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Preface

The publication of the present book follows the fine tradition of books already
published with selected papers accepted at the BIOMAT International Symposia
on Interdisciplinary Mathematical and Biological Sciences. All these papers were
selected for publication as chapters in the book, after their presentation in the
scientific sessions of the conference and after a final peer review. We hoped
that the pandemic situation will improve and that we can have a face-to-face
conference in 2021. Unfortunately, we again had to organize the conference in an
online format. We believe that once again the tradition of BIOMAT conferences
in terms of the absence of parallel sessions, as well as their fundamental mission
of strengthening the interdisciplinary scientific activities of our colleagues from
developing countries, has been so efficient to support this tradition.

We hope that security conditions will allow the organization of at least one
hybrid conference in 2022. We are however quite sure that if occasional difficulties
should again impede the hope of organizing a face-to-face conference that would be
desirable for a true interdisciplinary conference series, our tradition and the sense of
duty of all our colleagues in the scientific community of the BIOMAT Consortium
will once again suffice to preserve the professional competence of the organization
and the scientific participation that is essentially due to all of them.

For this second online version of a BIOMAT Symposium, BIOMAT 2021—21st
International Symposium on Mathematical and Computational Biology, we again
benefited from the cooperation of the Brazilian Academic Network—RNP, and Dr.
Beatriz Zoss, to whom we now express our sincere thanks for her professional
expertise. BIOMAT 2021 benefited from the cooperation of all colleagues/authors of
accepted papers and abstracts to bring together professional researchers and research
students from 17 countries on four continents. The Scientific Program, which was
followed with all necessary rigor, had 23 contributed lectures, 16 Keynote Speaker
lectures, and 2 Keynote Speaker Tutorial lectures. We chose to work with Greenwich
Mean Time (GMT), and the lectures were scheduled from 10:00 to 16:45 GMT, in
order to maximize the presence of participants in countries from four continents.
The lectures were organized into 20 scientific sessions from Monday morning,
November 1, to Friday evening, November 5.
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vi Preface

At the end of the opening session on Monday morning, November 1, 2021, 10:00
GMT, a few words were said in honor of Professor Nick Britton, who passed away
in December 2020. We transcribe here what was said as a testimony of our deep
gratitude to what our friend Nick Britton did for the BIOMAT Consortium and the
honor of having him as a friend.

“At this opening session of the 21st BIOMAT International Symposium on
Mathematical and Computational Biology, we have the duty and honor to pay tribute
to Professor Nicholas Ferris Britton, Professor Emeritus of the University of Bath,
UK.”

Nick Britton, as he became known throughout the world, especially in the 67
countries where he developed scientific activities, was responsible for the invitation
made to the BIOMAT Consortium to organize the 2010 Annual Meeting of the
Society for Mathematical Biology in Rio de Janeiro, Brazil, as a joint conference
with the BIOMAT 2010 International Symposium.

Nick Britton was a keynote speaker at the BIOMAT International Symposia held
in 2008, 2009, 2010, 2011, and 2014. He was also a member of the Consortium
Board of Directors as one of the representatives of Western Europe. He was besides
everything a wonderful human being, a very polite gentleman, and a great scientist.
He had an enormous scientific dedication to interdisciplinary topics in mathematics
and biology.

Nick passed away in December 2020, just before Christmas. He is deeply missed
by all his colleagues, as well as former students and family members, such as
his wife, mother, daughter, and three sisters, for the pain of his loss and the
remembrance of what he represents to the entire scientific community. We would
like to ask everyone to observe a minute’s silence to pay tribute to an old and great
friend.

The Editor of the book would like to thank again the professional help given
by his former PhD student, Dr. Simão C. de Albuquerque Neto, with all the
conveniences (and inconveniences) in the use of the electronic platform and his
kind way of helping the presentations of our colleagues in the scientific sessions.
He also acknowledges the patience and competence of his wife Carmem Lucia
S.C. Mondaini with the administration of technical matters related to the financial
support of the conference, as well as for her collaboration with the reception of
papers to be submitted to the peer review procedure. The Editor also takes this
opportunity to inform you that our 12-year-old son, Romolo Mondaini, after trying
to attend some of the talks in the time available between his classes, confirmed what
he said last year during the BIOMAT 2020 conference that he also wants to be a
scientist and a teacher. After 47 years as a university professor, all we can say is:
May God forgive and help him!

Rio de Janeiro, Brazil R. P. Mondaini
November 06, 2021
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Whole-Graph Embedding and
Adversarial Attacks for Life Sciences

L. Maddalena, M. Giordano, M. Manzo, and M. R. Guarracino

1 Introduction

Networks provide a suitable model for many scientific and technological problems
where it is important to represent not only complex entities but also their relations,
which can be derived from structural or functional information or their integration.
Networks have been successfully used in many life science applications, where
data is abundant and publicly accessible. Structural information and omics data
are the most abundant and publicly available resources for extracting knowledge
through graph theory-based approaches. Examples can be found in brain networks
[48]), molecular structures data (e.g., chemical compounds [23], proteins structure
[57] networks), or physical interactions between molecules (e.g., protein-protein
[42], lncRNA–protein interaction networks [63]). In other applications, functional
networks are derived from the integration of available knowledge with omics data
analyses (e.g., metabolic [18, 22], gene-regulatory [13], co-expression [58], drug-
disease association [67] networks). In such applications, various entities are used
as nodes, such as gene, disease, RNA, etc. The edges between nodes mean known
associations between pairs of entities, such as miRNA–disease interaction.
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2 L. Maddalena et al.

Once the problem has been modeled, different analysis techniques can be used
to obtain more insight into it. Statistics and machine learning have provided
many algorithms to tackle three fundamental problems. The first is related to
edge prediction, which translates into disease association prediction (discovering
the associated factors with various diseases, e.g., RNA–disease and disease–gene
association), drug development and discovery (e.g., protein–protein and ligand–
protein interaction prediction, prediction of molecular properties, de novo molecule
design, drug response, and drug–drug interaction prediction), and medical imaging
(e.g., early detection and evaluation of diseases based on medical images seg-
mentation, classification, and recognition, brain connectivity research). The second
fundamental problem is related to node classification or regression. This means
predicting a class label or a continuous value for a node. This has been applied for
the analysis of the proteome and transcriptome (e.g., protein structure and function
prediction, alternative splicing). The last problem is related to the analysis of whole
networks. Here, the sample under investigation contains different networks, one for
each observation. This is the case when studying the metabolism of cancer cells [21]
or the similarity of protein structures.

Graph embedding techniques provide efficient and effective network analysis
techniques, as they aim at converting networks into a vector space while their struc-
tural and topological information is preserved. Single nodes or whole networks can
be represented as vectors in the embedding space. Therefore, after this unsupervised
embedding step, standard algorithms such as linear regression, generalized linear
models, Support Vector Machine (SVM), and random forest, can be applied to
such vector representations. In this paper, we focus on applications of whole-graph
embedding techniques. This means we will only describe embedding techniques
where samples composed of different networks are embedded in a vector space, in
which each point represents a network.

Many whole-graph embedding methods have been developed [6], aimed at trans-
forming graph data into vector data and automatically learning a low-dimensional
feature representation for each node in the graph where the similarity (or distance)
between the nodes is preserved as much as possible. Embedding-based algorithms
are often faster than those working on the original networks. Additionally, the
learned embedding can be used for downstream analysis, either by direct interpreta-
tion of the embedding space or by machine learning techniques applicable to vector
data. Indeed, preserving the graph structure, the low-dimensional representations
can be used as features for applications such as link prediction, community
detection, graphs/node classification, and clustering. Most of the studies evaluate
the graph embedding approaches on non-biomedical networks. Few attempts have
been made to compare the efficiency of these methods on biomedical datasets,
mainly focusing on node embedding approaches [40, 61], but also on whole-graph
embedding [33].

Despite the considerable success of whole-graph embedding techniques, robust-
ness to noise in training data has not been extensively evaluated yet. This is
in particular important in life science applications, where corrupted data, either
due to acquisition noise or to intentional modifications, could lead to misleading
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conclusions. The difficulty might be found in the lack of interpretability of the
models, which makes it difficult to apply standard optimization and statistical
inference methods.

In this paper, we use adversarial machine learning techniques for evaluating
and eventually enhancing the robustness of whole-graph embedding methods for
supervised classification.

The paper is structured as follows. In Sect. 2, we focus on whole-graph embed-
ding, defining its aim and giving an overview of the classes of methods frequently
adopted in the literature. In Sect. 3, we focus on adversarial attacks for graphs, intro-
ducing interesting taxonomies for graph attacks and surveying the literature related
to graph-level tasks. In Sect. 4, we present our evaluation approach, describing the
considered graph attacks and the adopted strategy to compare the robustness to such
attacks of whole-graph embedding methods. In Sect. 5, we present the results of our
evaluation, describing the adopted life sciences datasets and implementation details.
Conclusions and future research directions are given in Sect. 6.

2 Whole-Graph Embedding

In a very general definition, graph embedding is a mechanism for learning a
mapping from a graph to a vector space still preserving main graph properties.
Let G = (V ,E) represent a graph, where V = {vi}Ni=1 is the set of nodes, and
E ⊆ V × V is the set of edges, each one represented by a pair of nodes (vi, vj ).

Definition 2.1 Given a graph G=(V ,E), a graph embedding (or node-level graph
embedding) is a mapping φ: vi ∈V → yi ∈ R

d , i = 1, . . . , N, d ∈ N, such that the
function φ preserves some proximity measure defined on graph G.

Thus, a graph embedding is a space reduction that maps the nodes of a graph into a
d-dimensional feature vector space, also known as latent space, trying to preserve
local and structural information. In this way, graphs can be represented as compact
yet informative vectors in the latent space, suitable to be effectively and efficiently
treated by non-network-based machine learning methods [49].

Methods for node-level graph embedding are the most widespread in the
literature for applications such as link prediction and node label predictions
[6, 30, 37]. However, other graph-level tasks, such as classification, similarity
ranking, generation, and visualization of graphs, require information at a higher
granularity [10]. In these cases, whole-graph embedding, which allows representing
a whole graph as a single vector of fixed length, appears to be a more appropriate
mechanism.

