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1 Introduction

We have stepped in early days of 2021 and have carried with us the curse of
2020- COVID-19. It is wreaking havoc on the whole world at present, after its
emergence in Wuhan in December 2019 and then global spread since February
2020 [1]. It has been declared as the Public Health Emergency of International
concern in January 2020 and a pandemic in March 2020 byWHO. The first case was
reported in Wuhan city of Hubei Province in south China on 31, December 2019
as unidentified pneumonia [2]. It is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). As of 12 January 2021, more than 90.9 million cases
have been confirmed, with more than 1.94 million deaths attributed to COVID-19.
The disease has been able to put the world into a halt. The disease affects individuals
in different ways ranging from no, mild, moderate to even severe symptoms
requiring hospitalization. The most common symptoms include fever, dry cough,
tiredness and less common symptoms are aches and pains, sore throat, diarrhoea,
conjunctivitis, headache, loss of taste or smell, a rash on skin, or discolouration
of fingers or toes. The disease mainly spreads by airborne transmission. When an
infected person coughs, sneezes or speaks the infectious droplets are emitted and
can enter another individual by mouth, nose or eyes [3]. It can also spread via
fomites when an healthy individual comes in contact of them and the virus reaches
their mucous membranes. There is no particular drug available for treatment. Only
symptomatic treatment is recommended as per countries policies. Thus, preventive
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measures becomes more important than ever. Recommended preventive measures
include social distancing, wearing face masks in public, ventilation and air-filtering,
hand washing, covering one’s mouth when sneezing or coughing, disinfecting
surfaces, and monitoring and self-isolation for people exposed or symptomatic [4].

In this scenario, the awareness and adherence to the preventive measures
becomes utmost important. Media plays a key role in this aspect. In today’s
era where media literally dictates one’s decisions, it is essential that they play
a fruitful role in such pandemic situations. During sudden outbreaks, the public
needs access to timely and reliable information about the disease symptoms and
its prevention [5]. Nowadays, social media are often seen as fast and effective
platforms for searching, sharing, and distributing health information among the
general population [6]. Media, thus becomes an essential weapon in our fight against
COVID-19. The beneficial guidelines for preventing COVID-19 were reinforced
among people through prominent advertisements on commonly used social media
platforms. Facebook, Instagram, and television media posted the importance of
‘social distancing’ and ‘stay at home’ through free of cost and frequent, widespread
ads. The printed media was utilized by supermarkets to promote their stores
following the social distancing protocols. During road and air travel, there is
continuous mention of ads like ‘Stay home, stay safe,’ ‘Face covers mandatory in
public,’ ‘COVID-19: less is more, avoid gatherings’, ‘give extra space with each
other and on the road,’ and ‘wash your hands, stay healthy, avoid COVID-19’.
This repetition is essential to consolidate the role of them in preventing the disease
spread. This campaign was run extraordinarily by the media using all resources and
its subtypes [7]. In our study, we have focused on this role of media and how it helps
in reducing the spread of COVID-19.

In the present article, we formulated and analyzed a 4-compartment epidemi-
ological model to study the impact of media on the spread of COVID-19, in a
variable population with immigration. In the modeling process, we have assumed
a population N which is the summation of susceptible unaware, susceptible aware
and the infected classes respectively. The susceptible class (both aware and unaware)
becomes diseased only by direct contact with the infected class. A part of the
susceptible class will make conscious efforts to avoid being in contact with the
infected under influence of media. The probability of contracting infection for
individuals in aware class is less than those who are in unaware class. Further, we
assume that a proportion of individuals recover and a fraction of these recovered
individuals will join the aware susceptible class while the others will join the
unaware susceptible class (may be due to ignorance, lacunae on their parts etc.).
It is also assumed that the growth rate of the cumulative density of media coverage
is proportional to the mortality caused by diseases in the infected population. Our
study finds that when immigration is increased, the system becomes unstable. Also
we found that the use of face masks and the efficiency of face mask, both are
vital for maintaining a stable equilibrium. Further, we find that by increasing the
implementation of media coverage above a threshold value, the system undergoes
from stable to unstable through Hopf-bifurcation. Also, the proportion of infected
individuals always decreases with an increase in the density of media coverage. In
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the next section, we formulate a mathematical model and examine the equilibrium
point and stability of the system. Numerical results are given in later section. Finally,
the paper ends with a brief discussion.

