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1 Introduction

Acoustic droplet vaporization (ADV) is a process in which droplets of liquid are
vaporized through the application of ultrasound acoustic waves. Since its initial
description in 1995 [8], the potential usefulness of this process within the medical
field has been explored through proposed and demonstrated applications such as
drug delivery, imaging, and embolic therapy.

The exploitation of this process for medical applications involves the introduction
of droplets, typically several hundred nanometers in size, of an appropriately
selected biocompatible organic compound into a patient’s bloodstream. Ultrasound
is then applied at the required site to induce the vaporization of these nanodroplets
noninvasively and thus achieve the desired clinical purpose. Perfluorocarbons
(PFCs) are the most explored class of compounds for this application due to their
physicochemical properties, their lightest species having a boiling point below
human body temperature, yet remaining metastable in the liquid state due to the
additional Laplace pressure within the droplet arising from surface tension [9].
These droplets are typically encapsulated with either an albumin layer [10], a
polymeric shell [12, 13], or fluorinated surfactants [14] to prevent their rapid
dissolution within the bloodstream, thus improving their lifetime.

The distribution of administered drugs within the body poses a key challenge
within the field of cancer chemotherapy. Severe side effects are caused by the
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cytotoxic effects of these drugs on healthy tissue. In addition, anomalous tumour
vascularization and high interstitial pressure result in spatial drug gradients within
a tumor, leading to the possible survival of cancer cells where drug concentration is
low [15]. This challenge can be addressed through the development of targeted drug
delivery techniques that increase the concentration of drugs within the tumour whilst
minimizing the impact on healthy tissue. The small size of the aforementioned
encapsulated nanodroplets and their stability within the bloodstream allow them
to both circulate around the body and accumulate within tumour tissue through the
enhanced permeability and retention (EPR) effect [16]. Targeted drug delivery can
then potentially be achieved via the selective release of any encapsulated drugs by
inducing ADV through the noninvasive application of a focused ultrasound field.

A limitation of conventional ultrasound imaging techniques is the difficulty
encountered when imaging tissue microvasculature due to the small size of the
microvessels and the poor resolution of signal between the blood and the sur-
rounding tissue [17]. The ADV of encapsulated nanodroplets can turn them into
micrometer-scale gas bubbles which oscillate under the influence of the applied
acoustic field. This enhances the backscattered signal, boosting the contrast between
the vasculature and the surrounding tissue, thus allowing us to overcome the above
limitation [17]. The expansion in volume can also occlude blood vessels feeding
a tumour, starving them of nutrients and thus damaging or eliminating them. The
exploitation of this process for therapeutic benefits is known as embolotherapy [18].

The increase in stability caused by the Laplace pressure across the droplet
surface, together with the encapsulating shell implies that a certain threshold of
acoustic energy must be exceeded in order to achieve vaporization. The dependence
of this threshold on various parameters such as acoustic frequency [11, 19, 20],
pulse length [20–22], pulse repetition frequency [23], droplet size [19, 23] and con-
centration [22], as well as temperature [20, 22, 23] has been studied experimentally
in vitro. A successful mathematical model of the ADV process and its dependence
on some or all of the above factors can be used to optimize this process through the
appropriate selection of an encapsulating shell with suitable physical characteristics,
as well as the parameters of the applied acoustic field. It may also yield useful
behavioural predictions in conditions that have yet to be tested experimentally.

Current physical models of ADV assume the presence of a spherical vapor
bubble within the liquid droplet and an important aspect is the examination of the
evolution of this bubble over time [4, 5]. Hence they build upon and incorporate
early mathematical models of spherical bubble behavior. One such model is Lord
Rayleigh’s examination of the collapse of a spherical cavitation bubble within a
liquid under constant pressure at a distance [28]. This was extended by Plesset to
incorporate the possibility of time-varying external pressure [29]. The combined
works form the basis of what has come to be known as the Rayleigh-Plesset
framework and has since been extended further to incorporate the effects of surface
tension [30], viscosity [31], heat diffusion [30, 32], and compressibility [33].

This paper presents two recent models of the ADV process. These models
utilize the general Rayleigh-Plesset equation accounting for the effects of surface
tension, viscosity, and heat diffusion (although still assuming incompressibility).
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They also incorporate the effect of mass flux across the bubble surface through
evaporation/condensation, as well as pressure contributions from the encapsulating
shell. The first model, developed by Guédra et. al. [4] assumes that the shell exhibits
linear elasticity. The second model, developed by Lacour et. al. [5] builds upon this
by introducing nonlinear elasticity by treating the shell as a Mooney-Rivlin solid to
account for large deformations.