Definition 2.2 Given a set of graphs G = {Gi}Mi=1 with the same set of nodes V, a
whole-graph embedding is a mapping ψ : Gi → yi ∈ R

d , i = 1, . . . ,M, d ∈ N,

such that the function ψ preserves some proximity measure defined on G.
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Thus, whole-graph embedding takes a collection of graphs and outputs a fixed-
length representation for each of them, still preserving important information on
the entire graph set.

2.1 Approaches to Whole-Graph Embedding

The literature provides a set of interesting approaches aimed at transforming the
space from graph to vector. For this purpose, the section is divided into four
categories, as suggested in [46, 54]: direct methods, graph kernel methods, neural
networks methods, and statistical and spectral representations. Some of the most
relevant and recent methods are summarized below.

2.1.1 Direct Methods

Direct methods work to extract features from graphs directly. They were the first to
appear in the literature (e.g., Graph Edit Distance [47]). Below are some of these
recently published.

In [14], Dutta et al. propose an approach called Pyramidal Stochastic Graphlet
Embedding (PSGE). The goal is to combine the result of pyramidal embedding
representation to obtain a global delineation of the original graph. Similarly, Dutta
et al. [15] consider the hierarchical structure of a graph constructed by topologically
clustering the graph nodes and considering each cluster as a node in the upper
hierarchical level. Once this hierarchical structure is built, several configurations
are taken into account to define the mapping into a vector space.

In [66], Zhou et al. present a data augmentation approach on graphs based on four
methods: random mapping, vertex-similarity mapping, motif-random mapping, and
motif-similarity mapping, to generate more weakly labeled data via heuristic trans-
formation. Furthermore, the authors propose a generic model evolution framework,
called M-Evolve, which combines graph augmentation, data filtration, and model
retraining to optimize pre-trained graph classifiers.

2.1.2 Kernel Methods

One of the most popular categories of space reduction for graph classification is that
of graph kernel methods. Generally, a kernel defines a distance between pairs of
elementary substructures of two graphs. The resulting matrix is the representation
of the distance between the two given graphs. The main limitation concerns the large
computational load for the calculation, and for this reason they were not adopted in
the experimental phase. Below are some of these recently published.

Huang et al. [25] describe a graph kernel using a longest common subsequence
(LCS) kernel to compute a more comprehensive similarity between paths and walks,
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which resolves substructure isomorphism difficulties. Furthermore, the kernel is
combined with optimal transport theory to extract more in-depth features of graphs.

In [51], Sun et al. propose a feature reduction algorithm based on semantic
similarity for graph classification. First, it learns vector representations of subtree
patterns using neural language models and then merges semantically similar subtree
patterns into a new feature.

Bai et al. [1] describe two local-global nested graph kernels, namely the
nested aligned kernel and the nested reproducing kernel, drawing on depth-based
complexity traces. The first is defined by measuring the global alignment kernel,
based on the dynamic time warping framework, between the complexity traces. The
second is defined bymeasuring the basic reproducing kernel between the complexity
traces.

2.1.3 Neural Network Methods

Graph neural networks (GNNs) have become the standard toolkit for analyzing and
learning from data on graphs. The state of the art includes a wide range of models,
such as PSCN [41], DGCNN [62], UGraphEmb [2, 3], DGNN [28], CommPOOL
[53], GSSNN [68], EigenPooling [31]. Here, we focus on some of the methods that
have been explored in the experimental phase.

Narayanan et al. [39] provide a Skip-Gram neural network model, called
Graph2vec, typically adopted in the Natural Language Processing (NLP) domain.
It learns data-driven distributed representations of arbitrarily sized graphs. The
resulting embeddings are learned in an unsupervised manner and are task-unaware.

In [7], Chen et al. propose an extended version of Graph2vec. The method
is named GL2vec (Graph and Line graph to vector) because it concatenates the
embedding of an original graph to that of the corresponding line graph. The line
graph is an edge-to-vertex dual graph of the original graph. Specifically, GL2vec
integrates either the edge label information or the structural information, which
Graph2vec misses with the embeddings of the line graph.

Manipur et al. [35] introduce Netpro2vec, a neural-network method that produces
embedding of whole-graphs that are independent of the task and nature of the data. It
first represents graphs as textual documents whose words are formed by processing
probability distributions of graph node paths/distances (e.g., the Transition Matrix,
TM, or the Node Distance Distribution, NDD). Then, it embeds graph documents
by using the Doc2Vec method [29].

2.1.4 Statistical and Spectral Representations

Methods from this class use statistical properties and graph spectrum of a graph
to generate graph feature vectors. Initial works in this field adopt summary-graph-
statistics and handcrafted features, such as node degrees, to extract local graph



6 L. Maddalena et al.

properties. Again, here we focus on some of the methods that have been explored in
our experiments.

In [17], Galland et al. present a method called IGE, which extracts handcrafted
invariant features based on graph spectral decomposition. These features are easy to
compute, permutation-invariant, and include sufficient information on the graph’s
structure.

Tsitsulin et al. [54] introduce NetLSD. It computes a compact graph signature
derived from the solution of the heat equation involving the normalized Laplacian
matrix. It is permutation and size-invariant, scale-adaptive, and computationally
efficient.

In [56], Verma et al. provide a graph representation, named FGSD, based
on a family of graph spectral distances with uniqueness, stability, sparsity, and
computational efficiency properties.

Rozemberczki et al. [45] propose FeatherGraph, which adopts characteristic
functions defined on graph nodes to describe the distribution of node features
at multiple scales. The probability weights of these functions are defined as the
transition probabilities of random walks. The node-level features are combined by
mean pooling to create graph-level statistics.

3 Adversarial Attacks for Graphs

Due to the demonstrated vulnerability of deep neural networks (DNNs), and
consequently, of GNNs, recent research is moving toward the investigation of graph
adversarial attacks and their countermeasures, as reviewed in [9, 27, 50]. While
[9, 27] mainly concentrate on GNN-based methods, [50] also covers attack and
defense models for non-GNN methods, even though all the considered methods
devoted to graph-level tasks are based on GNNs. However, these surveys provide a
broad and updated view of the field, also thanks to their accompanying repositories.
Indeed, Chen et al. [9] created and maintain the Awesome Graph Adversarial
Learning repository1 with links to 271 related papers of the last five years (as of
October 2021). Sun et al. [50] created the Graph Adversarial Learning Literature
repository2 that includes a curated list of more than 110 adversarial attack and
defense papers on graph-structured data, together with links to available codes.
Finally, Jin et al. [27] made available and maintain the DeepRobust adversarial
learning library3 that includes the majority of representative attack and defense
algorithms for both graph data and image data.

1 The Awesome Graph Adversarial Learning repository is available at https://github.com/gitgiter/
Graph-Adversarial-Learning.
2 The Graph Adversarial Learning Literature repository is available at https://github.com/safe-
graph/graph-adversarial-learning-literature.
3 The DeepRobust pytorch library is available at https://github.com/DSE-MSU/DeepRobust.
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3.1 Taxonomies for Adversarial Attacks

Interesting taxonomies for graph attacks have been given, based on the goal,
resources, knowledge, and capacity of the attackers [9, 27, 50].

Perturbation To generate adversarial samples on graph data, we can modify the
nodes or edges in the original graph. In the case of edge-level perturbations, the
attacker is capable of adding/removing/rewiring edges in the whole original graph
within a given budget. In this case, the number of modified edges is often used to
evaluate the magnitude of perturbation. With node-level perturbations, the attacker
is capable of adding/removing nodes, or manipulating the features of target nodes.
The related evaluation metric can be computed based on the number of nodes
modified or the distance between the benign and adversarial feature vectors.

Stage Adversarial attacks can happen at two stages: evasion attack (model testing)
and poisoning attacks (model training), depending on the attacker’s capacity to
insert adversarial perturbations. A poisoning attack tries to affect the performance
of the model by adding adversarial samples into the training dataset. Most existing
works are poisoning attacks, and their node classification tasks are performed in the
transductive learning setting. In this case, once the attacker changes the data, the
model is retrained. In an evasion attack, the parameters of the trained model are
assumed to be fixed, and the attacker tries to generate the adversarial samples of the
trained model. Evasion attacks only change the testing data, which does not require
retraining the model.

Knowledge The attacker could hold different information on the model to attack it.
Based on this, the dangerous levels of existing attacks can be characterized as: (1)
white-box attack, where the attacker can get all information and use it to attack the
system, such as the prediction result, gradient information, etc. The attack may not
work if the attacker does not fully break the system first; (2) grey-box attack, where
the attacker gets limited information to attack the system. Comparing to white-box
attacks, it is more dangerous to the system since the attacker only needs partial
information; (3) black-box attack, where the attacker can only do black-box queries
on some of the samples. Thus, the attacker generally can not make poisoning attacks
on the trained model. However, if a black-box attack can work, it would be the most
dangerous attack compared with the other two because the attacker can attack the
model with the most limited acknowledge; (4) restricted black-box attack, which is
one step further than black-box, as only black-box queries on some of the samples
can be done, and the attacker is asked to create adversarial modifications to other
samples.

Goal According to the goals, attacks for graph-level classification can be divided
into targeted attacks (or integrity attacks in [50]), that aim to induce the model to
give a specific label to a given graph sample, and untargeted attacks (or availability
attacks in [50]), that aim to insert poison so that the model just performs incorrectly.
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Task Corresponding to different tasks for graph data, attacks can be considered for
(1) node-relevant tasks, such as node classification or node embedding, (2) link-
relevant tasks, such as link prediction, or (3) graph-relevant tasks, such as graph
classification or graph clustering.

3.2 Adversarial Attack Methods for Graph-Level Tasks

Most of the literature on adversarial attacks for graph data is devoted to node-
relevant and link-relevant tasks [9, 27, 50]; only limited attention is given to
graph-relevant tasks, mainly for graph classification.

RL-S2V,4 by Dai et al. [11], is one of the first examples of adversarial attacks to
GNN-based graph classification. Here, an attacker perturbs the structure of a testing
graph such that the target model misclassifies the perturbed test graph. It adopts
a reinforcement learning technique to generate adversarial attacks on graph data
under the black-box setting. The attack procedure is modeled as a Markov Decision
Process adapted for both node-level (targeted) and graph-level (untargeted) attacks
to standard GNN models.

