimizes throughput based on measurements of the
execution time of the forward pass for each layer of the DL model.

Accurate predictions of per-GPU peak memory consumption are needed for
automatic, memory-balanced partitioning. Predicting peak memory consump-
tion is complex, because it is influenced by memory optimizations implemented
at different levels of the DNN training software stack. Analytical modeling based
on static analysis of the DL model does not capture the effects of these optimiza-
tions, making it infeasible to reach accurate predictions of peak memory usage
using static techniques. mCAP uses novel profiling and prediction methods to
recommend a partitioning with a balanced per-GPU peak memory usage, while
automatically capturing the effects of a wide range of memory optimizations at
the levels of the DL framework and pipeline-parallel training system.

mCAP does not affect the convergence speed and accuracy achieved
by the DL model compared to other partitioning approaches, because the weight
updates computed during training are not affected by the choice of partitioning.
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Concretely, the contributions of this paper are as follows:

– We introduce a novel approach to DNN partitioning for multi-GPU training,
focusing purely on reducing peak memory usage to enable the training of
larger DL models. By focusing on maximum model size instead of training
throughput, we make a different trade-off than existing approaches. We study
the effects of this trade-off on training throughput.

– We provide an overview of memory-optimization techniques present in mod-
ern DL frameworks and explain the shortcomings of existing attempts to
reach balanced peak memory usage across GPUs during DNN training.

– We use a novel profiling method, incremental profiling, for our partitioning.
– We present a prediction based partitioning algorithm that uses the profiling

data to obtain balanced peak memory usage between GPUs.
– We demonstrate that our approach enables the training of DL networks that

are up to 1.55 times larger than existing partitioning approaches.

2 Background and Related Work

Neural Network Training: the DNN training process consists of iterations
in which a forward pass and backward pass are performed for a single batch of
input data (a minibatch). When the forward and backward passes have been
performed, the weights of the model are updated, which concludes the iteration.

As DNNs continue to grow in size and computational demand, DNN training
is now moving towards high-performance computing infrastructures where mul-
tiple GPUs can be used simultaneously to train a DNN. State-of-the-art software
solutions for multi-GPU training perform pipeline-parallel training.

Figure 1 shows the three layers of the software stack: the DL framework
that implements the training operations, the pipelining system that implements
pipeline parallelism, and the application layer.

Fig. 1. Pipeline-parallel DNN training
software stack

Fig. 2. Pipelined DNN training as per-
formed by GPipe. Numbers indicate
microbatch ids.
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Existing Memory Optimizations: modern DL frameworks like PyTorch [14]
and TensorFlow [1] include optimizations that reduce the memory usage on
GPUs. With early deallocation of memory, the memory used for forward activa-
tions and gradients is released immediately after the backward pass and weight
update have been performed for a given layer, instead of for the complete neural
network. Another optimization at the level of the DL framework is activation
memory reuse, in which the memory where activations are stored during the
forward pass is re-used to store gradients in the backward pass.

An optimization that is not implemented at the level of the DL framework,
but at the level of the pipelining system, is activation recomputation. Here for-
ward activations are not kept in memory in between the forward and backward
pass of a given layer, but discarded and recomputed again when they are needed
during the backward pass.

Several other works have proposed methods to reduce GPU memory usage
during training. In [19,22,26], the authors propose methods for memory pooling
and swapping (temporarily) unused data (like activations) in GPU memory to
main memory. In [2], the authors use Unified Memory capabilities to leverage
host memory for out-of-core DNN training. Our approach is orthogonal to such
approaches and can be used on top of training systems that implement these
optimizations at the level of the DL-framework or the pipelining system.

Pipeline Parallelism: in pipeline-parallel training, the neural network is par-
titioned over the workers. For each minibatch, each worker performs the forward
and backward pass for their part of the network, and activations and gradients
are communicated between workers. As a result, the model size is no longer lim-
ited by the memory size of a single worker. To increase throughput minibatches
are processed in a pipelined fashion. Multiple minibatches (or slices thereof) are
consecutively fed into a pipeline, and workers perform forward- and backward-
passes on these minibatches.

There are two types of pipeline parallelism. In intra-batch pipelining (such
as implemented by GPipe [7,9] and DAPPLE [5]) a single minibatch is split
into multiple micro-batches, and the forward passes of these micro-batches are
fed into a processing pipeline. When all forward passes have completed, the
corresponding backward passes are performed. Finally, all compute nodes update
their parameters (see Fig. 2). Intra-batch pipelining does not introduce staleness
of weights and has a memory usage that is inversely proportional to the number
of workers. A disadvantage is the existence of a synchronization point, which
causes a “bubble” in the pipeline and idle time for the workers.

In inter-batch pipelining (such as implemented by PipeDream [11,13]) com-
plete minibatches are fed into the pipeline without splitting them into smaller
entities (see Fig. 4). Multiple copies of the model’s parameters are kept in mem-
ory to make sure forward and backward passes on a particular minibatch are
performed with the same parameters. Inter-batch pipelining does not suffer from
idle time because there is no system-wide synchronization point. Despite several
improvements [13,25], staleness and increased memory usage caused by the need
for multiple parameter versions remain disadvantages.
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Partitioning Algorithms for Pipeline Parallelism: PipeDream [11] pro-
poses a planner specific to inter-batch pipelining that outputs a balanced pipeline
in terms of per-stage (GPU) computation time. This is achieved by profiling
computation time per layer and estimating communication times with an ana-
lytical model. GPipe [7] leaves the task of partitioning the DL model to the
programmer. TorchGPipe [9], an implementation of GPipe in PyTorch, pro-
vides automatic partitioning based on profiling the computation time needed
for the forward pass of each layer. DAPPLE’s [5] partitioner tries to achieve
high throughput by minimizing the pipeline latency, which is determined by the
latency of processing a single minibatch. RaNNC [24] is an intra-batch pipelining
framework that performs automatic partitioning using atomic-level, block-level
and stage-level partitioning.

All of these partitioning approaches focus on finding the partitioning that
achieves the highest throughput. Contrary to existing work, our work proposes
a partitioning approach that aims for a balanced pipeline in terms of memory
usage, enabling training of larger models. To that end, it models the effects of
memory optimizations implemented in the pipelining system, such as activation
recomputation. Our approach currently targets intra-batch pipeline parallelism.

Other Large-scale DNN Training Paradigms: MeshTensorflow [20] and
Megatron-LM [21] are systems that partition individual tensor operations over
multiple accelerators as opposed to layers. Megatron-LM does not provide auto-
matic partitioning and only supports transformer models. In [12], the authors
combine tensor partitioning with pipeline parallelism, but do not improve the
memory footprint over existing approaches. ZeRO [17] partitions model states
over workers to save memory, but focuses on data and model parallelism.

3 Method

We propose mCAP, a partitioning approach for pipeline-parallel DNN training
that determines how the DL model is partitioned over the workers (GPUs). Our
partitioning approach focuses on achieving balanced peak memory usage across
all GPUs during DNN training, to enable the training of larger DL models. By
using a novel profiling strategy called incremental profiling mCAP automati-
cally captures and models the effects of a wide range of memory optimizations
that are present in DL frameworks, such as the ones described in Sect. 2 (early
deallocation and activation memory reuse). This makes our approach agnostic to
which framework is used at the DL framework layer. Moreover, by combining the
incremental profiling strategy with our model-based prediction algorithm, mCAP
models the memory usage of intra-batch pipelining systems and the optimiza-
tions they implement (like activation recomputation).

This section discusses mCAP’s design and shows how the combination of
incremental profiling and our model-based prediction algorithm is capable of cap-
turing the memory behavior of intra-batch pipeline-parallel training systems.
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Fig. 3. Overview of mCAP. Fig. 4. Pipelined DNN training as per-
formed by PipeDream. Numbers indi-
cate minibatch ids.

Figure 3 shows an overview of our partitioning approach. The approach con-
sists of three parts: incremental profiling, prediction, and recommendation. In
the profiling phase, we collect data about the peak memory usage of each GPU
during training for several, specifically selected partitionings. From this profil-
ing data, we extract two statistics for each layer in the neural network. In the
recommendation phase, these statistics form the input to the predictor, which
accurately predicts the memory usage for a set of partitionings generated by
the recommender. The recommender applies a search strategy to find the par-
titioning(s) with the lowest peak memory usage across the GPUs based on the
predictions. We explain the workflow step-by-step.

3.1 Profiling

The profiling stage collects per-layer statistics that can be used in the prediction
stage. We instrumented pipeline parallel DNN training code to monitor the peak
memory usage for each GPU during the training process. Short profiling runs
are then performed in the same setup (DL framework, pipelining system, hyper-
parameters and hardware) as in the final training run for which we are finding
a memory-balanced partitioning. In these profiling runs all training stages are
executed: forward passes, backward passes and update steps. Therefore, they
automatically capture the effects of memory optimizations at the DL framework
level for all training stages.

The profiling runs are performed with a specifically selected set of partition-
ings. The selected set of partitionings is such that for each layer l, we run (with
l > n >= 0):

(a) a partitioning where layer l is the only one on a GPU, and;
(b) a partitioning where layers n to l − 1 are placed on a GPU, and;
(c) a partitioning where layers n to l are placed on a GPU.

Figure 5 shows examples of partitionings described by requirements (a), (b)
and (c). During selection of these partitionings, we keep n as small as possible.
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The above selection requirements ensure that we can extract two metrics for
each layer l in the DL model from the profiled data: (1) the peak memory usage
when layer l is the only one on a GPU and (2) the effect on peak memory of
adding layer l to an existing set of layers on a GPU. We extract the former
directly from the partitionings described by requirement (a) and call this metric
mem isolated(l), while we extract the latter from the difference in peak mem-
ory usage between the partitionings described by requirements (b) and (c), and
call it mem added(l). These two per-layer metrics capture the data needed to
accurately predict the memory usage for all possible partitionings.

Fig. 5. Examples of partitionings
described by requirements (a), (b)
and (c).

Fig. 6. GPU memory usage for weights
and activations during the forward pass.

It is important to make the distinction between mem isolated(l) and
mem added(l) because a layer’s contribution to peak memory usage depends
on its position on the GPU it is assigned to. Inspection of these metrics for
AmoebaNet-D(36, 544) showed that the difference between the two metrics is
significant, ranging to hundreds of Megabytes per layer. The difference is caused
by optimizations such as activation recomputation and the presence of commu-
nication buffers to send the activations of the last layer on a GPU to the next
GPU in the pipeline. The next subsections show how our predictor models the
effects of such optimizations on memory usage, using both metrics as input.

3.2 Peak Memory Usage for Intra-batch Pipelining with Activation
Recomputation

This subsection describes how the recomputation optimization implemented in
most intra-batch pipelining systems (including TorchGPipe) affects the peak
memory consumption. Optimizations such as recomputation do not simply lower
the peak memory consumption for each layer individually, but influence peak
memory in a more complex manner. We created our prediction algorithm to
model such influences of recomputation and other (potentially future) optimiza-
tions in intra-batch pipelining systems on peak memory usage.
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The peak memory consumption on a GPU in a pipelined system is constituted
by two main factors: the memory needed for the weights of the layers hosted by
the GPU, and the memory needed for the activations generated by those layers.
In intra-batch pipelining, the memory needed for a layer’s weights is constant.
Recall from Sect. 2 that with activation recomputation, a layer’s activations are
discarded as soon as the activations for the next layer have been computed.
The activations for the former layer are then recomputed when they are needed
again in the backward pass. As a result, the amount of memory required to
store activations fluctuates during the forward and backward passes of a single
microbatch. Hence, the peak memory consumption of the GPU is determined by
the one layer on the GPU that requires the most memory for its activations.

Figure 6 illustrates this principle of fluctuating memory usage in the forward
pass in a simplified situation, where an example neural network of 5 layers is
trained on a single GPU. At time t0, memory is used to store the weights of all
layers and the activations generated by layer l0. At time t1, the activations of
layer l0 are discarded, and the activations of layer l1 are stored (which consume
more memory). In this example, the layer that generates the most activations
is layer l2, which means the peak memory consumption for this neural network
during the forward pass is dictated by that layer. This principle extends to the
backward pass in similar fashion.

3.3 Prediction

To find the partitioning with the lowest peak memory usage across all GPUs, we
predict the peak memory usage for a set of partitionings. This set is determined
by the recommender (see Sect. 3.4) and forms the input to the predictor, together
with the per-layer data described in Sect. 3.1. The predictor estimates the peak
memory usage for each partitioning in the set as shown in listing 1.1.

Our partitioning algorithm automatically models the effects that different
layers have on the peak memory consumption on a GPU, as described in Sect. 3.2,
by means of its design. When predicting the memory usage for a given parti-
tioning, it first considers the peak memory usage that is obtained when only
the first layer that is assigned to the GPU, is placed (which corresponds to the
mem isolated statistic). Figure 7.a illustrates this situation. It then models the
changes in peak memory consumption that are caused by adding the remain-
ing layers to the GPU, by adding the mem added statistic layer-by-layer. Two
scenarios exist for each added layer: it generates less activations than the pre-
ceding one (Fig. 7.b) and the peak memory of the GPU is only affected by the
added layer’s weights, or it outputs more activations than the preceding layer
(Fig. 7.c), and the peak memory usage increases due to the added layer’s weights
and activations.
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1 for gpu in GPUs:
2 layers = RetrieveLayers(p, gpu)
3 GPU_peak_mem =
4 mem_isolated(layers [0])
5 for layer in remaining layers:
6 GPU_peak_mem +=
7 mem_added(layer)
8 StorePeak(p, gpu , GPU_peak_mem)
9

10 per_GPU_peaks = RetrievePeaks(p)
11 overall_peak = max(per_GPU_peaks)

Listing 1.1. Peak memory prediction for
a given partitioning.

Fig. 7. Model-based prediction scenarios.

3.4 Recommendation

mCAP supports two mechanisms to search for the partitioning with the lowest
peak memory usage across all GPUs: Brute-Force (mCAP-BF) and Bayesian
Optimization (mCAP-BO).

mCAP-BF predicts the peak memory usage for all possible Pall =
(
L−1
G−1

)

partitionings (where L is the number of layers to partition over G GPUs), and
selects the partitioning with the lowest peak memory usage from the prediction
outcomes. We apply a tie-breaking rule if there are multiple partitionings with
the same lowest predicted peak memory usage. For each remaining candidate,
we exclude the GPU with the highest peak memory usage GPUpeak in that
partitioning and select the candidate that has the best balanced (lowest) peak
memory usage across the remaining GPUs. This is a realistic alternative selection
criterion if the prediction for GPUpeak was inaccurate.

mCAP-BO applies Bayesian Optimization to search for the partitioning with
the lowest predicted peak memory usage. Each GPU forms a dimension of the
search space and the parameter range is determined by the number of layers
that can be placed on the GPU.

The choice between mCAP-BF and mCAP-BO can be made based on the
value of Pall. mCAP-BF is guaranteed to find the partitioning with the lowest
predicted peak memory usage in the search space and is cost efficient enough for
limited values of Pall. When Pall is large (because the DL model has many layers
and/or many GPUs are used), it pays off to use mCAP-BO. While mCAP-BO is
not guaranteed to find the partitioning with the lowest peak memory usage from
the full search space, it is less expensive in terms of execution time for larger
values of Pall (see Sect. 4.3).
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3.5 Implementation

We have implemented our partitioning approach for TorchGPipe. We have
instrumented the training loop’s code to capture the peak memory usage for
each GPU during the training process using built-in facilities of PyTorch. Our
code instrumentation has no impact on GPU memory usage, as the recorded
data is stored in main memory. Moreover, the impact on training throughput is
negligible, because recording the required data is a lightweight operation.

We chose to implement memory profiling at the level of the DL framework
(PyTorch) because it allows us to differentiate between memory that is actually
in use and memory that is reserved (cached) by PyTorch. Lower level tools
(CUDA or other NVIDIA tools) would not allow us to make this distinction.

Currently the selection of the partitionings used for incremental profiling is
partially automated and partially a manual process (if some configurations run
out of memory, a different set is chosen). Additionally, we extend the network
with dummy layers to enable running the partitionings described in Sect. 3.1
for each layer in the neural network. We plan the implementation of a fully
automated version of this process for future work.

We use the DDLBench benchmarking framework [8] to run our experiments.
We extended the code of the benchmarking suite and TorchGPipe to param-
eterize some variables of the training process, such as the partitioning to use.
We use scikit-optimize to implement the Bayesian Optimization process for the
mCAP-BO recommendation mode.

Applying mCAP to a different pipelining system or DL framework requires
the re-implementation of the instrumentation of the training loop and the param-
eterization of variables, such as the partitioning to use. These changes can be
implemented in approximately 100 lines of code.

4 Experiments

4.1 Experimental Setup

We apply our partitioning approach to two DL models. First, we do experiments
with a relatively small neural network, VGG11 [23], to evaluate to what extent
mCAP is able to find an optimally memory-balanced partitioning. We then do
experiments with a larger, scalable DL model, AmoebaNet-D [18], to see how far
we can increase the size of the neural network without running out of memory.
We perform this experiment for the partitioning recommended by mCAP and
compare the results to the partitioning chosen by TorchGPipe’s throughput-
oriented partitioner.

We perform multiple experiments using a single DL model with an adjustable
size, rather than with multiple different fixed-sized models, because we want to
obtain a precise comparison between the maximum trainable model size with
mCAP and TorchGPipe’s partitioner. We compare to a throughput-oriented
partitioner because, to the best of our knowledge, no other memory-oriented
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partitioners exist for pipeline-parallel training. We do not compare to solu-
tions that are orthogonal to pipeline-parallel training with our partitioning app-
roach. Examples of orthogonal solutions are leveraging host memory to virtually
increase the GPU memory size, through activation and weight swapping or Uni-
fied Memory techniques [2,19,22,26].

We note that the statistical performance (how fast the neural network learns
and achieved accuracy) is not affected by the choice of partitioning. The learn-
ing operations performed by the pipelining system are mathematically identical,
regardless of the partitioning. We do therefore not explicitly evaluate the sta-
tistical performance of the partitioning selected by mCAP. We use randomly
generated images of 224× 224 pixels as training data in our experiments, con-
sistent with images from the ImageNet dataset [3].

The training runs performed in the profiling stage only have to last a very
limited number of epochs and can be performed with a small dataset size. This
is because the peak memory usage is steady after the first epoch and the peak
memory usage is not dependent on the size of the dataset. In our experiments,
the time required for profiling is in the order of minutes per profiling run. The
number of required profiling runs is L − G + 1. The set of profiling partition-
ings used in our experiments is: {1-1-1-R, 2-1-1-R, ..., R-1-1-2, R-1-1-1}, where
R denotes the remaining layers of the DL model. The time needed by the pre-
diction algorithm ranges from seconds to minutes, depending on the number of
possible partitionings and the recommendation mode. We consider this overhead
negligible, given that the final run for which we are searching a balanced parti-
tioning typically lasts several days to weeks. Moreover, the aim of our approach
is to enable training of larger models, not to increase throughput.

The Bayesian Optimization process of mCAP-BO performs 75 iterations,
uses scikit-optimize’s gp hedge acquisition function with the sampling acquisition
optimizer, xi and kappa set to 1000 to favor exploration over exploitation and
the default Matérn kernel.

Our experiments are performed on nodes containing 4 NVIDIA Titan RTX
GPUs with 24 GB GDDR6 memory. The GPUs are connected to the host
through PCIe 3.0 x16. We use PyTorch version 1.5.0 and TorchGPipe as the
pipelining system.

4.2 VGG11

We perform experiments with VGG11 to evaluate how accurate our prediction
algorithm is. We first use VGG11 because it is a relatively small network (132.9
million parameters) with a limited number of layers (30), so the amount of
possible partitionings of the model over 4 GPUs is also limited (3654). It is
therefore feasible to perform training runs for all possible partitionings, to get an
overview of the memory usage and computational performance for all datapoints
in the partitioning space. This experiment is only focused on validating that our
approach selects a partitioning with a low peak memory usage from the full
partitioning space.
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Fig. 8. Memory usage and throughput of all possible partitionings. The partitionings
selected by mCAP (yellow) and TorchGPipe (red) are highlighted. (Color figure online)

Figure 8 shows the achieved peak memory usage and throughput of training
VGG11 for all possible partitionings on a 4-GPU node, with TorchGPipe. Each
run performs 2 training epochs with a training dataset size of 5000 samples, an
overall batch size of 1104, consisting of 12 microbatches of 92 samples each, the
Stochastic Gradient Descent optimizer with a momentum of 0.9, a weight decay
of 1× 10−4 and a learning rate of 0.1. The partitionings selected by mCAP and
TorchGPipe’s automatic partitioner are highlighted. Given the limited number
of possible partitionings, we use the mCAP-BF recommendation mode.

Our approach selects the partitioning (3-3-5-19) with the 3rd-lowest peak
memory usage of all partitionings. Our predictor slightly underestimates the
peak memory usage of the selected partitioning and deems it equivalent to the
partitionings with the lowest peak (the horizontal green line). The tie-breaking
rule then works in favor of the selected partitioning. Its peak memory usage
is 1.05x higher than the lowest peak, while that is 1.10x for the partitioning
selected by TorchGPipe’s partitioner. That partitioning (6-2-5-17) achieves 0.84x
the throughput of the best performing partitioning, which is the one selected by
our approach. These observations confirm that mCAP selects a partitioning from
the full partitioning space that has relatively low peak memory usage.

Figure 9.a shows the per-GPU peak memory usage of mCAP’s and TorchG-
Pipe’s partitioning (predicted and measured). The partitioning selected by
mCAP, while being the one with the 3rd-lowest memory usage, is still relatively
unbalanced (the standard deviation is 0.95). We attribute this to the small par-
titioning space of VGG11. Because the network is split at the level of layers
and the number of layers in VGG11 is limited, a partitioning with an (almost)
perfectly balanced memory usage simply does not exist (the standard deviation
of the best performing partitioning amongst the ones with the absolute lowest
peak memory usage is still 0.73). We study the memory gain in a more realistic
scenario, with a larger network, in Sect. 4.3.
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Figure 10 shows a histogram of the error between peak memory usage as
predicted by our prediction algorithm and the actual peak memory consumption,
for all 3654 possible partitionings. Our predictor is able to predict the peak with
an error margin smaller than 14% error in 90% of the cases.

Fig. 9. Per-GPU peak memory usage. Fig. 10. Prediction error histogram.

4.3 AmoebaNet-D

We now experiment with a larger network (AmoebaNet-D) to see how much
reduction in peak memory usage and potential network growth our partitioner
realistically achieves.

AmoebaNet-D(L, F ) has 2 parameters that determine the size of the neural
network: L and F for layers and filters respectively. We first apply our parti-
tioning approach to AmoebaNet-D(36, 544). With these parameters, the neural
network has 1.06 billion trainable parameters.

We perform the training runs in this experiment with an overall batch size of
32, consisting of 4 microbatches of 8 samples each. The input data and remaining
training- and hyperparameters are identical to the ones used before. We use the
mCAP-BO recommendation mode (and mCAP-BF for reference).

Figure 9.b shows the per-GPU peak memory usage of AmoebaNet-D(36, 544)
for mCAP’s partitioning (predicted and measured) and TorchGPipe’s partition-
ing. mCAP’s partitioning is considerably more balanced in peak memory usage.
The measured peak has a standard deviation of 0.53 across all GPUs, while
that is 3.15 for TorchGPipe’s partitioning. mCAP’s partitioning reaches a 35%
reduction in peak memory usage compared to TorchGPipe’s partitioning.

Our experiments showed that mCAP-BO recommends the same partitioning
for AmoebaNet-D(36, 544) as mCAP-BF, validating the effectiveness of mCAP-
BO in navigating the search space. It also reduces the prediction time by 2.6x
compared to mCAP-BF (from 99.5 to 38.8 s). We expect this gain to increase
when more GPUs or DNNs with even more layers are used.

Next, we determine how far we can scale the network up with mCAP’s par-
titioning. We use the F (filters) parameter to increase the number of trainable
parameters in AmoebaNet-D. To find the maximum value for F that we can
train with mCAP’s partitioning, we perform a binary search.
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Fig. 11. Peak memory usage and achieved throughput for AmoebaNet-D.

Figure 11 shows the peak memory usage (and throughput) for each successful
training run of the binary search, plotted against the network size of AmoebaNet-
D. The size of the DL model is expressed in the number of trainable parame-
ters, which is determined by L and F . The peak memory usage is consistently
higher for TorchGPipe’s partitioning, and grows faster with network size than
for mCAP’s partitioning. The maximum trainable network size for mCAP’s par-
titioning is 1.55 times larger than for TorchGPipe’s partitioning (3.61B vs 2.32B
trainable parameters).

Figure 11 also shows the achieved throughput for each value of F used in the
scaling experiment. Although it is not our focus, mCAP’s partitioning achieves
10.5% higher throughput on average than TorchGPipe’s partitioning.

5 Conclusion and Future Work

We proposed mCAP, a partitioning approach for multi-GPU pipeline-parallel
DNN training that focuses purely on achieving balanced peak memory usage
across GPUs. mCAP uses a combination of incremental profiling and model-
based prediction. Through profiling our approach automatically captures the
effects of memory optimizations implemented at the DL framework level and
can thus (after re-implementation of the memory profiling) be applied in combi-
nation with any modern DL framework. mCAP’s model-based predictor targets
intra-batch pipelining systems and can be easily adjusted to support inter-batch
pipelining systems as well. Applying mCAP does not affect the statistical per-
formance compared to other partitioning approaches, because the performed
learning operations are mathematically identical.

We demonstrated that mCAP recommends a partitioning with a low peak
memory usage from the full partitioning space. mCAP provides the brute-force
recommendation mode for limited search spaces and the Bayesian Optimiztion
mode to efficiently find a memory-balanced partitioning in a large search space.
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mCAP can train neural networks that are 1.55 times larger than existing par-
titioning solutions. We plan to automate partitioning selection and network
manipulation for the incremental profiling phase for future work. We also plan to
port Bayesian Optimization to the GPU to further reduce mCAP-BO ’s runtime.
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Abstract. Anomaly detection systems are vital in ensuring the avail-
ability of modern High-Performance Computing (HPC) systems, where
many components can fail or behave wrongly. Building a data-driven rep-
resentation of the computing nodes can help with predictive maintenance
and facility management. Luckily, most of the current supercomputers
are endowed with monitoring frameworks that can build such represen-
tations in conjunction with Deep Learning (DL) models. In this work,
we propose a novel semi-supervised DL approach based on autoencoder
networks and clustering algorithms (applied to the latent representation)
to build a digital twin of the computing nodes of the system. The DL
model projects the node features into a lower-dimensional space. Then,
clustering is applied to capture and reveal underlying, non-trivial corre-
lations between the features.

The extracted information provides valuable insights for system
administrators and managers, such as anomaly detection and node classi-
fication based on their behaviour and operative conditions. We validated
the approach on 240 nodes from the Marconi 100 system, a Tier-0 super-
computer located in CINECA (Italy), considering a 10-month period.

Keywords: supercomputer monitoring · deep Learning · unsupervised
learning · autoencoders · predictive maintenance

1 Introduction

High Performance Computing systems have been steadily rising in size and com-
plexity in the last years, as revealed by the exponential increase of the worldwide
supercomputer installation1. HPC systems are typically composed by replicating
a large number of components, usually, in the order of thousands of computing
nodes, each of them constituted of a collection of smaller functional parts, such
as CPUs, RAM, interconnections, storage, etc. Even if similar by design, each

1 https://www.top500.org/.
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computing node is affected by manufacturing variability and variations in the
operating conditions. The sheer size and complexity of supercomputers create
huge challenges in terms of optimal management of the IT components and their
significant energy footprint [1]. The race towards Exascale2 continues to make
these challenges ever more pressing [3–5].

Overall, it is a daunting task for system administrators and facility man-
agers to optimize supercomputer performance and power consumption, identify
anomalous behaviors faulty situations, and guarantee systems operate in optimal
conditions. The scale of the problem motivates the development of automated
procedures for anomaly detection and faulty node identification in current super-
computers and this need will become even more pressing for future Exascale
systems [6]. The fact that most of today’s HPC computing systems are endowed
with monitoring infrastructures [7] that gather data from software (SW) and
hardware (HW) components can be of great help toward the development of
data-driven automated approaches. Historically, system management was per-
formed through hand-crafted scripts and direct intervention of system adminis-
trators; most of the data is stored in log files, and anomalies are investigated a
posteriori to find the source of reported problems (e.g., when many users recog-
nize the failure and report it to administrators). At the finer granularity, each
core of the processing element is equipped with performance counters which can
monitor several micro-architectural events (i.e., cache misses, stalls, throughput)
and physical means (i.e., temperature, power consumption, and clock frequency).
Processing units as well as the motherboard, the power distribution units, the
onboard voltage regulators, the PCIe devices, and the fans are equipped with
hardware (HW) sensors and counters. Similarly, software components can pro-
vide useful information as well, ranging from the details about jobs submitted
by users (e.g., information gathered by job dispatchers such as SLURM [8] or
PBS [9]) to software tools performing health-check of various subsystems [10]
and I/O monitoring [11].

As the amount of data is overwhelming for human operators, automated
processes could be highly beneficial in improving the data center usage to ease
the burden of human operators and lower the response time to failures. In this
context, Artificial Intelligence (AI) can provide significant benefits, as it allows
to exploit the available big data effectively and to create decision support tools
for HPC system administrators and facility managers [12,13]. In the past, many
works from the literature and the practice demonstrated the possibility to extract
useful information using data collected from HPC computing nodes and employ-
ing supervised Deep Learning (DL) models [14–16] and semi-supervised ones
[17–19]. These methods have been applied to detect nodes’ availability, defined
as operation without anomalies. Availability and the corresponding error rate (1
minus availability rate) is a key metric of the node’s performance, and a target
for optimization of the HPC system operation [20]. Due to its importance, we
focus on the availability rate in the experimental part of this paper.

2 The supercomputer peak performance is expected to reach the ExaFlops (1018) scale
in 2023 [2].
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Borghesi et al. in [18] show that semi-supervised anomaly detection models
trained on individual nodes data outperform a single model trained on multi-
node data. This suggests that the semi-supervised model can learn differences
between nodes even if the nodes share the same design and composition. Theo-
retically, the learned model encapsulates the node’s characteristics, however to
the best of our knowledge, no one has ever evaluated the feasibility of using the
disparities between trained DL models to evaluate the differences between the
behavior of the corresponding nodes. In this work, we answer this question by
introducing a novel approach that focuses on the latent representation of the
trained DL models (in particular on the coefficients, the weights of the latent
layer); the approach can identify clusters that deviate from the overall (node)
population’s average availability, relying on the DL model parameters.

We focused on a Tier0 supercomputer composed of 985 nodes for which we
trained a series of per-node semi-supervised DL models based on autoencoders
(AE), as proposed by authors in [19], the state-of-the-art for semi-supervised
anomaly and fault detection in HPC systems. We focus on semi-supervised meth-
ods as the availability of labels cannot be taken for granted in a supercomputer
due to the non-negligible cost of annotating the vast wealth of monitored data.
We explored different approaches to extract features from the weights and biases
of the latent layer of the AE model. The key idea is to apply a geometric trans-
formation to the weight matrix underlying the latent layer of the trained AEs;
we opted to explore a variety of transformations; namely, we compute: (1) the
vector of singular values, (2) the singular vector corresponding to the largest
singular value, (3) the map of the representative vector (with and without bias),
(4) the weights matrix similarity in L1, L2, and absolute L2 norm, (5) the affine
(augmented matrix) similarity in L1, L2, and absolute L2 norm. The empirical
evaluation demonstrates that the vector of singular values identifies interesting
clusters among the different methods to extract salient features from the latent
representation.

We propose to use the deviation from population average availability to evalu-
ate the goodness of the clustering results. The vector of singular values, extracted
from the weights matrix of the latent layer of the trained autoencoder, identifies
two clusters with average overall availability lower than 89% (compared to 96%
population average). The proposed method’s ability to identify these clusters is
significant as the autoencoders have no access to the availability label during
training.

2 Related Work

Since anomalies in HPC systems are rare events, the problem of anomaly detec-
tion cannot be treated as a classical supervised learning problem [17,21]; the
majority of works that treat it in a fully supervised fashion have been tested
using synthetic [14,22] or injected anomalies [15]. Instead of learning the prop-
erties of both relevant classes, the standard approach is to learn just the prop-
erties of the system’s normal operation - anything deviating from this normal
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operation is then recognized as an anomaly. Machine learning models are trained
only on normal data to learn the characteristics of the normal operation. This
training of ML models on normal data is called semi-supervised training [18].

The state-of-the-art for anomaly detection on the HPC system is to train a
particular class of neural networks – called autoencoders – in a semi-supervised
way [19]. Autoencoders are a specific type of neural networks that are trained
to reproduce an input signal while simultaneously learning the most efficient
latent representation of the data [23]. The latent representation of the data has
a lower dimension than the original data; this lower dimension of the latent layer
naturally leads to the idea of using autoencoders as pre-processing step before
applying clustering techniques [24–26], as most of the clustering algorithms have
worse performance in high-dimensional spaces [27]. The autoencoders are first
trained on the whole dataset when using autoencoders as a dimension-reduction
step before clustering. Then the dataset is projected (by the encoder part of the
network) into a lower-dimensional latent layer [24].

Current approaches that combine clustering and autoencoder neural networks
use a single trained autoencoder to encode each instance into a latent space. The
state-of-the-art for HPC anomaly detection, however, is to train multiple models
(a different model for each node in the system) [19]. The fact that the models
trained on individual nodes outperform the model trained on combined data
of all nodes [17–19] suggests that there are significant differences between the
behavior of the compute nodes and, consequently, the corresponding trained
models. Thus, this paper’s contribution is to explore the possibility of leveraging
the fact that we are training multiple AE models to explore the relationship
between the nodes themselves. Specifically, we explore the possibility to extract
features from the trained neural networks to perform the clustering of the whole
operation history of the compute nodes.

3 Methodology

In this section we present the architecture of the proposed approach. We start
by providing the probabilistic perspective underlying the foundations of our
approach in Sect. 3.1. We then describe in more detail the general architecture
(Sect. 3.2) and the proved the more detailed description of the method in Sect. 3.3
and Sect. 3.4.

3.1 Probabilistic Background

The idea of extracting information and comparing trained neural networks
extends the standard methodology of statistical modeling where two (or more)
populations (or generally a collection of instances) are compared by contrasting
parameters of fitted distributions. Comparing the parameters of fitted functions
is the key idea underlying the proposed approach. Let us consider as an example
the common statistical problem of comparing two populations of individuals -
specifically, we want to compare a specific random variable X in two distinct
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populations (e.g., height in two different countries). The first point of compar-
ison in such cases is to calculate empirical mean x = 1

N

∑N
i=1 xi and empirical

variance 1
n−1

∑N
i=1(xi − x)2. Two populations can be compared by looking at

the empirical mean and variance of the random variables of interest (observed
variables present inside each population).

The mathematical foundation of comparing mean and variance between two
populations is directly in line with the idea of this paper. If we are observing
two large populations, we know (from the central limit theorem [28]) that the
sum of the variables will tend towards a Gaussian distribution. Two parameters
determine Gaussian distribution: expected value μ and variance σ2 [28]; to fit
the Gaussian distribution to the data (population), we thus have to estimate
these two parameters. If we fit the distribution via the Maximum Likelihood
Estimation (MLE) method, [29], we see that the best estimator for the expected
value is empirical mean and for variance, the best estimator is empirical vari-
ance. From the probability theory, we know that the difference of two random
Gaussian variables is Gaussian variable with mean that is the difference of means
and variance that is the sum of variances [28]. Comparing population mean and
population variance is thus actually equivalent to comparing the Gaussian dis-
tributions fitted to the data.

Another perspective from which to examine the problem of comparing pop-
ulations is that we fit a function to the data (this function being the Gaussian
distribution). For some problems - like High Performance Computer (HPC) sys-
tem monitoring - autoencoders (type of neural networks) achieve state-of-the-art
results [18,19]. As autoencoders are the class of functions that best describe this
specific class of problems (behavior of compute node in an HPC system), we
examine if we can compare the compute nodes by comparing the parameters of
the fitted autoencoders.

3.2 General Overview of the Approach

Figure 1 reports the block diagram of the proposed methodology. We can identify
the following steps:

1. On each node, a separate autoencoder model is trained. Semi-supervised
training of per-node autoencoder models is adopted from the state-of-the-
art paper [19].

2. After models are trained on each node, features are extracted (as described
in Sect. 3.4) from the deep learning models.

3. Based on these extracted features, the similarity between nodes is calculated.
Calculation of similarity can be done as the autoencoder projects the input
features into a latent representation where only the most salient correlations
between the input variables are preserved. The similarity measure is calcu-
lated by comparing the representation maps - specifically, the parameters of
the latent layer.

4. This similarity measure is then used in hierarchical clustering.
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Fig. 1. Data flow schema. On each of the nodes (red in the picture), organized into
racks, we train a separate autoencoder model (circles). From these trained models we
extract features that are then used in the clustering of nodes. (Color figure online)

3.3 Autoencoder Models

Dense autoencoders are a type of deep neural network, which can be charac-
terized by different topology; those used in this work have a distinct hourglass
shape, a choice motivated by the results obtained by previous works in the
state-of-the-art3. The most relevant information of the network is encoded in
the latent layer. In this particular type of autoencoder, the latent layer is the
layer in the middle of the network and contains the fewest neurons. It is preceded
by the encoder and succeeded by the decoder, each composed of one or multiple
layers. The encoder and decoder layers used in this work have a symmetrical
architecture, which, generally speaking, is not strictly required. The fundamen-
tal role of the network is to efficiently encode the information from the input in
a compressed representation in the latent layer. Training of the autoencoder is
driven by the reproduction error produced by the decoder; reproduction error,
which is the difference between the real input and the reconstructed signal, is
minimized during training. The architecture of the network used in this work is
presented in Fig. 2. It is adapted from the work by Borghesi et al. [19] where it
has been shown to produce state-of-the-art results in detecting anomalies on an
HPC system.

The set of autoencoders - as in original work [19] - are individually trained on
each node in a semi-supervised setting. Semi-supervised training means that the
data for training is filtered of all anomalies and that only the normal instances
are used in training the model.

3 They are also referred to as contractive autoencoders.
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Fig. 2. Architecture of the state-of-the-art model, proposed by [19]. In this paper,
relevant information is extracted from the latent layer Dense (*,8). Data is collected
for the ExaMon monitoring system [12].

3.4 Feature Extraction

Due to the architecture of the neural network used in this work - as discussed
in Sect. 3.3 - we extract the relevant features from each node (each one with its
data set); these features are embedded in the weights of the latent layer. The
latent layer is described by the weights matrix W and the bias vector �b. The
activation of the latent layer is given by �a′ = f(W�a +�b) where f if a nonlinear
activation function. In the next subsections, we will describe different encoding
approaches of the latent layer information, which will then be used to extract
features.

Singular Value Decomposition. Singular value decomposition represents
matrix M as M = USV ∗ where S is a diagonal matrix containing singular values
[30]. In this work, we used singular value decomposition on W , and we extracted
the vector of singular values (abbreviated to singular values in the future) and a
singular vector corresponding to the largest singular value (abbreviated singular
vector).

Representative Vector. A vector of ones �1 is used as a representative vector
as it corresponds to the activation of all neurons in a latent layer. It can serve as
a proxy for the transformation of the (linear part) of the latent layer. For each
node, we have thus calculated the product of W�1 (abbreviated vector of ones)
and W�1 +�b (abbreviated vector of ones plus bias).

Matrix Measures. In this work, we leveraged the L1 and L2 norms induced
in the matrix space (induced by p norms for vectors) [31]. Based on these norms
we propose two ways to calculate distance between two matrices: distance =
||A − B||p and absolute distance abs distance = |||A − B||p| where p is 1 or
2. Since the L1 measure is already symmetric, we do not separate a case with
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absolute distance. We introduce the absolute value as we want our distance
measure to be symmetric.

We calculate the distance between nodes as a distance between the weights
matrices of autoencoders trained on them. Additionally, since the linear part of
the neural network is an affine transform, we introduce an augmented matrix A:

A =
(

W �b

0...0 1

)

.

This matrix A captures the affine transform since �a′ = W�a +�b is equivalent to
(

�a′

1

)

= A

(
�a
1

)

.

Another way to calculate the distance between nodes is to calculate the
distance between an affine transform that is determined by the (affine W�a +�b)
part of the latent layer of the corresponding autoencoder.

3.5 Clustering

The calculated distance between clusters is an input for clustering. In this work,
we use agglomerative hierarchical clustering: each instance (in our case node)
starts as its cluster. At every step of the iteration, the two closest clusters are
connected. The connection between clusters is the closest distance between two
instances in corresponding clusters. The combining of clusters is repeated until
we reach the predetermined number of clusters.

3.6 Evaluating Clustering

There are several possible measures to evaluate the goodness of the clustering
(e.g., Silhouette score) [32]. These scores, however, are not applicable in the
scenario explored by this work. We evaluate different possible feature extrac-
tion methods from the trained autoencoders; these different feature extraction
approaches produce different feature spaces. Thus we cannot compare the clus-
tering score (like Silhouette score) between different spaces. For this reason, we
evaluate the relevance of our clustering approaches by evaluating how “interest-
ing” the created clusters are.

The interest of clusters is reflected by how well they separate a specific vari-
able. Since clustering is an unsupervised method, it is reasonable to assume that
not all clusters will separate the same variable (such clustering would produce
distinctly uninteresting clusters). However, we expect that there would be at
least one cluster where the distribution of the target variable would be signifi-
cantly different than it is in the whole dataset. In this work, the target variable
is system availability. In other words, clusters will separate computing nodes
based on the autoencoder model’s latent layer encoding in groups having similar
availability, thus similar failure rate. We stress that from a practical point of
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view, this means that an autoencoder model for each node is trained only on
“normal” operation samples and contains the information on the likelihood of
the node to be available (or not to fail). Clusters of nodes sharing the same
failure’s likelihood can be used to rationalize the maintenance procedure.

In the whole dataset, the system is available 0.96179% of the time. The most
interesting cluster is thus the one where the average availability of a cluster will
be as far away from this population average. The best clustering method is the
one producing the most interesting cluster.

3.7 Random Sampling Baseline

The relevance of the produced clusters determines the relevance of feature extrac-
tion and, consequently, of clustering approaches. Specifically, we observe how well
the clusters separate a target variable (in the case of this work, the node’s avail-
ability). To claim the relevance of the clustering approaches, we compare them
to random sampling. We compare how well the target variable is separated by
random sampling to how well clustering methods separate it. We are particularly
interested in clustering methods that produce clusters and separations that do
not (are very unlikely to occur) in random separation.

This paper implemented random clustering by producing a random matrix
(of the same size and range as extracted features) that is then passed to cluster-
ing algorithms. The produced clusters are thus equivalent to random sampling
without replacement. The generation of random clusters is repeated several (in
this work 10) times. For each cluster, the distribution of the target variable is
calculated; this distribution is then compared to distributions given by clustering
methods. In the results (Sect. 4), the range of randomly generated distributions is
presented as a box with whiskers plot. Distributions outside the range of random
distributions represent interesting patterns uncovered by the clustering method.

4 Results

This section presents the results of the experimental analysis conducted on a tier-
0 supercomputer, Marconi100, hosted at CINECA, the largest Italian computing
center. The results were conducted on a statistically significant fraction of the
supercomputing nodes (more than two hundred) and cover a 10-months time
span of production activity of the system.

4.1 Experimental Setting

As explained in the methodology Sect. 3, an individual model was trained on each
of the 241 randomly selected nodes of Marconi100. Models were trained semi-
supervised, meaning that only normal operation data was used for training. The
whole dataset consists of 10 months of operational data collected on Marconi100.
The first eight months of the data were used as a training set and the last two
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as a test set. Autoencoder models were trained on the train set. The cluster
analysis was performed only on the test set.

The dataset used in this work consists of a combination of information
recorded by Nagios (the system administrators tool used to visually check the
health status of the computing nodes) and the Examon monitoring systems; the
data encompasses the first ten months of operation of the M100 system. The
features collected in the dataset are listed in Table 1. In order to align different
sampling rates of different reporting services, 15 min aggregates of data points
were created. 15 min interval was chosen as it is the native sampling frequency
of the Nagios monitoring service (where our labels come from). Four values were
calculated for each 15 min period and each feature: minimum, maximum, aver-
age, and variance.

Table 1. An anomaly detection model is created only on hardware and application
monitoring features. More granular information regarding individual jobs is not col-
lected to ensure the privacy of the HPC system users.

Source Features

Hardware monitoring

ambient temp., dimm[0-15] temp.,

fan[0-7] speed, fan disk power,

GPU[0-3] core temp.,

GPU[0-3] mem temp.,

gv100card[0-3], core[0-3] temp.,

p[0-1] io power,

p[0-1] mem power,

p[0-1] power, p[0-1] vdd temp.,

part max used,

ps[0-1] input power,

ps[0-1] input voltage,

ps[0-1] output current,

ps[0-1] output voltage, total power

System monitoring

CPU system, bytes out, CPU idle,

proc. run, mem. total,

pkts. out, bytes in, boot time,

CPU steal, mem. cached, stamp,

CPU speed, mem. free, CPU num.,

swap total, CPU user, proc. total,

pkts. in, mem. buffers, CPU idle,

CPU nice, mem. shared, PCIe,

CPU wio, swap free

Features extracted from trained autoencoders are passed to hierarchical clus-
tering. Hierarchical clustering has been chosen as it only requires the pairwise
distance between the instances without making any assumptions about the space
induced by the distance measure. The number of clusters is set to 20 for all exper-
iments. A number of clusters is not a tuned parameter; 20 clusters represents
roughly 10% of all nodes and is a randomly chosen number.

4.2 Trained Autoencoder

The trained autoencoder is adopted from the current state-of-the-art semi-
supervised approach for anomaly detection [19]. The structure of the autoen-
coder is presented in Fig. 3. The autoencoder used as a binary classifier (form
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the normalized reconstruction error) on the test set achieves the AUC (area
under the receiver-operator characteristic curve) of 0.7602.

Normal operation (the data where the autoencoder is trained) is determined
by the label (system availability) provided by the monitoring systems.

Fig. 3. Architecture of the autoencoder network, adopted from Borghesi et al. [19]

4.3 Cluster Analysis: Normal Operation Percentage

The proposed approach aims to identify interesting clusters of nodes that behave
similarly. The similarity in behavior is also reflected in the fact that a cluster will
have similar values for at least one relevant feature. In this section, we evaluate
the similarity in average availability rate - in other words, we are interested
in seeing if the clustering methods can identify clusters with particularly low
availability (high failure rate). The average failure rate amongst 241 identified
nodes (in the test set) is 0.96179. We wish to identify clusters with significantly
lower availability rate.

In Table 2, the minimum average availability rates in a cluster, unidentified
by a specific feature extraction approach, are reported. The table shows that the
vector of singular values combined by the euclidean distance metric identifies
a cluster with the minimum average availability. This availability is also lower
than the random method’s minimum availability (ever achieved).

In Fig. 4 and Fig. 5 average availability per node is plotted (red dots). Results
of random sampling without replacement are presented as a box plot. The aver-
age error rate across all nodes (0.96179) is marked with a violet dotted line.
Area of values, observed in a random process, are marked with gray. Values
never observed by the random process are left white.

Analyzing Figs. 4 and 5 we observe that only the vector of singular values
produced cluster with averages never observed in random samples.

The clustering method based on a vector of singular values combined with
euclidean distance identifies two clusters with particularly low average availabil-
ity. Such low average availability has also never occurred in a random selection
of clusters. Low average availability means that hierarchical clustering based on
singular value decomposition of weights matrix produces non-trivial clusters that
are extremely unlikely to be matched by a random selection of clusters.

Identifying interesting clusters regarding availability is a non-trivial result as
a neural network has no access to that label during training.

This promising result suggests that the created clusters share similar avail-
ability, and thus clusters can be created based on autoencoder semi-supervised
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Table 2. Minimum average availability within clusters identified by different feature
extraction methods. Vector of singular values identifies a cluster with the lowest average
availability (highest anomaly rate). This is the most interesting method as it separates
the target variable (node availability) the best. None of the proposed methods identify
a cluster with a single node.

Distance measure: Avg ava. in min. cluster: Num. of nodes in min. cluster:

Sing. vector (Euc.) 0.9286 6

Vector of sing. values (Euc.) 0.8809 7

W�1 +�b (Euc.) 0.9126 8

W�1 (Euc.) 0.9367 5

W (absolute L2) 0.9191 7

A (absolute L2) 0.9276 5

W (L2) 0.9239 7

A (L2) 0.9124 10

W (L1) 0.9303 8

A (L1) 0.9303 8

Random sampling 0.9021 Not applicable

Fig. 4. Average error rate per cluster. Representation of nodes with a vector of singular
values identifies two clusters with significantly higher anomaly rate than the whole
population. (Color figure online)

models latent layer information. This cluster can then be used during the sys-
tem’s lifetime to create canaries to focus the maintenance over nodes belonging
to the same cluster of the canary node.
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Fig. 5. Average error rate per cluster. Matrix-based feature extraction performs worse
than the vector methods. (Color figure online)

5 Conclusions

This work opens the possibility of extracting additional information from the
state-of-the-art approach towards anomaly detection in the HPC setting. Besides
using per-node autoencoder models for anomaly detection [17–19], it is also
possible to construct informative clusters from the parameters of the trained
neural networks themselves.

We demonstrate the usefulness of the identified clusters on a concrete exam-
ple: identifying clusters with the abnormal failure rate. This result is significant
as the neural networks, from where the features are extracted, have no access to
that label during training. Still, our approach can identify two clusters of nodes
with lower availability (higher failure rate) than the population average.

We stress the fact that with this approach, clusters can be created based
on a model trained on the first month of operations and then applied for the
remaining lifetime of the system to focus maintenance to the nodes belonging
to the same cluster containing the node which has experienced failures. Sys-
tem administrators focus their regular inspections only on canary nodes, each
representative of one cluster.
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Abstract. Compacting is a common and heavily used operation in dif-
ferent application areas like statistics, database systems, simulations and
artificial intelligence. The task of this operation is to produce a smaller
output array by writing selected elements of an input array contiguously
back to a new output array. The selected elements are usually defined
by means of a bit mask. With the always increasing amount of data
elements to be processed in the different application areas, better per-
formance becomes a key factor for this operation. Thus, exploiting the
parallel capabilities of GPUs to speed up the compacting operation is of
great interest. In this paper, we present different optimization approaches
for GPUs and evaluate our optimizations (i) on a variety of GPU plat-
forms, (ii) for different sizes of the input array, (iii) for bit distributions
of the corresponding bit mask, and (iv) for data types. As we are going
to show, we achieve significant speedups compared to the state-of-the-art
implementation.

Keywords: Compacting · GPU · Optimization · Parallel

1 Introduction

A common observation in different application domains like statistics, database
systems, simulations and artificial intelligence is that highly parallel algorithms
in these domains usually produce sparse data or data containing unwanted ele-
ments [11,16,17]. To achieve a high performance for the following algorithm
steps, it is often necessary to compact the data prior to these steps. The parallel
breadth first tree traversal is one representative example [17]. Here, the list of
open nodes must be pruned of invalid nodes after each traversal step. Other-
wise, an exponential explosion of nodes takes place. A second example is the
filter operation in database systems to reduce data based on predicates. These
filters are usually executed as close to the base data as possible to reduce the
effort of subsequent joins or groupings [9]. In all cases, the reduction of the data
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Fig. 1. SPACE compared to CUB on A100 Ampere GPU. Uniform, 1 cluster and 32
cluster data distributions for the bit mask. Datatype is unsigned integer 32-bit.

to the selected elements is performed with the compaction operation or primi-
tive. This primitive is also denoted as stream compaction, stream reduction, or
selection and the task of this primitive is to produce a smaller output array by
writing selected elements of an input array contiguously back to a new output
array. The selected elements are usually defined by means of a bit mask. With
the still increasing amount of data to be processed in the different application
domains, high performance for this key primitive is a decisive factor.

In the last decade, GPUs have been increasingly used for highly parallel com-
putations or accelerating specific algorithms and algorithm parts [3,8,10,13].
Thus, exploiting the parallel capabilities of GPUs to speed up the compacting
operation is of great interest. For NVIDIA GPUs, the CUB library provides
state-of-the-art, reusable software components for every layer of the CUDA pro-
gramming model [5]. In particular, CUB also provides an efficient implemen-
tation for the compaction primitive – called cub::DeviceSelect:Flagged – as
highlighted in Fig. 1. For the illustrated results, we generated a data array and
three different bit mask configurations, we varied the percentage of selected ele-
ments and we executed the compaction primitive on these settings using a recent
NVIDIA GPU A100. One bit mask configuration is called single cluster where
the selected elements are contiguous in a single cluster. A second bit mask con-
figuration is called multiple cluster where the selected elements are contiguous in
several clusters and the clusters are uniformly distributed within the bit mask.
And the third configuration is denoted as uniform because the selected elements
are uniform distributed over the bit mask. As shown in Fig. 1, the CUB primitive
provides a stably high throughput for all settings, but is not optimized in terms
of the percentage of the selected items. That means, the state-of-the-art CUB
implementation does not have any specialization for compaction with a very low
percentage of selected data.
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Fig. 2. Compaction example.

Our Contribution and Outline: However, as compaction only writes back
selected data, low percentages of selected data offer a great opportunity for opti-
mizations. Thus, we present several optimizations for this called smart partition-
ing for GPU compaction (SPACE) in this paper. As implied in Fig. 1, our best
performing implementation – denoted as SPACE Best in Fig. 1 – clearly out-
performs the state-of-the-art CUB implementation. The worst performing bit
mask distribution uniform offers a throughput improvement of 3.55x for SPACE
Best with 1% of data selected. For 97% selected data the improvement remains
1.15x. The best bit mask distribution is single cluster. In this case, SPACE Best
achieves an improvement of 10.05x and a worst case improvement of 1.2x.

The remainder of this paper is structured as follow: In Sect. 2, we briefly
introduce the necessary background. Then, we present our smart partitioning for
GPU compaction (SPACE) approach in Sect. 3. Afterwards, we present selective
results of our exhaustive evaluation. Finally, we conclude the paper with related
work in Sect. 5 and a short summary in Sect. 6.

2 Preliminaries

In this section, we introduce all essential preliminary requirements for our work.
We start with a clear description of the compaction primitive, followed by a
classification of possible bit mask configurations and finally, we shortly recap
the architecture of NVIDIA GPUs.

2.1 Compaction Primitive

Compaction is a common programming primitive that has a wide range of appli-
cations. As illustrated in Fig. 2, the input of the primitive is an input array and
a bit mask. The bit mask is used to indicate which elements should be selected.
Thus, the number of bits in the bit mask is equal to the number of elements in
the input array. Then, the primitive produces a new output array, containing
only selected elements from the input data array, which are indicated by bit set
to 1 in the bit mask. The most important challenge is that the selected elements
have to be written contiguously into the output array as shown in Fig. 2. In case
of the NVIDIA GPUs, NVIDIA already ships a library called CUB that offers a
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performant implementation of the compaction based on a bit mask. The function
is called cub::DeviceSelect::Flagged.

2.2 Bit Mask Characteristics

The bit mask as input essentially determines how many elements must be writ-
ten to the output. If the percentage of set ones is small, then only a small amount
of values needs to be written out. However, the percentage says nothing about
where the set ones are in the bit mask. To be able to specify this more pre-
cisely, we examined various algorithms from different application domains and
determined the following: On the one hand, there are applications where the set
ones are uniformly distributed in the bit masks. On the other hand, there are
also applications where the set ones occur contiguously – clustered – in the bit
mask. Especially in the case of clustered ones, large parts of the input array can
actually be skipped, which can be used for optimizing the compaction primitive.
However, our experiments from the introduction clearly show that the state-of-
the-art CUB implementation does not have such an optimization.

2.3 NVIDIA GPU Architecture and Execution Model

The NVIDIA GPU architecture – considered only in this paper – consists of
a set of streaming multiprocessors. Each streaming multiprocessor consists of
CUDA cores that are arithmetical logical units and exclusive local memory,
which is called shared memory. A larger global memory can be accessed by
all streaming multiprocessors. In order to perform calculations on a GPU, a
set of threads is spawned and partitioned into work units called blocks. One
block can have a maximum of 1024 threads and is assigned to one streaming
multiprocessor. Multiple blocks can be assigned to a streaming multiprocessor.
Instructions are executed for 32 threads at the same time, which is called a
warp. Each streaming multiprocessor has a set of warp schedulers that schedule
execution of different warp wide instructions. For example, Turing based GPUs
have 4 warp schedulers per block and up to 4 warps can be scheduled at each
unit to hide memory access latency. This leads to 16 warps or 512 threads as
recommended threads per block [15]. While the basic architecture remains the
same across newer GPU generations, there are differences in terms of memory
speed, CUDA cores per streaming multiprocessor, shared memory per streaming
multiprocessor and total streaming multiprocessors per GPU. As instructions are
executed per warp ideally, multiple executions per warp are needed if branching
or non-aligned memory access patterns occur.

The execution model is Single Instruction Multiple Threads (SIMT). Unlike
Single Instruction Multiple Data (SIMD) architectures like AVX512, where one
instruction is executed on a vector of elements, GPU threads are able to behave
independently from each other. Programs that use CUDA always consist of two
parts of code. Host code runs on the CPU and is tasked with managing data
transfers and execution of kernels. Device code runs on the GPU and consists
of kernel functions. Kernels are C-style functions that execute instructions on
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data, based on a ThreadID. Each kernel is called with a blocksize (number of
threads within a block) and a gridsize (total number of blocks). Both parameters
together are called a CUDA configuration. Setting the right CUDA configuration
is crucial to achieve good performance and varies between different kernels.