2 Literature Review

The World is now facing one of the biggest health challenge in human history in
the form of COVID-19. The authors in [7] analyzed the role of mass media and
public health communications from December 31, 2019 to July 15, 2020. They
reviewed that the media played a dual role in this pandemic situation. They proved
advantageous for spreading essential health information, health guidelines, helped
in adherence to hygienic practices through repeated advertisements. The media
ran the COVID-19 data through live update dashboards which played a big role
for providing current situation reports. A trend among people to use telehealth
and telemedicine was also noted. But at the same time, various misinformation
like unscientific cures, unverified medicines, etc. were also spread using various
media platforms. Fear and panic among the general population was also promoted
by various media platforms. The authors in [8] concluded that social media has
both advantage and disadvantage. The proper use of this will lead to the spread
of essential information while misuse will lead to the spread of false information,
myths, etc. So, the author advised that to be responsible while disseminating
information through social media. Study of the influence of social media on public
health measures of COVID-19 via public health awareness and public health
behavioral changes in Jordan [9] through quantitative approach was adopted. A
web questionnaire was used and 2555 social media users were sampled. The
findings revealed that there is a positive influence of media on public health
protection against COVID-19 as a pandemic. The analysis of a mathematical model
[10] to study the impact of awareness programs by media on the prevalence
of infectious disease revealed that by increasing the rate of implementation of
awareness programs by media, the number of infected individuals decline and
the system remains stable upto a threshold value, after crossing which the system
oscillates. The scientists in [11] developed a three-dimensional mathematical model
to study the impact of media coverage on the spread and control of infectious
diseases. Stability analysis of the model revealed that the disease-free equilibrium
is globally-asymptotically stable when the basic reproduction number (R0) is less
than unity. When R0 > 1, the media influence is found to be strong enough. A
mathematical model was developed and used to assess the efficacy of face masks,
hospitalization and quarantine on COVID-19 [12]. The results revealed the above-
mentioned interventions efforts should be high to control the outbreak in a short
period of time. It also revealed that the interventions strength should be increased
to eliminate the disease but only the sole use of face mask may not be enough in
doing so.
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3 Basic Assumptions and Model Formulation

B1: Let N(t) be the total population at time t the region under consideration.
Here we consider that the total population is divided into three classes like
susceptible unaware population (Sw), susceptible aware population (Sa) and
infective population (I).

B2: Let the rate of immigration of susceptible is A. Also, we consider that M be
the cumulative density of media coverage driven by the media in that region
at time t which is related to the infective. We assume that diseases spread due
to the contact between the susceptible and the infective only.

B3: It is assumed that susceptible avoid being in contact with the infective due
to awareness through media coverage and forms a another class with a
proportion λ called the aware susceptible. We assume that after treatment,
a proportion of infected individuals recover and join susceptible class. After
recovery, a fraction p of recovered people will join aware susceptible class
whereas (1−p) will join unaware susceptible class.

B4: It is notified that the growth rate of the cumulative density of media
coverage is proportional to the disease induced mortality rate of the infected
population. Here β represents the contact rate of unaware susceptible with
infective class and λ be the dissemination rate of awareness through media
among susceptible due to which they form a different class. Here β1 is a
fraction which denotes the reduced probability of contracting infection and
its value lies between 0 and 1.

B5: A proportion cn of population wear face masks correctly and consistently
in public places. Let εn be the efficacy of the face masks. Therefore, Fn =
1− εncn represents the fraction which enters the infected class. A proportion
h of aware population maintain social distance. The proper use of face masks
reduces disease transmission effectively.

B6: The parameters d, γ and α denote the natural death rate, recovery rate and
disease induced death rate respectively. Here, λ0 represents the transfer rate
of aware individuals to unaware susceptible class. The implementation of the
awareness through media is proportional to the number of disease induced
deaths.

B7: Let, the density of media coverage increase with increase in disease related
death rate α. Here k be the proportionality constant which governs the
implementation of awareness through media. We assume that μ0 is the
depletion rate of the media coverage due to ineffectiveness, social and
psychological barriers in the population, etc. The parameter m represents the
density level of media coverage on the disease from other region.

