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1 Introduction

The present work aims to complement a previous publication [1] where we
have derived the Generalized Khinchin-Shannon (GKS) Inequalities [2] associated
to Sharma-Mittal Entropy measures. We introduce here the result of maximal
extension of the strict concavity region of this class of entropy measures. In
Sect. 2, we present the state of art of the work with the Sharma-Mittal class as
well as the Information measures associated to it. All the limit processes are then
described carefully together with the consequences of these definitions and their
properties with respect to the assumption of strict concavity. We think that the
notation which has been adopted could appear as awkward, however it is very
efficient for the derivation of all formulae to be presented here and specially for
the proof of strict concavity of Sect. 3. A complete derivation is then done of the
greatest lower bound of the successive epigraph regions, which leads to establish the
maximal extension of the previously adopted strict concavity region of the scientific
literature. In Sect. 4, we then derive some interesting additional matters to a subject
already published in ref. [1], in terms of the difference between escort conditional
probabilities and conditional escort probabilities. Some necessary development
seems to be worthwhile here for a perfect understanding of the results based on the
structure and properties of the probabilistic space and this is presented in appendices
at the end of the paper.
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2 The Sharma-Mittal Class of Entropy Measures

The usual expression of the Sharma-Mittal entropy measures [3], is given by:

(SM)
(s,r)
j1...jt

= (αj1...jt )
1−r
1−s − 1

1 − r
(1)

These entropies are here defined on arrays of t columns of m rows each and the
αj1...jt symbols are written as:

α
(s)
j1...jt

=
∑

a1,...,at

(
pj1...jt (a1, . . . , at )

)s

(2)

where pj1...jt (a1, . . . , at ) stands for the probability of occurrence of t-sets of
ordered values (a1, . . . , at ) in t columns j1, . . ., jt of a distribution obtained from
an array of m rows and n columns (see Appendix 1).

All the values a1, . . ., at , are running over the values 1, . . ., W and the j -values
are ordered as [4]:

j1 < j2 < . . . < jn

and we have,

j1 = 1, . . . , n − t + 1

j2 = j1 + 1, . . . , n − t + 2

...................................... (3)

jt−1 = jt−2 + 1, . . . , n − 1

jt = jt−1 + 1, . . . , n

There are then
(
n
t

) = n!
t !(n−t)! geometrical objects pj1...jt and each of them has

Wt correspondents pj1...jt (a1, . . . , at ).
For an equiprobable distribution [4],

pj1...jt (a1, . . . , at ) = W−t , (4)

we then get

αj1...jt (W
−t ) = Wt(W−t )s = Wt(1−s) , ∀t (5)
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and the corresponding value of the (SM)j1...jt entropy will be written as:

(SM)
(r)
j1...jt

(W−t ) =
(
Wt(1−s)

) 1−r
1−s − 1

1 − r
= Wt(1−r) − 1

1 − r
. (6)

We also introduce an associated Information measure:

I
(s,r)
j1...jt

= − (SM)j1...jt

(αj1...jt )
1−r
1−s

(7)

For an equiprobable distribution, Eq. (4), this can be written as:

I
(s,r)
j1...jt

(W−t ) = −
Wt(1−r) − 1

1 − r

Wt(1−r)
= 1 − Wt(1−r)

(1 − r)Wt(1−r)
(8)

We then list some special cases of entropies of the Sharma-Mittal class [3, 5–7]
together with their equiprobable versions:

(a) The Havrda-Charvat entropy measure [5], with r = s

(HC)
(s)
j1...jt

= αj1...jt − 1

1 − s
(9)

(HC)
(s)
j1...jt

(W−t ) = Wt(1−s) − 1

1 − s
(10)

(b) The Landsberg-Vedral entropy measure [6], with r = 2 − s

(LV )
(s)
j1...jt

= αj1...jt − 1

(1 − s)αj1...jt

= (HC)
(s)
j1...jt

αj1...jt

(11)