3 SPACE - Accelerating Compaction on GPUs

The sequential implementation of the compaction operation is straightforward
and many programming languages and/or libraries provide such an implemen-
tation. However, to implement a parallel version, the most challenging issue is
to determine the index positions of the selected elements in the output array.
According to [2], a prefix-sum approach works very well for a parallel implemen-
tation. This prefix-sum approach works as follows: The input data is partitioned
into fixed-sized chunks. As the number of bits in the bit mask is unknown at
compile-time, a popcount operation is executed on each chunked bit mask to
determine the number of set bits. To calculate the offset positions where each
chunk starts to write back into the output array, a prefix-sum over the popcounts
has to be computed next. The prefix-sum is defined as a sequence of numbers,
where each element is generated by adding a number to the last element. Using
these offset positions, a parallel write-out to the output array can be performed.
Thus, a parallel implementation of the compaction primitive consists of the fol-
lowing three phases: popcount, prefix-sum, and write-out.

Since compaction only writes back selected data, low percentages of selected
data offer a great opportunity for optimizations. Thus, we present an enhanced
optimization for this called smart partitioning for GPU compaction (SPACE).
SPACE is based on the general prefix-sum approach with selective optimiza-
tions to skip the write-out part of chunks where no elements are selected. These
optimizations are beneficial, because popcount and prefix-sum only perform oper-
ations on the bit mask and generate intermediate data, while the write-out needs
to read the data from the large input array and writes back the final results. In
the following, we describe the different variants for each phase.

3.1 Phase Variants for Parallel Implementation

As already introduced, a parallel implementation of the compaction primitive
consists of three phases: popcount, prefix-sum, and write-out.

Popcount. To calculate a final memory offset on a chunk, it is required to know
how many data elements occur before a chunk. This is achieved by performing a
popcount on the bit mask. A GPU intrinsic function int popc(unsigned int x)
[6] counts the bits set to one in a 32 bit wide element. A popcount kernel across
all chunks is the first operation in SPACE.
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Fig. 3. Two phase prefix-sum is performed. First, up-sweep reduction calculates a par-
tial prefix-sum. A single chunk down-sweep calculation is performed for the highlighted
element (black arrow, 11). Below the partial prefix-sum buffer is the intermediate tree
from the up-sweep phase. Sub-trees are either rejected or accepted if they fit. The dot-
ted line indicates the maximum range of fitting sub-trees. Thus, the red sub-tree with
value 11 is rejected. (Color figure online)
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Prefix-sum. Calculating the prefix-sum requires the popcount intermediate
data. The prefix-sum consists of all bits that occurred before the specific data
element. t is the offset in the output array, where each element needs to start to
write back data. SPACE offers three variants to calculate a prefix-sum.

CUB Prefix-sum: In this variant, the prefix-sum is calculated by
CUB::DeviceScan::ExclusiveSum [4], a function that is provided by the
NVIDIA SDK.

Two phase prefix-sum: The exclusive prefix-sum starts at 0 for the first
entry. First a pyramid reduction is performed as shown in Fig. 3. The kernel
is called up-sweep reduction. For each layer seen in phase 1 of Fig. 3, the kernel
is launched once. The resulting tree is an intermediate product that is needed
as input for the second phase of the prefix-sum calculation. Down-sweep is
the second phase that distributes the values of the up-sweep tree through the
inner nodes to the leaves of the reduction tree as seen in Fig. 3. This creates
the final exclusive prefix-sum over all data entries. So the final memory offset
is the addition of the exclusive prefix-sum entry for data element plus the
memory offset of all previous chunks calculated by popcount. An example can
be seen in Fig. 3. The algorithm attempts to fit the highest amount of largest
left sided sub-trees into the index of the chunk to compute. The end result
of the two phase prefix-sum is an exclusive prefix-sum buffer per chunk that
can be used to write back all selected elements into the output array. There
is also a slightly different version that supports non power of two input sizes.

Partial prefix-sum: In our third variant, only the up-sweep reduction is per-
formed at this stage, resulting in a partial prefix-sum. If needed, the exclusive
prefix-sum is calculated on-the-fly for each element in the write-out phase.

Write-out. Write-out takes a prefix-sum as input and writes back the final
contiguous output array of selected values. Several approaches were implemented
for write-out. The key question for write-out is how to efficiently distribute
chunks to blocks and threads. Efficient memory access on an NVIDIA GPU
requires threads to access memory coalesced. NVIDIA groups 32 threads into a
unit called warp. Each instruction is performed on a warp level with 32 threads
at a time. If the memory access pattern does not allow warp parallelism, the
worst case is a warp level instruction per single element memory access. Thus,
32 instructions instead of one. The basic approach is to assign several chunks
to each thread. This leads to a bad memory access pattern, as each thread
jumps between indices based on the prefix-sum. A more sophisticated approach
assigns chunks to warps instead of threads. While thread level synchronization
is expensive, warp level synchronization is not. As a chunk can consist of only
not selected elements, the write-out can be skipped for that chunk. This can be
checked by performing a popcount. As skipping a chunk only needs to read the
bit mask and skips reading the larger data array, the amount of memory access
can be immensely reduced.
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3.2 Overview of SPACE Variants

Based on the above description of the different variants for the three phases,
we propose 8 different variants of the SPACE compaction algorithm for GPUs.
Each variant shares the basic structure of popcount, prefix-sum, and write-out.
Moreover, each implementation variant takes a bit mask and a data array as
input as illustrated in Fig. 2. The data can be any datatype between 1 und 8
Byte size which is supported on GPUs. Each bit in the bit mask relates to one
data element. Thus, a single bit controls the write out of up to 8 Bytes for double
and uint64 data types. Data types smaller than 8 byte lead to a different ratio
of bit mask size to data array size. The SPACE variants are:

Variant 1 (base variant approach): A two phase prefix-sum and naive write-
out kernel are used. Threads are assigned to one chunk. Each thread calculates
one element. No chunk is skipped.

Variant 2 (base variant with skipping): Variant 1 is modified by adding
skipping of chunks of not selected elements. A popcount kernel that returns 0
bits on a bitmask of an empty chunk indicates which chunks can be skipped.

Variant 3 (asynchronous streamin g): The kernel executions are changed
to enable the usage of the CUDA asynchronous streaming API. Distribut-
ing kernels across different CUDA streams allow for kernel-level parallelism.
However there can be no data dependencies between kernels. Multiple asyn-
chronous CUDA streams are deployed for each kernel that allows concurrent
computation.

Variant 4 (optimized read without skipping): Memory access pattern is
optimized by using grid striding. Instead of having a thread read additional
elements adjacent to each other in memory, the memory access offset per
thread is the total number of threads. Adjacent threads attempt to access
adjacent data in memory. No calculations are skipped. CUB is used to calcu-
late the exclusive prefix-sum.

Variant 5 (optimized read with skipping and partial prefix-sum): Based
on Variant 4, skipping is added and CUB prefix-sum is replaced by the partial
prefix-sum algorithm. Only the up-sweep reduction is performed before the
write-out kernel and the exclusive prefix-sum is calculated on-the-fly in the
write out phase.

Variant 6 (optimized read with skipping and two phase prefix-sum):
Like Variant 5, but the prefix-sum is calculated by the two phase prefix-
sum algorithm. This leads to a fully calculated exclusive prefix-sum across all
elements before the write-out phase.

Variant 7 (optimized read with skipping and CUB based prefix-sum):
Like Variant 6, but the prefix-sum is calculated by CUB. CUB is also used
to calculate the complete exclusive prefix-sum across all elements.

Variant 8 (optimized read with skipping, optimized write-out and
CUB prefix-sum): Like Variant 7 with the addition of an alternative version
of the write-out kernel. Write-out kernel aims to write-out at least a warp at
once.
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Table 1. An overview of evaluated hardware platforms. Version of used build and
compilation tools are listed as used in the evaluation.

GPU GPU Generation CMake CUDA NVCC G++

A100 Ampere 3.23.0-rc1 11.2 11.2.67 9.3.0-17

RTX 8000 Quadro Turing 3.22.2 11.5 11.5.119 9.3.0-17

1070 TI Pascal 3.22.2 11.5 11.5.50 9.3.0-17

3080 Ampere 3.22.2 11.6 11.6.55 9.3.0-17

4 Evaluation

We evaluate our approach on three different data distributions for the bit mask
as discussed in Sect. 2. Moreover, the selected bits of a bit mask determine how
many percent of the total bits are set to one. All approaches allow adjustable
percentages of selected data and are benchmarked across a larger number of
different percentages of selected data.

4.1 Implementation

All SPACE variants as introduced in the previous sections are implemented in
C++ 17 with CUDA 11 and the code is publicly available [14]. CMake is used to
build SPACE and NVIDIA nvcc is used as compiler. nvcc calls g++ to compile
host code. See Table 1 for detailed information about the used compilers and
tools across all platforms. CUDA version 10.x and lower are not able to compile
SPACE, due to the lack of C++17 support.

4.2 Experimental Setup

Data Distributions. Three different bit mask distributions are investigated
(i) 1 Cluster, (ii) multiple Cluster, and (ii) uniform. 1 Cluster consists of a
single cluster of bits set to 1, while the rest of the bit mask remains zero, thus
not selected for output. Multiple cluster distributes several clusters equidistant
across the bit mask. The number of clusters varies between 2 and 32 clusters.
Uniform is based on a uniform distribution that distributes bits across the whole
bit mask. All distributions support any data type that is CUDA compatible and
between 1 Byte and 8 Byte large. See Table 2 for an overview of which data types
we tested. While the size of the input data array is always set to 1 GiB, this
results in different sizes for the bit mask. The size of the bit mask is calculated
by dividing 1 GiB by the size of one data element. For example a 1 GiB Array
of uint64 t results in 16 MiB bit mask. Elements from the data input array are
randomly generated.

Hardware Platforms. We used four different hardware platforms with CUDA
11 as shown in Table 1.
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Table 2. Size of evaluated data types and corresponding bit masks.

Data type Size of Element [Byte] Total bit mask size [MiB]

u8 1 128

u16 2 64

u32 4 32

u64 8 16

Integer 4 32

Float 4 32

Double 8 16

4.3 Experimental Methodology

As one SPACE algorithm consists of several kernel calls, we measure the total
runtime of all kernel calls with CUDAevents. The throughput is calculated as

throughput =
datasize(bit mask[GiB] + input data[GiB])

total runtime of one algorithm[s]

This calculation does not account for skipping chunks. As a result, the calcu-
lated throughput can exceed the maximum memory bandwidth. The goal of
this throughput calculation is to achieve a good comparability of all measured
SPACE algorithms and CUB. All data is present on GPU. Data generation is
not part of the measurement. Additionally, the input data is partitioned into
chunks varying between 512 and 4096 elements.

4.4 Results

In Fig. 4, an overview of the evaluation of all SPACE variants is shown. A grid of
graphs is shown with different GPUs and data distributions. In each graph, the
x-axis show the percentage of selected data and the y-axis depicts the achieved
throughput. Percentages of selected data are within 1% and 97% with increments
of 4. Variants 1 and 2 overall perform very poorly across all devices. Variant 3
with async CUDA streams outperforms Variants 1 and 2 but is often slower than
CUB for higher percentages of selected data. Variants 4,5,6,7 mostly outperform
CUB even for very high percentages of selected data, variant 8 is the best per-
forming SPACE variant and outperforms all other SPACE variants. Even for
higher percentages of selected data Variant 8 outperforms CUB in all cases on
the A100 GPU. In case of the Quadro RTX 8000 GPU, CUB is ahead if the per-
centage of selected data exceeds 71% in a clustering approach, or 21% for uniform
distributions. For the 1070 ti, CUB is ahead if the percentage of selected data
exceeds 53% in uniform and never for clustering distributions. In case of the
3080 GPU, CUB is slower if percentage of selected data is 81% and smaller for a
single cluster. The break even point for uniform is at 33% for a 3080 GPU. The
ideal improvement for 1% selected data and single cluster distribution is 12.01x
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in favor of SPACE variant 8. In case of uniform distribution the improvement
for 1% is 3,19x in favor of SPACE variant 8.

Fig. 4. Overview of all SPACE algorithms for all hardware platforms and data distri-
butions. Datatype is unsigned integer 32 bit.
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Very Low Percentages of Selected Data. Figure 5 shows an additional
experiment with very low percentages of selected data. All experiments were
conducted on a RTX 8000 GPU with 32 bit unsigned integers. Reducing the
percentage of selected data further from 1% to 0.1% more than doubles the
throughput for both clustering approaches. Uniform reaches above 5000 [GiB/s]
only at 10−3%, while both clustering approaches reach it at 0.1%. The high-
est improvement is achieved for the second lowest percentage of selected data
with 10.40x improvement for uniform. CUB achieves 603 [GiB/s] at 10−5% while
SPACE 8 reaches 6272 [GiB/s] throughput. In case of single cluster distribution
CUB achieves 553 [GiB/s] at 10−5% while SPACE 7 reaches 6647 [GiB/s]. This
leads to an improvement of 12.02x in this extremely favorable case. We conclude
that decreasing selected data yields diminishing returns. For 10−4% and lower
percentages of selected data there is not much improvement to gain. For uni-
form and single cluster, 10−6% was slightly slower than 10−5%. CUB performs
with similar performance across different distributions and percentage of selected
data.

Fig. 5. Very low percentages of selected data in logarithmic scale on x-axis. Measured
on RTX 8000. Datatype is unsigned integer 32 bit.

Influence of Data Types. As shown in Table 2, we evaluated our algorithm
across 7 different data types. Figure 6 shows the performance of SPACE 8 against
CUB for different data types. Skipping is beneficial across all data types. Peak
performance for 1% selected items greatly varies between data types. Double
achieves 8860 [GiB/s] at 1%, float achieves 5897 [GiB/s] and uint8 t reaches
3313 [GiB/s]. The data type has massive influence on the overall performance.
Skipping is beneficial and results in significant improvement compared to CUB
across all data types.
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Fig. 6. Comparision of SPACE 8 against CUB for uint8 t, float and double data types.
Single Cluster distribution is used on A100 GPU.

Influence of Chunk Sizes. SPACE variants calculate skipping based on chunk
size, which determines how many elements are used for each warp. The chunk
sized has been varied between [512, 1024, 2048, 4096] elements in our evaluations.
A data set of 32 bit unsigned integers with single cluster distribution on A100 is
picked to evaluate the influence of chunk sizes. Over all percentages of selected
data and all kernels the best chunk size has an average improvement of 12%.
However the largest differences are measured at low percentages of selected data
and poor performing variants like SPACE 1-3. For the best performing two
variants SPACE 7 and SPACE 8 the average improvement from worst to best
chunk size is 4.5%. If percentages of selected data below 25% are excluded the
average worst to best improvement is reduced to 1.4%. For the best performing
variants SPACE 7 and SPACE 8 a chunk size of 512 elements is the fastest
choice. SPACE 1 und SPACE 2 achieve the best performance with a chunk size
of 4096 elements.

Influence of CUDA Configurations. CUDA Configurations play a signifi-
cant role for the overall runtime. Each variant consists of a number of different
kernel calls. All kernel calls were measured for a large variety of different config-
urations. The best configurations per kernel were used for our evaluations.
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Selection of Datasets. Real world data sets are not included in our exper-
iments. We have shown that the following input characteristics determine the
performance of SPACE: data types, bitmask data distribution and percentage
of selected data. As our experiments range from worst-case to best-case for all
three bit mask characteristics, a real world data set would fit within the current
spectrum of parameters. As a consequence, we did not include results on real
world data.

5 Related Work

Bakunas et al. classify compaction on GPU into two categories. [1,2]. Atomic
based approaches that have a global memory offset index, which all writings
threads increment in parallel using atomics, and prefix sum based approaches.
On the evaluated NVIDIA Kepler platform, atomics with a single global counter
create a major bottleneck. By leveraging warp level parallelism and changing to
a prefix-sum based approach, improved performance was achieved compared to
global counter atomics. THRUST, an open source compute library is used as
part of the algorithm. Merril et al. introduce CUB select if, which computes a
compaction based on a selection with a functor to a compare predicate, instead
of a bit mask [12]. Their approach outperforms THRUST significantly. The com-
mon denominator for all these approaches is, that they do not optimize for low
amounts of selected data unlike SPACE.

6 Conclusion and Summary

The goal of SPACE is to offer a specialization that accelerates compaction on
GPUs for low percentages of selected data. Skipping memory access to the input
data array by analyzing the bit mask is the key idea to gain performance. Great
improvements for low amounts of selected data are achieved. In case of 1% the
improvement is up to 10.05x. For very low % of selected data the improvement
is 12.02x on a NVIDIA Quadro RTX 8000. Depending on the GPU device, our
approach is slightly faster than CUB even for data sets that do not benefit
from skipping. Source code for all kernels, scripts for experiments, scripts for
visualizations and all raw data is provided on our github [14].
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Abstract. This paper introduces a generic method to scale HPC clus-
ters on top of the Kubernetes cloud orchestrator. Users define their tar-
geted infrastructure with the usual Kubernetes syntax for recipes, and
our approach automatically translates the description to a full-fledged
containerized HPC cluster. Moreover, resource extensions or shrinks
are handled, allowing a dynamic resize of the containerized HPC clus-
ter without disturbing its running. The Kubernetes orchestrator acts
as a provisioner. We applied the generic method to three orthogonal
architectural designs Open Source HPC schedulers: SLURM, OAR, and
OpenPBS. Through a series of experiments, the paper demonstrates the
potential of our approach regarding the scalability issues of HPC clus-
ters and the simultaneous deployment of several job schedulers in the
same physical infrastructure. It should be noticed that our plan does not
require any modification either in the containers orchestrator or in the
HPC schedulers. Our proposal is a step forward to reconciling the two
ecosystems of HPC and cloud. It also calls for new research directions
and concrete implementations for the dynamic consolidation of servers or
sober placement policies at the orchestrator level. The works contribute
a new approach to running HPC clusters in a cloud environment and
test the technique on robustness by adding and removing nodes on the
fly.

Keywords: Resource management in HPC Clusters and Clouds ·
Containers · Scalability · Orchestration · Aggregation and federation of
HPC Clusters in the Cloud

1 Introduction

Traditionally, HPC clusters have been all about numerical simulation. Scientists
and engineers would model complex systems in software on large-scale paral-
lel clusters to predict real-world outcomes. Financial risk management, compu-
tational chemistry, omics (genomics, proteomics, metabolomics, metagenomics,
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and transcriptomics), seismic modeling, and simulating car crashes in software
are good examples of numerical simulations. An HPC cluster gathers hardware
nodes managed by a single software called the batch scheduler. This scheduler
runs scientific workloads on the hardware according to scientists’ resource defini-
tion constraints. This point results in a very specialized infrastructure designed
for massively parallelized applications.

Over the past decade, however, what we consider to be an HPC cluster
has broadened considerably. Today, clusters are supposed to involve collecting
or filtering streaming data, using distributed analytics to discover patterns in
data, or training machine learning models. Usages include, nowadays, interac-
tive workloads and even, for the data science community, “long-running” dis-
tributed services such as TensorFlow, Spark, or Jupyter notebooks. As HPC
applications have become more diverse, scheduling and managing workloads have
evolved. The diversity in applications pushed people to wonder if Cloud systems
would be a better computer systems and even if the Cloud would encompass
all the categories of scientific issues in a unified way. Our paper is a step in
this last direction. It addresses the following challenge: is it possible to execute
various HPC job schedulers on the same infrastructure, controlled by a Cloud
orchestrator?

The Cloud orchestrator may play a similar role to the HPC batch scheduler.
However, the aim is slightly different. They both place active processes on hard-
ware resources, but these processes have a different natures. An HPC cluster is
designed to run non-interactive scientific workloads with a beginning and an end.
A Cloud orchestrator lets users define a targeted containerized infrastructure and
endeavors to satisfy their needs, including restarting failed components. In fact,
in system administration, orchestration is the management of computer systems
and software, as with the batch scheduler, and the automated configuration and
coordination of the computer system.

In a nutshell, we containerized several batch schedulers (OAR [4], SLURM,
and OpenPBS in our experiments). These schedulers are hosted on Cloud infras-
tructure (Kubernetes in our experiments). We attempt to solve the problem of
scaling, i.e., dynamically add or remove containerized HPC nodes (we will ref-
erence them as workers), without altering neither the Cloud orchestrator nor
the HPC scheduler. This work results in a generic method to coordinate Cloud
orchestrator and HPC scheduler.

We face many scientific challenges in integrating the new features described
above, making the task challenging. First, the targeted Cloud orchestrator for our
experiments, Kubernetes, has limited support for the HPC types of workloads1.
Second, we must check that HPC workloads can run in containers and become
Kubernetes friendly. Third, end-users (i.e., people that submit a job to the HPC
scheduler) must not be aware that their computations run on a cloudified HPC
cluster.

1 https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-
completion/.

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
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The organization of the paper is as follows. Section 2 introduces some related
works on HPC cloudification. Section 3 introduce mainlines of our methodology
to position our contribution among these works. Section 4 introduces exhaustive
experiences that allow the validation of our proposed approach. At last, we
introduce future works in Sect. 5.

2 Related Works

In this paper, we propose advanced integration into the Cloud of popular batch
schedulers and discuss the suitability of the methodology for the resonance
between HPC and Cloud systems. First, we added a degree of difficulty with
the ability, for our proposal, to deploy and remove on the fly multiple batch
schedulers. More importantly, we developed a layer between the batch scheduler
and the Cloud orchestrator that dynamically adds or removes computational
nodes, thanks to dedicated mechanisms at the Cloud orchestrator level. Second,
we also imposed another constraint for the integration: to modify the orches-
trator and batch scheduler sides as little as possible. We mean to count first
on the existing mechanisms and not be intrusive in the current architectures.
Notice that our work is not related to scheduling jobs or pods but to a generic
interposition mechanism to glue HPC and Cloud middlewares.

The IBM Spectrum LSF Suites portfolio [6] redefines cluster virtualization
and workload management by integrating mission-critical HPC environments.
IBM Spectrum LSF Suites supports organizations using container technologies,
including Docker, Shifter, and Singularity. This feature streamlines an appli-
cation’s building, testing, and shipping, enabling an application stack to be
deployed on-premises consistently and in the Cloud. IBM Spectrum LSF is not
devoted to the containerization of HPC job schedulers.

Kubernetes, commonly stylized as K8s [7] is an open-source container orches-
tration system for automating software deployment, scaling, and management.
Kubernetes aimed to solve an entirely different problem than the traditional
problems solved by HPC clusters - delivering scalable, always-on, reliable web
services in Google’s Cloud. Kubernetes applications are assumed to be container-
ized and adhere to a cloud-native design approach. Pods which are groups of
one or more CRI-O2 or OCI3 compliant containers, are the primary constituents
of applications that are deployed on a cluster to provide specific functionality
for an application. Kubernetes provides features supporting continuous integra-
tion/delivery (CI/CD) pipelines and modern DevOps techniques. Health checks
give mechanisms to send readiness and liveness probes to ensure continued ser-
vice availability. Another differentiating feature is that Kubernetes is more than
just a resource manager; it is a complete management and runtime environment.
Kubernetes includes services that applications rely on, including DNS manage-
ment, virtual networking, persistent volumes, secret keys management, etc.

2 https://cri-o.io/.
3 https://opencontainers.org/.

https://cri-o.io/
https://opencontainers.org/
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In [9], the authors address the problem of running HPC workloads efficiently
on Kubernetes clusters. They compare the Kubernetes’ default scheduler with
KubeFlux, a Kubernetes plugin scheduler built on the Flux graph-based sched-
uler, on a 34- node Red Hat OpenShift cluster on IBM Cloud. They also detail
how scheduling can affect the performance of GROMACS, a well-known HPC
application, and they demonstrate that KubeFlux can improve its performance
through better pod scheduling. In contrast with our work, authors work at the
level of one application (GROMACS), whereas we are working on containerizing
job-schedulers.

In [2], authors studied the potential use of Kubernetes on HPC infrastructure
for use by the scientific community. They directly compared both its features
and performance against Docker Swarm and bare-metal execution of HPC appli-
cations. They detailed some configurations required for Kubernetes to operate
with containerized MPI applications, explicitly accounting for operations such as
(1) underlying device access, (2) inter-container communication across different
hosts, and (3) configuration limitations. They discovered some rules that showed
that Kubernetes presents overheads for several HPC applications over TCP/IP
protocol.

In [12] authors argued that HPC container runtimes (Charliecloud, Shifter,
Singularity) have minimal or no performance impact. To prove this claim, they
ran industry-standard benchmarks (SysBench, STREAM, HPCG). They found
no meaningful performance differences between the used environments, except
modest variation in memory usage. They invite the HPC community to con-
tainerize their applications without concern about performance degradation.

In [16], authors describe a plugin named Torque-Operator. The proposed
plugin serves as a bridge between the HPC workload manager Torque and the
container orchestrator Kubernetes. The authors also propose a testbed architec-
ture composed of an HPC cluster and a big data cluster. The Torque-Operator
enables the scheduling of containerized jobs from the big data cluster to the
HPC cluster.

In [13], the authors show the usefulness of containers in the context of
HPC applications. They introduce the experience of PRACE (Partnership for
Advanced Computer in Europe) in supporting Singularity containers on HPC
clusters and provide notes about possible approaches for deploying MPI applica-
tions in using different use cases. Performance comparisons between bare metal
and container executions are also provided, showing a negligible overhead in the
container execution in an HPC context.

In [15] authors’ main concern is to define a model for parallel MPI application
DevOps and deployment using containers to enhance development effort and pro-
vide container portability from laptop to clouds or supercomputers. First, they
extended the use of Singularity containers to a Cray XC-series supercomputer
and, second, they conducted experiments with Docker on Amazon’s Elastic Com-
pute Cloud (EC2). Finally, they showed that Singularity containers operated at
native performance when dynamically linking Cray’s MPI libraries on a Cray
supercomputer testbed. They also concluded that Amazon EC2 environment
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may be helpful for initial DevOps and testing while scaling HPC applications
better suited for supercomputing resources like a Cray.

In [3] authors discuss several challenges in utilizing containers for HPC appli-
cations and the current approaches used in many HPC container runtimes. These
approaches have been proven to enable the high-performance execution of con-
tainers at scale with the appropriate runtimes.

In [14], authors introduce a technique called personal cluster, which reserves
a partition of batch resources on the user’s demand in a best-effort manner.
One individual cluster provides a private cluster dedicated to the user during a
user-specified period by installing a user-level resource manager on the resource
partition. According to the results obtained in this study, the proposed tech-
nique enables cost-effective resource utilization and efficient task management.
It provides the user a uniform interface to heterogeneous resources regardless of
local resource management software.

In [1], the authors highlight issues that arise when deploying network address
translation through containers. In this paper, the authors concentrate on Docker
as the container technology of choice and present a thorough analysis of their
networking model, focusing on the default bridge network driver used to imple-
ment network address translation functionality.

In [10], the authors propose to test container portability on three different
state-of-the-art HPC architectures (Intel Skylake, IBM Power9, and Arm-v8)
and compare three critical container implementations. From the outcomes of all
this, the authors hope to provide system administrators, facility managers, HPC
experts, and field scientists with valuable research for guidelines and use-case
examples.

3 Methodology

This section describes our methodology from a macro point of view. In the next
section, we will go further in implementation details that refer to the micro point
of view. The current branch outlines the method not specifically related to the
three evaluated HPC schedulers. Our explanation is divided into two parts. First,
we enumerate all information users must feed to categorize their Pods. Then, we
describe all underlying services that we must develop to configure or reconfigure
the containerized HPC infrastructure to match the resources requested by users
from Kubernetes. The term “user” relates to the person who defines and instan-
tiates the containerized HPC cluster. The term “developer” is used to determine
the person who develops services used for coupling the Cloud orchestrator and
the job scheduler.

3.1 Required Information at a User Level

This section is all about users. They describe the Pods composing the targeted
containerized HPC clusters, and these Pods can have two roles depending on the
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hosted service. There are two primary services: schedulers and workers. Sched-
ulers decide where to place the jobs on the infrastructure regarding their resource
constraints. The worker is a service on HPC nodes that executes the job. In
our method, users must supply essential information in the Pod definition. The
listing 1.1 is a shortened example of a set of definitions for Workers. Users write
these listings. Let’s go on with the comment on this listing to understand the
main requirements.

On line 2, we can see that Workers Pods are defined as a StatefulSet. A
StatefulSet is a set of identical Pods that manages stateful applications and
guarantees the ordering and uniqueness of these Pods. A StatefulSet contains
Pods based on identical container specifications. Statefulset also maintains a
sticky identity for each Pod. The keyword replicas (line 9) gives the number of
instanced Pods. On line 7, the label role informs on the type of Pod (Scheduler
or Worker). Here, we have a worker Pod. In HPC clusters, homogeneous nodes
are frequently gathered in partitions or queues (the denomination may differ
from one HPC scheduler to another one). In line 13, we label this set of Pods
with partition set to COMPUTE (a partition is a set of nodes). Line 17 to 21
gives the resource constraint required by the Worker Pod to the Kubernetes
orchestrator. Here, we request 2 CPUs. In a nutshell, this example instantiates
two Pods with two CPUs each in the COMPUTE partition.

1 apiVersion: apps/v1

2 kind: StatefulSet

3 metadata:

4 name: hpc -node

5 namespace: hpc -nico

6 labels:

7 role: worker

8 spec:

9 replicas: 2

10 template:

11 metadata:

12 labels:

13 partition: COMPUTE

14 containers:

15 - name: <my_worker_name >

16 image: <my_hpc_sceduler_image >

17 resources:

18 limits:

19 cpu: "2"

20 requests:

21 cpu: "2"

Listing 1.1. Example of a user-defined Worker

3.2 Configuration Services

This section explains services supplied by developers. At a glance, there are two
sets of services: initialization and resource polling. These two sets run sequen-
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tially, one after the other. When the initialization phase is over, the resource
polling starts and lasts until the whole containerized HPC cluster revocation.

The initialization service is an initContainer that runs before any Worker
or Scheduler Pod. An initContainer is a container that runs before any reg-
ular container of the Pod. Standard containers start when the initContainer
ends successfully, i.e., the containerized process exits with return code zero.
In our method, the initContainer aims at bootstrapping configuration for
both Worker and Scheduler Pods. From the scheduler’s point of view, this boot-
strapping can be mapped to a configuration of a scheduling algorithm, various
spool directories, PID file location, etc. From the worker’s point of view, the
initContainer locates the Pod hosting the scheduler.

The resource polling aims to watch the StatefulSets set by users and trans-
late them to the containerized HPC cluster, specifically the Scheduler Pod. The
resources polling service is a program that connects to the Kubernetes API to
get worker Pods’ properties. In our previous example described in listing 1.1, the
resource polling service will add two nodes with two CPUs each in the COMPUTE
partition of the scheduler. This program may also restart the Scheduler Pod if it
is needed. The resources polling program is embedded in a sidecar container of
the Scheduler Pod. A sidecar container is a regular container that interacts with
the Pod’s main container(s). Most of the time, the interaction is a configura-
tion update, which is the case here. The sidecar container updates the scheduler
configuration. For instance, if the user patches his containerized HPC cluster
StatefulSets to add a worker, the sidecar container automatically updates the
scheduler configuration with this newcomer. This hint enables dynamic scaling
of the containerized HPC cluster.

These two services, namely initialization and resource polling, are located in
containers and deployed aside from the containerized HPC cluster. Consequently,
neither HPC schedulers nor Kubernetes the orchestrator need to be modified.
The only requirement for our method is adding RBAC policies to enable read
access to the Pods’ attributes from the Kubernetes API. The containerized
HPC cluster can be instanced in a dedicated namespace to mitigate informa-
tion leaks that may result from such a security policy. Figure 1 sums up all these
interactions.

4 Experimentations

4.1 Outline

This section applies our methodology to the three major open-source HPC job
schedulers: SLURM, OAR, and OpenPBS. We experience several scenarios to
check the consequences of scaling (up or down) workers’ containers. We use
Kubernetes/CRIO v1.22, SLURM v21.08.5, OAR v2.9, OpenPBS v20.0.1 and
OpenMPI v4.1.2. The section aims at highlighting the most relevant points of
the approach, making the three implementations similar.



210 N. Greneche et al.

4.2 Micro Description of the Methodology

In this section, we go further in detail on our method implementation. We first
discuss the specificities of each HPC job scheduler that impact our methodology.
Then, we supply the scaling results of the three containerized HPC clusters.

Pods definition
in statefulSet

initContainer

Sidecar
Container

Scheduler
Container

initContainer

Worker
Container

(2) Sets
initial

Configuration

(2) Sets
Scheduler
location

(1) Gets Scheduler location

(3) Gets Worker
Pods specification

Phase 2 container

Phase 1 containers

Update
resources

configuration

(1) Gets initial
configuration

Fig. 1. Methodology: the macro level

SLURM job scheduler is built upon two services: Slurmctld and Slurmd. Slurm-
ctld is the scheduler, and Slurmd is the worker. All HPC nodes are described
in a plain text file owned by the scheduler. We configure SLURM in the con-
figless mode: the workers connect to the scheduler to retrieve the configuration.
This configuration requires the Munge service to authenticate communications
between workers and the scheduler. As a result, scheduler Pod has four contain-
ers: an initContainer, Slurmctld, Munge, and a sidecar container that gen-
erates or updates the configuration file. The worker Pod has three Pods: an
initContainer, Slurmd, and Munge.

Our contributions are based on introducing initContainer for Slurmd and
Slurmctld and the Slurmctld’s sidecar container. Slurmctld’s initContainer
generates a minimal configuration that enables Slurmctld to start. Slurmd’s
initContainer locates the Slurmctld service to retrieve configuration.
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We have an initContainer for both Slurmctld and Slurmd Pods. Slurm-
ctld’s sidecar container is responsible for configuration updates when nodes are
added or suppressed from containerized HPC cluster. SLURM does not sup-
port a comprehensive dynamic creation/suppression of his nodes in his current
state. However, a relatively safe method is to restart Slurmctld. Then, in con-
figless mode, all attached Slurmd daemons will reread their configuration. This
method has limitations, and we will discuss them below.

Consequently, when a modification is detected in the containerized HPC clus-
ter’s topology, the sidecar container modifies the configuration file and sends a
SIGTERM signal to the Slurmctld process. We use4 to supervise the Slurmctld
process. Thus, when Slurmctld exits due to the SIGTERM reception, Daemon-
tools’ manage process restarts it gracefully without crashing the container.

OpenPBS job scheduler hosts several services. The process pbs_sched is the
scheduler itself, pbs_comm handles the High Availability, and pbs_server.bin
communicates with worker nodes to execute users’ jobs. This process also inter-
acts with a Postgres database to store resource descriptions (such as workers’
specifications) and job information. We have pbs_mom on the worker node, which
receives jobs from the PBS server to execute them on the node. The scheduler
Pod has three containers: an initContainer that creates the configuration file
for the PBS server, a container that hosts all the processes composing the PBS
server, and the sidecar container that registers or unregister worker from the
PBS server’s database.

The containerization of OpenPBS follows the same scheme as SLURM. The
initContainer is likely to be the SLURM’s. It creates the configuration file for
PBS server Pod and worker Pod. The sidecar container triggers the commands
to add or delete resources in the PBS server database at each containerized HPC
cluster’s topology modification. OpenPBS and SLURM are very close regarding
our methodology because they work on the same pattern of server/agent, and
these two components are more or less coupled. We now consider a third HPC
scheduler called OAR that relies on SSH for interactions between schedulers and
workers.

OAR job scheduler is composed of several processes. A central one executes
an automaton that reacts to all events from jobs’ and nodes’ states and ini-
tiates appropriate action by launching corresponding processes like scheduling
round, job launching, and nodes’ checking. All states related to jobs, nodes,
and scheduling decisions are stored in a Postgres database. OAR is well suited
for containerization because workers and schedulers are loosely coupled, mak-
ing it easier to deal with synchronization. An initContainer in the scheduler

4 https://cr.yp.to/daemontools.html.
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Pod initiates a configuration for the Almighty service that drives OAR cluster
resources. An initContainer is deployed aside from worker Pods to get the
scheduler Pod location. Then, a sidecar container is executed aside from the
scheduler server container inside the scheduler Pod to add or remove workers
according to resources defined on the StatefulSets.

4.3 Experimental Results

We investigate in this section some challenges of doing HPC in the Cloud. The
main criterion for addressing them is the robustness of the approach because the
behavior of the Cloud system and the applications running under the supervision
of the HPC job schedulers is correct when dynamically adding or removing
nodes attached to the HPC schedulers. We do not provide a performance metric
such as the overhead of the containerization but a measurable quality metric.
The proposed approach can scale the containerized clusters dynamically without
interfering with already running or scheduled user jobs.

Thus, we explored several scenarios to evaluate how each HPC scheduler
behaves when resources (nodes) are added or removed. We qualify the impact
on pending and running jobs. For each scenario, we submitted MPI and non-MPI
jobs. The MPI job is a Pi computation with a Monte Carlo method. The non-
MPI job is a multi-threaded infinite computation. The nature of jobs does not
matter, meaning that jobs with MPI communication and without communication
are both running correctly. We want to keep nodes busy and generate MPI
communications while adding or removing workers’ containers on the fly. In
Table 1, we have four scenarios that are declined for each of the three evaluated
job schedulers. There are two states of jobs regarding the queue of requests in
an HPC scheduler: pending (the job is waiting for resources) and running (the
job is running somewhere on the HPC cluster nodes). We consider the impact
of growth and shrinking workers’ containers for each state. In Table 1, a None
value means that we do not encounter any problem, also suggesting that the
execution was correct.

All the scenarios that we now detail realize a functional validation of our
implementation according to our methodology for containerization. This arti-
fact is concerned with Sect. 4 (Experimentations) of our Paper “A methodology
to scale containerized HPC infrastructures in the Cloud”. The artifact consists
of a set of virtual machines from where you can deploy a comprehensive Kuber-
netes cluster from an Ansible receipt. Then, on this Kubernetes cluster, you can
deploy three major HPC schedulers (OpenPBS, OAR, and SLURM) as a set of
pods. Sample codes are supplied for each HPC scheduler to check the impact of
dynamic growth or shrink of the containerized HPC scheduler on pending and
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running jobs. This artifact is provided as a single .pdf file containing all URLs
required to set up, automatically, the experimental material that runs on the vir-
tual machines. URLs points to an OVA file containing VMs and GitHub reposi-
tories that host the Kubernetes Ansible receipt and Dockerfiles, and Kubernetes
manifests for each HPC scheduler.

4.4 Impact on Pending Jobs

(1) Workers addition. The first scenario characterizes the state of pending
jobs while worker nodes are added. We launch jobs (MPI and non-MPI) on the
containerized HPC cluster to consume resources. Then, when it becomes fully
occupied, we submit a non-MPI job (i.e., that does not require communications
between workers). This job gets the pending state, waiting for resources. We
expanded the containerized HPC cluster with additional workers. The pending
non-MPI job is scheduled and ends with no errors on each evaluated HPC sched-
uler. To complete the first scenario, we submit again a bunch of mixed MPI and
non-MPI jobs to consume all resources; then, we submit an MPI job. This job
is pending.

Furthermore, we expanded the containerized HPC cluster with additional
workers. The MPI job is scheduled and fails with SLURM. The reason is that
the MPI job is run with srun. The srun command instantiates the MPI commu-
nication infrastructure. The first MPI job scheduled on newcomer workers fails.
Then, the second will work. When new nodes are added on a SLURM cluster, a
reboot of slurmctld and each slurmd service is required. Dynamic nodes addition
will be fully supported in the 23.02 version of SLURM5.

(2) Workers removal. The second scenario characterizes the state of pending
jobs while worker nodes are removed. We target free workers (i.e., that does not
run any job). We run several jobs to keep the containerized HPC cluster busy.
The idea is to have some free workers but not enough to satisfy the requirements
of pending jobs. We remove these free workers from the containerized HPC
cluster, and the pending jobs are not impacted.

4.5 Impact on Running Jobs

(3) Workers addition. We launch both MPI and non-MPI jobs. While they
are running, we add workers. Jobs keep running and end without any errors for
each containerized job scheduler. Workers’ addition has no impact on running
jobs.

5 https://slurm.schedmd.com/SLUG21/Roadmap.pdf.

https://slurm.schedmd.com/SLUG21/Roadmap.pdf
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(4) Workers removal. We launch both MPI and non-MPI jobs, but we keep
some workers free. While jobs are running, we remove free workers. Jobs run
and end without any error for each containerized job scheduler, and workers’
removal has no impact on running jobs.

Table 1. Results of experimentation

Scenarios SLURM OpenPBS OAR

(1) Impact on pending jobs when
resources are added

Fail None None

(2) Impact on pending jobs when
resources are removed

None None None

(3) Impact on running jobs when
resources are added

None None None

(4) Impact on running jobs when
resources are removed

None None None

4.6 Short-term Upcoming Perspectives

In our experimentation, we containerized three major HPC schedulers. We eval-
uated the impact of containerized workers’ growth or shrink for each of them. As
all scenarios went well (except for the lack of an upcoming feature in SLURM),
we demonstrated the potential of building a scalable, fully containerized HPC
cluster in Cloud infrastructure. Consequently, a middle-term perspective for our
work is to add a controller in Kubernetes that gets the state of containerized
HPC cluster’s queue. The sidecar containers will act as proxies between this
Controller and the HPC scheduler. In our current implementation, the sidecar
container adds or manually removes resources without considering the queue’s
state. In [11], authors introduce fine-grain applicative metrics to autoscale pods
in a Kubernetes cluster.

Similarly, a possible enhancement is making our Controller use the queue
state as an applicative metric to extend or shrink the containerized HPC cluster
automatically. In Fig. 2 we exhibit our targeted architecture at mid-term and
according to the previous discussion. The primary enhancement regarding Fig. 1
is the third and fourth steps: Gets queue state and Informs Controller. These
steps will supply metrics to the Controller, allowing him to decide if he must
add or remove worker pods.
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Fig. 2. Evolution of the architecture

5 Conclusion and Long-Term Perspectives

This paper experimented with a method to build scalable containerized HPC
clusters in the Cloud. We containerized three central HPC schedulers: SLURM,
OpenPBS, and OAR. They all can be jailed in containers, and our experimen-
tation demonstrates that scaling jobs do not impact running or pending jobs
(except for SLURM, but this point will be handled in the upcoming release).
The next step is to develop a Kubernetes controller to handle the dynamic scal-
ing of the containerized HPC cluster. This specific contribution is part of broader
work on mixing HPC and Cloud computing, and studying converged infrastruc-
ture. As an example, in [8], we developed a scheduling strategy that gathers
containers belonging to the same namespace on the same node. In doing this, we
concentrate our effort on scheduling issues for the server consolidation problem.
Consolidation is also a tremendous problem in HPC.

Converged computing is a paradigm that aims to offer HPC performance,
efficiency, and sophisticated scheduling, with cloud benefits. While orchestration
frameworks like Kubernetes offer several advantages such as resiliency, elastic-
ity, portability, and manageability, they are not performance-oriented to the
same degree as HPC. Our vision of converged computing is first to put into the
Cloud the HPC ecosystems and not the applications supervised by the cloud
orchestrator. As pointed out above, through the example of scheduling con-
tainers in the same namespace, we separate the concerns related to containers
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management and scheduling and those related to the ecosystems containeriza-
tion. In short, the granularity of the containerization is not the same; hence
different approaches and different issues.

The implementation of a controller will also serve, in the future, to reinforce
the strength and weaknesses of our approach. Moreover, it would be interesting
to investigate the monetary costs of running multiple additional containers (e.g.,
the HPC scheduler or the sidecar container) alongside the compute node con-
tainers required for executing user applications. At last, when the controller is
implemented, we will be ready to study if they are specific limits to the scalabil-
ity of the proposed approach concerning scheduling options as opposed to having
an HPC scheduler that handles a physical cluster. Some preliminary results show
that we do not have scalability issues, but they must be comforted.

Acknowledgements and Data Availability Statement. The testbed used dur-
ing the current study is available in the Figshare repository: https://doi.org/10.6084/
m9.figshare.19952813 [5].
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Abstract. The growing electricity demand of cloud and edge comput-
ing increases operational costs and will soon have a considerable impact
on the environment. A possible countermeasure is equipping IT infras-
tructure directly with on-site renewable energy sources. Yet, particularly
smaller data centers may not be able to use all generated power directly
at all times, while feeding it into the public grid or energy storage is
often not an option. To maximize the usage of renewable excess energy,
we propose Cucumber, an admission control policy that accepts delay-
tolerant workloads only if they can be computed within their deadlines
without the use of grid energy. Using probabilistic forecasting of com-
putational load, energy consumption, and energy production, Cucumber
can be configured towards more optimistic or conservative admission.
We evaluate our approach on two scenarios using real solar production
forecasts for Berlin, Mexico City, and Cape Town in a simulation envi-
ronment. For scenarios where excess energy was actually available, our
results show that Cucumber’s default configuration achieves acceptance
rates close to the optimal case and causes 97.0% of accepted workloads
to be powered using excess energy, while more conservative admission
results in 18.5% reduced acceptance at almost zero grid power usage.

Keywords: admission control · on-site renewable energy · load
prediction · resource management · green computing · sustainability

1 Introduction

As the demand for computing continues to grow year by year, so are operating
expenses and the associated carbon emissions caused by consuming energy from
the public power grid [9]. So far, negative effects could partially be mitigated
through advances in hardware efficiency, cooling, and the continuous shift of
cloud computing towards highly energy-optimized hyperscale data centers, which
already host about 50% of all compute instances [23]. Still, data centers already
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account for more than 1% of global energy consumption and this number is
expected to rise further [23] – especially when considering the additional demand
of novel domains like the internet of things (IoT), edge and fog computing [32].

To reduce its carbon footprint, the IT industry is pushing to integrate more
and more low-carbon energy sources into data centers [1], not least because car-
bon pricing mechanisms, such as emission trading systems or carbon taxes, are
starting to be implemented around the globe [4]. For example, Google plans to
operate their data centers solely on carbon-free energy by 2030 [12]. One app-
roach towards more sustainable and cost-effective computing systems in cloud
as well as edge environments is directly equipping IT infrastructure with on-site
renewable energy sources like solar or wind [18,20]. However, especially smaller
compute nodes, such as on-premise installations or edge data centers, are not
always able to consume all generated power directly, as depicted in Fig. 1.

Fig. 1. Problem setting: Renewable excess energy can occur at compute nodes when
local demand does temporarily not cover all produced energy.

Energy storage can mitigate this problem to some extent, but is expensive,
therefore often not available in sufficient capacity, and may be reserved to ensure
operation during power outages. Moreover, storing energy involves power con-
version loss, and frequent charging cycles accelerate battery aging [21]. On the
other hand, feeding excess energy back to the power grid is often unattractive in
practice due to statutory regulations and low compensation. Microgrids address
this by directly integrating renewables and energy storage to locally balance
excess energy [14]. Such systems can greatly benefit from participants who are
flexible and able to adapt their energy consumption to the expected supply.

To make better use of renewable excess energy (REE) occurring close
to compute nodes, delay-tolerant workloads originating locally or within the
surrounding distributed system should be computed on free computational
capacity. Delay-tolerant workloads are common in cloud environments, rang-
ing from machine learning jobs, certain Function-as-a-Service (FaaS) executions,
nightly backups and CI/CD runs, and other periodic jobs like generating daily
reports [31]. However, they may also occur in otherwise time-critical edge com-
puting environments, such as cache and index updates as well as federated and/or
iterative machine learning trainings on locally available data at edge nodes.
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We propose Cucumber, an admission control policy for delay-tolerant work-
loads in resource-constrained compute nodes that have access to renewable
energy sources but no access to energy storage. We assume that this infras-
tructure usually runs high-priority, time-critical workloads with quality of ser-
vice (QoS) constraints, like user-facing services, but is not always fully utilized.
Cucumber admits delay-tolerant workloads to the local system only if they can
be computed within their deadlines on free capacity and without the use of grid
energy. This leads to increased use of renewable energy sources, hence reducing
associated carbon emissions and electricity costs, and contributes to stabilizing
the power grid. We furthermore expect Cucumber to be an integral building
block of decentralized systems that exploit the varying spatio-temporal avail-
ability of renewable energy. Towards this, we make the following contributions:

– we define a method for forecasting free computational capacity that can be
powered using REE only. The prediction can be tuned towards conservative
or optimistic results using probabilistic forecasts of load, energy consumption
and energy production

– based on these forecasts, we propose an admission control policy that decides
whether incoming delay-tolerant workloads with known size and deadline can
be scheduled on free capacity using REE only

– we evaluate our approach on two scenarios using real solar production fore-
casts for Berlin, Mexico City, and Cape Town in a simulation environment

– we make all datasets and code used for this experimental evaluation publicly
available for future research to build on our results1

The remainder of this paper is structured as follows: Sect. 2 reviews related
work. Section 3 proposes the admission control policy and explains how we gen-
erate forecasts on free computational capacity that can be powered by REE.
Section 4 evaluates our approach. Section 5 concludes the paper.

2 Related Work

Carbon-Aware and Renewable-Aware Computing. Incorporating the availability
of renewable or low-carbon power into scheduling decisions has been increasingly
researched over the last decade. However, many works in this context focus on
load migration in geo-distributed settings or optimize for low carbon signals in
the public power grid. For example, Google employs a suite of analytics pipelines
to defer delay-tolerant workloads if power from the public grid is associated
with high carbon intensity [25]. While their work is targeted at large-scale data
centers, Cucumber is meant to be deployed in resource-constrained environments
with direct access to renewable energy sources. Toosi et al. [27] proposed a load
balancer for web applications that increases on-site renewable energy usage at
data centers. However, other than Cucumber, their approach is reactive and does
not make use of forecasting for better decisions. GreenSlot [10] is a batch job

1 Github: https://github.com/dos-group/cucumber.
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scheduler for data centers with on-site renewable energy sources using hourly
predictions of solar energy and optimizes for a low price if grid power usage is
unavoidable. Cucumber, on the other hand, aims at using REE only and tries
to avoid using any grid power. Aksanli et al. [2] proposed a scheduler using
short-term predictions of wind and solar power to reduce grid power usage and
the number of canceled jobs. In contrast, Cucumber rejects workloads in danger
of violating their deadlines upfront so they can be scheduled elsewhere. The
Zero-Carbon Cloud [8] is the only project of which we are aware that aims at
exploiting REE by placing data centers close to renewable energy sources. Our
approach complements these efforts and opens up a way to distribute workloads
in a decentralized manner across their proposed infrastructure by making local
decisions about whether or not to accept a job.

Admission Control is a validation process in communication systems to check
if sufficient resources are available to, for example, establish a network connec-
tion or process a request. Other than most publications on admission control
that operates on a network packet level, we consider workloads that can be
several minutes or even hours long. Because of this, most related work is in the
context of web-based applications or cloud computing where certain requests are
prioritized to improve quality of service (QoS) or maximize revenue [7,33]. An
admission control policy in green computing was proposed by [13], where a PID
controller used in industrial control applications is extended by a hybrid green
policy, to reduce grid power usage. Eco-IDC [22] targets energy-aware admis-
sion control on a data center level by exploiting electricity price changes while
dropping excessive workload if required. Other than these approaches, Cucum-
ber optimizes for utilizing locally available REE while prioritizing time-critical
workloads. Furthermore, our approach utilizes probabilistic forecasting methods
to be configurable towards more optimistic or conservative admission.

3 Admission Control

Cucumber accepts delay-tolerant workloads based on forecasts of load, power
consumption, and power production. A high-level overview and outline of the
approach are presented in Fig. 2. This section describes all steps in detail.

3.1 Forecasting Load, Power Consumption, and Power Production

Cucumber uses probabilistic multistep-ahead forecasts to predict time series of
probability distributions, which inherent the uncertainty for each observation, to
later infer the available REE at different confidence intervals. If no probabilistic
forecasts are available, Cucumber can still be operated in its default configuration
based on the expected/median forecast.
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Fig. 2. Cucumber periodically forecasts computational load, power consumption, and
power production to compute the freep capacity forecast. It determines how much
computational capacity will be available in the future, that can be powered using REE
only. Based on this forecast and the amount, size, and deadlines of already queued
workloads, Cucumber accepts or rejects new workload requests.

Forecasting Computational Load. Load prediction is a widely researched field
covering forecasts related to application metrics, such as the number of messages
in a stream processing system [11], as well as the utilization of (virtualized) hard-
ware resources like CPU, GPU or RAM. Although load prediction systems are
usually formulated as time series forecasting problems based on historical data,
they can also take information from other contexts into account. For example,
in edge computing use cases like traffic monitoring, additional information on
weather, holidays, events, etc. can improve the forecast quality. Whatever type
of forecast is most suitable in a concrete use case, Cucumber uses it to identify
future time windows with free capacity. Furthermore, these load predictions are
used as a factor in the power consumption forecast. In the following, we denote
the load of a node as U and any load forecasts as Upred.

Forecasting Power Consumption. The power demand of IT infrastructures can
be influenced by many factors like CPU or GPU usage, memory, I/O, and storage
access, temperature, etc. While perfect modeling without precise knowledge of
workload and infrastructure characteristics is not possible [17], it has been shown
that power usage can often be modeled with sufficient accuracy based only on
the node’s utilization [5] – which usually refers to its CPU usage. In fact, power
modeling based on CPU usage only is being used in production at modern hyper-
scale data centers [24]. For simplicity, here we assume a simple linear power model
to convert from a certain load U to the nodes power usage P :

P = Pstatic + U · (Pmax − Pstatic) (1)
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where Pstatic is the amount of power a node consumes in idle state and Pmax is
the amount of power the node consumes under full load. Besides energy used for
computing, the power forecast should also take the expected demand from other
co-located consumers into account that are powered by the renewable energy
source, like cooling or lighting, to correctly derive the actually available REE.

Forecasting Power Production. Since information on future power production
is useful in many domains ranging from high-level application design to low-
level grid control, the prediction of variable renewable energy sources like solar
panels [6,16] and wind turbines [3,19] is an active field of research. Such models
are usually based on weather models for mid- and long-term forecasts as well as,
in case of solar, satellite data for short-term forecasts, that enable the observation
and movement of clouds [15]. Very short-term models with one-minute resolution
can even be based on live video data using sky cameras2. As wind and solar power
production are known for their high variability, probabilistic prediction methods
are especially common in this domain [28,34].

3.2 Deriving the freep Capacity Forecast

Based on the previously generated forecasts, we now determine the main input to
Cucumber’s admission control: the freep (free REE-powered) capacity forecast.

For this, we first calculate the REE forecast Pree. If no probabilistic fore-
casting was used to generate the power production Pprod and consumption Pcons

forecasts, we can directly define Pree = max(0, Pprod − Pcons). If probabilistic
forecasting was applied, we now have the possibility to decide that Pree should
describe a more optimistic or more conservative view of the future and hence
manipulate the behavior of the admission control policy.

However, we need to differentiate between two kinds of probabilistic forecasts.
The first contains actual probability distributions for each forecasted observa-
tion, which, in practice, is mostly implemented as ensembles of non-deterministic
single-value predictions. In this case, the simplest way to build a joint distribu-
tion Pree is by randomly sampling from both distributions and subtracting the
returned values for power production and consumption. We can then use the
quantile function Q to determine a concrete single-valued time series.

P α
ree = max(0, Q(α, Pree)) (2)

where α ∈ [0, 1] determines how optimistic (big α) or conservative (small α) our
forecasts are. For example, P 0.95

ree returns the 95th percentile of Pree.
In the second case, one or both forecasts do not contain the actual distri-

butions but only values for a number of pre-initialized quantiles, usually the
median and an upper and lower bound like the 10th and 90th percentile. In this
case, we propose a fall-back method as we cannot simply join the distributions:

P α′
ree = max(0, Q(α, Pprod) − Q(1 − α, Pcons)) (3)

2 https://solcast.com/utility-scale/solar-data-api/super-rapid-solar-farm-forecasts.

https://solcast.com/utility-scale/solar-data-api/super-rapid-solar-farm-forecasts


224 P. Wiesner et al.

where α′ can only take certain values determined by the pre-initialized quantiles.
Note that using this equation α′ holds the same semantic value as α (e.g. big α′

represents optimistic forecasts) but no guarantees of actual probability. In the
following, we use α and α′ interchangeably.

Using the forecasts for computational load Upred and available REE P α
ree we

can now compute the freep capacity forecast Ufreep, which determines how much
of the free capacity in the future can be powered using only REE:

Ufreep = min(

Ufree
︷ ︸︸ ︷

1 − Upred,

Ureep
︷ ︸︸ ︷

P α
max − Pstatic

Pmax − Pstatic
) (4)

The freep capacity forecast is defined as the minimum of Ufree, the expected
free capacity of the node, and Ureep, the expected fraction of capacity that could
be REE-powered. If Upred is a probabilistic forecast, it first has to be converted
to a single-valued time series, for example using Q(0.5, Upred). The equation for
Ureep depends on the used power model and it was derived by rearranging the
linear power model from Eq. 1.

3.3 Admission Control Policy

Fig. 3. Cucumber rejects workloads if it
expects any future deadline violations using
the freep capacity forecast.

Cucumber admits workload requests
based on the above derived freep
capacity forecast and the amount,
size, and deadlines of already queued
workloads (Fig. 3). For this, all work-
load requests are expected to pro-
vide a job size estimate and a dead-
line. In practice, deadlines are often
provided directly by users or ser-
vices or can be derived from, for
example, application graphs. Esti-
mating the size of jobs is a common
problem in scheduling and is usually
performed based on previous execu-
tions of the same or similar work-
loads. In the current approach, we do
not consider uncertainty in job size
estimates, parallelism, or additional
resource constraints besides compu-
tational load, like memory. However,
Cucumber can be extended to con-
sider such factors.