With these above assumptions our model system (Fig. 1) is
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Fig. 1 Schematic diagram

dSw

dt
= A − βFnSwI − λSwM − dSw + λ0Sa + (1 − p)γ I ≡ G1(Sw, Sa, I, M)

dSa

dt
= λSwM + pγ I − β1β(Fn − h)SaI − dSa − λ0Sa ≡ G2(Sw, Sa, I, M)

dI

dt
= βFnSwI + β1β(Fn − h)SaI − γ I − αI − dI ≡ G3(Sw, Sa, I,M)

dM

dt
= kαI − μ0M + m ≡ G4(Sw, Sa, I, M).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
The system (1) has to be analyzed with the following initial conditions,

Sw(0) > 0, Sa(0) ≥ 0, I (0) ≥ 0,M(0) ≥ 0. (2)

Using the fact that N = Sw + Sa + I , the system (1) transform to the following
system:
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dN

dt
= A − dN − αI ≡ G1(N, Sa, I,M)

dSa

dt
= λ(N − Sa − I )M + pγ I − β1β(Fn − h)SaI − dSa − λ0Sa ≡ G2(N, Sa, I,M)

dI

dt
= βFn(N − (1 − β1)Sa − I )I − β1βhSaI − (γ + α + d)I ≡ G3(N, Sa, I, M)

dM

dt
= kαI − μ0M + m ≡ G4(N, Sa, I,M).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)
Now it is sufficient to discuss system (3) rather that system (1). Here the region of
attraction which is given by the set Γ = {(N, Sa, I,M) ∈ R4+ : 0 ≤ Sw, I ≤
N ≤ A

d
, 0 ≤ M ≤ kα( A

d
)+m

μ0
}. According to existence and uniqueness theorem,

the trajectories can not approach to unfeasible domain from positive octant which
indicates that solution remain in positive octant. This ensure that the system is well
defined.

Explicitly, the jacobian matrix at E = (N, Sa, I ,M) can be defined as

J =

⎡

⎢
⎢
⎣

−d 0 −α 0
λM m22 m23 λ(N − Sa − I )

βFnI −βFn(1 − β1)I − β1βhI m33 0
0 0 kα −μ0

⎤

⎥
⎥
⎦ , (4)

where m22 = −(λM + β1β(Fn − h)I + d + λ0),

m23 = −λM + pγ − β1β(Fn − h)Sa,

m33 = βFnN − βFn(1 − β1)Sa − 2βFnI − β1βhSa − (γ + α + d).

4 Some Preliminary Results

4.1 Equilibria

The system (1) possesses the following equilibria: Disease free equilibrium (DFE)
E0 = (A

d
, mλA

d(mλ+(d+λ)μ0)
, 0, m

μ0
) and endemic equilibrium E∗ = (N∗, S∗

a , I ∗,M∗).

4.1.1 Disease Free Equilibrium

E0 is always feasible. The eigenvalues evaluate from (4) at E0 are −d < 0, −d −
λ0 < 0, −μ0 and (R0 − 1). Thus, it is clearly indicates that E0 is asymptotically
stable if

R0 = βAFn

d(γ + α + d)
< 1 (5)
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hold. Here R0 is the basic reproduction number of system (3). Clearly, E∗ exists for
R0 > 1.

4.1.2 Endemic Equilibrium

The endemic equilibrium at E∗ = (N∗, S∗
a , I ∗,M∗) are N∗ =

β
d
Fn[A−(α+d)I∗]−(γ+α+d)

β(1−β1)Fn+ββ1h
, M∗ = kαI∗+m

μ0
while I∗ is ensured by solving

A1I
∗2 + A2I

∗ + A3 = 0, (6)

where A1 = β1β
2(Fn−h)(α+d)

c
− κλα2

dμ0
− kαλ

μ0
− kαλ

μ0

β
dc

Fn(α + d),

A2 = Aαkλ
dμ0

− λαm
dμ0

− mλ
μ0

+ pγ − β1β
2

dc
(Fn − h)FnA + β1β(Fn−h)(γ+α+d)

c
− (d +

λ0 + λm
μ0

)
β
dc

Fn(α + d) + kαλ
μ0c

[β
d
FnA − (γ + α + d)],

A3 = (d + λ0 + λm
μ0

)Fn
βA
dc

+ Amλ
dμ0

− (d + λ0 + λm
μ0

)(
γ+α+d

c
), where c = β(1 −

β1)(Fn) + ββ1h. Now for I ∗ > 0, solving (6) we get I ∗ = −A2±
√

A2−4A1A3
2A1

.
At E∗, the jacobian matrix of system (3) can be written as

J ∗ =

⎡

⎢
⎢
⎣

n11 0 n13 0
n21 n22 n23 n24

n31 n32 n33 0
0 0 n43 n44

⎤

⎥
⎥
⎦ ,

where n11 = −d < 0, n13 = −α < 0, n21 = λM∗ > 0, n22 = −λM∗ −
ββ1(Fn − h)I ∗ − d − λ0 < 0, n23 = −λM∗ + pγ − β1β(Fn − h)Sa < 0,
n24 = λ(N∗ − S∗

a − I ∗) > 0, n31 = βFnI
∗ > 0, n32 = −β(1 − β1)FnI

∗ −
β1βhI ∗ < 0, n33 = −βFnI

∗ < 0, n43 = kα > 0, n44 = −μ0 < 0.
Now the corresponding characteristic equation is

