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1 Introduction

Global health as well as the science of epidemiology are currently experiencing
the greatest challenge in history. The pandemic caused by COVID-19, severe
acute respiratory syndrome-related coronavirus SARS-COV-2, this disease which
appeared in Wuhan, China, in December 2019, belongs to a large family of viruses
that can cause various diseases in humans, ranging from the common cold to
respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). All
nations have entered a fierce race to find an effective cure or vaccine to curb the
death rate among the populations which is growing day by day, as well as to
bring a glimmer of optimism after the state of horror and panic that humanity has
experienced and also save States from an unprecedented economic crisis after the
total shutdown and confinement of the people that this mysterious COVID-19 has
pushed the authorities to establish in the world whole.

Expected as the savior of humanity, many specialists consider the vaccine as
our only means of regaining the “life before”, but many questions arise about its
effectiveness and its duration of protection whether in humans or population. All
the epidemics that mankind has known have been eradicated by effective vaccines,
it reveals the truth that a good vaccination strategy saves millions of lives around
the world. The work of a vaccine is to excite and then prepare the immune system
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to recognize viruses, then, if the body is exposed to these same pathogens, it is
immediately ready to destroy them, which helps prevent against the disease.

To fight COVID-19, it has been reported that more than 409.6 million doses
of the vaccine have been administered worldwide. There is already a large gap
between the vaccination programs of different countries, because of this and due
to insufficient vaccine doses around the world, most countries have focused their
early immunization efforts on priority groups such as people. Clinically vulnerable
people in their sixties, sixties and over, with a few exceptions such as doctors,
nurses, police and gendarmes as well as teachers and professors. There are ten
different vaccines so far. The Pfizer-BioNTech vaccine, which has been shown to
be 95 percent effective in reducing coronavirus infections, is currently in use in 77
countries. Most of the vaccines currently in use require two doses for a patient to
be fully immunized, as recently the United States authorized a single dose vaccine
called Johnson and Johnson—this data is compiled from government sources by the
University of Oxford.

Mathematical modeling contributes enormously to the development of epidemi-
ological research allowing a better understanding the evolution of pandemics. To
illustrate this, Many mathematical models have been successfully developed in order
to describe the evolution of infectious diseases [1–8]. The first mathematical models
developed to study the evolution of the COVID-19 pandemic were inspired by SIR
models [9–11]. Then, mathematics researchers proposed a SIQR models with quar-
antine strategy [12–16]. Kucharski et al. [17] have studied a mathematical model
considering all the positive COVID-19 infected cases of Wuhan. An autonomous
system of mathematical model to study the spread of COVID-19 in the Wuhan
city have presented by Ndairou et al. [18] . The controlling status of COVID-19
of Wuhan city have analyzed by Prem et al. [19]. Also, the effective procedure of
COVID-19 disease using isolation have described by Hellewell et al. [20].

In the same epic, we proposed a mathematical model describing all the scenarios
of evolution of the COVID-19 pandemic with a vaccination strategy, we estimate
that the infected individuals, after their recovery, can become susceptible after. We
define our model consisting of four ordinary differential equations illustrating the
interaction between the susceptible S, the real infected I , the hospitalized infected
H and the vaccinated-treated individuals V (Fig. 1).

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − β(1 − ρ)SI + ηI + θH + εV − (d + γ )S,

dI

dt
= β(1 − ρ)SI − (d + δ1 + η + α)I ,

dH

dt
= αI − (d + δ2 + θ)H ,

dV

dt
= γ S − (d + ε)V ,

(1)
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Fig. 1 The flowchart of
SIHV epidemic modeling of
COVID-19
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With

S(0) ≥ 0, I (0) ≥ 0, H(0) ≥ 0, V (0) ≥ 0.

Where � is the recruitment rate, β is the disease transmission rate, ρ is the
portion of susceptible human would maintain proper precaution measure for disease
transmission (0 < ρ < 1), ε is the rate of vaccinated individuals who became
susceptible, η and θ are the recovery rates of real infected individuals and the
confirmed infected, respectively, δ1 is the COVID-19 induced death rate of real
infected individuals, α is the rate of transmission from the class of real infected to
the class of confirmed infected, δ2 is the COVID-19 induced death rate of confirmed
infected individuals, γ is the vaccinated susceptible individuals rate and d is the
natural death rate of the population.