The approach is agnostic to the applied scheduling mechanism, including
multiple levels of priority or preemptive workloads, as long as it can be reliably
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modeled with the available information. For every incoming request, Cucumber
models the expected processing of the queue if the workload was accepted and
evaluates if any deadlines are being violated. That is, for each queued workload it
progresses in time on the freep capacity forecast until the expected (remaining)
workload size is covered and then checks if the workload’s deadline was violated.
If any violation occurs, the request gets rejected, otherwise accepted.

Depending on the number of workload requests and the average queue length,
this basic algorithm can become computationally inefficient, since a re-evaluation
has to take place for each request. However, performance issues can be mitigated
in many ways, for example by grouping jobs with the same or similar deadlines
and only evaluation violations per group. Moreover, different heuristics can be
applied to decrease the number of re-evaluations, like caching the remaining
time and capacity of each group until their deadline, and only performing a full
re-evaluation once violations become likely. Concrete performance adjustments
depend on the nature of the underlying system, such as the level of parallelization
as well as frequency, distribution, and kind of incoming workloads.

3.4 Limiting Power Consumption at Runtime

To ensure that accepted workloads run on REE only, their resource usage needs
to be limited at runtime. In practice, there are several ways to approach this,
including adjustments of hardware power and speed settings like dynamic volt-
age and frequency scaling (DVFS). Nevertheless, to propose a simple approach,
modern high-level tools or resource orchestration solutions allow for conveniently
controlling the usage of resources such as CPU or GPU. For instance, the CPU
usage of a process can be limited using tools like cpulimit. Likewise, frameworks
like Docker and Kubernetes have built-in flags for limiting CPU usage by adapt-
ing the settings of a container’s cgroup. As load U and available REE Pree can
be measured periodically at runtime to derive the current Ugec, such tools can
be used to adjust the node’s power consumption to the correct level without
inferring with the time-critical baseload. However, the suitability of this simple
approach depends highly on the concrete environment and more sophisticated
measures might be needed in certain scenarios.

Even when performing admission control at a low α (meaning in conservative
mode), conditions at runtime might still be worse than expected. If less REE is
available than forecasted, the previously described power limiting could lead to
deadline violations of accepted jobs, although there is free computational capac-
ity available. While this behavior might be acceptable in some environments,
usually it is more important to meet promised deadlines than ensuring that no
grid energy is used at all. To mitigate violations, Cucumber uses the freep capac-
ity forecasts at runtime to periodically evaluate whether the currently active jobs
can still meet their deadlines. If a running job is expected to violate its deadline,
we temporarily stop power limiting and finish it using all free capacity Ufree.
Since also load forecasts are uncertain, deadline violations still cannot be com-
pletely ruled out, but will be mitigated as effectively as possible based on the
current state of knowledge.
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4 Evaluation

We evaluate Cucumber on real datasets over the course of two weeks (Jan-
uary 18–31) using the discrete-event simulation framework SimPy. In total, 36
experiments were conducted: Six admission control policies (three baselines and
Cucumber at α ∈ {0.1, 0.5, 0.9}) in two scenarios at three solar sites each. All
data and simulation code are publicly available as mentioned in Sect. 1.

4.1 Experimental Setup

We want to upfront explain some simplifications we made in our simulation-based
evaluation. First, we assume that the reported size of workload requests is always
correct, while in practice runtime estimates are often noisy. Yet, we consider
this a problem not addressed by Cucumber. Second, we do not explicitly model
parallelism but process the workload queue next to the time-critical baseload in
sequential order using non-preemptive earliest deadline first (EDF) scheduling.
Third, we do not model the energy demand of Cucumber itself. However, we
expect its overhead to be very small as forecasts are only updated every 10 min
and the admission control itself can be implemented efficiently.

Admission Control Policies. We evaluate six admission control policies for
each of the below-described scenarios and solar sites. If deadlines are violated,
jobs are not canceled but continue to run until they are completed.

– Optimal w/o REE accepts workloads using perfect forecasts for Upred but
without considering the availability of REE. It declares the upper bound for
accepted jobs without deadline misses but accepts high grid power usage.

– Optimal REE-Aware accepts workloads using perfect load and renewable
energy production forecasts. It declares the upper bound for accepted jobs
without deadline misses and without any grid power usage.

– Naive accepts workloads only if there is currently REE available and there is
no other workload in process. This approach does not rely on forecasts.

– Conservative, Expected, and Optimistic describe Cucumber admission control
using realistic forecasts at α ∈ {0.1, 0.5, 0.9}, respectively.

Scenarios. We define two scenarios where each consists of a high-priority
baseload and a number of workload requests. Exemplary baseload patterns are
depicted in Fig. 4. Since, to the best of our knowledge, trace datasets with infor-
mation on the delay-tolerance of workloads do not exist yet, we modeled both
scenarios based on related real-world datasets:

1. ML Training is based on the cluster-trace-gpu-v2020 dataset from the Alibaba
Cluster Trace Program3, which contains two months of traces from a GPU
production cluster [29]. Baseload is modeled using tasks labeled as worker,

3 https://github.com/alibaba/clusterdata.

https://github.com/alibaba/clusterdata
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which are highly variable and hard to predict. Each of the 5477 delay-tolerant
workload requests corresponds to an xComputeWorker task in the dataset.
The size of workloads is determined by the plan gpu property and each work-
load has to be finished by midnight the day it was issued, meaning deadlines
can be anywhere from 0 to 24 h.

2. Edge Computing : is based on the NYC Taxi Trip dataset4 from Dec 2020
and Jan 2021. Baseload is modeled on the number of yellow taxi rides, which
is highly seasonal. The 2967 workload requests correspond to long-distance
green taxi rides: Every green taxi ride over 10 km length emits a job at
lpep pickup datetime which has to be computed until lpep dropoff datetime.
The median deadline is 41 min. All jobs have the same size.

We generated baseload forecasts by training a DeepAR [26] probabilistic
forecasting model5 on the first 1.5 months of data to then generate 24-h forecasts
with a 10-min resolution for every 10-min step in the last two weeks of the
datasets. Note, that the arrival rate of workload requests is not forecasted by
Cucumber. Power consumption forecasts are derived using Eq. 1 with Pmax =
180W and Pstatic = 30W .

Fig. 4. In red: actual and forecasted baseload power consumption in both scenarios
at an exemplary day. In green: exemplary power production at the three solar sites.
(Color figure online)

Solar Sites. We assume every compute node has access to a solar panel with
400 W peak production. We collected real solar power production forecasts using
the Solcast6 utility-scale API during the second half of January 2022. Like load
forecasts, the solar forecasts cover 24 h in 10-min resolution each and were gen-
erated in 10-min intervals. Each forecast contains the median as well as the 10th

4 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
5 DeepAR parameters: GRU, 3 Layers, 64 nodes, 0.1 Dropout; 20–30min training time

on commodity hardware.
6 https://solcast.com.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://solcast.com
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and 90th percentile of expected energy production for each time step. To eval-
uate the effectiveness of our approach at different geographical locations and
during different seasons, we gathered forecasts at three different sites located at
different continents and latitudes:

1. Berlin during winter (8 h of daylight; 2 h of sunshine)
2. Mexico City during the dry season (11 h of daylight; 7 h of sunshine)
3. Cape Town during summer (14 h of daylight; 11 h of sunshine)

For orientation, the roughly expected hours of daylight and sunshine in Jan-
uary at each site are listed in parentheses. Exemplary values for each site are
displayed in Fig. 4.

4.2 Results

For each experiment, we report the admission control acceptance rate and the
fraction of REE that was used to actually power the workloads. Figure 5 illus-
trates the results.

Fig. 5. Acceptance rate of workload requests and the fraction of these workloads that
was actually powered via REE during execution (green). (Color figure online)

As expected, Optimal w/o REE accepts almost all workload requests at the
cost of requiring a substantial amount of grid energy. Worth mentioning is the
constant acceptance rate of 100% across all experiments of the ML Training sce-
nario, which is a result of the rather relaxed deadlines. The stricter deadlines in
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the Edge Computing scenario lead to a slight decrease in acceptance rates. Both
baselines utilize perfect forecasts but only Optimal REE-Aware considers avail-
able REE, which is why is does not use any grid energy across all experiments.

We observe that there was barely any REE available at the Berlin solar site
during the observed period. Even Optimal REE-Aware accepts only a maximum
of 2% of all workloads. Since the uncertainty and error rate of solar forecasts is
extremely high at the Berlin site, only Conservative forecasts achieved compara-
bly low grid power usage. Admission control based on Optimistic and Expected
forecasts resulted in very low REE usage of 5.7–10.7% and 34.8–45.7%, respec-
tively. Under such conditions, the usage of a forecast-based admission control
policy such as Cucumber can hardly be justified, as it does not show improved
performance compared to a Naive approach.

However, in Mexico City and Cape Town, which had a lot longer days and
better weather during January than Berlin, Cucumber clearly outperforms the
Naive admission control, which achieves 31.1% acceptance rate at 97.3% REE
usage in average. Cucumber’s Expected case configuration maintains almost the
same REE usage (97.0%) but increases the acceptance rate to 37.8%, while the
Conservative configuration manages 99.9% REE usage at an acceptance rate of
31.9%. The trade-off when tuning the forecasts is clearly visible: While Conser-
vative admission control results in almost perfect REE coverage, the acceptance
rate was on average 18.5% lower.

Fig. 6. Aggregated number of accepted workloads per hour for all admission control
policies during the ML Training scenario in Mexico City. The orange line indicates the
average solar production during a day. (Color figure online)

Figure 6 depicts the aggregated number of jobs per hour for an exem-
plary solar site on the ML Training scenario (all deadlines are midnight). We
observe that the acceptance rate over time differs strongly between the different
approaches: Considering that Optimal w/o REE describes all workloads that can
be accepted without deadline violations, Optimal REE-Aware describes the opti-
mal subset that can be computed using only REE. The Naive approach cannot
exploit this potential, as it only accepts workloads once there is REE available.
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The Cucumber admission control, on the other hand, is based on forecasts
of REE and hence already accepts workloads before the sun is rising. It can be
observed, that in the Expected case’s behaviour is close to the optimal case and
almost all jobs before 11 am get accepted. After that, the number of accepted
jobs per hour falls drastically since the forecasted solar energy until midnight is
already reserved by queued workloads and forecasts in Mexico City are compara-
bly precise. In Conservative mode, Cucumber is more cautious and accepts fewer
jobs during early morning hours. However, it accepts additional jobs throughout
the day as uncertainty decreases when progressing in time.

We note that Optimistic forecasts barely increase REE usage compared to
Expected forecasts in most experiments. For example, the acceptance rate for
the Edge Computing scenario in Mexico City went up by 16.3%, but the REE
usage by only 0.5%, meaning that almost all additionally accepted jobs were
powered by grid energy. Furthermore, we note that the Optimistic experiments
resulted in 1, 5, and 7 deadline misses in the Edge Computing scenario (which
has tight deadlines), while none of the other configurations caused any deadline
misses. We conclude that users should pick α > 0.5 with caution.

5 Conclusion

This paper presents Cucumber, a configurable admission control policy for
resource-constrained compute nodes with on-site renewable energy sources.
Cucumber accepts delay-tolerant workloads to increase REE utilization through
probabilistic multistep-ahead forecasts of computational load, energy consump-
tion, and energy production. Our simulation-based evaluation uses real solar
production forecasts for Berlin, Mexico City, and Cape Town and compares dif-
ferent configurations of our approach with baseline policies on two exemplary
scenarios. The results show, that Cucumber’s default configuration shows similar
acceptance rates than the optimal case baseline while achieving an REE cover-
age of 97.0% on average in Mexico City and Cape Town. Conservative admission
results in almost perfect REE coverage at a 18.5% reduced acceptance rate.

For future work, we plan to implement Cucumber in a hardware testbed
to study its behavior and computational overhead under realistic conditions.
Furthermore, we want to extend the approach to also consider available energy
story and make Cucumber part of a decentralized architecture that exploits the
spatio-temporal availability of REE in a distributed system via local decisions.
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Abstract. The cloud community has accepted microservices as the
dominant architecture for implementing cloud native applications. To
efficiently execute microservice-based applications, application owners
need to carefully scale the required resources, considering the dynamic
workload of individual microservices. The complexity of resource pro-
visioning for such applications highlights the crucial role of autoscal-
ing mechanisms. Kubernetes, the common orchestration framework
for microservice-based applications, mainly proposes a horizontal pod
autoscaling (HPA) mechanism, which, however, lacks efficiency. To hin-
der resource wastage and still achieve the requested average response
time of microservices, we propose a multi-objective autoscaling mecha-
nism. Based on machine learning techniques, we introduce a toolchain
for hybrid autoscaling of microservices in Kubernetes. Comparing several
machine learning techniques and also our in-house performance model-
ing tool, called Extra-P, we propose the most adequate model for solving
the problem. Our extensive evaluation on a real-world benchmark appli-
cation shows a significant reduction of resource consumption while still
meeting the average response time specified by the user, which outper-
forms the results of common HPA in Kubernetes.

1 Introduction

The microservices architecture provides a highly flexible approach for design and
deployment of cloud native applications. In this architecture, the application is
decomposed into a collection of loosely coupled services, which interact over light
remote interfaces, such as REST APIs.

Containerization is the major technology to deploy the microservices. In both
industry and academia, we could observe a change of focus from virtual machine
centric to container centric approaches, in the cloud environments [5]. To manage
the life cycle of containers in scale, container orchestration frameworks allow the
cloud and application providers to define how to select, deploy, monitor, and
dynamically control the configuration of containers inside the cluster.

Usually the load of an application is not distributed equally among all
microservices. Thus, we need to scale the microservices individually to meet
c© Springer Nature Switzerland AG 2022
J. Cano and P. W. Trinder (Eds.): Euro-Par 2022, LNCS 13440, pp. 233–250, 2022.
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the service level agreement (SLA) and quality of service (QoS). Autoscaling is
the solution for efficiently managing microservices, which is very complex for the
application developers/owners.

The major autoscaling trend in Kubernetes, the de facto standard for orches-
tration frameworks, is threshold-based autoscaling such that the users specify a
set of fixed conditions for scaling actions. Currently, horizontal pod autoscaling
(HPA) is the main scaling approach admitted in the Kubernetes community.
Vertical pod autoscaling (VPA) is not widely accepted yet but is becoming more
popular. It has been proven that the HPA approach is usually not efficient [1].
Consequently, we need to focus on more fine grained autoscaling approaches.

In this paper, based on machine learning modeling, we propose a hybrid
autoscaler such that the resources could be scaled horizontally, vertically or
by combination of both approaches. The goal of our autoscaling mechanism is
simultaneous optimization of response time and resource usage cost. Based on
our scaling mechanism, we proposed, implemented and verified a toolchain for
the whole autoscaling MAPE (monitor, analysis, planning and execution) loop
[12] in Kubernetes. We compared several performance models in our approach
and empirically proposed the most adequate model for this problem. In addition,
we compared our approach with the built-in HPA in Kubernetes and observed
its competence in real-world problems.

The rest of the paper is organized as follows. In Sect. 2, we review the related
work and mention the difference of our approach with the state-of-the-art. We
present our proposed autoscaling mechanism and toolchain in Sect. 3. We discuss
evaluation of the autoscaling approach in Sect. 4 and finally conclude the paper
in Sect. 5.

2 Related Work

Resource provisioning for cloud native applications could be managed at dif-
ferent levels. Resource providers focus on efficient assignment of resources to
microservices [6], while application developers guide the orchestrator to manage
resources more efficiently. Our focus in this paper is resource provisioning at the
developer level.

To better understand the related work compared to our approach, we use
the taxonomy presented in [12]. This taxonomy has been proposed for autoscal-
ing of virtual machines (VMs) in the cloud but it would be mainly applicable
for autoscaling of microservices at the application level. In this section, we first
briefly explain the necessary concepts, from the taxonomy, and then we deeply
review some of the remarkable autoscaling approaches proposed for microser-
vices.

Autoscaling is the process of scaling resources for a service in an automated
manner. Autoscaling of microservices allows us to allocate more resources for
microservices when they are under a hefty load and retake extra resources when
the load decreases. In general, resource scaling can be done horizontally, verti-
cally or in a hybrid approach. In horizontal scaling, we add or remove the number
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Table 1. Comparing our approach (MOHA) to the related work (NC stands for not
clear from the publication)

Autoscaler Scaling Application Session Scaling Resource Scaling

Methods Architecture Stickness Indicators Estimation Timing

[13] Hybrid Single tier Non-sticky Hybrid Machine learning Proactive

[14] Hybrid NC NC Low-level Hybrid Proactive

[7] Horizontal NC NC High-level Hybrid Proactive

[16] Horizontal Single tier Non-sticky Low-level Machine learning Proactive

[1] Hybrid Single tier Non-sticky Hybrid Application profiling Reactive

[4] Horizontal Single tier Non-sticky High-level Machine learning Proactive

[15] Horizontal Single tier Non-sticky High-level Machine learning Proactive

MOHA Hybrid

(plus selective scaling)

SOA Sticky Hybrid Machine learning Proactive

of resource instances assigned to a service (scaling out/in). In vertical scaling,
we increase or decrease the capacity of already assigned resource instance to a
service (scaling up/down).

We could categorize autoscaling approaches based on the three web appli-
cation architecture as: single tier, multi tier and service-oriented architecture
(SOA). Single tier or single service application is the minimum deployable and
scalable component size. Microservices are often referred to as single service
applications. Applications that consist of more than one service are respectively
called multi tier applications. A commonly used architecture of this type is a
three-tier application comprising three services: a frontend, a backend, and a
database layer (although databases are usually considered not dynamically scal-
able and therefore ignored in autoscaling). Finally, SOA describes applications
consisting of several independent services that interact through lightweight APIs
and are not necessarily connected sequentially with each other.

Session stickiness is another aspect of autoscaling mechanisms. If the intermedi-
ate status of interaction between a client and an application is saved, the session
is considered stateful or sticky. Most autoscalers limit the scaling cluster to be
stateless and to support stateful sessions usually they transform stateful servers
into stateless servers before autoscaling, for instance, by moving the session data
out of the web servers and store them either at user side or in a shared Mem-
cached cluster [12].

Scaling indicators are the metrics observed in the monitoring phase and are the
basis for the actions of autoscalers. They can be divided into low-level and high-
level metrics. Low-level metrics are observed in physical or virtual machine lay-
ers, such as CPU and memory utilization and cache miss rate. Metrics collected
in the application layer are referred to as high-level metrics, such as request rate
and response time.

Different approaches are used for resource estimation in autoscaling. The
most basic and widely adopted approach is rule-based resource estimation. It is
described by using a set of predefined rules, made up of conditions and actions.
These rules are established mainly by empirical estimations and are hard-coded.
Application profiling is another approach that describes the process of testing the
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saturation of resources, by applying synthetic or recorded workloads on appli-
cation. Other methods to estimate resources are analytical modeling, in which
a mathematical model is composed based on theory and analysis, and machine
learning which dynamically models the resource usage.

The scaling timing can be either reactive or proactive. With reactive scal-
ing, the autoscaler will only react to a given situation and try to counteract it.
In contrast to this, with proactive approaches, an autoscaler tries to avoid cer-
tain situations, such as exhaustion of resources, by executing scaling actions in
advance. Predictions can be based on given data trends and patterns or external
data.

In [13], the authors developed a hybrid autoscaler using model-based rein-
forcement learning, to guarantee the continuity of the performance of the appli-
cation while simultaneously minimizing resource wastage. The researchers iden-
tified the possible long learning phase as a general problem of existing reinforce-
ment learning approaches.

Autopilot [14] is a hybrid autoscaler developed by Google, designed for
their internal cloud. They use an orchestration tool called Borg, which man-
ages instances of a job consisting of several tasks. The objective of Autopilot is
to reduce the slack (difference between the requested and used resources) of jobs
while maintaining stability.

A predictive autoscaling approach based on a long short-term memory
(LSTM) neural network was proposed in [7] that provides horizontal scaling,
using historical time-series data. LSTM neural networks represent a particu-
lar type of recurrent neural networks and are very suitable to predict the next
sequence in a time-series data.

A horizontal scaling approach was proposed in [16], which is an ARIMA based
autoscaling approach using historical time-series data. It estimates the number of
pods based on the predicted load represented by CPU usage. The calculation of
the estimated resources is based on the Kubernetes HPA approach. Furthermore,
the approach combines the ARIMA method with a signal analysis method.

The autoscaler approach in [1] provides hybrid autoscaling possibilities based
on automatic application profiling. The authors evaluated the work based on a
set of random workloads which cannot be compared to the behavior of real-world
applications.

The horizontal autoscaler proposed in [4] uses RNN (Bi-LSTM) model and
only predicts the number of requests. This work is evaluated using a dummy web
server and has no resource wastage analysis. Another horizontal autoscaling in
[15] similarly uses the number of requests for modeling but ignores the impor-
tance of CPU and memory usage. This work also uses a dummy web server that
mimics a dataset, for evaluation.

Respecting the taxonomy proposed in [12], we categorized the aforemen-
tioned related works and positioned our proposed approach in this taxonomy.
As shown in Table 1, these autoscaling approaches present a variety in almost
each autoscaling category. They provide a mixture of purely horizontal or
hybrid (combination of both horizontal and vertical) scaling capabilities and no
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Fig. 1. Architecture of Multi-Objective Hybrid Autoscaling (MOHA)

approach representing a purely vertical autoscaler. The reviewed mechanisms are
mostly stateless and need some workaround to cover stateful sessions. Finally,
we noticed that none of these works use reference applications in detail. In the
cases where an application was described, the application did not represent any
real-world reference application but rather a simulated or prototype simple web
service. Hence the autoscaling approaches lack real-world comparison, such as
connected microservice ensembling.

Compared to the explained autoscaling mechanisms, our proposed approach
will be evaluated as service-oriented architecture (SOA) that uses sticky sessions.
It uses both high-level and low-level metrics as scaling indicators. The resource
needs will be estimated via a machine learning based performance model (see
the Sect. 3). Since the performance model is based on historical data, the scaling
timing is classified as proactive. We benefit from multiple criteria decision making
theory with the flexibility of tuning weights for particular purposes (e.g. scaling
data- or compute-intensive services). Finally, our approach provides a flexible
hybrid autoscaling such that we could also request for only horizontal or vertical
scaling. As analyzed in the Sect. 4, it will achieve the average response time of
services, as the QoS defined by the user.

3 Multi-Objective Hybrid Autoscaling

In this section, we explain our proposed toolchain called Multi-Objective Hybrid
Autoscaling (MOHA)1 and the relation between the components. Figure 1
depicts using MOHA in Kubernetes. We explain the components of MOHA
by placing those to three main phases: dataset generation, model training and
autoscaling approach. In particular, we discuss the machine learning (ML) mod-
els and our proposed autoscaling approach.

1 https://github.com/Angi2412/PodAutoscalingKubernetes.

https://github.com/Angi2412/PodAutoscalingKubernetes
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3.1 Automatic Generation of Dataset

The Benchmark component calculates a parameter variation matrix based on
given input parameters and starts the benchmark for each parameter. The Load
Generation component applies a given load on the microservice deployed in the
Kubernetes cluster with the given resource limits corresponding to the current
parameter variation. While running the microservice, the Metric collection
component collects the various high- and low-level metrics. After the load gen-
eration phase, the Benchmark module retrieves the collected metrics and filters
and summaries these metrics into a dataset.

3.2 Model Training

The accumulated dataset of performance data, consisting of the gathered metrics
must be preprocessed (by scaling samples, as described in the rest of this section)
before the Machine Learning Model component can use it. After preprocessing,
the resulting data can be converted to be used as a training set for Machine
Learning Model or any other performance modeling tools.

We model the performance of each microservice based on the current load
of the service and the resource limits of pods deploying the microservice. The
resource limits include CPU and memory limits, and the number of pod replicas,
which are the typical input parameters while defining the pods in Kubernetes.
Load of the microservice is dynamically represented by requests per second.
The outputs (target metrics) of the model are the average response time, CPU
usage and memory usage. The average response time models the performance,
while CPU and memory usage model resource utilization. Therefore, we could
assume that the utilization also reflects the resource wastage, such that if a given
resource is not efficiently utilized, then the resource is wasted.

We chose three different ML models and compared them to explore which one
is more suitable for the performance model prediction as part of our autoscaling
toolchain. The selected ML models are linear regression (LR), support vector
regression (SVR) and multi-layer perceptron regressor neural network (MLPRe-
gressor NN). Since regression models can have multiple inputs but only one
output, we trained each model for each of the three target variables. Each of
the selected ML approaches represents a different complexity level of machine
learning and provides advantages and disadvantages for specific use cases, which
inspired us to choose them.

The LR model generally provides fast learning and prediction time while
also being suited for large datasets. A disadvantage of the LR model is that it
performs well only for linear samples. For this approach, we implemented a least-
squares and a Bayesian variant, an extended variant of the maximum likelihood
estimator, of linear regression.

The SVR model is more stable against outliers than the other models because
of its margin approach. Additionally, it provides a wide range of use cases because
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of the possibility of using several kernel functions based on the dataset behavior.
The advantage over the LR model is handling nonlinear coherence but with much
higher training time compared to linear regression (more than quadratic to the
number of samples).

The MLPRegressor NN model is a neural network that uses backpropagation
for training and the square error as the loss function. MLPRegressor NN can also
handle non-linear samples while being especially suited for large datasets with
several thousands of samples. Furthermore, it provides extensive customizability
by offering several activation functions and solvers. Nevertheless, backpropaga-
tion has high time complexity and the training time grows with the number of
hidden neurons and layers.

Each ML model owns several hyper parameters, including estimation func-
tions, that need to be tweaked for providing the best possible outcome. Thus,
we conducted an extensive grid search for each of the models and hyper param-
eters. The grid search consists of an estimator, a parameter space, a validation
scheme, and a score function. The estimator is the ML model, the parameter
space specifies a search space for a hyper parameter, and the validation scheme is
used to split a given dataset into several smaller datasets. The number of smaller
datasets is dependent on the parameter variation resulting from the number of
parameters and size of their parameter space. Finally, the score function is used
to compare the accuracy of the estimator given a specific parameter variation.
In the grid search, each parameter variation is executed on a smaller dataset
and then compared to the performance of the others. The output of the grid
search is a ranked table of all parameter variations. The described grid search
was executed with all three ML models to configure their hyper parameters.

Since we use ML to represent regression then we need to normalize datasets
for using distances in the loss functions. We applied the MinMaxScaler2, which
scales each sample to a value 1 ≤ α ≤ 0. The scaler is fitted onto the training
dataset. The inputs and each target use a different scaler instance. These scalers
are saved from being usable with new samples. Each time new samples are
predicted, the input has to be transformed with the fitted scaler. Furthermore,
the predicted values are inversely scaled with the saved target scalers to bring
the normalized predicted values into the original ranges.

Fig. 2. The autoscaling loop

2 From the Scikit-learn package (https://scikit-learn.org/).

https://scikit-learn.org/
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3.3 Autoscaling Loop

The Autoscaler component in Fig. 1 uses the predicted performance model from
the previous phase, to choose the proper parameters for improving its target
metrics. It gathers the current status of the microservice, checks if resource
scaling is necessary and uses the Kubernetes APIs to scale the microservice
accordingly.

Every autoscaler follows the MAPE (monitoring, analysis, planning and exe-
cution) loop [12]. Monitoring is the first step that fetches all the available metrics
for a given application. The second step is to analyze the fetched data regarding
specific metrics exceeding a given threshold. Considering the metrics measured
in the previous step, we need to plan how to proceed for resource provisioning.
In the last step of the MAPE loop, the plan must be executed. The MAPE loop
is running in a specified time period, which could be, for instance, the applica-
tion life cycle. The MAPE loop of our autoscaling mechanism is shown by Fig. 2,
which is triggered in specific intervals.

First, the Autoscaler gathers the current status of the microservice. It calls
the Prometheus3 instances which gathers high-level metrics from the service
mesh Linkerd4 and low-level metrics from Kubernetes itself. Then it checks
the target metrics. If all targets are in their thresholds, this means that the
targets are satisfactory then the loop is exited, and the microservice is not scaled.
However, if the threshold is exceeded by any of the three target metrics, the
autoscaling loop would proceed. We discussed our precise setting in Sect. 4.

The optimal resource limits for each target are calculated based on the cur-
rent target values, parameter status and the aimed values. To calculate the
number of pods, we rely on the same calculation used in the Kubernetes HPA5.

Each optimal resource limit (poptimal
i ) for parameter pi of the web service,

is calculated based on the desired target value (tdesiredi ) and the current status
(pcurrenti and tcurrenti ), as follows:

poptimal
i = �pcurrenti · tcurrenti

tdesiredi

� (1)

The number of optimal parameters is calculated by number of parameters to
the power number of targets, which in our autoscaler is 27 (= 33). Based on these
calculated parameters, a parameter variation matrix is calculated similarly for
generating the synthetic dataset. As a difference, the parameters are not used

3 https://prometheus.io.
4 https://linkerd.io.
5 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.

https://prometheus.io
https://linkerd.io
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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as ranges but used as discrete values. For calculating the parameter variation,
the optimal CPU limit that is calculated based on the memory usage as well
as the optimal memory limit that is calculated based on the CPU usage are
neglected because of their missing correlation. Considering this removal, our
parameter variation matrix includes 12 (= 3 × 2 × 2) parameter variations. This
approach limits the possible decision space of parameter variation, ensuring that
only sufficient parameter variations are considered.

Then the parameter matrix is scaled by the same MinMaxScaler used to
train the machine learning models. Furthermore, for each parameter variation,
all three target metrics are predicted by the trained models. The resulting pre-
dictions are then scaled inversely to represent their original units.

The array with the predicted targets is then handed over to TOPSIS [9],
which is a multiple criteria decision making (MCDM) method. The TOPSIS
selects the most suitable target set, considering the weights and criteria. There-
fore, the criteria for the TOPSIS are always as minimizing the average response
time, maximizing the CPU and memory usage, minimizing the CPU and memory
limit, and minimizing the number of pods. Based on what result is desired, the
weights of each criterion can be adjusted. Moreover, the output of the MCDM is
a ranked list of the targets, with the rank specifying how well a target set fulfils
the weighted criteria. Since the ranked list of targets is stated in their original
order, it is possible to get the best-ranked target set index and its corresponding
parameter variation.

Consequently, the best chosen resource limits are used to scale the microser-
vice with the Kubernetes API. In contrast to the pod update method used in
the synthetic dataset generation, the updated pod is not recreated but patched.
This approach ensures that the rolling update function of Kubernetes is used.
The rolling update functionality ensures no downtime and, therefore, no loss
of requests while a pod is scaled [10]. Additionally, a readiness probe is imple-
mented in the deployment YAML file of the scaled microservice. If a pod is added
to the deployment in horizontal scaling, the traffic is only redirected to the new
pod once it is ready. The readiness is checked by making an HTTP request to
a specific rest endpoint of the microservice that responds with the status 200
when it is reachable. In vertical scaling, a new pod with the updated resources
is created and checked if it is ready before the previous pod is deleted.

Finally, the autoscaling loop is finished and adds a new run of itself to the
Python scheduler with the set scaling time.
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Fig. 3. Target metrics

4 Evaluation

We extensively evaluated our proposed approach including the autoscaling loop
and the MOHA toolchain. We used the Scikit-learn6 and Scikit-Criteria7 pack-
ages to implement the machine learning models and the TOPSIS functionalities,
respectively. In continue, we first present the experimental setup and then we
analyze the achieved results.

4.1 Experimental Setup

We generated a dataset consisting of 3,125 samples with five variations for each
parameter in the ranges of [300 m, 500 m]8 for CPU limit, [400Mi, 600Mi]9 for
memory limit and [1–5] for replicas. The dataset was split (by randomly shuf-
fling) into the training dataset consists of 75% and the test dataset consists of
25% of the entire dataset.

To be more clear, we depicted a summary of the target metrics of the gener-
ated dataset in Fig. 3. The boxplots in Fig. 3a show that we have the possibility of
both upscaling and downscaling, as needed. The frequency histogram in Fig. 3b
illustrates that the dataset includes various response times, concluding different
(light to heavy) loads, were generated.

Each machine learning approach was trained and tested on the same datasets.
To ensure comparability between the machine learning algorithms, the used
training and test datasets were scaled with the MinMaxScaler. Moreover, for
each algorithm, a grid search was performed to tune its hyperparameters.

The threshold for the average response time describes the maximum value
that the average response time should not exceed. Respecting the suggestion
from [11], this threshold was considered as 1 s. To avoid CPU throttling and
6 https://scikit-learn.org/.
7 https://scikit-criteria.readthedocs.io/.
8 m stands for millicore.
9 Mi stands for mebibyte.

https://scikit-learn.org/
https://scikit-criteria.readthedocs.io/
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out of memory errors, we should notice that the resources must not be fully
utilized. Therefore, the thresholds for CPU and memory usage were set to a
minimum of 70% and a maximum of 90%. In contrast to the average response
time, the desired CPU and memory usage is the mean value of the minimum
and maximum threshold, being 80% in this case.

4.2 The Benchmark Setup

There are several microservices-based benchmark applications, such as robot-
shop10 and the SockShop11. But considering the limitation of the applications,
e.g. lack of heavy resource usage, we chose the TeaStore12 to evaluate our
approach. The TeaStore is a microservice-based application representing an e-
commerce platform, which was intentionally developed for studying microservice
behavior [8].

The TeaStore already provides a profile set for real-world user behavior,
but this does not include buyer behavior and is implemented as a closed work-
load model, with no control on arrival rate of service requests. Thus, we reim-
plemenetd the given user behavior with minor differences to the original pro-
file, which includes randomized buyer behavior. Furthermore, the provided user
behavior for the load testing tool JMeter13 was changed into an open workload
behavior that generates a given number of requests per second.

A user after visiting the landing page of the store, performs a login action
with a random username. Afterwards, the user visits a random category and
product, which the user puts in its cart. This sub loop is repeated randomly up
to five times. When all products are in the cart, it is randomly decided if the
user buys them or not. Furthermore, the user visits its profile page and finally
logs out.

The synthetic dataset was created with a constant number of requests per sec-
ond, modeling a constant load on the system. The maximum number of requests
per second is varied during the dataset generation to generate more diversity in
the dataset. Therefore, this load pattern represents only a scenario for upscal-
ing the resource limits. The constant load pattern is suited for the synthetic
dataset generation because it provides performance insight from the load on the
microservice with a specific resource specification.

We created a custom load pattern based on an adjustable number of requests
per second. This dynamic load starts with a constantly increasing load from 1
request per second until reaching a maximum of 1000 requests per second. This
increase phase has a duration of three and half minutes. The load of the maxi-
mum number of requests per second stays constant for three more minutes. After
that, the load is decreased until reaching 1 request per second. Similarly, this
decrease happens in a duration of three and half minutes. The profile represents

10 https://github.com/instana/robot-shop.
11 https://github.com/helidon-sockshop/sockshop.
12 https://github.com/DescartesResearch/TeaStore.
13 https://jmeter.apache.org/.

https://github.com/instana/robot-shop
https://github.com/helidon-sockshop/sockshop
https://github.com/DescartesResearch/TeaStore
https://jmeter.apache.org/
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a more realistic load pattern than the constant load pattern used for the dataset
generation. It provides periods of increase in requests per second and includes
periods of load decrease. Therefore, it is suited for the evaluation runs of the
autoscaler by providing up-, down-, in- and out-scaling scenarios and a scenario
in which no scaling is necessary.

Table 2. Phase one - Accuracy comparison

Model LR SVR MLPRegressor NN

Target Response
time

CPU
usage

Memory
usage

Response
time

CPU
usage

Memory
usage

Response
time

CPU
usage

Memory
usage

MSE 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00

R2 0.55 0.78 0.90 0.72 0.87 0.94 0.56 0.78 0.90

Table 3. Phase two - Qualitative comparison

Model CPU
limit [m]

Memory
limit [Mi]

Pods
(average)

Response
time [ms]

CPU
usage [%]

Memory
usage [%]

LR 537.78 439.85 2.10 796.96 69.32 78.81

SVR 437.47 460.11 1.60 1,344.74 70.46 77.41

MLPRegressor NN 583.72 501.44 3.47 1,704.66 66.29 56.65

Extra-P 643.68 578.4 5.25 1,466.55 49.12 52.63

4.3 Experimental Results

In this section, we analyze the results achieved by our autoscaling toolchain,
using the three machine learning models (LR, SVR and MLPRegressor NN)
and the Extra-P model [3]. The results are then compared with the Kubernetes
HPA’s results.

We divided our analysis into three phases, each of them having a differ-
ent focus. In the first phase, each machine learning approach is trained on the
synthetically generated dataset and then their speed of training, speed of predic-
tion and prediction accuracy are compared. In the second phase, we evaluate the
results of using ML and Extra-P models in the MOHA toolchain, considering
simultaneously minimizing average response time and resource consumption. In
the third phase, the horizontal pod autoscaling of SVR is compared to the stan-
dard Kubernetes HPA to observe how the performance of our proposed approach
outperforms an already established autoscaling approach.

Phase One. Since the least squares and the Bayesian variant of the LR delivered
precisely the same values, the Bayesian variant is further referred to as LR. To
measure the speed of the ML algorithms, we considered an accuracy of 17 decimal
digits that were shown by rounding to 4 digits. In our experiments, we observed
that the LR algorithm has by far the lowest training time of only 0.7 ms, while
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the MLPRegressor NN has a much higher training time of 0.2 s. Furthermore, the
SVR presents the highest training time of all algorithms with around 0.39 s. The
LR model’s prediction time is very short such that after our rounding it could
be assumed to be nearly zero. Similar to the training time, the MLPRegressor
is the second fastest algorithm with a prediction time of 1.4 ms, while the SVR
model has the highest prediction time of 25 ms.

The prediction accuracy was measured with the Mean Squared Error (MSE)
and the coefficient of determination (R2) metrics [2]. The MSE measures the
average squared error between the predicted and the actual value. It is always
a positive value. The closer the value is to zero, the better the estimator. The
coefficient of determination provides a measure of the probability that the model
predicts an unknown sample. The R2 score can be between infinite negative and
one. Here the best value is one, while zero would indicate an estimator that
always predicts the expected value regardless of the input. The results of the
comparison are shown in Table 2. The best metric value of a target is highlighted.

In summary, it can be concluded that the LR algorithm is the fastest algo-
rithm of all, regarding the training and prediction time but it is the least accu-
rate one. Moreover, the MLPRegressor NN is slower than the LR but slightly
more accurate. Furthermore, it scores the same MSE values as the LR and SVR.
Finally, the SVR is much slower than the other two methods but results in a
much better R2 score throughout every target. It is, therefore, the most accurate
machine learning method of the methods compared. However, considering the
importance of prediction accuracy and the fact that the scaling decision is not
made every second, the higher prediction time of the SVR could be practically
neglected.

Phase Two. We compare the ML and Extra-P models, embedded into the
MOHA toolchain. The comparison is divided into qualitative and quantitative
comparisons.

Qualitative Comparison. We calculated the average of parameters and tar-
gets. The Extra-P resource estimation equations were created using its multi-
parameter model that uses the median and the refined approach of the current
version of the application.

The results of the comparison are summarized in Table 3. Here, all parameters
and target values represent the average except for the response time represented
by its median. The median response time is chosen to get a more outlier free
impression of the behavior. Moreover, the TOPSIS decision maker’s weights are
chosen to be balanced: the average response time is weighted with 0.5 while all
resources related weights sum up to 0.5. The scaling time for each approach is
set to 1 min, allowing up to ten scales per evaluation run.

We observed that the LR model achieves the lowest median response time
despite scoring the least accuracy in the prediction of the average response time.
Additionally, it scores the highest average memory usage. Furthermore, the pre-
diction with the MLPRegressor NN scores the highest and, therefore, worst
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response time. The SVR-based autoscaler does use the lowest average CPU limit
and number of pods while also showing the highest average CPU usage. It is espe-
cially noticeable that Extra-P is scoring the worst values in each metric except
for the median response time. This result can be caused by the fact that Extra-P
was not initially designed to make precise predictions but rather to find scaling
bugs in the performance behavior of a system. Finally, the MLPRegressor NN
shows in no metric, except for the median response time, the best or worst value.
It can therefore be considered average.

The scaling behavior of all models are shown in the Fig. 4. For each approach,
a visualization of each parameter was conducted over the time of the evaluation
run (in minutes). As shown, SVR uses considerably less resources, considering the
number and the resource capacity of pods, while meeting the specified average
response time.

Fig. 4. Scaling behavior

Quantitative Comparison. Since the microservice-based applications usually run
on public cloud environments, analyzing the monetary cost of running applica-
tions on commercial public clouds makes perfect sense. In continue, based on
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the published resource prices from the Google Cloud14, we estimated and com-
pared the cost of running the benchmark application using different autoscal-
ing approaches. To estimate the cost of resources, we assume that the Google
Kubernetes server is located in Frankfurt, Germany (Europe-west3). Moreover,
the resource prices per hour and a total utilization of 24 h per day are assumed.
Consequently, one vCPU (1000 m) costs 0.0573$ per hour, while one gigabyte of
memory (≈953Mi) costs 0.0063421$ per hour. To calculate each of the resource
costs per hour, the average resource limits of the evaluation run are converted
to the corresponding units, multiplied by the corresponding prices, and extrap-
olated to one hour. Finally, the resource costs are summarized and extrapolated
to 24 h to result in the total resource costs per day in the US dollar.

The results of the cost estimation are shown in Table 4. The SVR-based
approach shows the lowest costs of CPU and memory resources and therefore,
it is the approach with the lowest total resource costs of 6.48$ per day. The
Extra-P approach results in a high total resource cost of 30.72$, as the most
expensive approach among all.

Table 4. Phase two - Quantitative comparison (cost per day)

Model CPU [$] PMemory [$] Total [$]

LR 9.36 0.96 10.32

SVR 5.76 0.72 6.48

MLPRegressor NN 16.8 1.68 18.48

Extra-P 27.84 2.88 30.72

Table 5. TOPSIS weight variations

Model Wresponse time Wresources

SVR-HPAt 0.9 0.1

SVR-HPAr 0.1 0.9

SVR-HPAb 0.5 0.5

In summary, we could conclude that the SVR-based approach provides the
fewest number of pods, highest resource usage and therefore, lowest resource
cost. Moreover, although it scores a higher median response time than the LR,
its response time still meets the requested QoS. The Extra-P based model scored
worst in the described approach because of its very high resource costs and
insufficient median response time.

Phase Three. We compared the horizontal scaling ability of the SVR-based
approach with the Kubernetes HPA. For the sake of compatibility, we imple-
mented the Kubernetes HPA approach in Python. The HPA follows the same
14 https://cloud.google.com/kubernetes-engine/pricing.

https://cloud.google.com/kubernetes-engine/pricing
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process similar to the other approaches for gathering the current status and uses
the resource estimation of the Kubernetes HPA. The HPA estimates the required
number of pods based on the current number of pods and the used target metric.
It then decides to take the maximum number of pods calculated from all target
metrics. In the case of the novel implemented autoscaler approach, the calcu-
lated CPU and memory limits are neglected in the resource estimation process
to only use the horizontal scaling capabilities of the approach.

Table 6 presents the results of the comparison. We set the CPU limit to 300 m
and memory limit to 400 Mi. The maximum number of requests per second was
set to 1000, in 1 min as scaling time, with the maximum number of pods limited
to 10.

To study the impact of criteria’s weights on the results, several weight dis-
tributions of the TOPSIS, following different goals, are compared (see Table 5).
SVR-HPAt favors minimizing the response time, while SVR-HPAr tends to min-
imize resource wastage instead. For comparison reasons, SVR-HPAb representing
the balanced weight distribution from phase one is also considered.

It can be observed that the SVR-HPAr and the Kubernetes HPA use the low-
est number of pods. The response time optimized approach uses the most pods,
while the balanced approach uses only slightly more pods than the resource opti-
mized and the Kubernetes HPA approach. Furthermore, the resource optimized
approach has the lowest median response time.

Overall, the balanced SVR-based approach scores the lowest cost total value
and is, therefore, the most beneficial approach of the compared approaches con-
sidering the balance of minimizing the response time violations and the total
resource wastage.

Table 6. Phase three - SVR-based HPA vs. the Kubernetes HPA

Model Pods Response

time [ms]

CPU

usage [%]

Memory

usage [%]

Total

cost [$]

SVR-HPAt 5.55 1141.75 41.36 66.03 8.75

SVR-HPAr 1.95 170 29.42 70.09 3.63

SVR-HPAb 2.15 455.2 47.35 62.01 3.11

Kubernetes HPA 1.95 214.93 34.49 68.56 3.40

We could especially distinguish that SVR-HPAr shows the best median
response time even though the intentional weight distribution was not optimized.
Furthermore, it shows less CPU usage but more memory usage than the other
approaches. In contrast to the resource optimized approach, the response time
optimized approach results in the highest median response time of all approaches.
This behaviour could be explained by the high number of pods used. It could be
possible that the registry web service, responsible for distribution of requests, cre-
ates extra overhead for distributing workload to more pods and causes increase
of median response time.

All in all, it can be concluded that the SVR-based autoscaling approach
shows better results in horizontal pod autoscaling than the Kubernetes HPA
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when the weight distribution is chosen correctly. Furthermore, the developed
approach allows the possibility to tweak its behavior by adjusting its weight
distribution to its requirements.

5 Conclusion

Uncontrolled deployment of microservices can cause resource wastage or degrade
the performance of applications. In this paper, we propose an autoscaling app-
roach and a toolchain, called MOHA, designed for hybrid autoscaling of microser-
vices in Kubernetes that scale pods horizontally, vertically or in a hybrid way
aiming simultaneously decreasing the response time and the resource consump-
tion. We evaluated our approach for three machine learning approaches, namely
linear regression (LR), support vector regression (SVR) and the multi-layer per-
ceptron regressor neural network (MLPRegressor NN), and also a performance
modeling tool, called Extra-P. We observed that SVR operates better for our
problem. Conducting the variant workloads for our experiments on a benchmark
application, called TeaStore, confirms the scalability of our proposed toolchain.
Moreover, we observed that the horizontal scaling capabilities of the SVR-based
approach competes very well with the default Kubernetes HPA for the cost
of resource usage while our approach provides much better response time for
microservices. We believe that our open source toolchain can be practically used
for real-word microservice-based applications and by far decreases the resource
usage costs while meeting the QoS for average response time.
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Abstract. We are interested in this paper in studying how to schedule
tasks in an extreme edge setting, where some sensors produce data and
subsequent tasks are executed locally. They are interacting with some
external tasks submitted by a superior authority in the cloud. We first
model such a system as a problem of scheduling two sets of tasks, each
associated with its own objective. The tasks of the first set are released
on-line, they can be preempted and the target objective is the mini-
mization of the mean flow-time. The tasks of the second set are known
beforehand and cannot be preempted. The objective is to execute them
before a common deadline.

Due to strong lower bounds on the competitive ratio of this problem,
we use the technique of resource augmentation to cope with these lim-
itations. Specifically, our analysis is based on both speed augmentation
and rejection. First, we give a general lower bound for the problem, even
in the case of speed augmentation and rejection. Then, we propose a
competitive algorithm and analyze its performance using dual fitting.

Keywords: Online Algorithm · Competitive Analysis · Edge
Computing · Preemptive Scheduling · Resource Augmentation · Dual
Fitting

1 Introduction

Today, the computing systems are evolving in a continuum of cloud/fog/edge.
These systems are always more complex, since they are composed of various types
of computing devices. The diversity of the digital components that compose
such systems creates new problems in the perspective of managing efficiently
the execution of tasks. Most data produced by sensors at the extreme edge
should be processed immediately and the analysis of data should be done locally,
close to the sensors [21]. Most of these data only have an interest in the local
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Fig. 1. Schematic view of a smart building with multiple sensors (fire detector, motion
sensor, video surveillance, sound analysis, etc.) and a link to the Internet (Cloud ser-
vices, weather forecast data, information collected around in the smart city, etc.). The
tasks associated to the sensors are collected in a local queue and the external tasks are
put in a global queue. Both are managed by the computing units of the smart building.

environment where they are produced, and their lifespan is short. Thus, they
should be analyzed immediately. When no analysis is performed, the available
computing units can be utilized for external or off-loaded computing, such as
volunteer computing [5].

In this work, we target a computing system composed of multiple computing
units connected to some sensors. For instance, think of a smart building with
a centralized control and processing units like the one described in Fig. 1. A
classical edge infrastructure is composed of several of such computing systems,
but we will restrict our focus on a single one. Informally, there are two types
of tasks to execute in this example, and each type is associated to a distinct
objective as it will be described in more details in the next section.

1.1 Problem Description

The characteristics of the two types of tasks, each type associated with an agent,
are the following:

– The first agent manages the tasks that are generated locally by the sensors.
We call these tasks local or dynamic as they arrive on-line, and we should
process them as soon as possible. The release time of a local task is not known
in advance, but its processing time is known at the time it is released. The
target objective of the first agent is to minimize the total flow-time of these
tasks. Due to locality and their usually small processing time and memory
consumption, the preemption (without migration) of these tasks is allowed.

– The second type of tasks corresponds to the external tasks submitted per
batch. We call them global or static as they are submitted off-line. The pro-
cessing of such tasks is known, and the objective is to complete this set of
tasks in a reasonable amount of time, typically before a common deadline that
is fixed, regarding the total computational load during the batch. From their
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nature and possibly large memory consumption compared to local tasks, a
global task cannot be preempted. However, we allow the rejection of a global
task during its execution, if this is needed to keep a good overall performance
of the system. Intuitively, a rejected global task will be re-submitted in a
subsequent batch in the same or in another targeted computing system.

The tasks of both agents are sequential. The overall problem is thus to interleave
both sets of tasks on the set of computing machines in the best possible way with
respect to the target objectives. To summarize, the inputs of the corresponding
scheduling problem are as follows:

– m identical machines,
– nL local tasks and nG global tasks,
– pj the processing time of task j.

The objective is to minimize the sum flow-time of the local tasks, i.e., the
total time that a local task remains in the system, such that a global deadline
is respected for the global tasks.

1.2 Contributions and Organization

In the single agent case, the on-line flow-time minimization problem can be
solved to optimality on a single machine if preemptions are allowed, but it is
hard to approximate with m ≥ 2 machines [14], or in the off-line setting if pre-
emptions are not allowed [7,13]. These inapproximability results led to analyze
the problem in the context of resource augmentation, where more power is given
to the algorithm, as for instance allowing the algorithm to use more processors
or higher speed than the optimal. In the case of speed augmentation, we assume
the algorithm is using machines with a speed of 1+ ε, while the optimal solution
is based on a machine speed of 1, where ε ≥ 0 is a constant. Using these resource
augmentation models, we can achieve performance guarantees that depend on
the value of ε [9,12,22].

With the introduction of tasks from the global agent, we show in this paper
that it is hard to approximate the flow-time objective for the local tasks, even
though their preemption is allowed and resource augmentation is used. Specifi-
cally, any on-line algorithm which uses (1 + εs)-speed machines should reject at
most k global tasks to achieve a competitive ratio in O

(
(1 − 2k

nG )W)
, where W

is the ratio between the total work load of the global tasks and the total work
load of the local tasks.

On the positive side, we propose an algorithm to solve the addressed two-
agent scheduling problem under the resource augmentation model, with both
rejection and speed augmentation. Then, we analyze the competitive ratio of the
algorithm using the dual fitting approach [4]. In particular we prove that our
algorithm is (1+εs)-speed and max

{
W

εsεr
+ 1+εs

2εs
, 1+εs

εs

}
-competitive by rejecting

a fraction of global tasks depending on a parameter εr, where εs > 0 and 0 <
εr < 1.
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The organization of the paper is as follows: We start by presenting a brief
state of the art about the two-agent scheduling problem, the flow-time mini-
mization problem and resource augmentation models in Sect. 2. Section 3 gives
a formal definition of the problem and the notations used throughout the paper,
and Sect. 4 presents our lower bound. In Sect. 5, we introduce the competitive
algorithm for solving the two-agent scheduling problem and analyze its compet-
itive ratio with the dual fitting approach in Sect. 6. Section 7 ends the paper,
with concluding remarks and discussions.

2 Related Work

The work presented in this paper can be seen as an extension of the two-agent
scheduling problem by considering that the tasks of one agent arrive on-line.

The problem of two-agent scheduling has been introduced by Agnetis
et al. [2]. Their seminal paper was dedicated to scheduling two sets of non-
preemptive tasks competing to execute on a single machine, where each agent
aims at minimizing its own objective function based on the completion time of
its tasks (maximum, sum, due dates, etc.). The authors considered two ways
for solving the problem: First, by minimizing an objective function while keep-
ing the second objective under a threshold and, second, by finding the set of
non-dominated pairs of objective values on the Pareto front. Later, Agnetis et
al. [1] extended this work to other multi-agent scheduling problems including
the execution on parallel machines.

One can find in the literature many variants of the two-agent scheduling
problem, for example considering a chain of tasks for each agent [3], tasks with
due dates [8,24], or with an additional setup time when a task of one agent is
processed directly after a task of the second agent [15].

In a similar setting, Baker and Smith [6] studied the problem of two or three
agents on a single machine, where each agent has its own objective function to
minimize. However, they considered the single objective approach by minimizing
a linear combination of the objective of each agent. Liu et al. [16] also considered
the problem with tasks arriving off-line with release times, with the objective of
minimizing a linear combination of the maximum completion times (makespan)
of both agents. Saule and Trystram [23] focused on the problem of an arbitrary
number of agents scheduling jobs on parallel machines, where the objective of
an agent is either the minimization of the makespan or the sum of completion
time of its tasks. They proposed inapproximability bounds and approximation
algorithms with performance ratios depending on the number of agents.

Our problem may also be considered as an extension of the problem of total
flow-time minimization of on-line tasks on parallel machines, under the addi-
tional constraint of the off-line scheduling of tasks from a second agent.

For the flow-time minimization problem, it is well known that the Shortest
Remaining Processing Time (SRPT) policy gives an optimal schedule for on-line
tasks on a single machine. Unfortunately, the optimality of SRPT does not hold
in our context with a second agent, as will be shown in Sect. 4. When m ≥ 2
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machines are considered, the problem becomes NP-hard [10], and Leonardi and
Raz [14] showed that SRPT is O(min{log(P ), log n

m})-competitive, where P is
the ratio between the maximum and minimum processing time of the tasks, and
n the number of tasks. They also showed that no on-line algorithm could achieve
a better competitive ratio.

Such strong results on the inapproximability of scheduling problems moti-
vated the introduction of the resource augmentation model, where an on-line
algorithm is given more power when comparing to the optimal. Such models
can be considered with speed augmentation [12], machine augmentation [22] or
rejection [9].

In the context of scheduling on a single machine, Feng et al. [11] studied the
common two-agent problem of Agnetis et al. with the additional feature that
jobs can be rejected with a given penalty to the objective value of the corre-
sponding agent. In the on-line setting, Lucarelli et al. also introduced the speed
augmentation and rejection models to the total (weighted) flow-time minimiza-
tion problem on unrelated [17,18,20] and related machines [19]. The authors
proposed several algorithms whose competitiveness was proved using the dual
fitting technique. We will use the same approach in the analysis of our algorithm
in Sect. 5.

3 Problem Formulation and Notations

We consider a set M of m identical machines on which to execute two sets
of sequential tasks having different settings. The first set L is composed of nL

local tasks that are submitted on-line, while the second set is composed of nG

global tasks that are submitted off-line. Only local tasks can be preempted, but
migration between machines is not allowed. For a given task j, we denote by
rj its release time and by pj its processing time on a machine, only known at
the time the task is being released. Note that the release time is 0 for all global
tasks, since they are off-line.

Given a schedule, we denote by Fj the flow-time of a local task j, defined as
the difference between its completion time and its release time. The objective
is to minimize the sum flow-time of all local tasks, under the constraint that
all global tasks have completed before a common deadline dG . We also consider
that the release time of any local task is bounded above by dG . This deadline,
defined as

dG =
1
m

·
⎛

⎝
∑

j∈G
pj − max

j∈G
{pj}

⎞

⎠ + max
j∈G

{pj} +
∑

j∈L
pj ,

guarantees that a schedule interleaving local and global tasks is always feasible.
Notice however that, since local tasks are released over time, the value of dG is
not known beforehand by the algorithm.

Under the resource augmentation model, we introduce the coefficients of
speed augmentation εs > 0 and rejection 0 < εr < 1. An algorithm to solve the
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addressed problem can use machines with speed 1 + εs times faster than that of
an optimal adversary, and can reject a number of global tasks bounded by an
εr-fraction of the number of local tasks.

We define below some additional notations used in the next sections. In a
partial schedule, QL

i (t) denotes the set of local tasks assigned to machine i,
but not completed at time t. This set includes all the local tasks waiting to
be executed on machine i, as well as the task currently being executed at time
t, if it is local. Note that, upon arrival of task j at time rj and assigned to
machine i, we assume that it is immediately added to QL

i (rj). Since preemption
of local tasks is allowed, prem

j (t) denotes the remaining processing time of task
j at time t. Finally, for a given instance of the problem, we denote by W =∑

j∈G pj/
∑

j∈L pj the ratio between the total workload of the global tasks and
the total workload of the local tasks.

4 A Lower Bound

Theorem 1. Let εs ≤ 1
3 · W−3

3W+3 and k ∈ {1, 2, . . . , nG
2 }, where nG is the number

of global tasks. Any online algorithm which uses (1 + εs)-speed machines should
reject at least k global tasks to have a competitive ratio in O

(
(1 − 2k

nG )W)
.