(LV )
(s)
j1...jt

(W−t ) = Wt(1−s) − 1

(1 − s)Wt(1−s)
= −I

(r=s)
j1...jt

(12)

(c) The Renyi entropy measure [7]:

R
(s)
j1...jt

= lim
r→1

(SM)
(s,r)
j1...jt

= logαj1...jt

1 − s
(13)
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R
(s)
j1...jt

(W−t ) = logWt(1−s)

1 − s
= t (1 − s) logW

1 − s
= t logW (14)

(d) The “nonextensive Gaussian” entropy measure [8]:

G
(r)
j1...jt

= lim
s→1

(SM)
(s,r)
j1...jt

= e(1−r)(GS)j1 ...jt − 1

1 − r
(15)

G
(r)
j1...jt

(W−t ) = et(1−r) logW − 1

1 − r
(16)

where

(GS)j1...jt = −
∑

a1,...,at

pj1...jt (a1, . . . , at ) logpj1...jt (a1, . . . , at ) (17)

(GS)j1...jt (W
−t ) = t logW (18)

is the Gibbs-Shannon entropy measure, which is also obtained as the convenient
limit in all previous entropy measures.

lim
s→1

(HC)
(s)
j1...jt

= lim
s→1

(LV )
(s)
j1...jt

= lim
s→1

R
(s)
j1...jt

= lim
r→1

G
(r)
j1...jt

= (GS)j1...jt

(19)
From Eqs. (1) and (2) the Generalized Khinchin-Shannon inequalities can be

written according to ref. [1] as:

1 + (1 − r)(SM)
(s,r)
j1...jt

≤
t∏

l=1

[
1 + (1 − r)(SM)

(s,r)
jl

]
(20)

We can also then write for the information measure in [7]:

1 + (1 − r)I
(s,r)
j1...jt

≥
t∏

l=1

[
1 + (1 − r)I

(s,r)
jl

]
(21)

For the special cases of the Sharma-Mittal class, Eqs. (9), (11), (13), (15), and
(17), we have,

1 + (1 − s)(HC)
(s)
j1...jt

≤
t∏

l=1

[
1 + (1 − s)(HC)

(s)
jl

]
(22)
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1 + (1 − s)(LV )
(s)
j1...jt

≤
t∏

l=1

[
1 + (1 − s)(LV )

(s)
jl

]
(23)

R
(s)
j1...jt

≤
t∑

l=1

R
(s)
jl

(24)

1 + (1 − r)G
(r)
j1...jt

≤
t∏

l=1

[
1 + (1 − r)G

(r)
jl

]
(25)

(GS)j1...jt ≤
t∑

l=1

(GS)jl
(26)

The region of the parameter space corresponding to strict concavity of the
Sharma-Mittal class of entropies is usually presented in the literature as the gray
region in Fig. 1 or C = {(s, r)|r ≥ s > 0}. This region is the epigraph region of the
half straight line r = s > 0, corresponding to the Havrda-Charvat entropy, Eqs. (9)
and (2).

Fig. 1 The gray region is the epigraph of the brown half straight line (r = s) corresponding to
the Havrda-Charvat entropy. This region is also assumed to be the strict concavity region in the
literature. The The blue (0 ≤ s < 1, r = 1), green (0 ≤ s < 1, 1 < r ≤ 2) segments of straight
line do correspond to Renyi and Landsberg-Vedral entropies, respectively. The red half straight line
(r > 1, s = 1) stands for the “Gaussian” entropy which has also been defined by Sharma-Mittal
[3]. The point (r = 1, s = 1) does correspond to the Gibbs-Shannon entropy
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3 The Maximal Extension of the Strict Concavity Region in
the Parameter Space of Sharma-Mittal (SM) Entropy
Measures

To undertake the analysis of maximal extension of the strict concavity region for
SM entropies, we shall follow the techniques of construction of the probabilistic
space in Appendix 1. In the next section, we also give some examples as numerical
applications of the methods introduced here.

