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1 Introduction

The study of plankton-fish interaction is one of key area in marine ecology due to
its global existence and importance. Most of plankton-fish interaction dynamics are
based upon classical Lotka-Volterra mechanism, in which growth of zooplankton
depend on phytoplankton and zooplankton predation rate of fish is the growth rate
of fish with a conversion factor.

In complex dynamics, prey species make use of refuge to allow some degree
of protection of the prey from predator. This prevents the predation of the prey
population to some extent. In it’s absence, prey density may increase due to a
simultaneous increase of refuge that will trigger population outbreaks and forms
multiple stable states. Recently, the scientists carried out many outcomes by
considering refuge term in prey-predator system. The author in [1] examined the
global stability of a stage-structured prey-predator model in presence of prey refuge.
The researchers in [2] studied that prey refuge has a positive impact on Leslie-
Gower-prey-predator model.

The phytoplankton (prey) community uses refuge to protect itself from the zoo-
plankton (predator) community. This prevents the predation of the phytoplankton
population to some extent [3–6]. Some researchers are opening new areas for
study by incorporating refuge in the marine plankton system. The analysis of
refuge in [7] showed that it has a strong effect in a phytoplankton-zooplankton
spatiotemporal dynamics system. The authors in [8] establishes the vital role played
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by phytoplankton refuge and toxin on the occurrence and termination of algal
blooms in freshwater lake. The authors in [9] investigated the plankton dynamics
in pond and the impact of zooplankton refuge on growth of tilapia (Oreochromis
niloticus).

There are many environmental fluctuations which are not considered in determin-
istic models as they do not account for the variations in random parameters [10]. In
such cases, a stochastic model is a better choice as they provide a realistic view of the
natural system. Stochastic model of toxic producing phytoplankton-fish are studied
recently in [11] for a clear understanding of the plankton dynamics. The authors
in [11, 12] investigated that high and low value of environmental fluctuations may
lead to the extinction of the population as well as population weakly persistent in
the mean respectively. Recently, the scientists in [13] examined that white noise can
affect directly the survival of plankton population in toxin producing phytoplankton-
zooplankton interaction model.

Based on the above observations, we constructed a three-dimensional model
focusing on the effects of phytoplankton refuge and zooplankton refuge on the
marine ecosystem. Firstly, a mathematical model is designed by considering suitable
functional responses. It is assumed that as per functional response type II the grazing
rate of zooplankton is dependent on the phytoplankton. Zooplankton predation
by fish follows a functional response type III, and the predation rate increases
in a sigmoidal way with prey density. Also, many planktivorous fish feeds on
chironomids, tubifex, or other bottom dwelling invertebrates. Thus, there is chance
of switching to suitable prey which results in a type-III response considering there
is absence of significant time-lag [14]. Further, the roles and the interaction of both
plankton species and refuge phytoplankton and zooplankton are studied.

The paper is organized as follows. After the above introductory section, we move
onto the model construction and the analysis of the deterministic model in Sect. 2
and Sect. 3 respectively. The stochastic counterpart is presented next, results on the
numerical simulations are reported in Sect. 5 and discussed in the final section.

2 The Mathematical Model

Let P , Z and F be the concentration of the phytoplankton, zooplankton and fish
population at time t with carrying capacity K and constant intrinsic growth rate
r. Here α1 and α2 be the maximal zooplankton ingestion rate and conversion rate
for the growth of zooplankton respectively (α2 ≤ α1). Also, let γ1 and γ2 be
the maximal planktivorous fish ingestion rate and conversion rate due to grazing
of herbivorous zooplankton (γ2 ≤ γ1). Further, d1 and d2 represent the mortality
rates of the zooplankton and planktivorous fish biomass respectively. Let h be the
harvesting rate of planktivorous fish population. We consider Holling type II and
Holling III functional forms to illustrate the grazing phenomena with K1 and K2
as half saturation constants. We consider m ∈ [0, 1) and n ∈ [0, 1) are constant
measures of the degree or strength of phytoplankton refuge and zooplankton refuge
respectively.
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With these above biological assumptions our model system is [15]

dP

dt
= rP (1 − P

K
) − α1(1 − m)PZ

K1 + (1 − m)P
≡ G1(P,Z, F )

dZ

dt
= α2(1 − m)PZ

K1 + (1 − m)P
− γ1(1 − n)2Z2F

K2 + (1 − n)2Z2 − d1Z ≡ G2(P,Z, F )

dF

dt
= γ2(1 − n)2Z2F

K2 + (1 − n)2Z2 − (d2 + h)F ≡ G3(P,Z, F )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Firstly, we analyzed the system (1) with the following initial conditions,