Chen et al. [8] propose the GraphAttacker framework that allows adjusting
the structures and the attack strategies according to different graph analysis tasks.
Adversarial samples are generated based on GAN (Generative Adversarial Network)
through alternate training on three key components: the Multi-strategy Attack
Generator, the Similarity Discriminator, and the Attack Discriminator. To achieve
attacks within a perturbation budget, they also introduce a Similarity Modification
Rate constraint to quantify the similarity between nodes and limit the attack budget.

Tang et al. [52] focus on adversarial attacks on hierarchical graph convolutional
networks (GCNs), and specifically, the Hierarchical Graph Pooling model [65], for
graph classification tasks. They propose an adversarial graph generating strategy
with a surrogate model to explore their vulnerability to adversarial samples. They
also perform robust training on the target models to demonstrate that the retrained
graph classification models can better defend against the attack from adversarial
samples.

Some literature is concerned with backdoor attacks, where a trojan model
forces its host system to misbehave when certain predefined conditions, named
“triggers”, are present but function normally otherwise. Xi et al. [59] investigate the
vulnerability of DNNs to backdoor attacks. They propose GTA5 (Graph Trojaning
Attack), a graph attack framework that can be applied readily without knowing data
models or tuning strategies to optimize both attack effectiveness and evasiveness.
Triggers are defined as specific subgraphs, including topological structures and
descriptive features, entailing a large design spectrum for the adversary. Rather

4 RL-S2V code and data are available at https://github.com/Hanjun-Dai/graph_adversarial_attack.
5 GTA code is available at https://github.com/HarrialX/GraphBackdoor.
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than defining a fixed trigger for all the graphs, it generates triggers tailored to the
characteristics of individual graphs. The framework can be instantiated for both
transductive and inductive tasks, such as node classification and graph classification,
respectively. Another backdoor attack for the task of graph classification is proposed
by Zhang et al. in [64].6 They propose a subgraph-based backdoor attack to GNNs
such that the GNN classifier, trained on attacked graphs, predicts an attacker-chosen
target label for a testing graph once the same trigger is injected into it.

Since strong attacks are often intractable to compute, an alternative approach that
has recently attracted considerable interest is to construct certificates of robustness,
i.e., sufficient conditions which, once satisfied, guarantee the immunity to any
admissible attack [26]. A robustness certificate for graph classification using GCNs
under structural attacks is proposed by Jin et al. [26].7 Given a trained GCN and
a threat model with both local and global budgets (number of edges that can
be removed for each node or across all nodes, respectively), their certificate can
efficiently verify that no topological perturbation can change the graph prediction.

Rather than adding or deleting edges to graphs, the rewiring operation has also
been considered [32]. Given three nodes, two of which are connected, it consists in
removing the edge between the two connected nodes and adding an edge between
one of them and the third node. The rationale is that this operation preserves
some basic properties of the attacked graph (e.g., number of nodes and edges,
total degree of the graph), thus resulting in less noticeable attacks as compared
to adding/deleting edges. Based on rewiring, Ma et al. [32] propose ReWatt,8 an
untargeted black-box attack for the task of graph classification, where the series of
rewiring operations is described through a discrete Markov decision process and
reinforcement learning is adopted to learn how to make these decisions. However,
as highlighted by the authors, rewiring may lead to abnormal structure of the graphs,
which could make them invalid for some applications, such as modeling of chemical
molecules.

All the above-described approaches propose different types of adversarial attacks
for graph-level tasks, mainly in the context of GNNs. However, none of them shares
our aim, i.e., to compare the robustness to adversarial attacks of different whole-
graph embedding methods.

6 The code for the backdoor attack to GNNs in [64] is available at https://github.com/zaixizhang/
graphbackdoor.
7 Code and data for [26] are available at https://github.com/RobustGraph/RoboGraph.
8 ReWatt code is available at https://github.com/alge24/ReWatt.
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4 Adversarial Attacks to Whole-Graph Embedding Methods
for Graph Classification

In [36], we considered two node-based attacks, consisting in removing from each
graph a certain amount of nodes, chosen according to different criteria. Since some
of the considered datasets (namely, PROTEINS and MUTAG, see Sect. 5.1) have a
tiny number of nodes, removing few highest centrality nodes could almost destroy
the graph structures (and their meaning). Therefore, in this work, we consider two
edge-based attack strategies

• Random Edge-based Attack (REA): a percentage p of graph edges randomly
chosen is removed from each graph. It can be considered a local attack and is
performed with a low computational overhead.

• Edge Betweenness Centrality-based Attack (EBA): a percentage p of graph edges
having the highest edge betweenness centrality is removed from each graph. The
betweenness centrality be for an edge e ∈ E is defined as the sum of the fraction
of all-pairs shortest paths that pass through it [5]

be =
N∑

i,j=1

σ(vi, vj |e)
σ (vi, vj )

,

where σ(vi, vj ) is the number of shortest paths from node vi to node vj and
σ(vi, vj |e) is the number of those paths that pass through the target edge e. It
is a global attack strategy, as the path information is aggregated from the whole
network. Clearly, global information carries significant computational overhead
compared to local attacks.

According to the attack taxonomies presented in Sect. 3.1, the adversarial attacks
that we consider are (1) edge-level perturbations, consisting in the removal of edges
in the input graphs within the budget p; (2) poisoning attacks, modifying graphs
used both for training and for testing; (3) black-box attacks, as these attacks do not
need any information on the embedding model to attack; (4) untargeted attacks, as
no specific label is enforced to the attacked data.

The attack task that we focus on is graph classification, which is the less
frequently considered task in the adversarial attack literature. Indeed, we aim to
evaluate the robustness of whole-graph embedding methods to adversarial attacks
in terms of their performance in classifying the attacked graphs. To this end, we
consider an unsupervised representation setting [60], where the graph embeddings
generated by the compared unsupervised methods are fed into a down-stream
classifier (see Algorithm 1 in Sect. 5.2).
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Table 1 Main properties of
the adopted datasets

Property Kidney MUTAG Proteins

# graphs 299 188 1113

# classes 3 2 2

# samples per class 159/90/50 125/63 663/450

Average # nodes 1034 17.93 39.06

Average # edges 3226.00 19.79 72.82

Average edge density 0.006 0.138 0.212

# distinct node labels 1034 7 3

Edge weights ✓ ✗ ✗

Minimum diameter 7 5 1

Maximum diameter 7 15 54

Average degree 6.24 2.19 3.73

5 Experimental Results

5.1 Datasets

For the experiments, we adopted different life sciences datasets, including both
weighted and non-weighted graphs, with both few and many nodes as well edges
(see details in Table 1).

The Kidney dataset describes real metabolic networks created for validating
related research [18, 19, 34]. It contains networks derived from data of 299
patients divided into three classes: 159 clear cell Renal Cell Carcinoma (KIRC), 90
Papillary Renal Cell Carcinoma (KIRP), and 50 Solid Tissue Normal samples. We
obtained the networks by mapping gene expression data coming from the Genomic
Data Commons (GDC, https://portal.gdc.cancer.gov) portal (Projects TCGA-KIRC
and TCGA-KIRP) on the biochemical reactions extracted from the kidney tis-
sue metabolic model [55] (https://metabolicatlas.org). Graph nodes represent the
metabolites, and the edges connect reagent and product metabolites in the same
reaction, weighted by the average of the expression values of the genes/enzymes
catalyzing that reaction [18]. The simplification procedure described in [19] is
applied to reduce the complexity of the networks, leading to reduce the number
of nodes from 4022 to 1034.

MUTAG [12] is a small molecule benchmark dataset and is composed of
networks of 188 mutagenic aromatic and heteroaromatic nitro compounds. The
nodes represent atoms, while the edges represent chemical bonds between them.
The graphs contain both node and edge labels. The two classes indicate whether or
not the compound has mutagenic effects on a bacterium.

PROTEINS [4] is a bioinformatics dataset consisting of 1113 graphs that
represent protein molecules. The nodes represent secondary structure elements of
three distinct types (helix, sheet, or turn), and there is an edge between two nodes if
they are neighbors in the amino-acid sequence or in the 3D space. The two classes
indicate whether the graphs represent enzyme or non-enzyme proteins.
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5.2 Implementation Details

The experimental test bench we chose for investigating the robustness of whole-
graph embedding methods under adversarial attacks consists of methods selected
from the neural network- and statistical/spectral representation-based approaches
(see Sect. 2.1). In particular, six of the benchmarking methods (namely, GL2vec,
Graph2vec, IGE, NetLSD, FGSD, and FeatherGraph) are implementations provided
by the Karate Club software [44], which is a Python library consisting of state-
of-the-art methods to do unsupervised learning on graph structured data. A recent
whole-graph embedding method, named Netpro2vec [35], is included in our
experimental bench of methods. This method is a neural network-based graph
embedding technique implemented in Python and publicly available.9

The experimental pipeline is summarized in the pseudo-code of Algorithm 1.
With the exception of IGE, FeatherGraph, and NetLSD, the embedding methods

Algorithm 1 The experimental pipeline
Require: graph dataset , graph labels y
Ensure: embedding validation scores
graphs, y ← Load(dataset)

graphs ← Attack(graphs) � apply attack strategy on graphs
WGEmbedder.init () � init and set parameters for embedder
WGEmbedder.f it (graphs) � build the model (unsupervised)
X← WGEmbedder.get_embedding() � embed the graphs
X← MinMaxScaler(X) � embedding normalization
scores ← Cross_V alidate(X, y) � 10-fold stratified CV

allow to select the dimension d of the produced embedding vectors for graphs,
set to 512 in all the experiments. GL2Vec and Graph2Vec were applied with
a recursion depth of 5, while the remaining parameters were set to the library
defaults. Netpro2Vec method has been applied by jointly exploiting NDD and
TM1 distribution information of graphs, with no threshold cutoff; in addition,
its skipgram model was trained for one hundred epochs, while the remaining
parameters were set to the default. All values for neural network-based methods
have been experimentally chosen to maximize accuracy. Embedding results were
normalized by min-max scaling.

