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1 Introduction

As it is well known, many physical, chemical and biological phenomena are
modelled by parabolic equations, among these one of the most frequently examined
type is the reaction-diffusion equation. One of the fascinating features of these
equations is the variety of special types of solutions they exhibit. Certain systems of
this type have, for example, travelling wave solutions or rotating waves (cf. [14]) or
via bifurcation analysis one can find a new class of solutions (cf. [13]).

In this chapter we consider the autonomous systems of reaction-diffusion
equations

ut = D�ru + f ◦ (u, μ), (1)

on � × R
+
0 � (r, t), with the usual zero flux boundary and non-negative initial

condition

(n · ∇r)u = 0 on ∂� × R
+
0 , (2)

and

u(·, 0) = u0(·) on � × {0}, (3)

where D is a positive diagonal matrix:
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D := diag(d1, . . . , dn),

the kinetic function

f = (f1, . . . , fn) : Rn × I → R
n

belongs to C1, μ is a parameter in an open interval I ⊂ R, � is a bounded domain
in Rn with piecewise smooth boundary, n is the outer unit normal to ∂� and u0 is a
bounded non-negative, resp. not identically vanishing smooth function.

Insomuch as system (1) is biologically motivated it is necessary to show that (1)
is biologically well-posed. Usually, this means positivity, resp. dissipativeness, i.e.

• the solution

� = (�1, . . . , �n) ∈ � × R
+
0 → R

n

of (1) with non-negative initial data

u0 = (u10, . . . , u
n
0) with ui

0 �≡ 0 (i ∈ {1, . . . , n})

remains non-negative for all t ≥ 0 in their domain of existence, resp.
• all solutions of system (1) are bounded and therefore defined for all t ≥ 0.

The first requirement can be formulated as follows: the positive quadrant of the
phase space

{
u = (u1, . . . , un) ∈ R

n : uk ≥ 0 (k ∈ {1, . . . , n}} (4)

is (positively) invariant. This motivates the following

Definition 1.1 A closed subset � ⊂ R
n (positively) invariant region for the local

solution defined by (1), if for suitable T > 0 any solution � having all of its
boundary and initial values in � satisfies

�(r, t) ∈ � ((r, t) ∈ � × [0, T )).

It is obvious that the set � in (4) is a closed subset.
In [5] one can find the following fundamental result about the existence of

(positively) invariant region.

Theorem 1.1 Let m ∈ N and consider the region � of the form

� :=
m⋂

k=1

{r ∈ U : Gi(r) ≤ 0} ,
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where U ⊂ R
n is an open subset and Gi : R

n → R are smooth func-
tions (i ∈ {1, . . . , m}) whose gradient ∇Gi never vanishes. If at each point
r ∈ ∂� we have for all i ∈ {1, . . . , m}:
(i) ∇Gi(r) is a left eigenvector of the diffusion matrix D;
(ii) the functions Gi are quasi-convex, i.e. for all r ∈ U , resp. for all s ∈ R

n the
equality 〈∇Gi(r), s〉 = 0 implies 〈s,∇2Gi(r)s)〉 ≥ 0;

(iii) 〈∇Gi(r), f(r, μ)〉 < 0 (μ ∈ I )

then � is positively invariant for system (1).

As an example we show that the region

� :=
{
(n, T ) ∈ R

2 : 0 ≤ n ≤ a, α ≤ T
}

is an invariant region for the parabolic system

∂tn = k1�rn − n exp (−E/RT ) , ∂tT = k2�rT + Qn exp (−E/RT )

arising in the theory of combustion (cf. [10]) where the quantities T and n denote
the temperature and concentration, respectively, of a combustible substance and
k1, k2, N,E and Q are positive constants, 0 < n(r, 0) < a, 0 < α ≤ T (r, 0).
Indeed, for

f1(n, T , μ) := −n exp (−E/RT ) , f2(n, T ) := Qn exp (−E/RT )

and

G1(n, T , μ) := n−a, G2(n, T ) := −n−ε (ε > 0) resp. G3(n, T ) := α−T

where μ ∈ {k1, k2, N,E, ε} we have

〈∇G1, (f1, f2)〉n=a = −a exp (−E/RT ) < 0,

〈∇G2, (f1, f2)〉n=−ε = −ε exp (−E/RT ) < 0,

resp.

