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1 Introduction

Oncolytic virotherapy represents a promising anti-cancer treatment approach, which
involves viruses that have been selectively engineered to infect and destroy cancer
cells, while sparing the surrounding healthy cells [1–4]. These oncolytic viruses
can penetrate cancer cells either through receptor binding, or through fusion with
plasma membrane, then they replicate by taking advantage of signaling pathways
and common mutations inside those cancer cells. Despite the oncolytic viruses can
enter also healthy cells, they do not usually replicate inside these cells and thus
do not destroy them. In fact, the absence of such mutations in healthy cells tends to
abort the replication cycle of the viruses. In 2015, the United States of America Food
and Drug Administration (FDA), based on the recent advances in the understanding
of tumor-virus interactions, approved the first genetically engineered OV (a Herpes
Simplex Virus) as a therapy for the melanoma cancer [3]. However, despite the
fact that multiple oncolytic viruses (OVs) are presently under clinical development
[1, 5], this kind of therapy still has some challenges in terms of effectiveness (as
confirmed by several clinical trials) [6]. This relatively low oncolytic effectiveness
is not only due to premature virus clearance by circulating antibodies and various
immune cells [7], but also the presence of physical barriers inside tumors (e.g.,
interstitial fluid pressure, extracellular matrix (ECM) deposits) that hinder virus
movement [8]. In fact, the ECM has been recognized as a major barrier for anti-
tumor efficacy as it plays a pivotal role in inhibiting virus spread [9–11]. To
face the challenge of improving the intra-tumoral spread of oncolytic viruses,
numerous experimental and clinical approaches are currently being considered,
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from genetically manipulating natural OVs to incorporate additional features for
improving their efficiency [5], to modifications of the physical barriers (e.g., via
ECM degradation) to improve virus spread [11]. Understanding more deeply the
interactions between the extracellular matrix (ECM), uninfected and infected cancer
cells, and oncolytic viruses is therefore of great importance to shed a light on the
biological mechanisms that might improve OV spread by overcoming the physical
barriers inside the tumor micro-environment.

During the last two decades, numerous mathematical models have been applied
to gaining a broader understanding of the dynamics of virotherapy by analyzing
more deeply the interaction between cancer cells and oncolytic viruses. Concern-
ing ordinary differential equations models, one can refer to Wodarz in [12–14],
Komarova and Wodarz [15], Novozhilov et al. [16], Bajzer et al. [17, 18], Tian
in [19, 20] and others [21–24]. Wodarz [13] formulated a simple model with two
differential equations where a virus is interacting with a population of uninfected
and virus-infected tumour cells. Based on this work, Komarova and Wodarz [15]
used a general approach by taking into account a class of models instead of a specific
model and considered two populations: uninfected tumour cells and infected tumour
cells. Wodarz in his paper [14] proposed a model with three populations where he
modeled explicitly the viral population. Then, Tian [20] has proposed an improved
model by incorporating the burst size. The burst size of a virus is the number of new
virions released from a lysis of an infected cell. The model is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dc

dt
= μ1c(1 − c + i

C
) − ρcv

di

dt
= ρcv − δii

dv

dt
= bδii − ρcv − δvv

The populations of the model consist of the densities within three groups: uninfected
cancer cells c(t), infected cancer cells i(t), and free virus v(t). The constant C

stands for the maximal tumor size. The term μ1c models the rate of growth of cancer
cells, ρcv the rate of infection of cancer cells by the virus, bδii the release of virions
by infected cancer cells, δii the rate of clearance of infected cancer cells, and δvv

the rate of clearance of the virus. Besides, Novozhilov et al. [16] analyzed ratio
based oncolytic virus infection models. Bajzer et al. [17] modeled the specific cancer
virotherapy with measles virus by using three ordinary differential equations, and
then they approached the optimization of viral doses, number of doses and timing
in [18].