ω4 + Q1ω
3 + Q2ω

2 + Q3ω + Q4 = 0,

where the coefficients QI , I = 1, 2, 3, 4 are Q1 = −(n11 + n22 + n33 + n44) > 0,
Q2 = n11n22 + n22n33 + n33n11 + n11n44 + n22n44 + n33n44 − n23n32 − n13n31,

Q3 = n13n31n44 + n23n32n44 + n11n23n32 + n13n31n22 − n11n22n44 − n11n33n44
−n22n33n44 − n11n22n33 − n13n21n32 − n24n32n43,

Q4 = n11n22n33n44+n13n21n32n44+n11n24n32n43−n11n44n23n32−n13n22n31n44.

Now, Q2 > 0 if n23n32 > (n11n22 + n11n33 + n22n33 + n11n44 + n22n44 +
n33n44 − n13n31).

Also, Q3 > 0 if (n13n31n44+n13n31n22−n11n22n44−n11n33n44−n22n33n44−
n11n22n33−n24n32n43) > n13n21n32−n11n23n32−n23n32n44. Then Q1Q2−Q3 >

0 if Q1Q2 > Q3 as well as Q3(Q1Q2 − Q3) − Q2
1Q4 > 0 if Q3(Q1Q2 − Q3) >
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Q2
1Q4. Then, by the Routh-Hurwitz criterion, E∗ is locally asymptotically stable

which depending upon system parameters.

Remark The system could have a Hopf-bifurcation at the coexistence equilibrium
if the following two conditions are satisfied,

Q1(Ac)Q2(Ac)−Q3(Ac) = 0, Q′
1(Ac)Q2(Ac)+Q1(Ac)Q

′
2(Ac)−Q′

3(Ac) 	= 0. (7)

4.2 Hopf Bifurcation at Coexistence

Theorem (Hopf-Bifurcation) If ψ1(A) > 0, then the equilibrium E∗ of system (3)
is locally asymptotically stable. If there exists Ac ∈ R such that ψ1(Ac) = 0 and
(
dψ1
dA

) |Ac 	= 0, then as A passes through Ac, a Hopf-bifurcation occurs at E∗.

For positive equilibrium E∗ = (N∗, S∗
a , I ∗,M∗), the characteristic equation is

ω4 + Q1ω
3 + Q2ω

2 + Q3ω + Q4 = 0.

Define

ψ1(A) = Q1(A)Q2(A)Q3(A) − Q2
3(A) − Q2

1(A)Q4(A). (8)

Let ωi(i = 1, 2, 3, 4) be the roots of above characteristic equation. Then we have

ω1 + ω2 + ω3 + ω4 = −Q1,

ω1ω2 + ω1ω3 + ω1ω4 + ω2ω3 + ω2ω4 + ω3ω4 = Q2,

ω1ω2ω3 + ω1ω3ω4 + ω2ω3ω4 + ω1ω2ω4 = −Q3,

ω1ω2ω3ω4 = Q4. (9)

If there exists Ac ∈ R such that ψ2(Ac) = 0, then by the Routh-Hurwitz criterion
at least one root, say ω1, has real part equal to zero. From the fourth equation of (8)
it follows that Im ω1 = ω0 	= 0, and hence there is another root, say ω2, such that
ω2 = ω1. Since ψ2(A) is a continuous function of its roots, ω1 and ω2 are complex
conjugate for A in an open interval including Ac. Therefore, the equation in (8) have
the following form at Ac,

ω3 + ω4 = −Q1,

ω2
0 + ω3ω4 = Q2,

ω2
0(ω3 + ω4) = −Q3,

ω2
0ω3ω4 = Q4. (10)
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Fig. 2 (a) The equilibrium point E∗ is stable for the parametric values as given in (11). (b)
The figure depicts oscillatory behavior around the coexistence (endemic) equilibrium point E∗ of
system (1) for k = 4.2. (c) The figure depicts oscillatory behavior around coexistence (endemic)
equilibrium point E∗ of system (3) for A = 450. (d) The figure depicts disease free equilibrium
E0 for A = 250