The validation step was carried out through ten-fold stratified cross-validation:
at each cross-validation iteration, 90% of the embedding matrix X was used to train
an SVM with linear kernel, while all other parameters were set to the defaults,
as specified by the chosen SVM implementation which is available in the Scikit-

9 Netpro2vec is available at https://github.com/cds-group/Netpro2vec; the implementation also
includes the code for extracting the NDD and TM distribution matrices, based on the GraphDis-
tances R package [20], and the doc2vec embedding is performed using the gensim NLP library
[43].
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Learn Machine Learning library (https://scikit-learn.org/stable/modules/generated/
sklearn.svm.SVC.html); the remaining 10% of X was used for testing prediction
of the SVM model built on the embedding representation of graphs. Partitions of
embedding matrix X are non-overlapping, thus ensuring that all the vectors of X
are used (only once) for testing in one validation iteration. All the experiments
were run on Google Colab hardware which provided a virtual machine based on
a bi-processor with two Intel(R) Xeon(R) CPU @ 2.20GHz with 13GB RAM and
108GB HDD.

5.3 Performance Results

Performance results obtained using the seven whole-graph embedding methods
described in Sect. 5.2 on the three datasets detailed in Sect. 5.1, under the adversarial
attacks described in Sect. 4, are reported in the bar plots of Figs. 1, 2, and 3, while
detailed numerical results are given in the Appendix (Tables 2, 3, 4, 5, 6, and 7).

Here, we consider the results achieved using the original network data
(Unattacked), as well as those using data that underwent the removal of the
10 and 30% of the edges having the highest betweenness centrality (EBA) or
the randomly chosen (RAE), respectively. The choice of these percentages p of
removed edges aims at investigating the effects of both moderate (10%) and strong
(30%) adversarial attacks.

The performance is evaluated in terms of the mean and standard deviation across
the CV iterations of Accuracy and Matthews Correlation Coefficient (MCC) [38].
As well known, Accuracy provides the percentage of correctly classified samples
and assumes values in [0,1], reaching 1 for perfect classification. MCC gives the

(a) (b)

Fig. 1 Plots of accuracy measures on Kidney dataset for (a) Random edge-based attack and (b)
Edge betweenness centrality-based attack
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(a) (b)

Fig. 2 Plots of accuracy measures on MUTAG dataset for (a) Random edge-based attack and (b)
Edge betweenness centrality-based attack

(a) (b)

Fig. 3 Plots of accuracy measures on PROTEINS dataset for (a) Random edge-based attack and
(b) Edge betweenness centrality-based attack

correlation coefficient between observed and predicted binary classifications, taking
into account class balancing. It assumes values in [−1, 1], where 1 indicates
perfect classification. The value −1 is asymptotically reached in the extreme
misclassification case of a confusion matrix with all zeros but in two symmetric
entries, while MCC is equal to 0 when the confusion matrix contains all zeros but
for one column (i.e., all samples have been classified to be of one class). Missing
values in Figs. 1 and 3 (as well as in Tables 2, 3, 6, and 7) indicate non-convergence
of the related method on Kidney and PROTEINS datasets.

From the analysis of the plots in Figs. 1, 2, and 3, we can observe that,
as the attack strength grows (from 0 to 30%), FGSD is the only method that
always shows a performance degradation regardless of the attack type (both REA
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and EBA) and the dataset (even though nothing can be said on Kidney dataset,
where it fails to converge). GL2Vec also degrades performance on MUTAG and
PROTEINS datasets in the case of EBA, while on Kidney dataset, its performance
remains substantially unaltered. Feathergraph experiences performance degradation
on MUTAG and Kidney datasets under edge betweenness centrality-based attacks.
Netpro2vec proved to have fairly constant performance across all datasets and attack
types, thus showing significant robustness in all the case studies. The remaining
methods have fluctuating trends, thus showing dropping or stable performance
depending on the specific dataset and attack strategy.

It should be observed that some of the compared methods improve their
performance under increasing strength of the attacks. Specifically, NetLSD shows
this behavior only on Kidney dataset; the same can be said for Graph2Vec on
MUTAG and PROTEINS datasets, while in the Kidney case study, its performance
stays unaltered under both types of attack. This probably means that adversarial
learning, i.e., the injection of adversarial examples into the training set such that the
trained model can correctly classify the future adversarial examples [9, 27, 50], in
these cases succeeds in enhancing the robustness of the methods.

6 Conclusions and Future Work

In this paper, we evaluated adversarial attacks to whole-graph embedding methods
for the graph classification task. We considered methods from different classes,
attacked by varying edge-level attacks. We mainly focused on networks of interest
for life sciences, covering metabolic, mutagenic, and molecular networks. Our
analysis has shown that some of the compared methods are intrinsically quite robust
to the considered attacks, showing substantially unchanged performance under
different strengths and types of edge-level attacks. It also highlighted that, in some
cases, some of the methods improved their performance under attack, suggesting
that adversarial learning could lead to higher robustness.

Even though we considered datasets showing a variety of graph properties,
further work is needed to extend the analysis to medium- and large-scale datasets,
such as the Benchmarking Graph Neural Networks datasets [16] and the Open
Graph Benchmark [24]. Moreover, an analogous evaluation for inductive, rather
than transductive, embedding methods, eventually coupled with suitable defense
mechanisms, could shed more light on the issue.
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Appendix

Tables 2, 3, 4, 5, 6, and 7 report detailed numerical results in terms of the mean and
standard deviation across the CV iterations of Accuracy and MCC values achieved
by the seven whole-graph embedding methods described in Sect. 5.2 on the three
datasets detailed in Sect. 5.1, under the adversarial attacks described in Sect. 4.

Table 2 Accuracy (%) and MCC (mean ± std) of whole-graph embedding models on kidney
dataset under edge betweenness centrality-based attack (EBA)

Accuracy MCC

Method Unattacked EBA 10% EBA 30% Unattacked EBA 10% EBA 30%

GL2Vec 90.09±4.74 91.32±4.75 92.31±3.95 0.83±0.08 0.85±0.07 0.87±0.06

Graph2vec 90.79±5.11 90.32±6.89 91.32±3.70 0.83±0.08 0.84±0.10 0.85±0.06

IGE – – – – – –

NetLSD 53.46±7.02 57.16±9.20 63.21±3.67 0.11±0.16 0.22±0.18 0.40±0.07

FGSD – – – – – –

FeatherGraph 81.51±7.96 81.26±5.01 76.91±6.63 0.68±0.13 0.68±0.08 0.40±0.07

Netpro2vec 91.27±4.45 89.31±3.86 91.64±3.72 0.86±0.07 0.82±0.06 0.86±0.05

Table 3 Accuracy (%) and MCC (mean ± std) of whole-graph embedding models on kidney
dataset under random edge-based attack (REA)

Accuracy MCC

Method Unattacked REA 10% REA 30% Unattacked REA 10% REA 30%

GL2Vec 90.09±4.74 91.66±4.76 87.99±5.40 0.83±0.08 0.86±0.07 0.80±0.08

Graph2vec 90.79±5.11 92.66±3.88 91.32±4.75 0.83±0.08 0.87±0.06 0.85±0.07

IGE – – – – – –

NetLSD 53.46±7.02 60.48±8.72 57.55±6.35 0.11±0.16 0.31±0.15 0.26±0.13

FGSD – – – – – –

FeatherGraph 81.51±7.96 82.60±4.71 80.92±8.35 0.68±0.13 0.70±0.07 0.68±0.13

Netpro2vec 91.27±4.45 88.97±4.48 90.98±4.95 0.86±0.07 0.81±0.07 0.85±0.08

Table 4 Accuracy (%) and MCC (mean ± std) of whole-graph embedding models on MUTAG
dataset under edge betweenness centrality-based attack (EBA)

Accuracy MCC

Method Unattacked EBA 10% EBA 30% Unattacked EBA 10% EBA 30%

GL2Vec 76.11±8.48 73.77±11.29 71.73±9.13 0.31±0.24 0.37±0.29 0.31±0.24

Graph2vec 66.32±9.72 64.88±11.11 76.52±9.41 0.15±0.24 0.18±0.24 0.45±0.23

IGE 83.72±7.92 86.14±6.38 81.32±6.59 0.61±0.16 0.70±0.14 0.58±0.15

NetLSD 86.23±7.68 85.00±6.54 70.64±7.64 0.69±0.16 0.66±0.15 0.26±0.24

FGSD 86.01±7.77 83.54±6.79 82.43±8.55 0.70±0.16 0.65±0.15 0.65±0.13

FeatherGraph 82.40±8.24 82.37±8.94 79.24±12.38 0.60±0.17 0.61±0.23 0.53±0.25

Netpro2vec 72.06±9.64 70.20±8.57 73.98±9.86 0.60±0.17 0.30±0.19 0.43±0.21
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Table 5 Accuracy (%) and MCC (mean ± std) of whole-graph embedding models on MUTAG
dataset under random edge-based attack (REA)

Accuracy MCC

Method Unattacked REA 10% REA 30% Unattacked REA 10% REA 30%

GL2Vec 76.11±8.48 75.03±5.21 75.50±8.64 0.31±0.24 0.44±0.13 0.43±0.20

Graph2vec 66.32±9.72 73.95±5.43 63.86±12.51 0.15±0.24 0.40±0.11 0.16±0.27

IGE 83.72±7.92 86.14±5.93 85.06±5.83 0.61±0.16 0.70±0.11 0.67±0.12

NetLSD 86.23±7.68 80.79±11.22 76.49±10.74 0.69±0.16 0.56±0.24 0.43±0.30

FGSD 86.01±7.77 82.87±6.65 81.29±5.83 0.70±0.16 0.63±0.16 0.59±0.13

FeatherGraph 82.40±8.24 77.54±10.04 80.35±7.04 0.60±0.17 0.53±0.23 0.56±0.14

Netpro2vec 72.06±9.64 73.92±7.65 66.5±7.63 0.60±0.17 0.39±0.19 0.22±0.19

Table 6 Accuracy (%) andMCC (mean± std) of whole-graph embedding models on PROTEINS
dataset under edge betweenness centrality-based attack (EBA)