Because of the availability of temporal data the majority of these models
approached the oncolytic viruses from temporal dynamics perspective. However,
the main cause of mortality among cancer patients is the spread of primary
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cancer cells to other parts of the body to establish secondary tumours (metastasis).
Moreover, the diffusion of oncolytic viruses within the tumor can play a major
role in the efficacy and success of the treatment [25, 26]. Consequently, the spatial
dependency of the virotherapy needs also to be considered in mathematical models
in order to realistically simulate the clinical observations. This shortcoming of ODE
models necessitates the use of PDEs in the field of computational cancer biology.
More recent advances in tumour imaging provided data on the spatial spread of
tumours and viruses, which then encouraged the emergence of mathematical models
investigating the spatial spread of these viruses. Thus, many partial differential
equation models have been formulated to include both the spatial and temporal
distributions of viruses and cells [27–32]. For instance, Wu et al. [27] and Wein
et al. [28] proposed and analyzed a system of partial differential equations in order
to describe some aspect of oncolytic viral therapy. Camara et al. [29] explored an
important interaction between aggressively invasive glioma cancer cells and the free
oncolytic virus “ONYX-015”. Malinzi et al. [30] developed a reaction-diffusion
system and considered the impact of virotherapy on the concentration of the tumor
cells in the presence of CTL immune response. Then, Malinzi et al. [32] proposed a
PDE based model that study the effect of the combination of oncolytic virotherapy
with chemotherapy.

All suggested computational models have given valuable insights into oncolytic
virotherapy dynamics. Nevertheless, there is a tremendous need to understand the
dynamics of oncolytic virotherapy in the presence of extracellular matrix (ECM),
particularly, to understand the complex interplay among cancer cells, oncolytic
viruses and the extracellular matrix. In fact, tumour cells encounter a large amount
of insoluble intact adhesive molecules of the extracellular matrix (ECM), which
may promote their directed migration at different stages in the process of cancer
invasion. A cell would migrate from a region of low concentration of relevant
adhesive molecules towards a region with a higher concentration. This phenomenon
is termed haptotaxis [33, 34]. Furthermore, the ECM is considered as a major barrier
to virus motility by acting like a porous medium.

In this study, we are interested in a mathematical modeling and computational
approach of oncolytic virotherapy which aims to help us improve our understanding
of the physical barrier that inhibits the virus spread. Therefore, we propose a
mathematical model of oncolytic virotherapy, that accounts for interaction between
uninfected cancer cells, infected cancer cells, extracellular matrix (ECM) and
oncolytic virus. Besides random motion, both uninfected and infected tumour cells
migrate haptotactically towards higher ECM densities, moreover, in addition to
degrading the static ECM upon contact the two cancer populations undergo an
infection-induced transition mechanism conducted by virus particles which are
released by infected cancer cells, and which attack the uninfected part of the
tumor. One of the main contributions of this model consists in taking into account
that the motility rate of virus particles is controlled by the population of ECM
where lowering ECM leads to higher viral diffusion. Accordingly, we defined the
diffusivity of tumour cells as a monotonically decreasing function of ECM density
to model the obstruction of movement by the ECM.
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This chapter is organized as follows. In Sect. 2, the mathematical model as well
as its dimensionless form are presented. The variational formulation, the temporal
discretization, and the finite element scheme of the nonlinear system are presented in
Sect. 3. Finally, we present numerical experiments and summarize the observations
of this study.

2 Mathematical Model

In this section, we present a two-dimensional mathematical model of oncolytic
virotherapy. The model consists of four unknown variables namely the uninfected
cancer cells density, the infected cancer cells density, the ECM density and the
oncolytic virus particles density, which are denoted respectively by c(x, t), i(x, t),
u(x, t) and v(x, t). We consider the system to hold on a bounded spatial domain
� ⊂ R

2, representing a region of tissue. As the tumour cells depend on the closest
blood vessel, we assume that the computational domain � is a disc with a centered
hole inside representing the blood vessel (see Fig. 1). The boundary of the domain
consists of two parts ∂� = ∂�1 ∪ ∂�2, where ∂�1 refers to the intern boundary
delimited by the blood vessel wall, and ∂�2 refers to the extern boundary of �.
Moreover, we estimate the radius of this region supported by the blood vessel
to be rb√