〈∇G3, (f1, f2)〉n>0, T =α = −Qn exp (−E/Rα) < 0.

As a further example we deal with the reaction-diffusion system proposed by
A. Lemarchand and B. Nowakowski (cf. [18]) which describes the macroscopic
evolution of two variable concentrations A and B and is given by the two
deterministic equation
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∂tA = dA�rA + f1(A,B,μ),

∂tB = dB�rB + f2(A,B,μ)

}
(5)

on � × R
+
0 where � ⊂ R

2 is a bounded, connected spatial domain with piecewise
smooth boundary ∂�, f := (f1, f2) with

f1(A,B,μ) := −αA + βA2B, f2(A,B,μ) := γ − δB − βA2B (6)

belongs to C1, where μ ∈ {α, β, γ, δ}, dA > 0, dB > 0 represent the diffusion
coefficients, A(r, t) and B(r, t) are the concentrations of the species at time t ∈
[0,+∞) and place r ∈ �.

We show now that the interior of the first quadrant of the phase space of is an
invariant region.

Lemma 1.1 All solutions � = (�1,�2) : � × R
+
0 → R

2 of (5) with positive
initial values �1(0) > 0, �2(0) > 0 remain positive for all t ≥ 0 in their domain
of existence.

Proof We have to show that the region

� :=
{
(A,B) ∈ R

2 : A ≥ 0, B ≥ 0
}

.

is positively invariant for (5). Let assume that � = (�1,�2) : � × R
+
0 → R

2 is a
solution of (5) satisfying positive initial conditions. Clearly, �1 ≡ 0 is a solution of
the first equation. Thus, by uniqueness we can argue that no solution �1(·, t) at any
times t ≥ 0 can become zero in finite time. It is obvious furthermore that (0,−1) is
a left eigenvector of the diffusion matrix

D :=
[

dA 0
0 dB

]
.

Thus, if we set

G(A,B) := −B ((A,B) ∈ �),

then

〈∇G, (f1, f2)〉B=0 = −γ < 0 in �.

This proves that � is invariant for system (5). ��
In what follows we shall consider system (5) restricted to (R+

0 )2 and show that
all solutions stay bounded in 0 ≤ t ∈ R which implies the existence of solutions for
every t > 0.

Lemma 1.2 System (5) is dissipative.
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Proof Let � = (�1,�2) : �×R
+
0 → R

2 be a solution of (5). Thus, for the second
component of � we have

�̇2 − dB�r�2 ≤ γ − δ�2

in its domain of existence and from the comparison principle (cf. [19, Thm. 10.1.,
p. 94]) we obtain on this domain �2 ≤  where  is a function of time t satisfying

 ′ = γ − δ, (0) := max
r∈�

�2(r, 0).

Clearly, lim+∞  = γ /δ which implies that the function �2(r, ·) (r ∈ �) is defined

on the whole positive half line and

lim sup
t→+∞

max
r∈�

�2(r, t) ≤ γ /δ.

The boundedness of �1 follows similarly. Thus, we have proved that all solutions
of (5) stay bounded in t ∈ R

+
0 which implies the existence of solutions of (5) for

every t > 0. ��
Clearly, a spatially constant solution�(·) = (�1(·),�2(·)) of system (1) satisfies

boundary conditions (2) and the kinetic system

u̇ = f ◦ (u, μ) (7)

The equilibria u of system (7) for which

f ◦ (u, μ) = 0 (μ ∈ I ) (8)

holds are constant solutions of (1), (2) at the same time. If e.g. the equality βγ 2 =
2αδ in system (5) hold then we have a unique interior equilibrium

(
A,B

) :=
( γ

2α
,

γ

2δ

)
.

In order to investigate the local dynamical behavior of system (1) near the
equilibrium u of (7) we linearize (1) at these equilibria. The realisation of the
linearization depends strongly on which type of solution is investigated.