2 Modelling

As shown in the above schematic (Fig. 1), the model represents the radius of the
vapor bubble, the inner and outer radius of the shell as three concentric spheres with
radii R(t), a(t), b(t) respectively. It is assumed that the space within the inner vapor
bubble, between the vapor bubble and the shell, and outside of the shell contains PFP
vapor, liquid PFP, and water respectively. To model the evolution of these values
over time, the following dynamics are taken into account:

1. Vapor behavior within the bubble
2. Mass flux and heat transfer across the bubble surface
3. Heat transfer and fluid flow within the liquid between the bubble surface and the

shell
4. Heat transfer across the shell

Fig. 1 Schematic of the
model setup

External water

Encapsulating
shell

Liquid PFP

PFP Vapor
R(t)

a(t)

b(t)
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5. Heat transfer and fluid flow within the external liquid

2.1 Evolution of Bubble Radius Over Time

The evolution of the bubble radius over time is described by the generalized
Rayleigh-Plesset equation [5] which is obtained as follows. Its derivation begins
with the Navier-Stokes equation for radially symmetric flows

− 1

ρ

∂p

∂r
= ∂u

∂t
+ u

∂u

∂r
− ν

[
1

r2

∂

∂r

(
r2

∂u

∂r

)
− 2u

r2

]
(1)

Where, ρ is the density, p is the pressure, u := u(r, t) is the radial velocity at radial
distance r from the bubble center at time t , and ν is the kinematic viscosity. By the
conservation of mass, the radial velocity u must satisfy

u(r, t) =
(

R

r

)2

U(t) (2)

Where U(t) := lim
r→R+ u(r, t) is the velocity of the inner liquid right at the surface of

the bubble. Plugging this into Eq. (1) results in
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ρ
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r2
− 2

R4U2
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Noting that the viscosity terms within the right-hand side of Eq. (1) cancel each
other out as a result. (3) can then be integrated across the three domains of inner
liquid [R, a], shell [a, b], and outer liquid [b,∞] to obtain the following [4]

RU̇ + 4ṘU − U2

2
− aä − 3

2
ȧ2 = pL(R) − pL(a)

ρL

(4)

bb̈ + 3

2
ḃ2 = pE(b) − p∞

ρE

(5)

bb̈ − aä + 3

2
(ḃ2 − ȧ2) = pS(a) − pS(b)

ρS

+ σS
rr (a) − σS

rr (b) (6)

Where subscripts L, S,E are used to denote properties corresponding to the inner
liquid, shell, and outer liquid respectively. pL and pE represent the hydrostatic
pressure within the inner and outer liquid respectively. The shell is assumed to be
a viscoelastic material having both elastic stress and viscous stress terms pS and
σS

rr . In addition, taking into account surface tensions, viscosities, shell elasticity,
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Fig. 2 Normal stress
contributions from the outside
and within the bubble

Gas pressure within
the bubble

Hydrostatic pressure

Surface tension

Mass flux

Liquid viscosity

Bubble surface

as well as the mass flux across the bubble surface, the continuity of normal stress
across the bubble surface, shell inner surface, and shell outer surface (Fig. 2) gives
the following [1, 6]

pL(R) + JU = pV (R) − 4ηL

U

R
− 2

σ

R
+ JUV (7)

pL(a) = pS(a) − σS
rr (a) − 4ηL

ȧ

a
+ 2σ1

a
(8)

pE(b) = pS(b) − σS
rr (b) − 4ηE

ḃ

b
− 2σ2

b
(9)

Where J is the mass flux across the bubble surface, UV := lim
r→R− u(r, t) is the gas

velocity at the inner surface of the bubble, η is the dynamic viscosity of the medium
denoted by its subscript, and σ, σ1, σ2 are the surface tensions corresponding to the
bubble surface, shell inner surface, and shell outer surface.

Combining Eqs. (4)–(9) results in the generalized Rayleigh-Plesset equation
which describes the evolution of the bubble radius over time.
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(R2U̇ + 2RṘU)
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Where p∞ is the pressure at infinity arising from an applied acoustic field as follows.

p∞(t) = p0 − pa sin(2πf t) (11)

Where p0 is the ambient pressure, pa is the amplitude of the acoustic wave, and f

is the acoustic frequency. By the conservation of mass, the mass flux J is given by
[3]:

J = ρL(U − Ṙ) = ρV (UV − Ṙ) (12)

Given this mass flux, together with Eq. (2), and noting that the shell is impermeable,
the differential equations describing the evolution of R, a, b over time are given by.