BV F
, where BVF is the blood volume fraction [35, 36], and rb is the

radius of the blood vessel. Concerning the viruses, they attain the tumor through
the blood vessel via ∂�1 and diffuse into it with no flux at ∂�2. Furthermore,
viruses are provided continuously with a constant concentration vb (for instance by
using nanotechnology [37]). Guided by the in vitro experimental protocol in which
invasion takes place within an isolated system, we consider zero-flux boundary
conditions at the blood vessel wall ∂�1 and at the extern boundary of the disc for
the uninfected cancer cells, the infected cancer cells, and also for the ECM.

Uninfected Cancer Cells c(x, t) The underlying modeling assumptions are that
in addition to random cell movement (with Dc as the random motility coefficient),
uninfected cancer cells have a directed haptotactic movement towards higher ECM
gradients (with ηc the haptotactic coefficient). Moreover, cancer cells apart from
possibly proliferating logistically at rate μ1 [38, 39], can decay due to virus infection
at rate ρ. These hypotheses can be described by the following equation:

∂c

∂t
= Dc�c − ηc∇.(c∇u) + μ1c(1 − c

C
− i

C
) − ρcv,

where C is the carrying capacity of the cancer cells and the extracellular matrix.

Infected Cancer Cells i(x, t) Similarly, we assume that the infected cancer cells
can move randomly (with Di as the random motility coefficient) and can migrate
towards higher ECM gradients (with ηi the haptotactic coefficient). As mentioned
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Fig. 1 Computational domain constructed. the computational domain � is a disc with a centered
hole inside representing the blood vessel

above, these cells are infected at rate ρ by the oncolytic virus. Furthermore, these
infected cells die owing to lysis at a rate δi . These assumptions are translated into
the following equation:

∂i

∂t
= Di�i − ηi∇.(i∇u) + ρcv − δii.

Extracellular Matrix (ECM) u(x, t) The ECM can be regarded as static in the
sense that it does not move, and thus we may neglect any diffusion and migration
terms, however, it undergoes a continuous remodelling by cells in the environment
[40]. We represent this remodeling process by the difference between a logistic
growth term with rate μ2 and a degradation term (where αc is the rate of ECM
degradation by uninfected cancer cells, and αi is the rate of ECM degradation by
infected cancer cells). Thus, the evolution of the ECM is governed by the following
equation:

∂u

∂t
= −u(αcc + αii) + μ2u(1 − u

C
− c

C
− i

C
),
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Oncolytic Virus v(x, t) We assume that the virus can spread randomly in ECM
density-dependent manner through the environment with Dv(u) the random motility
coefficient which quantifies how virus particles outside infected cells can freely
move around less dense ECM. We opt for the phenomenological form:

Dv(u) = Dv(1 − u

C
),

where Dv is a reference diffusion in absence of ECM. Furthermore, the virus
particles duplicate at rate b, the burst size of infected cancer cells, which release
the new virions in the environment. However, the number of free virus particles
reduction is mainly due to the natural virion’s death at rate δv , and the trapping
of these virus particles into the cancer cells at rate ρ. In summary, the governing
equation for the density of virus particles is as follows:

∂v

∂t
= ∇(Dv(u)∇v) + bi − ρcv − δvv.

In summary, we obtain the following system of PDE-ODE equations, where all
the parameters in the system are nonnegative:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
= Dc�c − ηc∇.(c∇u) + μ1c(1 − c

C
− i

C
) − ρcv in � × ]0, T [ ,

∂i

∂t
= Di�i − ηi∇.(i∇u) + ρcv − δii in � × ]0, T [ ,

∂u

∂t
= −u(αcc + αii) + μ2u(1 − u

C
− c

C
− i

C
) in � × ]0, T [ ,

∂v

∂t
= ∇(Dv(u)∇v) + bi − ρcv − δvv in � × ]0, T [ .