Proof. We consider an instance with a single machine, consisting of 2Z global
tasks that are split evenly into two sets of tasks of respective processing times
X/3 and 2X/3. We partition the time into Z phases, each one of length X + 1:
the phase � corresponds to the time interval [(� − 1)(X + 1), �(X + 1)), for each
� = 1, 2, . . . , Z. Let b� = (�−1)(X +1), 1 ≤ � ≤ Z, denote the beginning of phase
�. In order to well distinguish the phases, a burst of Y local tasks of processing
time 0 is released online at every time �(X + 1), 1 ≤ � ≤ Z. Moreover, in each
phase there is an arrival of a single local task of processing time 1, whose release
time will be defined later. We have two cases to consider:

Case 1: If the online algorithm decides to execute one global task of processing
time X/3 (say G1) and one global task of processing time 2X/3 (say G2) in each
phase �, 1 ≤ � ≤ Z.

If the algorithm decides to execute G1 before G2, then the earliest time at
which the execution of G1 can finish in the algorithm’s schedule is b� + X

3(1+εs)
,

since the algorithm has access to a machine which executes the tasks at speed
1 + εs. After the completion of G1, the algorithm will start G2 at some time
t ≥ b� + X

3(1+εs)
. Then, the adversary decides to release the local task L at time

b� + 2X
3 and the flow time of L will be at least X−2Xεs+3

3(1+εs)
, if G2 is not rejected;

otherwise the flow time of L will be 1
1+εs

. The optimal solution executes the
tasks in the order G2, L and G1, resulting in a flow-time of 1.

If the algorithm decides to execute G2 before G1, then let t ≥ b� be the
starting time of G2. Then, the adversary decides to release the local task L at
time X

3 and the flow time of L will be at least X−Xεs+3
3(1+εs)

, if G2 is not rejected;
otherwise the flow time of L will be 1

1+εs
. The optimal solution executes the

tasks in the order G1, L and G2, resulting in a flow-time of 1.
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Assuming that the algorithm decides to reject the corresponding task G2 in
exactly k phases, then its total flow time is at least k

1+εs
+ (Z − k)X−2Xεs+3

3(1+εs)
=

(Z − k)W(1−2εs)
3(1+εs)

+ Z
1+εs

, since W = X. On the other hand, the total flow time
of the optimal schedule is Z. Then, by rejecting k global tasks, the competitive
ratio will be at least Z−k

Z
W(1−2εs)
3(1+εs)

+ 1
1+εs

= Ω
(

Z−k
Z W)

.

Case 2: Otherwise, there is a phase during which two global tasks of processing
time 2X/3 are partially executed. Hence, there exists a phase �, at the beginning
of which a global task started in the previous phase �− 1 will be executed for at
least q = 1

1+εs
4X
3 − (X + 1) time. Then, the burst of local tasks arrived at time

(� − 1)(X + 1) will have a total flow-time at least qY . Note that in this case the
arrival of local tasks of processing time 1 is not important and we can assume
w.l.o.g. that the algorithm will execute all of them just upon their arrival, getting
a total flow-time for them equal to Z. On the other hand, the optimal solution
will be as in the previous case having a total flow time equal to Z. Therefore, the
competitive ratio in this case will be Ω(Y ), which can be chosen large enough
such that the first case dominates.

5 An Algorithm for the Two-Agent Problem

The algorithm is denoted by A and described as follows.

Initialization: At start, we consider a queue of global tasks QG initialized with
all the global tasks sorted in an arbitrary order. For each machine i ∈ M, we
initialize an empty queue of local tasks QL

i .

Local Task Allocation: Upon submission of a local task j, we allocate it to
the machine i that minimizes

λij =
∑

l∈QL
i (rj):

prem
l (rj)≤pj

prem
l (rj) +

∑

l∈QL
i (rj):

prem
l (rj)>pj

pj (1)

and denote by λj this quantity. Intuitively, we put the task j on the machine
minimizing the increase in the total flow-time induced only by the tasks in QL

i .

Task Execution: For each machine i, the tasks in QL
i are executed in the

Shortest Remaining Processing Time order. Note that if a newly arrived task
is shorter than the local task currently being executed, then preemption occurs
and the remaining part of the current task is put back in QL

i .
If QL

i becomes empty, then we remove a task from QG and execute it on i,
until no more global tasks are left. By not introducing idle times in the schedule
before all global tasks are processed, we ensure that the last global task will
complete before the common deadline dG . Note that global tasks are removed
from the queue in an arbitrary order.
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Rejection Policy for Global Tasks: If at any time there are more than 1
εr

local tasks in the local queue of a machine currently executing a global task, we
decide to reject that task. Note that such a rejection can only happen when a
local task is released. This way, we ensure that no more than εr ·nL global tasks
are rejected in total.

6 Analysis by Dual Fitting

We analyze our algorithm by dual fitting [4]. We first provide an expression of
the total flow-time achieved by the algorithm in Sect. 6.1 and give a linear pro-
gramming formulation of our problem in Sect. 6.2, as well as the corresponding
relaxed dual program. Then, in Sect. 6.3 we propose an assignment of the dual
variables based on the choices made by our algorithm. In Sect. 6.4, we prove that
this assignment satisfies the dual constraints and we give the competitive ratio
of our algorithm.

6.1 Algorithm’s Flow-Time

First, let Δj be the increase in the total flow-time of the current solution of our
algorithm incurred by the dispatch of a local task j on machine i. This value
corresponds to the flow-time of the task j, plus the increase in flow-time of all
tasks being delayed by the arrival of j. Following our scheduling and rejection
policies, and assuming the task k was being executed at time rj , the detailed
definition of Δj is expressed as follows:

Δj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If k(∈ G) is rejected:

− prem
k (rj)
1 + εs

· |QL
i (rj) − 1| +

∑

l∈QL
i (rj):

prem
l (rj)≤pj

prem
l (rj)
1 + εs

+
∑

l∈QL
i (rj):

prem
l (rj)>pj

pj

1 + εs

If k(∈ G) is not rejected:
prem

k (rj)
1 + εs

+
∑

l∈QL
i (rj):

prem
l (rj)≤pj

prem
l (rj)
1 + εs

+
∑

l∈QL
i (rj):

prem
l (rj)>pj

pj

1 + εs

If k(∈ L) is preempted:
pj

1 + εs
+

∑

l∈QL(rj):
prem
l (rj)>pj

pj

1 + εs

If k(∈ L) is not preempted:
∑

l∈QL
i (rj):

prem
l (rj)≤pj

prem
l (rj)
1 + εs

+
∑

l∈QL(rj):
prem
l (rj)>pj

pj

1 + εs
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Note that, due to speed augmentation, any value of processing time for our
algorithm is divided by (1 + εs).

By definition, the total flow-time of local tasks achieved by the algorithm is
equal to the sum of Δj for all local tasks. Due to the rejection policy, the impact
of global tasks on the total flow-time of local tasks is limited. There cannot be
more than 1

εr
local tasks in the queue during the execution of a global task, so

a global task j will contribute at maximum to pj

εr(1+εs)
on the total flow-time of

the algorithm. Therefore, we have the following:

∑

j∈L
Fj =

∑

j∈L
Δj ≤

∑

j∈L

⎛

⎜
⎜
⎜
⎝

∑

l∈QL
i (rj):

prem
l (rj)≤pj

prem
l (rj)
1 + εs

+
∑

l∈QL
i (rj):

prem
l (rj)>pj

pj

1 + εs

⎞

⎟
⎟
⎟
⎠

+
∑

j∈G

pj

εr(1 + εs)

(2)

6.2 Linear Programming Formulation

We define a decision variable xij(t) which is equal to 1 if the task j ∈ L ∪ G is
running on machine i ∈ M at time t ≥ 0, and 0 otherwise. By convention, we
assume that xij(t) = 0 for local tasks when t < rj .

Consider this linear programming formulation, with the constant Γ ≥ 1
2 :

min.
∑

i∈M

∑

j∈L

∫ ∞

rj

(
(t − rj)

pj
+ Γ

)
xij(t)dt

s.t.
∑

i∈M

∫ ∞

rj

xij(t)dt ≥ pj ∀j ∈ (L ∪ G) (3a)

∑

j∈(L∪G)

xij(t) ≤ 1 ∀i ∈ M, ∀t ≥ 0 (3b)

∑

i∈M

∫ ∞

0

(
t

pj
+

1
2

)
xij(t)dt ≤ dG ∀j ∈ G (3c)

xij(t) ∈ {0; 1} ∀i ∈ M, ∀j ∈ (L ∪ G), ∀t ≥ 0

Constraint (3a) verifies that each task j ∈ L ∪ G is executed for at least pj

units of time, Constraint (3b) indicates that a machine can execute at most one
task at any moment t ≥ 0, and the left-hand side of Constraint (3c) computes
the completion time of a global task j.

Note that the quantity
∫ ∞

rj

(t−rj)
pj

xij(t)dt in the objective function corre-
sponds to the well-known fractional flow-time of the job j [4]. This is a lower
bound to the flow-time of j. Moreover, with Γ = 1

2 , the objective value of an
optimal solution for the linear program is at most the flow-time of an optimal
schedule for our problem [4]. During our analysis, we will use a larger value of
Γ and the objective value of the program will be at most (Γ + 1

2 ) that of the
optimal value of the problem.
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Note also that the above formulation does not exactly model the addressed
problem, as it does not forbid preemption of global task or their migration
between machines. Instead, the formulation is a relaxation, but it is sufficient
to analyse our algorithm and prove its approximation ratio via dual fitting and
resource augmentation.

After relaxing the integrality constraint on the variables xij(t) in the primal
program, its dual program can be expressed as follows.

max.
∑

j∈L∪G
αjpj −

∑

i∈M

∫ ∞

0

βi(t)dt −
∑

j∈G
dGγj

s.t. αj − βi(t) −
(

t − rj

pj
+ Γ

)
≤ 0 ∀i ∈ M, ∀j ∈ L, ∀t ≥ rj (4a)

αj − βi(t) −
(

t

pj
+

1
2

)
γj ≤ 0 ∀i ∈ M, ∀j ∈ G, ∀t ≥ 0 (4b)

αj ≥ 0 ∀j ∈ (L ∪ G)
βi(t) ≥ 0 ∀t ≥ 0, ∀i ∈ M

γj ≥ 0 ∀j ∈ G

6.3 Dual Variables

For the purpose of the analysis via dual fitting, we define the variables of the
dual program according to the decisions taken by the algorithm.

We define the first dual variable for local tasks as αj = λj

(1+εs)pj
+Γ . Note that

the value of αj is only set at the arrival of j, and it does not change afterward.
For the other variables, we define αj = 0 and γj = 0 for any global task j; and

βi(t) = |QL
i (t)|

1+εs
, ∀t ≥ 0.

6.4 Competitive Analysis

With the two following lemmas, we show that our definition of the dual variables
leads to a feasible solution of the dual program.

Lemma 1. For every every machine i ∈ M, every local task j ∈ L and every
time t ≥ rj, the dual constraint (4a) is satisfied, that is:

αj − βi(t) −
(

t − rj

pj
+ Γ

)
≤ 0

Proof. First of all, the constant term Γ in the αj is compensated with the Γ
of the constraint. By multiplying all remaining terms by (1 + εs)pj , we have to
prove:

λj − |QL
i (t)| · pj − (1 + εs)(t − rj) ≤ 0

If more local tasks arrive after j, the quantity |QL
i (t)| will increase and the

constraint will be easier to satisfy. For this reason, we assume that there is no
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other task arrival after j. Thus |QL
i (t)| can only decrease over time, when a task

finishes its execution. Moreover, due to the dispatching policy of local tasks we
have λj ≤ λij .

Assume that a task k is currently being executed at time rj and finishes at
time t′ = rj + prem

k (rj)
1+εs

. For any time t ∈ [rj , t
′), |QL

i (t)| will remain constant
and it is sufficient to prove the constraint at the beginning of the interval, when
t = rj . We have

λij ≤
∑

l∈QL
i (rj):

prem
l (rj)≤pj

pj +
∑

l∈QL
i (rj):

prem
l (rj)>pj

pj = |QL
i (rj)| · pj

and thus the constraint is satisfied for any time t in this interval.
Let now k′ be the first task in QL

i (rj) after k, such that when k finishes its

execution at time t′ then k′ starts executing during the interval
[
t′, t′ + prem

k′ (rj)

1+εs

)
.

Again, it is sufficient to verify the constraint at the beginning of the interval, at
time t′ = rj + prem

k (rj)
1+εs

. We have

λij ≤ prem
k (rj) +

∑

l∈QL
i (rj)\{k}:

prem
l (rj)≤pj

pj +
∑

l∈QL
i (rj):

prem
l (rj)>pj

pj

= prem
k (rj) + |QL

i (t′)| · pj

and

prem
k (rj) − (1 + εs)(rj +

prem
k (rj)
1 + εs

− rj) ≤ 0.

Thus, the constraint is satisfied for any t in the interval.
A similar reasoning for every time interval during the execution of any local

task in QL
i (rj) can be made. Note that, if a global task was rejected on the

arrival of the local task j, it would not change the above reasoning. Hence, the
dual constraint (4a) is satisfied for any time t ≥ 0.

Lemma 2. For every machine i ∈ M, every global task j and every time t ≥ 0,
the dual constraint (4b) is satisfied, that is:

αj − βi(t) − (
t

pj
+

1
2
)γj ≤ 0

Proof. The smallest possible value of βi(t) is when the queue of local tasks is
empty. Thus, for any t we have βi(t) ≥ 0. Provided that αj = 0 and γj = 0 the
dual constraint (4b) is satisfied.

Recall that Fj denotes the flow-time of task j in the schedule produced by
algorithm. Then, the following lemma shows the relation between the total flow-
time of local tasks achieved by the algorithm and the objective value of the dual
program.
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Lemma 3. Given our definitions of αj, βi(t) and γj, the dual objective value
verifies:

∑

j∈L∪G
αjpj −

∑

i∈M

∫ ∞

0

βi(t)dt −
∑

j∈G
dGγj ≥ εs

1 + εs

∑

j∈L
Fj

Proof. With our definition of αj (recall αj = 0, ∀j ∈ G) we have

∑

j∈L∪G
αjpj =

∑

j∈L

⎛

⎜
⎜
⎜
⎝

∑

l∈QL
i∗ (rj):

prem
l (rj)≤pj

prem
l (rj)
1 + εs

+
∑

l∈QL
i∗ (rj):

prem
l (rj)>pj

pj

1 + εs
+ Γ · pj

⎞

⎟
⎟
⎟
⎠

+
1

1 + εs

⎛

⎝
∑

j∈G

pj

εr
−

∑

j∈G

pj

εr

⎞

⎠

≥
∑

j∈L
Fj + Γ ·

∑

j∈L
pj −

∑

j∈G

pj

εr(1 + εs)
,

where the inequality holds due to Eq. (2).
With the definition of βi(t), we have:

∑

i∈M

∫ ∞

0

βi(t)dt =
∑

i∈M

∫ ∞

0

|QL
i (t)|

1 + εs
dt =

1
1 + εs

∑

j∈L
Fj

Recall the notation W =
∑

j∈G pj
∑

j∈L pj , which is the ratio between the total work
load of the global tasks and the total work load of the local tasks. By choosing

Γ = max
{ W

εr(1 + εs)
,
1
2

}
,

and knowing that γj = 0, ∀j ∈ G, the objective value of the dual program can
be expressed as follows:

∑

j∈L∪G
αjpj −

∑

i∈M

∫ ∞

0

βi(t)dt −
∑

j∈G
dGγj

≥
∑

j∈L
Fj + Γ ·

∑

j∈L
pj −

∑

j∈G

pj

εr(1 + εs)
− 1

1 + εs

∑

j∈L
Fj

=
εs

1 + εs

∑

j∈L
Fj + Γ ·

∑

j∈L
pj −

∑

j∈G

pj

εr(1 + εs)

≥ εs

1 + εs

∑

j∈L
Fj

We now have enough to conclude on the competitive ratio of our algorithm.
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Theorem 2. For any 0 < εr < 1 and εs > 0, the algorithm A is (1 + εs)-speed,
max

{
W

εsεr
+ 1+εs

2εs
, 1+εs

εs

}
-competitive and rejects at most (εr · nL) global tasks.

Proof. From the three previous lemmas we know that the dual variables as we
defined them form a feasible solution of the dual program, and that the objective
value of the dual program is an upper bound of the total flow-time achieved by
the algorithm multiplied by a constant factor. From the rejection policy, a global
task is rejected the first time when there are more than 1

εr
local tasks waiting in

the queue. Thus, no more than εr · nL global tasks are rejected. By definition,
the algorithm uses a machine with speed (1 + εs) times the machine speed of an
optimal solution.

It remains to express the relation between the total flow-time of our algorithm
with that of an optimal solution. As Γ ≥ 1

2 , the objective value of the primal
program is at most Γ + 1

2 times the flow-time of an optimal solution, denoted
by OPT . Finally, using the duality theorem, we can write the relation:

εs

1 + εs
·
∑

j∈L
Fj ≤ (Γ +

1
2
) · OPT

∑
j∈L Fj

OPT
≤ max

{ W
εsεr

+
1 + εs

2εs
,
1 + εs

εs

}

and the theorem follows.

7 Concluding Remarks

We introduced in this paper a new scheduling problem with two agents targeting
each a different objective. As far as we know, it is the first time a mixed off-
line/on-line setting was studied for this problem. We provided a lower bound on
the competitive ratio of any algorithm for solving the problem, and proposed an
algorithm with a proof of its competitive ratio via dual fitting under a resource
augmentation framework (speed and rejection).

The objective of the global tasks is taken as a constraint, while its value
is specified by the scheduling policy of global tasks. Using List Scheduling in
our case, the common deadline was taken as the classical Graham’s bound plus
the total work load of the local tasks. It is possible to refine the value of the
deadline in accordance with a change in the scheduling policy of global tasks in
the algorithm A: Using any algorithm X for P ||Cmax with known approximation
ratio ρ to construct a fixed allocation of global tasks to the machines prior to
the submission of any local task, it is guaranteed that a value of the deadline
dG = CX

max +
∑

j∈L pj will be respected. Doing so, the dynamic allocation of
global tasks is lost, but it gives a “bi-objective” vision to the problem: the
minimization of both the total flow-time of local tasks and the global deadline.

Going further with the model, we believe it is possible to remove the speed
augmentation, which is only used in the algorithm’s analysis, as it was success-
fully done in another work on a single agent problem with on-line tasks [17].
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Another interesting perspective is to extend the model to the weighted case, or
with related/unrelated machines.
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Abstract. Locality-sensitive hashing (LSH) is an established method
for fast data indexing and approximate similarity search, with useful
parallelism properties. Although indexes and similarity measures are key
for data clustering, little has been investigated on the benefits of LSH in
the problem. Our proposition is that LSH can be extremely beneficial for
parallelizing high-dimensional density-based clustering e.g., DBSCAN, a
versatile method able to detect clusters of different shapes and sizes.

We contribute to fill the gap between the advancements in LSH and
density-based clustering. We show how approximate DBSCAN clustering
can be fused into the process of creating an LSH index, and, through
parallelization and fine-grained synchronization, also utilize efficiently
available computing capacity. The resulting method, IP.LSH.DBSCAN, can
support a wide range of applications with diverse distance functions, as
well as data distributions and dimensionality. We analyse its properties
and evaluate our prototype implementation on a 36-core machine with
2-way hyper threading on massive data-sets with various numbers of
dimensions. Our results show that IP.LSH.DBSCAN effectively complements
established state-of-the-art methods by up to several orders of magnitude
of speed-up on higher dimensional datasets, with tunable high clustering
accuracy through LSH parameters.

1 Introduction

Digitalized applications’ datasets are getting larger in size and number of features
(i.e., dimensions), posing challenges to established data mining methods such
as clustering, an unsupervised data mining tool based on similarity measures.
Density-based spatial clustering of applications with noise (DBSCAN) [11] is
a prominent method to cluster (possibly) noisy data into arbitrary shapes and
sizes, without prior knowledge on the number of clusters, using user-defined
similarity metrics (i.e., not limited to the Euclidean one). DBSCAN is used in
many applications, including LiDAR [25], object detection [20], and GPS route
analysis [33]. DBSCAN and some of its variants have been also used to cluster
high dimensional data, e.g., medical images [4], text [32], and audio [10].
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The computational complexity of traditional DBSCAN is in the worst-case
quadratic in the input size [26], expensive considering attributes of today’s
datasets. Nonetheless, indexing and spatial data structures facilitating proxim-
ity searches can ease DBSCAN’s computational complexity, as shown with KD-
trees [5], R-trees [15], M-trees [8], and cover trees [6]. Using such structures is sub-
optimal in at least three cases, though: (i) skewed data distributions negatively
affect their performance [20], (ii) the dimensionality curse results in exact spatial
data structures based on deterministic space partitioning being slower than linear
scan [34], and (iii) such structures only work for a particular metric (e.g., Euclidean
distance). In the literature, the major means for enhancing time-efficiency are
those of parallelization [2,3,13,24,33] and approximation [12], studied alone or
jointly [20,21,33]. However, state-of-the-art methods target Euclidean distance
only and suffer from skewed data distributions and the dimensionality curse.

Locality-sensitive hashing (LSH) is an established approach for approximate
similarity search. Based on the idea that if two data points are close using a cus-
tom similarity measure, then an appropriate hash function can map them to equal
values with high probability [1,9,17], LSH can support applications that toler-
ate approximate answers, close to the accurate ones with high probability . LSH-
based indexing has been successful (and shown to be the best known method [17])
for finding similar items in large high-dimensional data-sets. With our contribu-
tion, the IP.LSH.DBSCAN algorithm, we show how the processes of approximate
density-based clustering and that of creating an LSH indexing structure can be
fused to boost parallel data analysis. Our novel fused approach can efficiently
cope with high dimensional data, skewed distributions, large number of points,
and a wide range of distance functions. We evaluate the algorithms analytically
and empirically, showing they complement the landscape of established state-of-
the-art methods, by offering up to several orders of magnitude speed-up on higher
dimensional datasets, with tunable high clustering accuracy.

Organization: Section 2 reviews the preliminaries. Section 3 and Sect. 4
describe and analyse the proposed IP.LSH.DBSCAN. Section 5 covers the empirical
evaluation. Related work and conclusions are presented in Sect. 6 and Sect. 7,
respectively.

2 Preliminaries

System Model and Problem Description. Let D denote an input set of N
points, each a multi-dimensional vector from a domain D, with a unique iden-
tifier ID. Dist is a distance function applicable on D’s elements. The goal is to
partition D into an a priori unknown number of disjoint clusters, based on Dist
and parameters minPts and ε: minPts specifies a lower threshold for the number
of neighbors, within radius ε, for points to be clustered together.

We aim for an efficient, scalable parallel solution, trading approximations
in the clustering with reduced calculations regarding the density criteria, while
targeting high accuracy. Our evaluation metric for efficiency is completion time.
Accuracy is measured with respect to an exact baseline using rand index [31]:
given two clusterings of the same dataset, the rand index is the ratio of the
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number of pairs of elements that are either clustered together or separately in
both clusterings, to the total number of pairs of elements. Regarding concurrency
guarantees, a common consistency goal is that for every parallel execution, there
exists a sequential one producing an equivalent result.

We consider multi-core shared-memory systems executing K threads, support-
ing read, write and read-modify-write atomic operations, e.g., CAS (Compare-
And-Swap), available in all contemporary general purpose processors.

Locality Sensitive Hashing (LSH)
The following defines the sensitivity of a family of LSH functions [17,23], i.e.,
the property that, with high probability, nearby points hash to the same value,
and faraway ones hash to different values.

Definition 1. A family of functions H = {h : D → U} is (d1, d2, p1, p2)-sensitive
for distance function Dist if for any p and q in D the following conditions hold:
(i) if Dist(p, q) ≤ d1, then PrH[h(p) = h(q)] ≥ p1 (ii) if Dist(p, q) ≥ d2, then
PrH[h(p) = h(q)] ≤ p2. The probabilities are over the random choices in H.

A family H is useful when p1 > p2 and d1 < d2. LSH functions can be combined,
into more effective (in terms of sensitivity) ones, as follows [23]:

Definition 2. (i) AND-construction: Given a (d1, d2, p1, p2)-sensitive family H
and an integer M, we can create a new LSH family G = {g : D → UM} by aggregat-
ing/concatenating M LSH functions from H, where g(p) and g(q) are equal iff hj(p)
and hj(q) are equal for all j ∈ {1, · · · ,M}, implying G is (d1, d2, p1M, p2M)-sensitive;
(ii) OR-construction: Given an LSH family G and an integer L, we can create a new
LSH family F where each f ∈ F consists of L gis chosen independently and uni-
formly at random from G, where f(p) and f(q) are equal iff gj(p) and gj(q) are equal
for at least one j ∈ {1, · · · ,L}. F is (d1, d2, 1 − (1 − p1M)L, 1 − (1 − p2M)L)-sensitive
assuming G is (d1, d2, p1M, p2M)-sensitive.

LSH structure: An instance of family F is implemented as L hash tables; the i-th
table is constructed by hashing each point in D using gi [9,17]. The resulting
data structure associates each bucket with the values for the keys mapping to
its index. LSH families can associate with various distance functions [23].

LSH for Euclidean distance: Let u be a randomly chosen unit vector in D. A
hash function hu(x) in such a family is defined as � x·u

ε �, where · is the inner
product operation and ε is a constant. The family is applicable for any number
of dimensions. In a 2-dimensional domain, it is (ε/2, 2ε, 1/2, 1/3)-sensitive.

LSH for angular distance: Let u be a randomly chosen vector in D. A hash function
hu(x) in such a family is defined as sgn(x ·u). The family is (θ1, θ2, 1− θ1

π , 1− θ2
π )-

sensitive, where θ1 and θ2 are any two angles (in radians) such that θ1 < θ2.

Related Terms and Algorithms DBSCAN: partitions D into an a priori
unknown number of clusters, each consisting of at least one core-point (i.e., one
with at least minPts points in its ε-radius neighbourhood) and the points that
are density-reachable from it. Point q is density-reachable from p, if q is directly
reachable from p (i.e., in its ε-radius neighbourhood) or from another core-point
that is density-reachable from p. Non-core-points that are density-reachable from
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some core-point are called border points, while others are noise [26]. DBSCAN can
utilize any distance function e.g., Euclidean, Jaccard, Hamming, angular [23].
Its worst-case time complexity is O(N2), but in certain cases (e.g., Euclidean dis-
tance and low-dimensional datasets) its expected complexity lowers to O(N log N),
through indexing structures facilitating range queries to find ε neighbours [26].

HP-DBSCAN [13]: Highly Parallel DBSCAN is an OpenMP/MPI algorithm,
super-imposing a hyper-grid over the input set. It distributes the points to com-
puting units that do local clusterings. Then, the local clusters that need merging
are identified and cluster relabeling rules get broadcasted and applied locally.

PDS-DBSCAN [24]: An exact parallel version of Euclidean DBSCAN that uses a
spatial indexing structure for efficient query ranges. It parallelizes the work by
partitioning the points and merging partial clusters, maintained via a disjoint-
set data structure, also known as union-find (a collection of disjoint sets, with
the elements in each set connected as a directed tree). Such a data structure
facilitates in-place find and merge operations [18] avoiding data copying. Given
an element p, find retrieves the root (i.e., the representative) of the tree in which
p resides, while merge merges the sets containing two given elements.

Theoretically-Efficient and Practical Parallel DBSCAN [33]: Via a grid-based app-
roach, this algorithm identifies core-cells and utilizes a union-find data structure
to merge the neighbouring cells having points within ε-radius. It uses spatial
indexes to facilitate finding neighbourhood cells and answering range queries.

LSH as index for DBSCAN: LSH’s potential led other works ([27,35]) to consider
it as a plain means for neighbourhood queries. We refer to them as VLSHDBSCAN.

3 The Proposed IP.LSH.DBSCAN Method

IP.LSH.DBSCAN utilizes the LSH properties, for parallel density-clustering,
through efficient fusion of the indexing and clustering formation. On the high
level, IP.LSH.DBSCAN hashes each point in D, into multiple hash-tables, in such a
way that with a high probability, points within ε-distance get hashed to the same
bucket at least once across all the tables. E.g., Fig. 1a shows how most nearby
points in a subset of D get hashed to the same buckets, in two hash tables.
Subsequently, the buckets containing at least mintPts elements are examined,
to find a set of candidate core-points which later will be filtered to identify the
real core-points, in terms of DBSCAN’s definition. In Fig. 1a, the core-points
are shown as bold points with a dot inside. The buckets containing core-points
are characterized as core buckets. Afterwards, with the help of the hash tables,
ε-neighbour core-points get merged. E.g., the core-bucket in the rightmost hash
table in Fig. 1a contains two core-points, indicating the possibility that they
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Fig. 1. 1a shows nearby points get hashed to the same bucket at least once across hash
tables, whp. Core-points are the bold ones with a dot inside.

are within each other’s ε-neighbourhood, in which case they get merged. The
merging is done using a forest of union-find data structures, consisting of such
core-points, that essentially represent core buckets. As we see later, multiple
threads can work in parallel in these steps.

Key Elements and Phases. Similar to an LSH structure (cf. Sect. 2), we utilize
L hash tables (hashTable[1], · · · , hashTable[L]), each constructed using M hash
functions, chosen according to distance metric Dist and threshold ε (see Sect. 2,
Sect. 4).

Definition 3. A bucket in any of the hash tables is called a candidate core-
bucket if it contains at least minPts elements. A candidate core-point c in a
candidate core-bucket ccb is defined to be the closest (using function Dist) point
in ccb to the centroid of all the points in ccb; we also say that c represents ccb.
A candidate core bucket ccb, whose candidate core-point c has at least minPts
neighbours within its ε-radius in ccb, is called a core-bucket. A Core-forest is a
concurrent union-find structure containing core-points representing core buckets.

Lemma 1. Given a core bucket, its corresponding core-point c is a true core-
point according to DBSCAN.

The above follows from the definition of core-point in Definition 3. Next, we
present an outline of IP.LSH.DBSCAN’s phases, followed by a detailed description
of its parallelization and pseudo-code.
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In phase I (hashing and bucketing), for each i, each point p in D is hashed using
the LSH function gi and inserted into hashTable[i]. Furthermore, the algo-
rithm keeps track of the buckets containing at least minPts, as candidate core
buckets. In phase II (core-point identification), for each candidate core-bucket,
the algorithm identifies a candidate core-point. If at least minPts points in a
candidate core-bucket fall within the ε-neighbourhood of the identified candi-
date core-point, the latter is identified as a true core-point (see Lemma 1) and
inserted into the core-forest as a singleton. In phase III (merge-task identifica-
tion and processing), the algorithm inspects each core-bucket and creates and
performs a merge task for each pair of core-points that are within each oth-
ers’ ε-neighbourhood. Hence, the elements in the core-forest start forming sets
according to the merge tasks. In phase IV (data labeling), the algorithm labels
the points: a core-point gets assigned the same clustering label as all the other
core-points with which it forms a set in the core-forest. A border point (i.e., a
non-core-point located in the ε-radius of a core-point) is labeled the same as a
corresponding core-point, and all the other points are considered noise.

Parallelism and Algorithmic Implementation. We here present the par-
allelization in IP.LSH.DBSCAN (Algorithm 1), targeting speed-up by distributing

Algorithm 1. Outline of IP.LSH.DBSCAN
1: Input: dataset D, threshold minPts, radius ε, nr. of hash tables L, nr. of hash functions per table

M, metric Dist, nr of threads K; Output: a clustering label for each point in D
2: let D be logically partitioned into S mutually disjoint batches
3: hashTable[1],· · · ,hashTable[L] are hash tables supporting concurrent insertions and traversals
4: candidateCoreBuckets and coreBuckets are empty sets supporting concurrent operations
5: let hashTasks be a S × L boolean array initialized to false, indicating the status of hash tasks

corresponding to the Cartesian product of S batches and L hash tables
6: let G = {g : S → UM} be an LSH family suitable for metric Dist, and let g1, · · · , gL be hash

functions chosen independently and uniformly at random from G (Definition 2)
7: for all threads in parallel do
8: phase I: hashing and bucketing

9: while the running thread can book a task from hashTasks do
10: for each point p in task.batch do
11: let i be index of the hashTable associated with task
12: hashTable[i].insert(key = gi(p), value = ptr(p))
13: bucket=hashTable[i].getBucket(key = gi(p))
14: if bucket.size() ≥ minPts then candidateCoreBuckets.insert(ptr(bucket))

15: phase II: core-point identification (starts when all threads reach here)

16: for each ccb in candidateCoreBuckets do
17: let c be the closest point in ccb to ccb points’ centroid
18: if |{q ∈ ccb such that Dist(c, q)}| ≥ minPts then
19: c→ corePoint := TRUE and insert c into the core-forest
20: coreBuckets.insert(ccb)

21: phase III: merge-task identification and processing (starts when all threads reach here)

22: while cb := coreBuckets.pop() do
23: let core be the core-point associated with cb
24: for core-point c ∈ cb such that Dist(core, c) ≤ ε do merge(core, c)

25: phase IV: data labeling (starts when a thread reaches here)

26: for each core bucket cb do
27: let core be the core-point associated with cb
28: for each non-labeled point p in cb do
29: if p→ corePoint then p.idx = findRoot(p).ID
30: else p.idx = findRoot(core).ID
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the work among K threads. We also aim at in-place operations on data points
and buckets (i.e., without creating additional copies), hence work with pointers
to the relevant data points and buckets in the data structures.

Phase I (hashing and bucketing): To parallelize the hashing of the input dataset
D into L hash tables, we (logically) partition D into S mutually disjoint batches.
Consecutively, we have S×L hash tasks, corresponding to the Cartesian product
of the hash tables and the data batches. Threads can book a hash task and thus
share the workload through hashTasks, which is a boolean S×L array containing
a status for each task, initially false. A thread in this phase scans the elements
of hashTasks, and if it finds a non-booked task, it tries to atomically book the
task (e.g., via a CAS to change the status from false to true). The thread that
books a hash task htb,t hashes each data point p in batch b into hashTable[t]
using hash function gt. Particularly, for each point p, a key-value pair consisting
of the hashed value of p and a pointer to p is inserted in hashTable[t]. As entries
get inserted into the hash tables, pointers to buckets with at least minPts points
are added to candidateCoreBuckets. Since the threads operate concurrently,
we use hash tables supporting concurrent insertions and traversals. Algorithm
1 l.8–l.14 summarizes Phase I.

Phase II (core-point identification): Here the threads identify core-buckets and
core-points. Each thread atomically pops a candidate core bucket ccb from
candidateCoreBuckets and identifies the closest point to the centroid of the
points in ccb, considering it as a candidate core-point, ccp. If there are at least
minPts points in ccb within ε-radius of ccp, then ccp and ccb become core-point
and core-bucket, respectively, and ccp is inserted in the core-forest and the ccb
in the coreBucekts set. This phase, shown in Algorithm 1 l.15–l.20, is finished
when candidateCoreBuckets becomes empty.

Phase III (merge-task identification and processing): The threads here identify and
perform merge tasks. For each core-bucket cb that a thread successfully books
from the set coreBuckets, the thread merges the sets corresponding to the
associated core-point with cb and any other core-point in cb within ε distance.
For merging, the algorithm uses an established concurrent implementation for
disjoint-sets, with linearizable and wait-free (i.e., the effects of concurrent opera-
tions are consistent with the sequential specification, while the threads can make
progress independently of each other) find and merge, proposed in [18]. This
phase, shown in Algorithm 1 l.21–l.24, completes when coreBucekts is empty.

Phase IV (data labeling): Each non-labeled core-point in a core-bucket gets its
clustering label after its root ID in the core-forest. All other non-labeled points in
a core-bucket are labeled with the root ID of the associated core-point. The process,
shown in Algorithm 1 l.25–l.30, is performed concurrently for all core-buckets.

4 Analysis

This section analytically studies IP.LSH.DBSCAN’s accuracy, safety and complete-
ness properties, and completion time. We provide sketch proofs to save space,
but formal proofs can be found in [19]. Figure 1b summarizes the notations.
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Accuracy Analysis
Let pε be the probability that two given points with maximum distance ε have
the same hash value using H (see Definition 1). Lemma 1 shows that any point
identified as a core-point by IP.LSH.DBSCAN is a true core-point in terms of
DBSCAN. The following Lemma provides a lower bound on the probability that
IP.LSH.DBSCAN identifies any DBSCAN core-point.

Lemma 2. Let c be a DBSCAN’s core-point. The probability that IP.LSH.DBSCAN

also identifies c as a core-points is at least 1−
(
1 − 1

χp
M(minPts−1)
ε

)L

, where χ denotes
the maximum number of points in any bucket.

Proof. (sketch) First note that with M hash functions per table (i.e., the AND
construction in Definition 2), the probability that two given points with max-
imum distance ε collide into the same hash bucket in a fixed hash table is pMε .
The probability that c gets identified as a core-point in a fixed hash table is at
leaset 1

χp
M(minPts−1)
ε because at least minPts-1 ε-neighbours of c must get hashed

to b, and c should be the closest point to the centroid of the points in b. Finally,
the probability that c gets identified as a core-point in at least one hash table
is computed as the complement of the probability that c does not get identified
as a core-point in any hash table.

Lemma 2 shows that the probability of identifying any DBSCAN core-point
can be made arbirtarily close to 1 by choosing sufficiently large L.

Lemma 3. Let c1 and c2 be two core-points identified by IP.LSH.DBSCAN.

1. If Dist(c1, c2) > ε, then IP.LSH.DBSCAN does not merge c1 and c2.
2. If Dist(c1, c2) ≤ ε, then the probability that IP.LSH.DBSCAN merges c1 and c2

is at least 2pMε − p2Mε .

Proof. (sketch) 1. follows directly from IP.LSH.DBSCAN’s algorithmic description
(see Algorithm 1 l.24). 2. follows from calculating the probability that c2 hashes
into the same bucket in which c1 is the representative, and vice-versa.

Safety and Completeness Properties
At the end of phase IV, each set in the core-forest maintained by IP.LSH.DBSCAN
contains a subset of density-reachable core-points (as defined in Sect. 2). Two
disjoint-set structures ds1, ds2 are equivalent if there is a one-to-one correspon-
dence between ds1’s and ds2’s sets. The following lemma implies that the outcomes
of single-threaded and concurrent executions of IP.LSH.DBSCAN are equivalent.

Lemma 4. Any pair of concurrent executions of IP.LSH.DBSCAN that use the
same hash functions, produce equivalent core-forests at the end of phase IV.

Proof. (sketch) Considering a fixed instance of the problem, any concurrent exe-
cution of IP.LSH.DBSCAN identifies the same set of core-points and core-buckets
with the same hash functions, hence performing the same set of merge operations.
As the concurrent executions of merge operations are linearizable (see Sect. 3)
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and merge operation satisfies the associative and commutative properties, the
resulting sets in the core-forest are identical for any concurrent execution.

It is worth noting that border points (i.e., non-core-points within the vicinity
of multiple core-points) can be assigned to any of the neighbouring clusters. The
original DBSCAN [11] exhibits the same behaviour as well.

Completion Time Analysis

Lemma 5. [adapted from Theorem 2 in [18]] The probability that each
findRoot and each merge perform O(log C) steps is at least 1 − 1

C
, where C

is the number of identified core-points by IP.LSH.DBSCAN.

Corollary 1. The expected asymptotic time complexity of each findRoot and
each merge is O (log C).

Lemma 6. The expected completion time of phase I is O( LMNd
K

); phase II and
phase III is bounded by O( LN log C

K
); phase IV is O( N log C

K
).

Theorem 1. The expected completion time of IP.LSH.DBSCAN is O( LMNd+LN log C
K

).

Theorem 1 is derived by taking the asymptotically dominant terms in Lemma
6. It shows IP.LSH.DBSCAN’s expected completion time is inversely proportional
to K and grows linearly in N, d, L, and M. In common cases where C is much smaller
than N, the expected completion time is O( LMNd

K
); In the worst-case, where C is

O (N), the expected completion time is O( LMNd+LN log N
K

). For this to happen, for
instance, ε and minPts need to be extremely small and L be extremely large. As
the density parameters of DBSCAN are chosen to detect meaningful clusters,
such choices for ε and minPts are in practice avoided.

On the memory use of IP.LSH.DBSCAN: The memory footprint of IP.LSH.DBSCAN
is proportional to (LN + Nd), as it simply needs only one copy of each data
point and pointers in the hash tables and this dominates the overhead of all
other utilized data structures. Further, in-place operations ensure that data is
not copied and transferred unnecessarily, which is a significant factor regarding
efficiency. In Sect. 5, the effect of these properties is discussed.

Choice of L and M: For an LSH structure, a plot representing the probability of
points hashing into the same bucket as a function of their distance resembles an
inverse s-curve (x- and y-axis being the distance, and the probability of hashing
to the same bucket, resp.), starting at 1 for the points with distance 0, declining
with a significant slope around some threshold, and approaching 0 for far apart
points. Choices of L and M directly influence the shape of the associated curve,
particularly the location of the threshold and the sharpness of the decline [23]. It
is worth noting that steeper declines generally result in more accurate LSH struc-
tures at the expense of larger L and M values. Consequently, in IP.LSH.DBSCAN,
L and M must be determined to (i) set the location of the threshold at ε, and
(ii) balance the trade-off between the steepness of the decline and the completion
time. In Sect. 5, we study a range of L and M values and their implications on
the trade-off between IP.LSH.DBSCAN’s accuracy and completion time.
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5 Evaluation

We conduct an extensive evaluation of IP.LSH.DBSCAN, comparing with the estab-
lished state-of-the-art algorithms. Our implementation is publicly available [19].
Complementing Theorem 1, we measure the execution latency with varying num-
ber of threads (K), data points (N), dimensions (d), hash tables (L), and hash
functions per table (M). We use varying ε values, as well as Euclidean and angu-
lar distances. We measure IP.LSH.DBSCAN’s accuracy against the exact DBSCAN
(hence also the baseline state-of-the-art algorithms) using rand index.

Setup: We implemented IP.LSH.DBSCAN in C++, using POSIX threads and the
concurrent hash table of Intel’s threading building blocks library (TBB). We
used a c5.18xlarg AWS machine, with 144 GB of memory and two Intel Xeon
Platinum 8124M CPUs, with 36 two-way hyper-threaded cores [33] in total.

Tested Methods: In addition to IP.LSH.DBSCAN, we benchmark PDSDBSCAN [24],
HPDBSCAN [13], and the exact algorithm in [33], for which we use the label
TEDBSCAN (Theoretically-Efficient and Practical Parallel DBSCAN). As the
approximate algorithms in [33] are generally not faster than their exact counter-
part (see Fig. 9 and discussion on p. 13 in [33]), we consider their efficiency repre-
sented by the exact TEDBSCAN. We also benchmark VLSHDBSCAN, our version of a
single-thread DBSCAN that uses LSH indexing, as we did not find open implemen-
tations for [27,35]. Benchmarking VLSHDBSCAN allows a comparison regarding the
approximation degree, as well as the efficiency induced by IP.LSH.DBSCAN’s “fused”
approach. Section 2 covers the aforementioned algorithms.

Evaluation Data and Parameters
Following common practices [13,28,33], we use datasets with different charac-
teristics. We use varying ε but fixed minPts, as the sensitivity on the latter is
significantly smaller [28]. We also follow earlier works’ common practice to abort
any execution that exceeds a certain bound, here 9 × 105 sec (more than 24 h).
We introduce the datasets and the chosen values for ε and minPts as well as the
choices for L and M, based on the corresponding discussion in Sect. 4 and also the
literature guidelines (e.g., [23] and the reference therein). The default ε values
are shown in italics.

TeraClickLog [33]: Each point in this dataset corresponds to a display ad by
Criteo with 13 integer and 26 categorical features. We use a subset with over 67
million points, free from missing features. Like [33], we only consider the integer
features, and we choose ε from {1500, 3000, 6000, 12000} and minPts 100.

Household [12]: This is an electricity consumption dataset with over two million
points, each being seven-dimensional after removing the date and time features
(as suggested in [12]). Following the practice in [12,33], we scale each feature to
[0,10000] interval and choose ε from {1500, 2000, 2500, 3000} and minPts 100.

GeoLife [36]: From this GPS trajectory dataset, we choose ca 1.5 million points
as selected in [20], containing latitude and longitude with a highly skewed distri-
bution. We choose ε from {0.001, 0.002, 0.004, 0.008} and minPts 500, like [20].
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ε = 0.2π, minPts=100

Fig. 2. Visualizing the rand index accuracy of IP.LSH.DBSCAN as a function of L and M

MNIST: This dataset contains 70000 28× 28-pixel hand-written and labelled 0–9
digits [22]. We treat each record as a 784-dimensional data point, normalizing
each point to have a unit length (similar to [30]). We utilize the angular distance.
Following [29], we choose ε from {0.18π, 0.19π, 0.20π, 0.21π} and minPts 100.

The heat-maps in Fig. 2a–Fig. 2d visualize IP.LSH.DBSCAN’s rand index accu-
racy as a function of L and M. For TeraClickLog (Fig. 2a), {L= 5, M= 5}, {L= 10,
M= 5}, and {L= 20, M= 5} give 0.98, 0.99, and 1 accuracies, respectively. For
Household (Fig. 2b), {L= 5, M= 5}, {L= 10, M= 5}, and {L= 20, M= 5} give
0.92, 0.94, and 0.95 accuracies, respectively. For GeoLife (Fig. 2c), {L= 5, M= 2},
{L= 10, M= 2}, and {L= 20, M= 2} give 0.8, 0.85, and 0.89 accuracies, respectively.
For (Fig. 2d) dataset, {L= 58, M= 9}, {L= 116, M= 9}, and {L= 230, M= 9} give
0.77, 0.85, and 0.89 accuracy, respectively, computed with respect to the actual
labels.

Experiments for the Euclidean Distance

Completion Time with Varying K: Figure 3a, Fig. 3b, and Fig. 3c show the comple-
tion time of IP.LSH.DBSCAN and other methods with varying K on TeraClickLog,
Household, and Geolife datasets, respectively. PDSDBSCAN runs out of memory
on TeraClickLog for all K and on GeoLife for K ≥ 4, and none of HPDBSCAN’s
executions terminate within the 9 × 105 sec threshold. For the reference, in Fig. 3,
the completion time of single-thread VLSHDBSCAN is provided as a caption for
each dataset, except for TeraClickLog as its completion time exceeds 9 × 105

sec. The results indicate the benefits of parallelization for work-load distribution
in IP.LSH.DBSCAN, also validating that IP.LSH.DBSCAN’s completion time behav-
ior is linear with respect to L, as shown in Theorem 1. For higher dimensionality,
challenging the state-of-the-art algorithms, IP.LSH.DBSCAN’s completion time is
several orders of magnitude shorter.

Completion Time with Varying ε: The left Y-axes in Fig. 4a, Fig. 4b, and Fig. 4c
show the completion time of IP.LSH.DBSCAN and other tested methods using 36
cores with varying ε values on TeraClickLog, Household, and Geolife datasets,
respectively. PDSDBSCAN crashes by running out of memory on TeraClickLog
and GeoLife for all ε, and none of HPDBSCAN’s executions terminate within
the 9 × 105 sec threshold. The right Y-axes in Fig. 4a, Fig. 4b, and Fig. 4c show
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Fig. 3. Completion time with varying K. The comma-separated values corresponding to
IP.LSH.DBSCAN and VLSHDBSCAN show L, M, and the rand index accuracy, respectively.
PDSDBSCAN crashes by running out of memory in 3a for all K and for K ≥ 4 in 3c.
In 3a no HPDBSCAN executions terminate within the 9 × 105-sec threshold.
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Fig. 4. Completion time using varying ε with 36 cores. PDSDBSCAN crashes by run-
ning out of memory in 4a and 4c for all ε. None of HPDBSCAN’s executions terminate
within the 9 × 105 sec threshold in 4a. Right Y-axes show IP.LSH.DBSCAN’s rand index.

the corresponding rand index accuracy of IP.LSH.DBSCAN. The results show that
in general the completion time of IP.LSH.DBSCAN decreases by increasing ε. Intu-
itively, hashing points into larger buckets results in lower merge workload. Sim-
ilar benefits, although with higher completion times, are seen for TEDBSCAN.
On the other hand, as the results show, completion time of many classical meth-
ods (such as HPDBSCAN and PDSDBSCAN) increases with increasing ε.

Completion Time with Varying N: The left Y-axes in Fig. 5a, Fig. 5b, and Fig. 5c
show the completion time of the bench-marked methods using 36 cores on vary-
ing size subsets of TeraClickLog, Household, and Geolife datasets, respectively.
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Fig. 6. MNIST results with the angular distance (only IP.LSH.DBSCAN, VLSHDBSCAN,
DBSCAN support the angular distance). 6a shows IP.LSH.DBSCAN’s completion time with
varying K. The left Y-axes in 6b and 6c respectively show IP.LSH.DBSCAN’s completion
time with varying ε and N, using 36 cores. The right Y-axes in 6b and 6c show the
associated accuracy, computed with respect to the actual labels.

PDSDBSCAN runs out of memory on TeraClickLog subsets with N> 0.1 mil-
lion points and GeoLife subsets with N> 1 million points. The results empiri-
cally validate that completion time of IP.LSH.DBSCAN exhibits a linear growth
in the number of data points, complementing Theorem 1. The right Y-axes
in Fig. 5a, Fig. 5b, and Fig. 5c show the corresponding rand index accuracy of
IP.LSH.DBSCAN.

Experiments for the Angular Distance. For significantly high number
of dimensions, as a side-effect of dimensionality curse, the Euclidean distance
among all pairs of points is almost equal [23]. To overcome this, we use angular
distance. We only study methods that support such a distance: IP.LSH.DBSCAN,
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VLSHDBSCAN, and DBSCAN. Here accuracy is calculated against the actual labels.
Figure 6a shows completion time with varying K. The left Y-axes in Fig. 6b
and Fig. 6c respectively show completion time with varying ε and N, using 36
cores. The right Y-axes in Fig. 6b and Fig. 6c show the associated accuracies.
Note IP.LSH.DBSCAN’s completion time is more than 4 orders of magnitude faster
than a sequential DBSCAN and more than 3 orders of magnitude faster than
VLSHDBSCAN. Here, too the results align and complement Theorem 1’s analysis.

Discussion of Results. IP.LSH.DBSCAN targets high dimensional, memory-
efficient clustering for various distance measures. IP.LSH.DBSCAN’s completion
time is several orders of magnitude shorter than state-of-the-art counterparts,
while ensuring approximation with tunable accuracy and showing efficiency
for lower dimensional data too. In practice, IP.LSH.DBSCAN’s completion time
exhibits a linear behaviour with respect to the number of points, even for
skewed data distributions and varying density parameters. The benefits of
IP.LSH.DBSCAN with respect to other algorithms increase with increasing data
dimensionality. IP.LSH.DBSCAN scales both with the size of the input and its
dimensionality.

6 Other Related Work

Having compared IP.LSH.DBSCAN with representative state-of-the-art related
algorithms in Sect. 5, we focus on related work considering approximation. Gan
et al. and Wang et al. in [12,33] proposed approximate DBSCAN clustering
for low-dimensional Euclidean distance, with O(N2) complexity if 2d > N [7].
The PARMA-CC [20] approach is also suitable only for low-dimensional data.
VLSHDBSCAN [27,35] uses LSH for neighbourhood queries. However, the LSH
index creation in IP.LSH.DBSCAN is embedded into the dynamics of the clusters
formation. IP.LSH.DBSCAN iterates over buckets and it applies merges on core-
points that represent bigger entities, drastically reducing the search complexity.
Also, IP.LSH.DBSCAN is a concurrent rather than a single-thread algorithm. Esfan-
diari et al. [10] propose an almost linear approximate DBSCAN that identifies
core-points by mapping points into hyper-cubes and counting the points in them.
It uses LSH to find and merge nearby core-points. IP.LSH.DBSCAN integrates core-
point identification and merging in one structure altogether, leading to better
efficiency and flexibility in leveraging the desired distance function.

7 Conclusions

IP.LSH.DBSCAN proposes a simple and efficient method combining insights on
DBSCAN with features of LSH. It offers approximation with tunable accuracy
and high parallelism, avoiding the exponential growth of the search effort with
the number of data dimensions, thus scaling both with the size of the input and
its dimensionality, and dealing with high skewness in a memory-efficient way.
We expect IP.LSH.DBSCAN will support applications in the evolving landscape of
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cyberphysical system data pipelines to aggregate information from large, high-
dimensional, highly-skewed data sets [14,16]. We also expect that this method-
ology can be used for partitioning data for other types of graph processing and
as such this direction is worth investigating as extension of IP.LSH.DBSCAN.

Acknowledgements and Data Availability Statement. Work supported by SSF grant
“FiC” (GMT14-0032); VR grants “HARE” (2016-03800), “Relaxed Concurrent Data
Structure Semantics for Scalable Data Processing” (2021-05443), “EPITOME” (2021-
05424); Chalmers AoA frameworks Energy and Production, proj. INDEED, and WP
“Scalability, Big Data and AI”. The source code generated for the current study is
available in the Figshare repository https://doi.org/10.6084/m9.figshare.19991786 [19].

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008). https://doi.
org/10.1145/1327452.1327494

2. Andrade, G., Ramos, G.S., Madeira, D., Oliveira, R.S., Ferreira, R., Rocha, L.: G-
DBSCAN: a GPU accelerated algorithm for density-based clustering. In: Interna-
tional Conference on Computational Science. ICCS 2013. Procedia Computer Sci-
ence, vol. 18, pp. 369–378. Elsevier (2013). https://doi.org/10.1016/j.procs.2013.
05.200

3. Arlia, D., Coppola, M.: Experiments in parallel clustering with DBSCAN. In: Sakel-
lariou, R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-Par 2001. LNCS, vol. 2150,
pp. 326–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44681-
8 46

4. Baselice, F., Coppolino, L., D’Antonio, S., Ferraioli, G., Sgaglione, L.: A DBSCAN
based approach for jointly segment and classify brain MR images. In: 37th Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society,
EMBC 2015, pp. 2993–2996. IEEE (2015). https://doi.org/10.1109/EMBC.2015.
7319021

5. Bentley, J.L.: K-d trees for semidynamic point sets. In: 6th Symposium on Com-
putational Geometry, pp. 187–197. ACM (1990). https://doi.org/10.1145/98524.
98564

6. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: 23rd
Conference on Machine Learning. ICML 2006, pp. 97–104. ACM (2006). https://
doi.org/10.1145/1143844.1143857

7. Chen, Y., Tang, S., Bouguila, N., Wang, C., Du, J., Li, H.: A fast clustering algo-
rithm based on pruning unnecessary distance computations in DBSCAN for high-
dimensional data. Pattern Recogn. 83, 375–387 (2018). https://doi.org/10.1016/j.
patcog.2018.05.030

8. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: VLDB 1997, 23rd International Conference on Very
Large Data Bases, pp. 426–435. M. Kaufmann (1997). http://www.vldb.org/conf/
1997/P426.PDF

9. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: 20th Symposium on Computational
Geometry. SCG 2004, pp. 253–262. ACM (2004). http://doi.acm.org/10.1145/
997817.997857

https://doi.org/10.6084/m9.figshare.19991786
https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1007/3-540-44681-8_46
https://doi.org/10.1007/3-540-44681-8_46
https://doi.org/10.1109/EMBC.2015.7319021
https://doi.org/10.1109/EMBC.2015.7319021
https://doi.org/10.1145/98524.98564
https://doi.org/10.1145/98524.98564
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1016/j.patcog.2018.05.030
https://doi.org/10.1016/j.patcog.2018.05.030
http://www.vldb.org/conf/1997/P426.PDF
http://www.vldb.org/conf/1997/P426.PDF
http://doi.acm.org/10.1145/997817.997857
http://doi.acm.org/10.1145/997817.997857


IP.LSH.DBSCAN 283

10. Esfandiari, H., Mirrokni, V.S., Zhong, P.: Almost linear time density level set
estimation via DBSCAN. In: 35th AAAI Conference on Artificial Intelligence AAAI
2021, pp. 7349–7357. AAAI Press (2021). https://ojs.aaai.org/index.php/AAAI/
article/view/16902

11. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: 2nd Conference on Knowledge
Discovery and Data Mining (KDD-96), pp. 226–231. AAAI Press (1996). http://
www.aaai.org/Library/KDD/1996/kdd96-037.php

12. Gan, J., Tao, Y.: On the hardness and approximation of Euclidean DBSCAN. ACM
Trans. Database Syst. 42(3), 14:1–14:45 (2017). https://doi.org/10.1145/3083897
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Abstract. Graph-based data structures have drawn great attention in
recent years. The large and rapidly growing trend on developing graph
processing systems focuses mostly on improving the performance by pre-
processing the input graph and modifying its layout. These systems usu-
ally take several hours to days to complete processing a single graph
on high-end machines, let alone the overhead of pre-processing which
most of the time can be dominant. Yet for most graph applications
the exact answer is not always crucial, and providing a rough estimate
of the final result is adequate. Approximate computing is introduced
to trade off accuracy of results for computation or energy savings that
could not be achieved by conventional techniques alone. In this work, we
design, implement and evaluate GraphGuess, inspired from the domain
of approximate graph theory and extend it to a general, practical graph
processing system. GraphGuess is essentially an approximate graph pro-
cessing technique with adaptive correction, which can be implemented
on top of any graph processing system. We build a vertex-centric pro-
cessing system based on GraphGuess, where it allows the user to trade
off accuracy for better performance. Our experimental studies show that
using GraphGuess can significantly reduce the processing time for large
scale graphs while maintaining high accuracy.
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1 Introduction

Nowadays graph-based data are pervasive, with applications including search
engines, social and biological networks and financial systems. Studies [29] have
pointed out that graph-based data structures constitute more than 25% of all
enterprise data. Graph sizes are increasing rapidly and they consist of billions of
nodes and edges with relatively random patterns, posing significant challenges to
computer systems and architecture. Hence, efficient batch processing or serving
instantaneous interactive queries on these graphs becomes a challenge in the big
data era. Observing this need, several graph processing frameworks [13,14,19]
have been introduced to reduce the programming burden and avoid the need for
extensive optimizations for each and every application.