Ṙ = U − J

ρL

(13)

ȧ = R2

a2
U (14)

ḃ = R2

b2
U (15)

2.2 Pressure Contributions

In the process of obtaining Eq. (10), we see that the pressure at the bubble surface
pR can be broken down into contributions from viscosity, surface tension, mass flux,
and shell response respectively.

pR = pV − 2σ̄

R
− 4η̄U

R
+ � + S (16)

Where

η̄ = ηL + (ηS − ηL)

(
R

a

)3
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(
R

b

)3

(17)
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σ̄ = σ + σ1

a
+ σ2

b
(18)

pV is the pressure of the gas within the bubble. It can be determined using the
Clausius-Clapeyron relation if the temperature is given (to be discussed in Sect. 2.3).

pV (T ) = pref exp

(
L

rV

(
1

Tref

− 1

T

))
(19)

Where L is the latent heat of vaporization, rV is the specific gas constant, and pref

is the known pressure at a reference temperature Tref

� is the contribution from the mass flux terms appearing in Eq. (7)

� = J (UV − U) (20)

Using Eq. (12), this can be re-expressed as

� = J 2
(

1

ρV

− 1

ρL

)
(21)

The mass flux J itself is obtained from the conservation of energy across the bubble
surface [4], assuming that the temperature distribution is uniform within the bubble
(Sect. 2.3).

J = −KL

L

∂T

∂r

∣∣∣
r→R+ (22)

Where KL is the thermal conductivity of the inner liquid.
S is the contribution from the shell response which will be discussed in Sect. 2.4.

2.3 Temperature Profile

The determination of the pressure within the gas bubble within Eq. (19) as well as
the mass flux across the bubble surface (22) requires the temperature within the
bubble, as well as the temperature gradient immediately outside the bubble.

2.3.1 Bubble Surface Temperature

The modelling of the bubble surface temperature requires the determination of the
gas velocity field within the bubble. This begins by assuming that it behaves as an
ideal gas. The corresponding enthalpy equation is as follows [2]
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ρV Cp

dT

dt
− dp

dt
= ∇ · (KV ∇T ) (23)

Where ρV is the gas density, Cp is its heat capacity under constant pressure, T :=
T (r, t) is its temperature, and KV is its thermal conductivity. The gas velocity field
within the bubble �v is introduced through the continuity equation.

∂ρV

∂t
+ ∇ · (ρV �v) = 0 (24)

The following ideal gas property is also used

CpρV T = γp

γ − 1
(25)

Where γ := Cp

Cv
is the ratio of the specific heat at constant pressure to the specific

heat at constant volume. Combining Eqs. (23)–(25), keeping in mind the assumption
that the vapor density is constant in space, the following differential equation is
obtained.

dp

dt
+ γp∇ · �v = (γ − 1)∇ · (KV ∇T ) (26)

This is re-expressed as follows using the assumption of spherical symmetry.
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∂r
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r2
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∂
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(
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∂T
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)
− ṗ

]
(27)

Which is integrated to obtain the vapor velocity field within the bubble

v = 1

γp

[
(γ − 1)KV

∂T

∂r
− rṗ

3

]
(28)

We know that UV = lim
r→R− v(r, t). In addition, since the temperature field within the

bubble is assumed to be spatially uniform, this reduces to

UV = − Rṗ

3γp
(29)

Which can be plugged into the combination of Eqs. (12) and (22) to obtain

Rṗ + 3γp

(
Ṙ − 1

ρV

KL

L

∂T

∂r

∣∣∣
r→R+

)
= 0 (30)

The Clausius-Clapeyron relation given in Eq. (19) provides the time rate of change
of pressure, which is then used to obtain the final differential equation governing the
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evolution of bubble surface temperature (hereby denoted TS) over time.

L

rvT
2
S

dTS

dt
= 3γ

R

(
KL

ρV L

∂T
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∣∣∣
r→R+ − Ṙ

)
(31)

Where the gas density ρV can be obtained from the following ideal gas relation.