The requirement for strict concavity of the surface representing a multivariate
function is the negative definiteness of the quadratic form associated to its Hessian
matrix [1, 11]. This means that the principal minors of the Hessian matrix should be
negative and positive alternately (negative those of odd order and positive those of
even order).

We shall now introduce the Hessian matrix of the Sharma-Mittal class of
entropies, Eqs. (1), (2), and (3). Its first derivative is given by:

∂(SM)j1...jt

∂pj1...jt (a
qν

1 , . . . , a
qν
t )

= s

1 − s
(αj1...jt )

s−r
1−s

(
pj1...jt (a

qν

1 , . . . , a
qν
t )

)s−1
(27)

A generic element of the Hessian matrix could then be written as

Hqνqξ = ∂2(SM)j1...jt

∂pj1...jt (a
qν

1 , . . . , a
qν
t )∂pj1...jt (a

qξ

1 , . . . , a
qξ

t )

= s(αj1...jt )
s−r
1−s

(
pj1...jt (a

qν

1 , . . . , a
qν
t )

)s−2

·
[

s(s − r)

(1 − s)2

pj1...jt (a
qν

1 , . . . , a
qν
t )

pj1...jt (a
qξ

1 , . . . , a
qξ

t )
p̂j1...jt (a

qξ

1 , . . . , a
qξ

t ) − δνξ

]
(28)

where δνξ is the Kronecker symbol. From Eq. (28) and Appendix 1, the principal
minors are then given by

detHqνqξ (ν, ξ = 1, . . . , k) = (−1)k−1sk(αj1...jt )
k
(

s−r
1−s

)[ k∏

ν=1

pj1...jt (a
qν

1 , . . . , a
qν
t )

]s−2

·
[

s(s − r)

(1 − s)2

k∑

ν=1

p̂j1...jt (a
qν

1 , . . . , a
qν
t ) − 1

]
, k = 1, . . . , M, 1 ≤ M ≤ m,

(29)

where p̂j1...jt (a
qν

1 , . . . , a
qν
t ) is the escort probability associated to pj1...jt (a

qν

1 , . . . ,

a
qν
t ) and we have,
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p̂j1...jt (a
qν

1 , . . . , a
qν
t ) =

(
pj1...jt (a

qν

1 , . . . , a
qν
t )

)s

∑

b
qν
1 ,...,b

qν
t

(
pj1...jt (b

qν

1 , . . . , b
qν
t )

)s (30)

with a
qν

j ; b
qν

j = 1, . . . ,W ; ν = 1, . . . , k; k = 1, . . . , M .

∑

a
qν
1 ,...,a

qν
t

p̂j1...jt (a
qν

1 , . . . , a
qν
t ) = 1 (31)

From Eqs. (29) and (30), and Eqs. (42)–(46) of Appendix 1, and Eqs. (64)–(68) of
Appendix 2, the requirement of strict concavity could be given through the second
square bracket of Eq. (29) and we can then write,

⎡

⎢⎢⎢⎣
s(s − r)

(1 − s)2

k∑
μ=1

( qμ

m

)s

m∑
μ=1

( qμ

m

)s
− 1

⎤

⎥⎥⎥⎦ < 0, k = 1, . . . , M. (32)

The curves r(s) given by

s(s − r)

(1 − s)2
σk(s) − 1 = 0, k = 1, . . . ,M, (33)

with

σk(s) =

k∑
μ=1

( qμ

m

)s

m∑
μ=1

( qμ

m

)s
(34)

can be written as

rk(s) = s − (1 − s)2

sσk(s)
, k = 1, . . . ,M. (35)

The epigraph regions of these curves can be written as

C ∪ Ck = {(s, r)|r ≥ s > 0} ∪
{
(s, r)

∣∣∣∣ s > r ≥ s − (1 − s)2

sσk(s)

}
, k = 1, . . . , M.