Our paper is organized as follows. In Sect. 2, we will study the local stability of
our model. In the next section, we will prove the positivity and the boundedness
results. After, we give the two equilibrium points and calculate the basic reproduc-
tion number of our COVID-19 epidemic model. Section 4 is devoted to illustrate
our theoretical findings by numerical simulations, we will give also a comparison
between the model results and COVID-19 clinical data. The last section concludes
our work.
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2 Positivity and Boundedness of Solutions

Since our problem is related to the population dynamics, we will prove that all model
variables are positive and bounded. First, we will assume that all the parameters in
our model are positive.

Proposition 2.1 For any positive initial conditions S(0), I (0), H(0) and V (0), the
variables of the model (1) S(t), I (t), H(t) and V (t) will remain positive for all
t > 0.

Proof We have the following results :

Ṡ|S=0 = λ + ηI + θH + εV ≥ 0,

İ |I=0 = 0 ≥ 0,

Ḣ |H=0 = αI ≥ 0,

et

V̇ |V =0 = γ S ≥ 0,

this shows the positivity of solutions for all t ≥ 0.
For the boundedness of the solutions, Let

N(t) = S(t) + I (t) + C(t) + V (t),

according to system (1), we have

dN(t)

dt
= � − dN(t) − δ1I (t) − δ2C(t)) ≤ d

(
�

d
− N(t))

)

,

then we have

d
(

�
d

− N(t)
)

dt
+ d

(
�

d
− N(t)

)

dt ≥ 0.

Therefore

�

d
− N(t) ≥

(
�

d
− N(0)

)

e−dt



Mathematic Analysis of a SIHV COVID-19 Pandemic Model Taking Into. . . 215

if
�

d
− N(0) ≥ 0, i.e., S(0) + I (0) + C(0) + V (0) ≤ �

d
, then

S(t) + I (t) + C(t) + V (t) ≤ �

d
.

Thus the region

� =
{

(S, I, C, V ) ∈ R
4+ : S + I + C + V ≤ �

d

}

is a positively invariant set of system (1).

3 Steady States and Local Stability

3.1 Basic Reproduction Number

The basic reproduction number denoted by R0, is the average number of new
infected cases generated by one infected individual when all the population are
susceptible individuals [21]. In order to calculate the basic reproduction number,
we will use the next generation matrix FV −1, where F is the nonnegative matrix of
new infection cases, and V is the matrix of the transition of infections associated to
the model (1)

F =
(

β(1 − ρ)S0 0
0 0

)

, V =
(

δ1 + d + α + η 0
−α δ2 + d + θ

)

.

So,

FV −1 =
⎛

⎝

β(1 − ρ)S0

δ1 + d + α + η
0

0 0

⎞

⎠ ,

with S0 = �(d + ε)

d(d + ε + γ )
. The basic reproduction number is the spectral radius of

the matrix FV −1. This fact implies that

R0 = �β(1 − ρ)(d + ε)

d(d + ε + γ )(δ1 + d + α + η)
.
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3.2 Steady States

The steady states of our studied problem (1)are illustrated by the following theorem

Theorem 3.1 The model (1) has a disease-free equilibrium Ef and an endemic
equilibrium E1.

Proof To find the steady states of the system 1, we solve the following system

� − β(1 − ρ) SI + εV + θH + ηI − (d + γ )S = 0,

β(1 − ρ) SI − δ1I − (d + α + η)I = 0,

αI − δ2H − (d + θ)H = 0,

γ S − (d + ε)V = 0.

After a simple resolution, we obtain

• When I = 0 we find the disease-free equilibrium

Ef =
(

�(d + ε)

d(d + ε + γ )
, 0, 0,

�γ

d(d + ε + γ )

)

.