P(0) > 0, Z(0) > 0, F (0) > 0. (2)

Explicitly, the jacobian matrix at E = (P ,Z, F ) can be illustrate as

V =

⎡

⎢
⎢
⎢
⎢
⎣

r − 2rP
K

− K1α1(1−m)Z

[k1+(1−m)P ]2 − α1(1−m)P

K1+(1−m)P
0

K1α2(1−m)Z

[K1+(1−m)P ]2
α2(1−m)P

K1+(1−m)P
− 2γ1K2(1−n)2Z F

[K2+(1−n)2Z
2]2 − d1 − γ1(1−n)2Z

2

K2+(1−n)2Z
2

0 2γ2K2(1−n)2Z F

[K2+(1−n)2Z
2]2

γ2(1−n)2Z
2

K2+(1−n)2Z
2 − (d2 + h)

⎤

⎥
⎥
⎥
⎥
⎦

.

(3)

3 Some Preliminary Results

3.1 Positive Invariance

By setting X = (P, Z, F )T ∈ R3 and G(X) = [G1(X), G2(X), G3(X)]T , with
G : R+3 → R3 and G ∈ C∞(R3), Eq. (1) becomes

Ẋ = J (X), (4)

together with X(0) = (P (0), Z(0), F (0)) = (X1, X2, X3) = X0 ∈ R+3. It is easy
to check that whenever X(0) ∈ R+3 withXi = 0, for i=1, 2, 3, then Gi(X) |Xi=0≥
0. Then any solution of equation (4) with X0 ∈ R+3, say X(t) = X(t;X0), is such
that X(t) ∈ R+3 for all t > 0.

3.2 Equilibria

The system (1) possesses the following four equilibria: plankton free equilibrium
E0 = (0, 0, 0) and zooplankton free equilibrium E01 = (K, 0, 0), fish free
equilibrium E1(P1, Z1, 0) and coexistence equilibrium E∗ = (P ∗, Z∗, F ∗).
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3.2.1 Plankton Free Equilibrium

E0 is always feasible. The eigenvalues evaluate from (3) at E0 are r > 0, −d1 < 0
and −(d2 + h). Thus, it is clearly indicates that E0 is always unstable.

3.2.2 Zooplankton Free Equilibrium

E01 is always feasible. The eigenvalues evaluate from (3) at E01 are −r , −(d2 + h)

and α2(1−m)K
K1+(1−m)K

− d1. Therefore, E01 is asymptotically stable if

m >
Kα2 − d1(K + K1)

K(α2 − d1)
(5)

hold.

3.2.3 Fish Free Equilibrium

The population level at E1(P1, Z1, 0) are P1 = K1d1
(α2−d1)(1−m)

and Z1 =
rK1α2[K(α2−d1)(1−m)−K1d1]

α1K(1−m)2(α2−d1)
2 . Feasibility at E1 exists if α2 > d1 and m <

Kα2−d1(K+K1)
K(α2−d1)

. By factorizing jacobian (3) at E1 gives one explicit eigenvalue
γ2(1−n)2Z2

1
K2+(1−n)2Z2

1
−(d2+h) and the quadratic equation λ2+P1

(
r
K

− α1(1−m)Z1
[K1+(1−m)P1]2

)
λ+

α1α2K1(1−m)2P1Z1
[K1+(1−m)P1]3 = 0. Clearly, two roots are negative real parts at E1. Therefore,

stability of E1 is ensured by

R0 = γ2(1 − n)2Z2
1

(d2 + h)[K2 + (1 − n)2Z2
1]

< 1. (6)

3.2.4 Coexistence Equilibrium

The coexistence equilibrium at E∗ = (P ∗, Z∗, F ∗) are Z∗ = 1
(1−n)

√
(μ2+h)K2[γ2−(μ2+h)] =

q while F ∗ is ensured by solving [K2γ2(α2−d1)(1−m)P ∗−d1K1]
[K1+(1−m)P ∗]γ1(1−n)q[γ2−(μ2+h)] and P ∗ =