ρV = pV

rV T
(32)

2.3.2 Temperature Within the Inner and Outer Liquids

The temperature profiles within the inner and outer liquids are given by the energy
equations [4, 7]

∂T

∂t
+ u(r, t)

∂T

∂r
= Dm

r2

∂

∂r

(
r2

∂T

∂r

)
+ 12ηm

ρmcm

(
u(r, t)

r

)2

(33)

Where m ∈ {L,E} represents the medium for which the temperature profile is
being evaluated and D := K

ρc
is the thermal diffusivity. The heat flux is assumed to

be continuous across the shell.

KL

∂T

∂r

∣∣∣
r→a− = KE

∂T

∂r

∣∣∣
r→b+ (34)

And the other boundary conditions are given by the temperature of the bubble
surface and the temperature at infinity, which is held constant.

lim
r→R+ T (r, t) = TS(t) (35)

lim
r→∞ T (r, t) = T∞ (36)

2.4 Shell Contribution

In this review we cover two approaches to modelling the pressure term contributed
by the shell’s response—the Kelvin-Voigt model utilized in Guédra and Coulouvrat
[4], and a later model by Lacour, Guédra and Coulouvrat [5] that models the shell
as a hyperelastic material using the Mooney-Rivlin strain energy density function to
incorporate nonlinear effects that arise as a result of large deformations.

The Kelvin-Voigt model represents the radial component of the viscous stress
tensor that appears in Eqs. (6), (8), and (9) as follows
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σS
rr (r) = −4

a2
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a

3
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1

]
+ ηS

Ṙ1
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)
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Where GS is the shear modulus of the shell and ηS the shear viscosity. This gives
the following expression as the shell response

S = −4

3
GS

(
1 − R3

10

R3
1

) (
1 − R3

1

R3
2

)
(38)

The Mooney-Rivlin model begins with Mooney’s constitutive relation [34]


 ≈ GS

4
[(1 + β)(I1 − 3) + (1 − β)(I2 − 3)] (39)

Where 
 is the strain energy density function, G is the shear modulus, β is a fitting
parameter, and I1 and I2 are the first two invariants of the left Cauchy-Green tensor
b = FFT . By expressing the two invariant terms in terms of the principal stretch
λ := r

r0
, the strain energy density function can be reexpressed as


 ≈ GS

4

1∑
i=−1

(1 + iβ) (λ−4i + 2λ2i − 3) (40)

The shell response can be placed in the following form.

S =
b
b0∫

a
a0


 ′(λ)

λ3 − 1
dλ (41)

Which can then be integrated to obtain

S = GS

⎡
⎣ 1∑

i=−1,i 	=0

1∑
k=0

1 + iβ

−i − 3k
λ−i−3k

⎤
⎦

b
b0

a
a0

(42)

3 Numerical Implementation

The set of equations in the previous section can be consolidated into a model of
the four main state variables U,R, a, and b. The mass flux J is implicated in
multiple sites within the model and its evaluation in turn requires the modelling
of the temperature profile T (r, t) of the system. To that end, the spatial terms within
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the energy equation (33) are discretized using centralized finite differences. The
following variable substitutions were also carried out to keep the boundary points
fixed [3].

x = r − R

a − R
; ∀r ∈ (R, a) (43)

y = l

r − b + l
; ∀r ∈ (b,∞) (44)

Where

l = B

√
DE

ω
(45)

B being a chosen parameter.
The internal and external liquids were discretized evenly into M and N spatial

points respectively. I.e.

∀i ∈ {1, . . . ,M}; xi = i�x; where �x = 1

M
(46)

∀j ∈ {1, . . . , N}; yj = j�y; where �y = 1

N
(47)

This results in a system of ODEs describing the evolution of temperature at
{x1, . . . , xM }, and {y1, . . . , yN }. This system needs to be completed with boundary
and initial conditions at r = R ⇔ x0 = 0 and r → ∞ ⇔ y0 = 0. The evolution of
the bubble surface temperature is described by Eq. (31). By discretizing

∂T

∂r

∣∣∣
r→R+ ≈ T (x1, t) − T (x0, t)

�x
(48)

And rearranging Eq. (31), the evolution of bubble surface temperature can also be
expressed as a function of the current temperature profile.

dTS(t)

dt
= ∂

∂t
T (x0, t) ≈ 3T (x0, t)

2rvγ

LR

(
KL

ρV L

T (x1, t) − T (x0, t)

�x
− Ṙ

)
(49)

On the other hand, the temperature at infinity is held constant, so

∂

∂t
T (y0, t) = 0 (50)

The continuity of heat flux across the shell described in Eq. (34) was implemented
by introducing an additional variable Tshell(t) used to obtain the central finite
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differences approximating the one-sided derivatives in Eq. (34).