• When I �= 0 we find the endemic equilibrium defined as follows
E1 = (

S∗, I ∗, C∗, V ∗),
where

S∗ = S0

R0
,

I ∗ = (R0 − 1)

�R0
,

H ∗ = α(R0 − 1)

(δ2 + d + θ)�R0
,

V ∗ = γ S0

(d + ε)R0
.

Where � = (d + ε)(δ2 + d + θ) + α(δ2 + d)

�(δ2 + d + θ)
and S0 = �(d + ε)

d(d + ε + γ )
.

It’s clear that E1 is well defined when R0 > 1.
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3.3 Local Stability

3.3.1 Local Stability of the Disease-Free Equilibrium

The local stability of the disease-free equilibrium point Ef =
(

�(d + ε)

d(d + ε + γ )
,

0, 0,
�γ

d(d + ε + γ )

)

, is given by the following result:

Prop 3.1 When R0 < 1, then the disease-free equilibrium point, E0, is locally
asymptotically stable.

Proof The Jacobian matrix of the system (1) at E0 is given by:

JEf
=

⎛

⎜
⎜
⎝

−(d + γ ) −β(1 − ρ)S0 + η θ ε

0 β(1 − ρ)S0 − (δ1 + d + α + η) 0 0
0 α −(δ2 + d + θ) 0
γ 0 0 −(d + ε)

⎞

⎟
⎟
⎠ .

(2)
The characteristic polynomial of JE0 is

PE0(λ) = [λ + d][λ + (d + γ + ε)] [λ + (δ2 + d + θ)] [λ + (δ1 + d + α + η)(1 − R0)].

Therefore, the eigenvalues of J (E0) are given as follow,

λ1 = −d < 0,

λ2 = −(d + γ + ε) < 0,

λ3 = −(δ2 + d + θ) < 0,

λ4 = −(δ1 + d + α + η)(1 − R0).

clearly, λ1, λ2 and λ3 are negative. However, λ4 is negative when R0 < 1.

Consequently Ef is locally asymptotically stable when R0 < 1.

3.3.2 Local Stability of the Endemic Equilibrium

The local stability of the endemic equilibrium point E1 = (
S∗, I ∗, C∗, V ∗), is

given by the following result:

Prop 3.2 When R0 > 1 then the endemic equilibrium point E1 is locally asymptot-
ically stable.

Proof The Jacobian matrix of the system (1) at E1 is given by:
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JE1 =

⎛

⎜
⎜
⎜
⎜
⎝

−β(1 − ρ)I − (d + γ ) −β(1 − ρ)S + η θ ε

−β(1 − ρ)I β(1 − ρ)S − (δ1 + d + α + η) 0 0

0 α −(δ2 + d + θ) 0

γ 0 0 −(d + ε)

⎞

⎟
⎟
⎟
⎟
⎠

.

(3)
The characteristic polynomial of JE1 is

PE1(λ) = (d + ε + λ)
(
λ3 + A1λ

2 + A2λ + A3

)

such that:

A1 = d + δ2 + θ + �(d + ε)

S0
,

A2 = �(d + ε)

S0
(d + δ2 + θ) + β(1 − ρ)(d + δ1 + α)(d + ε)I ∗S0

R0S∗ ,

A3 = β(1 − ρ)I ∗S0
R0S∗ (d + δ1 + α + (d + ε)(d + δ2 + θ) − αθ(d + ε)) .

The first eigenvalue of (3) is λ1 = −(d + ε) < 0, also it is easy to verify that
A1 > 0, A1A2 − A3 > 0 and A3 > 0 if R0 > 1 then by using the Routh-Hurwitz
Theorem, the other eigenvalues of (3) have negative real parts.

Consequently, E1 is locally asymptotically stable when R0 > 1.

4 Numerical Simulations

In this section, we will perform some numerical simulations in order to confirm our
theoretical results and to check the impact of vaccination strategy in fighting against
the spread of COVID-19 pandemic. Indeed, Fig. 2 shows the evolution of infection
for � = 1, ρ = 0.1, η = 0.1, θ = 0.6, d = 0.1,γ = 1.2, ε = 0.03, β = 1.3,
δ1 = 0.7, δ2 = 0.6 and α = 0.4.

