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1 Introduction

A minimal models of vertebrae formation were studied in [8] concerning periodic
structures formation. The authors proposed two kinds of reaction-diffusion models,
from which one is of clock-and-wavefront type and the other one is of Turing type.
Our goal is to show that in case of the Turing type model the kinetic system as well
the reaction-diffusion system exhibit oscillating solutions. The chapter is organised
as follows. In the next section we introduce the model. In the section that follows we
examine the existence and stability of some equilibria. In the third section we show
the occurence of Hopf bifurcation in the kinetic system as well as in the parabolic
system.

2 The Model

The model proposed by Annie Lemarchand and Bogdan Nowakowski (cf. [8]),
which describes vertebrae formation is governed by
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∂tA = dA�rA + fA(A,B),

∂tB = dB�rB + fB(A,B)

⎫
⎬

⎭
(1)

on �×R
+
0 where � is a bounded, connected spatial domain with piecewise smooth

boundary ∂�, dA, dB > 0 represent the diffusion coefficients, A(r, t) and B(r, t)
are the concentrations of the species at time t ∈ [0,+∞) and place r ∈ �. The
kinetic part of the model (1)

Ȧ = fA(A,B) := −αA + βA2B,

Ḃ = fB(A,B) := γ − δB − βA2B

⎫
⎬

⎭
(2)

(α, β, γ, δ > 0) was inspired from the Schnakenberg model (cf. [9])

Ȧ = A2B − A, Ḃ = −A2B + kSch (3)

and the Gray-Schott model (cf. [4])

Ȧ = −AB2 − k1
GSA + k2

GS, Ḃ = AB2 − k3
GSB − k4

GS. (4)

We are interested in solutions � : � × R
+
0 → R

2 of (2) that satisfy the no-flux
boundary conditions

(n · ∇r)S (r, t) = 0
(
(r, t) ∈ ∂� × R

+
0

)
, (5)

resp. non-negative initial conditions

S (r, 0) = S0 (r) ≥ 0
(
(r, t) ∈ � × {0}) (6)

where S := (A,B), and n denotes the outer unit normal to ∂�.

3 The Kinetic System

It was mentioned in the original paper [8] that parameters α, β, γ, δ are chosen such
that the system possesses three steady states. It is easy to see that this is the case
when

K := βγ 2 − 4α2δ > 0 (7)

holds. In this case the kinetic system (2) exhibits three equilibria in the first quadrant
of the phase space, namely one on the boundary: Eb := (0, γ /δ) and two interior
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equilibria (cf. Fig. 1.): E± := (A∓, B±) where

A± := βγ ± √
βK

2αβ
and B± := α

δ
· A±.

In what follows we study the stability of possible equilibria S := (S1, S2) of the
kinetic system (2) and the possibility of Hopf bifurcations. The coefficient matrix of
the system linearized at S is

A := J(fA,fB)(S1, S2) =
[

−α + 2βS1S2 βS
2
1

−2βS1S2 −δ − βS
2
1

]

with trace

Tr(J(fA,fB)(S1, S2)) = −α + 2βS1S2 − δ − βS
2
1

and determinant

det(J(fA,fB)(S1, S2)) = αδ + αβS
2
1 − 2βδS1S2.

A simple linear stability analysis shows that Eb is always locally asymptotically
stable, because the Jacobian of system (2) at these equilibrium point takes the form

Jb := J(fA,fB)(0, γ /δ) =
[−α 0

0 −δ

]

.

The Jacobians evaluated at E± have the form

J+ := J(fA,fB)(E+) =
⎡

⎣
α

(
√

βK−βγ )
2

4α2β

−2α
γ(

√
βK−βγ )
2α2

⎤

⎦

and

J− := J(fA,fB)(E−) =
⎡

⎣
α

(
√

βK+βγ )
2

4α2β

−2α − γ (
√

βK+βγ )
2α2

⎤

⎦ .

Based on the form of the characteristic polynomial

z2 − Tr(A)z + det(A) (z ∈ C)

it is easy to determine the stability of the equilibrium points. It is clear that
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Fig. 1 A phase portrait of system (2) for K < 0, resp. K > 0



Oscillations in a System Modelling Somite Formation 241

• the matrix J+ is unstable, because

Tr(J+) = α + γ
(√

βK − βγ
)

2α2

and

det(J+) = K − γ
√

βK

2α
,

furthermore det(J+) is negative due to K < βγ 2;
• the matrix J− is stable if and only if

Tr(J−) = α − γ
(√

βK + βγ
)

2α2
< 0

hold, because

det(J−) = K + γ
√

βK

2α
> 0.