(36)
At the end of Sect. 2, we have emphasized that the epigraph region of the curve

r = s is C = {(s, r)|r ≥ s > 0}, which is usually taken as the region of strict
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concavity. Here we define the extended region of strict concavity as the epigraph
region of the highest curve of the set (35)

rm(s) = 2 − 1

s
(37)

which is given by the union set:

Cmax = C ∪ Cm = {(s, r)|r ≥ s > 0} ∪
{
(s, r)

∣∣∣∣ s > r ≥ 2 − 1

s

}
. (38)

This extended region is depicted in Fig. 2 as the gray region.

Fig. 2 The blue, green, red and brown lines do correspond to Renyi, Landsberg-Vedral, “Non-
extensive” Gaussian and Havrda-Charvat entropies, respectively. The union of the regions C =
{(s, r)| r ≥ s > 0} and Cm = {(s, r)| s > r ≥ 2 − 1/s} is the epigraph region of the black line
and corresponds to the extended region of strict concavity. Some rk(s) functions are also depicted
and they correspond to k = 1, 2, 3, 4, 5, m = 6. We note that r6(0) = 0.5 and the curve r6(s) is
asymptotic to the straight line r = 2
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Fig. 3 An example of a 8× 3
array of 3-sets of amino acids

A C Y

A C Y

A C T

A T C

A Y C

A C Y

T C A

Y A T

4 An Example of Systematic Derivation of σk(s) Curves from
Data Obtained from the Alignement of Protein Domains

In order to give an example of the construction of σk(s) curves, we shall use arrays
of t-amino acids which have been worked intensively on the presentation of results
during the 21st BIOMAT International Symposium [10].

We shall provide an example of a 8 × 3 array of 3-sets of amino acids with 8
rows (Fig. 3). This example will be convenient for readers who intend to work with
classification of amino acids distributions. According to equations of Appendices
1 and 2 there are 6 different groups on this array of equal t-sets of amino acids,
q1, . . ., q6, in the array (38). The symbol αj1j2j3 could then be written as:

αj1j2j3 =
(
pj1j2j3(A

q1 , Cq1 , Y q1)
)s +

(
pj1j2j3(A

q2, Cq2 , T q2)
)s

+
(
pj1j2j3(A

q3, T q3 , Cq3)
)s +

(
pj1j2j3(A

q4 , Y q4, Cq4)
)s

+
(
pj1j2j3(T

q5, Cq5 , Aq5)
)s +

(
pj1j2j3(Y

q6, Aq6 , T q6)
)s

. (39)

We now refer to Eqs. (42)–(44) of Appendix 1 and we get

αj1j2j3 =
(
3

8

)s

+
(
1

8

)s

+
(
1

8

)s

+
(
1

8

)s

+
(
1

8

)s

+
(
1

8

)s

. (40)

From Eqs. (34) and (42), we can also write for the σk(s) functions:

σ1(s) =
(
3
8

)s

αj1j2j3

; σ2(s) =
(
3
8

)s +
(
1
8

)s

αj1j2j3

; σ3(s) =
(
3
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3

;

σ4(s) =
(
3
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3

; σ5(s) =
(
3
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3

;
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Fig. 4 The rk(s) curves and the structure of extended region of strict concavity as obtained from
a 8 × 3 array of 3-sets of amino acids

σ6(s) =
(
3
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3

= 1 . (41)

In Fig. 4, the related curves rk(s), Eq. (35), are depicted. As has been emphasized
at the end of Sect. 3, Sect. 3, the epigraph region of the curve corresponding to
σ6(s) = 1 and asymptotic to r = 2, or r6(s) = 2 − 1/s, does correspond to the
extended region of strict concavity.