Most prior graph processing systems try to find the “exact answer" in a
resource-efficient and timely manner. However, in many real world applications
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(especially in the large-scale data analytics domain), the exact answer may not
be necessary all the time, and one can usually tolerate some amount of error. For
example, web search engines are most often interested only in the first few tens
or hundreds of pages of what users are looking for, disregarding the rest [16,17].
Also, in a financial security application where the goal is to find fraudulent
activity patterns, it is good enough to just capture a rough estimate of the
number of times the pattern occurs [9]. Such characteristics of many modern
graph applications can allow the system to trade off accuracy for execution
efficiency. Motivated by this, in this paper, we pursue approximate computing
techniques for a spectrum of graph applications where we strive to provide faster
and more efficient output with high quality results.

The fundamental question in approximation is the relationship between the
amount of data processed and the associated accuracy of the final results. Based
on this relationship, typically, the solutions either run the algorithm on a portion
of data (sampling) or run a part of the algorithm (task skipping, interpolation)
on the entire data, to achieve a reasonable approximation of what actual results
would be. Unlike the other types of data structures, the randomness of graphs
makes it difficult to exploit specific properties in the data that may help isolate
them for conventional sampling and/or subsetting of the processing.

While the system side of graph processing community has been focusing on
running the exact algorithms [6,13–15], the theoretical side has come up with a
large body of graph approximation techniques, which try to provide a mathemat-
ical bound for the solution. Yet such approaches can impose a huge burden on
the programmer to design and implement new and complex graph algorithms.
There exist few prior works aiming at practical aspects when approximating
graph application executions [4,8–10,24]. However, such existing approaches not
only rely on offline preprocessing, which imposes a huge overhead and is unfea-
sible in many cases where the graph structure changes rapidly, but also are not
general and mainly target a limited type of applications.

Motivated by these limitations of prior approaches and ever-growing impor-
tance of graph applications, in this work, we propose GraphGuess, a run-time
adaptive approximation model for graph processing systems which: (i) requires
minimal preprocessing and change to the original graph and applications to
figure out what data to include in the computation; (ii) adapts dynamically
to the graph structure and application at hand; (iii) preserves characteristics
of the original graph and increases the output accuracy; and (iv) significantly
reduces the volume of computation performed compared to the exact graph com-
putation. Although our evaluations are confined to static graphs in this paper,
GraphGuess is certainly applicable to dynamic graphs as well.

2 Graph Processing Systems

2.1 Think Like a Vertex

Traditionally, processing a large graph required significant developer efforts to
design and implement an optimized version of the algorithm. Upon increasing
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interest in the applications with underlying graph-based data structures, this
task has become increasingly more challenging and inefficient. Several general-
purpose graph processing frameworks have been introduced and evaluated in
recent years to improve the programmability of graph applications, focuses
mainly on performance and/or scalability. These frameworks include, but not
limited to, vertex-centric [6,14,15], edge-centric [22], data-centric [20], matrix
operation based [28] and task based [12]. Among all these models, the idea of
“think like a vertex ” or vertex-centric programming model has seen significant
interest and widespread deployment in recent works [7,13,14], and is our model
of choice.

Algorithm 1. An example of vertex-centric algo-
rithm with Gather-Apply-Scatter (GAS) model
1: for each Vertex v do
2: for each incoming Edge e do
3: new_property ← Gather(e)
4: property ← Apply(new_property)
5: for each outgoing Edge e do
6: Scatter(e)

Vertex-centric model is
an iterative approach that
executes a so-called vertex
program that includes one
or more user-defined func-
tions (udf ) for each vertex
in every iteration. To elimi-
nate the overhead of unnec-
essary computations in ver-
tices that have not seen any
updates, the concept of active vertices is employed, where a list of vertices is
maintained to keep the vertices that have received an update in the previous
iteration for sub-setting the processing (i.e., reducing its scope in the next iter-
ation). Gather-Apply-Scatter (GAS) [14] is one of the widely used vertex-centric
models, which consists of three main phases that are executed in each iteration.
First, in the Gather phase, a vertex reads from all incoming edges and reduces
them to a single value. Next, in the Apply phase, a vertex uses the reduced value
to compute its own property. Lastly, in the Scatter phase, each vertex propa-
gates its new value over all out-going edges. A sample program in a vertex-centric
model is shown in Algorithm 1.

2.2 Preprocessing the Graph

While vertex-centric models provide ease of programming, their performance can
still throttle as the graph size increases. However, due to the random nature of
the graph, as the number of edges increases, the system suffers from poor spatial
locality when accessing the vertex properties. Also, a processed (destination)
vertex is unlikely to be processed again before most of the other vertices (low
temporal locality). Hence, the system performance still suffers from an under-
performing cache, and cannot benefit from any known prefetching techniques [2].
Finally, real world graphs are known to follow the power-law distribution and
have skewed degree nodes, which makes synchronization in shared-memory sys-
tems problematic [5]. As a result, many existing frameworks focus on optimizing
the data layout, by preprocessing the graph and reordering the vertices and/or
edges. Preprocessing the graph can improve the locality of the input and increase
the performance at run time. However, altering and rewriting the original graph
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requires several iterations over the entire graph, which may exceed the actual
running time of the application itself, making these methods impractical [18].

2.3 Approximate Analysis

Approximate computing has gained much popularity in big data processing sys-
tems in recent years. Several techniques are used to run the application approx-
imately including, running the application on a smaller portion of the dataset
(“sampling”) or running the program partially on the entire data (“task skip-
ping”). Note that, in either case, there is an underlying assumption that data
are independent and the accuracy will improve (linearly) with more data or more
tasks processed. The same holds true for the area of hardware-based approxima-
tion [11] as well, where data representation is approximated (e.g., via quantiza-
tion) in favor of performance, bandwidth, storage, or power gains.

Fig. 1. (a) Sparsifying with uniform sam-
pling with σ = 0.5. (b) Example of Dumb-
bell, where random uniform sampling may
end up not choosing e.

Reducing the size of the input
graph or skipping part of the process
are promising solutions for certain
problems in graph processing. How-
ever, unlike other types of data struc-
tures, there is a dependency between
data elements (vertices) in the graph,
where an error in a single vertex
(as a result of approximation, for
example) can propagate to the entire
application. There have been several
works in the theory community on
graph approximation algorithms [1,
3,17,21,27]. In most cases, the pro-
posed approximation algorithms are
variants of the corresponding origi-
nal algorithms, with proper changes
to reduce their running times, while bounding the error through randomization.
However, since such approaches are very “algorithm-specific”, they are not read-
ily applicable in existing general graph processing systems that are used today
to run a wide variety of applications.

Generating a smaller graph or graph summarization techniques are intro-
duced to speed up graph processing. Among these methods, sampling, similar to
approximate analysis, is one key idea in theoretical graph approximation, com-
monly referred to as graph sparsification. In this approach, a set of edges (or
vertices) are selected randomly from the original graph, to reduce the amount
required processing. A parameter determines the degree of sparsification, and the
accuracy of the result depends on this parameter. An example of random uni-
form sampling is illustrated in Fig. 1(a). Apart from sparsification, other graph
summarization techniques such as graph sketching [23] and graph compression
[4,25] have been proposed in recent years. In addition, a few graph approxima-
tion frameworks have been developed to alleviate the performance bottleneck of
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large graph processing [9,10,24]. Shang et al. [24] propose an automatic approx-
imation for graph computing, which targets compiler-level optimization rather
than runtime system optimization. ASAP [9] targets approximate graph pattern
mining (finding pattern in graphs). More recently, V-Combiner [8] is proposed
with a similar goal as graph sketching techniques. V-Combiner consists of an
initial step to create an approximate graph with fewer vertices (and edges) and
a delta graph to use during the recovery phase in order to compute the output
for missing vertices. Similar to the previous methods, this technique depends on
building a couple of new graphs, which means a large memory burden in addition
to the preprocessing overhead.

2.4 When Graph Approximation Fails

While sparsification reduces the graph size, the reduced graph may not neces-
sarily preserve all essential properties of the original graph which are critical
for the target application. One such problem can be seen in Fig. 1(b), which is
referred to as the “dumbbell graph”. In this case, uniform sampling can omit
edge e which attaches the two parts of the graph, leading to serious errors in the
algorithms that rely on this edge (e.g., graph connectivity). To make sure that
edge e is chosen, one may need to sample several times, which is usually quite
inefficient and makes random uniform sampling error prone. Spielman et al. [27]
proposed a sparsification technique based on the degree of the nodes. However,
this method may also fail in some scenarios [26].

Fig. 2. General timeline of executing a program on graph processing systems.

To solve the problem of leaving out very important edges when sampling,
Spielman et al. [26] use importance for edges or “effective resistance” that is taken
into account when sparsifying the graph. In a graph, the effective resistance of an
edge e is equal to the probability that the edge e appears in a random spanning
tree. Although a quite powerful metric, computing effective resistance for all
edges in a given large graph can introduce excessive overheads at preprocessing
time [8,27].

In Fig. 2, we show the timeline of running several graph approximation tech-
niques for an algorithm on a relatively large graph (we scale the figure for better
presentation). Clearly, graph summarization and V-Combiner are still suffering
from the same type of problem, where the additional overhead is justifiable if
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the algorithm runs for a large number of iterations. In this paper, inspired by
the existing works in graph theory, we introduce GraphGuess, which requires
minimal preprocessing, with no need for a new graph. The performance ben-
efits of GraphGuess come mainly from reduced number of edges, which has
been shown as a main factor in slowing down the graph processing systems [8–
10,24], while its higher accuracy is due to adaptive correction. Furthermore,
GraphGuess provides flexibility that allows integration with all types of graph
algorithms and requires minimal changes to the front-end applications.

3 GraphGuess

3.1 Programming Model

The programming model used in GraphGuess is closely similar to that in the
vertex-centric model discussed earlier in Sect. 2. Such a design makes our frame-
work significantly easier to adapt to the existing applications. Here, for the
sake of simplicity, we use pull-based vertex-centric model. Note however that
GraphGuess is not limited to any specific underlying model and can be easily
adapted to the others. The functions defined in the GraphGuess programming
interface and their descriptions are provided below, alongside an example of
PageRank implementation using this interface shown in Algorithm 2.

– GG-Gather: Gathers property from incoming edges in each iteration and
computes a local function. The red line here is the minimal change required
in user-program introduced by GraphGuess.

– GG-Apply: Applies the newly calculated property to a given vertex.
– GG-VStatus: Checks the convergence criteria based on the old and new

values and activate the vertex.

3.2 Tracking the Edge Influence

Fig. 3. The edge influence for 3 iterations on (a) PageRank and (b) SSSP

To avoid the high preprocessing overheads, GraphGuess tries to find the
importance of edges dynamically at runtime using the concept of edge influence.
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Algorithm 2. PageRank using GraphGuess API

1: procedure gg-gather(vertex u, vertex v)
2: old_value ← u.property
3: u.property ← v.property

v.degree + u.property
4: return u.property - old_value

u.property � Return the Edge Influence

5: procedure gg-apply(vertex u, value property)
6: u.old_property ← u.property
7: u.property ← (1−d)

N + d × property

8: procedure gg-vstatus(vertex u)
9: if |u.old_property − u.property| > ε then u.active ← True

10: else u.active ← False

11: procedure gg-estatus(edge e, value influence, value threshold)
12: if influence > threshold then e.active ← True
13: else e.active ← False

In each iteration, the calculations at a given vertex are impacted by the “influ-
ence” of the edges, i.e., a function of the property of other end vertices. If one
could track this importance (edge influence), it would be possible to dynamically
figure out whether that edge should continue to be used in subsequent iterations
as well. This is also a natural way to exploit user-defined functions that get com-
puted at each vertex, rather than artificially try to identify the importance of the
edges offline. In other words, regardless of the type of the algorithm (distance,
value propagation, etc.) GraphGuess would be able to automatically extract
the edge influence information. To achieve this flexibility, one can slightly mod-
ify the GG-Gather() function in the vertex-centric model from Algorithm 2 to
capture the influence of each edge (Line 4). This additional information can be
passed through to the main method in the processing system, and be used for
the future iterations, details of which will be discussed later in Sect. 3.3.

Figure 3(a) illustrates the edge influence for all edges in a small, synthetically-
generated graph running PageRank algorithm for 3 iterations (one figure for each
iteration), using the modified GG-Gather() in Algorithm 2. As shown, those
edges which provide higher influence would continue to have higher impact in
future iterations as well. Thus, one can eliminate the edges that are not con-
tributing significantly to the final result, to reduce the number of processed
edges within each iteration. This technique has been previously proposed in the
work by McSherry [16] as an optimization “solely” for the PageRank algorithm.
While PageRank showed a relatively non-changing edge influences across itera-
tions, that may not necessarily be the case in other applications. For instance,
Fig. 3(b) shows the edge influences for the SSSP algorithm in which not all ver-
tices are active all the time, as it is a traversal algorithm. Consequently, the
edge influence values depend not only on their source and destination, but also
on the iteration. As mentioned before, the criteria for determining “importance”
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will itself vary, in general, across applications. As a result, a single criteria may
not suffice for tracking edge importance, and it is much more practical to let the
user determine the criteria as part of the programming exercise.

3.3 Runtime Modes

While the vertex (user) program for GraphGuess requires minor changes, the
underlying processing system in GraphGuess, which is completely oblivious to
the developers, still needs a few modifications to accommodate the approximate
computing capability. One of our main goals in GraphGuess is to avoid any
unnecessary preprocessing and building new graphs. Hence, we include a flag for
each edge in the graph to determine if the edge is active or not. Next, we define
the following two running modes for GraphGuess.

– Accurate Mode: This is the default setting, where each vertex reads data
from all incoming edges (regardless of their active flag) and executes the
corresponding functions.

– Approximate Mode: Each vertex only reads and processes data from its
“active” incoming edges and disregards the rest.
In the approximate mode, each vertex deals with fewer edges, thereby reduc-

ing the total number of processed edges and less processing time. However, this
also means that vertices do not have access to the edge influence values for
those inactive edges. To figure out whether those missing edges continue to be
immaterial in the computation, we define the concept of a superstep, in which
the system switches back to the accurate mode, enabling each vertex to pull
information from all its incoming edges.

3.4 Adaptive Correction

In GraphGuess, the system starts in the approximate mode where a subset of
edges is deactivated, similar to graph sparsification, discussed in Sect. 2.4. A con-
trol parameter, σ (sparsification parameter) controls the number of active edges,
with a higher value of σ indicating more active edges. We want to emphasize
that the overhead of this part is negligible and in fact it can be done while load-
ing the graph into the system. The system continues in the approximate mode
for α iterations (approximate window), and then performs a superstep, where it
transitions to the accurate mode to adaptively correct the initial edges selection.
At the end of a superstep, GraphGuess can determine and activate new “qual-
ified” edges, based on the computed edge influence and a threshold θ (influence
threshold). This is done in a user defined function, GG-EStatus(), example of
which is shown in Algorithm 2. The process continues in the next iteration with
all activated edges.

This approach can be seen as a coarse-grain active list technique introduced
in the original vertex-centric model. However, here, in addition to activating
vertices based on their property change, for each vertex, its edges are activated
based on the edge influence computed in the superstep. Furthermore, we drop
the edges with minimal influence to reduce the number of processed edges in the
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system. We only pick the edges that meet the influence threshold (θ), and discard
the rest. That is, after performing a superstep, GraphGuess only activates the
qualified edges and deactivate the rest, regardless of whether they were active
before or not. Figure 4 illustrates the Vertex Point of View (VPV ) evolution
time-line of this approach, by showing the number of edges processed across
iterations for a single vertex.

Fig. 4. Time-line of running GraphGuess

In a large graph, performing
a single superstep iteration may
not suffice to capture the changes
that gradually ripple through the
graph. Motivated by this obser-
vation, we propose to use peri-
odic supersteps in GraphGuess
and control the frequency using
the same approximate window
parameter. More specifically, α controls how long it takes before another super-
step should take place, as shown in Fig. 4 2 . Note that, a smaller value of
α means more frequent superstep executions and results in better accuracies;
however, it also imposes higher overheads on the system. While one could have
different parameters for controlling the first superstep and their recurrence, and
vary them through the course of running the algorithm, we find that using the
same parameters provides a good enough accuracy-performance trade-off.

4 Applications and Error Criteria

4.1 Applications and Datasets

As discussed before, GraphGuess is application domain agnostic and can work
with any target application. Most current graph benchmark suites include popu-
lar graph algorithms, including graph traversal, property computing, and pattern
mining. Based on that and due to limited space, we selected Single Source Short-
est Path (SSSP), Weakly Connected Components (WCC) Page Rank (PR),
and Belief Propagation (BP). We also chose a wide variety of graph workloads:
Wikipedia (WP), LiveJournal (LJ), Twitter (TW) and Friendster (FS).

Fig. 5. The impact of GraphGuess parameters on the accuracy and speedup of the
system running on Wikipedia. The left y-axis shows the accuracy and the right y-axis
shows the speedup and the x-axis represents the value of the parameter. (Color figure
online)
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4.2 Error Metrics

Unlike non-graph based approximations where determining the error is relatively
straightforward, defining error metrics in approximated graph applications is not
trivial. Consider PageRank for instance, where the algorithm itself includes a
control knob for error (convergence rate), which can also be used for evaluating
the approximated output. At the same time, since the intention of PageRank is
to relatively rank the pages, absolute values for the rank may not matter too
much. Consequently, in the following we explore different evaluation metrics.

• Top-K Error: (used for PR and BP) Similar to [17] this metric is defined
as the fraction of vertices in the top-k ranks of approximated output that are
not in the top-k ranks of the accurate output.

• Relative Error: (used for WCC) The relative error is the ratio of the differ-
ence between the accurate and the approximate value to the accurate value.

• Stretch Error: (used SSSP) Borrowed from graph theory, the stretch factor
is applicable in most distance-based graph applications and defined as the
ratio of the approximated value to the accurate value for each vertex.

For the sake of better representation, in all of our evaluations we use accuracy,
ranging from 0% to 100%, which is defined as (1− error)× 100.

5 Experimental Evaluations

Implementation and Setup: We implemented GraphGuess on top of a
vertex-centric graph processing platform in C++ and parallelized using the
shared memory API OpenMP. Note that, in principle, GraphGuess can be
integrated into any other graph processing system (including those with a pre-
processing mechanism), with minimal changes in the API. We use the accurate
execution as the baseline, and measure the speedup and accuracy compared to
this baseline. For a fair comparison, we also implemented the user functions
for all of our benchmark applications for GraphGuess and all other baselines.
In all our experiments, unless otherwise stated, we run the experiment for the
same number of iterations five times and report the mean value for the metrics.
To determine the effective performance of GraphGuess, we only measure the
execution time of processing and pre-processing parts of the application.

5.1 Sensitivity to Control Parameters

To examine the impact of the control parameters on the overall system efficiency
and accuracy of GraphGuess, we conduct several experiments and present the
results in Figs. 5. These figures capture the relationship between different values
of control parameters (x-axis) and speedup on the right y-axis (red line) and
accuracy on the left y-axis (blue bars) compared to the accurate baseline. In
each setting, we fix all other control parameters and selectively vary the desired
parameter (indicated on the bottom of each figure) to observe its effect. We ran
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the applications on Wikipedia dataset for a fixed number iterations to get a fair
comparison. Due to space constraints, we show the results only for PageRank
and SSSP in one instance.

Figure 5(σ) plots the speedup-accuracy comparison, for different values of
the sparsification parameter (σ). The value of σ is varied from 0.1 to 0.9 in 0.1
increments, where 0 represents the case where no edge is active and 1 represents
the case where all edges are active. Clearly, one can expect better accuracy from
the system when σ has a higher value, but at the same time the performance
would be degraded. Figure 5(σ) confirms this expectation, and with σ = 0.1 the
accuracy is about 40% with speedup up to 3×, whereas with a higher value
σ = 0.9, the accuracy increases significantly while the performance improvement
ending up being as good as the accurate mode.

The influence threshold or θ, can also affect both accuracy and speedup, as
demonstrated in Fig. 5(θ). More specifically, a lower value of θ makes it eas-
ier for an edge to get activated – as a result the system processes more edges
and achieves higher accuracy. On the other hand, with higher threshold val-
ues, the edges are only being activated if they make significant influence at the
supersteps, thus, the system in this case trades off accuracy for performance.
Figure 5(θ) also reveals that, when θ is changed from 0.05 to 0.5 both perfor-
mance and accuracy change significantly, whereas a change of threshold from
0.5 to 0.8 has a relatively low impact on the performance, while resulting in less
accuracy, due to limited number of processed edges.

Figure 5(α − PR) plots the impact of changing the value of α (superstep
frequency) for the PageRank algorithm. Earlier in Fig. 3(a), we saw that for
PageRank, the distribution of edge influence is more or less uniform throughout
the execution of the algorithm. As a result, the specific starting point (or fre-
quency) for a superstep does not affect the accuracy in any significant way. It
can be seen here that changing α does not affect the accuracy considerably, com-
pared to the previous results, while doing so can change the speedup. However,
this is not always the case, especially when the algorithm traverses the graph
and vertices get activated later.
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Fig. 6. Accumulated parameter anal-
ysis to determine fair value for control
parameters.

An example of such behavior is in the
SSSP algorithm, the results of which are
given in Fig. 5(α − SSSP ). Previously,
Fig. 3(b) showed that, in this application,
the edge influences do not follow the same
pattern throughout the time; hence, the
time at which a superstep is performed
matters more than the PageRank case. It
can be concluded from this figure that the
different values of α impact both error and
performance considerably. In general, to
handle all types of application behaviors
in GraphGuess, we use the combination of control parameters σ, θ, and α.



296 M. Ramezani et al.

80 85 90 95
1.00

1.25

1.50

1.75

2.00

P
R

Wikipedia

SP GG SMS Ideal

80 85 90 95 100

1.0

1.5

2.0

LiveJournal

92 94 96 98 100

1.00

1.25

1.50

1.75

Twitter

92 94 96 98 100

1.00

1.25

1.50

1.75

Friendster

70 80 90 100

1.00

1.25

1.50

1.75

SS
SP

85 90 95 100

1.0

1.2

1.4

80 90 100

1.0

1.2

1.4

1.6

1.8

80 90 100

1.0

1.2

1.4

1.6

90.0 92.5 95.0 97.5 100.0

1.0

1.5

2.0

B
P

92 94 96 98 100

1.0

1.5

2.0

94 96 98 100

1.0

1.5

2.0

2.5

92 94 96 98 100

1.0

1.5

2.0

87.5 90.0 92.5 95.0 97.5

1.25

1.50

1.75

2.00

W
C
C

85 90 95

1.2

1.4

1.6

1.8

2.0

90 92 94 96 98 100

1.2

1.4

1.6

1.8

94 96 98 100

1.4

1.6

1.8

Fig. 7. Speedup (y-axis) vs accuracy (x-axis) for three different running modes with
various control parameters. For better visibility, we combined closer points into larger
filled area. The ideal spot is only marked in the first figure and same for all applica-
tions/dataset.

5.2 Evaluation of Performance and Accuracy

To select the best parameters for our evaluations we refer to our earlier obser-
vation in Sect. 5.1. Figure 6 demonstrates the accumulated speedup-vs-accuracy
for various configurations for PageRank on Wikipedia dataset. To save space,
we only show PageRank in this figure, however we can see a similar pattern.
Here, the x-axis represents the accuracy and the y-axis shows the speedup over
the baseline. We sweep through various values for each control parameter in
GraphGuess (σ, θ, and α) and report the results as points in these figures.
To achieve a reasonable improvement-error ratio (while eliminating the overhead
of finding optimal values), we target about 90%–95% accuracy which has been
shown to be an acceptable range in several previous graph approximation studies
[8,17,24]. Our experimental studies reveal that there exists a set of parameters
in GraphGuess that can satisfy this goal (though may not be the ideal setting
for either speedup or accuracy for all applications). Therefore, for our experi-
ments discussed below, we selected the parameters within the red circle for all
other workloads and applications.

We compare the speedup and accuracy of GraphGuess against a base-
line, which is the traditional “accurate” vertex-centric system. In addition,
to assess the need for mode switching (between approximate vs accurate) in
GraphGuess, we introduce two static schemes which are special cases of
GraphGuess. The first scheme is a variant of graph sparsification, referred to
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as SP henceforth, where the application starts by deactivating the edges based
on the parameter σ, and continues processing in this mode until the end. Note
that, unlike previous studies [4,8], there is no need to build a new graph and we
use the underlying GraphGuess framework to process the graph. The second
scheme, Static Mode Switch(SMS ), uses a combination of the approximate and
accurate modes. Similar to SP, this scheme starts in approximate mode, however
after performing a superstep it stays in the accurate mode for the remaining
iterations.

Figure 7 compares the performance-accuracy trade-off in three aforemen-
tioned schemes (SP, SMS, and GG) for all four applications and datasets. We
use a similar setting as Fig. 6, where the x-axis shows the accuracy and the y-axis
represents the speedup. However, for better visibility here, we apply the kd-tree
algorithm on the points for each scheme and cluster closer points into a larger
filled areas. Note that a larger area captures the fact that more points ended up
in the corresponding region. We also show the ideal spot (our goal), with a gold
star in PR (Wiki), where the speedup and accuracy are the highest.

In the case of PR and BP, we see that using SP achieves a significantly higher
speedup, but the accuracy is lower, due to the missing edges. Using SMS, the
performance improvement is limited, depending on when we switch back to the
accurate mode. Clearly, SMS achieves high accuracy, but there is no promising
performance improvement over the baseline. For instance, the accuracy of SP on
Twitter dataset is closer to that of SMS, due to its higher density. Whereas, on
more sparse graphs like LiveJorunal, using SP ends up in a lower accuracy. On
the contrary, when using GG, we can see higher speedups with accuracy coming
closer to that of SMS.

In SSSP, SP performs well in terms of speedup, and its resulting accuracy is
lower compared to the other two schemes. That is, the missing edges in SP can
exacerbate the error, since the error from one node can propagate to many other
nodes. SMS achieves a higher accuracy in SSSP compared to SP, as expected;
however, the accuracy can vary depending on the start of the accurate mode.
This also can hinder the performance of the SMS scheme. In comparison, GG
brings the best of both worlds, and helps us achieve an accuracy which is very
similar to that of SMS, and a performance which is very close to that of SP.

Table 1. Comparison of speedup (Spd) and accuracy (Acc) between GG and others

Alg (Dataset) PR (LJ) PR (TW) PR (FS) BP (LV) BP (TW) BP (FS) AVG

GG
Spd (×) 1.64 1.49 1.66 1.68 1.85 1.62 1.66

Acc (%) 94.32 98.12 94.74 96.69 98.08 95.29 96.20

SP
Spd (×) 1.74 1.54 1.81 1.83 1.94 1.81 1.78

Acc (%) 89.21 94.84 92.19 93.13 97.57 93.64 93.43

VC
Spd (×) 1.45 1.34 1.12 1.20 1.16 1.29 1.26

Acc (%) 87.15 95.36 91.63 94.41 97.91 93.41 93.31
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In WCC, the vertex property is defined as the Connected Component ID of
the vertex residing in. Consequently, the influence estimate is a binary decision
– whether the ID is changed or not. This implementation of WCC application
forces the influence values to be either 0 or 1. Hence GG and SMS end up
exhibiting the same behavior; so, we only show GG in this figure. As can be
observed in Fig. 7, GG performs much better (as far as error is concerned) com-
pared to SP, with a lower speedup. This also proves that GG is more flexible
in terms of application, and can be applied in various settings depending on the
need.

Overall Performance and Accuracy: We compare the speedup and accu-
racy values achieved by GraphGuess against a recent approximate graph pro-
cessing system, V-Combiner [8]. While in this paper we are aiming at mini-
mal pre-processing, we include V-Combiner due to its lower overhead compared
to the alternative methods. Note also that V-Combiner only supports specific
types of graph applications such as PR and BP, while GraphGuess can support
any graph algorithm implemented on current graph processing systems. We also
include sparsification (SP) as a special case of GraphGuess without adaptive
correction, as discussed earlier in Sect. 5.2.

Table 1 shows the speedup and accuracy for GraphGuess, Sparsification,
and V-Combiner, on PR and BP, using three different datasets on top 10
best configurations. It is to be noted that V-Combiner does not support
SSSP and WCC. From this experiment, we observe that Sparsification has the
best speedup, close to 72% on average, at the cost of lower accuracy. How-
ever, V-Combiner suffers from lower speedup due to mandatory pre-processing,
which involves additional graphs creation and the recovery phase. The perfor-
mance gain of V-combiner on average is about 26% compared to the base-
line, while it maintains an acceptable accuracy. Finally, our proposed approach,
GraphGuess, closes the gap between these two with a speedup of up to 85%
and 58% on average, while maintaining a higher accuracy compared to the other
two methods.

6 Concluding Remarks

This paper presents GraphGuess, a novel attempt at approximating graph
processing with a simple extension to current APIs. Inspired by the ideas from
graph theory and approximation analysis, GraphGuess implements an adap-
tive approximate graph processing strategy that requires no time-consuming pre-
processing and can be applied to any graph processing system. GraphGuess
preserves the main characteristics of the graph using adaptive correction and
provides sufficient flexibility in modulating different control parameters. In this
work, we vary these control parameters to achieve performance-accuracy trade-
offs, and our experimental studies show that GraphGuess achieves up to 1.85×
speedup while maintaining high accuracy compared to an accurate baseline.
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Abstract. Balanced hypergraph partitioning is a classical NP-hard
optimization problem with applications in various domains such as VLSI
design, simulating quantum circuits, optimizing data placement in dis-
tributed databases or minimizing communication volume in high perfor-
mance computing. Engineering parallel partitioning heuristics is a topic
of recent research, yet most of them are non-deterministic. In this work,
we design and implement a highly scalable deterministic algorithm in
the parallel partitioning framework Mt-KaHyPar. On our extensive set
of benchmark instances, it achieves similar partition quality and per-
formance as a comparable but non-deterministic configuration of Mt-
KaHyPar and outperforms the only other parallel deterministic algo-
rithm BiPart regarding partition quality, running time and speedups.

1 Introduction

The goal of hypergraph partitioning is to divide the vertices into k blocks of
bounded size while minimizing the sum of the number of blocks connected by
each hyperedge. Heuristic algorithms are used in practice since the problem is
NP-hard. There has been a huge amount of research on partitioning, but in recent
years, the interest in parallel algorithms has surged due to ever growing problem
sizes. With the exception of BiPart [16], these algorithms are non-deterministic.
Researchers have advocated the benefits of deterministic parallel algorithms for
several decades [1,21], including ease of debugging, reasoning about performance,
and reproducibility. While some strive for deterministic programming models,
we want to leverage randomized scheduling for better performance and thus
pursue deterministic algorithms. The goal of this work is to design, implement
and evaluate a scalable and deterministically parallel hypergraph partitioning
algorithm with state-of-the-art solution quality.

Multilevel Partitioning. The most successful approach for partitioning is the
multilevel framework. In the coarsening phase the hypergraph is repeatedly
contracted (based on vertex clusterings) until it is small enough to compute
an initial partition with slower algorithms. In the refinement phase, this par-
tition is projected through the hierarchy and locally improved on each level.
Mt-KaHyPar [10] adds a preprocessing phase based on community detection to
c© Springer Nature Switzerland AG 2022
J. Cano and P. W. Trinder (Eds.): Euro-Par 2022, LNCS 13440, pp. 301–316, 2022.
https://doi.org/10.1007/978-3-031-12597-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12597-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-12597-3_19
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the coarsening phase. Contractions are restricted to vertices in the same com-
munity to avoid destroying small cuts [14].

Non-determinism in Local Moving. Typical algorithms for community detec-
tion, clustering coarsening and refinement are so-called local moving algorithms:
given an initial assignment of vertices to groups, visit vertices in random order
in parallel, and improve the solution by greedily moving vertices when they are
visited. Since vertices are moved right away, the local optimization decisions
depend on non-deterministic scheduling decisions. Our approach to incorporate
determinism is based on the synchronous local moving approach of Hamann
et al. [13] to parallelize the Louvain community detection algorithm [2] on dis-
tributed memory. Instead of performing moves asynchronously, vertices are split
into sub-rounds – using deterministically reproducible randomness. The best
move for each vertex in the current sub-round is computed with respect to the
unmodified groups. In a second step, some of the calculated moves are approved
and performed, and some are denied, for example due to the balance constraint.

Contribution. We propose three deterministic parallel local moving algorithms:
for the preprocessing, coarsening and refinement phases of Mt-KaHyPar. The
algorithmic novelty lies in the details of the approval steps. For example, the
refinement approval uses a merge-style parallelization to incorporate non-unit
weights. Our algorithm achieves good speedups (28.7 geometric mean, 48.9 max
on 64 threads) and similar solution quality as its non-deterministic counterpart
(as expected slightly worse overall though). We investigate potential causes for
this cost of determinism, finding that the coarsening phase is the most affected.
Our algorithm outperforms BiPart regarding solution quality, running time and
parallel speedups on 98% of the instances.

The paper is organized as follows. In Sect. 2, we introduce concepts and
notation. Subsequently, we describe our algorithmic components and the imple-
mentation in Sect. 3. In Sect. 4, we analyze the algorithm experimentally via a
parameter study and comparison with existing algorithms, before concluding
the paper in Sect. 5. Related work is referenced throughout the paper, without
a dedicated section.

2 Preliminaries

By [m] we denote the set {0, 1, . . . ,m − 1} for a positive integer m. We use
Python-style slicing notation A[i : j] to denote sub-arrays from index i up to
(excluding) index j.

Hypergraphs. A weighted hypergraph H = (V,E, c, ω) is a set of vertices V and
a set of hyperedges E with vertex weights c : V → N and hyperedge weights
ω : E → N, where each hyperedge e is a subset of the vertex set V . The vertices
of a hyperedge are called its pins. A vertex v is incident to a hyperedge e if
v ∈ e. I(v) denotes the set of all incident hyperedges of v. The degree of a vertex
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v is d(v) := |I(v)|. The size |e| of a hyperedge e is the number of its pins. By
N(v) := {u ∈ V | I(u) ∩ I(v) �= ∅} we denote the neighbors of v. We extend c
and ω to sets in the natural way c(U) :=

∑
v∈U c(v) and ω(F ) :=

∑
e∈F ω(e).

A graph is a hypergraph where each edge has size 2. We use the terms nodes
and edges when referring to graphs, and vertices, hyperedges and pins when
referring to hypergraphs.

Partitions. A k-way partition of a hypergraph H is a function Π : V → [k] that
assigns each vertex to a block (identifier) i ∈ [k]. We call Π ε-balanced if each
block Vi satisfies the balance constraint : c(Vi) ≤ Lmax := (1+ε)�c(V )/k	 for some
parameter ε ∈ (0, 1). For each hyperedge e, Λ(e) := {Vi | Vi ∩ e �= ∅} denotes the
connectivity set of e. The connectivity λ(e) of a hyperedge e is λ(e) := |Λ(e)|.
A hyperedge is called a cut hyperedge if λ(e) > 1. Given parameters ε, and
k, and a hypergraph H, the hypergraph partitioning problem is to find an ε-
balanced k-way partition Π that minimizes the connectivity metric (λ−1)(Π) :=∑

e∈E(λ(e) − 1) ω(e). We use the term solution quality for connectivity metric
in the experiments. In order to avoid confusion later on, note that, while these
concepts are defined as functions, the pseudocodes in this paper treat them as
data that are modified as the algorithms iteratively change the partition. A
clustering (or set of communities) C is a partition without a restriction on the
number of blocks.

3 Deterministic Parallel Multilevel Partitioning

In this section, we describe our algorithms. The structure follows the order of
the multilevel framework. We introduce the community detection preprocessing
in Sect. 3.1, the coarsening in Sect. 3.2, and the refinement in Sect. 3.4.

3.1 Preprocessing

The preprocessing phase detects communities in the hypergraph that are used
to guide the coarsening process by restricting contractions to vertices in the
same community, as proposed in [14]. We perform community detection on the
bipartite graph representation with some modified edge weights to handle large
hyperedges. The bipartite graph representation G = (VG, EG) of a hypergraph
H = (V,E) has the vertices and hyperedges as nodes, and an edge for every
pin connecting the vertex and hyperedge. Since this also assigns hyperedges to
communities, we restrict the communities to the vertices. The edge weights are
set to w′(v, e) := ω(e)|I(v)|

|e| or w′(v, e) := ω(e) for pin v ∈ e and hyperedge e ∈ E,
depending on the density of the hypergraph as described in [14].

Modularity Objective. We heuristically maximize the well-known modular-
ity objective using a synchronous parallel version of the popular Lou-
vain algorithm [2]. The modularity of given communities C is Q(C) :=
cov(C) − ∑

C∈C vol(C)2/vol(VG)2. Here, the coverage cov(C) :=
∑

C∈C
∑

u∈C



304 L. Gottesbüren and M. Hamann

∑
v∈C∩N(u) w′(u, v)/ vol(VG) is the fraction of edge weights inside commu-

nities. The volume vol(u) :=
∑

v∈N(u) w′(u, v) is the sum of incident edge
weights of a node (counting self-loops twice), which is extended to node-sets
vol(X) :=

∑
u∈X vol(u).

Louvain. The Louvain algorithm starts with each node in its own community. In
a round, it visits each node in a random order and greedily maximizes modular-
ity by possibly moving the node to the community of a neighbor. After a fixed
number of rounds or if no node has been moved in the last round, the commu-
nities are contracted and the algorithm is applied recursively to the contracted
graph. This continues until no node has been moved on a level, at which point
the community assignment is projected to the input graph.

The gain (modularity difference) of moving a node from its current com-
munity to a neighboring community can be computed purely from the weight
of incident edges to the target or current community, as well as their volumes.
Therefore, it suffices to store and update the volume for each community, and
compute the weights to the communities by iterating once over the neighbors of
the node.

We randomize the visit order by dividing nodes into random sub-rounds. For
each sub-round we calculate the best move for each node in parallel, but only
apply volume and community assignment updates after synchronizing.

Volume Updates. One intricacy with updating the community volumes is that
adding floating point numbers is not associative, and thus the previous app-
roach [10,20] of applying all updates in parallel with compare-and-swap instruc-
tions is non-deterministic. Instead, we have to establish an order in which the
volume updates of each community are aggregated. For this, we collect all nec-
essary updates in a global vector, which we lexicographically sort by community
(primary key) and node ID (secondary key). Applying the updates is done in
parallel for different communities. To reduce the sorting overhead we split the
updates into two vectors (addition and subtraction) which are sorted indepen-
dently in parallel, but applied one after another.

To analyze the work and depth, let V ′
G denote the nodes in a sub-round.

The work is
∑

u∈V ′
G

deg(u)+ |V ′
G| log(|V ′

G|). The depth is linear in the maximum
number of moves in or out of a community (sequential volume updates) and the
maximum degree maxu∈V ′

G
(deg(u)) for calculating modularity gains, plus the

depth of the sorting algorithm. This is usually poly-logarithmic in |V ′
G|, but tbb’s

quick-sort implementation uses sequential partitioning, and thus is linear. We
tested a supposedly better sorting algorithm but did not achieve an improvement.
The number of moves and degree linear terms in the depth may be reduced to
poly-logarithmic by parallelizing the per-vertex gain calculation (parallel for loop
over neighbors, atomic fetch-add for weight to neighbor clusters) and aggregating
updates within a community in parallel with a deterministic reduce. However,
in practice the outer level of parallelism is sufficient.
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Algorithm 1: Compute Heavy-Edge Rating
Input: vertex u ∈ V
candidates ← ∅
for e ∈ I(u) do

for v ∈ e do
if community[u] = community[v]

if rating[C[v]] = 0
add C[v] to candidates

rating[C[v]] += ω(e)/|e|
for C ∈ candidates do

if weight[C] + c(u) ≤ CWmax and rating[C] > best rating
store C as best candidate

rating[C] ← 0
return best candidate

3.2 Coarsening

After performing community detection on the bipartite graph representation,
we proceed to contracting the actual hypergraph. In the coarsening phase we
keep performing coarsening passes over the vertices until only a few vertices
remain. We choose this contraction limit CL = 160 · k dependent on k, as
in [10]. In each coarsening pass, we perform one round of local moving and then
contract the resulting clusters. The objective function for the clustering is the
commonly used [10,22] heavy-edge rating function r(u,C) :=

∑
e∈I(u)∩I(C)

ω(e)
|e|−1

which rewards heavy hyperedges between a vertex u and a potential target clus-
ter C, but penalizes large hyperedges.

Initially, the clustering C is a singleton clustering, i.e., each vertex is in its
own cluster. For each vertex u in a sub-round, we store the best target clus-
ter according to the rating function in an array of propositions P. Algorithm 1
shows pseudocode for calculating the ratings and Algorithm2 shows pseudocode
for one coarsening pass over the vertices. First, we aggregate the ratings in a
sparse array indexed by cluster ID and store the potential candidates in a dense
vector, before we select the highest-rated candidate and reset the ratings. To
save running time, and since their contribution to the rating function is small,
we skip hyperedges with size > 1000. This ensures that at most O(|I(v)|) time is
spent for vertex v (though the constant is large) instead of O(

∑
e∈I(v) |e|), which

leads to work linear in the number of pins per coarsening pass to compute target
clusters. If there are multiple candidates with the same rating, we pick one uni-
formly at random – to achieve deterministic selection we use a hash-and-combine
function seeded with u as a random number generator. In Algorithm1, we could
theoretically parallelize the iteration over neighbors by using atomic fetch-and-
add instructions for aggregating the ratings. The check rating [C[v]] = 0 can be
faithfully implemented because the atomic instruction returns the value imme-
diately prior to its execution. However, in practice the outer level of parallelism
over the vertices is again sufficient.
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Algorithm 2: Coarsening Pass
randomly split vertices into sub-rounds
C[u] ← u, P[u] ← u : ∀u ∈ V
opportunistic-weight[u] ← c(u) : ∀u ∈ V
for r = 0 to number of sub-rounds do

for u ∈ V in sub-round r do in parallel
P[u] ← ComputeHeavyEdgeRating(u)

opportunistic-weight[P[u]] += c(u) // atomic

M ← ∅ // moves
for u ∈ V in sub-round r do in parallel

if opportunistic-weight[P[u]] ≤ CWmax

C[u] ← P[u]
else

add u to M

sort M lexicographically by (P[u], c(u), u)
for i = 0 to |M | do in parallel

if i = 0 or P[M [i − 1]] �= P[M [i]]
for j = i until CWmax exceeded do

C[M [j]] ← P[M [j]]
set opportunistic-weight of C[M [i − 1]]

contract clustering C

Approving Moves. Since the initial partitioning step must be able to compute
a feasible partition, we enforce a maximum weight on the clusters CWmax :=
min (Lmax, c(V )/CL). To respect this constraint, we filter the target cluster can-
didates further during the selection. Additionally, some of the calculated moves
must be rejected. Therefore, we sort the moves lexicographically by cluster, ver-
tex weight, and lastly vertex ID (for determinism). For each target cluster, we
then approve the vertices one by one (in order of ascending weight), and reject
all of the remaining moves into this cluster once CWmax would be exceeded.
Our implementation iterates over the moves in parallel, and the iteration of the
first vertex in the sub-range of a cluster is responsible for performing the moves
into the cluster. To drastically reduce the number of moves we have to sort,
we employ an optimization, where we already sum up the cluster weights dur-
ing the target-cluster calculation step using atomic fetch-and-add instructions,
and simply approve all moves into a target cluster whose weight will not exceed
CWmax. Due to this optimization, calculating the target clusters is by far the
more expensive step in practice, even though approval requires sorting.

Contraction. The hypergraph contraction algorithm consists of several steps:
remapping cluster IDs to a consecutive range (as for graph contraction), generat-
ing pin lists of the hyperedges of the contracted hypergraph, removing duplicate
hyperedges, and finally assembling the data structure.

We generate the coarse pin list of each hyperedge in parallel, by replacing
the vertex ID with the remapped cluster ID and removing duplicate entries. Our
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version uses a bit-set for de-duplication, but sorting is not much slower. At this
stage we already discard hyperedges of size one.

To remove duplicate hyperedges, we use a parallel version of the INRSort
algorithm [3]. The INRSort algorithm works as follows. Comparing all hyperedge-
pairs for equality is too expensive, so a hash function is used to restrict compar-
isons to hyperedges with equal hash value and size. For parallelism, hyperedges
are distributed across threads using the hash value of their pins [10]. Each thread
sorts its hyperedges by their hash value, their size, as well as ID for determinism.
In each sub-range with equal hash value and size (consecutive in memory due
to sorting), pair-wise comparisons of their pins are performed. Again, we use a
bit-set to check for equality, as this was slightly faster than sorting the pins.
The running time of the de-duplication algorithm is difficult to analyze, since
it depends on the collision rate of the hash function, the number of duplicate
hyperedges and their sizes. However, in practice, it is faster than constructing
the pin lists and the incident hyperedge lists.

At this point, we have obtained the pin lists of the coarse hypergraph, and
now need to construct the list of incident hyperedges at each vertex. For this,
we first count the number of incident hyperedges at each vertex, and compute a
prefix sum over these values. In a second pass, we write the incident hyperedges
into the sub-ranges of the corresponding pins, using an atomic fetch-and-add
instruction on the starting position of the sub-range. Finally, we sort the incident
hyperedges of each vertex for determinism.

3.3 Initial Partitioning

After the coarsening phase, we compute an initial k-way partition on the coarsest
hypergraph. We perform recursive bipartitioning with the multilevel algorithm
and thus only need to provide flat algorithms for computing initial 2-way parti-
tions. Since the coarsest hypergraphs are small, a portfolio of 9 different simple,
sequential algorithms [18] is used. Combined with 20 repetitions each for diver-
sity, there is ample parallelism. Each run is followed up with 3 rounds of sequen-
tial FM local search [6]. These algorithms are inherently deterministic, however
care must be taken when selecting which partition to use for refinement. The
primary criteria are connectivity followed by imbalance. As a tie-breaker we use
generated tags. In combination with deterministic coarsening and refinement,
the overall initial partitioning phase is deterministic.

We do not use the adaptive selection technique for flat bipartitioning algo-
rithms from [11] since it is non-deterministic. Furthermore, in the versions
from [10,11], each thread runs one FM round [6] on all of the bipartitions it
computes and subsequently one on the best it computed. Since this is non-
deterministic, we implemented a version, which maintains a global fixed-size
population, and applies FM refinement to each of these. However, this lacked
diversity in preliminary experiments, so we instead increase the number of FM
rounds run on each bipartition from one to three.
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Algorithm 3: Compute Max Gain Move
Input: vertex v ∈ V
gains[i] ← 0 ∀i ∈ [k]
internal ← 0
for e ∈ I(v) do

if Φ(e, Π[v]) > 1
internal += ω(e)

for block i ∈ Λ(e) do
gains[i] += ω(e)

j ← arg maxi∈[k](gains[i])
return j, gains[j] − internal

3.4 Refinement

In the refinement phase, we take an existing k-way partition (from the pre-
vious level or initial partitioning) and try to improve it by moving vertices
to different parts, depending on their gain values. The gain of moving vertex
u ∈ V from its current block s to block t is gain(u, t) :=

∑
e∈I(u):Φ(e,s)=1 ω(e) −

∑
e∈I(u):Φ(e,t)=0 ω(e). The first term accounts for the hyperedges e for which s

will be removed from their connectivity set Λ(e), the second term accounts for
those where t will be newly added.

Finding Moves. Our refinement algorithm is a synchronous version of label
propagation refinement [17]. The vertices are randomly split into sub-rounds.
For each vertex in the current sub-round, we compute the highest gain move,
and store it if the gain is positive. Algorithm3 shows pseudocode for com-
puting the gains of a vertex v to all k blocks, and selecting the highest gain
move. As an optimization it uses the connectivity sets Λ(e) instead of check-
ing the pin counts Φ(e, i) for each block i ∈ [k] directly. The gain-calculation
phase takes O(k|V | +

∑
u∈V

∑
e∈I(u) λ(e)) work (across all sub-rounds) and

O(k + maxu∈V (
∑

e∈I(u) λ(e))) depth for each sub-round. The O(k) term per
vertex for initializing the gains array and selecting the highest gain can be elim-
inated by tracking occupied slots and resetting only these, though this is not
useful in practice if k is small.

In a second step we approve some of the stored moves, and subsequently apply
them in parallel, before proceeding to the next sub-round. This is the interesting
part, as just applying all moves does not guarantee a balanced partition.

Maintaining Balance By Vertex Swaps. In this step we perform a sequence of
balance-preserving vertex swaps on each block-pair, prioritized by gain. This
approach was first introduced in SHP [15], though their work only considers
unweighted vertices. For each block-pair (s, t) ∈ (

[k]
2

)
, we collect the vertices Mst

that want to move from s to t and Mts from t to s, and sort both sequences
descendingly by gain (with vertex ID as tie breaker for determinism). SHP moves
the first min(|Mst|, |Mts|) vertices from each sequence. With unit weights this
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does not change the balance of the partition. However, we have to handle non-
unit weights, so we are interested in the longest prefixes of Mst,Mts, represented
by indices i, j, whose cumulative vertex weights c(Mst[0 : i]), c(Mts[0 : j]) are
equal. This is similar to merging two sorted arrays. We do not have to swap
exactly equal weight, as long as the resulting partition is still balanced. For
each block, we have a certain additional weight Bt it can take before becoming
overloaded. If block-pairs are handled sequentially one after another, we can set
Bt = Lmax−c(Vt). If they are handled in parallel, we divide this budget (equally)
among the different block-pairs that have moves into t.

Again, we denote the prefixes as indices i and j into Mst and Mts, respec-
tively. The prefixes i, j are called feasible if they satisfy the condition −Bs ≤
c(Mst[0 : i]) − c(Mts[0 : j]) ≤ Bt, i.e., swapping the first i, j moves yields a
balanced partition. To compute the two longest feasible prefixes of Mst,Mts,
we simultaneously iterate through both sequences and keep track of the so far
exchanged weight c(Mst[0 : i]) − c(Mts[0 : j]). If c(Mst[0 : i]) − c(Mts[0 : j]) < 0
and Mst has moves left, we approve the next move from Mst by incrementing
i. Otherwise we approve the next move from Mts. In each iteration we check
whether the current prefixes are feasible.

We parallelize this similar to a merge. First, we compute cumulative vertex
weights via parallel prefix sums. Then the following algorithm is applied recur-
sively. We binary search for the cumulative weight of the middle of the longer
sequence in the shorter sequence. The left and right parts of the sequences can
be searched independently. If the right parts contain feasible prefixes, we return
them, otherwise we return the result from the left parts. The top-level recursive
call on the left parts is guaranteed to find at least i = j = 0 (no move applied).
If n denotes the length of the longer sequence, this algorithm has O(log(n)2)
depth and O(n) work.

Since we are interested in the longest prefixes, we can omit the recursive call
on the left parts if the prefixes at the splitting points are feasible. Depending
on the available budgets Bs, Bt this is fairly likely, since the cumulative weights
are as close as possible. Further, we can omit the recursive call on the right
parts if the cumulative weight at the middle of the longer sequence exceeds
the cumulative weight at the end of the shorter sequence plus the appropriate
budget. Note that in this case the binary search finds the end and thus the left
recursion takes the entirety of the shorter sequence.

We stop the recursion and run the sequential algorithm if both sequences have
less than 2000 elements. This value worked well in preliminary experiments. As
we already computed cumulative weights, we instead perform the simultaneous
traversal from the ends of the sequences. Since we expect to approve the majority
of the saved moves, this is likely faster.

3.5 Differences to BiPart

We now discuss differences between BiPart and our algorithm. BiPart uses
recursive bipartitioning, whereas we use direct k-way, which is superior regard-
ing solution quality [19]. The refinement algorithms are similar, inspired by label
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propagation [17] and SHP [15]. However, their refinement ignores vertex weights
(apply all moves of the shorter sequence and the same number from the longer),
which leads to imbalanced partitions that must be repaired by explicit rebal-
ancing. This can be slow and offers little control by how much solution quality
degrades. Our refinement guarantees balanced partitions at all stages without
rebalancing. Additionally, we use sub-rounds for more accurate gains and active
vertex sets [8] for better performance. Furthermore, BiPart uses no mechanism
to track actual improvements, whereas we use attributed gains [10] to detect and
prevent quality-degrading moves. Their coarsening scheme assigns each vertex
to its smallest incident hyperedge (ties broken by ID) and merges all vertices
assigned to the same hyperedge. This offers no control over vertex weights and
does not rank higher hyperedge weights as more important to not cut. Preventing
large vertex weights is important so that initial partitioning can find balanced
partitions and there is more leeway for optimization. BiPart uses a parallel
version of greedy graph growing [22] for initial partitioning, even though the
coarsest hypergraphs are small, where it is feasible to afford parallel diversified
repetitions of sequential algorithms.

4 Experiments

Our code is integrated in the Mt-KaHyPar hypergraph partitioning framework.
It is written in C++17, uses Intel’s tbb library for parallelization and is com-
piled with g++ version 9.2 with optimization level -O3 and native architecture
optimizations. The experiments are run on a 128-core (2 sockets, 64 cores each)
AMD EPYC Zen 2 7742 CPU clocked at 2.25 GHz (3.4 GHz turbo boost) with
1 TB DDR4 RAM, and 256 MB L3 cache.

Benchmark Set. We use the established benchmark set of 94 large hypergraphs
that was assembled to evaluate Mt-KaHyPar, set B in [10]. Since we have 94
instances, we cannot report instance sizes for each of them, however these
statistics are available online1 in the supplementary material of [10]. We use
k ∈ {2, 4, 8, 16, 32, 64}, ε = 0.03, and five different random seeds.

The largest instances have between 107 and 108 vertices and hyperedges, as
well as 108 to 2 · 109 pins. Dual SAT instances are known for large hyperedges
(with up to millions of pins), and hence their corresponding primal counterparts
are known for large vertex degrees. Some sparse matrices are even more skewed
with a maximum degree of 107.

Configurations. We perform 5 rounds of local moving on each level during refine-
ment, 5 rounds before contracting during preprocessing, and one round before
contracting during coarsening. We call the algorithm and configuration proposed
in this work Mt-KaHyPar-SDet, and the equivalent configuration that uses the
existing non-deterministic local moving algorithms Mt-KaHyPar-S, where Det
stands for determinism, and S for speed. Additionally, we consider Mt-KaHyPar-D
1 https://algo2.iti.kit.edu/heuer/alenex21/.

https://algo2.iti.kit.edu/heuer/alenex21/
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Fig. 1. Impact of the number of sub-rounds and preprocessing.

(default) [10], which has a more advanced refinement algorithm that is difficult
to make deterministic.

Performance Profiles. To compare the solution quality of different algorithms,
we use performance profiles [5]. Let A be the set of all algorithms we want
to compare, I the set of instances, and qA(I) the quality of algorithm A ∈ A
on instance I ∈ I. For each algorithm A, we plot the fraction of instances (y-
axis) for which qA(I) ≤ τ · minA′∈A qA′(I), where τ is on the x-axis. Achieving
higher fractions at equal τ -values is considered better. For τ = 1, the y-value
indicates the percentage of instances for which an algorithm performs best. To
interpret these plots, we either look at how quickly the curve converges towards
y = 1 (higher is better), or we look at the maximum ratio for certain instance
fraction quantiles. To calculate the ratios, we take the average connectivity across
different seeds for each instance.

4.1 Parameter Tuning

The supposedly most important parameter is the number of sub-rounds used, as
it offers a trade-off between scalability (synchronization after each sub-round)
and solution quality (more up-to-date information). In the following, we show
that this is actually not a trade-off, as the number of sub-rounds either does not
affect solution quality, or using fewer sub-rounds even leads to better quality.

We made an initial guess of 5 sub-rounds for refinement, and 16 sub-rounds
for coarsening and preprocessing, which we use as a baseline configuration when
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Fig. 2. Speedups for Mt-KaHyPar-SDet in total as well as its components separately.
The x-axis shows the sequential time in seconds, the y-axis the speedup. The lines are
rolling geometric means (window size 50) of the per-instance speedups (scatter).

varying each parameter. Figure 1 shows the performance profiles. The largest
impact is on the coarsening phase, where 2 sub-rounds performs the best. Such a
small value is surprising, yet one possible explanation is that high-degree vertices
attract low-degree vertices too quickly if synchronization happens too frequently.
Using only 1 sub-round is excluded here, since the clustering oscillates, which
leads to coarsening converging long before the contraction limit is reached and
thus initial partitioning takes very long. Furthermore, using 2 sub-rounds is
about 12% slower than using 3 sub-rounds in the geometric mean, again due
to the same effect. Since it gives only slightly worse solution quality, we choose
3 sub-rounds for coarsening in the main experiments. For preprocessing, there
is little impact on solution quality. Here we stick with our original choice of 16
sub-rounds since the floating-point-aggregation handling becomes substantially
slower if more vertices are in a sub-round due to the sorting overhead. For
refinement, there is again little difference, where 1 sub-round narrowly emerges
as the best choice. This is again surprising, as frequently synchronizing should
allow for more informed move-decisions. One cause we noticed is that with more
sub-rounds the pair-wise swaps did not have sufficiently many moves to balance,
as moves from earlier sub-rounds are not considered. Using such moves as back-
up could be included in future versions of the algorithm.

In Fig. 1 (bottom right), we show that the preprocessing phase is important
for solution quality, which justifies the overhead for the volume updates.