B+
√

B2+4AC
2A which is ensured from equation AP ∗ − BP ∗ − C = 0 where

A = rK(1 − m), B = [rK(1 − m) − rK1] and C = [rKK1 − Kα1(1 − m)q].
At E∗, the jacobian matrix of system (1) can be written as

V ∗ =
⎡

⎣
a11 a12 0
a21 a22 a23

0 a32 0

⎤

⎦ ,
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where a11 = α1(1−m)P ∗Z∗
[K1+(1−m)P ∗]2 − rP ∗

K
< 0, a12 = − α1(1−m)P ∗

K1+(1−m)P ∗ < 0, a21 =
K1α2(1−m)Z∗

[K1+(1−m)P ∗]2 > 0, a22 = γ1(1−n)2Z∗F ∗
K2+(1−n)2Z∗2 − 2γ1K2Z

∗F ∗
K2+(1−n)2Z∗2 ∈ R, a23 =

− γ1(1−n)2Z∗2
K2+(1−n)2Z∗2 < 0, a32 = 2γ2K2(1−n)2Z∗F ∗

[K2+(1−n)2Z∗2]2 > 0.
The characteristic equation is

y3 + Q1y
2 + Q2y + Q3 = 0 (7)

where Q1 = −(a11 + a22), Q2 = a11a22 − a12a21 − a23a32; Q3 = a11a23a32.

By the Routh-Hurwitz criteria, all roots of above equation have negative real parts
if and only if Qi > 0, and Q1Q2 − Q3 > 0, i = 1, 2, 3.
Here we consider two cases depending on the sign of a22.

Case 1 When a22>0, then Q1 > 0 if rP ∗
K

− α1(1−m)P ∗Z∗
[K1+(1−m)P ∗]2 >

γ1(1−n)2Z∗F ∗
K2+(1−n)2Z∗2 −

2γ1K2Z
∗F ∗

K2+(1−n)2Z∗2 . Also, Q2 > 0 if −a12a21 > −a11a22 + a23a32 since a11a22 < 0,
a12a21 < 0 and a23a32 < 0.
Here, clearly Q3 = a32a11a23 > 0.

Case 2 When a22<0 which indicates Q1 > 0 and Q2 > 0 if a11a22 > a12a21 +
a23a32 and obviously, Q3 > 0.

In addition, according to Routh-Hurwitz criterion, Q1Q2 − Q3 > 0 must
be satisfied if Q1Q2 > Q3 which indicates that the system becomes locally
asymptotically stable at E∗ depending upon system parameters.

Remark 1 The system produces a Hopf-bifurcation at the coexistence equilibrium
if the following two conditions are satisfied,

Q1(nc)Q2(nc) − Q3(nc) = 0, Q′
1(nc)Q2(nc) + Q1(nc)Q

′
2(nc) − Q′

3(nc) �= 0.
(8)

3.3 Hopf Bifurcation at Coexistence

Let us consider a value n = nc such that Q1(nc)Q2(nc) − Q3(nc) = 0. Then at
n = nc the characteristic equation (7) becomes (ρ +Q1)(ρ

2+Q2) = 0. Clearly the
equation has three roots which are ±√

Q2i and −Q1 i.e. two roots are pair of purely
complex roots and third roots is negative. To examine the transversality condition,
let us consider any point n of ε-neighborhood of nc where ρ1,2 = a(n) ± ib(n).
Putting this in (7) and separate the real and imaginary parts we get the following
results:

a3 − 3ab2 + p1(a
2 − b2) + p2a + p3 = 0 (9)
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(3a2b − b3) + 2p1ab + p2 = 0 (10)

Since b(n) �= 0, then from (10) we have b2 = 3a2 + 2Q1a + Q2.
Putting the value of b2 in (7) we have

8a3 + 8Q1a
2 + 2a(Q2

1 + Q2) + Q1Q2 − Q3 = 0. (11)

Now differentiating w.r.t n at n = nc we get the following results
[

da
dn

]

n=nc
= −

[
1

2(Q2
1 +Q2)

d
dn

(Q1Q2 −Q3)

]

n = nc

�= 0 provided
[

d
dn

(Q1Q2

−Q3)]n = nc
�= 0 i.e. second condition of (8).

4 The Stochastic Model

Here, we study our system based on the environmental parameters and their
fluctuations. All the parameters are assumed to be constant with time t . The
stochastic stability of the coexistence equilibrium is tested.