5 Concluding Remarks

In this work we have chosen to present in detail the extensions of the region of
strict concavity on the space of parameters of the Sharma-Mittal class of entropy
measures. We have emphasized the structure of the parameter space and we believe
that this will be very useful for working with the several special cases of entropies
in models of generalized Statistical Mechanics. Some special (s-r) regions of the
parameter space and the curves r(s) on them could specify models of interest on the
study of diseases and their interconnection from the viewpoint of their evolution
in terms of entropy values [12]. A detailed study has been undertaken on the
Jaccard-like Symbol and its usefulness for analysing the distributions of amino
acids in protein domain families [9]. A forthcoming comprehensive review will be
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Fig. 5 The intersection of the extended region of strict concavity (Fig. 2) with the region of fully
synergetic distributions of amino acids in arrays of m rows and n columns (inherited from the
Hölder inequality). There are also synergetic distributions (non-Hölder specifically configurations
of amino acids) on the complementary region s > 1, r ≥ 2 − 1/s

also published with a study of the representative surfaces of entropy measures as
obtained from a systematic parametrization method [9].

As has been emphasized in Appendix 2, the application of the additional
criterium of fully synergetic distributions of amino acids in m × n arrays of m

rows and n columns, will restrict still more the feasible region of the Sharma-Mittal
entropy values associated to these arrays. This is done through the Generalized
Khinchin-Shannon inequalities (Eq. (75)) and [13].

In Fig. 5, we then depict a gray region which is the intersection of the extended
region of strict concavity (Fig. 2) with the region corresponding to full synergy of
the probability distributions. Among all entropy measures belonging to the Sharma-
Mittal entropy class and defined in Sect. 1, the “Gaussian non-extensive” entropy
measure is the only one which remains for r > 2. This is taken as an insight to
undertake the study of evolution of protein domain families and clans working with
this entropy measure.
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Appendix 1: The Construction and Properties
of the Probabilistic Space

We fix the ideas for working with a probabilistic space by considering arrays of
amino acids with m rows and n columns. We will then be able to characterize
the protein domain families and the formation of several clans according the
identification provided by expert biologists through alignment techniques. On some
previous works [4], we have stressed that each protein domain family has as its
representative at least one array of m rows and n columns. In this appendix, we
summarize the usual properties of geometric objects associated to these arrays.
These seem to be essential for the description of the structure of the probabilistic
space and they also help to unveil some of its properties which have so far been
unknown in the scientific literature.

First of all we should stress that the symbols αj1...jt of Eq. (2), could also be
written as

αj1...jt =
∑

a
qμ
1 ,...,a

qμ
t

(
pj1...jt (a

qμ

1 , . . . , a
qμ

t )
)s ↔

m∑

μ=1

(qμ

m

)s

t=1, . . . , n, k=1, . . . , M, 1 ≤ M ≤ m.

(42)

where M is the number of μ-groups of amino acids and qμ stands for the number of
equal t-sets of the amino acids contained in the μth-group.

The significance of Eq. (42) comes from the definition of probability of occur-
rence:

pj1...jt (a
qμ

1 , . . . , a
qμ

t ) = nj1...jt (a
qμ

1 , . . . , a
qμ

t )

m
, (43)

and we have the correspondence:

qμ ↔ nj1...jt (a
qμ

1 , . . . , a
qμ

t ). (44)

Since the number of groups is equal to M , this also means that there is a maximum
of m different groups of t-sets or,

qμ ≤ m . (45)

From eqs.(42) and (43), we write

∑

a
qμ
1 ,...,a

qμ
t

nj1...jt (a
qμ

1 , . . . , a
qμ

t )

m
= 1 ↔

m∑

μ=1

(qμ

m

)
= 1 . (46)
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We now pass to the probability unit vector of W components and to their
generalization of geometric objects of (W)t components. From now on, in order
to alleviate the notation, we do not take in consideration the super indices qμ. For
t = 1, pj1(a1) could be represented as a unit vector of W components:

pT
j1

= (
pj1(1), . . . , pj1(W)

)
. (47)

The escort vector associated to this vector is

p̂T
j1

=
((

pj1(1)
)s

αj1

, . . . ,

(
pj1(W)

)s

αj1

)
(48)

where

αj1 =
∑

a1

(
pj1(a1)

)s (49)

and

1 =
∑

a1

p̂j1(a1) =
∑

a1

(
pj1(a1)

)s

αj1

(50)

A geometric object of (W)2 components could be also defined through a “�-
product”:

pj1�pj2 = pj1|j2 pT
j2

(51)

where pj1|j2 will transform as a column vector.
The structure of this matrix product is given by

(W × 1)(1 × W) = (W × W)

and their components could be written as:

pj1�pj2 =
⎛

⎜⎝
pj1j2(1|1)pj2(1) . . . pj1j2(1|W)pj2(W)

...
. . .