4.2 Speedups

In Fig. 2 we show self-relative speedups of the overall algorithm and the sepa-
rate components, plotted against the sequential running time on that particular
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Fig. 3. Left: solution quality of BiPart, Zoltan, our algorithm Mt-KaHyPar-SDet and
the existing Mt-KaHyPar variants. The ❃ symbol marks segmentation faults (6 instances
for Zoltan). Right: slowdown relative to our algorithm. The instances on the x-axis are
sorted independently.

instance. In addition to the scatter plot, we show rolling geometric means with
window size 50. The overall geometric mean speedups of the full partitioning
process are 3.91, 7.04, 12.79, 21.32, 28.73, 29.09 for 4, 8, 16, 32, 64, and 128
threads, respectively, and the maximum speedups are 4.9, 8.7, 15.8, 29.1, 48.9,
and 72.6. Since our algorithms are memory-bound workload types these are very
good results. On about 37% of the runs with 4 threads, and 0.32% of runs with 8
threads, we observe super-linear speedups which occur in all phases except initial
partitioning. We identified two reasons for this. First, even sequential runs had
running time fluctuations, and as super-linear speedups occur mostly for small
sequential times, the speedups are more easily affected. Second, while most of
the work performed is deterministic, in all phases except initial partitioning we
sort vectors that are filled in non-deterministic order. Sorting algorithms have
checks for presorted sub-sequences to speed up execution.

Looking at speedups for the individual phases, we see that most phases
exhibit very consistent speedups, even for small sequential running times. Only
initial partitioning exhibits sub-par speedups on larger instances, which is due
to load imbalance from long running sequential FM refinement.

With 128 threads (only rolling geometric means shown for readability), the
running times still improve, though not as drastically. Only small instances
show a slight slowdown, predominantly in initial partitioning. Starting at > 64
threads, the second memory socket is used, so some slowdown is expected. We use
interleaved memory allocations to cope with NUMA effects as much as possible.

4.3 Comparison with Other Algorithms

Figure 3 (left) shows performance profiles comparing our new algorithm with
its non-deterministic variants, the non-deterministic distributed algorithm
Zoltan [4] as well as the deterministic BiPart algorithm [16]. In these exper-
iments, each algorithm is run with 64 threads. As expected, Mt-KaHyPar-D
performs best, contributing the best solutions on about 75% of the instances,
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Fig. 4. Quality impact of determinism in each component.

followed by Mt-KaHyPar-SDet and Mt-KaHyPar-S which are similar, though
Mt-KaHyPar-S is slightly better as it converges faster towards 1. BiPart is far
off, contributing only 6 of the best solutions, and its quality is off by more than
a factor of 2 on more than 50% of the instances; on some instances even by three
orders of magnitude. Zoltan is situated between BiPart and Mt-KaHyPar-S. In
a direct comparison, Mt-KaHyPar-SDet computes better partitions than BiPart
on 551 of the 564 instances with a geometric mean performance ratio of 1.0032
compared to BiPart’s 2.3805.

In Fig. 3 (right), we report relative slowdowns, i.e., the running time of
the other algorithm divided by running time of the baseline Mt-KaHyPar-SDet.
Mt-KaHyPar-S is faster on all but 158 instances and never by a factor of more
than 2. BiPart is between one and two orders of magnitude slower than the two
speed variants of Mt-KaHyPar. In the technical report [8], we show instance-wise
speedups of BiPart, most of which are below 2 and the largest is about 7.

4.4 The Cost of Determinism

In this section, we investigate in which phase the solution quality gets lost,
by swapping out one component for its non-deterministic counterpart, in each
of the plots in Fig. 4. Interestingly, the biggest quality loss comes from coars-
ening, whereas deterministic preprocessing even improves quality. The loss in
refinement is expected due to the lack of up-to-date gains and the inability to
leverage zero gain moves for rebalancing and diversification.

For coarsening, the results are unexpected, particularly because similar local
moving algorithms [13] are not as affected by out-of-date gains. One reason for
this is that multiple global rounds are performed, where vertices can back out
of their first cluster assignment. We only use one round and even prematurely
terminate the round to avoid coarsening too aggressively. Performing a second
round, where only already clustered vertices may reassess their assignment, may
be beneficial and we leave this for future research. Additionally, we unsuccessfully
experimented with several features of the non-deterministic coarsening such as
adapting hyperedge sizes to the current clustering in the rating function and
stable leader chasing, where oscillations (vertices joining each other) and cyclic
joins are resolved by merging all involved vertices.
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5 Conclusion and Future Work

We presented the first scalable, deterministic parallel hypergraph partitioning
algorithm. Our experiments show that determinism does incur sacrifices regard-
ing both solution quality and running time compared to the previous non-
deterministic version, but these are small enough to justify if determinism is
desirable. Future work includes incorporating determinism into additional refine-
ment algorithms, improving performance on multi-socket machines, and imple-
menting these techniques for distributed memory.

For example for flow-based refinement [7,9] this is well within reach, as
scheduling on block-pairs can synchronize after each block was involved in a
refinement step, and the flow algorithms need not be deterministic since the
used cuts are unique. Parallel localized FM seems like a much more difficult
target, though a promising approach may be to stick with approving expan-
sion steps at synchronization points. Additionally, handling extremely large k
and speeding up initial partitioning is possible by employing the deep multilevel
approach [12] instead of recursive bipartitioning during initial partitioning.
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Abstract. State-of-the-art programming approaches generally have a
strict division between intra-node shared memory parallelism and inter-
node MPI communication. Tasking with dependencies offers a clean,
dependable abstraction for a wide range of hardware and situations
within a node, but research on task offloading between nodes is still
relatively immature. This paper presents a flexible task offloading exten-
sion of the OmpSs-2 programming model, which inherits task ordering
from a sequential version of the code and uses a common address space
to avoid address translation and simplify the use of data structures with
pointers. It uses weak dependencies to enable work to be created con-
currently. The program is executed in distributed dataflow fashion, and
the runtime system overlaps the construction of the distributed depen-
dency graph, enforces dependencies, transfers data, and schedules tasks
for execution. Asynchronous task parallelism avoids synchronization that
is often required in MPI+OpenMP tasks. Task scheduling is flexible, and
data location is tracked through the dependencies. We wish to enable
future work in resiliency, scalability, load balancing and malleability, and
therefore release all source code and examples open source.

1 Introduction

The dominant programming approach for scientific and industrial computing on
clusters is MPI+X. While there are a variety of approaches within the node,
described by the “X”, such as OpenMP, OmpSs, OpenACC and others, the de
facto standard for programming multiple nodes is MPI. In all cases the pro-
gram must combine two fundamentally different programming models, which
is difficult to get right [29,30]. The tasking approach of OpenMP and OmpSs
offers an open, clean and stable way to improve hardware utilization through
asynchronous execution while targeting a wide range of hardware, from SMPs,
to GPUs, to FPGAs. This paper extends the same approach, of OmpSs-2 task-
ing, to multiple nodes. We develop OmpSs-2@Cluster, which provides a simple
path to move an OmpSs-2 program from single node to small- to medium-scale
clusters. We also present the runtime techniques that allow overlapping of the
construction of the distributed dependency graph, efficient concurrent enforcing
of dependencies, data transfers among nodes, and task execution.
c© Springer Nature Switzerland AG 2022
J. Cano and P. W. Trinder (Eds.): Euro-Par 2022, LNCS 13440, pp. 319–334, 2022.
https://doi.org/10.1007/978-3-031-12597-3_20
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A number of research groups are looking into tasks as a model for all scales
from single threads and accelerators to clusters of nodes, as outlined in Sect. 7.
Our approach is unique, in that, in many cases, a functional multi-node ver-
sion of an existing OmpSs-2 program can be obtained simply by changing the
configuration file supplied to the runtime system. The meaning of the program
are defined by the sequential semantics of the original program, which simpli-
fies development and maintenance. All processes use the same virtual memory
layout, which avoids address translation and allows direct use of existing data
structures with pointers. Improvements beyond the first version can be made
incrementally, based on observations from performance analysis. Some optimiza-
tions that are well-proven within a single node, such as task nesting to overlap
task creation and execution, [26] are a particular emphasis of OmpSs-2@Cluster,
since they clearly have a greater impact when running across multiple nodes, due
to the greater node-to-node latency and larger total number of execution cores.

The program is executed in distribution dataflow fashion, which is naturally
asynchronous, with no risk of deadlock due to user error. In contrast, MPI+X
programs often use a fork–join model, due to the difficulty in overlapping com-
putation and communication [30]. We show how well-balanced applications have
similar performance to MPI+OpenMP on up to 16 nodes. For irregular and unbal-
anced applications like Cholesky factorization, we get a 2× performance improve-
ment on 16 nodes, compared with a high performance implementation using
MPI+OpenMP tasks. All source code and examples are released open source [9].

2 Background

OmpSs-2 [7–9] is the second generation of the OmpSs programming model. It
is open source and mainly used as a research platform to explore and demon-
strate ideas that may be proposed for standardization in OpenMP. The OpenMP
concept of data dependencies among tasks was first proven in OmpSs. Like
OpenMP, OmpSs-2 is based on directives that annotate a sequential program,
and it enables parallelism in a dataflow way [27]. The model targets multi-cores
and GPU/FPGA accelerators. This decomposition into tasks and data accesses
is used by the source-to-source Mercurium [5] compiler to generate calls to the
Nanos6 [6] runtime API. The runtime computes task dependencies and sched-
ules and executes tasks, respecting the implied task dependency constraints and
performing data transfers and synchronizations.

OmpSs-2 differs from OpenMP in the thread-pool execution model, targeting
of heterogeneous architectures through native kernels, and asynchronous paral-
lelism as the main mechanism to express concurrency. Task dependencies may
be discrete (defined by start address), or regions with fragmentation [26].

OmpSs-2 extends the tasking model of OmpSs and OpenMP to improve task
nesting and fine-grained dependences across nesting levels [2,26]. The depend
clause is extended with weakin, weakout and weakinout dependency types,
which serve as a linking point between the dependency domains at different
nesting levels, without delaying task execution. They indicate that the task does
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Table 1. Key features of OmpSs-2@Cluster

Feature Description

Sequential semantics Simplifies development, porting, and maintenance. Tasks can be
defined at any nesting level and can be offloaded to any node

Common address space Simplifies porting of applications with complex data structures by
supporting pointers and avoiding address translation

Distributed dataflow
execution

Task ordering and overlapping of data transfers with computation are
automated, reducing synchronizations and avoiding risk of deadlock

Distributed memory
allocation

Informs runtime that memory is only needed by subtasks, reducing
synchronization and data transfers. Provides data distribution affinity
hint

Minimizing of data
transfers

The taskwait on and taskwait noflush directives help minimize
unnecessary data transfers

Early, late or auto
release of dependencies

A tradeoff between parallelism and overhead is exposed through
control over the release of dependencies

Cluster query API and
scheduling hint

Optional ability to instruct the runtime to control detailed behavior
and optimize decisions

not itself access the data, but its nested subtasks may do so. Any subtask that
directly accesses data needs to include it in a depend clause in the non-weak
variant. Any task that delegates accesses to a subtask must include the data in
its depend clause in at least the weak variant. This approach enables effective
parallelization of applications using a top-down methodology. The addition of
weak dependences exposes more parallelism, allows better scheduling decisions
and enables parallel instantation of tasks with dependencies between them.

3 OmpSs-2@Cluster Programming Model

The main features of OmpSs-2@Cluster are summarized in Table 1. Like OmpSs-
2 on an SMP, tasks are defined by annotations to a program with sequential
semantics, and offloadable tasks can be nested and defined at any nesting level.
There is a common address space across cluster nodes, with data mapped to
the same virtual address space on all nodes. As long as the task’s accesses are
described by dependencies, any data allocated on any node can be accessed at
the same location on any other node. There is sufficient virtual address space on
all modern 64-bit processors to support up to 65k cores with a typical 2 GB/core
footprint. Almost any OmpSs-2 program can therefore be executed using OmpSs-
2@Cluster and, conversely, if new features are ignored or implemented with a
stub, any OmpSs-2@Cluster program is a valid OmpSs-2 program. This property
minimizes porting effort and allows re-use of existing benchmarks.

Figure 1 shows an optimized matrix–matrix multiplication kernel using
OmpSs-2@Cluster. Execution starts on node 0, which runs main as the first task.
The example offloads one task per node then subdivides the work among the cores
using a task for. The outer task with weak dependencies is an optimization to
allow subtask creation to be overlapped with task execution, as shown in Sect. 6
(results). In general, the program as a whole is executed in a distributed dataflow
fashion, with data transfers and data consistency managed by the runtime system.
Data location is passed through the distributed dependency graph.
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Fig. 1. OmpSs-2@Cluster program: optimized dense matrix–matrix multiply, using a
weak parent task to overlap task creation and execution.

Compared with OmpSs-2 on SMP, OmpSs-2@Cluster has one new require-
ment for correctness (full dependency specification) and a few programming
model extensions to improve performance. Only a minor revision to the com-
piler is required to support these new features.

Full Dependency Specification: offloadable tasks (see below) require a full depen-
dency specification, i.e., in, out, and inout dependencies must specify all
accesses, rather than just the constraints needed for task ordering. This is the
only reason that a valid OmpSs-2 program may not be a valid OmpSs-2@Cluster
program, as in SMP systems accesses that are not needed to resolve dependen-
cies may be omitted. This is not a new issue because a similar requirement exists
for accelerators with separate memory spaces.

Distributed Memory Allocation: The new distributed malloc, nanos6
dmalloc, is an alternative memory allocation primitive for large data struc-
tures manipulated on multiple nodes. This call expresses three important dis-
tinguishing characteristics. Firstly, since the data is intended to be manipulated
by concurrent tasks on several nodes, it can be assumed that the data is not
used by the enclosing task, only its subtasks or descendants, similarly to a weak
dependency. Secondly, since large allocations are infrequent and use significant
virtual memory, it is efficient to centralize the memory allocator, as the overhead
is tolerable and it leads to more efficient use of the virtual memory. Thirdly, it
is a convenient place to provide a data distribution hint. The data distribution
hint is communicated to all nodes, and is intended to help the scheduler improve
load balance and data locality, using information from the programmer, if avail-
able. The hint does not mandate a particular data distribution, only the data
affinity. The scheduler can take account of both the affinity and current location,
depending on the chosen scheduling policy.

Minimising of Data Transfers: OmpSs-2@Cluster adds the noflush clause
for taskwaits, in order to separate synchronization from data dependency.
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The contents of the memory allocated by nanos6 dmalloc and weak dependencies
are by default noflush, so that tasks can wait for their child tasks without copying
data that is not needed. The noflush variant is also useful for timing parts of the
execution. When only a subset of locally-allocated data is needed by the enclosing
task, the dependency and data transfer can be expressed using taskwait on.

Early, Late or Auto Release of Dependencies: As per the OmpSs-2 specification
on SMPs, non-offloaded OmpSs-2@Cluster tasks by default early release all of
their dependencies, so that data is passed directly to the successor task without
additional synchronization. Late release of dependencies is possible, using the
OmpSs-2 wait clause, which adds an implicit taskwait after the completion of
the task body (and release of the stack). On OmpSs-2@Cluster, offloaded tasks
by default have auto release of dependencies, which means that early release is
supported to successors on the same node, but all other dependencies wait. The
alternatives are available through the wait and nowait clauses.1

Cluster Query API: There is also a simple API to read information about the
execution environment: nanos6 get num cluster nodes() returns the number
of processes, and nanos6 get cluster node id() returns the current rank.

Scheduling Hint : The runtime schedules tasks, among and within nodes, taking
account of current data location and/or affinity from the data distribution hint
of nanos6 dmalloc. The programmer can override scheduling using the node
clause on the task directive, which can specify the process that will execute the
task, mark it as non-offloadable or employ a different scheduling policy.

4 Nanos6 Runtime Implementation

An OmpSs-2@Cluster application is executed in the same way as any MPI pro-
gram, e.g., using mpirun or mpiexec. All processes contain a Nanos6 runtime
instance, as shown in Fig. 2. The nodes are peers, the only distinction among
them being that node 0 executes main and it performs runtime operations that
require internal collective synchronizations like nanos6 dmalloc (which may be
called on any node). Each node (including node 0), creates a single “namespace”
task, which is the implied common parent of all tasks offloaded to that node.
The processes communicate via point-to-point MPI, with a dedicated thread on
each node to handle MPI control messages.

During runtime initialization, all processes coordinate to map a common
virtual memory region into their virtual address space, organized as in Fig. 3.
Each node owns a portion of the local memory region, so that it can allocate
stacks and user data without coordinating with other nodes. Similarly, the dis-
tributed memory region is available for allocations using nanos6 dmalloc. Any
data residing in any of these regions can be used by a task on any node. At
initialization time only the virtual memory is mapped, physical memory will be
allocated on demand, when accessed by a task that executes on the node. Since

1 Currently nowait is available through a Nanos6 API call.
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Fig. 2. OmpSs-2@Cluster architecture. Each node is a peer, except that Node 0 runs
the main task and performs distributed memory allocations.

Fig. 3. Runtime memory map, which is common to all processes on all nodes.

all regions are pre-allocated on all nodes, there is no need for temporary memory
allocation, address translation or user intervention.

The problem of running the whole program, which is a hierarchy of tasks
with dependencies, is conceptually separated into building the distributed depen-
dency graph (Sect. 4.1), tracking dependencies among tasks (Sect. 4.2), schedul-
ing ready tasks for execution (Sect. 4.3), and performing data transfers before
executing tasks (Sect. 4.4). All, of course, happen for multiple tasks concurrently.

4.1 Building the Distributed Dependency Graph

Tasks are created by their parent task (which may be main). Once tasks become
ready, they are allocated to a cluster node. Many offloadable tasks have only weak
dependencies, so they are ready immediately and are offloaded in advance (e.g.
“weakmatvec” in Fig. 1). This allows concurrent subtask creation on all nodes,
overlapped with execution and optimizations to reduce the number of control mes-
sages on the critical path. If the task is offloaded, a Task New message is sent from
the creation node, where the task was first created, to the execution node, where
it will be executed. This is shown in steps 1© and 2© in Fig. 4, which illustrates the
execution of two offloaded tasks on different nodes sharing an inout dependency.
The execution node uses the taskInfo information embedded in the message to
create and submit the proxy task that will execute the task body.

A key design choice of OmpSs-2@Cluster is that no cluster node builds the
whole computation graph of the application. Distributing the computation graph
across cluster nodes minimizes coordination, thus allowing more potential for
scalability. Nodes independently choose whether, and to which node, to offload
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Fig. 4. Direct connection between Task 1 on Node 1 and Task 2 on Node 2. All messages
are point to point.

any task created on that node. When a task is offloaded, the predecessor task
for each access is known, and in many cases, its execution node is also known.

The identity of the predecessor’s execution node is passed through the depen-
dency system as tasks are offloaded. When the task’s execution node creates the
proxy task, dependencies from a predecessor on the same node are connected
inside the namespace task, in the same way as any other sibling tasks. If the
predecessor’s execution node is different, then a Remote Connect message is sent
to the previous node (step 3©). Messages to connect the graph are off the critical
path and are distributed among the implied nodes with non-blocking point-to-
point communications.

4.2 Tracking Dependencies Among Tasks

When tasks complete, dependencies are released by sending point-to-point Sat-
isfiability messages from the predecessor to successor node (step 4©). These mes-
sages indicate which dependency regions are satisfied and their locations, and
the MPI tags for associated eager data sends (see Sect. 4.4). If the access of an
offloaded task has no successor on another node, the access is instead released
back to the offloader (step 7©). Write-after-read accesses, i.e. inout following
multiple in accesses, are synchronized at the creation node, with satisfiability
passed to the inout access once all the in accesses have released the access back.

4.3 Scheduling Ready Tasks for Execution

When a task becomes ready, the node that created the task decides whether to
offload it, and, if so, it decides which node it should be offloaded to. Currently
the majority of programs have two levels of nesting: one level across nodes and
one level across the cores on the node. These programs have a single level of
offloadable tasks, so all offloaded tasks are created on the same node, so no coor-
dination among nodes is required for load balancing. Future work will improve
the scheduler to support distributed load balancing among nodes. The schedul-
ing of ready tasks to be executed on a node, whether offloaded or not, is done
using the normal Nanos6 scheduler. The scheduler exploits all the cores on the
node, and it allows variants of tasks and/or subtasks to execute on accelerators.
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4.4 Data Transfers

Data transfers may be configured to be either lazy or eager. Lazy data transfers
are the safest option, but delaying the initiation of the data transfer until the
data is required by a strong access may cause latency on starting tasks that
require data from another node. This latency is somewhat mitigated when there
are sufficient tasks to keep the cores busy. Eager data transfers initiate the data
transfers at the earliest moment, even for weak accesses, which is when Satis-
fiability is sent. The Satisfiability message (step 4©) is immediately accompanied
with a data transfer (step 5©). This is generally a good optimization, but it may
happen that data contained in a weak access is not accessed by any subtask with
a strong access, in which case the data transfer would be unnecessary. This situ-
ation happens in Cholesky factorization, due to the pattern of the data accesses
of the dgemm tasks. Since all subtasks are assumed to be created some time in
advance, this situation can be detected when a task with weak accesses com-
pletes, at which point all subtasks have been created, but no subtask accesses
all or part of the weak access. In this case a No Eager Send message is sent to
the predecessor. In all cases, when a task completes, the data is not copied back
to the parent (write-back) unless needed by a successor task or taskwait. The
latest version of the data remains at the execution node until needed.

5 Evaluation Methodology

5.1 Hardware and Software Platform

We evaluate OmpSs-2@Cluster on MareNostrum 4 [4]. Each node has two 24-core
Intel Xeon Platinum 8160 CPUs at 2.10 GHz, for a total of 48 cores per node.
Each socket has a shared 32 MB L3 cache. The HPL Rmax performance equates
to 1.01 TF per socket. Communication uses Intel MPI 2018.4 over 100 Gb/s Intel
OmniPath, with an HFI Silicon 100 series PCIe adaptor. The runtime and all
the benchmarks were compiled with Intel Compiler 18.0.1, and all the kernels
use the same code and same standard BLAS functions from Intel MKL 2018.4.

5.2 Benchmarks

We use simple and optimized variants of four benchmarks all executed in con-
figurations of 2 processes per node (one per NUMA node) from 1 to 16 nodes
for a total of 32 MPI processes:

matvec is a sequence of row cyclic matrix–vector multiplications without
dependencies between iterations. This benchmark has fine-grained tasks with
complexity O(N2) and no data transfers. It exposes the need to implement and
improve the namespace and direct propagation approaches; as well as exhibiting
patterns that require reduction and grouping of control messages. The results in
Sect. 6 show how this benchmark performs with a simple implementation using
a single level of strong tasks vs. an optimized implementation with nested weak
and strong tasks.
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Table 2. Benchmark characteristics and number of lines of code of kernels.

Benchmark MPI+ OpenMP OmpSs-2@Cluster

Simple

OmpSs-2@Cluster

Optimized

matvec MPI point-to-point,

OMP parallel for

10 One level strong tasks 11 Nested weak and strong

tasks

18

matmul MPI point-to-point,

OMP parallel for

10 Nested only strong

tasks

18 Nested weak and strong

tasks

18

jacobi MPI collective gather,

OMP parallel for

20 Task for 25 Nested weak and strong

tasks with wait clause

30

cholesky MPI point-to-point

OMP Tasks

135 strong tasks 30 Task for, memory

reordering and priority

134

matmul is a matrix–matrix multiplication performed to study the behavior
with bigger tasks of O(N3) with a similar access pattern. This benchmark was
useful to detect redundant unneeded data transfers negligible with matvec. In this
case we compare a simple version with nested strong tasks vs. nested weak and
strong tasks to compare the impact of early offloading vs access fragmentation
consequence of early release without data transfers or wait clause.

jacobi is an iterative Jacobi solver for strictly diagonally dominant systems.
It has the same O(N2) complexity as matvec, but it has (N − 1)2 data transfers
between iterations. The objective was to measure the impact of data transfers and
control messages to detect optimization opportunities. With this benchmark we
detected fragmentation associated with early release and therefore implemented
the autowait feature. The simple version uses task for (simpler) and the optimized
version adds a helper task to reduce control messages and fragmentation.

cholesky is a Cholesky factorization with a complex execution and depen-
dencies pattern. This benchmark performs a higher number of smaller tasks,
compared with matmul, and it introduces load imbalance and irregular patterns.
The simple version code uses strong tasks and only needs few lines, while the
optimized version uses task for and memory reordering optimizations to reduce
fragmentation and data transfers.

All MPI+OpenMP versions were implemented in two variants, using parallel
for and OpenMP tasks. The best version was selected and reported in Sect. 6.

Table 2 shows the key benchmark characteristics and the number of lines of
code for all implementations. The values consider only the computational parts,
ignoring initialization, range specific code and conditions needed in MPI and not
required in OmpSs, they also exclude timing, prints and comments. We see that
matmul, matvec and jacobi are all small kernels, with no major differences in size.
The OmpSs-2@Cluster versions of some of these small benchmarks are larger,
due to the enclosing weak task (see Fig. 1), at little increase in complexity.

6 Results

Figure 5 shows the strong scaling results for all the benchmarks. Every experi-
ment was executed 10 times; jacobi and matvec with 400 iterations each. All
points in the graphs include error bars, but in most cases they are hard to see
as the standard deviation is usually insignificant.
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Fig. 5. Strong scaling for OmpSs-2@Cluster and MPI+OpenMP. The x-axis is the
number of nodes and the y-axis is the compute throughput in GFLOP/sec.

In all subplots, the x-axis is the number of nodes, from 1 to 16 (see Sect. 5.2),
and the y-axis is the performance. We see that the simple (unoptimized) OmpSs-
2@Cluster matvec, matmul and jacobi have similar performance to MPI on up to
8 nodes. The optimized code for matvec and matmul has somewhat better per-
formance and is similar to MPI up to 16 nodes. These two benchmarks perform
multiple iterations, and do not require data transfers between iterations, so they
evaluate the impact of task offload and enforcing of dependencies. On the other
hand, jacobi has all-to-all communication, which is optimized using a collective
in the MPI implementation but is done with point-to-point transfers by Nanos6.
This limits the scalability and is an avenue for future research.

Finally, cholesky has a more complex communication and dependency pat-
tern. Due to asynchronous tasking and early release of dependencies, the OmpSs-
2@Cluster implementation achieves better performance than MPI+OpenMP
tasks, and it has twice its performance on 16 nodes. The simple OmpSs-
2@Cluster implementation of cholesky achieves better performance than MPI +
OpenMP with a 4.5× reduction in code size. The optimized OmpSs-2@Cluster
code for cholesky has similar length to the MPI+OpenMP version as shown in
Table 2.
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Fig. 6. Paraver/Extrae traces showing synchronization for cholesky: 16384× 16384
matrix on four nodes, 12 cores per node

To understand this in more detail, Fig. 6 compares Paraver/Extrae traces
for cholesky with MPI + OpenMP vs. optimized OmpSs-2@Cluster. To show
an intelligible trace, it is a small example of a 16384 × 16384 matrix on four
nodes, with 12 cores per node. Both traces show a time lapse of 1160 ms since
the algorithm start; the zoomed regions are 50 ms. The traces show the BLAS
kernels and MPI communications (only non-negligible in the MPI version).

We see that the OmpSs-2@Cluster version has almost 100% utiliza-
tion, but synchronization among tasks and MPI communication causes the
MPI+OpenMP version to have a utilization of only about 50%. As MPI is not
task-aware, there are limitations on how MPI calls may be used with OpenMP
Tasks to avoid deadlock. Otherwise, tasks in all threads may try to execute
blocking MPI calls, occupying all threads even though other tasks may be ready,
leading to a deadlock. Resolving this needs synchronization, such as serializing
waits or limiting the number of send or receive tasks in every step with artificial
dependencies. Figure 6a shows how the waits (gray) stop parallelism between
iterations.

On the other hand, Fig. 6b does not show any waits because all communi-
cation in OmpSs-2@Cluster is non-blocking. Tasks not satisfied are not ready,
so they remain in the dependency system; while ready tasks with pending data
transfers, are re-scheduled when they can execute. This approach allows the run-
time to concurrently execute tasks from multiple iterations and keep the workers
busy while transfers occur. The priority clause is advantageous to prioritize the
scheduling of critical-path tasks, in a similar way to OmpSs-2 on SMP, but it is
more important for OmpSs-2@Cluster due to the network latency.
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Table 3. Comparison of distributed tasking models
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7 Related Work

Shared Memory: Numerous frameworks support shared memory task parallelism
with dependencies, with the de facto standard being OpenMP version 4.0 or
above [23]. Cilk [12] is perhaps the first well known task-based programming
model, which identifies tasks with the spawn keyword and supports synchroniza-
tion using the sync statement. Cilk++ [21] adds support for parallel loops.
XKappi [34] also has a directed acyclic graph of tasks like OpenMP. Wool [16]
is a low overhead library for nested tasks.

Partee [24] is an OmpSs programming model alternative implementation
using BDDT [33] with strong effort to better handle more fine-grained tasks and
irregular dependencies. Raja [11] and its associated libraries provide a similar
C++11 approach to performance portable programming.

Distributed Memory: Table 3 summarizes the main frameworks for fine-grained
distributed memory task parallelism. Most of them wrap or extend existing
frameworks for shared memory tasking.

OmpSs-1@Cluster is a variant of OmpSs-1 for clusters of GPUs [13]. It
has a similar approach to OmpSs-2@Cluster, but task creation and submission
is centralized, dependencies are only among sibling tasks, and address translation
is needed for all task accesses. It uses a directory on one node to track all data
location, rather than passing the location through the edges of a distributed
dependency graph. It has only strong tasks, so it has limited ability to overlap
execution with task creation overhead.

StarPU-MPI [3] is the multi-node extension of StarPU. In this model all
processes create the same graph of top-level tasks and it uses an owner-computes
model as shown in Table 3. Task allocation to nodes and communications for data
transfers are at task creation. Posting the receives in advance removes the need
of Satisfiability messages, but it implies high memory consumption and some
throttling mechanism which limits parallelism discovery [31].

DuctTeip [35] is a distributed task-parallel framework implemented on top
of SuperGlue [32]. This approach based on data versioning supports general task
graphs to implement common application structures. It divides the computation
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into levels to build the task graph in parallel. Child tasks are created like the
strong tasks of OmpSs-2, so task creation could be on the critical path.

CHAMELEON [20] is a library for fine-grained load-balancing in task-
parallel MPI+X applications. The implementation is optimized for responsive-
ness to changing execution conditions. They do not optimize for strong scaling
of task offloading. Data is always copied back to the parent after the task, and it
uses a collective distributed taskwait and the OpenMP target construct. PaR-
SEC [18] is a platform for distributed task execution. A front-end compiler gen-
erates a parameterized Directed Acyclic Graph (DAG). Tasks can be generated
dynamically and could be submitted by other tasks. Dependencies are not just
of the DAG type, but they support nesting, concurrent and commutative depen-
dencies, and weak and strong dependencies. The tasks’ data can be described
by region dependencies with fragmentation. DASH [17] is a C++ template
library that extends C++ STL concepts to distributed memory. It is based on
a PGAS-based distributed task programming approach. Every process creates
a local dependency graph in parallel. The dependencies on non-local memory
are automatically resolved by the runtime system. The execution is divided into
phases because there is no total ordering on the dependencies among nodes.
Charm++ [25] is a C++-based object oriented programming model for run-
ning migratable objects known as “chares”. It uses a message-driven runtime
model in which methods on chares result in sending a message to the chare,
resulting in asynchronous function execution with similarities to task execution.

Legion [10] is a parallel programming system with an OOP syntax simi-
lar to C++ based on logical regions to describe the organization of data, with
an emphasis on locality and task nesting via an object-oriented syntax. Part
of Legion’s low-level runtime system uses UPC’s GASNet. Other approaches
include COMPSs [22], which is a Java, C/C++ and Python framework to run
parallel applications on clusters, clouds and containerized platforms. The exe-
cution granularity is much coarser with data transfer via files. Pegasus [15] is
another workflow management system that uses a DAG of tasks and dependen-
cies. GPI-Space [28] is a fault-tolerant execution platform for data-intensive
applications. It supports coarse-grained tasks that helps decouple the domain
user from the parallel execution of the problem. HPX [19] is an implementa-
tion of the ParalleX programming paradigm, with an Active Global Address
Space (AGAS) to manage the locality of global objects. X10 [14] is an object-
oriented programming language for high-productivity programming that spawns
asynchronous computations, with the programmer responsible for PGAS data
distribution.

8 Conclusions

This paper presented OmpSs-2@Cluster, a programming model and runtime sys-
tem, which provides efficient support for hierarchical tasking from distributed
memory to threads. We describe the programming model and runtime optimiza-
tions to build the distributed dependency graph, enforce dependencies, perform
eager data fetches and execute tasks.
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The results show that performance of OmpSs-2@Cluster is competitive with
MPI+OpenMP for regular and well-balanced applications. For irregular or
unbalanced applications it may be significantly better without increasing the
code complexity or sacrificing the programmer productivity. This work opens
future work to leverage this model for (a) resiliency, (b) scalability, (c) intelli-
gent multi-node load balancing, and (d) malleability. With this aim, all source
code and examples are available open source [9].
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Abstract. Scan is a core parallel primitive. High-performance work-
efficient implementations are usually hard-coded, leading to performance
portability issues. Performance portability is usually achieved using a
generative approach, which decomposes the primitive in simpler, com-
posable parts, expressing the implementation space.

Data parallel functional languages excel at expressing programs as
composition of simple patterns. Lift, Furthark, Accelerate have success-
fully applied this technique to patterns such as parallel reduction and
tiling. However, work-efficient parallel scan is still provided as a hard-
coded builtin.

This paper shows how to decompose a classical GPU work-efficient
parallel scan in terms of other data-parallel functional primitives. This
enables the automatic exploration of the implementation design space,
using a set of simple rewrite rules.

As the evaluation shows, this technique outperforms hand-written
baselines and Furthark, a state of the art high performance code genera-
tor. In particular, this composable approach achieves a speedup of up to
1.5× over hard-coded implementations on two different Nvidia GPUs.

1 Introduction

Parallel hardware offers great opportunities for performance but is difficult to
program. Modern parallel architectures are complex and it is hard for developers
to fully exploit their potential. A compiler-oriented approach is highly desirable
to exploit these systems automatically.

Data Parallel Functional Code Generators have been shown to be a viable
solution in tackling this challenge. Projects such as Lift [20], Futhark [8], and
Accelerate [3], are capable of taking a high-level program and automatically
generating high-performance implementations, targeting a variety of platforms.
Functional representations possess a number of desirable characteristics: the lack
of side effects allows one to easily reason about parallelism, the emphasis on
function composition maps well to the idea of parallel patterns, and finally the
rich type systems allow the expressions of powerful invariants, enabling very
sophisticated program optimizations.
c© Springer Nature Switzerland AG 2022
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The approach is not without downsides. Many algorithms and applications
which are relatively straightforward to implement in a traditional low-level lan-
guage are not as clearly implemented in a functional style. This includes common
application domains and algorithms for which a plethora of well-known imple-
mentations are readily available. This gap is due both to the highly constrained
nature of functional languages and their relative obscurity in the realm of high-
performance code generation for parallel hardware.

The most salient example of such a missing algorithm is scan, a core data-
parallel control pattern [11]. Scan is a crucial component to many application
domains, such as linear algebra [14] and computer graphics. There is extensive
literature both concerning the algorithmic approaches to the parallelization of
scan [4] and the concrete techniques to be used on specific platforms [12,19].

However, in most data-parallel functional code generators, scan is either only
available as a sequential primitive, such as in the case of Lift compiler, or as a par-
allel primitive with a black-box implementation, such as in the case of Futhark.
While the latter approach offers at least some way to express a program using
a parallel scan, it requires the compiler authors to provide a handwritten imple-
mentation, either precluding the usage of the compiler’s own powerful optimiza-
tion techniques or applying them in an ad-hoc way.

This paper addresses these shortcomings by deriving a functional formula-
tion of parallel scan, expressed within a data-parallel functional programming
language. As the compiler used has OpenCL as its primary target, the imple-
mentation used is optimized for a GPU system. The technique used is based on
publicly available code by NVidia [7].

The papers then demonstrates how to decompose a parallel scan implementa-
tion into a number of reusable and composable rewrite rules, modeling the algo-
rithm’s optimization space. These rewrites can be used to optimize arbitrary scan
calls, rewriting them into a parallel implementation. As the rules model an opti-
mization space, the compiler can automatically explore possible variations, leading
to significant performance gains across different GPU architectures. - The auto-
matic derivation of a parallel implementation of scan is a thoroughly studied topic.
A generic technique for deriving a scan parallelisation is given in [13]. However,
such schemes do not generatework-efficient implementations.Aparallel algorithm
is said to be work efficient if its asymptotic complexity is at most a constant factor
away from the best known sequential implementation. To the best of the authors’
knowledge, the method presented here is the first to yield a work-efficient parallel
scan from a high-level specification and suitable for a GPU target.

In summary, this paper makes the following contributions

– presents a functional formulation for a GPU parallel scan, based on a number
of parallelization strategies.

– decomposes the functional formulation into a number of rewrite rules, mod-
eling a parametric space of parallel scan algorithms that can be mechanically
explored to derive efficient GPU scan implementations.

– evaluates the overall effectiveness of the approach, by comparing the generated
code it with a handwritten reference implementation and the state-of-the-art
parallel code generator Futhark, outperforming both by a factor of 1.5×.
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Fig. 1. Scan

2 Background

2.1 Parallel Scan

Scan is one of the fundamental data parallel control patterns [11]. The semantics
of scan are illustrated in the following equation:

scan(⊕, x0, [x1, . . . xn]) = [x0, x0 ⊕ x1, . . . , x0 ⊕ · · · ⊕ xn−1]

Given an associative binary operator a starting value and an input sequence,
generates a new sequence of n elements in which the i-th item is the result of
recursively applying the operator i times.

Being a well-studied operation, there is a wide number of known scan imple-
mentations [9], with varying complexity and parallelism. Relevant strategies for
this paper include Serial scan (Fig. 1a), Scan-then-propagate (Fig. 1b) and the
Brent-Kung scan (Fig. 1c). The latter is both parallel and work-efficient.

Additional scan implementations may be derived by combining together dif-
ferent strategies. This is common when implementing parallel scan for devices
such as GPUs, and is the approach used by a well-known publicly available
NVidia implementation [7]. The algorithm, shown as (Fig. 1d) unfolds on two
levels: an outer scan following the scan-then-propagate strategy, and an inner
scan implementation parallelized using the Brent-Kung approach.
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Fig. 2. Data parallel patterns and their types.

2.2 Data Parallel Functional Code Generators

Data Parallel Functional Code Generators are compilers that take as input a
programs written in a functional programming language or expressed as a func-
tional IR to generate high-performance code targeting parallel architectures. The
functional style is used to express parallel programs as compositions of primi-
tive functions. These primitives often encode basic data-parallel patterns, such
as map and reduce, data reordering transformations such as split and join, and
elementary scalar operations.

This work has been implemented in a dialect of Lift, a data parallel language
used in a wide range of applications [6,14,20,21].

The preferred data structure is the array, nested or multidimensional at the
language level, but often represented as a flat contiguous buffer in the generated
code. As the language is purely functional, arrays are never mutated. Rather,
patterns always produce new arrays. It is important to note that most of these
transformations are lazy whenever possible, avoiding spurious copies.

Data parallel functional languages tend to have rich type systems. This
enables the compiler to statically check invariants that otherwise either go
unchecked, or are implemented in terms of dynamic checks at run-time. For
example, the length of each arrays is tracked at the type level as a symbolic
algebraic expression. In this paper, every array has it’s length represented as
a symbolic formula. Examples of this can be seen in the patterns described in
Fig. 2.

3 Functional Formulation of Work Efficient Parallel Scan

This section presents a work-efficient GPU implementation of parallel scan
expressed in the Lift dialect mentioned in the previous section. The code is an
adaptation of an handwritten NVidia implementation, whose imperative pseudo-
code is also shown. Algorithmically, this is a case of hybrid scan, as shown in
Fig. 1d, and can be analyzed in terms of the outer and inner scans.

3.1 Outer Scan

Listing 1 shows the functional formulation of the outer scan side-by-side with
the equivalent imperative pseudo-code. The algorithm unfolds in three sections:
the block-scan phase, the global scan phase, and then the aggregation phase.

In the block scan phase, the data input is split in blocks of size BLK, and
each block_scan is computed in parallel. unzip is then used to separate an
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1 parallel for i=0 to BLK do
2 block_scan(data[i*N/BLK], &sums[i])
3 sequential_scan(sums, global_scan)
4 parallel for b=0 to BLK do
5 parallel for i=0 to N/BLK do
6 data[b*BLK+i] = data[b*BLK+i] + global_scan[b]

1 let (data',sums) = data|> split(BLK)|> map(block_scan)|>
unzip

2 let global_scan = sums|> scanSeq(+)
3 zip(data', global_scan)|> map(
4 (xs, b) => xs|> map(x =>x+b)
5 )|> join

Listing 1: Imperative pseudo-code and functional expression for the outer scan.

array of [(partial_scan, sum)] pairs into a pair of ([partial_scan],[sum
]) arrays. This corresponds to the multiple output parameters in the imperative
pseudo-code. global_scan is implemented sequentially, by calling the scanSeq
primitive.

Finally, we reach at the aggregation step. The zip primitive associates each
block’s partial scan with the corresponding overall global_scan. The outer map
call operates over these (block, value) pairs, adding value to every element
of block. The blocks are concatenated by using join, which flattens the array.

It must be remarked that the functional version diverges somewhat from
the imperative version, which freely updates arrays in-place, something which is
difficult to express in a language that forbids. This has forced the introduction
of some intermediate variables, such as data' in Listing 1.

3.2 Inner Scan

The inner block_scan is more complex to express faithfully in a functional
style. Just as in the case of the outer algorithm, we will have to give up on an in-
place formulation. However, the inner algorithm performs in-place writes within
sequential for loops, which prevents the introduction of intermediate variables.

Listing 2 demonstrates how to remedy the issue in the upsweep phase. Notice
that the sequential iterations are in fact not dependent on the size of the input
but rather the fixed parameter BLK: implying the loop can be unrolled. After-
ward, we can proceed by introducing the intermediate variables in place of every
mutation step. This implies that the upsweep phase therefore no longer updates
the tree in place. Rather it constructs the tree level by level, storing each suc-
cessive layer in a different variable.
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1 for d=0 to log2(n-1) do
2 parallel for k=0 to n-1 by 2^(d+1) do
3 x[k+2d] = x[k+2d-1]+x[j+2d]

1 // d = 0...
2 let up_0 = input |> split(2) |> map(+) |> join
3 // d = 1...
4 let up_1 = up_0 |> split(2) |> map(+) |> join
5 //....
6 let up_n = up_n-1 |> split(2) |> map(+) |> join

Listing 2: Imperative pseudo-code and functional expression of upsweep phase

With this knowledge, we notice that each iteration produces the next tree
layer by summing together adjacent pairs of the previous tree layer, expressed
functionally by chaining together the primitives split(2)|> map(+)|> join.

Likewise, Listing 3 shows how the downsweep phase is unrolled to combine
the generated layers in Last-In-First-Out order. We begin the recursion with an
array containing a single element, 0. This corresponds to the line x[n-1]=0 in the
imperative code. The layers are then combined, via executing zip(prev_layer,
layer |> split(2))|> map(scan(+, 0))|> join, which is in fact equiva-
lent to the seemingly-unrelated loop body in the imperative pseudo-code: given
two layers, we match together one element of the previous (smaller) layer with
two elements of the successive, larger layer, with the pseudo-code lines 10–12
being an in-lined sequential scan. The importance of generalizing this custom-
looking code into a scan call is shown in Sect. 4.2. Finally, the functional version
must return the last tree layer and the block sum value, as the tuple (down_0,
up_n[0]).

We have now derived a working functional formulation of the GPU work
efficient scan, and have encountered some limitations of the functional approach,
such as introducing intermediate variables have been introduced for in-place
updates – although this limitation can be overcome in certain cases, such as
when the intermediate layers are used only once (such as the case for up_n and
down_n. As we will see in the Sect. 6, even when fusion is not possible, these
intermediates do not significantly affect the performance of the generated code.

4 Modeling the Optimization Space with Rewrite Rules

The aim of this section is to derive an optimization process capable of mapping
uses of the scan pattern to work-efficient parallel implementations. We will do
so by generalizing the functional formulation presented in Sect. 4.
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5 sum = x[n-1]
6 x[n-1] = 0
7 for d = log2(n-1) down to 0 do
8 parallel for k = 0 to n-1 by 2^(d+1) do
9 t = x[k + 2d - 1];

10 [k + 2d - 1] = x[k + 2d]
11 x[k + 2d] = t + x[k + 2d]

7 let down_n = [0]
8 let down_n-1 =
9 zip(down_n, up_n |> split(2)) |>

10 map(scanSeq(+)) |> join
11 ....
12 let down_0 =
13 zip(input, up_0 |> split(2)) |>
14 map(scanSeq(+)) |> join
15 (down_0, up_n[0])

Listing 3: Imperative pseudo-code and matching functional expression of down-
sweep phase.

A straightforward way to provide this optimization may be to substitute the
handwritten functional implementation for suitable uses of scan, or expose it as
a standard library function. However, this solutions have several limitations.

Firstly, the handwritten functional implementation makes use of two distinct
and orthogonal parallelization strategies: the scan-then-reduce and brent-kung.
It is reasonable to assume that in certain circumstances the compiler should be
able to apply the two optimizations independently. For instance, for sufficiently
small inputs just parallelizing the outer scan may have acceptable performance.

Moreover, in the course of implementing the functional version, a number
of implementation details had to be decided, such as fixing the block size and
the depth of the parallel scan tree, which materializes in the source code by
influencing the amount of unrolled operations. These choices may not be optimal
for many uses of the scan primitive. Indeed, in Sect. 6 we will show how significant
performance gains can be obtained by supporting a degree of variation in the
algorithm used to generate optimized parallel scans.

The goal, therefore, is not just to express an optimization, but rather to
model an optimization space. We achieve this by using a system of parametric
rewrite rules, which the compiler can then use to generate the optimized code, be
it on the basis of a set of heuristics, a user-defined specification, or an extensive
process of automatic exploration.
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scan-then-reduce(BS)

1 match scan(f,zero,input)
2 if input.size % BS == 0 �→
3 let chunks = split(input, BS) |>
4 map(chunk => scan(f,zero,chunk))
5 let sums = chunks |> map(reduce(f, zero))
6 let scans = scan(f,zero, sums)
7 zip(chunks, scans) |> map(
8 (chunk, x) => chunk |> map(y => f(x,y)))

Listing 4: The scan-then-reduce rule parallelizes an abstract scan call.

4.1 Optimization via Rewrite Rules

Functional representations simplify the expression of program transformations
using rewrite rules. A rewrite rule is a transformation that matches specified
program patterns, rewriting them in accordance with a different pattern. This
paper uses Elevate [5], a DSL for expressing rewrite rules in a compositional
style. Primitive rules are specified via matching over program fragments, and
then larger rules – known as strategies – are constructed by composing existing
rules using a generic family of combinator functions.

In the syntax of the rewrite rules shown here, highlighted code refers to pro-
gram fragments, while non-highlighted code is the rewrite rule logic – tasked
with finding and replacing the such fragments. Rule logic can query type infor-
mation, such as inspecting the known length of an array, be parameterized by
numerical values, and perform simple numerical and logical computation.

Optimizations that are normally implemented ad-hoc within the compiler can
therefore be expressed in this generic system. The rest of this section covers in
detail the transformations generating work-efficient parallel scan implementation
from an abstract high-level description.

4.2 Algorithmic Optimization

Scan-then-Reduce. The first rule applied is scan-then-reduce (Listing 4). It
matches a call to an abstract scan scan(f,zero,input), replacing it with a paral-
lelized version that uses the scan-then-propagate algorithm. The parameter BS
expresses the block size for the parallel sub-scans. The rule requires the scan’s
input array to be divisible by BS. This is a necessary correctness check.

Brent-Kung. As seen in Sect. 3.2, the work-efficient block-level scan is an
instance of Brent-Kung scan, which we also seek to express as a rewrite rule. As
we have seen before, a Brent-Kung parallel scan recursively computes (upsweep
phase) or consumes (downsweep phase) layers of a tree. In the functional formu-
lation, this iteration is necessarily unrolled, as expressing it as a loop requires
mutating the array that stores the tree.
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brent-kung-step(BF)

1 match scan(f,zero,input)
2 if input.size % BF == 0 �→
3 // Upsweep
4 let partials = input |> split(BF) |>
5 map(chunk => reduce(f, zero, chunk))
6 // Recursion point
7 let rest = scan(f, zero, partials)
8 // Downsweep
9 zip(rest, partials |> split(BF)) |>

10 map((r, ps) => scan(f, r ps)) |> join

Listing 5: Each application of the rule adds one layer to the parallelization tree.

brent-kung(BF)

1 match scan(f,zero,input)
2 if (log(BF, input.size) is whole) �→
3 num_iterations := log(BF, input.size)
4 iterate(num_iterations)(
5 first(scan)(brent-kung-step(BF))
6 ) @ scan(f,zero,input)

Listing 6: The rule rewrites an abstract scan into a brent-kung parallel scan

This expansion is expressed with recursive rewrite rules. Listing 5 shows
the rule for the recursive step. The rule is parameterized by the tree branch
factor BF . The rule’s body has three parts: first and last are the upsweep and
downsweep phases. In between, the rule inserts an abstract scan call, acting as
the recursion point. Based on brent-kung-step we can build the full brent-kung
rule (Listing 6), which expresses the iterative behavior. It inspects the size of
the input array in the matched scan call to compute the depth of the parallel
tree, determining the number of recursive applications of brent-kung-step.

The rule uses combinators: rules parametrized by other rules. The first com-
binator is first(scan)(brent-kung-step(BF)). It generates a rewrite rule
that finds the first instance of scan, and rewrites it using brent-kung-step(
BF). The iterate(num_iterations) combinator then applies this repeatedly.
This composition of combinators results in an iterative expansion of the scan
supplied, each step adding one layer of upsweep before the scan and one layer
of downsweep after the matched scan call, while simultaneously shrinking the
leftover scan input by a factor of 2.
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parallel-scan(BS, BF)

1 match scan(f,zero,input)
2 if BS % BF == 0
3 if input.size % BS == 0 �→
4 (scan-then-reduce(BS);
5 first(scan)(brent-kung(BF))
6 ) @ scan(f,zero,input)

Listing 7: The parallel-scan rule combines parallelization strategies into the com-
plete GPU scan.

Parallel-Scan. We can now express the algorithm for the full GPU parallel
scan by combining scan-then-propagate and brent-kung into a single rule, whose
definition is shown in Listing 7. The rule first applies the scan-then-propagate,
followed by the brent-kung rule on the first instance of scan encountered.

5 Optimization Space Exploration

5.1 Expressing Scan Variants

As we have seen in the previous section, the brent-kung rewrite rule works by
recursively expanding a call to scan into a parallel tree computation. Given block
size BS and tree branching factor BF , the process is iterated logF (BS). As a
variation, it is possible to terminate this expansion earlier, by parametrizing the
brent-kung rule by TD, the maximum depth of tree expansion.

The overall optimization from scan to parallel scan now admits three possible
parameters: the tree growth factor BF , the block size BS (obtained from the
input parameter type), and the parallelization tree depth TD. These parameters
delineate a space of possible optimizations. Given a value for the block size BS,
the possible parallel tree depth ranges from TD = 0, which generates a fully
sequential scan, to D = logBF (BS), yielding the canonical Brent-Kung scan.
Intermediate values express hybrid versions, such as that shown in Listing 8.

To see why such intermediate optimization points may be of interest, consider
that on a GPU target each block maps to an OpenCL work-group. As the value of
successive layers depends on that of preceding layers, these must be computed
sequentially, introducing a synchronization point. Shrinking the parallel tree
depth reduces the amount of synchronization necessary, but also trades away
parallel computation for sequential work, growing exponentially as TD decreases
by a factor of BF . For small reductions in TD this may be a positive trade-off.

5.2 Exploring Scan Variants

Finding the optimal (BF ,BS,TD) triple is not a straightforward task: a sound
choice of parameters requires knowledge of the target platform. For example,
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1 void block_sum(float output[S], float input[S])
2 local float up1[8], up2[4], dn2[4], dn1[8];
3 parallel for block=0 to S/16
4 float* in = &input[16*block];
5 float* out = &output[16*block];
6 parallel for i=0 to 8
7 up1[k] = in[2*i]+in[2*i+1];
8 parallel for i=0 to 4
9 up2[k] = up1[2*i]+up1[2*i+1];

10 dn2[0] = 0;
11 for i=1 to 4
12 dn2[i] = dn2[i-1]+up2[i];
13 parallel for k=0 to 4
14 dn1[2*i]=dn2[i]; dn1[2*i+1]=dn2[i]+up1[2*i];
15 parallel for k=0 to 8
16 out[2*i]=dn1[i]; out[2*i+1]=dn1[i]+in[2*i];

Listing 8: Block sum with BF=2, BS=16, TD=2.

when targeting GPUs, the number of local thread used equals BFTD. This
value should be larger then the GPU’s warp size to avoid needless stalls, but not
too large, to minimize synchronization.

The compiler then generates and tests the variations, finding the best triple
for the target architecture. In this paper, the search space is sufficiently small
that it is practical to exhaustively explore it. Should the search space become
large, one can alternatively use a more sophisticated search strategy, such as
using an generic autotuner like OpenTuner.

6 Evaluation

This section presents the paper’s experimental results. All measurements are
performed using the compiler’s OpenCL CUDA back-end, targeting version 1.2
of the standard, driver version 10.2.185 and are run on NVidia GeForce GTX
1070 and NVidia A100 GPUs. All times refer to GPU computation time only.
The scans compute the prefix sum of 32-bit floating-point values.

6.1 Performance of Scan Block Variants

Sect. 5.1 parametrized the work-efficient parallel scan generation by the triple
of Branching Factor (BF ), Block Size (BS) and Tree Depth (TD). This section
presents the details of exploring this delimited space of possible variants.

We begin by fixing the value of BF = 2, which implies that the parallel itera-
tion tree is a binary tree. For ease of presentation, we introduce the new param-
eter SE ∈ [0, BS], indicating the number of Sequentially Scanned Elements.
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Fig. 3. Throughput of automatically explored variations of block scan. Each version is
parameterized by the scan block size (top) and by the number of elements that are
sequentially scanned (bottom).

We wish SE = 0 to yield a fully parallel scan, while SE = BS corresponds
to an entirely sequential one. This desired behavior corresponds to constrain-
ing TD = log2(BS − SE). The range of sensible values for BS is shaped by
the GPU’s architecture, as it directly correlates to the amount of local memory
required. Here, it ranges from 32 to 512, doubling each step. Fixing BS also
allows determining the range of valid SE values: 1 to 16, also doubling each
time.

Figure 3 shows the results of exhaustively exploring the space delimited by
these constraints. The source program is a prefix sum computation over an array
of 25.6 million 32-bit floating-point elements. Executing the whole exploration
takes approximately 40 min on the author’s commodity hardware platform.

For both GPUs, the best versions have SE > 4. This is likely because higher
values of SE imply a reduction in synchronization points, as these are required
between parallel iterations. The trade-off is only beneficial with larger block sizes,
as a small block with positive SE will lead to many of the warp’s threads being
idle. While the optimal values for SE and BS vary across GPU architectures,
our approach can easily adapt to each platform’s characteristics.

6.2 End-to-End Comparison

The quality of our approach is evaluated by measuring the end-to-end perfor-
mance of the generated code. This includes the block-scan as well as the subse-
quent propagation phases. The comparison covers both the baseline parallel scan
shown in Sect. 4 and the result of variant exploration in Sect. 5 with two reference
implementation. The first is a handwritten version provided by NVidia [7], and
the second is the code produced by the Futhark compiler [8], a state-of-the-art
data-parallel functional generator.

The results are shown in Fig. 4. Across both GPUs, the optimized version
significantly outperforms both reference implementations. This is in contrast to
Futhark, whose performance varies significantly across architectures. By express-
ing the optimization process via rewrite rules, our compiler can reliably generate
high-performance code.
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Fig. 4. End-to-end throughput of scan implementations. Autogen refers the code
generation shown in Sect. 4. Optimized refers to the best version obtained in Sect. 5.
Handcoded is the NVidia optimized version shown in [7], and Futhark is the version
generated by the Futhark compiler [8].

7 Related Work

Data Parallel Functional Code Generators. A recent trend in the design of high-
performance code generators that use functional languages as inputs or internal
representations. These include Lift [20,21], Futhark [8], Single-assignment C [18]
and Accelerate [3]. These compilers leverage the properties of a functional style
to generate high-performance code for GPUs and other accelerators.

Rewrite Rules & Optimization Spaces. The use of rewrite rules to express opti-
mizations is well attested in the literature. We expressed our rewrite rules via
the Elevate [5], which has also been similarly used for image processing applica-
tions [10]. The Spiral [16] compiler spearheaded using rewrite rules to optimize
Digital Signal Processing applications in the SPL [22] language.

Petabricks [1] has been used to explore the design space of optimization for
sorting algorithms. The use of an auxiliary language to model optimizations has
similarities in Halide [17] schedules.

Parallel Scan. There is a wide literature concerning the use of scan in parallel
programs, starting from the seminal work of Blelloch [2]. Much work has gone
into producing parallel implementation for the GPUs, from early CUDA imple-
mentations [7] to libraries such as CUDPP [19] and CUB [12]. Parallel scan is
also a topic of relevance in the functional programming community. In particu-
lar [4,13], which show algorithms to derive parallel scan implementations.

8 Conclusion

This paper presented a functional formulation of work-efficient parallel scan. We
have decomposed it in a series of rewrite rules, modeling an optimization space.
Exploring this space yields efficient implementations across GPUs from the same
high-level source, consistently outperforming both an hand-written implementa-
tion and state of the art code generator, with up to 1.5x improvement.
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Abstract. This paper introduces a new approach to automatic ahead-
of-time (AOT) parallelization and optimization of sequential Python
programs for execution on distributed heterogeneous platforms. Our app-
roach enables AOT source-to-source transformation of Python programs,
driven by the inclusion of type hints for function parameters and return
values. These hints can be supplied by the programmer or obtained by
dynamic profiler tools; multi-version code generation guarantees the cor-
rectness of our AOT transformation in all cases.