A deterministic system can be extended to stochastic system by two process.
Firstly, by replacing one of the environmental parameters by some random param-
eters and secondly, without changing any particular parameter in deterministic
equations and including a randomly fluctuating driving force [16].

Here we choose the second method. The Gaussian white noise type stochastic
perturbations of the state variables around their steady values E∗ is very effective to
model rapidly fluctuating phenomena which are proportional to the distances P , Z,
F of each population from their equilibrium value P ∗, Z∗, F ∗ [17]. Based on above
assumption, the deterministic system (1) can be extended to the following stochastic
model

dP = G1(P,Z, F )dt + σ1(P − P ∗)dξ1t ,

dZ = G2(P,Z, F )dt + σ2(Z − Z∗)dξ2t , (12)

dF = G3(P,Z, F )dt + σ3(F − F ∗)dξ3t

in which real constant parameters σ1, σ2 and σ3 are considered to be the intensities
of environmental fluctuations and ξ i

t = ξi(t), i = 1, 2, 3 to be the standard Wiener
processes independent of each other [18].

The stochastic system (12) can be written in compact form like an Itō stochastic
differential system

dXt = G(t,Xt )dt + g(t,Xt )dξt , Xt0 = X0, (13)
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where the solution of above equation Xt = (P,Z, F )T , for t > 0 is known as
Itō process. Here G is the drift coefficient or it can be written as slowly varying
continuous component. The diffusion coefficient is represented by g = diag[σ1(P −
P ∗), σ2(Z − Z∗), σ3(F − F ∗)] of the diagonal matrix which can expressed by
the rapidly varying continuous random component. ξt = (ξ1t , ξ2t , ξ3t )T can be
considered as a three-dimensional stochastic process having scalar Wiener process
components with increments 	ξ

j
t = ξj (t + 	t) − ξj (t) which are independent

Gaussian random variables N(0,	t). The system (12) is known as multiplicative
noise as the diffusion matrix g depends upon the solution of Xt .

4.1 Stochastic Stability of the Coexistence Equilibrium

The stochastic differential system (12) can be centered at its coexistence equilibrium
E∗ by introducing the perturbation vector U(t) = (u1(t), u2(t), u3(t))

T , with u1 =
P − P ∗, u2 = Z − Z∗, u3 = F − F ∗. To derive the asymptotic stability in the
mean square sense by the Lyapunov functions method, working on the complete
nonlinear equations (12), could be attempted, following [19]. But for simplicity we
deal with the stochastic differential equations obtained by linearizing (12) about the
coexistence equilibrium E∗. The linearized version of (13) around E∗ is given by

dU(t) = FL(U(t))dt + g(U(t))dξ(t), (14)

where now g(U(t)) = diag[σ1u1, σ2u2, σ3u3] and

FL(U(t)) =
⎡

⎣
a11u1 + a12u2 + a13u3

a21u1 + a22u2 + a23u3

a31u1 + a32u2 + a33u3

⎤

⎦ = MU,

and the coexistence equilibrium corresponds now to the origin (u1, u2, u3) =
(0, 0, 0). Let 
 = [

(t ≥ t0) × R3, t0 ∈ R+]
and let �(t,X) ∈ C(1,2)(
) be a

differentiable function of time t and twice differentiable function of X. Let further

L�(t, u) = ∂�(t, u(t))

∂t
+ f T (u(t))

∂�(t, u)

∂u
+ 1

2
tr

[

gT (u(t))
∂2�(t, u)

∂u2
g(u(t))

]

, (15)

where

∂�

∂u
=

(
∂�

∂u1
,

∂�

∂u2
,

∂�

∂u3

)T

,
∂2�(t, u)

∂u2
=

(
∂2�

∂uj∂ui

)

i,j=1,2,3
.

With these positions, we now recall the following result, [20].
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Theorem 1 Assume that the functions �(U, t) ∈ C3(
) and L� satisfy the
inequalities

r1|U |β ≤ �(U, t) ≤ r2|U |β, (16)

L�(U, t) ≤ −r3|U |β, ri > 0, i = 1, 2, 3, β > 0. (17)

Then the trivial solution of (14) is exponentially β-stable for all time t ≥ 0.

Remark 2 For β = 2 in (16) and (17), the trivial solution of (14) is exponentially
mean square stable; furthermore, the trivial solution of (14) is globally asymptoti-
cally stable in probability [20].