Accuracy MCC

Method Unattacked EBA 10% EBA 30% Unattacked EBA 10% EBA 30%

GL2Vec 72.87±3.44 65.85±3.87 62.90±3.42 0.43±0.08 0.25±0.09 0.18±0.08

Graph2vec 60.28±1.20 66.22±3.16 65.32±2.74 0.07±0.08 0.26±0.07 0.24±0.07

IGE – – – – – –

NetLSD 72.50±3.41 72.78±3.13 70.44±3.58 0.41±0.07 0.42±0.07 0.38±0.09

FGSD 73.23±2.79 67.12±2.57 59.66±0.28 0.44±0.06 0.33±0.05 0.01±0.03

FeatherGraph 68.73±2.08 68.10±2.94 67.83±2.10 0.33±0.05 0.31±0.07 0.30±0.04

Netpro2vec 70.89±3.17 69.90±3.39 70.98±1.90 0.40±0.06 0.38±0.06 0.40±0.03

Table 7 Accuracy (%) andMCC (mean± std) of whole-graph embedding models on PROTEINS
dataset under random edge-based attack (REA)

Accuracy MCC

Method Unattacked REA 10% REA 30% Unattacked REA 10% REA 30%

GL2Vec 72.87±3.44 69.99±4.33 64.51±2.13 0.43±0.08 0.36±0.11 0.23±0.06

Graph2vec 60.28±1.20 63.71±3.57 63.97±5.01 0.07±0.08 0.21±0.08 0.23±0.10

IGE – – – – – –

NetLSD 72.50±3.41 73.67±3.47 71.61±4.14 0.41±0.07 0.44±0.07 0.39±0.09

FGSD 73.23±2.79 71.79±2.92 59.57±0.44 0.44±0.06 0.40±0.06 0.00±0.04

FeatherGraph 68.73±2.08 67.11±2.92 65.68±2.67 0.33±0.05 0.29±0.07 0.25±0.07

Netpro2vec 70.89±3.17 71.60±4.62 70.62±3.24 0.40±0.06 0.41±0.09 0.38±0.06
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Photochemical Scheme for Reversibly
Photoswitchable Fluorescent Proteins
Used in Biological Imaging

A. Pellissier-Tanon, R. Chouket, T. Le Saux, L. Jullien, A. Espagne,
and A. Lemarchand

1 Introduction

Living matter provides a variety of challenges. Cells contain a very large number
(more than 106) of chemical components whose concentrations vary from 10−12

mol.L−1 to 10−1 mol.L−1 and which exhibit a well-defined heterogeneous spatial
distribution. As a consequence, observing living cells requires sensitive imaging of
a large number of components.

A crucial issue is to image one or several targeted components of the cell without
interference from the other components. It is therefore necessary that the target
exhibits a specific signature. However, the elemental composition and functional
groups of the cell components are essentially the same. An exogenous chemical
construct with a specific signature can be introduced by genetic encoding to label
a targeted component[1–3]. The properties of the label can then be harnessed to
improve selective imaging.

Due to the high sensitivity of fluorescence, fluorescent labels and in particular
fluorescent proteins are widely exploited. Light is used to both probe and deter-
mine the amount of a fluorescent label. Among fluorescent proteins, reversibly
photoswitchable fluorescent proteins (RSFPs) are of particular interest due to
their complex photochemical kinetics[4]. RSFPs have been recently popularized
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by super-resolution microscopies[5–8]. They are also involved in the tracking of
protein movements and interactions[9, 10], optical control of protein activity[11,
12], photoacoustic phenomena[13], and kinetic discrimination protocols[14–18]. A
better knowledge of the complex kinetics of RSFPs is therefore desirable.

The detailed photoswitching mechanisms of RFSPs are not fully established.
Based on the existing literature, we propose a seven-state photoswitching mecha-
nism which accounts for the known steps of isomerization and protonation[19–23].
We probe the photochemical mechanism of RSFPs using illuminations at the
wavelengths λ1 = 480 nm and λ2 = 405 nm. We focus on the evolution of
fluorescence emission occurring in the 1 μs–1 s time window and detected at
525 nm. Our goal is to show that, depending on the light intensities, different
kinetic regimes are reached. We aim to deduce different characteristic times from
the fluorescence evolution associated with well-chosen experimental conditions.
Starting from a reasonable photoswitching mechanism, we establish relationships
between the experimental characteristic times and the rate constants of some
reaction steps. The results are applied to the RSFP Dronpa-2 (Dronpa-M159T)[24]
with the aim of providing unknown kinetic information on photoswitching.

2 Seven-State Photoswitching Mechanism in the 1 μs–1 s
Time Window

Figure 1a gives the seven-state mechanism we adopt to describe the kinetics of
RSFPs, in the 1 μs–1 s window. The Cis-O− state, denoted A, absorbs light mainly
at the wavelength λ1 = 480 nm and to a lesser extent at the wavelength λ2 = 405
nm forming the excited state A∗ (with the rate constant k1). The Cis-O− state is
recovered by internal conversion and fluorescence emission (rate constant k−1) or by
a longer reaction path described below. Isomerization of A∗ (rate constant kB ) yields
the Trans-O− state, denoted B, which presumably possesses a similar relaxation rate
of its excited state B∗ as the Cis-O− state. Protonation of B (rate constant kC) leads
to the Trans-OH state, denoted C. The excited state C∗ of the Trans-OH state is
assumed to be only formed by absorption at the wavelength λ2 = 405 nm. The
Cis-O− state may be directly formed from Trans-OH by thermal isomerization (rate
constant kCA) or obtained by light excitation of Trans-OH (rate constant k2), then
isomerization yielding the Cis-OH state denoted D (rate constant kD), and finally
deprotonation (rate constant kA)[19–23].

According to literature, the orders of magnitude of the rate constants involved in
Fig. 1a are given in Table 1. In addition, we assume that the protonation rate constant
kC is of the same order of magnitude as the deprotonation rate constant kA.

The seven-state photoswitching mechanism displayed in Fig. 1a possesses both
photochemical steps associated with the rate constants k1 and k2 and thermal steps
associated with all other rate constants. Therefore tuning light intensities may
change the rate-limiting steps. We consider two different illumination protocols,
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Fig. 1 Photochemical mechanisms of reversibly photoswitchable fluorescent proteins relevant in
the 1 μs–1 s time window. (a): seven-state mechanism. (b): four-state mechanism obtained after
elimination of the fast excited states A∗, B∗, and C∗. (c): photochemical two-state mechanism
in regime αl . (d): Thermal two-state mechanism in regime αh. (e): Photochemical two-state
mechanism in regime βl . (f): Photochemical and thermal three-state mechanism in regime βh.
Species with a halo are bright or acquire brightness due to mechanism reduction

α and β. The illumination protocol α is characterized by a light intensity I1 at
the wavelength λ1 = 480 nm applied to the sample initially in the A state. The
illumination protocol β is defined by a light intensity I2 at the wavelength λ2 = 405
nm and a small intensity I1 at the wavelength λ1 = 480 nm applied to the
sample initially in the B state. In the protocol β, the complementary illumination
at λ1 = 480 nm is necessary to obtain a fluorescent signal since the excitation of
the states A∗ and B∗ at the wavelength λ2 = 405 nm does not generate a significant
fluorescence emission.

The seven-state mechanism yields the following rate laws for the concentrations
of the different species

dA

dt
= −k1A+ k−1A

∗ + kCAC + kAD (1)

dA∗

dt
= k1A− (k−1 + kB)A∗ (2)

dB

dt
= kBA∗ − (k1 + kC)B + k−1B

∗ (3)

dB∗

dt
= k1B − k−1B

∗ (4)

dC

dt
= kCB − (k2 + kCA)C + k−2C

∗ (5)
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Table 1 Order of magnitude of parameters of the photoisomerization mechanisms of RSFPs

Parameter Order of magnitude

Seven-state mechanism

Absorption cross sections[19–23] ε11, ε22 103–104 m2 mol−1

ε12 102–103 m2 mol−1

Relaxation[19–23] k−1 109 s−1

k−2 1011 s−1

Isomerization[19–23] kB 107 s−1

kD 1010 s−1

Proton exchange[19–23] kC , kA 103–106 s−1

Thermal isomerization[19–23] kCA 10−4–10−2 s−1

Four-state mechanism

Light intensities I1, I2 � 105 Einm−2 s−1

Isomerization cross sections[15, 17] σ11, σ22 10–102 m2 mol−1

σ12 1–10 m2 mol−1

Two-state mechanism αl
Light intensity I1 � 10–102 Einm−2 s−1

Two-state mechanism αh
Light intensity I1 	 10–105 Einm−2 s−1

Two-state mechanism βl
Light intensities I1 ∼ 0.1 Einm−2 s−1

I2 � 10–102 Einm2 s−1

Three-state mechanism βh
Light intensities I1 ∼ 0.1 Einm−2 s−1

I2 	 10–105 Einm2 s−1

dC∗

dt
= k2C − (k−2 + kD)C∗ (6)

dD

dt
= kDC∗ − kAD (7)

The concentrations obey the law of matter conservation Ctot = A+A∗ +B+B∗ +
C + C∗ +D. The photochemical rate constants k1 and k2 are given by

k1 = ε11I1 + ε12I2 (8)

k2 = ε22I2 (9)

where ε11 and ε12 are the absorption cross sections of A and B at the wavelengths
λ1 = 480 nm and λ2 = 405 nm, respectively, and ε22 is the absorption cross section
of C at the wavelength λ2 = 405 nm. We assume that only illumination at λ1 =
480 nm leads to fluorescence emission. The rate constant k−1 takes into account
the radiative and non radiative de-excitation of the excited states A∗ and B∗. We
neglect the fluorescence of all species except A∗ and B∗ which leads to the following
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expression of the fluorescence intensity

IF = kFA∗A∗ + kFB∗B∗ (10)

where kFA∗ and kFB∗ are the radiative parts of the rate constant k−1 associated with
the de-excitation of A∗ and B∗, respectively. Species B and B∗ are the least known
species of the mechanism. In particular the radiative de-excitation of B∗ has not been
evidenced. The hypothesis on the fluorescent nature of B∗ needs to be validated.