...

pj1j2(W |1)pj2(1) . . . pj1j2(W |W)pj2(W)

⎞

⎟⎠ (52)

where pj1j2(a1|a2) are the components of the column vector of conditional prob-
ability pj1|j2 of the distribution in column j1 with a previous knowledge of the
distribution in column j2.
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Since the components of the matrix 52 are joint probabilities, we then write,

pj1�pj2 =
⎛

⎜⎝
pj1j2(1, 1) . . . pj1j2(1,W)

...
. . .

...

pj1j2(W, 1) . . . pj1j2(W,W)

⎞

⎟⎠ (53)

where pj1j2(a1, a2) are the components of the joint probability of occurrence of the
2-set (a1, a2) in columns j1 and j2.

Analogously a geometric object of (W)3 components could be also defined by
the �-product,

pj1�pj2�pj3 = pj1j2�pT
j3

= pj1j2|j3 pT
j3

= pj1j2j3 (54)

and the structure of this matrix product is

(W × W × 1)(1 × W) = (W × W × W) .

The related (W)3 components could be written as:

pj1�pj2�pj3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pj1j2j3(1, 1, 1) . . . pj1j2j3(1, 1,W)
...

. . .
...

pj1j2j3(W, 1, 1) . . . pj1j2j3(W, 1,W)
...

. . .
...

pj1j2j3(1,W, 1) . . . pj1j2j3(1,W,W)
...

. . .
...

pj1j2j3(W,W, 1) . . . pj1j2j3(W,W,W)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(55)

and so on and so forth for an object of (W)t components:

pj1�pj2� . . .�pT
jt

= pj1j2...jt−1�pT
jt

= pj1j2...jt−1|jt pT
jt

= pj1j2...jt (56)

with the structure of the matrix product given generally by

(W × W × . . . × W × 1)(1 × W) = (W × W × . . . × W)︸ ︷︷ ︸
t

.

The (W)2, (W)3 components of the associated escort geometric objects of the
objects pj1�pj2 and pj1�pj2�pj3 are given by
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p̂j1� p̂j2 =

⎛

⎜⎜⎜⎜⎝

(
pj1j2 (1,1)

)s

αj1j2
. . .

(
pj1j2 (1,W)

)s

αj1j2
...

. . .
...(

pj1j2 (W,1)
)s

αj1j2
. . .

(
pj1j2 (W,W)

)s

αj1j2

⎞

⎟⎟⎟⎟⎠
(57)

and

p̂j1� p̂j2� p̂j3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
pj1j2j3 (1,1,1)

)s

αj1j2j3
. . .

(
pj1j2j3 (1,1,W)

)s

αj1j2j3
...

. . .
...(

pj1j2j3 (W,1,1)
)s

αj1j2j3
. . .

(
pj1j2j3 (W,1,W)

)s

αj1j2j3
...

. . .
...(

pj1j2j3 (1,W,1)
)s

αj1j2j3
. . .

(
pj1j2j3 (1,W,W)

)s

αj1j2j3
...

. . .
...(

pj1j2j3 (W,W,1)
)s

αj1j2j3
. . .

(
pj1j2j3 (W,W,W)

)s

αj1j2j3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(58)

respectively.
To better understand Eq. (58), we introduce (Fig. 6).
The (W)t components of the geometric object of Eq. (56) are now written as:

Fig. 6 A representative of pj1j2j3 object
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p̂j1� p̂j2� . . .� p̂jt =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
pj1 ...jt (1,...,1)

)s

αj1 ...jt
. . .