Theorem 2 Assume aij < 0, i, j = 1, 2, 3, and that for some positive real values
of ωk , k = 1, 2, the following inequality holds

[
2(1 + ω2)a22 + 2a32ω2 + (1 + ω2)σ

2
2

] [
2a23ω2 + (ω1 + ω2)σ

2
3

]

> [a12ω1 + a22ω2 + a23(1 + ω2) + a32(ω1 + ω2)]
2 . (18)

Then if σ 2
1 < −2a11, it follows that

σ 2
2 < −2a22(1 + ω2) + 2a32ω2

1 + ω2
, σ 2

3 < − 2a23ω2

ω1 + ω2
, (19)

where

ω1
∗ = a21

a11 − a12 − a32
, ω2

∗ = a11

a12 − a11 + a32
, a22 < 0. (20)

and the zero solution of system (12) is asymptotically mean square stable.

Proof We consider the Lyapunov function

�(u(t)) = 1

2

[
ω1(u1 + u3)

2 + u2
2 + ω2(u2 + u3)

2
]
,

where real positive constants ω1 and ω2 to be define later.
It is straightforward to verify that inequalities (16) are valid for β = 2. Moreover,

L�(u(t)) = a11ω1u
2
1 + [a22(1 + ω2) + a32ω2] u

2
2 + [a23ω2] u

2
3

+u1u2 [a12ω1 + a21(1 + ω2) + a32ω1] + u2u3 [a12ω1 + a22ω2 + a23(1 + ω2)

+a32(ω1 + ω2)] + u3u1 [a11ω1 + a21ω2]

+1

2
tr

[

gT (u(t))
∂2�

∂u2
g(u(t))

]

.
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Now we evaluate that

∂2�

∂u2
=

∣
∣
∣
∣
∣
∣

ω1 0 ω1

0 1 + ω2 ω2

ω1 ω2 ω1 + ω2

∣
∣
∣
∣
∣
∣
,

so that we can estimate the trace term as

tr

[

gT (u(t))
∂2�

∂u2
g(u(t))

]

= ω1σ1
2u1

2 + (1 + ω2)σ2
2u2

2 + (ω1 + ω2)σ3
2u3

2.

Introducing (20), the Lyapunov function turn into L�(u(t)) = −uT Qu, where Q

be the real symmetric matrix

Q =
∣
∣
∣
∣
∣
∣

−a11ω1 − 1
2ω1σ

2
1 0 0

0 −(1 + ω2)a22 − ω2a32 − 1
2 (1 + ω2)σ

2
2 Q23

0 Q23 Q33

∣
∣
∣
∣
∣
∣

where

Q23 = −a12ω1 + a22ω2 + a23(1 + ω2) + a32(ω1 + ω2)

2

and Q33 = −a23ω2 − 1
2 (ω1 + ω2)σ

2
3 . Easily, the inequality L�(u(t)) ≤ −uT Qu

holds. On the other hand, (18) and (19) imply that Q is positive definite and
therefore all its eigenvalues λi(Q), i = 1, 2, 3, are positive real numbers. Let
λm = min{λi(Q), i = 1, 2, 3} > 0. From the previous inequality for L�(u(t))

we thus get

L�(u(t)) ≤ −λm|u(t)|2,

thus completing the proof.

Remark 3 Theorem 2 provides the necessary conditions for the stochastic stability
of the coexistence equilibrium E∗ under environmental fluctuations, [21]. Thus the
internal parameters of the model together with the intensities of the environmental
fluctuations help in maintaining the stability of the stochastic system.

5 Numerical Simulations

In this section, we undergo the analysis of the dynamic characteristics of plankton-
fish species with the help of numerical simulations. We begin with a reference set
of parametric values (cf. Table 1, [22]) in which the criterion for existence at E∗ =
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Table 1 A set of parametric values

Parameter Definition Default value

r Constant intrinsic growth rate of phytoplankton 8

K Carrying capacity of phytoplankton 1.5

α1 Maximal zooplankton ingestion rate 2

α2 Maximal zooplankton conversion rate 1.5

β1 Maximal fish ingestion rate 1

β2 Maximal fish conversion rate 0.6

d1 Mortality rate of zooplankton 0.3

d2 Mortality rate of fish 0.36

h Harvesting rate of fish 0.015

K1 Half saturation constant for phytoplankton 0.5

K2 Half saturation constant for zooplankton 1

m Measures of the degree or strength of phytoplankton refuge 0.4

n Measures of the degree or strength of zooplankton refuge 0.35

(1.20, 1.97, 1.78) is satisfied and coexistence equilibrium is locally asymptotically
stable (cf. Fig. 1a). Now by varying the different parametric values we study the
dynamic behavior of system (1).