We consider variable light intensities I1 and I2 in order to explore different
kinetic regimes. We harness the different orders of magnitude of the rate constants
and use the steady-state approximation to reduce the ordinary system of differential
equations given in Eqs. (1)–(7) (see Appendix 1). The mechanism being composed
of first-order steps, the condition of validity for the elimination of a short-lived
chemical species is easy to express: The sum of the rate constants of the steps
consuming the considered species must be larger than the sum of the rate constants
of the steps producing the species. The fastest reactive species are first eliminated
and the next timescale of interest is defined by the larger remaining characteristic
times. We repeatedly eliminate the fastest species until the remaining characteristic
times are close within the chosen 1 μs–1 s time range.

3 Elimination of the Excited States: The Four-State
Mechanism

The rate constant kCA ≤ 10−2 s−1 is associated with a slow kinetics inaccessible
in the explored time window and therefore ignored in the following. According to
Table 1, the fastest species are the excited states A∗, B∗, and C∗. Their elimination is
valid if the conditions k1 � k−1 + kB , k1 � k−1, and k2 � k−2 + kD are fulfilled,
i.e. if the light intensities obey I1 � k−1/ε11 and I2 � k−2/ε22. Using Table 1,
we find that light intensities smaller than 105 Ein.m−2.s−1 meet these conditions.
According to the steady-state approximation, we eliminate the species A∗, B∗, and
C∗ using dA∗

dt = 0, dB∗
dt = 0, and dC∗

dt = 0 where A∗, B∗, and C∗ obey Eqs. (2), (4),
and (6). The dynamics is then given by

dA

dt
= −k′1A+ kAD (11)

dB

dt
= k′1A− kCB (12)

dC

dt
= kCB − k′2C (13)

dD

dt
= k′2C − kAD (14)



28 A. Pellissier-Tanon et al.

where k′1 = k1kB/(k−1 + kB) and k′2 = k2kD/(k−2 + kD). Following Appendix 1,
we obtain the reduced four-state mechanism given in Fig. 1b with the apparent
photochemical rate constants

k′1 = σ11I1 + σ12I2 (15)

k′2 = σ22I2 (16)

where σ11 = ε11kB/(k−1 + kB) and σ12 = ε12kB/(k−1 + kB) are the photoiso-
merization cross sections of A at the wavelengths λ1 = 480 nm and λ2 = 405 nm,
respectively, and σ22 = ε22kD/(k−2 + kD) is the photoisomerization cross section
of C at the wavelength λ2 = 405 nm.

The elimination of the fluorescent states A∗ and B∗ leads to the apparently
fluorescent A and B species in the four-state mechanism. The fluorescence intensity
is deduced from Eq. (10) leading to

IF = (QAA+QBB) I1 (17)

where QA = ε11k
F
A∗/(k−1 + kB) and QB = ε11k

F
B∗/k−1 are the apparent

brightnesses of species A and B, respectively. It is to be noted that the nonvanishing
brightness of species B is a direct consequence of the hypothesis on the fluorescent
nature of B∗.

The thermal rate constants kA and kC involved in the four-state mechanism have
the same order of magnitude in the investigated time range. The values of the
photochemical rate constants, k′1 and k′2, are determined by the light intensities I1
and I2. Consequently the light intensities control which species is the fastest and
can be eliminated.

4 Illumination Protocol α

The illumination protocol α implies that I2 = 0 which leads to k′2 = 0. Hence
species D and the rate constants k′2 and kA are not involved in the kinetics. The
four-state mechanism reduces to a three-state mechanism. In addition, the initial
condition is assumed to be A = Ctot. The three-state mechanism can be further
reduced depending on the value of the light intensity I1.

4.1 Low Intensity I1: Regime αl

We first consider the regime αl of low light intensity obeying I1 � kC/σ11.
According to Table 1, this condition is written I1 � 10–102 Einm−2 s−1. The
condition k′1 � kC is then fulfilled enabling the elimination of the fast species
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B. Following Appendix 1, we write dB
dt = 0 where B is given in Eq. (12). We obtain

the two-state mechanism given in Fig. 1c. Using Eq. (17), we write the fluorescence
intensity as

IF =
(
QA +QB k

′
1

kA

)
AI1 (18)

In this regime, the fluorescence intensity behaves as the concentrationA following a
monoexponential decay associated with the characteristic time (see Appendix 2 and
apply the results to F ≡ A, N ≡ C, k ≡ k′1, and k′ = 0)

τ = 1

k′1
(19)

The characteristic time is inversely proportional to I1 and the photochemical step
associated with the rate constant k′1 controls the fluorescence evolution.

4.2 High Intensity I1: Regime αh

Then we consider the regime αh of high light intensity such that the condition
I1 	 kA/σ11, i.e. kA � k′1 is fulfilled. Table 1 is used to assess the interval of
I1 	 10–105 Einm−2 s−1 in which the condition is fulfilled. In this condition,
species A is fast and can be eliminated using the steady-state approximation.
Following Appendix 1, we write dA

dt = 0 where A is given in Eq. (11). We obtain
the two-state thermal mechanism shown in Fig. 1d. Using Eq. (17), we write the
fluorescence intensity as

IF = QBBI1 (20)

In the regime αh, the fluorescence intensity evolves as the concentrationB, which
monoexponentially decreases with the characteristic time (see Appendix 2 and apply
the results to F ≡ B, N ≡ C, k ≡ kC , and k′ = 0)

τ = 1

kC
(21)

The characteristic time is independent of I1 and a thermal step controls the
fluorescence evolution. The hypothesis on the fluorescent nature of species B∗ and
consequently B induces the existence of a fluorescent signal in the regime αh.
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5 Illumination Protocol β

In the case of illumination β, we assume that the initial condition is C = Ctot.
The four-state mechanism for low and high light intensities I2 is reduced in the
following.

5.1 Low Intensity I2: Regime βl

We consider the regime βl associated with a low light intensity I2 with I1 fixed
around 0.1 Einm−2 s−1 in order to obtain a sufficient level of fluorescence. We
assume that the condition I2 � min(kA/σ22, kC/σ12) is met, so that k′1 � kC and
k′2 � kA. Table 1 is used to evaluate the interval of I2 � 10–102 Einm−2 s−1

in which the condition is fulfilled. The two species B and D are fast and can be
eliminated. Following Appendix 1, we write dB

dt = 0 and dD
dt = 0 where B and D

are given in Eqs. (12) and (14). We obtain the two-state mechanism shown in Fig. 1e.
According to Eq. (18), the fluorescence intensity behaves as the concentration A,
which monoexponentially increases with the characteristic time (see Appendix 2
and apply the results to F ≡ A, N ≡ C, k ≡ k′1, and k′ ≡ k′2)

τ = 1

k′1 + k′2
(22)

The characteristic time is a function of both I1 and I2. Photochemical steps control
the fluorescence evolution.

5.2 High Intensity I2: Regime βh

Finally we consider the regime βh associated with high light intensities I2 and I1 ∼
0.1 Einm−2 s−1. We suppose that the intensity I2 obeys I2 	 kC/σ22, so that kC �
k′2. Table 1 is used to estimate the interval of I2 	 10–105 Einm−2 s−1 in which
the condition is fulfilled. The fast species C is eliminated. Following Appendix 1,
we write dC

dt = 0 where C is given in Eq. (13). We obtain the three-state mechanism
shown in Fig. 1f. The fluorescence intensity is given in Eq. (17).

In the regime βh, the dynamics is described by two independent variables. Two
characteristic times describe the fluorescence evolution

τ1 = 2

k′1 + kA + kC +
√
(k′1 + kA − kC)2 − 4k′1kA

(23)
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τ2 = 2

k′1 + kA + kC −
√
(k′1 + kA − kC)2 − 4k′1kA

(24)

The characteristic time τ1 is smaller than τ2. Consequently fluorescence evolution
is governed at short times by τ1 and at long times by τ2. For the initial condition
C = Ctot, the amplitude of the fluorescence evolution associated with τ1 is negative
and the amplitude associated with τ2 is positive. Consequently, fluorescence first
increases and then decreases. Both photochemical and thermal steps control the
dynamics.

6 Comparison of Experiments Involving the RSFP Dronpa-2
with the Predictions of the Reduced Mechanisms

The evolution of the fluorescence intensity of a solution of the RSFP Dronpa-
2[24] is shown in Fig. 2 for four light intensity conditions illustrating the four
illumination regimes αl , αh, βl , and βh. The evolution has been recorded during
0.4 s with a sampling interval of 10−6 s. As a consequence, only reaction steps
associated with characteristic times larger than 1 μs and smaller than 0.1 s can be
analyzed. Monoexponential functions that have the best fit to the experimental data
are determined.

As shown in Fig. 2a for the regime αl , the fluorescence intensity decays
monoexponentially, in agreement with the prediction of the two-state mechanism
given in Fig. 1c. We have checked that varying the light intensity I1 leads to a
linear variation of the inverse of the experimental characteristic time of fluorescence
evolution. For a low enough light intensity I1 under the illumination protocol α, the
kinetics is governed by a photochemical step. The fitted monoexponential function
to the fluorescence data provides the characteristic time τ = 67.8 ± 0.1 ms for
I1 = 0.08 Einm−2 s−1 and I2 = 0. Using the expression of the characteristic time τ
given in Eq. (19) for the reduced mechanism associated with the regime αl and the
relationship between a rate constant and the light intensity in a photochemical step,
we evaluate the isomerization cross-section at λ1 = 480 nm to 184 m2 mol−1, close
to the tabulated value[17] σ11 = 196 m2 mol−1.