(
pj1 ...jt (1,...,1,W)

)s

αj1 ...jt

...
. . .

...(
pj1 ...jt (W,1,...,1)

)s

αj1 ...jt
. . .

(
pj1 ...jt (W,1,...,1,W)

)s

αj1 ...jt

...
. . .

...(
pj1 ...jt (1,W,1,...,1)

)s

αj1 ...jt
. . .

(
pj1 ...jt (1,W,1,...,1,W)

)s

αj1 ...jt

...
. . .

...(
pj1 ...jt (W,W,1,...,1)

)s

αj1 ...jt
. . .

(
pj1 ...jt (W,...,W)

)s

αj1 ...jt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(59)

In order to complete this appendix and to assure its usefulness on the derivation
of the results presented in Sects. 3 and 4, we now treat the case of equiprobable
probabilities of occurrence.

In the case of equiprobable distributions pj1...jt (a1, . . . , at ) = W−t , we have
from Eqs. (43) and (46),

1 =
m∑

μ=1

(qμ

m

)
= mW−t (60)

This means that if m ≥ Wt , we should understand this equation as

WtW−t + (m − Wt) · 0 = 1 (61)

We then see that for equiprobable distributions, the symbols σk from Sects. 3
and 4 do not depend on s and can be written as:

σk =

k∑
μ=1

( qμ

m

)s

m∑
μ=1

( qμ

m

)s
= k(W−t )s

m(W−t )s
= k

m
= k

Wt
, k = 1, . . . , W t−1,W t , (62)

where we have used Eq. (60).

The corresponding values of r(s) could be written from Eq. (36) of Sect. 3, as:

r(s) = s − (1 − s)2

sσ k
= s − (1 − s)2

sk
Wt . (63)
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Fig. 7 The rk(s) curves and the structure of the (s-r) space of parameters for some selected k-
values of an equiprobable distribution of probabilities

In Sect. 3, we present a numerical application of Eq. (63), in order to continue the
analysis of the structure of (s-r) space of parameters.

In order to conclude this appendix, we work again with sets of 3-amino acids,
with W 3 = 8000 for an equiprobable distribution and we choose to depict that the
curves corresponding to the values: k = 1, 100, 500, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, on Fig. 7. The last curve r8000(s) = 2 − 1

s
was already presented

in Sect. 3 on Fig. 2.

Appendix 2: The Origin of the Generalized Khinchin-Shannon
Inequalities

Let us consider the definition of the conditional of the escort probability:

p̂j1...jt (a1, . . . , at−1|at ) = p̂j1...jt (a1, . . . , at )

p̂jt (at )
(64)

From Eq. (30) we can write, analogously:
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p̂j1...jt (a1, . . . , at ) =
(
pj1...jt (a1, . . . , at )

)s

∑
(b1,...,bt )

(
pj1...jt (b1, . . . , bt )

)s (65)

p̂jt (at ) =
(
pjt (at )

)s

∑
at

(
pjt (at )

)s (66)

In Eqs. (65) and (66), the symbols aj , bj , 1 ≤ j ≤ t , are running over the one-
letter code for the 20 amino acids

aj ; bj = A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y, 1 ≤ j ≤ t .

We then have from Eqs. (64)–(66):

p̂j1...jt (a1, . . . , at−1|at ) =
(
pj1...jt (a1, . . . , at−1|at )

)s

∑
(a1,...,at )

p̂jt (at )
(
pj1...jt (a1, . . . , at−1|at )

)s (67)

We now remember the definition of the escort of the conditional probability

pj1...jt (a1, . . . , at−1|at )̂ =
(
pj1...jt (a1, . . . , at−1|at )

)s

∑
(a1,...,at−1)

(
pj1...jt (a1, . . . , at−1|at )

)s (68)

The left hand sides of Eqs. (67) and (68) are identical if all amino acids of the
t-th column are equal. For instance,

jt −→ (A,A,A,A, . . . , A)︸ ︷︷ ︸
m

(69)

This distribution will then lead to:

p̂T
jt

= pjt = 1, 0, 0, 0, . . . , 0︸ ︷︷ ︸
20

(70)

For any other distributions of amino acids in the j th column, the ordering of
the two denominators on the right hand sides of Eqs. (67) and (68) has to be decided
after choosing a protein domain family and its related distribution of probabilities of
occurrence of amino acids. In order to undertake this study, we pay special attention
to some functions of probabilities already defined in ref. [1], together an additional
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definition, X(at ).