∂T

∂r

∣∣∣
r→a− = ∂

∂x
T (xM, t) ≈ Tshell(t) − T (xM−1, t)

2�x
(51)

∂T

∂r

∣∣∣
r→b+ = ∂

∂y
T (yN, t) ≈ T (yN−1, t) − Tshell(t)

2�y
(52)

Tshell(t) can then be calculated at each time step by plugging the above into Eq. (34).
To avoid potential numerical difficulties [4], the initial temperature profile is

interpolated between the initial bubble surface temperature and the temperature at
infinity as follows [24]:

T (r, 0) = T (∞, 0) − [T (∞, 0) − TS(0)] exp
(

− r − R(0)

δ − R(0)

)
(53)

Where δ was chosen to be within [R(0), 2R(0)]. The initial bubble surface
temperature was obtained by applying the Clausius-Clapeyron relation to the initial
pressure, which in turn was the combination of the ambient pressure and the Laplace
pressure arising from the surface tension of the interfaces within the system.

TS(0) =
[

1

Tref

− rV

L
ln

(
p0 + 2σ

R(0) + 2σ1
a(0) + 2σ2

b(0)

pref

)]−1

(54)

The evolution of the entire system can then be expressed in the following form.

d

dt

⎡
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b
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= f
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⎡
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T (x1, t)
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T (y0, t)

U

R

a

b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, p∞(t)t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(55)

This was then solved using the numerical method implemented by ode15s within
Matlab® [35].
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Table 1 Parameters used
within the simulations

Unit PFP [25–27] Shell [6] H2O

K W/mK 0.056 0.6

ρ kg/m3 1590 1100 998

c J/kgK 1046 4200

η mNs/m2 0.64 0.05 0.001

rV J/kgK 28.8

L kJ/kg 88

γ 1.05

4 Preliminary Results

4.1 Parameters

The physical properties of PFP, the shell material, and the external water are listed
in the following Table 1.

The additional parameters involved include the vapor pressure of PFP at the
reference temperature of 25 ◦C, Pref = 83.99 kPa [27]. The ambient temperature
and pressure were chosen as T∞ = 37 ◦C, P0 = 1 atm. B, the parameter used in the
variable transformation of radial distance external to the encapsulated droplet shown
in Eq. (45), was chosen to be 10. δ the parameter involved in setting up the initial
temperature profile was chosen to be 1.1R(0). σ , the surface tension coefficient of th
bubble was 0.0095N/m. The surface tension coefficients corresponding to the shell
inner and outer surfaces were assumed to be 0. β, the fitting parameter appearing in
Eq. (39) was chosen to be 1.

The results (Figs. 3 and 4) exhibit two possibilities for the system: continued
expansion through induced droplet vaporization, and bubble collapse. It appears that
a larger amplitude of the driving acoustic wave imparts more energy into the system
and bring it closer to vaporization. A stiffer shell with a higher shear modulus also
provides more resistance acting against the bubble expansion, thus increasing the
ADV threshold. The effect of nonlinearity introduced by the Mooney-Rivlin model
also gives rise to a larger shell response and hence further increasing the energy
required for ADV.

5 Conclusion

Acoustic droplet vaporization (ADV) is a mechanism that holds great promise for
potential clinical applications ranging from contrast agents in ultrasound, to the
administration of drug cargos at specific target sites. The development of appropriate
mathematical models can lead to a deeper understanding of the mechanisms and
factors involved in the ADV process. Although both models discussed in this paper
are based on the Rayleigh-Plesset equation—the models used different constitutive
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Fig. 3 Evolution of vapor bubble radius and shell inner radius as given by the linear elasticity
model under varying amplitudes of the acoustic waves (1 to 5MPa) and two different shell
conditions: left) GS = 100MPa, and right) GS = 200MPa

Fig. 4 Evolution of vapor bubble radius and shell inner radius as given by the nonlinear elasticity
model under varying amplitudes of the acoustic waves (1 to 5MPa) and two different shell
conditions: left) GS = 100MPa, and right) GS = 200MPa

equations. The first model uses linear elasticity theory, whilst the second utilizes
a Mooney-Rivlin model that is more suitable for large shell deformations. These
models can be used to develop some understanding of the mechanisms that drive the
ADV process, as well as to determine key factors in the vaporization process. The
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main purpose of this paper is to present and compare these two models presented in
the literature to study the ADV process.
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