5.1 Effects of n

If the value of strength of zooplankton refuge n = 0.3 is increased, the system
exhibits oscillations around E∗. But high value of n = 0.8, the system switches
to oscillatory behavior around zooplankton free equilibrium E1 (cf. Fig. 1b).
Figures 2a–c depicts the different steady state behaviors of phytoplankton, zoo-
plankton and fish population in the system (1) for the parameter n. Here, we see
two Hopf bifurcation points at nc = 0.3211 and 0.6442 (denoted by a red star
(H)) with first Lyapunov coefficient being −6.351217e−02 and 2.715545e01 which
indicates that a stable and unstable limit cycle bifurcates from the H and loses its
stability respectively. Here n = 0.6443 (LP) and n = 0.6441 (BP) denotes the limit
point and branch point of the system (1) respectively where fish population goes
to extinction. Further, we have plotted a family of limit cycles bifurcates from H

points (cf. Fig. 2d).

5.2 Effects of m

Takingm = 0.8, the system exhibits oscillations aroundE∗ (cf. Fig. 1c). Figures 3a–
c illustrate the different steady state behaviour of each species in the system (1)
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Fig. 1 (a) The equilibrium point E∗ is stable for the parametric values as given in the Table 1. (b)
The figure depicts oscillatory behavior around coexistence equilibrium point E∗ of system (1) for
n = 0.3 (blue line), zooplankton free equilibrium E1 for n = 0.8 (black line) respectively. (c) The
figure depicts oscillatory behavior around E∗ of system (1) for n = 0.8 (blue line)

for the parameter m. Here, we see two Hopf bifurcation points at mc = 0.6069
and 0.8021 (denoted by a red star (H)) with first Lyapunov coefficient being
−3.370275e−02 and −1.339074e−02 which indicates that two stable limit cycle
bifurcates from the H and loses its stability respectively. Here m = 0.9102 (BP)
denotes branch point of the system (1). Further, we have displayed a family of limit
cycles bifurcates from H points (cf. Fig. 3d).
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Fig. 2 (a) The figure depicts different steady-state behaviors of phytoplankton for the effect of n.
(b) The figure depicts different steady-state behaviors of zooplankton for the effect of n. (c) The
figure depicts different steady-state behaviors of fish for the effect of n. (d) The family of limit
cycles bifurcate from the Hopf point H for n in (n,Z,F) space

5.3 Effects of r

From Figs. 4a–c it follows the system (1) has two Hopf bifurcation points at
rc = 8.3570 and 4.3791 with first Lyapunov coefficient being −5.840029e−02

and 1.491169e+01, one limit point at 4.3776 and branch point at 4.4284 when we
consider constant intrinsic growth rate of phytoplankton, i.e. r as a free parameter.
To proceed further, a family of stable and unstable limit cycles bifurcating from
Hopf points is plotted (cf. Fig. 4d).
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Fig. 3 (a) The figure depicts different steady-state behaviors of phytoplankton for the effect of m.
(b) The figure depicts different steady-state behaviors of zooplankton for the effect of m. (c) The
figure depicts different steady-state behaviors of fish for the effect of m. (d) The family of limit
cycles bifurcate from the Hopf point H for m in (m,Z,F) space

5.4 Effects of h

To study the impact of harvesting on fish population we vary the parameter h.
We note that the system (1) has one Hopf point at 0.1484 with first Lyapunov
coefficient being 1.059854e+01 one limit point at 0.1486 and branch point at 0.1468
(cf. Fig. 5a). We have drawn a family of unstable limit cycles bifurcating from H
points (cf. Fig. 5b).
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Fig. 4 (a) The figure depicts different steady-state behaviors of phytoplankton for the effect of r .
(b) The figure depicts different steady-state behaviors of zooplankton for the effect of r . (c) The
figure depicts different steady-state behaviors of fish for the effect of r . (d) The family of limit
cycles bifurcate from the Hopf point H for r in (r,Z,F) space