Since the determinant of J− stays positive, then Hopf bifurcation can occur only
if the trace is changing its sign. It is easy to calculate that if α > δ then Tr(J−) = 0
if and only if

β = α4

γ 2(α − δ)

holds. Thus, by fixed α, γ, δ, the parameter β will play the role of the bifurcating
parameter.

Theorem 3.1 Suppose that

α > δ and α 	= 2δ (8)

hold, then at

β∗ := α4

γ 2(α − δ)
(9)

the equilibrium E−(β) of (2) undergoes a Poincaré-Andronov-Hopf bifurcation:
E−(β) loses its stability at β∗ and system (2) has a branch of periodic solutions
bifurcating from E−(β) near β = β∗ (cf. Fig. 2.).
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Fig. 2 A phase portrait of system (2) when (7), (8) and (9) hold

Proof The characteristic polynomial of the matrix A at E−(β) has the form

�A(z, β) := z2 − Tr(β)z + det(β) (z ∈ C)

where

Tr(β) := Tr (J−(β)) and det(β) := det (J−(β)) .

Clearly,

det(β∗) = α(α − δ) > 0,

resp. from (8)

Tr(β∗) = 0 and
∂

∂β
Tr(β∗) = γ (α − δ)2

α3(α − 2δ)
	= 0

follows, which proves the statements of the theorem (cf. [5, 7]). ��
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4 The Parabolic System

In what follows we consider system (1) with homogeneous Neumann boundary
conditions (5) and nonnegative initial conditions (6). Clearly, a spatially constant
solution �(·) = (	1(·),	2(·)) of system (1) satisfies boundary conditions (5) and
system (2). The equilibria of system (2) are constant solutions of (1), (5) at the
same time. In order to investigate the local dynamical behavior of system (1) near
the equilibria Eb and E± of (2) we linearize (1) at these equilibria. The linearized
system at the equilibrium point

S = (S1, S2) ∈ {Eb,E±}

with the same initial and boundary conditions has the form

∂Z
∂t

= D · �rZ + AZ in � × R
+
0 (10)

(n · ∇r)Z = 0 in ∂� × R
+
0 (11)

Z (r, 0) = Z0 (r) on � × {0} (12)

where

A := J(fA,fB)(S) =:
[

a11 a12

a21 a22

]

.

Using the method of eigenfunction expansions for the spatial domain � the solutions
of problem (10) and (11) have the form

�(r, t) =
∞∑

n=0

ψn(r) exp (Ant)�0n ((r, t) ∈ � × R
+
0 )

(cf. [6]), where for n ∈ N0

An := A − λnD, �0n :=
∫

�

Z0 (r) ψn(r) dr

and λn is the nth eigenvalue of the minus Laplacian on � subject to homogeneous
Neumann boundary conditions, resp. ψn is the corresponding normalized eigen-
function, i.e. λn and ψn are solutions of

�ψ = −λψ,
∂ψ

∂n

∣
∣
∣
∣
∂�

= 0.
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It is well known (cf. [3]) that

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn −→ +∞ (n → ∞)

and the eigenfunctions to different eigenvalues are orthogonal to each other.
According to [1, 2] the equilibrium S of (1), (5) is asymptotically stable if for all

n ∈ N0 the matrix An is stable, i.e. both eigenvalues of An have negative real parts;
furthermore S is unstable if for some index n ∈ N0 there exists an eigenvalue of
An with positive real part. The characteristic polynomial of the matrix An have the
form

�An
(z) := z2 − Tnz + Dn (z ∈ C) (13)

where

Tn := Tr(An) = Tr(A) − λn Tr(D)

and

Dn := det(An) = λ2
n det(D) − λn (dAa22 + dBa11) + det(A).

Thus, if S = (S1, S2) = E− then for all β > 0 the characteristic equation of An has
the form

�An
(z, β) = z2 − Tn(β)z + Dn(β) = 0 (z ∈ C, n ∈ N0)

where

Tn(β) := α − γ
(
βγ + √

βK
)

2α2 − λn(dA + dB)

and

Dn(β) := λ2
ndAdB +

(
dAγ (

√
βK + βγ )

2α2
− dBα

)

λn + K + γ
√

βK

2α
.