(1)
Based on the aforementioned assumptions the system is closed with the following
homogenous initial and boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

c(x, 0) = c0(x)

i(x, 0) = i0(x)

u(x, 0) = u0(x)

v(x, 0) = v0(x)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dc

∂c

∂n
+ ηcc

∂u

∂n
= 0 in ∂� × ]0, T [ ,

Di

∂i

∂n
+ ηii

∂u

∂n
= 0 in ∂� × ]0, T [ ,

Dv(u)
∂v

∂n
= 0 in ∂�2 × ]0, T [ ,

v = vb in ∂�1 × ]0, T [ ,

where n is the outward normal vector to ∂� and vb is the value of v at the blood
vessel.

2.1 Dimensionless Form

Let L = 0.1cm and τ = L2

D
, (where D ≈ 10−6 cm2 s−1 according to [41]) be

the characteristic length and time scale respectively. We define the dimensionless
variables as follows:

c̃ = c

C
, ĩ = i

C
, ũ = u

C
, ṽ = v

C
, x̃ = x

L
, t̃ = t

τ

and new parameters via the following scaling:

D̃c = τDc

L2 , D̃i = τDi

L2 , D̃v = τDv

L2 , η̃c = ηc

τC

L2 , η̃i = ηi

τC

L2 , μ̃1 = τμ1,

ρ̃ = τρC, δ̃i = τδi , α̃c = ταcC, α̃i = ταiC, μ̃2 = τμ2, b̃ = τb, δ̃v = τδv

c̃(x, 0) = c(x, 0)

C
, ĩ(x, 0) = i(x, 0)

C
, ũ(x, 0) = u(x, 0)

C
, ṽ(x, 0) = v(x, 0)

C
.

Henceforth, we drop the tilde over all variables for convenience. The dimensionless
form of the model equations (1) can then be written in the following general form:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
= Dc�c − ηc∇.(c∇u) + μ1c(1 − c − i) − ρcv in � × ]0, T [ ,

∂i

∂t
= Di�i − ηi∇.(i∇u) + ρcv − δii in � × ]0, T [ ,

∂u

∂t
= −u(αcc + αii) + μ2u(1 − u − c − i) in � × ]0, T [ ,

∂v

∂t
= ∇(Dv(u)∇v) + bi − ρcv − δvv in � × ]0, T [ ,

Dc

∂c

∂n
+ ηcc

∂u

∂n
= 0 in ∂� × ]0, T [ ,

Di

∂i

∂n
+ ηii

∂u

∂n
= 0 in ∂� × ]0, T [ ,

Dv(u)
∂v

∂n
= 0 in ∂�2 × ]0, T [ ,

v = vb in ∂�1 × ]0, T [ ,

c(x, 0) = c0(x) in �,

i(x, 0) = i0(x) in �,

u(x, 0) = u0(x) in �,

v(x, 0) = v0(x) in �.

(2)
We suppose that c0, i0, u0, v0 ∈ L2(�) and are nonnegative.

3 Finite Element Scheme

The mathematical model (2) considered in the previous section is a highly nonlinear
coupled system of partial and ordinary differential equations. Thus, we can’t afford
to solve it analytically. Aiming to solve it numerically, we present a finite element
scheme in this section. First, we derive the variational formulation for the uninfected
and infected cancer cells density equations, the ECM density equation and the
virus density equation. Further, we present the temporal discretization of the model
equations. Finally, we describe a fixed-point-iteration to handle the nonlinear terms
in the system (2) and we provide an appropriate numerical scheme.
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3.1 Variational Formulation

In order to show the numerical formulation of the problem, let V =
L2(0, T ;H 1(�)) be the space of approximate solutions and W = H 1(�) be
the space of tests functions. Let Wh be a finite element space of Lagrange P 1
included in W and V h = L2(0, T ;Wh) be the finite dimensional subspace of V .
The Faedo-Galerkin formulation for the problem is given by, finding ch, ih, uh ∈ V

and vh ∈ V such that vh = vh
b in ∂�1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂ch

∂t
, φ

)
+ ac(ch, ch, ih, uh, vh, φ) = 0

(
∂ih
∂t

, φ
)

+ ai(ih, ch, uh, vh, φ) = 0
(

∂uh

∂t
, φ

)
+ au(uh, uh, ch, ih, φ) = 0

(
∂vh

∂t
, ψ

)
+ av(vh, ch, ih, uh, ψ) = 0

ch(x, 0) = ch,0(x) in �,

ih(x, 0) = ih,0(x) in �,

uh(x, 0) = uh,0(x) in �,

vh(x, 0) = vh,0(x) in �,

(3)

for all φ ∈ Wh and ψ ∈ Wh such that ψ = 0 in ∂�1, and a. e. t ∈ ]0, T [ where:

ac(c1, c2, i, u, v, φ) = Dc

∫

�

∇c1.∇φdx−ηc

∫

�

c1∇u.∇φdx−μ1

∫

�

c1(1−c2−i)φdx+ρ

∫

�

c1vφdx,

ai(i, c, u, v, φ) = Di

∫

�

∇i.∇φdx−ηi

∫

�

i∇u.∇φdx−ρ

∫

�

cvφdx+δi

∫

�

iφdx,

au(u1, u2, c, i, φ) =
∫

�

u1(αcc + αii)φdx − μ2

∫

�

u1(1 − u2 − c − i)φdx,

av(v, c, i, u, ψ) =
∫

�

Dv(u)∇v.∇ψdx−b

∫

�

iψdx+ρ

∫

�

cvψdx+δv

∫

�

vψdx,

ch,0(x), ih,0(x), uh,0(x) and vh,0(x) are respectively the projections of c0(x), i0(x),

u0(x) and v0(x) on Wh.

3.2 Discrete Problem

In this section, we present the temporal discretization of the coupled variational sys-
tem (3), where we discussed the application of Crank-Nicolson time discretization.



296 H. Lefraich

3.2.1 Temporal Discretization

Let 0 = t0 < t1 < ... < tN = T be a decomposition of the considered time interval
]0, T [ , and δt = tn+1 − tn, n = 0, 1, ..., N − 1 denotes the uniform time step. In
addition, we use cn

h (x) := ch (x, tn) , inh (x) := ih (x, tn) , un
h (x) := uh (x, tn) and

vn
h (x) := vh (x, tn) to denote the approximation of the solutions at time tn. We

apply the implicit Crank-Nicolson discretization scheme, which is second order and
A-stable, then the semi-discrete form of the system (3) reads:

For given cn−1
h , in−1

h , un−1
h and vn−1

h with c0
h = ch,0, i0

h = ih,0, u0
h = uh,0 and

v0
h = vh,0, find cn

h, inh, un
h ∈ Wh and vn

h ∈ Wh such that vn
h = vh

b in ∂�1 such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
cn
h − cn−1

h

δt

, φ

)

+ 1

2
ac(c

n
h, cn

h, inh, un
h, v

n
h, φ) = −1

2
ac(c

n−1
h , cn−1

h , in−1
h , un−1

h , vn−1
h , φ)

(
inh − in−1

h

δt

, φ

)

+ 1

2
ai(i

n
h, cn

h, un
h, v

n
h, φ) = −1

2
ai(i

n−1
h , cn−1

h , un−1
h , vn−1

h , φ)

(
un

h − un−1
h

δt

, φ

)

+ 1

2
au(u

n
h, u

n
h, c

n
h, inh, φ) = −1

2
au(u

n−1
h , un−1

h , cn−1
h , in−1

h , φ)

(
vn
h − vn−1

h

δt

, ψ

)

+ 1

2
av(v

n
h, cn

h, inh, un
h, ψ) = −1

2
av(v

n−1
h , cn−1

h , in−1
h , un−1

h , ψ)

(4)
for all φ ∈ Wh and ψ ∈ Wh such that ψ = 0 in ∂�1.