The chapter is organised as follows. In the next section we show how to
investigate the occurrence of rotating waves on two types of planar domains: on disk
and annulus. In the section that follows we examine the possibility the occurrence of
time periodic solution of (1) when the kinetic system (7) exhibits periodic solution,
as well.
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2 Bifurcation of Rotating Waves

In this section we are interested in the problem of finding rotating wave solution
of (1)–(2). The kinetic function f in (1) is required to have the following properties

(F1) f ∈ C2(Rn × I ) and (F2) f(0, μ) = 0 (μ ∈ I ).

Assumption (F1) implies that the kinetic term in (1) depends only on the parameter
μ and the variables u1, . . . , un, furthermore its second order derivative of its
components are continuous. Assumption (F2) requires that �(r) ≡ 0 is a solution
of (1)–(2) for all μ ∈ I .

Rotating waves are nonuniform periodic solutions to partial differential equations
which rotate with a nonzero angular velocity. Thus, rotating waves can exist
mathematically only in problems that have at least SO(2) symmetry (cf. [11]), i.e.
there is a function Rϑ ∈ Lin(R2) with

[
Rϑ

] =
[
cos(ϑ) sin(ϑ)

− sin(ϑ) cos(ϑ)

]
and Rϑ

(
�

) = � (ϑ ∈ [0, 2π)).

The domains disk, resp. annulus

�d :=
{
(x, y) ∈ R

2
∣∣x2 + y2 < 1

}
,

resp.

�a :=
{
(r, ϑ) ∈ R

2
∣∣1 < r < σ := R2/R1, 0 ≤ ϑ < 2π

}
(0 < R1 < R2).

have this property (cf. Fig. 1).

Fig. 1 � = �d and � = �a
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Definition 2.1 Let � be one of the radial symmetric domains �d , �a . A nontrivial
non-negative solution � : � × R

+
0 → R

n of (1) is called rotating wave if there is a
function T : � → R

n and a number 0 �= c ∈ R (wave speed) such that

�(r, ϑ; t) = T(r, ϑ − ct) ((r, ϑ; t) ∈ � × (0,+∞))

and

T(r, ξ) = T(r, ξ + 2π) (r ∈ (0, 1) ∪ (1, σ ), ξ ∈ [0, 2π))

hold.

Because we are looking for solutions � of (1) for which

(n · ∇r)� = 0 on ∂� × R
+
0 ,

resp.

�(·, 0) = �0(·) ≥ 0 on � × {0}

hold, therefore using polar coordinates (r, ϑ) on � and denoting ξ := ϑ − ct one
can easily see that chain rule implies

∂t� = −c∂ξ T, (n · ∇r)� = ∂rT and �r� = �T,

where the Laplacian � is given by

� := 1

r
∂r (r∂r) + 1

r2
∂ξξ .

This means that T is a periodic function of period 2π in the second variable for
which

D�T + c∂ξ T + f(T, μ) = 0 ((r, ξ) ∈ �), (9)

∂rT = 0 ((r, ξ) ∈ ∂�) (10)

hold. Thus, we are interesting to seek those non-zero real numbers c for which
system (9) and (10) has a non-trivial solution.
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2.1 The Linearized Problem

Let u denote one of the interior equilibria of the kinetic system (7). Moving the
origin into u by the coordinate transformation

z1 := u1 − u1, z2 := u2 − u2

and linearizing system (9) and (10) we get the linear boundary value problem

D�z + c∂ξ z + Q(μ)z = 0 in �, (11)

∂rz = 0 on ∂� (12)

where Q(μ) := ∂1f(u, μ). The Eq. (12) has the form in case of the disc � = �d :

∂rz(1, ξ) = 0 (ξ ∈ [0, 2π)),

and in case of the annulus � = �a :

∂rz(1, ξ) = 0 = ∂rz(σ, ξ) (ξ ∈ [0, 2π)).

It is well know (cf. [4, 6, 9]) that if Jm, resp. Ym denotes the Bessel function,
resp. the Bessel function of second kind (c.f. Fig. 2) both of order m (∈ N) and

0 < νd
m,1 < νd

m,2 < · · · < νd
m,n < . . . (n ∈ N),

resp.