The reduced scheme given in Fig. 1d is a two-state mechanism which predicts a
monoexponential decay of fluorescence intensity in the case of the regime αh. How-
ever, Fig. 2b shows at least a biexponential decay of fluorescence. The experimental
results reveal that the seven-state mechanism does not capture all the complexity
of RSFP kinetics. Nevertheless our model satisfactorily reproduces the thermal
nature of the chemical reaction experimentally validated by the invariance of the
characteristic times as the light intensity increases. The fitted monoexponential
function to the fluorescence data provides the characteristic time τ = 240 ± 20
μs. This result evidences the radiative de-excitation of species B∗, i.e. Trans-O−∗.
Indeed, if A∗, i.e. Cis-O−∗, is the only source of fluorescence, the characteristic time
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a b

c d

Fig. 2 Experimental evolution of the fluorescence intensity IF (black dots) of a 20 μM solution of
the RSFP Dronpa-2 in pH 7.4 PBS (50 mM sodium phosphate, 150 mM NaCl) at T = 298 K under
(a): illumination αl for I1 = 0.08 Einm−2 s−1, (b): illumination αh for I1 = 228.8 Einm−2 s−1,
(c): illumination βl for I1 = 0.15 Einm−2 s−1 and I2 = 0.01 Einm−2 s−1, (d): illumination βh
for I1 = 0.15 Einm−2 s−1 and I2 = 106 Einm−2 s−1. The gray lines in (a), (b), and (c) are
monoexponential fitted curves to the experimental data. The gray line in (d) is a biexponential
fitted curve

of fluorescence would be given by 1/k′1 = 22 μs in the experimental conditions,
much smaller than the found τ value. Using the expression of the characteristic
time τ given in Eq. (21) for the reduced mechanism associated with the regime
αh, we obtain the following evaluation of the unknown protonation rate constant
kC = (4.1± 0.4)× 103 s−1.

As displayed in Fig. 2c for the regime βl , the fluorescence intensity increases
monoexponentially, in agreement with the prediction of the two-state mechanism
given in Fig. 1e. We have checked that varying the light intensity I2 leads to a
linear variation of the inverse of the experimental characteristic time of fluorescence
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evolution. For a low enough light intensity I2 with a small light intensity I1 under
the illumination protocol β, the kinetics is governed by a photochemical step. The
fitted monoexponential function to the fluorescence data provides the characteristic
time τ = 30.3 ± 0.1 ms for I1 = 0.15 Einm−2 s−1 and I2 = 0.01 Einm−2 s−1.
Using the expression of the characteristic time τ given in Eq. (22) for the reduced
mechanism associated with the regime βl and the relationship between a rate
constant and the light intensities in a photochemical step, we evaluate the sum of
the isomerization cross-sections at λ2 = 405 nm to 360 m2 mol−1, close to the
value of the literature[17] σ12 + σ22 = 413 m2 mol−1.

The reduced scheme given in Fig. 1f is a three-state mechanism which predicts
a fast increase followed by a slow decrease of fluorescence intensity in the case
of the regime βh. Indeed Fig. 2d shows that the fluorescence intensity reaches a
maximum. However the sum of at least three exponential terms has an acceptable
fit to the experimental data. We have experimentally checked that increasing the
light intensity I2 does not affect the characteristic time associated with the initial
increase of fluorescence intensity but modifies the characteristic times associated
with the decrease. Once again the results obtained at high light intensities which are
sensitive to thermal steps reveal unknown subtleties of RSFP dynamics. According
to literature[20], the deprotonation rate constant is given by kA = 5.2×104 s−1. For
the light intensity I1 = 0.15 Einm−2 s−1 and the isomerization cross-section σ11 =
196 m2 mol−1, the photochemical rate constant is k′1 = 29.4 s−1. Assuming k′1 �
kC � kA, we expand the characteristic times given in Eqs. (23) and (24) at leading
order in k′1/(kA − kC) and find τ1 � 1/kA and τ2 � 1/kC . The fitted biexponential
function to the fluorescence data provides the characteristic times τ1 = 50 ± 3 μs
and τ2 = 230±30 μs. The results yield kA = (2.0±0.1)×104 s−1 and kC = (4.3±
0.5)× 103 s−1. The two values of kC derived in the regimes αh and βh remarkably
agree. The found value of kA is in satisfying agreement with the result obtained
using UV-visible transient absorption spectroscopy[20]. The difference of less than
a factor of 3 could be due to a different sensitivity of the absorption and fluorescence
observables to additional microsecond protein reorganization steps[23] that were
neglected in the seven-state mechanism. An effect of the solution pH (7.4 instead of
8.0 in the transient absorption study[20]) on the chromophore deprotonation kinetics
is moreover not excluded.

7 Conclusion

In this work we investigate the kinetics of reversibly photoswitchable fluorescent
proteins (RSFPs) used in biological imaging. Light intensity is tuned to change
rate limiting steps, from photochemical steps for low light intensity to thermal
steps for high enough light intensity. Fluorescence evolution is analyzed to evaluate
characteristic times. Starting from a reasonable seven-state mechanism, we use
the steady-state approximation to reduce the dynamics to simple schemes valid in
each light intensity regime. Hence a small number of characteristic times can be
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associated with the experimental fluorescence data allowing us to evaluate some rate
constants. In particular we assert the fluorescent nature of species Trans-O−∗ and
determine the value of the protonation rate constant kC unknown in the literature.
Transient absorption spectroscopy commonly used to investigate the kinetics of
RSFPs has not yet been conclusive due to the small isomerization cross-section
σ11 which limits the signal. Our approach based on the analysis of fluorescence
photoswitching kinetics under continuous illumination benefits from the very high
sensitivity of this observable and does not require any expensive pulsed laser
equipment.

Acknowledgments This work is supported by the French research agency programs ANR-19-
CE29-0003 and ANR-19-CE11-0005.

Appendix 1: The Steady-State Approximation

The steady-state approximation consists in eliminating a concentration from the rate
equations, provided that the time dependence of this variable contains a component
relaxing faster than the other concentrations. In this work, first-order reactions are
involved and we illustrate the steady-state approximation in the case of a system
of linear differential equations for the two variables A and B associated with the
following chemical scheme

A −→ [k1]C1 (25)

A −−⇀↽−− [k2][k3]B (26)

B −→ [k4]C2 (27)

where the concentrations Ci for i = 1, 2 are supposed to be constant due to the
action of appropriate reservoirs called chemostats. The rate equations are given by

dA

dt
= −(k1 + k2)A+ k3B (28)

dB

dt
= k2A− (k3 + k4)B (29)

Considering the small parameter ε = k3/(k1 + k2), we find at leading order that
dA
dt = 0, which amounts to an instantaneous relaxation of the fast variable A.
Equation (28) then leads to the relationship A = k3/(k1 + k2)B allowing us to
eliminate A from the rate laws. The small ε condition is equivalent to assuming
that the sum of the rate constants of the steps consuming the fast species is larger
than the sum of the rate constants of the steps producing the considered species. In
addition, the fast species can be eliminated from the chemical scheme leading to the
reduced mechanism
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B
k4+ k1k3

k1+k2−−−−−→ C2 (30)

Appendix 2: Fluorescence Evolution in a Two-State
Mechanism

We consider the standard two-state mechanism describing the reversible exchange
between a bright fluorescent state F and a dark nonfluorescent state N

F
k−⇀↽−
k′

N (31)

where k and k′ are the rate constants. The law of conservation of matter leads to
F +N = Ctot. The evolution of the system is given by the single equation

dF

dt
= −(k + k′)F + k′Ctot (32)

Choosing as initial condition F = Ctot, we find

F = Ctot

(
1− exp

(−t
τ

))
(33)

where τ = 1/(k + k′) is the characteristic time. The fluorescence evolution is
proportional to the concentration of the bright state F and consequently decays
monoexponentially.
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Probability Distributions of p53
Mutations and Their Corresponding
Shannon Entropies in Different Cancer
Cell Types

S. A. Moghadam, S. I. Omar, and J. A. Tuszynski

1 Introduction

A permanent change in the nucleic acid sequence of a gene is known as a gene
mutation. A mutation stems from an error in the DNA replication process, meiosis,
mitosis, or for any other DNA damage reason. The smallest mutation happens when
a single base pair (in a codon) is replaced by another base pair. In synonymous
mutations, replacing a base pair does not change the amino acid that codes for
the corresponding protein peptide sequence [1–3]. In contrast, in nonsynonymous
mutations, the change in the codon will change the protein sequence. Gene
mutations can be attributed to two different origins, namely somatic (acquired) or
hereditary (also called germline) mutations [1–3]. A somatic mutation might occur
locally in a tissue or an organ, often due to some environmental factors such as
UV radiation. Parents have a significant role in the former category since these
hereditary mutations or germline mutations are present in every cell of the body
[4, 5]. Hence, considering the importance of p53 in the pathogenesis of human
cancer offers a great motivation to study the probability of amino acids represented
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by p53 mutations in different cancer types in order to find any correlation between
them.

TP53 codes for the tumor suppressor protein called p53 [6, 7]. In human DNA,
TP53 is located on the 17th chromosome (17P13.1). TP53 codes for over 15
various isoforms of its product protein denoted p53 [6–8]. The p53 protein is made
of 393 amino acids, which are divided into five main domains: (1) N-terminal
transactivation domain (amino acids 1–43 and 44–60), which is involved in the
activation of different transcription factors, binds to transcription factors and plays
the role of a mediator in some interactions [9–12]. (2) Pro-rich domain (amino
acids 61–100), which is important for p53 stability and also has a function in
transcription activation and induction of transcription-independent apoptosis [12–
14]. (3) DNA binding domain (DBD) (amino acids 101–300), which primarily binds
to DNA. It is also responsible for binding with the p53 corepressor [12, 14]. (4)
Tetramerization domain (amino acids 301–323), which plays a role in the regulation
of the oligomeric state of p53 [12, 15–17]. (5) Basic C-terminal domain (amino acids
360–393), which is important in the regulation of the sequence [15, 18].

The DBD of p53 is made of an immunoglobulin-like β-sandwich of two
antiparallel β-sheets, providing a scaffold for a flexible DNA-binding surface. This
DNA-binding surface is created by two large loops stabilized by a zinc atom and a
loop-sheet-helix motif [19–23]. Zinc binding is critical for correct protein folding
and requires a reduction of thiol groups on cysteines [8, 19–24]. In its role as a tumor
suppressor protein, p53 binds to the DNA regulating the cell cycle [8, 12, 24]. The
p53 protein controls the following cellular processes: (a) cell proliferation, (b) cell
death, (c) nutrient deprivation, (d) nucleotide depletion, (e) hypoxia and oxidative
stress and (f) hyperproliferative signals [12]. These and other cellular functions
are performed by p53 primarily by triggering apoptosis, DNA repair, regulation of
energy metabolism and anti-oxidant defense [8]. Stimuli that activate p53 include
DNA damage, nutrient deprivation, nucleotide depletion, hypoxia, oxidative stress,
and hyperproliferative signals [8, 12, 24]. The activated protein plays its role by
virtue of being a transcription factor as it binds to the promoter region of different
genes to activate their expression in order to induce the above-listed functions as
well as cell cycle arrest when required [8, 12, 24].