3.2.2 Numerical Scheme

The nonlinearity in the semi-discrete form of the system (4) besides the coupling
between the equations makes the computations a very challenging task. In one hand,
a fully implicit treatment of the nonlinear and coupled terms leads to a coupled
nonlinear algebraic system and it will be a very tough task to solve it with a nonlinear
solver, in the other hand an explicit treatment leads to a linearized system in which
the equations are solved simultaneously. However, it may require a severe restriction
on the time step. Accordingly, we suggest a fixed-point iteration method [42] to treat
the nonlinear and coupled terms semi-implicitly. For instance, let us explain briefly
the fixed point iteration steps for a nonlinear term in the uninfected cancer cells
density equation in the time interval (tn−1, tn). Let cn

h,0 = cn−1
h , un

h,0 = un−1
h and

inh,0 = in−1
h and we replace the nonlinear integral terms in the uninfected cancer

cells density with:

∫

�

cn
h,k∇un

h,k.∇φdx �
∫

�

cn
h,k∇un

h,k−1.∇φdx,
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∫

�

cn
h,k(1 − cn

h,k − inh,k)φdx �
∫

�

cn
h,k(1 − cn

h,k−1 − inh,k−1)φdx

for k = 0, 1, 2, .... We iterate until the residual of the system (4) is less than the
prescribed threshold value

(
10−8

)
or until the maximal number of iterations is

reached. Finally, we set cn
h = cn

h,k and advance to the next time step. We handle
the nonlinear and coupled terms in all other equations in a similar way by using the
above prescribed iteration of fixed point type. Consequently, the linearized form of
the system (4) in the interval (tn−1, tn) reads:

For given cn
h,0 = cn−1

h , inh,0 = in−1
h , un

h,0 = un−1
h and vn

h,0 = vn−1
h with c0

h =
ch,0, i0

h = ih,0, u0
h = uh,0 and v0

h = vh,0, find cn
h,k, inh,k, un

h,k and vn
h,k satisfying

vn
h,k = vh

b in ∂�1 such that for all φ ∈ Wh and ψ ∈ Wh with ψ = 0 in ∂�1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
cn
h,k, φ

) + δt

2
ac(c

n
h,k, c

n
h,k−1, i

n
h,k−1, u

n
h,k−1, v

n
h,k−1, φ) =

(
cn−1
h , φ

)
− δt

2
ac(c

n−1
h , cn−1

h , in−1
h , un−1

h , vn−1
h , φ)

(
inh,k , φ

) + δt

2
ai (i

n
h,k, c

n
h,k, u

n
h,k−1, v
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(5)

4 Numerical Simulation and Results

In this section, we investigate numerically the model introduced previously. We
aim to observe the cancer response to oncolytic virotherapy via tracking the model
behaviour with respect to several aspects such as: cancer cells density, tumour load
(c + i), or cancer suppression.

For the numerical investigation, we first choose a baseline parameters (see
Table 1) which are mainly based on the published studies in [29, 36, 41, 43] and
present accordingly the spatial propagation of the oncolytic virus at several time
stages. Second, we vary some of the parameters involved in virus dynamics and
spread: the virus replication rate b, the infection rate of cancer cells ρ, and the death
rate of infected cancer cells δi . Finally, based on the obtained results with different
parameter values, we discuss the condition that can improve tumour suppression.

Visualizing the Oncolytic Viral Diffusion
In Figs. 2 and 3 we present the spatial propagation of the oncolytic virus for different
relative time stages.
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Table 1 Baseline parameters values for the model

Dimensional
Parameter value Non dimensional value Unit Reference

Dc (Diffusion coefficient
of uninfected cancer
cells)

0.00675 – mm2/h [29]

Di (Diffusion coefficient
of infected cancer cells)

0.0054 – mm2/h [29]

Dv (Diffusion coefficient
of viruses in the
reference case)

0.036 – mm2/h [29]

ηc (Haptotaxis
coefficient of uninfected
cancer cells)