Our compilation framework performs automatic parallelization and
sophisticated high-level code optimizations for the target distributed het-
erogeneous hardware platform. It introduces novel extensions to the poly-
hedral compilation framework that unify user-written loops and implicit
loops present in matrix/tensor operators, as well as automated selection
of CPU vs. GPU code variants. Finally, output parallelized code gen-
erated by our approach is deployed using the Ray runtime for schedul-
ing distributed tasks across multiple heterogeneous nodes in a cluster,
thereby enabling both intra-node and inter-node parallelism.

Our empirical evaluation shows significant performance improvements
relative to sequential Python in both single-node and multi-node exper-
iments, with a performance improvement of over 20,000× when using
24 nodes and 144 GPUs in the OLCF Summit supercomputer for the
Space-Time Adaptive Processing (STAP) radar application.

Keywords: Parallelizing compilers · Python language · Parallel
computing · Heterogeneous computing · Distributed computing

1 Introduction

Multiple simultaneous disruptions are currently under way in both hardware and
software, as we consider the implications for future parallel systems. In hardware,
“extreme heterogeneity” has become critical to sustaining cost and performance
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improvements with the end of Moore’s Law, but poses significant productivity
challenges for developers. In software, the rise of large-scale data science and
AI applications is being driven by domain scientists from diverse backgrounds
who demand the programmability that they have come to expect from high-level
languages like Python. While this paper focuses on Python as an exemplar of
modern high-productivity programming, the approach in this paper is equally
applicable to other high-productivity languages such as Julia [3].

A key challenge facing domain scientists is determining how to enable their
Python-based applications to use the parallelism inherent in both distributed
and heterogeneous computing. A typical workflow for domain scientists is to
experiment with new algorithms by starting with smaller datasets and then
moving on to larger datasets. A tipping point is reached when there is a need to
use intra-node parallelism with multiple cores and accelerators such as GPUs,
and another tipping point is reached when the dataset size becomes too large to
be processed within a single node.

One approach to dealing with these tipping points is to rely on experienced
programmers with a deep “ninja level” expertise in computer architecture and
code optimization for accelerators and inter-node communication who use low-
level programming languages such as C/C++. However, this approach is a non-
starter for many domain scientists due to the complexity and skills required.
For example, even though Python bindings for MPI [6] have been available for
many years, there has been very little adoption of these bindings by domain sci-
entists. An alternate approach is to augment a high-productivity language with
native libraries that include high-performance implementations of commonly
used functions, e.g., functions in the NumPy [14] and SciPy [20] libraries for
Python. However, fixed library interfaces and implementations do not address
the needs of new applications and algorithms. Yet another approach is to develop
and use Domain Specific Languages (DSLs); this approach has recently begun
showing promise for certain target domains, e.g., PyTorch and TensorFlow for
machine learning, Halide for image processing computations, and TACO for ten-
sor kernels. However, the deliberate lack of generality in DSLs poses significant
challenges in requiring domain scientists to learn multiple DSLs and to integrate
DSL kernels into their overall programming workflow, while also addressing cor-
ner cases that may not be supported by any DSLs.

In this paper, we make the case for new advances to enable productivity and
programmability of future HPC platforms for domain scientists. The goal of our
system, named AutoMPHC, is Automation of Massively Parallel and Heteroge-
neous Computing. It aims to deliver the benefits of distributed heterogeneous
hardware platforms to domain scientists without requiring them to undergo any
new training. As a first step towards this goal, this paper introduces a novel
approach to automatic ahead-of-time (AOT) parallelization and optimization
of sequential Python programs for execution on distributed heterogeneous plat-
forms, which supports program multi-versioning for specializing code generation
to different input data types and different target processors. The optimized code
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Fig. 1. PolyBench-Python correlation: List version (default)

Fig. 2. PolyBench-Python correlation: NumPy version

Table 1. Execution time of correlation benchmark (dataset = large on Titan Xp
workstation equipped with Intel i5-7600 4-core CPU and NVIDIA Pascal GPU)

List version NumPy version AutoMPHC (input: List) AutoMPHC (input: NumPy)

152.5 [sec] 2.212 [sec] 0.1760 [sec] 0.07163 [sec]

is deployed using the Python-based Ray runtime [10] for scheduling distributed
tasks across multiple heterogeneous nodes in a cluster.

As a simple illustration of our approach, consider two versions of the Poly-
Bench [1] correlation benchmark shown in Figs. 1 and 2. The first case rep-
resents a list-based pattern implemented using three explicit Python loops that
access elements of lists (as surrogates for arrays), which might have been written
by a domain scientist familiar with classical books on algorithms such as [16].
The second case represents a NumPy-based pattern with one explicit loop and
a two-dimensional array statement in line 7 of Fig. 2, which might have been
written by a domain scientist familiar with matrix operations. A unique fea-
ture of our approach is the ability to support both explicit Python loops and
implicit loops from NumPy operators and library calls in a unified optimization
framework. The performance results for this example in Table 1 show that the
NumPy-based version of the correlation benchmark performs better than the
list version, while our approach (which can be applied to either style of input)
performs significantly better than both. Additional performance results are dis-
cussed in Sect. 5.

In summary, this paper makes the following contributions:
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– A novel approach to automatic ahead-of-time (AOT) parallelization and opti-
mization of sequential Python programs for execution on distributed hetero-
geneous platforms. Our approach is driven by the inclusion of type hints
for function parameters and return values, which can be supplied by the pro-
grammer or obtained by dynamic profiler tools; multi-version code generation
guarantees the correctness of our AOT transformation in all cases.

– Automatic parallelization and high-level code optimizations for the target
distributed heterogeneous hardware platform, based on novel extensions to
the polyhedral framework that unify user-written loops and implicit loops
present in matrix/tensor operators, as well as automated selection of CPU
vs. GPU code variants.

– Automatic code generation for targeting the Ray runtime to schedule dis-
tributed tasks across multiple heterogeneous nodes in a cluster.

– An empirical evaluation of 15 Python-based benchmarks from the PolyBench
suite on a standard GPU-equipped workstation, and multi-node evaluation
of the Space-Time Adaptive Processing (STAP) radar application in Python.
Both evaluations show significant performance improvements due to the use
of AutoMPHC. In the case of STAP, the performance improvement relative to
the original Python code was over 20,000× when using 24 nodes and 144
GPUs (6 GPUs/node) in the OLCF Summit supercomputer.

2 Background

2.1 Intrepydd Compiler

The Intrepydd programming language [30] introduced a subset of Python that
is amenable to ahead-of-time (AOT) compilation into C++. It is intended for
writing kernel functions rather than complete or main programs. The C++ code
generated from Intrepydd kernels can be imported into a Python application or
a C++ application.

A key constraint in the Intrepydd subset of Python is the requirement
that Intrepydd function definitions include type annotations for parameters and
return values. Given these type annotations, the Intrepydd compiler statically
infers the types of local variables and expressions. The Intrepydd tool chain
includes a library knowledge base, which specifies type rules for a wide range of
standard library functions used by Python programs. As discussed in the follow-
ing sections, the AutoMPHC system extends the Intrepydd tool chain to serve as
a Python-to-Python optimization and parallelization system; there is no C++
code generated by the current version of AutoMPHC.

It is important to note that Intrepydd also includes extensions to standard
Python to enable C++ code generation. These extensions include statements
with explicit parallelism (e.g., pfor for parallel loops) and special library func-
tions. In contrast, AutoMPHC does not rely on any of these extensions. All input
code to AutoMPHC and all output code generated by AutoMPHC can be executed
on standard Python implementations.
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Fig. 3. AutoMPHC distributed runtime architecture.

2.2 Ray Runtime

We use Ray [10] as the base distributed runtime framework. Ray features a
number of properties beneficial for AutoMPHC. First, the ability to simultane-
ously support both stateless and stateful computation—one of its key research
contributions useful for a heterogeneous mix of CPU and GPU compute. State-
less computation, in the form of side-effect free tasks, is best suited for processing
large data objects or partitions on numerous CPU resources. Stateful compu-
tation is beneficial for GPU tasks. We create tasks for this distributed runtime
by automatically compiling selected regions of code into Ray tasks. Each Ray
task then can be spawned asynchronously. A full directed acyclic graph (DAG)
of such task instantiations is dynamically constructed and submitted for execu-
tion without waiting for intermediate computation results. It enables AutoMPHC
to (a) hide the latency of task instantiation and propagation to workers for
execution, (b) extract pipeline parallelism, and, (c) extract parallelism from
the partial order of the dynamically constructed directed acyclic task graph.
As Ray tasks are instantiated, they return immediately with a future-like con-
struct, called an ObjectID—an object handle that refers to a globally addressable
object. The object is eventually fulfilled and can be extracted with a blocking
ray.get(object id) API. We note that the distributed object store (Fig. 3) used
for the lifecycle of these objects is immutable—a property that elides the need
for expensive consistency protocols, state coherence protocols, and other syn-
chronization overheads needed for data correctness. Further, DAG parallelism
alleviates the need for expensive MPI-style distributed barriers and, therefore,
does not suffer from the otherwise common straggler challenges—an important
property for heterogeneous compute at scale. Finally, data store and the deter-
ministic nature of the task graph jointly enable fault tolerance, as any missing
object in the graph can be recomputed by simply replaying the sub-graph lead-
ing up to and including the object’s parent vertex. This mechanism can be
triggered automatically and comes with minimal overhead on the critical path
of a task [29].
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Fig. 4. Overall design of AutoMPHC system

3 Overview of Our Approach

Figure 4 summarizes the overall design of our proposed AutoMPHC system. User-
developed code is a combination of main program code and kernel code, where
the former is unchanged while the latter is optimized by AutoMPHC via automatic
ahead-of-time (AOT) source-to-source transformations. Both execute on a stan-
dard Python runtime along with Ray and other libraries used by the application.
There are two forms of kernel code supported by our system—one in which type
annotations are manually provided by the user, and another in which type anno-
tations are obtained by a type profiler such as MonkeyType. In both cases, the
type annotations serve as hints since multi-version code generation guarantees
the correctness of our AOT transformations in all cases (whether or not the
actual inputs match the type annotations).

The kernel functions with type annotations (hints) are first translated by
the Front-end to an Abstract Syntax Tree (AST) representation implemented
using the standard Python Typed AST package [19]. The core optimizations in
AutoMPHC are then performed on the AST, including multi-version code spe-
cialization (Sect. 4.1), polyhedral optimizations (Sect. 4.2), and generation of
distributed parallel code using Ray tasking APIs along with generation of het-
erogeneous code using selective NumPy-to-CuPy conversion (Sect. 4.3). These
Static Optimizations benefit from the use of the AutoMPHC Knowledge Base,
which includes dataflow and type information for many commonly used library
functions. The transformed code is then executed on a distributed heterogeneous
platform using standard Python libraries in addition to Ray.

4 Optimizations

The AutoMPHC compiler is an extension of Intrepydd compiler [30], which sup-
ports type inference and basic optimizations including loop invariant code
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motion, sparsity optimization, and array allocation/slicing optimizations. In the
following sections, we present newly developed optimizations for automatic par-
allelization targeting distributed heterogeneous systems.

Fig. 5. Multi-versioning for PolyBench-Python correlation

4.1 Program Multi-versioning for Specialized Code Optimizations

Multi-versioning is an approach to data-aware optimizations, which generates
multiple code versions specialized under certain conditions at compile-time and
selects a proper code version at runtime. In our framework, we consider two
classes of conditions, legality-based and profitability-based. All the conditions are
organized as decision trees, where legality conditions are located at higher levels
while profitability conditions are at lower levels in general.

The legality conditions are mainly used to verify the data type annota-
tions attached on function parameters and returns. In our approach, the type
annotations are used as hints and the compiler speculatively performs opti-
mizations assuming these hints are correct. For example, the accuracy of array
rank/dimensionality inference, which is derived from the type hints, is criti-
cal to the polyhedral optimizations (Sect. 4.2). In contrast, array element types
may be less critical in some cases since AutoMPHC generates untyped Python
code as output (unlike Intrepydd, which generated typed C++ code). In gen-
eral, since these type annotations can be different from the actual types at run-
time, the multi-versioning code generation introduces runtime checks of anno-
tated/inferred types and ranks for specialized code version while ensuring correct
behavior for others, as shown in Fig. 5.

The profitability conditions can cover a broad range of conditions/scenarios
related to runtime performance rather than correctness. As described later, the
AutoMPHC compiler can generate two versions of optimized kernels, one for CPUs
and the other for GPUs. The runtime condition used to select between these two
versions is a typical example of a profitability condition (Sect. 4.3).

4.2 Polyhedral Optimizations

Polyhedral compilation has provided significant advances in the unification
of affine loop transformations combined with powerful code generation tech-
niques [4,27,31]. However, despite these strengths in program transformation,
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Table 2. NumPy examples in library knowledge base

Library function Domain Semantics and dataflow

transpose2D (i0, i1) R[i0, i1] := A1[i1, i0]

mult1D,2D (i0, i1) R[i0, i1] := A1[i1] × A2[i0, i1]

sum1D (0) R := ΣkA1[k]

sum2D,axis=1 (i0) R[i0] := sum1D(A1[i0, :])

dot2D,2D (i0, i1) R[i0, i1] := sum1D(mult1D,1D(A1[i0, :], A2[:, i1]))

fft2D,axis=1 (i0) R[i0, :] := fft1D(A1[i0, :])

the polyhedral frameworks lack support for: 1) dynamic control flow and non-
affine access patterns; and 2) library function calls in general. To address the
first limitation, we have extended the polyhedral representation of Static Control
Parts (SCoPs) to represent unanalyzable expressions as a compound “black-box”
statement with approximated input/output relations. To address the second lim-
itation, we took advantage of our library knowledge base to obtain element-wise
dataflow relations among function arguments and return values (see examples in
Table 2). These unique features enable the co-optimization of both explicit loops
and implicit loops from operators and library calls in a unified optimization
framework, as detailed in the rest of this section.

Given SCoP representation extracted from the Python IR, the AutoMPHC
polyhedral optimizer, which is built on the PolyAST [22,23] framework, com-
putes dependence constraints and performs program transformations. Finally,
the optimized SCoP representation is converted back to Python IR with the
help of the library knowledge base for efficient library mapping.

Intra-node Parallelization: The optimization goal for the intra-node level is to
generate sufficient parallelism to fully utilize efficient multithreaded libraries such
as BLAS-based NumPy and CuPy. Our modified PolyAST [23] algorithm applies
loop distribution to split different library calls into different loops while maximiz-
ing the iteration domain (i.e., amount of computation) that can be mapped to a
single library function call. The SCoP-to-Python-IR generation stage leverages
the library knowledge base to select the most efficient combination of available
library functions for each statement when available.

Figure 6a shows the computationally dominant code region in the PolyBench-
Python correlation NumPy benchmark, which has a for loop enclosing a
sequence of NumPy function calls: 2-D array transpose overlapping T opera-
tor; 1-D×2-D array multiply overlapping * operator, and 2-D array summation
sum to produce 1-D result. Based on the type inference results, the polyhe-
dral phase first identifies these library functions with specific types and array
ranks. As shown in Table 2, the library knowledge base provides the element-
wise dataflow information and operation semantics of these functions, which
are used to extract the SCoP information and semantics of each statement
(Fig. 6b). Note that: both explicit and implicit loops are unified in a triangular
iteration domain; and the element-wise dataflow and semantics are summarized
as the statement body, corr[i0, i1] = sum(mult(data[:, i0], data[:, i1])).
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Fig. 6. Kernel from the PolyBench-Python correlation

Given the statement body, the SCoP-to-Python-IR generation stage selects the
combination of matrix-matrix multiplication numpy.dot and 2-D transpose T as
the best mapping, followed by numpy.triu to update only the triangular itera-
tion domain (Fig. 6c). As discussed in Sect. 5.2, this transformation sufficiently
increases the intra-node parallelism per library call and contributes to significant
improvements for several benchmarks.

When the input program is written only with explicit loops, e.g., the List
version in Fig. 2, our approach extracts similar SCoP and generates similar code,
but with necessary conversions between List and NumPy array data types.

Inter-node Parallelization: The optimization policy for inter-node level is
equivalent to the original PolyAST [23] algorithm that maximizes outermost
level parallelism, while incorporated with our data layout transformation app-
roach [24,25] to reduce the total allocated array sizes and data movement across
Ray tasks. Analogous to two-level parallelization for GPUs [22], our polyhedral
optimizer selects different schedules – i.e., compositions of loop transformations
and parallelization – for inter-node and intra-node levels individually; and inte-
grates them into the final schedule via loop tiling.

Figures 7a and 7b respectively show the computational kernel of the STAP
radar application and the extracted SCoP information. The explicit loop with
statement S and the fft call of statement T are handled as 1-D iteration domains
while 2-D×2-D array multiply of statement U is handled as a 2-D iteration
domain. The polyhedral optimizer identifies the outermost level parallelism and
computes the inter-node schedule that fuses these statements into a single par-
allel loop. The transformed code after integrating the inter-node and intra-node
schedules is shown in Fig. 7c, where pfor is an intermediate parallel loop con-
struct that is implemented using Ray tasks.



AutoMPHC 359

Fig. 7. Kernel from the STAP Signal Processing Application

4.3 NumPy-to-CuPy Conversion and Parallelized Code Generation

After the polyhedral phase, the program multi-versioning pass (Sect. 4.1) is
applied to the pfor parallel loops and generates both sequential and parallel
versions. The profitability condition, which makes the decision on whether the
loop should be distributed across nodes via the Ray runtime, is generated by a
simple cost-based analysis and summarized as a threshold expression using loop
counts. This analysis also includes the profitability check of the CuPy conversion
for a given sequence of NumPy library calls. The current implementation takes
an all-or-nothing approach for NumPy-to-CuPy conversion in a code region, and
more fine-grained control, e.g., per-array decisions, is a topic for future work.

To generate Ray-based distributed code from a high-level pfor loop, the poly-
hedral phase provides the following supplemental information related to data
access and NumPy-to-CuPy conversion.

pfor (output = {varout1 : typeout1, varout2 : typeout2, ...},
input = {varin1 : typein1, varin2 : typein2, ...},
transfer = module name)

The output and input clauses respectively specify the produced and referenced
variables by the pfor loop and their corresponding types, while the transfer

clause indicates the possibility of NumPy-to-CuPy conversion based on the poly-
hedral dataflow analysis and library compatibility.
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4.4 Important Packages Used in AutoMPHC Tool Chain

Our AutoMPHC compilation flow is built on top of the Python Typed AST pack-
age [19], which serves as the baseline IR to perform fundamental program analy-
ses and transformations such as type inference, loop invariant code motions, and
constant propagations. For the polyhedral optimizations presented in Sect. 4.2,
we employ the islpy package, the Python interface to the Integer Set Library
(ISL) [28] for manipulating sets and relations of integer points bounded by lin-
ear constraints. Beside the polyhedral representations using islpy, we employ
sympy [26] to analyze symbolic expressions observed in the Typed AST.

Table 3. Hardware Platform Information (per node) and software versions

Per node Cori-GPU Summit Titan Xp (workstation)

CPU 2 × Intel Xeon Gold

6148

2 × IBM POWER9 1 × Intel i5-7600 CPU

@ 2.40GHz (40

cores/node)

@ 3.1GHz (44

cores/node)

@ 3.50GHz (4 cores)

GPU 8 × NVIDIA Tesla

V100

6 × NVIDIA Tesla

V100

1 × NVIDIA Pascal

Memory 384GB 512GB 15GB

Interconnect InfiniBand + PCIe

(CPUs-GPUs)

InfiniBand PCIe (CPU-GPU)

+ NVLink (GPUs) + NVLink

(CPUs-GPUs, GPUs)

Python/NumPy/CuPy 3.7.3/1.16.4/7.4.0 3.7.3/1.16.0/7.4.0 3.6.9/1.19.5/7.2.0

Ray 0.8.4 0.7.7 0.8.4

Table 4. PolyBench-Python baselines: Execution time in second (dataset = large)

2 mm 3 mm atax bicg correlation covariance doitgen gemm

List Default [sec] 224.4 356.2 0.6578 0.6730 152.5 305.7 54.46 147.4

List Pluto [sec] 205.2 337.9 0.8381 0.8304 152.1 153.8 54.45 191.5

NumPy [sec] 0.0214 0.03252 0.002516 0.002447 2.212 3.813 0.1250 0.01789

gemver gesummv mvt symm syr2k syrk trmm

List Default [sec] 1.510 0.3068 0.8710 140.4 171.4 96.66 91.10

List Pluto [sec] 1.453 0.3154 0.8714 140.5 137.9 81.73 93.27

NumPy [sec] 0.04676 0.001074 0.002537 1.656 2.667 0.7839 0.8499

5 Experimental Results

5.1 Experimental Setup

We use a standard GPU-equipped workstation, Titan Xp, for single-node exper-
iments (Sect. 5.2) and two leading HPC platforms, NERSC Cori [11] and OLCF
Summit [8] supercomputers, for multi-node experiments (Sect. 5.3). The single-
node specification of these platforms is summarized in Table 3. For Summit, we
manually built Ray and its dependencies from scratch because there is currently
no out-of-the-box Python Ray package for the POWER processor.
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5.2 Single-node Results (PolyBench)

We first evaluate the impact of our polyhedral optimizations using PolyBench-
Python [1], which is the Python implementation of PolyBench [15], a widely used
benchmark kernels for compiler evaluations. We use a total of 15 benchmarks
shown in Table 4, which are well suited to our current library-oriented optimiza-
tion strategy. The evaluation of other 15 benchmarks is a topic for future work
that supports hybrid Python/C++ code generation.

Fig. 8. PolyBench-Python performance on NVIDIA Titan Xp (dataset = extra large)

PolyBench Python provides a variety of benchmark implementations, includ-
ing the default List version, the optimized List version by the Pluto polyhedral
compiler [4], and the NumPy version. Table 4 shows the execution time of these
versions using the “large” datasets. While the Pluto optimization improves the
performance, NumPy version largely outperforms List versions for all cases.

In the following experiments, we use NumPy version as the baseline of our
comparison, and “extra large” dataset to ensure sufficient execution time. Note
that “extra large” and “large” respectively refer to the first and second largest
datasets. Figure 8 shows the GFLOP/s of three experimental variants:

– NumPy baseline: the original NumPy implementation from PolyBench.
– AutoMPHC opt-CPU: the CPU optimized version by AutoMPHC framework.
– AutoMPHC opt-GPU: the GPU optimized version by AutoMPHC framework

enabling NumPy-to-CuPy conversion.

Comparing the NumPy baseline and AutoMPHC opt-CPU versions, our polyhedral
optimization gives 8.7× – 212.4× performance improvements for correlation,
covariance, doitgen, symm, syr2k, syrk, and trmm, while showing compara-
ble performance for other benchmarks. Enabling NumPy-to-CuPy conversion,
i.e., AutoMPHC opt-GPU version, further improves the performance for most bench-
marks with the exception of gesummv and syrk. In this evaluation, our profitabil-
ity conditions always selected GPU variants. The improvement of CPU/GPU
selection based on offline profiling is an important topic for future work.
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5.3 Multi-node Results (STAP)

We demonstrate the multi-node performance of our AutoMPHC compiler frame-
work using one of our target applications in the signal processing domain, namely
the Space-Time Adaptive Processing (STAP) application for radar systems [9].
The problem size used for STAP is to evaluate the analysis of 144 data cubes for
the CPU case; and 2304 data cubes for the GPU case, where each data cube has
# pulses per cube = 100, # channels = 1000, and # samples per pulse = 30000.
The throughput performance required for real-time execution is 33.3 [cubes/sec].
We compare four experimental variants as listed below:

Fig. 9. STAP radar application performance on NERSC Cori supercomputer

Fig. 10. STAP radar application performance on OLCF Summit supercomputer

– Python NumPy: The original single-node CPU implementation.
– Python CuPy: CuPy-based single-node GPU implementation, manually ported

from the original Python NumPy version.
– MPI+CUDA lib: MPI C/C++ and CUDA library-based multi-node GPU

implementation, manually ported from the Python CuPy version by a domain
expert with past experience in MPI and C/C++ programming.

– AutoMPHC: Automatic parallelization by the AutoMPHC compiler of the original
Python NumPy version, running on the Ray distributed runtime.
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Figures 9 and 10 show the throughput performance, i.e., number of data cubes
processed per second, respectively on Cori and Summit clusters. Given the Python

NumPy version as input, the AutoMPHC compiler automatically parallelized the
major computation kernel and mapped it to GPUs via NumPy-to-CuPy con-
versions. This significantly improves the throughput performance, resulting in
comparable single-GPU performance with the manually ported CuPy implemen-
tation on both clusters. The MPI+CUDA lib version shows significantly worse per-
formance compared to the AutoMPHC version. The major performance bottleneck
of this variant lies in the unoptimized data transfers among CPUs and GPUs.
Although the majority of computation in the MPI+CUDA lib version is covered by
CUDA-based libraries such as cufft, the interleaving of C-based CPU code with
the CUDA-based GPU library calls resulted in a large amount of CPU/GPU data
transfers. Optimizing these data transfers would have required deep (ninja-level)
experience with CUDA programming as well as sufficient time for performance
tuning. In contrast, the AutoMPHC version shows good multi-node scalability
with performance of up to 44.58 [cubes/sec] using 24 nodes on Summit, which
exceeds 33.3 [cubes/sec] of the domain-specific throughput requirement for the
real-time radar systems. The AutoMPHC version also achieves 4.40 [cubes/sec] of
single-node performance on Cori while the multi-node scalability is more limited
than that on Summit. This stems from the difference in network, i.e., Summit’s
NVLink (50 GB/s) vs. Cori’s PCIe 3.0 (16 GB/s).

Breakdown on CPU-GPU Interconnect Performance: In the parallelized
STAP code by AutoMPHC, each parallel task performs the computation on the
GPU-side and returns a few gigabytes of the result via device-to-host (D2H) data
transfers. We developed a synthetic benchmark that mimics the behavior of the
D2H transfers in our AutoMPHC-parallelized STAP application and evaluated its
impact on the overall performance. Because nvprof could not profile the GPU
part invoked from the Ray distributed runtime, our D2H benchmark is imple-
mented using OpenMP+CUDA and spawns parallel threads to simultaneously
perform the D2H transfers. The benchmarking results, i.e., timings to complete
D2H data transfer using all GPUs of a single node, are summarized as:

– Cori: 8 GPUs per node, PCIe 3.0 (16 GB/s)
• 6 cubes (2.4 GB) per GPU – 39.563 s
• 16 cubes (6.4 GB) per GPU – 150.224 s

– Summit: 6 GPUs per node, NVLink (50 GB/s)
• 6 cubes (2.4 GB) per GPU – 3.251 s
• 16 cubes (6.4 GB) per GPU – 8.791 s

The results clearly show that simultaneously transferring back large amounts
of data significantly degrades the D2H bandwidth of PCIe 3.0 on Cori. As
expected, NVLink on Summit largely outperforms PCIe 3.0 in terms of D2H
data transfers, which is why NVLink contributed to the good scalability of the
AutoMPHC-generated code on the Summit system.
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6 Related Work

There are a number of compilation frameworks for enhancing Python perfor-
mance, most notably Numba [13], PyPy [17] and Pyston [18] which use just-
in-time compilation; and Cython [5], Nuitka [12], and Shed Skin [21] which use
source-to-source translation and native compilation. As an example of loop-aware
optimizations, PyPy’s Tracing JIT [2] enables common subexpression elimina-
tion and memory allocation removal within loops, based on the interpreter exe-
cution traces. Numba, implemented as a Python library, dynamically translates
a subset of Python code into machine code via LLVM-based JIT compilation.
Despite the rich set of optimization passes in LLVM framework, the low-level
translated code is not amenable to a large segment of the LLVM optimiza-
tions including the polyhedral optimizations by Polly [7]. While all these efforts
aim to improve performance through generating native code, to the best of our
knowledge, none of them has leveraged high-level abstractions of Python source
program for AOT compilation as in our approach.

7 Conclusions

This paper describes AutoMPHC —a programming system designed to deliver the
benefits of distributed heterogeneous hardware platforms to domain scientists
who naturally use high-productivity languages like Python. In our approach,
the parameters and return values of kernel Python functions are annotated
with type hints, manually by users or automatically by profiling tools. Based
on these type hints, the AutoMPHC compiler performs automatic AOT paral-
lelization, based on advanced polyhedral optimizations, CuPy-driven GPU code
generation, and Ray-targeted heterogeneous distributed code generation and
execution. The correctness of our AOT parallelization is guaranteed by multi-
version code generation, since code versions with type-specific optimizations are
executed only when the actual runtime types match the type hints. Our empir-
ical evaluations using PolyBench-Python for workstation performance and the
STAP radar application for heterogeneous distributed performance show signif-
icant performance improvements, e.g., up to 358× improvement for PolyBench
and up to 20,000× improvement for the STAP radar application, relative to
baseline NumPy-based implementations. Opportunities for future work include
hybrid Python/C++ code generation, fine-grained NumPy-to-CuPy conversion,
and profile-based CPU/GPU runtime selection.
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Abstract. Current execution of kernels on GPUs allows improving the
use of hardware resources and reducing the execution time of co-executed
kernels. In addition, efficient kernel-oriented scheduling policies pursuing
criteria based on fairness or Quality of Service can be implemented. How-
ever, achieved co-executing performance strongly depends on how GPU
resources are partitioned between kernels. Thus, precise slowdown mod-
els that predict accurate co-execution performance must be used to fulfill
scheduling policy requirements. Most recent slowdown models work with
Spatial Multitask (SMT ) partitioning, where Stream Multiprocessors
(SMs) are distributed among tasks. In this work, we show that Simul-
taneous Multikernel (SMK) partitioning, where kernels share the SMs,
obtains better performance. However, kernel interference in SMK occurs
not only in global memory, as in the SMT case, but also within the SM ,
leading to high prediction errors. Here, we propose a modification of a
previous state-of-the-art slowdown model to reduce median prediction
error from 27.92% to 9.50%. Moreover, this new slowdown model is used
to implement a scheduling policy that improves fairness by 1.41x on aver-
age compared to even partitioning, whereas previous models reach only
1.21x on average.

Keywords: Concurrent Kernel Execution · Simultaneous
Multikernel · Slowdown model · Fairness Scheduling

1 Introduction

Current Graphic Processing Units (GPUs) provide high computational power
and memory bandwidth and are able to execute thousands of threads at a time
to exploit the data parallelism that can be found in application kernels. Threads
are organized in Cooperative Threads Arrays (CTAs), also called thread blocks,
that are launched into the available Streaming Multiprocessors (SM).

Despite this large amount of computing resources, kernel execution can satu-
rate some of them, harming the execution efficiency. In this situation, resources
are also wasted as no further speedup can be achieved. With concurrent execu-
tion of kernels, those wasted resources can be assigned to another kernel, which
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allows improving the use of hardware resources and reducing the total execu-
tion time of co-executed kernels. In addition, efficient kernel-oriented scheduling
policies that pursue criteria based on fairness or Quality of Service can be imple-
mented.

Concurrent kernel execution reveals specially useful in GPU servers, where
applications running on CPUs offload specific functions to GPUs in order to take
advantage of the device performance. In these environments, it is likely to have
several independent kernels ready to run concurrently on the same GPU. In this
context, several works have been published that try to improve the way kernels
are scheduled on GPUs.

Previous works have proposed two possible ways of allocating resources to
kernels. On the one hand, using Spatial Multitask (SMT ) a subset of the avail-
able SMs is assigned to a kernel so that all the CTAs of that kernel are run in
that subset [1]. On the other hand, Simultaneous Multikernel (SMK) assigns
CTAs belonging to different kernels to each SM , replicating the same assignation
scheme at each SM [2,3]. A recent and exhaustive survey of SMT and SMK
approaches can be found in [4].

The co-execution performance achieved is highly dependent on how GPU
resources are partitioned between the kernels. Thus, precise slowdown models
that accurately predict the co-execution performance relative to running the
kernel alone (single-execution) must be used to fulfill scheduling policy require-
ments. Researchers have employed several approaches to predict the slowdown
of co-executing kernels. All of these approaches fall into two main categories [5].
Methods belonging to the first category rely on information obtained from hard-
ware counters to make the prediction [6–8]. However, the impact of interference
between co-executing kernels is difficult to model and, consequently, the predic-
tion is not accurate [9]. In the second category, we find methods that build a
prediction model applying machine learning techniques using representative ker-
nel datasets [10]. However, the computational complexity of the model inference
is high and, furthermore, the accuracy of the prediction is very dependent on
the training set employed.

A recent method, called Hybrid Slowdown Model (HSM) [5], which takes
characteristics of both categories, is able to predict the performance achieved by
compute and memory-bound co-executing kernels following an SMT distribution
scheme. However, we have noticed that the above model incurs high prediction
errors when the SMK distribution scheme is employed. We also note that the
SMK distribution typically achieves better performance for different scheduling
policies than SMT . In this paper, we propose a modification of HSM that
allows building a more accurate slowdown model for the SMK distribution
of concurrent kernel CTAs. Thus, the main contributions of this work are the
following:

– We compare the SMK and the SMT distribution schemes in terms of the
average normalized turn-around time and the system throughput.

– We add a piece-wise approximation method to the HSM model to improve
slowdown prediction. We call this model HPSM .
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– We use HPSM to implement a fairness-based CTA allocation policy, and
compare it to HSM .

The rest of the paper is organized as follows. Section 2 discusses some simple
experiments that motivated us to conduct this research. In Sect. 3, we analyze the
inaccuracy sources of current slowdown models and propose some modifications
to obtain more precise predictions. In the next section, a thorough experimen-
tation is conducted with memory-bound and compute-bound kernels to show
the generalization capabilities of our approach. Then, Sect. 5 presents relevant
related works and, finally, we present the conclusions of our work in Sect. 6.

2 Motivation

Kernel execution on a GPU may not scale well due to architecture constraints
and saturation of computational resources caused by, for example, pipeline stalls
on RAW dependencies (in compute-bound kernels) or L1-cache trashing (in L1-
cache sensitive kernels) [2]. Another type of saturation can occur with memory-
bound kernels since they can saturate the global memory bandwidth before all
the possible CTAs are allocated to the SMs. One way to deal with saturation
problems is to reduce the number of CTAs of the saturating kernels assigned to
the SMs and, to maintain high GPU utilization, concurrently schedule CTAs
from another kernel with different resource needs. Thus, in this section we per-
form experiments with two kernels: GCEDD, a compute-bound kernel, and
RED, a memory-bound kernel (see Table 2 for more details), to evaluate their
performance. Each of these kernels can saturate some computational resources
before all the CTAs have been assigned, limiting the maximum performance they
could achieve.

Fig. 1. IPC achieved by a single execution of RED and GCEDD kernels using a
variable number of CTAs.

In our first experiment, we compare the behavior of SMT and SMK distri-
butions when only a single kernel is executed to test the effect of saturation on
performance. Thus, we gradually increase the number of used resources by using
more SMs, in the SMT case, or by allocating more CTAs to each SM , in the
case of SMK. In the left graph of Fig. 1, we show the instruction per clock (IPC)
achieved by GCEDD (a compute-bound kernel) as more device resources are
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utilized. It can be observed that the IPC values of SMT execution of GCEDD
are linear with the number of SMs [5]. However, when SMK allocation scheme
is employed, the IPC values for intermediate resource usage are higher and there
is almost no gain after allocating more than 60% of the maximum number of
CTAs that fit in each SM . Thus, SMT launches all the possible kernel CTAs on
the assigned SMs and the achieved IPC obtained on each SM is limited by the
intensive use of shared resources on the SM . In contrast, since SMK distributes
CTAs evenly across all SMs, maximum performance can be achieved using a low
number of CTAs running on each SM , thereby reducing the pressure over other
resources such as global memory.

Similarly, the right graph in Fig. 1 shows the IPC obtained by a memory-
bound kernel, RED. Using both allocation schemes, the kernel achieves a similar
IPC in the saturation zone, indicating that the kernel has reached its maximum
memory bandwidth. However, in the non-saturated area, SMK gets higher IPC
values since the execution of memory access instructions is distributed among all
the available SM instead of being restricted to a subset of these SMs, probably
saturating load/store buffers in the SM .

Now, we are going to analyze the behavior of both kernels when they are co-
executed. A performance metric of kernel co-execution is the system throughput
(STP ) [11]. The expression of STP for a set of K co-executing kernels is given
by

STP =
K∑

k=1

IPCshared
k

IPCalone
k

(1)

where IPCshared
k and IPCalone

k indicate the number of instructions per cycle
obtained by the kernel when running in co-execution with other kernels and the
number of instructions per cycle when executing alone (all the GPU resources
assigned to the kernel), respectively. Each summation term is called normalized
progress (NP ), that is, the NP of kernel k is NPk = IPCshared

k /IPCalone
k .

Fig. 2. Normalized progress obtained during the single co-execution of RED and
GCEDD kernels for different SM resource partitioning.
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Figure 2 illustrates the achieved STP for RED and GCEDD (the higher the
better). On the abscissa axis we indicate the normalized value of CTAs launched
by RED. GCEDD is using the remaining GPUs resources to launch as many
CTAs as possible. STP depends not only on the assigned SM resources, but
also on the interference between co-executing kernels caused by the use of other
shared resources (functional units, load/store queues, global memory row buffers,
etc.). Thus, for SMT , where all the resources of the SM are assigned to one
kernel, the interference appears at the global memory level, since co-executing
kernels will compete for global memory resources. With SMK, in addition to
the memory conflicts mentioned above, interferences also appear within the SM
when CTAs from different kernels are allocated in the SM . Comparing the results
obtained for the allocation schemes SMT and SMK, we can observe that SMK
achieved higher scores than SMT . Following the reasoning that we exposed to
explain the results of Fig. 1, we can argue that SMK performs better because
CTAs of the same kernel located in the same SM do not compete with each
other as intensively as in the SMT scheme. We will show in Sect. 4 that this
reasoning can be generalized to all pairs of kernels that we have studied.

It can also be observed that STP takes very different values depending on the
number of CTAs that are executed by each kernel simultaneously. These STP
values range from 1.0 to 1.36 for SMT , and from 1.0 to 1.47 for SMK. However,
the CTA partition that achieves the highest STP is not known in advance, since
it depends on the interference among kernels when using shared resources such
as global memory, L1 and L2 caches, load/store queues, functional units, etc.

Therefore, it is possible to improve the use of the computational resources of
the GPU by running two or more kernels concurrently. For this, it is necessary
to develop a slowdown prediction model for SMK that allows us to establish
the best intra-CTA partition to achieve some specific objective in the scheduling
policy.

3 Slowdown Model for SMK

Looking at Eq. 1, implementing scheduling policies for kernel co-execution based
on minimizing turnaround time or co-execution fairness requires knowing both
the IPC at execution time, IPCshared, and the IPC achieved by the kernel
when executed using all SM resources, that is IPCalone. The value of IPCshared

can be obtained by reading some device counters. However, IPCalone must be
predicted using a model.

Some slowdown models for kernel co-execution lack the required precision to
predict the NP value of a specific co-allocating scheme [2,3,10,12]. In a recent
work [5], SMT allocation scheme is used for kernel co-execution and a slowdown
model is built using only values extracted from the co-executing kernels. Thus,
this model predicts the memory bandwidth of a memory-bound kernel when it
is using the GPU alone. The prediction is based on the assumption that the row
buffer hit rate of the kernel remains constant for any CTA allocation. In the case
of a compute-bound kernel, a simple linear model based on the current allocated
CTAs is employed. More details of the slowdown model are given below.
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3.1 Hybrid Slowdown Model

Zhao et al. [5] proposed a Hybrid Slowdown Model, HSM, that predicts the
values of NP for both memory-bound and compute-bound kernels co-executing
under a SMT-based allocation scheme. They realized that the effective band-
width utilization of a memory-bound kernel can be predicted using the Row
Buffer Hit rate, RBH, obtained from global memory accesses. Then, the value
of NP for memory-bound kernels can be obtained using linear regression and
the value of RBH obtained while co-executing with another kernel. They use
this model to implement a fairness-aware allocation policy, HSM-Fair.

In order to test the validity of the assumption for the SMK allocation scheme,
we have executed alone each kernel in Table 2 and gathered the values of band-
width utilization and RBH. In Fig. 3 we show the calculated regression line.
We have also added the location of pairs (BW utilization, RBH) for several
memory-bound kernels to show that the HSM linear regression model fits the
data well.

Fig. 3. BW prediction requires to calculate, in advance, a linear model with the linear
relation between row buffer hit rate and BW utilization

On the other hand, a compute-bound kernel NP can be predicted using a
simple proportional rule given by the following expression:

IPCAlone
cb = IPCShared

cb × RAlone
cb

RShared
cb

(2)

where IPCShared
cb is the IPC obtained by the compute-bound kernel while co-

executing with another kernel, and RAlone
cb and RShared

cb are the computational
resources assigned to the kernel during alone and co-execution, respectively. As
HSM applies a SMT allocation scheme, RAlone

cb is the total number of SMs in
the GPU, and RShared

cb is the number of SMs allocated to the compute-bound
kernel. Then, NP for compute-bound kernels is given by

NP =
RShared

cb

RAlone
cb

(3)
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The values of the predicted NP s can be used to choose a fair allocation of
SMs between the co-running kernels. A fairness metric can be defined as the ratio
between the normalized progress of kernels i and j [11]. It can be computed as

Fairness = min
i,j

(NPi/NPj) (4)

and the computed value ranges between 0 (no fairness) and 1 (perfect fairness,
both kernels progress identically). HSM-Fair starts allocating the same number
of SMs to each kernel and predicting NP and Fairness. Then, it computes how
many SM should be taken from the high-NP kernel and given to the low-NP
kernel to result in similar NP for both kernels. This procedure is repeated until
the predicted Fairness is higher than a threshold (e.g. 0.9).

Fig. 4. HSM-fair applied to SMK co-execution of RED and GCEDD

Figure 4 shows an example of the application of HSM-Fair to the co-execution
of kernels RED and GCEDD using SMK. The left plot shows predicted and
actual values of NP for both kernels. The values in the abscissa axis represent
the percentage of CTAs allocated to RED, with respect to the maximum number
of resident CTAs (16 for RED). Thus, a value at 50% means a configuration with
8 CTAs allocated to RED, and as many CTAs as possible allocated to GCEDD.
RED is a memory-bound kernel and there is almost no error in the prediction.
GCEDD is a compute-bound kernel and the behaviour of NP is not linear. The
right plot shows the predicted and actual fairness for all the configurations. The
predicted maximum fairness is to the left of the actual maximum fairness. HSM-
Fair starts testing the 50% configuration, annotated with a black circle and the
number 1 in the plot. The predicted (N̂P ) and actual NP values, alongside
the predicted ( ̂Fairness) and actual Fairness values are shown in Table 1. The
prediction error is near 20% but nevertheless, HSM-Fair correctly assumes that
more CTAs must be allocated to the compute-bound kernel. Then, the 30%
configuration, which allocates 70% of the CTAs to the compute-bound kernel,
is tested. HSM-Fair predicts a fairness of 0.949, which is above the threshold
of 0.9, therefore it stops searching for a better configuration. Unfortunately, the
prediction error is very high and the actual fairness is 0.8. If the threshold were
higher and the actual best configuration, at 40%, were tested, HSM-Fair would
predict a fairness below the one at 30% and set again this configuration.
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3.2 Piece-wise Model for Compute-Bound Kernels

As it has been shown, HSM can predict well memory-bound kernels NP , but fails
with compute-bound kernels. Unfortunately, assumptions about linear perfor-
mance behaviour as resource allocation changes, that work fine for SMT , do not
hold for SMK. One of the main reasons is that Eq. 2 fails to predict IPCAlone

using IPCShared at a 50% configuration. In this work we propose a Hybrid
Piece-wise Slowdown Model, HPSM , that predicts IPCAlone using IPCShared

at the configuration with most CTAs. Then, it predicts how many CTAs should
be taken or given to a compute-bound kernel using intervals between already
tested configurations.

Fig. 5. HPSM-fair applied to SMK co-execution of RED and GCEDD

Figure 5 shows an example of the application of our model to the co-execution
of kernels RED and GCEDD using SMK. The left plot shows predicted and
actual values of NP for the memory-bound kernel, RED. For GCEDD, it only
shows the values tested by our method since the prediction of one configuration
depends on the configurations already tested. The right plot shows the actual
fairness for all the configurations and the predicted values of the configurations
tested. Our model starts testing a configuration with just 1 CTA for RED and

15 CTAs for GCEDD. IPCShared
1 at that point is used to predict ̂IPC

Alone
=

16
15 × IPCShared

1 , thus N̂P 1 = 15
16 . Table 1 shows the predicted and actual values

of both NP and Fairness and, as it can be seen, the prediction errors are
very low. Right now, the prediction interval is between IPCShared

1 and 0 (the
IPC value with 0 allocated CTAs). HPSM-Fair uses that interval to predict a
configuration with 9 CTAs per SM for GCEDD. HSM-Fair would predict ̂NP2 =

0.562 but our model corrects the prediction using ̂NP2 = IPCShared
2 /̂IPC

Alone
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Table 1. Values for data in Figs. 4 and 5

HSM

# ̂NP NP ̂Fairness Fairness

1 0.5 0.611 0.563 0.703

2 0.687 0.810 0.949 0.800

HPSM

# ̂NP NP ̂Fairness Fairness

1 0.937 0.967 0.160 0.152

2 0.662 0.683 0.793 0.832

3 0.754 0.810 0.830 0.800

4 0.732 0.755 0.983 0.975

that is closer to the actual value. Now, there are two intervals, one between
IPCShared

1 and IPCShared
2 , and another between IPCShared

2 and 0. HPSM-Fair
predicts to take more CTAs from the compute-bound kernel, thus it uses the
first interval to predict a third configuration, at 30%, that coincides with the
second configuration tested using HSM-Fair. This time, errors are much lower
and HPSM-Fair correctly predicts to try a fourth configuration, at 40%, where
the optimal fairness is found.

4 Experimental Results

4.1 Simulated System

We have modified GPGPU-sim v4.0 [13] by adding support for concurrent kernel
execution of two kernels using either SMT or SMK based CTAs allocation. We
have used the Volta Titan V configuration file which models a GPU with 40
clusters with 2 cores each (80 SMs), connected to an HBM memory with 3
stacks and 24 channels.

For the SMT implementation we have added a register to the CTA sched-
uler. In this register, the number of SMs assigned to the first scheduled kernel
is stored, for instance, N. Then, when the CTA scheduler checks that a CTA
belonging to the first kernel needs to be launched, it checks if there are available
resources in any SM with id going from 0 to N-1. If no room is available, the
CTA is not scheduled. A similar operation is performed with the second ker-
nel by consulting SMs from N to 79. For SMK, two pairs of double counters
need to be added per SM . The first pair stores the maximum number of CTAs
that can be allocated in the SM for both kernels. This value can be calculated
at compilation time using both kernel requirements (shared memory storage,
number of threads and number of registers) and the compute capability of the
device. The second pair of counters stores the current count of running CTA per
kernel. These last counters increase or decrease their values when a new CTA of
a kernel is scheduled or finishes its computation, respectively. In SMK, a CTA
of a kernel is scheduled if the current count of CTAs running on the SM is lower
than the maximum number of CTAs.
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4.2 Workloads

Table 2. Kernels used in the experiments.

Kernel

Acronym
Application

CTAs

per cluster
Category

HIST Histogram [14] 16 MB

BS Black Scholes [14] 32 MB

VA Vector Addition [14] 16 MB

RED Reduction [14] 16 MB

RCONV Rows convolution [14] 64 MB

SRAD Diffusion algorithm [15] 16 MB

LBM Lattice-Boltzmann method [16] 20 MB

EULER Euler3D [15] 10 MB

GCED Gaussian Canny edge detection [17] 16 CB

PF Pathfinder [15] 16 CB

MM Matrix multiplication [14] 16 CB

HS Hotspot [15] 10 CB

DXTC DXT Compression [14] 24 CB

BOPTS Binomial options [14] 32 CB

Experiments have been conducted using different kernels belonging to CUDA
SDK [14], Rodinia [15], Parboil [16] and Chai [17] benchmark suites. Table 2
shows the names of the kernels, the maximum number of resident CTAs per
cluster, and the category they are classified using the procedure explained in [5].
We have taken all the pairs of a memory-bound kernel with a compute-bound
kernel to get 48 workloads. We have used them to compare SMK allocation
against SMT allocation and the performance achieved by a fair-based allocation
policy using our hybrid piece-wise slowdown model. We have simulated each
workload by launching both kernels at the same time and stopping when one of
them has no new CTAs left to allocate.

We have used the metrics defined in [11] to measure performance: Normalized
Progress, NP , Average Normalized Turnaround Time, ANTT , System Through-
put, STP and Fairness. NPi is defined as the fraction of kernel i alone execution
reached during shared execution, NPi = IPCShared

i /IPCAlone
i . The reciprocal

of NP is the normalized turnaround time and it can be used to define ANTT ,
the slowdown due to concurrent execution of kernels i and j,

ANTT =
1
2

(
1

NPi
+

1
NPj

)
(5)

ANTT is a lower-is-better metric. STP quantifies the accumulated progress of
kernels i and j under concurrent execution, it is computed using Eq. 1, and is
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a higher-is-better metric. Finally, we have used the fairness metric defined in
Eq. 4.

We have simulated each kernel executing in isolation to obtain reference
values for IPCAlone. We have also measured row buffer hits RBH and bandwidth
utilization to compute the linear regression model that will be used with HSM
and HPSM.

4.3 SMT Vs SMK Comparison

Fig. 6. Boxplots of best ANTT and STP values achieved by SMT and SMK in kernel
co-execution.

Each workload has been simulated using every possible SMT and SMK based
SM allocation. In SMT , each kernel is allocated with 1 to 39 SM clusters and
the other kernel with the remaining ones to complete the 40 clusters. In SMK,
each kernel is allocated between 1 and the maximum number of resident CTAs
per cluster (see Table 2), and the other kernel with as many CTAs as possible to
fill the cluster. Then, we have obtained IPCShared values for each allocation of
each workload and computed ANTT y STP . Finally, we have selected the best
values for each workload for both SMT and SMK. Boxplots of these values are
shown in Fig. 6 to visualize their statistical properties [18]. On each box, the
central mark corresponds to the median, the edges of the box are the 25th and
75th percentiles, and the whiskers extend to the most extreme data points not
considered to be outliers (about ±2.7σ and 99.3% coverage). SMK clearly out-
performs SMT in both ANTT and STP . This is mostly due to the fact that, in
SMT allocation, CTAs of the same kernel compete for the same resources inside
a SM . With SMK allocation there are CTAs from different kernels inside the
same SM that may compete for different SM resources, reducing the destructive
interference between co-running kernels.

4.4 Fairness Based Policy

In this work, we have proposed HPSM to predict the normalized progress, NP , of
kernels executing concurrently. It models memory-bound kernels using the same
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scheme as HSM and uses a piece-wise approximation to predict NP of compute-
bound kernels. These predictions can be used to allocate CTAs in a way that
meets some criteria such as fairness. Thus, approximation errors can lead to
wrong allocations that do not meet the criteria. We measure the approximation
error using the percent relative error, 100× |α̂−α|

α , where α̂ is the predicted value
and α is the actual value.

We have evaluated both HPSM and HSM to obtain prediction errors while
computing Fairness, ANTT , and STP for fairness-based CTA allocation. The
left column plots in Fig. 7 show boxplots of all these prediction errors. The boxes
height for HSM prediction errors is larger because the normalized progress of
some compute-bound kernels does not exhibit linear behaviour. On the other
hand, HPSM boxes are tighter because the piece-wise approximation adapts
better to non-linear behaviour.

In the right column plots in Fig. 7, the actual Fairness, ANTT , and STP
values obtained using HSM and HPSM are shown, alongside the values using the
best fair allocation. HSM fails to achieve an optimal fairness in most workloads,
which leads to a lower STP and higher ANTT in some workloads. Conversely,
HPSM selects near-optimal fair allocations most of the times, and the ANTT and
STP values are closer to the values with optimal fairness. These better results
have a higher cost because the convergence to reach the best fair allocation
is slower. We have measured the number of different allocations tested with
each method: HSM tries 2.9 allocations on average, while HPSM goes up to
4.2 because it starts testing allocations in one extreme while HSM starts in the
centre.

5 Related Works

Various authors have proposed hardware enhancements to the GPU architec-
ture that improve CKE support using simulation tools such as GPGPUSim [13]
or Accel-sim [19]. Adriens et al. [1] proposed one of the first hardware modi-
fications to support CKE. They compared spatial multitasking, that is, kernel
co-location, with cooperative multitasking, that is, temporal multitasking, and
showed the advantages of the former one. Later, an intra-SM CTA allocation
policy for CKE was proposed in [2], focusing on reducing the resource frag-
mentation when CTAs of different kernels are allocated in a SM . In addition,
they also proposed a resource partitioning method that maximizes the through-
put. However, it requires an off-line phase, which can take a long number of
cycles, to obtain IPC values for each kernel varying the number of CTAs per
SM . To save time, they proposed to carry out these measurements with sev-
eral kernels executing concurrently. Wang et al. [3] proposed a similar CTA
allocation strategy but including preemption. This way a new arriving kernel
can be allocated by previously evicting CTAs belonging to the running kernel.
This preemption mechanism allows to implement strategies for improving over-
all throughput while being fair to co-executing kernels. A productive mechanism
to establish the best CTA mapping for two concurrent kernels was proposed
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Fig. 7. Left column: boxplots of prediction errors for Fairness, ANTT and SMT .
Right column: sorted results obtained with fairness-based CTA allocation for all work-
loads.

in [12]. A heuristic is proposed where different CTA mappings are assigned to
different groups of SMs, thus quickly exploring all possible configurations. This
heuristic consists of an iterative process that gradually finds the best co-location
configuration by analyzing the IPC values in the SMs. In [10], the authors
proposed a trained predictor of slowdown for co-located kernels to reduce the
overhead produced by the process of finding the best solution. The predictor
collects statistics of hardware events of two co-running kernels and estimates
their slowdown. Other works have focused on the memory subsystem to increase
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the performance of co-located kernels. In [20], authors try to avoid starvation of
compute-intensive applications when they run together with memory-intensive
ones. They observed that using this configuration, the latency of global mem-
ory accesses of compute-intensive kernels grows as their memory requests are
queued behind many previous requests emitted by memory-intensive kernels.
Then, they develop methods to rein the memory accesses for memory-intensive
kernels. Wang et al. [21] increased system throughput and fairness using a metric
that takes into account both DRAM bandwidth and cache miss rates. Finally, a
recent work [22] employed an inter-SM (also called Simultaneous Multithread-
ing) CTA mapping for kernel co-execution. The paper showed a method to clas-
sify kernels (memory-bound or compute-bound) while kernels are co-running
using GPU counters for both the number of memory accesses and DRAM row
buffer hits. In addition, an estimation of the performance of a single kernel can
be carried out, allowing the performance of co-execution to be evaluated with
respect to sequential execution.

For SMT, Zhao et al. [7] develop a GPU that contains several types of SMs
that support various levels of task parallelism and show that it can increase the
performance obtained for CKE when kernels are co-executed. Other authors, like
Kim et al. [23], have proposed the use of a dynamic management system that
maximizes the sub-resources utilization when using SMT.

6 Conclusion and Future Work

In this works we have compared the performance achieved by two CTA distri-
bution strategies on GPUs, that is, SMT and SMK. Then, we have presented
a hybrid slowdown model for the latter one that, thanks to the introduction of
a piece-wise approach, is able to obtain more accurate prediction values for the
slowdown of co-execution configurations. Thus, better scheduling policies that
improve ANTT and fairness can be developed for co-execution kernels.

Finally, we plan to develop more sophisticated models for kernel performance
prediction based on machine learning techniques that can reduce the error of the
current linear model.
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Abstract. The brain is probably the most complex organ in the human
body. To understand processes such as learning or healing after brain
lesions, we need suitable tools for brain simulations. The Model of Struc-
tural Plasticity offers a solution to that problem. It provides a way to
model the brain bottom-up by specifying the behavior of the neurons and
using structural plasticity to form the synapses. However, its original
formulation involves a pairwise evaluation of attraction kernels, which
drastically limits scalability. While this complexity has recently been
decreased to O(n·log2 n) after reformulating the task as a variant of an n-
body problem and solving it using an adapted version of the Barnes–Hut
approximation, we propose an even faster approximation based on the
fast multipole method (FMM). The fast multipole method was initially
introduced to solve pairwise interactions in linear time. Our adaptation
achieves this time complexity, and it is also faster in practice than the
previous approximation.

Keywords: Fast Multipole Method · Brain Simulation · Structural
Plasticity · Scalability

1 Introduction

The human brain undergoes constant change not only in children but through-
out the whole life [8]. These changes, especially in the form of synapse creation
and deletion, are believed to be responsible for a major portion of the brain
dynamics. There is overwhelming evidence that structural plasticity, i.e., the
change of connectivity of neurons, is responsible for learning, memory creation,
and healing after lesions [12,20,23–25]. However, current in vivo imaging tech-
niques cannot create connectivity maps for human brains at a scale comparable
to the original [5,12,13]. This leaves a large portion of current research in need
of simulations to fill the gap. Many state-of-the-art simulators can mimic very
complex behaviors of a single neuron, however, they lack the possibility to let
neurons freely connect to others. This task inherently involves solving pairwise
interactions. Seeing that the human brain contains 86 billion neurons [6], this
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drastically limits scalability. Many simulators bypass this issue by only allowing
already existing connections to be strengthened or weakened (synaptic plas-
ticity), bringing the complexity down to linear in the number of neurons and
synapses per neuron.