0 < νa
m,1 < νa

m,2 < · · · < νa
m,n < . . . (n ∈ N)

are the roots of

Fig. 2 The graphs of J1 and of Y1
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J ′
m(·), resp. J ′

m(·σ)Y ′
m(·) − J ′

m(·)Ym(·σ)

then the eigenfunctions of the minus Laplacian on �d , resp. �a with homogeneous
Neumann boundary conditions corresponding to the eigenvalues

εk
m,n := (νk

m,n)
2 (k ∈ {d, a})

are the functions

� � (r, ξ) �→ A(r) exp(ımξ)

where in case of the disc

A(r) :≡ Jm

(
νd
m,nr

)
,

resp. in case of the annulus

A(r) :≡ Jm(νa
m,nr)Y

′
m(νa

m,n) − J ′
m(νa

m,n)Ym(νa
m,nr).

Then the non-trivial solution of the (11) and (12) linear boundary value problem has
the form (cf. [3])

T(r, ξ) = A(r) exp(ımξ)e ((r, ξ) ∈ �) (13)

where e is the eigenvector of the matrix

Qm,n(μ) := Q(μ) − εk
m,nD.

corresponding to the eigenvalue ımc. From symmetry considerations rotating wave
solutions of (1) may rotate either clockwise or anticlockwise around the domain
� (cf. [1]). Given a solution with c > 0, there is another solution in the opposite
direction with c < 0 so we will restrict our attention to the case c positive (or
anticklockwise waves).

Thus, the linear boundary value problem (11)–(12) has non-trivial solution if and
only if the matrix Qm,n(μ) has purely imaginary eigenvalues. The eigenvalues z of
Qm,n(μ) are roots of the polynomial

z2 − T r
(
Qm,n(μ)

)
z + det

(
Qm,n(μ)

)
(z ∈ C)

where

T r
(
Qm,n(μ)

) = T r(Q(μ)) − εk
m,nT r(D) (14)

and
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det
(
Qm,n(μ)

) = det(D) ·
(
εk
m,n

)2 − � · εk
m,n + det(Q(μ)) (15)

with

� := −T r
(
D (PQP)T

)
, resp. P :=

[
0 1

−1 0

]
.

In [2] and in [3] it was shown that for a parameter value μ0 ∈ I the non-linear (9)
and (10) has rotating wave solution only if the linear system (11) and (12) has non-
trivial solution.

In case of system (5) the matrix Q(μ) has for μ = α and u = (A,B) the form

Q(α) =
[

α δ

−2α −2δ

]
,

provided βγ 2 = 4α2δ holds. Therefore we can prove the following

Theorem 2.1 If the boundary value problem (9) and (10)with kinetic term f defined
in (5) has a nontrivial solution, then

dA > dB (16)

must hold.

Proof The matrix Qm,n(α) has purely imaginary eigenvalues when

Tr
(
Qm,n(α)

) = 0 and det
(
Qm,n(α)

)
> 0. (17)

The first condition in (17) holds if and only if

α = α0 := αk
m,n = 2δ + εk

m,n(dA + dB). (18)

When α = αk
m,n, then

det
(
Qm,n(α

k
m,n)

)
= dAdB(εk

m,n)
2 + (2δdA − αk

m,ndB)εk
m,n.

An easy calculation shows that in this case the polynomial

p(z) ≡ −dBz2 + 2δ(dA − dB)z, (19)

must have a positive root, which is valid if (16) holds. ��
There are only finite number of eigenvalues εk

m,n of the minus Laplacian on
�k (k ∈ {d, a}) for which det

(
Qm,n(α

k
m,n)

)
> 0 holds. Because condition (16)
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implies that there is a unique positive root of the polynomial p defined in (19),
say ε̂, therefore rotating wave can bifurcate for system (5) with no-flux boundary
conditions on �k only from the eigenvalue εk

m,n for which 0 < εk
m,n < ε̂ holds.