– 2.85 × 10−2 cm2 s−1 M−1 [43]

ηi (Haptotaxis coefficient
of infected cancer cells)

– 2.85 × 10−2 cm2 s−1 M−1 [43]

μ1 (Proliferation rate of
uninfected cancer cells)

– 0.25 h−1 [43]

ρ (Infection rate of cells
by viruses)

– 79 × 10−3 mm2/h virus [29]

δi (Death rate of infected
cancer cells)

0.05 – 1/h [29]

αc (Degradation rate of
ECM by uninfected
cancer cells)

– 0.15 1/h [41]

αi (Degradation rate of
ECM by infected cancer
cells)

– 0.075 1/h [41]

μ2 (ECM remodelling
rate)

– 0.015 1/h [41]

b (Virus replication rate) 2 – 1/h [31]

δv (Clearance rate of
viruses)

0.025 – 1/h [29]

C (Carrying capacity for
cancer cells and ECM)

106 – Cells/mm3 [29]

rb (Radius of the blood
vessel)

0.01 – mm Estimated

BV F (Blood volume
fraction)

0.05 – – [36]

vb (Value of v at the
blood vessel)

0.01 × 106 0.01 Cells/mm3 Estimated

c0 (Initial condition of
uninfected cancer cells)

0.5 × 106 0.5 Cells/mm3 Estimated

i0 (Initial condition of
infected cancer cells)

0 0 Cells/mm3 Estimated

u0 (Initial condition of
ECM)

0.5 × 106 0.5 Cells/mm3 Estimated

v0 (Initial condition of
viruses)

0 0 Cells/mm3 Estimated
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In the following, we will discuss the outcomes of varying some parameters in
the model. The main focus here is on the key parameters that are relevant to the
oncolytic viruses. All the other parameter remain the same as in Table 1.

Virus Replication Rate (Burst Size) Known to be crucial within virotherapy
treatment, the virus replication rate is the number of virus particles released by
an infected cancer cell. We start our investigation by focusing first on the rate
b at which the virus duplicate. We perform numerical experiments with b = 0,
b = 2, b = 4, b = 9 and b = 200. Consequently, we found that there are two
threshold value for the burst size. When the burst size is below the first threshold
value the virotherapy always fails and the tumour grows to its maximum (carrying
capacity) size (see Fig. 4). When the burst size is between the two threshold values,
we obtain a partial success of the virotherapy as illustrated in Figs. 5 and 6. As an
increase in the burst size will lead to a decrease in the tumour load, we can reach
a minimum tumour load by genetically increasing the burst size of the virus up
to the second threshold value, and still have a stable partial therapeutic success.
However, once the burst size is above the second threshold, we obtain periodic
oscillations with decay (Fig. 7), and if the burst size is large enough the tumour
load can drop to an undetectable level then the cancer starts growing again (see
Fig. 8). While the concept of oscillating tumour may seem abnormal, such behaviour
have been seen in experimental observations and also in several ODE based viral
dynamic models [15, 17, 23, 44, 45]. Furthermore, the oscillatory behaviour can be
seen as analogous to the typical behaviour of predator-prey systems, where each
population depends on the other for survival. The long period orbit can be viewed
as a complete tumour eradication or tumour remission. In fact, a long period orbit
can be biologically interpreted also as a complete tumour eradication: if the cancer
cells population drops below certain level, this could signify extinction especially if
we take into account increased clearance due to nutrient deficiency or a moderate
reinforcement of virotherapy with another type of therapy. Long period orbits can
also be considered as a remission or recurrence where reducing the amplitude of
the orbit and increasing the period between the oscillations correspond to a more
successful treatment. Furthermore, increasing exaggeratedly the burst size leads to
an increase in the ECM density which will reduce the viral diffusion (see Fig. 8d).