It is not fully understood how neurons form and delete synapses over time. For
a long time, Hebbian Plasticity [19] was the dominant opinion. In recent times,
however, homeostatic mechanisms—in which neurons pursue a stable state and
thus the whole brain reaches an equilibrium—have been suggested and shown
to be accurate [7,10]. One of these mechanisms, the Model of Structural Plastic-
ity [7], predicts the recovery of lesions in mice very well. In a recent publication,
Rinke et al. [27] have reduced the quadratic complexity of solving the pairwise
interactions to O(n·log2 n). They achieved this by utilizing the Barnes–Hut algo-
rithm [3], which has been developed to approximately solve pairwise interactions,
which is popular in the context of physics.

We propose another approximation for the pairwise interactions based on
the fast multipole method (FMM) [28]. While Barnes–Hut calculates point-area
interactions, FMM calculates area-area interactions, reducing the complexity
from quadratic to linear. Current in vivo imaging techniques such as [9] cannot
precisely locate where synapses begin and end; they can only trace them to a
certain area. This, together with the fact that we do not know exactly why a
particular neuron formed a (long-reaching) synapse and not its direct neighbor,
gives us confidence that this approximation is reasonable.

In this publication, we build on the Barnes–Hut approximation and utilize
their distributed algorithm to implement our approximation in terms of the fast
multipole method. To summarize, our main contributions are:

– We integrated the fast multipole method into an existing parallel neuron
simulation and replaced the Barnes–Hut algorithm, which was responsible
for finding synapses.

– We reduced the theoretical complexity from O(n/p · log2 n) to O(n/p + p),
when n is the number of input neurons and p the number of MPI ranks.

– We measured the influence on performance in practice for different numbers
of computing nodes.

The remainder of this paper is structured as follows. We firstly review related
work in Sect. 2 before we explain relevant background in Sect. 3. Afterward,
we present our algorithm in Sect. 4, and analyze it in terms of theoretical and
practical run time with multiple compute nodes in Sect. 5.

2 Related Work

There are many brain simulators freely available, for example, C2 [2], NEST [16],
and The Virtual Brain [29]. They allow initial connectivity of neurons to be
inserted, and during the simulation, they may strengthen and weaken those.
However, they do not create new connections.
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This way, their connectivity update step has complexity O(n ·m), where n is
the number of neurons and m is the number of synapses per neuron. The latter
term is most often bounded (e.g., at most 1000 synapses per neuron), and thus,
it is linear in the number of neurons.

Structural plasticity—the way in which neurons grow new and delete old
synapses—has gained track in recent years; see [31] for an overview of the current
state of the art. A simple model for structural plasticity, proposed by van Ooyen
et al. [30], achieves this by defining the outreach of a neuron to be a circle around
its center. The individual neurons form synapses proportional to the overlapping
area whenever two such circles overlap. This model requires linear time for the
connectivity update, but it lacks the possibility of connecting neurons while omit-
ting a third neuron between them. The Model of Structural Plasticity (MSP) [7],
on which this publication is based, overcomes this limitation by calculating the
connection probability dependent on the distance of neurons.

In the MSP, the likelihood of a synapse forming between two neurons with
positions p1, p2, is proportional to exp(−||p1 − p2||22/σ), with a scaling constant
σ > 0. This way, the greater the distance between two neurons is, the smaller the
likelihood of a connection between them is. Rinke et al. [27] used this insight to
approximate the influence of a whole area of neurons far away with the Barnes–
Hut algorithm [3]. They achieved this by inserting the neurons into an octree and
calculating the attraction to inner nodes whenever possible (thus skipping the
need to calculate the attraction to all neurons in the induced subtree). This way,
they reduced the complexity of calculating O(n2) interactions (n again the num-
ber of neurons) to O(n · log2 n).

The fast multipole method (FMM) [17,28] is another way of approximating
pairwise interactions. Instead of only combining the affecting elements (neurons,
particles, etc.) at the calculation’s source side, they also group the affected ele-
ments at the target side. This way, they can approximate the pairwise interactions
in linear time using Hermite and Taylor expansions [14,15]. This is used quite suc-
cessfully in physics, including astrophysics [11] and particle simulation [1]. There
exists many accelerated FMM implementations both with GPUs and MPI, for
example [18,26,32]. However, they focus on a fixed-level attraction, i.e., in con-
trast to us, they don’t need to resolve the attractions down to a object–object
level.

3 Background

In this section, we repeat the arguments and definitions from previous publi-
cations to be partially self-contained. This includes the initial publication for
the Model of Structural Plasticity [7], the one that introduced the fast multi-
pole method we use [17], and the publication that introduced the Barnes–Hut
approximation to the MSP [27].
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3.1 The Model of Structural Plasticity

The Model of Structural Plasticity [7] describes how neurons change their plas-
ticity over time, i.e., how they form new and delete old synapses. It consists of
three different phases:

The update of electrical activity, the update of synaptic elements, and the
update of synapses. An overview of the used model parameters can be seen in
Table 1.

Update of Electrical Activity. In the step to update the electrical activity, all
neurons calculate their current activity. This can be done by neuron models
such as the one proposed by Izhikevich [21], the FitzHugh–Nagumo model [22],
or as in our case, a Poisson spiking neuron model (the same as in [27]).

In our model, the activity, on the one hand, strives exponentially to a resting
potential (resting potential: 0.05, constant of decay: 5); on the other hand, it is
constantly increased by a small background activity (0.003) and the input of all
connected neurons (those neurons that form a synapse from their axon to the
dendrite of the neuron in question) that spiked in the last update step by a fixed
amount (5e−4). Then a uniformly distributed value from [0, 1] is drawn, and if
this value is smaller than the current activity, the neuron spikes. If a neuron
spikes, it does not spike again for a fixed number of steps (refractory period: 4).

Update of Synaptic Elements. In the update step, each neuron updates its inter-
cellular calcium level. The calcium level decays exponentially (constant of decay:
1e−5), while if a neuron spiked in that simulation step, it is increased by a fixed
value (1e−3).

After the neuron has updated its calcium, it uses this to determine the
amount of change to its synaptic elements. We use the same Gaussian growth
curve as originally proposed in [7], setting the right intersection (the target value)
to 0.7, the left intersection (the point at which the elements start to grow) to 0.4
for axons, and 0.1 for dendrites, and the scaling parameter to 1e−4 (maximum
attained value). The neuron updates the number of axons and dendrites by the
calculated amount.

Update of Synapses. Every time a neuron updates its synapses (once every 100
updates of activity and synaptic elements), it checks its number of synaptic
elements. If it now has fewer elements than synapses (the elements are continu-
ous, the synapses discrete), it chooses synapses randomly, notifies the connected
neurons, and deletes them. It does so for both the dendrites with the incoming
synapses and the axons with the outgoing synapses.

After the deletion phase, if a neuron has at least one vacant axon, it searches
for another neuron with one vacant dendrite to connect to. For each vacant axon
(i), it calculates the probability of connecting to a vacant dendrite (j) by

K(i, j) = exp
(−||posi − posj ||22

σ

)
(1)
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Table 1. Overview of the model parameters used in the executions and tests. A more
detailed description of the model and the parameters can be found in [7].

Name Symbol Value

Resting potential x0 0.05

Membrane potential constant of decay τx 5

Background activity I 0.003

Increase in calcium per spike β 5e−4

Calcium constant of decay τCa 1e−5

Gaussian growth curve right intersection ε 0.7

Gaussian growth curve left intersection (axons) ηA 0.4

Gaussian growth curve left intersection (dendrites) ηD 0.1

Growth scaling parameter μ 1e−4

Probability kernel standard deviation σ 750

and chooses one such vacant dendrite (σ = 750 as in [7]). These requests are
gathered (this takes quadratic time) and sent to the neurons with vacant den-
drites. Those resolve potential conflicts, and a new synapse is formed whenever
possible.

3.2 A Distributed Octree

In [27], Rinke et al. introduced a distributed octree to overcome the memory
limitations inherent to large simulations. The problem is that only a limited
number of octree nodes can be held in memory. In order to be able to simulate
more neurons and thus achieve the desired order of magnitude, many MPI ranks
are required. They recursively divide the simulation domain into eight cells until
a cell contains at most one neuron. Inner nodes of the octree store the sum of
vacant elements of all their children and the combined position (the centroid),
which is just the weighted average position of the children. The octree is updated
in a step-wise fashion: All ranks update their subtrees, then exchange the branch
nodes, and calculate the shared upper portion afterward. They insert all neurons
into a spatial octree, where every MPI rank is responsible for 1, 2, or 4 subtrees.
All ranks share the same upper portion of the octree (heights 0 to log(8, p) where
p is the number of ranks), and if a rank i requires information of a neuron on
rank j, it downloads them lazily.

3.3 Mathematical Formulation of the Fast Multipole Method

Assuming there is a set of points in space, we consider a split into M sources
s1, . . . , sM (in our case the neurons that have a vacant dendrite) and N targets
(the neurons that have a vacant axon) t1, . . . , tN . If a neuron has vacant axons
as well as vacant dendrites, it is included in both sets M and N . The general
form of an n-body problem is [4]:
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u(t) =
M∑
i=1

ωi · K(t, si) (2)

ωi ∈ R : The weight of the point si.

K : (R3 × R
3) → R: A kernel that calculates the interaction between t and si.

This formula gives the total attraction u(t) for a vacant axon. If a neuron
has more than one vacant axon, we multiply u(t) with that number. In order
to calculate u(·) for every target tj , this function must be calculated N times,
which results in a total complexity of O(N · M). If every source is also a target,
i.e., N = M , this scales quadratically.

The general form of Eq. 2 fits the attraction formula of the MSP (cf. Eq. 1),
with ωi being the number of vacant dendrites of a neuron and u(t) being the
force of attraction to an axon of a neuron at position t.

Notation. A multi-index α = (n1, n2, n3) is a tuple of three natural numbers
(including zero). For any multi-index and any vector t = (x, y, z) ∈ R

3, we
define the following operations:

|α| = n1 + n2 + n3 (3)
α! = n1! · n2! · n3! (4)
tα = xn1 · yn2 · zn3 (5)

For our adapted fast multipole method we often use multi-indices in combination
with sums. For example,

∑
α≥p or

∑
0≤α≤p stands for three nested sums with

n1, n2, n3 ≥ p or 0 ≤ n1, n2, n3 ≤ p, respectively.

Approximations of Attraction Kernel. In general the MSP sums over Gaussian
functions. We can approximate the attraction of multiple neurons in a box and
group the sources and targets together. For each such box (S for a box of sources,
T for a box of targets), we need to calculate the centroid with respect to its
sources sC and its targets tC . Using the function h(α, x) (the same as in [17]
Eq. 8) and δ = σ2, Eq. 2 with the Gaussian kernel of Eq. 1 has the following
Taylor series (using a multi-index β):

u(t) =
∑
0≤β

Bβ ·
(

t − tC√
δ

)β

Bβ =
(−1)|β|

β!
·

M∑
j=1

ωj · h

(
β,

sj − tC√
δ

) (6)

We can truncate the outer series from Eq. 6, i.e., sum only up to some fixed
β. The approximation error depends on the box side length, which is determined
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by the box’s level in the octree. Furthermore, the number of calculated terms
and the number of sources that are approximated have an influence on the
approximation error. Overall, the calculation of one coefficient Bβ from Eq. 6
has complexity O(M), and crucially they are shared for all targets in the box. In
addition, Eq. 6 must be calculated for N target points with k coefficients. This
results in a complexity of O(k · M + k · N) for a interaction between one target
box and one source box.

Alternatively, we can also approximate Eq. 1 with Hermite coefficients Aα,
where the same argument as before applies (with multi-index α). The complexity
to calculate this expansion is also O(k · M + k · N) for k coefficients:

u(t) =
∑
0≤α

Aα · h

(
α,

t − sC√
δ

)

Aα =
1
α!

·
M∑

j=1

ωj ·
(

sj − sC√
δ

)α (7)

4 Algorithm Description

To determine which neurons form synapses with each other, we must calculate
the forces of attraction between the target and source neurons (note here that a
“source” and “target” are used differently in the literature: The “source” neuron
is the one with the axon, however, it is the “target” of the attraction). Therefore,
we create an n-body problem on top of the kernel in Eq. 1 in order to apply the
series expansions already presented:

u(t) =
M∑

j=1

ωj · exp
(−||t − sj ||22

σ2

)
, (8)

where ωj is the number of vacant dendritic elements of the j-th neuron. Further-
more, we use the same distributed octree as in [27]. In our version—compared
to the Barnes–Hut inspired one—we also need to calculate the centroid of the
inner nodes with respect to the axons. For this, we increased the size of the
octree nodes from 200 Bytes to 264 Bytes (2× 32 Byte for the axon positions,
which consist of 24 Bytes vector and a flag).

Algorithm 1 shows the implementation for finding suitable neurons. For the
initialization of the stack (Line 2), we first collect all roots of the subtrees and
then find another subtree-root as the target for each of them, as described in
the paragraph below. We push the source–target pairs onto the stack and then
process the elements of the stack until it is empty. Whenever we want to form
a synapse, we save the source and target ids and send them to the MPI rank
of the target. Each rank collects these requests, chooses locally which to accept
(to avoid too many synapses, e.g., five axons want to connect to two dendrites),
and sends the answers back.
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Initialization of the Stack. Every MPI rank does the following: For each of its
subtree-roots, choose a target with choose target (cf. Algorithm 2) with the
global root as initial target. Fix the subtree-root and only unpack the targets
until the target is at the same level as the subtree-root. Put these pairs on the
stack.

1 find_synapses():
2 init(stack)
3
4 while (! stack.empty()):
5 source_node, target_node = stack.pop()
6
7 if (source_node.is_leaf && target_node.is_leaf):
8 form_synapse(source_node, target_node)
9

10 else if (source_node.is_leaf):
11 new_target = choose_target(source_node, target_node.children)
12 stack.push(source_node, new_target)
13
14 else if (target_node.is_leaf):
15 new_source = choose_source(source_node.children, target_node)
16 stack.push(new_source, target_node)
17
18 else: foreach (new_source in source_node.children)
19 new_target = choose_target
20 (new_source, target_node.children)
21 stack.push(new_source, new_target)

Algorithm 1: Pseudo code of the method find synapses. choose target
and choose source are shown in Algorithm 2.

Choice of Target Node. This method calculates the attractiveness of the target
neurons to the source neuron. It does so by first determining if it needs to evalu-
ate the formula directly or if it can use an approximation (Taylor or Hermite). It
then calculates the attractiveness of the children of the target and chooses one
randomly, proportional to their attractiveness. In addition, the method needs
two constants c1 and c2, which determine when a Taylor or a Hermite expan-
sion is used as it is easier to evaluate the attractions directly if the number of
dendrites and axons is small.

4.1 Complexity

For the complexity, it is enough to determine how often choose target is called.
We assume a balanced octree and start with the serial version. Starting at
level 0, the root must determine a target for each of its children, so it calls
choose target 8 times and thus spawns 8 new pairs to consider. For each of the
newly created pairs, the same applies, they spawn (up to) 8 new tasks, and in
general, processing level k of the octree spawns 8k tasks. As the tree is balanced
its height is log(8, n) for n neurons, so it spawns 8, 64, . . . , n/8, n tasks, i.e., linear
in the number of neurons.
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choose target itself either performs a direct pair-wise calculation (with
quadratic complexity) or one of the FMM approximations (with linear com-
plexity). In our instance, however, choose target has a constant complexity
because the number of sources and targets is at most 8.

For the parallel version, we have to initialize the stack first. This requires
choosing a target node for each subtree-root on the same level, which is log(p)
for p the number of MPI ranks. Once we have found the pairs, we can apply
the serial version to n/p neurons, so the overall complexity is O(n/p + log p).
Gathering the branch nodes beforehand has complexity O(p), so the overall
complexity of the connectivity update is O(n/p + p).

1 choose_target(source_node, target_node):

2 probabilities = [ ]

3
4 for (i = 0; i < target_node.number_children; i++):

5 child = target_node.children[ i ]

6
7 if (source.is_leaf || child.is_leaf):

8 probabilities[ i ] = direct_calculation()

9
10 else if (child.get_number_dendrites() > c1

11 && source_node.get_number_axons() > c2):

12 probabilities[ i ] = calculate_hermite_expanison()

13
14 else if (child.get_number_dendrites() > c1):

15 probabilities[ i ] = calculate_taylor_expanison()

16
17 else:

18 probabilities[ i ] = direct_calculation()

19
20 total_probability = sum(probabilities)

21 rand = uniform_random(0, total_probability)

22 index = upper_bound(probabilities, rand)

23
24 return target_node.children[index]

Algorithm 2: choose target calculates the probability for source node to
connect to each child of target node. It chooses the method based on the num-
ber of vacant axons and dendrites. It then picks one target neuron randomly
with chances proportional to the calculated probabilities. choose source
works analogously with swapped roles of source node and target node. In
our case, c1 = 70 and c2 = 70.
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5 Evaluation

Our proposed algorithm trades time against freedom of choice; the complexity of
finding the target neurons is lower than for the adapted Barnes–Hut algorithm,
however, we lose some freedom of choice for the synapses. Previously, with the
Barnes–Hut algorithm, each axon searched its own dendrite, so if a neuron had
two vacant axons, they could connect to dendrites with a large distance between
them as they could be in different nodes. In our algorithm, both axons are always
in the same box, so their choice will be the same throughout the whole process.
This also affects axons on neurons that are close to each other—if they are in the
same box on level l, their choice of boxes coincides on every level i = 0, . . . , l−1.
This, in turn, means that every neural network that was calculated with the fast
multipole method can also be calculated with the Barnes–Hut algorithm, but
not vice versa.

All calculations for this research were conducted on the Lichtenberg 2 high-
performance computer of the TU Darmstadt. One compute node has 2 Intel
Xeon Platinum 9242 processors (with disabled hyper-threading), 384 GB main
memory, and the interconnection is a 100 GBit/s InfiniBand. We always tested
the algorithm with 500 000 simulation steps (5000 connectivity updates) and a
network with only excitatory neurons.

From a neuroscientific point of view, we investigated the following observ-
able metrics for both the Barnes–Hut and the fast multipole method inspired
algorithms:

1. The average calcium concentration of the neurons (together with the standard
deviation) to see how well both algorithms allow the neurons to reach a local
equilibrium.

2. The number of formed synapses to see how well the overall simulation reaches
a global equilibrium.

Figure 1 shows the average calcium of the neurons (together with its standard
deviation), and Fig. 2 shows the total number of created synapses for one run
of p = 64 MPI ranks and n = 320 000 neurons. With our proposed algorithm,
the average calcium is nearly indistinguishable from the Barnes–Hut algorithm,
however, its standard deviation is slightly higher. Our algorithm trails the previ-
ous version slightly when it comes to the total number of formed synapses. This
is due to more collisions, resulting in more rejections, so we need more simulation
steps to connect all vacant axons. Furthermore, the total number of synapses is
less for our algorithm. The reason is that a neuron generally grows more den-
drites than axons. If the synapses now cluster more (due to the restricted freedom
of choice), some neurons receive more synapses than they want—so they delete
some again.
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Fig. 1. The average calcium (solid lines) and its standard deviation (light area) for both
algorithms (Barnes–Hut in solid purple, fast multipole method in dashed orange). The
target calcium is 0.7 (thinly dashed black line). p = 64 MPI ranks, n = 320 000 neurons,
and 500 000 simulation steps (5000 connectivity updates). (Color figure online)

Fig. 2. The total number of synapses for both algorithms. p = 64 MPI ranks, n =
320 000 neurons, and 500 000 simulation steps (5000 connectivity updates).

Fig. 3. The timings for the strong scaling experiments with p = 64 MPI ranks and
500 000 simulation steps (5000 connectivity updates). We give the minimum, average,
and maximum time across the different ranks. All timings are in seconds.
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We evaluated the strong-scaling behavior of our algorithm with p = 64 MPI
ranks and n = 1250, 2 500, 5 000, 10 000, 20 000 excitatory neurons per MPI rank.
Figure 3 shows the minimum, average, and maximum time for a simulation across
all MPI ranks. We have conducted these simulations five times and found that the
generated timings are very stable concerning the repetitions. When calculating
the coefficient of variation (standard deviation divided by average) for these
repetitions, it is consistently below 1%. Doubling the number of neurons per
rank scales the time of the connectivity update by approximately 1.96, 1.81,
1.53, and 2.22, and the time it takes to find the targets by 2.15, 1.82, 1.35, and
2.25. Overall, these timings suggest to us a good strong-scaling behavior.

Furthermore, we tested the weak-scaling behavior of our algorithm with n =
5000 neurons per MPI rank (as in the previous publication which introduced the
Barnes–Hut approximation [27]) and with p = 1, 2, 4, 8, 16, 32, 64 MPI ranks.
For the timings, we investigated the overall time for the connectivity update,
the time it takes to find the target neurons, and for the fast multipole method
also the time it takes to compute the expansions. Figure 4 shows the minimum,
average, and maximum time for a simulation across all MPI ranks. We have
repeated each measurement five times with no significant difference. This means
that the coefficient of variation remained below 1% in this experiment as well.
Between one tenth and one third of the time the fast multipole method spends
finding the synapses is spent in the Taylor expansion; the Hermite expansion
is rarely used. The difference between the MPI ranks is low in our algorithm
compared to the Barnes–Hut algorithm. Besides network communication noise,
this difference is caused by neurons choosing partners close to or far away from
others. Per connectivity update, we cache the already fetched octree nodes from
other MPI ranks. This way, our algorithm profits from the locality of target
choices compared to the Barnes–Hut algorithm. Overall, the new connectivity
update is significantly faster, and the scaling behavior fits the broad expectation
of O(n/p + p).

Lastly, we evaluated the influence of the parameters β from Eq. 6 and α from
Eq. 7, i.e., the points at which we cut of the evaluation of the infinite series. For
this, we have conducted 12 188 representative calculations for each expansion,
as well as the direct evaluation. Figure 5 displays the results, showing that our
cut-off point with α = β = (3, 3, 3) is well chosen and more terms do not enhance
the accuracy significantly.
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Fig. 4. The timings of different methods of the simulation for p = 1, 2, 4, 8, 16, 32, 64
MPI ranks and 500 000 simulation steps (5000 connectivity updates). For each method
we give the minimum, average, and maximum time across the different MPI ranks. All
timings are in seconds.

Fig. 5. The deviation in percent between the directly evaluated attraction and the
corresponding Hermite and Taylor expansions, gathered from 12 188 representative
boxes. The red line is the median, the box indicates the 0.25 and 0.75 quartile, the
interval indicates the minimum and maximum after removing all outliers. A value is
an outlier if it is larger then the 0.75 quartile + 1.5 times the inter-quartile range.
The number of outliers for the Taylor expansions were 1830, 1834, 1833, and 1833, and
there were consistently 1753 outliers for the Hermite expansions. The largest outliers
were below 0.125%. (Color figure online)
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6 Conclusion

This work aimed to replace the Barnes–Hut algorithm in an existing neuron
simulation with multiple computing nodes with the fast multipole method of
lower complexity and to measure the influence on performance. We achieved a
theoretical complexity of O(n/p + p), when n is the number of input neurons
and p the number of MPI ranks, which is lower than the previous complexity
of O(n/p · log2 n). In addition, the algorithm presented here is faster in prac-
tice on multiple computing nodes, exhibits a good strong-scaling behavior, and
additionally, the rank-to-rank variation shrank significantly. Also, the internal
calcium concentration and the formation of synapses behave very closely to the
original simulation. However, there are aspects in which the algorithm presented
here is inferior to the Barnes–Hut algorithm. The storage space consumption has
increased by 32%, and the choices of neighboring neurons are now more similar
than before. In addition, our algorithm needs more simulation steps to connect
all vacant elements through synapses due to more collisions.

In the future, we seek to combine the variable precision of the Barnes–Hut
algorithm with our proposed one, which might let neurons form connections
more independently than their neighbors. Furthermore, we plan to analyze the
resulting networks with respect to the graph-topological metrics so we can assess
the functionality of the networks.
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Abstract. We implement an efficient data compression algorithm that
reduces the memory footprint of spatial datasets generated during sci-
entific simulations. Storing regularly these datasets is typically needed
for checkpoint/restart or for post-processing purposes. Our lossy com-
pression approach, codenamed HLRcompress (https://gitlab.mis.mpg.
de/rok/HLRcompress), combines a hierarchical low-rank approximation
technique with binary compression. This novel hybrid method is agnos-
tic to the particular domain of application. We study the impact of
HLRcompress on accuracy using synthetic datasets to demonstrate the
software capabilities, including robustness and versatility. We assess dif-
ferent algebraic compression methods and report performance results
on various parallel architectures. We then integrate it into a workflow
of a direct numerical simulation solver for turbulent combustion on
distributed-memory systems. We compress the generated snapshots dur-
ing time integration using accuracy thresholds for each individual chem-
ical species, without degrading the practical accuracy of the overall pres-
sure and temperature. We eventually compare against state-of-the-art
compression software. Our implementation achieves on average greater
than 100-fold compression of the original size of the datasets.

Keywords: Algebraic/Binary Compression · Scientific Datasets ·
Hierarchical Matrices

1 Introduction

Over the three last decades, the High-Performance Computing (HPC) commu-
nity has witnessed a billion-fold improvement in computational power, thanks to
hardware technology scaling. This extreme scaling may however translate into
architectures over-provisioned in floating-point units. While high computational
throughput is often beneficial for scientific applications in sustaining perfor-
mance, data movement remains the main bottleneck. Indeed, memory band-
width has not similarly benefited, which creates imbalanced situations where
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the system cannot supply data at the pace required by the computational hard-
ware. This challenge is further exacerbated when the applications need to fetch
data from/to remote storage media. The current hardware landscape may trans-
form scientific applications into an I/O-bound regime of execution. Data com-
pression has become a popular solution to address bandwidth starvation and
improve the performance of I/O operations. In particular, binary compression
approaches [14,28] have been successful in mitigating the overheads of data
motion needed for performing checkpoint/restart, post-processing purposes such
as visualization, or reducing the storage footprint of archived scientific data.

In this paper, we combine an algebraic spatial data compression method
based on Hierarchical Low-Rank (HLR) approximation techniques [15,21,22]
using standard linear algebra operations with binary compression. It employs
various algebraic compression methods, e.g., Singular Value Decomposition
(SVD), Randomization SVD (RSVD), Rank-Revealing QR (RRQR), or Adap-
tive Cross-Approximation (ACA), and relies on vendor-optimized scientific
libraries for performance and portability. With the addition of binary compres-
sion, we further adapt the number representation to the accuracy and opti-
mize the compression level. We demonstrate the capabilities of HLRcompress,
including robustness and versatility, using synthetic datasets. We illustrate the
effectiveness of our approach on several shared-memory systems and show the
compression rate and performance superiorities relative to state-of-the-art com-
pression methods. Furthermore, we incorporate HLRcompress into a turbulent
combustion simulation. We compress the generated domain solutions during time
integration for each individual chemical species for post-processing purposes,
without degrading the practical accuracy of the overall pressure and tempera-
ture fields. We achieve more than 100-fold compression rate compared to the full
dataset, outperforming SZ [14] by 29%, MGARD [1] by 58% and ZFP [28] by
820% for the total memory savings. Compared to similar algebraic compression
methods, the compression ratio is 3X better without sacrificing runtime.

The remainder of the paper is as follows. Section 2 provides the necessary
background on low-rank matrix approximations. Section 3 positions our work
among existing compression techniques. Section 4 provides the algorithmic for-
mulation, the complexity, the error analysis, and the implementation details of
HLRcompress. We showcase compression rates and performance results in Sect. 5
on synthetic and real datasets and discuss future work in Sect. 6.

2 Background

Low-rank compression of dense data has long been used for representing dense
matrices in the context of integral and partial differential equations in the form
of hierarchical matrices (H-matrices) [21,22]. The goal is to attain (log-)linear
arithmetic and memory storage complexity. Various optimizations of these have
been developed, e.g., by using shared and nested bases for the low-rank factors
in the H2-matrix format [7,18] or for highly oscillatory data with Directional-
H2 [8] or Butterfly factorization [27]. Other formats simplify the structure of
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the hierarchy, e.g., the TLR/BLR format [26,35] with a flat block layout or the
Hierarchically Off-Diagonal Low-Rank (HODLR) [2]) and Hierarchically Semi-
Separable (HSS) [12,37] formats, with hierarchical blocks only along the diago-
nal. Common to all low-rank schemes is a reordering of the rows and columns of
the matrix such that neighboring rows/columns correspond to spatially neigh-
bored (data) points. Different methods exist to perform this initial step, e.g., via
binary space partitioning [23]. For other problems this reordering is based on
graph distances [17] or purely algebraic properties of the matrix [38]. After the
permutation of the matrix rows and columns, the actual identification of low-
rank blocks is normally based on an admissibility condition, which is again often
based on spatial data, e.g., diameters and distances of subsets of the geometry
[19,20]. Once identified, a candidate block for low-rank representation can be
approximated using different algorithms, e.g., SVD/RRQR, randomized meth-
ods [24], ACA [6], CUR [34] or interpolation decompositions [11].

Unfortunately, for the compression of spatial data the above mentioned
admissibility condition is not usable as it requires each row and column to be
associated with a spatial position. However, in the case of 2D spatial datasets
the matrix entry itself corresponds to a spatial position, with rows and columns
just being separate parts, i.e., for the position (x, y) ∈ R

2 a row corresponds to
the x-part and a column to the y-part.

3 Related Work

By using the rank computed by any of the above mentioned low-rank approxima-
tion schemes, one can directly determine if a given sub-block has low-rank prop-
erty. Such a method for multi-dimensional data was introduced in [15], which is a
generalization of the coarsening algorithm for H-matrices described in [16]. They
employ an adaptive procedure by recursively partitioning the block structure of
the data and approximating it in a bottom-up way by a (tensor) low-rank rep-
resentation with respect to a user-defined accuracy ε > 0. For the 2D case, this
is structurally identical to HLRcompress. A top-down approach (HALR) for an
adaptive admissibility of matrices from partial differential equations is described
in [36]. There, for a matrix block, a low-rank approximation is computed with a
user-defined accuracy and a maximal permitted rank. If such an approximation
exists, the block is considered as low-rank approximable, if not, its sub-blocks are
tested. Using SVD for the low-rank approximation, HALR can guarantee accu-
racy though with a cubic runtime complexity. To limit the computational cost,
ACA [6] is chosen instead as it only requires the matrix coefficients for the cho-
sen rows and columns. However, there are known cases where it overlooks parts
of a matrix, which results in bad approximation [9]. In fact, the ACA based
version of HALR fails to compute an accurate approximation of the spatial data
studied in this work. Furthermore, the goal of HALR of generating low-rank
blocks as soon as possible in the hierarchy is not optimal for compression as it
may result in blocks with a larger rank. A more fine-grained representation with
low-rank blocks of a much smaller rank may be more efficient. Global tensor
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decomposition and HOSVD is used in TuckerMPI [3] and in TThresh [4] for
multi-dimensional data, but with the same high runtime complexity as a global
SVD in the 2D case. Furthermore, it may result in non-optimal compression if
no global low-rank properties are present in the data. MGARD [1] is another
compressor based on techniques from algebraic multigrid methods and as such
also employing an hierarchical approach. Unfortunately, it showed compression
problems when using high accuracy for the datasets in Sect. 5. Other error-
bounded lossy compression methods are ZFP [28] and SZ [14]. ZFP decomposes
d-dimensional data into blocks of size 4d and then represents the floating point
data in an optimized way such that either a user-defined (bit-) rate or accuracy
is guaranteed. SZ applies a curve-fitting method for the full dataset for compres-
sion. The additional lossy compression of low-rank data is also used in TThresh
for the tensor data and investigated in [30] for a global SVD based compression.
MGARD uses additional lossless compression on the binary multigrid data.

In this work, we introduce HLRcompress, a high-performance, parallel imple-
mentation of an algebraic data compression using hierarchical low-rank (HLR)
approximations with additional binary compression based on ZFP on various
hardware platforms. We highlight the versatility, the numerical robustness, and
the performance scalability on 2D spatial datasets generated from a synthetic
testcase. We then deploy HLRcompress into a combustion application and prove
its effectiveness in improving the I/O performance of the post-processing phase,
without degrading the practical accuracy of the domain solutions.

4 Hierarchical Low-Rank Data Compression

4.1 Problem Definition and Adaptive Procedure

We consider the 2D case, i.e., we have a set of N data points dij ∈ R with
i ∈ I := {0, . . . , m−1}, j ∈ J := {0, . . . , n−1} and m ·n = N . For simplicity, we
assume that the indices i and j correspond to the spatial position

(
i · hx, j · hy

)

with step widths hx, hy > 0. With this definition, the data dij forms a m × n
matrix D.

As in [15,16], we assume a hierarchical partitioning T of D. If not given, it
can easily be constructed by recursively starting at (I, J) ∈ T and splitting each
block (τ, σ) of T with τ = [i0τ : i�−1

τ ], σ = [j0σ : jk−1
σ ], 0 < � < m, 0 < k < n,

into four (almost) equal sized sub-blocks:
(

(τ0, σ0) (τ0, σ1)
(τ1, σ0) (τ1, σ1)

)
, with τ0 = [i0τ :

i
�/2−1
τ ], τ1 = [i�/2τ : i�−1

τ ] and σ0 = [j0σ : j
k/2−1
σ ], σ1 = [jk/2

σ : jk−1
σ ]. The process

stops if min(#τ,#σ) ≤ ntile, ntile > 0. The size of ntile is typically chosen to
optimize performance but also has an influence on the memory efficiency of the
method. The blocks in T form a tree with (I, J) being the root and with children
(τ0, σ0), (τ0, σ1), (τ1, σ0), (τ1, σ1) for all inner nodes (τ, σ) ∈ T . Let L be the set
of leaves of T .

The compression starts by computing a low-rank approximation Uτ,σV H
τ,σ

for all blocks Dτ,σ := D|τ,σ with (τ, σ) ∈ L. This approximation is computed
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with respect to a given precision ε > 0: ‖Dτ,σ − Uτ,σV H
τ,σ‖ ≤ ε‖Dτ,σ‖. Let

kτ,σ be the corresponding rank, i.e., Uτ,σ ∈ R
#τ×kτ,σ and Vτ,σ ∈ R

#σ×kτ,σ . If
kτ,σ < min(#τ,#σ)/2, the representation of Dτ,σ via Uτ,σV H

τ,σ uses less memory
compared to the full dense representation. In this case, the low-rank format is
kept. Otherwise, the full data is stored. Here, a too small value of ntile may favor
full data representation as a very small rank is required to switch to low-rank
approximation.

In the next step, neighboring low-rank matrices are merged together. For
this, let (τ, σ) be a non-leaf block in T and with low-rank sub-blocks Dτi,σj

=
Uτi,σi

V H
τj ,σj

, 0 ≤ i, j < 2. This can also be represented as

Dτ,σ =
(

Uτ0,σ0 Uτ0,σ1 0 0
0 0 Uτ1,σ0 Uτ1,σ1

)
·
(

Vτ0,σ0 0 Vτ1,σ0 0
0 Vτ0,σ1 0 Vτ1,σ1

)H

=: Ûτ,σ · V̂ H
τ,σ.

Using low-rank truncation, Ûτ,σV̂ H
τ,σ can be again approximated up to ε by

another low-rank matrix, i.e., [Ũτ,σ, Ṽτ,σ] := truncate
(
Ûτ,σ, V̂τ,σ

)
, with rank

k̃τ,σ. If the memory requirements for Ũτ,σṼ H
τ,σ are less than the combined mem-

ory of the smaller low-rank matrices, i.e., if k̃τ,σ <
∑1

i,j=0 kτi,σj

2 , then the merged
and truncated low-rank matrix is kept. Otherwise, we keep the low-rank blocks
of the level below. The same strategy is also applied for dense blocks, e.g., if all
sub-blocks are dense, they are merged to form a larger block, thereby preventing
a too fine-grained representation. If no merging is performed, the data of the
sub-blocks is finalized and will not be changed anymore.

Instead of a 2×2 subdivision per block, more sub-blocks may be used, though
this typically increases the joined rank of all sub-blocks in the merging phase
and may lead to a higher cost of that stage.

We further apply lossy binary compression to the low-rank factors
Uτi,σj

, Vτi,σj
, 0 ≤ i, j < 2, (or the data of dense blocks) while maintaining the

approximation error. For this we use ZFP because it proved very robust with
respect to the input data due to the small chunks (4d with d being the problem
dimension) to which it applies compression1. With this, all computations may
be performed in double (or single) precision but the final memory representation
is still optimal with respect to the user defined accuracy ε.

This merging process is repeated for all blocks starting from the leaves until
either no low-rank approximation with a sufficiently small rank can be found or
the root of T is reached, in which case D is approximated by a global low-rank
matrix. The full procedure is shown in Algorithm1 in the form of a recursion
starting at D, with approxlr a general low-rank approximation algorithm (e.g.
SVD, RRQR, etc.) and truncate a low-rank truncation procedure.
1 Using SZ resulted only in a small compression benefit or even worse compression

rates, leading to the assumption that the curve fitting algorithm of SZ seems to
work best with the original uncompressed data and not the data already compressed
by low-rank approximation.
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Algorithm 1: HLRcompress.
function HLRcompress(M, ε, ntile)

[n, m] := size(M);
if min(n, m) ≤ ntile then

{ Compression Phase }
[U, V ] := approxlr(M, ε);

if mem(Ũ) + mem(Ṽ ) < n · m then

return Ũ, Ṽ ;
else

return M ;

else
for 0 ≤ i, j < 2 :

rs := [i · n/2 + 1 : (i + 1) · n/2];
cs := [i · m/2 + 1 : (i + 1) · m/2];
Mij := HLRcompress(M(rs, cs), ε, ntile);

{ Merging Phase }

if M00, M01, M10, M11 all low-rank then

U :=

(
U0,0 U0,1 0 0
0 0 U1,0 U1,1

)

;

V :=

(
V0,0 0 V1,0 0
0 V0,1 0 V1,1

)

;

[Ũ, Ṽ ] := truncate (U, V );

if mem(Ũ, Ṽ ) <
∑1

i,j=0 mem(Mij) then

return Ũ, Ṽ ;

elif M00, M01, M10, M11 all dense then
return M ;

for 0 ≤ i, j < 2 :
if Mij is low-rank or dense then

zfp compress( Mij );

return

(
M00 M01
M10 M11

)

;

Let D̃ = (d̃ij)
m−1,n−1
i=0,j=0 be the result of Algorithm 1. Note that the coefficients

d̃ij are only implicitly given if the corresponding block is stored as a low-rank
matrix. Let also T̃ be the resulting partitioning, i.e., with leaves L̃ of T̃ defined
by the merging stage. By construction, T̃ is a sub tree of T .

4.2 Error Bounds

In Algorithm 1, a single accuracy parameter ε is used for all blocks. However,
this only guarantees a local error bound. To satisfy a global accuracy, the local
precision has to be adapted. For this, we want to bound the error in the Frobenius
norm ‖D − D̃‖F ≤ ε‖D‖F We assume that the error is uniformly distributed
throughout the full matrix, i.e., ∀0 ≤ i < m, 0 ≤ j < n : |dij − d̃ij | ≈ δ, for
some δ ≥ 0. This yields

∑m−1
i=0

∑n−1
j=0 (dij − d̃ij)2≈

∑m−1
i=0

∑n−1
j=0 δ2 = mnδ2 and

hence δ ≤ ε‖D‖F√
mn

. Because the aforementioned assumption also implies ‖Dτ,σ −
D̃τ,σ‖F = δ

√
#τ#σ, we can define the local (absolute) error bounds as: ετ,σ :=

δ
√

#τ#σ . These local precisions are used for the initial compression as well
as for the low-rank truncation during the merge phase.

4.3 Runtime Complexity

For simplicity, we assume the square case, i.e., m = n, where n is a power of 2.
Furthermore, we use SVD as the most time consuming low-rank approximation
algorithm for the initial compression of the leaves in T and also for the low-
rank truncation while merging sub-blocks. Since there are n/ntile · n/ntile leaves
and the SVD has runtime complexity of O

(
n3
tile

)
, the leaf compression takes

O
(

n
ntile

· n
ntile

· n3
tile

)
= O

(
ntile · n2

)
. For the merging phase, we assume a maxi-

mal rank of half the block size up to the root. For a single merge step for a block
of size n′ × n′ with ntile < n′ ≤ n and rank k′ = n′

2 /2 for the sub-blocks, this
results in truncation cost of O

(
k′2n′/2 + k′3) = O

(
n′3). Summing up all merges
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for all log n − log ntile level, this yields
∑log n/ntile

i=0 4i
(

n
2i

)3 = n3
∑log n/ntile

i=0
1
2i =

O
(
ntile · n2

)
, which is identical to the initial compression. However, as this is

the worst case scenario for the merging phase, it is expected that normally the
compression of the leaf blocks is the most time-consuming part of the algorithm.

4.4 Implementation Details

Algorithm 1 is a typical reduction algorithm and, as such, is easily parallelizable,
i.e., each recursive call of HLRcompress is a separate, independent task, spawning
further sub-tasks. This is also used in the actual implementation which uses Intel
TBB or OpenMP. Furthermore, as most of the computational work is expected
to be performed during the initial compression stage of the m/ntile × n/ntile

leaves, an almost perfect parallel speedup is expected. In case of load imbalance,
OpenMP dynamic scheduling may mitigate the resulting overheads. However,
the hierarchical compression method can also be formulated to handle each layer
separately, starting at the leaf level. Standard loop parallelization can be used
per level to compress or merge blocks. Such a level-by-level algorithm creates
opportunities for batch operations on GPUs. Indeed, the initial compression is an
easy candidate for batching as the block size is (nearly) identical and compression
has to be performed for all leaves. The sub-block merging phase on the other
hand may witness a wide range of different ranks and a highly irregular structure,
which makes efficient use of batch functions difficult. However, we expect the
largest gains by accelerating this first stage of the algorithm.

5 Performance Results

Environment Settings. We launch our performance benchmarking campaign
on two shared-memory x86 systems. The first system is a two-socket 36-core Intel
Ice Lake 8360Y. The second system is a two-socket 64-core AMD Epyc Rome
7702. We rely on GCC 10.2/10.3 compilers, link against sequential Intel MKL
v2021.2/v2020.02 for high-performance linear algebra operations, and use TBB
v2020.1/v2021.2 for thread parallelism, respectively. Both servers have 512 GB
of main memory with 54 MB/256 MB L3 cache size per socket for Intel and AMD
systems, respectively. The Intel system hosts an NVIDIA A100 40 GB GPU with
CUDA 11.2. We refer to each system by their respective vendor name. Unless
stated otherwise, all computations are performed on AMD Epyc in double pre-
cision arithmetic and we report performance average out of five runs. We use
ZFP v0.5.5, SZ v2.1 and MGARD v1.0. For SZ, we set best compression mode
with relative error bound. ZFP is configured to use fixed-accuracy mode with
the same block-wise accuracy as for low-rank compression or δ from Sect. 4.2 if
applied globally as this ZFP compression mode is designed for absolute error.
MGARD is configured for relative error with additional lossless compression
(CPU Lossless), which yielded best results. We also include results for compres-
sion by HLR alone, as used in [15], to demonstrate the improvements by the
additional ZFP compression.
2 AVX2 code path via MKL DEBUG CPU TYPE=5 on AMD Epyc.
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5.1 Logarithmic Kernel

Fig. 1. Dataset of logarithmic
model problem.

This example is a modified version of the clas-
sical 1D model problem for H-matrices [10].
The dataset Dlog = (dlogij )n

i,j=0 is defined as
dlogij = log |xi − xj |2, with xi, 0 ≤ i < n,
uniformly distributed over the 2D unit circle,
i.e., xi = (sin ih, cos ih), h := 2π/n (Fig. 1).
Dlog becomes singular along the diagonal and
at the lower left and upper right corner. This
dataset is smooth away from the diagonal sin-
gularity resulting in very good low-rank prop-
erties, yielding large low-rank blocks after com-
pression corresponding to a long running merg-
ing phase. The resulting partitioning depends
on the user-defined accuracy ε, as shown in Fig. 2 (top). The numbers in the var-
ious (green) low-rank blocks are the corresponding rank while red blocks signal
dense storage. Compression rates for the pure HLR compression, HLRcompress,
ZFP and SZ are shown in Fig. 2 (middle). For HLR and HLRcompress, we use
SVD for low-rank approximation/truncation and a tile size of ntile = 32, which
yields best results though the compression rates for 16 ≤ ntile ≤ 256 are very
similar. For all compression algorithms, we choose the same overall relative accu-
racy. Because of the smoothness, the compression gets better with a larger prob-
lem size. This is also true for the SZ compression algorithm for ε = 104. For
a higher accuracy, the SZ compression rate seems to stagnate. ZFP also shows
a better compression for smoother data though the rate only decreases slowly.
Furthermore, the benefit of ZFP in HLRcompress is clearly visible compared to
HLR compression alone. The runtime shown in Fig. 2 (bottom) is very similar
throughout the tested precisions, indicating only a small increase in ranks with
an increased accuracy, typically seen for smooth datasets. SZ compression shows
a much larger runtime compared to the other algorithms with the main reason
being that parallelization is not supported for 2D datasets. Although comparing
elapsed time is unfair, our compression rate remains superior to SZ. The fastest
compression is achieved with ZFP, which also supports OpenMP, however it
also shows the worst compression rates. The theoretical complexity of O

(
n2

)

for HLRcompress (see Sect. 4.3) is also confirmed by these tests; see the black
lines in the bottom three panels of Fig. 2.

Due to the nature of the algorithm, HLRcompress shows performance scala-
bility independent on the CPU vendor, as seen in Table 1. On Intel, HLRcompress
shows a nearly perfect speedup, whereas it is slightly reduced on AMD. However,
when using only 36 cores per socket on the AMD system, the parallel speedup is
almost linear with 33X/65X, similar to the Intel system. This seems to indicate
a bandwidth saturation with the larger number of cores on the AMD system as
both systems have an identical memory bandwidth. The AMD system exhibits
a better time to solution than Intel thanks to a larger L3-cache per core ratio,
which enables HLRcompress to better exploit the higher L3 cache bandwidth [29].



High-Performance Spatial Data Compression for Scientific Applications 411

Fig. 2. Hierarchical partitioning (top), compression rates (middle) and runtime (bot-
tom) with precisions ε = 10−4, ε = 10−6 and ε = 10−8 (left to right).

Table 1. Runtime (T)/Speedup (S) for
n = 131.072 on different CPUs.

Socket #cores T S

Intel 36 74.43 s 36X

2x Intel 72 37.51 s 71X

AMD 64 43.21 s 49X

2x AMD 128 22.75 s 93X

Table 2. NVIDIA/AMD runtimes for (a)
compression/(b) merging stages.

Matrix size n 8.192 16.384 32.768 65.536

(a) NVIDIA 0.04 s 0.16 s 0.65 s 2.70 s

(a) AMD 0.12 s 0.38 s 1.47 s 5.62 s

(b) 0.03 s 0.12 s 0.31 s 0.99 s

Moreover, as discussed in Sect. 4.4 for the initial compression, batching functions
should be considered to maintain high occupancy on GPUs. Table 2 reports time
breakdown of the compression/merging phases on the AMD and NVIDIA sys-
tems. We rely on the SVD implementation of the cuSolver library for the com-
pression of the leaf blocks on the GPU device, while performing the merging
phase on the CPU host. For smaller problems, the merging phase still domi-
nates the computation. However, the trend changes for an increasing problem
size and is expected to go on. The maximum size of the problem is limited by
the GPU main memory. We can see the NVIDIA A100 GPU outperforms the
AMD system by a factor of two. The main reason for the rather small speedup
is that the batched SVD on the GPU is based on Jacobi SVD (gesvj) whereas
on the CPU the faster gesvd LAPACK function is used. Nevertheless, it shows
the potential of GPUs for the compression stage.
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Fig. 3. Comparison of low-rank approximation algorithms for the logarithmic model
problem.

Finally, we compare different low-rank approximation techniques for the com-
pression and merging within HLRcompress. For a fixed problem size (n = 65.536),
SVD, RRQR, RSVD and ACA are used to compress Dlog for different pre-defined
accuracy levels. The results are shown in Fig. 3. The compression rate for SVD
and RRQR is identical. RSVD also maintains the same rate except for the high-
est accuracy setting. ACA has a slightly lower compression rate compared to
SVD/RRQR. However, ACA is also much faster compared to the other meth-
ods, more than 10X faster than SVD, which is the slowest method. RRQR and
RSVD follow in between. The global accuracy is very similar between all low-rank
approximation algorithms. However, RSVD fails to achieve the given accuracy
for ε = 10−10. In this case, ACA actually surpasses all other methods. Because
of the smoothness of the dataset, ACA is expected to converge fast with a small
rank.

Thanks to this behaviour, the HALR algorithm from [36] based on ACA
is even faster than HLRcompress, as it stops recursion earlier in the tree, with
only a slightly worse compression rate compared to HLRcompress (for n = 4096
3% for HLRcompress vs. 4% for HALR). With SVD instead of ACA, the same
compression ratio as with HLRcompress is achieved but with a much higher
runtime (52s for HALR vs. 0.03s for HLRcompress).

5.2 The Wave Equation

The global low-rank properties of the logarithmic kernel example are normally
not present in typical data sets. To look into the compression behavior of HLR-
compress for more realistic data we choose the time dependent wave equation
defined by ∂2u

∂t2 −Δu = f in Ω× [0, T ], u(x, t) = g on ∂Ω× [0, T ], and u(x, 0) =
∂u(x,0)

∂t = 0 in Ω, with Ω = [−π, π]2, T > 0 and g = sin(8πt) for x = (x0, x1)
with x0 = −π and |x1| < 0.1, 0 otherwise. The simulation dataset was generated
by using deal.II v9.3.2 [5] and we use the same ZFP setting as in the logarithmic
model problem.

In the beginning, most data is zero (Fig. 4, top) while at the end, the inter-
fering waves (Fig. 4, bottom) may lead to more localized features of the data
set, possible degrading compression rates. Also, the spatial resolution has an
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important influence on the low-rank compression as a too low resolution leads
to data not smooth enough for efficient global low-rank compression.

Fig. 4. Simulation dataset for the
wave equation at the beginning
(top) and end (bottom).

First, we look how the compression rates
vary depending on the timestep as they are
shown in Fig. 5 (left). In the beginning, due to
most data being zero, the compression is best
and declines with increasing timesteps. Here,
HLRcompress is about twice as efficient as
just HLR compression. The compression rate
behaviour of SZ and ZFP is similar to HLR but
by a factor of about 9 (SZ) and 15 (ZFP) worse
than HLRcompress. For all compression algo-
rithms the same global accuracy of ε = 10−8

was chosen.
For HLR, HLRcompress and ZFP the run-

time changes only little with respect to the
timestep. Only in the very beginning of the
simulation, the zero data approximation could
be computed faster. SZ shows here a stronger
dependence on the data with an increasing run-
time up to the middle of the simulation. Again,
ZFP shows the fastest runtime.

The importance of smooth data for low-rank approximations can best be seen
in Fig. 5 (right) as the compression gets better with a higher spatial resolution,
especially for the oscillating data at the end of the simulation which can not
be compressed with the coarsest stepwidth but almost reaches the same level of
compression as for the zero data at the simulation start with the finest stepwidth.

For comparing the different low-rank approximation methods we choose the
solution at the end of the simulation as it shows the most chaotic properties,
with the results shown in Fig. 6. The most obvious difference to the logarithmic
problem is the accuracy of ACA, which completely fails to achieve the user-
defined accuracy, which is owed to the unsmooth data. For this example, the
top-down approach from [36] also fails when using ACA. All other methods are
very similar in terms of compression rate and global error. However, randomized
SVD needs a much larger runtime compared to SVD and RRQR to achieve these
results.

5.3 Turbulent Combustion

Large-scale turbulence, combustion and detonation simulations pose a signifi-
cant challenge due to the presence of a wide range of length and time scales,
requiring overly fine spatial and temporal resolutions to resolve highly inter-
mittent localized phenomena, which results in intensive checkpoint output data
and extensive computational resources. Multidimensional simulations of super-
knock phenomena in combustion devices are examples that require such highly
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Fig. 5. Compression rates (left) and runtime (center) depending on the timestep and
dependence on spatial resolution (right) for the wave equation.

Fig. 6. Comparison of low-rank approximation algorithms for the wave equation.

intensive I/O and computational resource requirements [31–33]. These simula-
tions may unravel the mechanism of abnormal combustion phenomena in devices
under extreme high-load operating conditions. We perform experiments using the
MPI-only KARFS code [13,25] compiled with Intel on a Cray XC40 distributed-
memory system using 512 two-socket Intel Haswell nodes.

Figure 7a shows a detonation front with a peak pressure of ≈ 750 bar, while
Fig. 7b shows the mass fraction of representative chemical species in the ethanol
oxidation mechanism, spanning a wide spectrum of values. To fully resolve the
complex structure of a detonation wave under high load, a typical grid cell size
∼1 μm is needed. Additionally, an extremely short-time step is also needed to
resolve the temporal evolution of the chemical species.

Figure 7c shows the temporal evolution of the maximum pressure in the entire
computational domain, monitored with an interval of 0.5 ns, that drastically
changes in its amplitude due to shock-shock collisions, as seen in the pressure
contour. A necessary high frequency of saving output data is activated prior to
the onset of detonation, which permits capturing the subsequent development of
the detonation process. The data generated during this stage constitutes ∼80%
of the entire simulation data. The data size for a single checkpoint of a deto-
nation using 2D direct numerical simulation (DNS) is typically ∼100 GB with
∼4.2 million grid points. We monitor a total number of 44 primitive variables
(temperature, pressure, velocities, and chemical species).

If no compression is performed, a single run may generate ∼100 TB. Although
these I/O operations account for a negligible portion of the overall KARFS’ pro-
file for the 2D testcase, the per-user storage quota may become a bottleneck,
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Fig. 7. a Pressure, b mass fraction of species across of a detonation wave, c temporal
evolution of the maximum pressure from a 2D simulation. The inset in c and pressure
and temperature contours indicate the onset of detonation.

Fig. 8. Temporal evolution of the standard deviation of the normalized mass fraction
of key species, i.e., fuel (C2H2OH), CO, O, H and OH.

not to mention the I/O-intensive post-processing phase needed to perform the
offline analysis and identify abnormal combustion phenomena. This critical con-
text justifies the integration of HLRcompress into KARFS. Each MPI process
creates an instance of HLRcompress on the shared-memory node that generates
the compressed datasets at runtime using OpenMP, as explained in Sect. 4.4,
with limited impact on KARFS. Subsequently, KARFS stores the snapshots into
the filesystem as before but now they are reduced in size, eventually alleviating
the I/O performance and storage constraints during post-processing.

Figure 8 shows that the compression with ε = 10−2 has a noticeable effect
on the mass fraction of major species, i.e., fuel (C2H2OH) and CO, as com-
pared to that of radicals (O, H, and OH) due to their short lifetime and thin
reaction layer. All in all, the compression with ε ≤ 10−3 can still reproduce the
profiles of all the primitive solution variables for the 1500 snapshots, as if no
compression is applied. Figure 9 shows relative compression rates and runtime
for a single timestep of the combustion simulation captured during the detona-
tion using ε = 10−4 with HLRcompress being the reference. We use RSVD since
the numerical error is identical to SVD/RRQR, while achieving best compres-
sion rate and performance with ntile = 256. HLRcompress achieves more than
100-fold compression rate compared to the full dataset.

The total memory compression for all species with HLRcompress is 29% better
compared to SZ, with a very high compression for the inert N2. As before, ZFP
exhibits the worst compression with 9X more than HLRcompress. MGARD [1],
which is applicable to this dataset due to the relaxed accuracy setting, achieves
a compression 58% worse than HLRcompress. The addition of ZFP within HLR-
compress yields a 3.5X better compression, clearly indicating the ideal combina-
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Fig. 9. Relative compression rates/runtimes per species compared to HLRcompress for
one timestep of combustion simulation.

tion of algebraic and binary compression. In terms of runtime, ZFP again is the
fastest compressor with HLR and HLRcompress following closely. HLRcompress
outperforms SZ up to 28X (22X average) in runtime and MGARD by up to 465X
(360X average). This translates into a significant I/O performance improvement,
while analyzing the snapshots during the post-processing phase. When using
ACA as the low-rank approximation scheme, HLRcompress is only able to com-
pute an accurate result for a single species. For all other species, the accuracy is
typically at least one order worse than requested, which also holds for the top-
down HALR approach from [36]. This shows the lack of numerical robustness of
ACA when dealing with non-smooth datasets.

6 Conclusion and Future Work

We highlight the performance superiority of a novel hybrid data compression
algorithm, combining HLR compression schemes with ZFP binary compression,
thereby outperforming state-of-the-art binary compression techniques alone on
x86 parallel systems. To our knowledge, this is the first time that feasibility of
lossy data compression in high-fidelity combustion datasets is demonstrated. We
perform the preliminary steps in supporting GPUs into HLRcompress, though
the current implementation of batched (Jacobi) SVD from cuSolver has limita-
tions. Other compression algorithms need to be used on the GPU, e.g., RRQR,
RSVD, and ACA. Besides planning to extend our HLRcompress software to high-
dimensional spatial datasets within the combustion application and beyond (e.g.,
climate/weather applications), we would like to study the interplay between
spatial and time compression of datasets generated during the detonation and
autoignition. Finally, we would like to enhance the arithmetics of the PDE solvers
for each chemical species by engaging HLRcompress beyond data compression.

Acknowledgments. For computer time, this research used Shaheen-2 Supercom-
puter hosted at the Supercomputing Laboratory at KAUST.
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