2.2 The Nonlinear Problem

Note that the theorem in the last subsection gives necessary but not sufficient
condition for bifurcation of rotating wave. To actually prove that there is a
bifurcation at a critical value α0 requires further analysis: certain transversality
condition must be verified. In [2, 3, 13, 14] there was sketched a method, how the
problem of finding rotating wave solution of (1) and (2) may be converted to one of
finding non-trivial solution of operator equations in appropriate Banach spaces.

Clearly, introducing the new vector of variation S := T − u where u is the
equilibrium of the kinetic system (cf. (8)), (9) and (10) assumes the form

D�S + c∂ξ S + F(S, μ) = 0 in � (20)

∂rS = 0 on ∂� (21)

where F(0, μ) = 0 (μ ∈ I ) with F ∈ C2((R+
0 )2 × I,R2) holds for some open

interval I ⊂ R.
Using the implicit function theorem it can be shown (cf. e.g. [14] and [13]) that at

the critical value α = α0 in (18) the trivial solution 0 of the non-linear problem (20)
and (21) undergoes a bifurcation causing rotating waves and (20) and (21) has the
solution in case of the disc

�(r, ξ ; s) = s

[
cos(nξ)

−em,n cos(nξ + ϕm,n)

]
Jm(νd

m,nr) + O(s)

and in the case of the annulus

�(r, ξ ; s) = s

[
cos(nξ)

−em,n cos(nξ + ϕm,n)

]
·

· (Jm(νa
m,nr)Y

′
m(νa

m,n) − J ′
m(νa

m,n)Ym(νa
m,nr)

) + O(s),

where

em,n :=
√

(εk
m,ndA − α)2 + det

(
Qm,n(εk

m,n)
)

δ

and
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ϕm,n := tan−1

⎛

⎝

√
det

(
Qm,n(εk

m,n)
)

α0 − εk
m,ndA

⎞

⎠ with ϕm,n ∈ (0, π/2).

Since s is considered to be small here, we this solution is called a small amplitude
rotating wave.

3 Periodic Solutions of Reaction-Diffusion Systems

In this section we assume that n = 2, and the parameter dependence is not
emphasized in the right hand side of (1), resp. (7), i.e. we deal with the kinetic
system

u̇ = f ◦ u (22)

and the parabolic system

ut = D�ru + f ◦ u, (23)

on a bounded spatial domain � ⊂ R
2 with piecewise smooth boundary with

homogeneous Neumann boundary condition (2), resp. bounded non-negative initial
condition (3), where D is a positive diagonal matrix: D = diag{d1, d2}.

We assume that (22) has a non-constant orbitally asymptotically stable T -perio-
dic solution

p : [0,+∞) → R
2, p(t + T ) ≡ p(t),

and this solution is, at the beginning, a stable solution of the parabolic system (23),
too. Varying one of the system parameters we consider the situation in which under
certain conditions this spatially constant time periodic solution loses its stability and
a spatially non-constant time periodic solution emerges.

Theorem 3.1 [Andronov-Witt] Let be � : [0,+∞) → R
2 a fundamental matrix

of the variational system

v̇ = (f′ ◦ p)v (24)

with �(0) = I and M the monodromy matrix, i.e. M = �(T ). The asymptotic
orbital stability of p as a solution the kinetic system (22) depends on the modulus of
the Floquet-multiplier of (24), i.e. on the modulus of the second eigenvalue μ20 of
M /μ10 = 1/. p is an orbitally asymptotically stable, resp. unstable solution of (23)
if and only if 0 < μ20 < 1, resp. μ20 ≥ 1, i.e. δ < 0, resp. δ > 0 holds, where
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δ :=
∫ T

0
div(f(p(t)) dt.

Example 3.1 The system corresponding to the Van der Pol’s differential equation

ü + m(u2 − 1)u̇ + u = 0 (25)

has the form

u̇1 = u2, u̇2 = m(1 − u21)u2 − u1. (26)

If m > 0 then system (26) has a non-constant periodic solution um with period Tm,
but not in the strip ‖u‖ < 1. The variational system of (26) is

v̇1 = v2, v̇2 = −(1 + 2mumu̇m)v1 + m(1 − u2m)v2. (27)

Thus, if

δ = m

∫ Tm

0
(1 − u2m(t)) dt = mTm − m

∫ Tm

0
u2m(t) dt < 0

holds, the periodic solution um is orbitally asymptotically stable.