Infection Rate of Cancer Cells In the following, we study the influence of viral
infection rate (ρ) on the cancer dynamic. Experimental studies have shown that
increasing the infection rate of cancer cells plays a pivotal role in the development
of new anti-cancer therapies [46]. Aiming to investigate this aspect, we performed
several simulation tests where we decreased and increased the baseline value ρ =
79 × 10−3 by a factor of three (to ρ

3 and 3ρ, respectively). As illustrated in Fig. 9 a
three fold decrease in the infection rate leads to a poorer elimination of the cancer
cells, compared to the case where the infection rate is increased three fold.

Death Rate of Infected Cancer Cells The death rate of infected cancer cells is
the rate at which the infected cells are eliminated from the system by anti-viral
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(a)

(b)

Fig. 2 Spatial propagation of the oncolytic virus for different relative time stages. (a) t=0. (b) t=10
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(a)

(b)

Fig. 3 Spatial propagation of the oncolytic virus from relative time t=100 to T=720. (a) t=100.
(b) T=720
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Fig. 4 Dynamics of the model at point (0, 0.16) for b = 0. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) ECM

immune response [47]. We reduce δi by a factor of four (δi/4), then we notice
that uninfected cancer cells are reduced dramatically (see Fig. 10d). This result is
expected because the persistence of infected cancer cells promote the replication of
more viruses inside these cells. Contrarily, increasing δi by a factor of four (4δi)
results in a weaker suppression of cancer cells as illustrated in Fig. 10a–c. However,
the parameter δi alone does not show a clear influence towards the elimination of
the tumour cells.

5 Conclusion

In this study, we introduced a system of partial differential equations coupled to
an ordinary differential equation to simulate the treatment of cancer by using ther-
apeutic viruses. The mathematical model illustrates the spatiotemporal dynamics
between virotherapy, infected and uninfected cancer cells. The nonlinear terms
in the coupled equations are handled semi-implicitly using an iteration of fixed-
point type. The numerical simulations were carried out for different values of
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Fig. 5 Evolution of the tumour load at point (0, 0.16) for b = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

R
el

at
iv

e 
un

in
fe

ct
ed

 tu
m

ou
r 

ce
lls

Relative time

"c.dat"

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  100  200  300  400  500  600  700  800

R
el

at
iv

e 
in

fe
ct

ed
 tu

m
ou

r 
ce

lls

Relative time

"i.dat"

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0  100  200  300  400  500  600  700  800

R
el

at
iv

e 
vi

ru
se

s

Relative time

"v.dat"

(c)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

R
el

at
iv

e 
tu

m
ou

r 
lo

ad

Relative time

"c+i.dat"

(d)

Fig. 6 Dynamics of the model at point (0, 0.16) for b = 4. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) Tumour load
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Fig. 7 Dynamics of the model at point (0, 0.16) for b = 9. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) Tumour load

the parameters related to virus dynamics and spread, namely, the burst size, the
infection rate, and the clearance rate of infected cancer cells. The results showed
that an improved therapy can be obtained by increasing the burst size, increasing
the infection rate, and decreasing the death rate of infected cancer cells. However,
since the tumour load can drop to an undetectable level then grows back, this mean
that oncolytic virotherapy may not be able to eliminate all tumour cells from the
body tissue. Thus, it’s necessary to incorporate another treatment with virotherapy.
In our study, the viruses are delivered continuously, a future research could include
different delivery methods for viruses. Finally, another research point could be an
investigation of the role of the immune system in the virotherapy.
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Fig. 8 Dynamics of the model at point (0, 0.16) for b = 200. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) ECM
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Fig. 9 Evolution in time of the tumour load at point (0, 0.16) showing two variations of the
baseline viral infection rate ρ (namely: (a). Tumour load for ρ

3 ; (b). Tumour load for ρ; and (c).
Tumour load for 3ρ)
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Fig. 10 Evolution in time of the tumour load at point (0, 0.16) showing two variations of the
baseline infected cancer cells death rate δi (namely: (a) Tumour load for δi/4, (b) Tumour load for
δi , and (c) Tumour load for 4δi ); and (d) the evolution of Uninfected cancer cells for δi/4
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