If ω3 and ω4 are complex conjugate, from the first Eq. (9) it follows that 2Re ω3 =
−Q1 < 0. If ω3 and ω4 are real, from the first and fourth equations of (9)
it follows that ω3 < 0 and ω4 < 0. Also after some calculations it follows
that d

dγ2
Re(ω1)A=Ac = − Q1

2[Q2
1Q4+(Q1Q2−2Q3)

2]
dψ1
dA

|Ac 	= 0. Thus, we have the

following result.
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Fig. 3 (a) The figure depicts oscillatory behavior around coexistence (endemic) equilibrium point
E∗ of system (3) for εn = 0.1. (b) The figure depicts oscillatory behavior around coexistence
(endemic) equilibrium point E∗ of system (3) for cn = 0.01

5 Numerical Simulations

In this section, we study the impact of awareness programs with the help of
numerical simulation. Here we investigate the effects of the various parameters
on the qualitative behavior of the system, by using MATLAB. We begin with a
parametric values[10, 13, 14]

A = 400, β = 0.00002, β1 = .2, λ = 0.0002, λ0 = .02, γ = .6, α = 0.02,

d = 0.01, μ0 = 0.06, εn = 0.5, cn = .1, h = 0.02, k = 0.8, p = 0.05,m = .05.

(11)

Dealing with above set of parametric values, we note that the system is locally
asymptotically stable at endemic equilibrium E∗ = (39637, 7834, 182, 37) in
which R0 = 1.2698(cf. Fig. 2a). Taking k = 4.2, the system exhibits oscillations
around E∗ (cf. Fig. 2b). Figure 2c illustrate the oscillatory behavior of each
population for high value of A (A = 450). Analytical, we see that endemic
equilibrium E∗ exists if A >

d(γ+α+d)
β

. We obtain the critical value of immigration
rate A = 333, above which the endemic equilibrium exists. Taking A = 250,
we observe that the system exhibits disease free equilibrium E0 which satisfy our
analytical finding (cf. Fig. 2d). It is interesting to see that low value of εn = 0.1
and cn = 0.01 play a big impact to destabilize the whole system respectively (cf.
Fig. 3a, b). Now for clear understanding of dynamic change, we plot a bifurcation
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Fig. 4 (a) Bifurcation diagram for k. (b) Bifurcation diagram for A. (c) Bifurcation diagram for
εn. (d) Bifurcation diagram for cn

diagram with respect to k. Form Fig. 4a, it follows that lower values of k, the system
is stable but above a threshold value of k = kc, the system losses its stability
and periodic solution arises through Hopf-bifurcation. Further, we also vary A as
a free parameter, a bifurcation diagram (cf. Fig. 4b) indicates that the system looses
its stability for high value of A after it crosses the critical value. Further, we plot
another two bifurcation diagrams for efficacy of the face masks i.e. εn and masks
compliance, cn respectively. It is clear to see that the system looses stability for low
value of these two parameters (cf. Fig. 4c, d). Figure 5a illustrates the different
steady state behaviour of infected class in the system (3) for the parameter A.
Here, we see a Hopf bifurcation points at A = 419 (denoted by a red star (H))
with eigenvalues−0.103689,−0.001029,±0.52642i and first Lyapunov coefficient
being −1.881669e−10 and generates a family of stable limit cycle bifurcates from
the H and loses its stability. Here A = 333(BP ) denotes the branch point of the
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Fig. 5 (a) The figure depicts different steady-state behaviors of infected population for the effect
of A. (b) Two parameter bifurcation diagram for A − cn. (c) Two parameter bifurcation diagram
for A − εn. (d) Two parameter bifurcation diagram for A − k

system (3) with eigenvalues are o,−0.06,−0.03,−0.01. Figure 5b–d represent two
parameters bifurcation diagrams for A − cn, A − εn and A − k respectively.

6 Discussion

The information and the awareness of the preventive strategy for COVID-19 is
majorally emphasized through media coverage. So, in our paper we have analyzed
a 4-compartment mathematical model. It is assumed that pathogens are transmitted
via direct contact between the susceptible and the infective. The model exhibits two
equilibria like the disease-free equilibrium and endemic equilibrium under certain
conditions. Firstly, the model is studied analytically and shown that when the basic
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reproduction number R0 < 1, the system exhibits disease-free equilibrium. For
R0 > 1, it leads to the existence of an endemic equilibrium.

Our study indicates that if we increase the density of media coverage, the number
of infected individuals decline. But after crossing the threshold value, system
becomes unstable. The constant immigration may be one of the possible reasons of
such outcomes. Further, we observe that lower value of immigration rate the system
becomes disease-free equilibrium. Also, the efficacy of face mask and it’s usage in
public areas helps in keeping the system stable.
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