Figure 2 depicts the dynamics of all SIHV variables. In this figure, we observe
that all curves drop to zero, except the curves representing the susceptible and
vaccinated individuals. With the used parameters, the basic reproduction number
is less than one (R0 = 0.8797 < 1). Figure 3 shows the time evolution of our
SICV four compartments model. With the used parameters, the basic reproduction
number is more than one (R0 = 1.19721 > 1). We observe that the trajectories
representing real and confirmed infected individuals remain at a strictly positive
level which means that the disease persists. Which is in good agreement with the
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Fig. 2 The dynamical behavior of compartments S, I , H and V revealing the extinction of
COVID-19 disease with R0 = 0.8797 < 1

theoretical result concerning the stability of equilibria, the disease free and the
endemic equilibrium points.

Figure 3 shows the evolution of infection for � = 1, ρ = 0.1, η = 0.1, θ = 0.6,
d = 0.1,γ = 0.75, ε = 0.01, β = 1.3, δ1 = 0.7, δ2 = 0.6 and α = 0.35.

4.1 Application to Morocco COVID-19 Clinical Data

We have chosen to make our comparison, the Moroccan clinical data during the
period between September 12 and March 28 [22]. for the following parameter
values: � = 1; ρ = 0.1; a = 0.001; η = 0.1; θ = 0.6; d = 0.1; γ = 0.6; ε = 0.01;
β = 1; δ1 = 0.7; δ2 = 0.6; α = 0.2. Figure 4 shows the time evolution of infected
cases, we observe a significant good approach between the curves representing the
model numerical results and the clinical data. Therefore, our model have shown its
efficiency in approaching and predicting the second wave of COVID-19 pandemic.
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Fig. 3 The dynamical behavior of compartments S, I , H and V revealing the persistence of
COVID-19 disease with R0 = 1.19721 > 1

4.2 The Effect of the Vaccination Strategy on COVID-19
Pandemic Spread

In this subsection, we will study the role of the vaccination strategy in reducing the
infection severity of COVID-19 pandemic. Figure 5 shows the time evolution of the
real infected cases for the parameters � = 0.95, ρ = 0, η = 0.1, θ = 0.6, d = 0.1,
γ = 0.1, ε = 0.01, β = 2.6, δ1 = 0.2, dδ2 = 0.1 and α = 0.3. We observe the
effect of vaccination strategy on reducing the spread of the COVID-19 infection.
Indeed, by increasing the vaccination rate a significant reduce of the real infected
individuals is observed which clearly reveals the impact of vaccination strategy in
fighting against the spread of COVID-19 pandemic.

5 Discussion and Conclusion

Mathematical modeling contributes enormously in epidemiological research via
both theoretical and numerical methods allowing a better understanding of the evo-
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lution of the pandemic within populations and to unearth the interactions between
the various factors responsible for the spread of infections between individuals, but
also to provide conditions for the stability of the variables that cause the disease.
Due to the rapid spread of COVID-19, scientific researchers are working day and
night to find an ideal vaccine that eradicates this pandemic. Those efforts can bring
the world back to a normal pre-COVID-19 normal life. The main objective is to find
an adequate vaccination strategy to curb the rapid spread of the virus as well as to
obtain collective immunity to prevent the appearance of new variants of COVID-19.

In this paper, we have studied a mathematical model describing the spread of the
COVID-19 pandemic with a vaccination strategy. The model consisted of four com-
partments, namely, the susceptible S, the real infected I , the confirmed infected H

and the vaccinated individuals V , this type of model takes the abbreviation SIHV .
We have first studied the local stability of our model two state states by calculating
the basic reproduction number of our COVID-19 epidemic model. Finally, we have
confirmed our theoretical results by adequate numerical simulations. An interesting
comparison was also made between the model theoretical results and the COVID-
19 clinical data from Morocco between September 2020 and April 2021. It was also
shown that vaccination strategy plays an essential role in controlling COVID-19
spread. We can conclude from our study that a good vaccination strategy leads to
controlling COVID-19 in target populations.
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