U ≡
∑

a1,...,at−1

[
pj1...jt−1(a1, . . . , at−1)

]s = αj1...jt−1 (71)

J ≡
∑

a1,...,at−1

[∑

at

p̂jt (at )pj1...jt (a1, . . . , at−1|at )

]s

(72)

Z ≡
∑

a1,...,at

p̂jt (at )
[
pj1...jt (a1, . . . , at−1|at )

]s = αj1...jt

αjt

(73)

X(at ) ≡
∑

a1,...,at−1

[
pj1...jt (a1, . . . , at−1|at )

]s (74)

The letters U , J , Z, X, have been chosen among those which do not codify the
amino acids: B J O U X Z.

Actually, there is not any ordering between (74) and (71), (72), (73) for a generic
occurrence of amino acids, as have been emphasized in ref. [1]. This assertion could
be also proven “a fortiori” if the amino acid corresponding to at does not occur, or
X(at ) = 0.

It should be also stressed that the condition J ≥ Z i.e., the Hölder inequality
[1, 12] which stands for 1 > s ≥ 0 is sufficient to guarantee the inequality U ≥
Z, which leads to the Generalized Khinchin-Shannon inequalities to be obtained
through iteration:

αj1...jt−1 ≥ αj1...jt

αjt

t → t − 1 ⇒ αj1...jt−2 ≥ αj1...jt−1

αjt−1

≥ αj1...jt

αjt · αjt−1

t → t − 2 ⇒ αj1...jt−3 ≥ αj1...jt−2

αjt−2

≥ αj1...jt

αjt · αjt−1 · αjt−2

...

t → 2 ⇒ αj1 ≥ αj1j2

αj2

≥ αj1...jt

αjt · . . . · αj3 · αj2

⇒ αj1...jt ≤
t∏

l=1

αjl
(75)
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However, in Figs. 8 and 9, below, we have tried to characterize the upsurge of
regions in which J ≥ Z for s > 1 by presenting the curves U − Z and J − Z for
two 8 × 3 arrays obtained from the Pfam 27.0 database and a hypothetical 8 × 3
array which has been constructed aiming a better alignment. The results led us to
conjecture that this would occur systematically on greater arrays to be obtained by
working with recent versions of the database. This kind of work is now in progress
and it will be published elsewhere.

Fig. 8 8 × 3 arrays of amino
acids: (a) from Pfam
PF01926, rows 25–32,
columns 30-32; (b) from
Pfam PF01926, rows 3–10,
columns 3–5; (c) a
hypothetical 8 × 3 array
aiming a good alignment

K A Q

A G E

N T P

V A G

K P Q

V P G

P K C

R P G

V I T

A I I

V I A

V I A

M V V

V L I

A I V

A L I

A A A

A C C

A C A

A C A

A C A

C A A

C C A

C C A

(a) (b) (c)

Fig. 9 The blue, green and red curves do correspond to the matrices (a), (b), and (c) of Fig. 8,
respectively. (a) Study of the Hölder (J ≥ Z) and Non-Hölder (J < Z) probability distributions
from the 8 × 3 arrays of Fig. 8; (b) Study of the viability of Generalized Khinchin-Shannon
Inequalities (U ≥ Z) associated to Hölder probability distributions (J ≥ Z) or J ≥ Z ⇒ U ≥ Z.
However, there are distributions of amino acids such that U ≥ Z even where J < Z. The red curve
is an example for s > 1.4537
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Fig. 9 (continued)
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