In order to have Hopf bifurcation one has to show that a pair of complex conjugate
roots

μ(β) ± ıν(β)

crosses the imaginary axis with non-zero velocity, that is for a β∗ > 0

μ(β∗) = 0, ν(β∗) 	= 0 and μ′(β∗) 	= 0
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hold. This is fulfilled (cf. [5]) if exists n ∈ N0 and β∗ > 0 such that

Tn(β∗) = 0,
∂

∂β
Tn(β∗) 	= 0, Dn(β∗) > 0 (14)

and

Tm(β∗) 	= 0, Dm(β∗) 	= 0 (n 	= m ∈ N0). (15)

We have to remark that β∗ in (9) is always a Hopf bifurcation value, since

T0(β
∗) = 0 and Tn(β

∗) = −λn(dA + dB) < 0 (n ∈ N),

resp.

Dn(β
∗) = λ2

ndAdB + α (dA − dB) λn + α(α − δ) > 0 (n ∈ N0)

if

dA > dB and α > δ (16)

hold. This corresponds to the Hopf bifurcation of spatially homogeneous periodic
orbits which have been known from Theorem 3.1. Apparently β∗ is also the unique
value for β for the Hopf bifurcation of spatially homogeneous periodic orbits (cf.
Fig. 3.).

In what follows, we shall search for spatially non-homogeneous Hopf bifurcation
value in case of n ∈ N. For 0 ≤ β ∈ R let define

E(β) := α − γ
(
βγ + √

βK
)

2α2 = α −
γ

(
βγ + √

β(βγ 2 − 4α2δ)
)

2α2

then

E(0) = α > 0 and lim
β→+∞ E(β) = −∞

and it follows from (7) that

E′(β) = −
γ

(

γ + βγ 2−2α2δ√
β(βγ 2−4α2δ)

)

2α2 < 0 (β > 0).

This means that E is stricktly decreasing and in case of

α > 2δ + λn(dA + dB) (17)
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Fig. 3 Solution of system (1) when (9) and (16) hold

there is a unique solution β = βn > 0 of the equation

E(β) = λn(dA + dB), resp. Tn(β) = 0.

Direct calculation shows that the unique positive solution has the form

βn := α2 (α − λn(dA + dB))2

γ 2 (α − δ − λn(dA + dB))

holds.

Theorem 4.1 The transversality condition, i.e.

μ′(βn) < 0 (n ∈ N0) (18)

is satisfied.

Proof It is easy to see that

μ′(βn) = 1

2
· ∂

∂β
Tn(βn) = 1

2
· E′(βn) < 0 (n ∈ N0)

which proves the statement of the theorem. ��
It is also clear that for all n ∈ N

Tn(βn) = 0 and Tm(βn) 	= 0 (n 	= m ∈ N)

hold.
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Next we will investigate whether

Dm(βn) 	= 0 (m ∈ N0),

and in particular, Dn(βn) > 0. It is easy to see that

Dm(βn) = λ2
mdAdB +

(
dAγ (

√
βnK + βnγ )

2α2
− dBα

)

λm + K + γ
√

βK

2α
.

Because

dAγ (
√

βnK + βnγ )

2α2
− dBα = γ dA

2α2
· (E + F) − dBα

where

E := α2 (α − λn(dA + dB))2

γ (α − δ − λn(dA + dB))
,

and

F :=
√

α4(α − λn(dA + dB))2(α − 2δ − λn(dA + dB))2

γ 2(α − δ − λn(dA + dB))2

we obtain the following result.

Theorem 4.2 If an n ∈ N0 is chosen such that assumptions (17) and

dB < dA · α − λndA

α + λndA

(19)

hold, then in system (1) Poincaré-Andronov-Hopf bifurcation takes place: E−(β)

loses its stability at βn and system (1) has a branch of periodic solutions bifurcating
from E−(β) near β = βn.

Proof Obviously, if (17) holds then

F = α2(α − λn(dA + dB))(α − 2δ − λn(dA + dB))

γ (α − δ − λn(dA + dB))
.

Thus,
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γ dA

2α2 · (E + F) = dA ·
{

(α − λn(dA + dB))2

α − δ − λn(dA + dB)

+ (α − λn(dA + dB))(α − 2δ − λn(dA + dB))

α − δ − λn(dA + dB)

}

= dA(α − λn(dA + dB)) [2α − 2δ − 2λn(dA + dB)]

2 (α − δ − λn(dA + dB))

= dA(α − λn(dA + dB)).

Hence, if condition (19) holds then

γ dA

2α2
· (E + F) − dBα = −dB(α + λndA) + dA(α − λndA) > 0.

This means that Dm(βn) > 0. This with the transversality condition (18) together
proves Hopf bifurcation. ��
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