5.5 Hopf-Bifurcation

For clear understanding of a dynamic change due to change in n, m and r , we have
plotted three bifurcation diagrams separately (cf. Fig. 6a–c). Next, we have plotted
two parameter bifurcation diagrams for n−m, n−r andm−r respectively (Figs. 7a–
c) to show the stable zone atE∗. All the numerical results are summarized in Table 2.
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Fig. 5 (a) The figure depicts different steady-state behaviors of fish for the effect of h. (b) The
family of limit cycles bifurcate from the Hopf point H for r in (r,Z,F) space

Table 2 Natures of equilibrium points

Parameters Values Eigenvalues Equilibrium points

n 0.321158 (−4.81561,±0.404804i) Hopf (H)

0.644284 (−.0007,±1.39674i) Hopf (H)

0.644318 ((0,±1.39308i) Limit Point (LP)

0.640187 (0, 0.13333 ± 1.27889i) Branch Point (BP)

m 0.606983 (5.50548,±0.350157i) Hopf (H)

0.802120 (−6.55763,±0.244601i) Hopf (H)

0.910270 (−7.29689,−0.0187574, 0) Branch Point (BP)

r 8.357091 (−5.0378,±0.404562i) Hopf (H)

04.379199 (−.00147,±1.04446i) Branch Point (BP)

4.377626 (0,±1.04446i) Limit Point (LP)

4.428463 (0,±0.929514i) Branch Point (BP)

h 0.148487 (−0.001428,±1.39158i) Hopf (H)

0.148622 (0, 0.04471 ± 1.38661i) Limit Point (LP)

0.146818 (0, 0.13453 ± 1.26379i) Limit Point (LP)

5.6 Environmental Fluctuations

Next, we examine the dynamical behavior of the system in the presence of
environmental disturbances. We apply the Euler-Maruyama method and investigate
the stochastic differential equation numerically using MATLAB.

Firstly, we satisfy the conditions for asymptotic stability at E∗ according to the
mean square sense which depends on system parameters of (12) and σ1, σ2, σ3.
Taking σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, the values of intensities of the environmental
perturbations with reference set of parametric values as in Table 1 for which all
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Fig. 6 (a) The bifurcation diagram for n. (b) The bifurcation diagram for m. (c) The bifurcation
diagram for r

the three species coexist and the system is stochastically stable (cf. Fig. 8a). But
it is clearly indicates that the coexistence equilibrium becomes unstable for higher
values of intensities of the environmental perturbations, σ1 = 0.8, σ2 = 0.8, σ3 =
0.7 (cf. Fig. 8b).

6 Discussion

We have formulated a mathematical model sketching the interaction of
phytoplankton-zooplankton-fish species. The main focus is on the functional
response in presence of refuge effects of phytoplankton and zooplankton on the
marine ecosystem. The model parameters are also analysed by either varying one
of them or combining some of them.
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Fig. 7 (a) The two parameters bifurcation diagram for n − m. (b) The two parameters bifurcation
diagram for n − r . (c) The two parameters bifurcation diagram for m − r

The stability of the three possible steady states namely plankton-free, the
zooplankton-free and the coexistence equilibria are determined by studying the
model analytically. The equilibrium states are observed to be related by transcritical
bifurcations provided the parameter values matches suitable conditions. Hopf
bifurcation at the coexistence equilibrium are obtained after analytical results and
are backed by the numerical simulations. By changing the various parameters,
persistent oscillations occur.

Numerically, oscillation of all population is observed when we reduce the
strength of phytoplankton refuge and when the strength of zooplankton is increased.
Further, same results are obtained by increasing the constant intrinsic growth rate
of phytoplankton. The whole system is stabilized by harvesting rate of fish which
plays a crucial role in marine ecosystem.
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Fig. 8 (a) The figures depicts solution of system is stochastically stable for σ1 = 0.1, σ2 = 0.1
and σ3 = 0.1. (b) The figures depicts solution of system is stochastically unstable for σ1 =
0.8, σ2 = 0.8 and σ3 = 0.7

Based on the results,we can conclude that the strength of phytoplankton and
zooplankton refuge, intrinsic growth rate of phytoplankton and harvesting rate of
fish should be maintained within a range in order to avoid extinction of fish and
recurrence bloom.

Environmental noise is further added to the model and it’s low intensities makes
the system stochastic asymptotic stable. High intensity values result in oscillations
with high amplitudes. The model becomes stochastically stable if it fulfills certain
conditions involving the maximum size of the environmental random fluctuations
and the model parameters.
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