Example 3.2 If λ, ω > 0, then

p(t) := (
√

λ cos(ωt),
√

λ sin(ωt)) (t ∈ [0,+∞))

is a non-constant T -periodic solution of the autonomous system

u̇1 = λu1 − ωu2 − u1(u
2
1 + u22),

u̇2 = ωu1 + λu2 − u2(u
2
1 + u22)

}
(28)

where T := 2π/ω. The variational system is

v̇(t) ≡
[ −2λ cos2(ωt) −ω − λ sin(2ωt)

ω − λ sin(2ωt) −2λ sin2(ωt)

]
v(t).

Because

δ =
∫ T

0

{
−2λ cos2(ωt) − 2λ sin2(ωt)

}
dt = −4λπ/ω

the non-constant periodic solution p of (28) is orbitally asymptotically stable.
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Example 3.3 (cf. [7]) If

ϕ(t) := ((1/2) sin(t) − t, t) (t ∈ [0,+∞))

is a derivo-periodic solution (cf. [8]) of the kinetic system (22) and the variational
system (24) has the form

v̇ = Av (29)

with

A(t) :≡
[
sin(t)/(2 − cos(t)) − 2 cos(t) − 2

2/(2 − cos(t)) 1

]
,

then

p(t) :≡ ϕ̇(t) ≡ ((1/2) cos(t) − 1, 1)

is a 2π -periodic solution of (29). It follows that

∫ 2π

0

{
sin(t)

2 − cos(t)
− 1

}
dt = −2π < 0,

thus p is orbitally asymptotically stable.

Example 3.4 (Biochemical Oscillator) If ν, μ, η > 0 and the function g belongs to
C1(R2,R) then certain biochemical systems can be modelled by

u̇1 = ν − g(u1, u2) =: f1(u1, u2),

u̇2 = ην − μu2 + g(u1, u2) =: f2(u1, u2)

}
(30)

where

g(0, u2) ≤ 0, g(u1, 0) ≥ 0 (u1, u2 ≥ 0)

and

∂1g(u1, u2) > 0, ∂2g(u1, u2) > 0 (u1, u2 > 0)

holds. If for all u2 > 0

lim
u1→+∞ g(u1, u2) > u2
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Fig. 3 Phase portrait of the system (30) in case g(u1, u2) :≡ u1u
2
2

then (30) has a unique equilibrium (a, b) with b = (1 + η)ν/μ in the positive
quadrant of the phase space. If

γ := ∂2g(a, b) − ∂1g(a, b) − μ > 0

then (a, b) is unstable and (30) has a T -periodic solution p which is orbitally
asymptotically stable (Fig. 3).

Theorem 3.2 (cf. [12, 16]) If

• δ < 0 and d1 = d2 or the difference |d1 − d2| is sufficiently small then p is also
an orbitally asymptotically stable periodic solution of (23)–(2).

• δ < 0,

∫ T

0
∂2f2(p(t)) dt > 0,
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for small ε > 0 d2 = ε and d1 = ε−1, then p is an orbitally asymptotically stable
solution of (22) but unstable solution of (23)–(2).

Clearly, the periodic solution in Example 3.2 remains orbitally asymptotically
stable:

∫ 2π

0
−2λ sin2(ωt) dt = −2λπ < 0,

while the solution in Example 29 becomes unstable:

∫ 2π

0
dt = 2π > 0.

The condition for change of stability in case of Example 3.4 is

∫ T

0
∂2g(p(t)) dt > μT .

3.1 Bifurcation of Time-Periodic Patterns

The linearized system of (23) at p is

vt = D�rv + (f′ ◦ p)v (31)

with boundary conditions

(n · ∇r)v = 0 on ∂� × R
+
0 (32)

and smooth initial conditions

v(r, 0) = v0(r) ≥ 0 on � × {0}, (33)

Using the method of Fourier we obtain a sequence of solutions of (31) and (32):

�kn (r, t) = ψn (r) · ϕnk (t)
(
(r, t) ∈ � × R

+
0

)

(n ∈ N0, k ∈ {1, 2}),

where ψn is the (eigenfunction-)solution of the problem

�rψ = −λnψ, ∂nψ
∣∣
∂�

= 0
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and

ϕnk : [0,+∞) → R
2 (k ∈ {1, 2})

are two linearly independent solutions satisfying

ϕ̇ = (
f′ ◦ p − λnD

)
ϕ (34)

for fixed n. In order to consider the initial condition (33) let us introduce the notation

�n :=
∫

�

v0 (r) ψn (r) dr.

Thus the solution of (31) and (32) has the form

� (r, t) =
∞∑

n=0

ψn (r) exp (Ant)�n

(
(r, t) ∈ � × R

+
0

)

where

An := f′ ◦ p − λnD and exp (An0) = I.

Introducing the notation

exp (Ant)�n ≡: αn1ωn1(t) + αn2ωn2(t)

and denoting the Floquet-multipliers of (34) by μnk (n ∈ N0, k ∈ {1, 2}) one can
assume that in the stable case μ10 = 1 holds and all other multipliers are in modulus
less than one. If d2 increases then at a certain critical value d∗ the multiplier μ11 =
1 while the rest of the multipliers stay in modulus less than 1. In this situation
system (34) has one periodic solution ω11, while another (linearly independent)
solution tends exponentially to zero. In this case

� (r, t) − (αn0p(t) + α11ω11(t)ψ1 (r)) −→ 0 (t → ∞)

where

[0,+∞) � t �→ P(t) := αn0p(t) + α11ψ1 (r)ω11(t)

is the time periodic spatially non-constant solution of (31) and (32), which is called
time-periodic pattern (Fig. 4).

Finally, we note that this pattern P is only a solution of the linearized system (31)
and (32). About the extension of this result to the nonlinear system (23)–(2) we refer
the reader to [15].
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Fig. 4 Periodic pattern for system (30) in case g(u1, u2) :≡ u1u
2
2
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10. GAVALAS, G. R.: Nonlinear diffusion equations of chemically reacting systems, Springer, New
York, 1968.

11. GOLUBITSKY, M.; LEBLANC, V. G.; MELBOURNE, I.: Hopf Bifurcation from Rotating Waves
and Patterns in Physical Space, J. Nonlinear Sci. 10 (2000), 69–101.

12. HENRY, D.: Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.
13. KOVÁCS, S.: Bifurcations in a human migration model of Scheurle-Seydel type. I: Turing

bifurcation, Internat J. Bifur. Chaos Appl. Sci. Engrg., 13(5) (2003), 1303–1308.
14. KOVÁCS, S.: Bifurcations in a human migration model of Scheurle-Seydel type. II: Rotating

waves, J. Appl. Math. Comput., 16(1–2) (2004), 69–78.
15. KOVÁCS, S.: Time-periodic patterns in reaction diffusion systems, 2014 Workshop on

Advances in Applied Nonlinear Mathematics, 18–19 September, Bristol, United Kingdom.
16. LEIVA, H.: Stability of a periodic solution for a system of parabolic equations, Appl. Anal., 60

(1996), 277–300.
17. LEMARCHAND, A.; BIANCA, C.: Reaction-Diffusion Approach to Somite Formation, IFAC-

PapersOnLine, 48(1) (2015), 346–351.
18. LEMARCHAND, A.; NOWAKOWSKI, B.: Do the internal fluctuations blur or enhance axial

segmentation?, EPL, 94 (2011) 48004.
19. SMOLLER, J. A.: Shock waves and reaction-diffusion equations, Second edition. Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 258.
Springer-Verlag, New York, 1994.


	Oscillations in Biological Systems
	1 Introduction
	2 Bifurcation of Rotating Waves
	2.1 The Linearized Problem
	2.2 The Nonlinear Problem

	3 Periodic Solutions of Reaction-Diffusion Systems
	3.1 Bifurcation of Time-Periodic Patterns

	References