Numerous studies show that virtually all cancer types exhibit p53 protein
mutations, and several studies used computational methods, such as molecular
docking, to find pharmacological compounds that are predicted to restore the
function of the p53 mutant to its wild-type state [25–42]. It has been hypothesized
that on their own, these mutations can lead to tumor initiation and progression
[25–37]. Due to the importance of preventing cancer formation in multicellular
organisms and the significant role of the p53 protein in conserving the cell’s stability,
p53 has been described as “the guardian of the genome” [24, 43–52]. A vast majority
of the p53 mutations, approximately 95%, take place in the DNA binding domain.
Interestingly, about 40% of these amino acid mutations happen in only six specific
positions, known as hotspot mutations, in which the frequency of the hotspot
mutations is much higher than in other regions of the DNA sequence. These hotspot
mutations involve the following specific residue changes R175H, G245S, R248W,



Probability Distributions of p53 Mutations and Their Corresponding Shannon. . . 39

R249S, R273H, and R282Q [4]. The most common type of mutation in cancer is
mainly missense, nonsense and deletion but the pattern of mutations is different
in different ethnic groups, which also depends on the geographical location [53].
Most mutations in the DBD region are missense; in contrast, outside this region,
missense mutations represent only about 40%, the majority of mutations being
nonsense or frameshift [54]. TP53 mutations occur in nearly all types of cancer,
such as: ovarian, esophageal, colorectal, head and neck, laryngeal and lung cancers,
sarcomas, breast, brain, testicular cancer, cervical cancers malignant melanoma, and
leukemia. Mutations have been found to be more frequent in advanced stages of
the disease. Interestingly, it was also found that in elephants, cancer prevalence
was significantly lower than expected based on extrapolation from other species,
including humans, which stems partly from the number of copies of the p53 protein
in these animals compared to humans, namely twenty copies in elephants and one in
humans [50, 51]. The p53 gene counts as the highly frequent mutated gene in human
cancers, and more than half of the human tumors include deletions or mutations of
the p53 gene bases. For instance, individuals having a single p53 gene’s functional
copy develop Li-Fraumeni syndrome (LFS), which leads to their predisposition to
developing cancer. These rare conditions create multiple autonomous tumors in
different tissues. This demonstrates the importance of studying p53 mutations due
to their consequences for cell division.

Using different experimental biological techniques, such as gene knockout in
mice, has revealed vital information regarding the molecular mechanisms of cancer
initiation and progression [55–57]. When the p53 protein binds to the promoter
region of the p21 gene, it activates its transcription and hence its expression. The
p21 protein interacts with a cyclin-dependent kinase2 (CDK2), which is a protein
normally involved in cell division [8, 24, 58–61]. The formation of the p21-CDK2
complex inhibits the function of the latter protein and hence progression of the
cell-cycle is inhibited [8, 24, 58–61]. Mutations in p53 can, therefore, inhibit its
transcriptional activity and hence alter its control over the cell cycle. Thus, cell
division would progress without control and consequently, a tumor can form. A
recent study by Baugh et al., discussed the causes behind the hotspot mutations in
p53 [4, 62], which were listed as: (1) the mutations in the gene alter the structure of
the expressed protein, (2) in a specific DNA sequence, such as a methylated cytosine
residue in a CpG dinucleotide, changing it to thymidine causes hotspot mutations to
occur at these residues, (3) environmental mutagens create specific changes in the
p53 gene and (4) the altered protein causes cancer due to an allele-specific gain of
function [4]. In the present paper, we investigate the probability distribution of p53
mutations among the various amino acids and across a number of cancer types.

2 Methodology

For this study, we extracted information regarding the probability distributions of
the available p53 mutations from the IARC TP53 database (http://p53.iarc.fr/). This
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database has organized and gathered all the published information on the TP53 gene
variations from peer-reviewed literature on human cancers since 1989 [24]. The
IARC dataset provides valuable information on TP53 gene variations and muta-
tions associated with each human cancer sample. This information includes TP53
germline mutations, somatic mutations, synonymous or nonsynonymous mutations,
functional classifications (based on the transcriptional activity), exon numbers, and
several other details. Among these categories, TP53 somatic mutations were mainly
considered in this research. Somatic mutations refer to the mutations in sporadic (as
opposed to germline) cancers reported in primary tissues, cell lines, and fluids in the
body.

We are interested in finding how frequent is a specific conversion of an amino
acid into another amino acid in the given gene sequence. For instance, we need
to know the frequency of mutating arginine to the other 19 amino acids and
compare it with other amino acids, so that this would result in a matrix of 19 by
19 possibilities or 20 by 20 including non-mutated cases. In the gene sequence,
different types of mutations occur, and they are recorded in the p53 database
as well. The mutation types are missense, silent, nonsense, frameshift, splice,
insertions or in-frame deletions, intronic, and upstream mutations in the 5’ or 3’
UTR (untranslated region). In missense mutations, which are in the nonsynonymous
substitution category in the genetic code, a single nucleotide is altered and the
produced codon codes for a different amino acid. This type of point mutation is
a missense mutation, and it changes the protein sequence encoded. Silent mutations
are those types of point mutations in which the changed nucleotide still codes
for the same amino acid, and the encoded protein remains the same. The other
mutation type involves nonsense mutations that arise when a point mutation of a
nucleotide is an introduction of a stop codon. In this case, this mutation in the DNA
sequence leads to a premature termination of a protein [24, 63]. Splice mutations
refer to the mutations that delete, insert or change the number of nucleotides in the
specific site at which splicing occurs during the processing of precursor messenger
RNA into mature messenger RNA and are located in the two first and last intron
nucleotides, which remain conserved and hence, nominated for change in splicing.
Also, intronic mutations happen in introns that are located outside of the splicing
site. In human cancers, approximately 90% of the mutations are missense mutations,
and the produced protein by these mutations is not sufficiently able to bind to the
DNA sequence to regulate the transcriptional pathway of p53 [4]. Among the 189
different mutations in the trinucleotides, eight of them are referred to the codons
that contain about 28% of all p53 mutations. Therefore, in our calculations, we are
interested in finding the frequency of missense and silent mutations in p53 protein in
different types of cancer. Using the IARC database, all wild-type to mutant changes
of p53 in 75 different cancer types have been found. Table 1 shows all the human
cancer types studied in the present paper. The probability distribution of each of the
mutations to other amino acids has been obtained considering the somatic mutations
among all the cancer diseases listed in Table 1. Each mutation of the p53 protein
is associated with a number of the human samples in the IARC database. The
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probability for each mutation from the wild-type sequence is obtained using the
formula

Pij = nij

N
. (1)

where 1 < i < 20 refers to each amino acid for all somatic mutations available
in the database, nij is the frequency of missense or silent mutations involving ij
amino acid pairs, N is the total number of mutations reported in the database and∑
ij Pij = 1. Figure 7 in the Appendix shows glycine to alanine mutations of p53

protein in different human cancer types extracted from the IARC database. The total
number of mutations for this amino acid is 38, and they are distributed unevenly
between the 17 cancer types. For instance, liver cancer has a total number of 1198
mutations, among which 8 stem from glycine to alanine mutations, which gives us
the probability distribution for this specific amino acid. Similarly, using Eq. (1), the
probability distribution for other amino acid mutations were extracted.

3 Results and Discussion

Having used the IARC TP53 database, the amino acid mutations of p53 protein in
different human cancer have been analyzed. Similar to the example of glycine to
alanine shown in Fig. 7 in the Appendix, all of the amino acid mutations can be
presented as the elements of a matrix whose size is 20 by 20. In the p53 sequence,
some of the amino acids do not mutate as reported in the IARC database. From all
400 possible permutations, 189 cases were mutated and the rest (211) did not involve
any mutations. The terminology “mutated” means that there is at least one mutation
between two amino acids regardless of the number of repetitions in cases in the
IARC TP53 database (R20, July 2019) [24]. For instance, there is some information
about glycine to alanine mutations in the database and this number is 38 and it is
repeated in 17 different cancer types.

Moreover, mutations for each category were extracted based on wild-type to
mutant changes in amino acids, including missense and silent mutations. Figure 1a
shows the number of all mutations found in different cancer types for each amino
acid. Lung cancer has a total number of 3047 different reported mutations, which
is the highest number of mutations compared to the other cancers. Among this
number, 1880 are missense and silent mutations. Other cancers, such as bladder
and breast cancer are the second and third highest mutated cancers, respectively.
Summation over the elements of the 20 × 20 mutation matrix has been calculated
using Eq. (2) as

PM,S =
20∑

i,j=1

(pij )
α . (2)



42 S. A. Moghadam et al.

Fig. 1 (a) Total number of amino acid mutations for each cancer type in decreasing order, blue
bar shows all types of mutations recorded for each cancer type in the IARC database, the red bar
shows the missense and silent mutations for each cancer type. (b) Sum over all mutation occurrence
frequencies in each cancer type as given in Eq. (2) (The summation reaches one for each cancer if
other types of mutations are taken into account (not only missense and nonsense)
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where PM,S refers to the sum over all missense and silent mutations, pij stands for
the occurrence frequency of each mutation (i to j ), and α refers to the cancer type
(1 < α < 75). The results of Eq. (2) are presented in Fig. 1b. Since we only focus
on the missense and silent mutations, the summation over all the probabilities is
not equal to 1. The rest of the contributions are for the other types of mutations (in
order to compare Fig. 1a, b for each cancer type, the same order is chosen for the
cancer type, along the x-axis, see Appendix Fig. 8). In addition, Fig. 2 shows the
summation over occurrence frequency, pij , of all cancer types in one graph. The
red bars demonstrate the hot spot mutations of the p53 protein, which are R175H,
G245S, R248W, R249S, R273H and R282Q. Mutation of arginine to histidine, R-H,
arginine-to-tryptophan R-W, arginine-to-glutamine R-Q, arginine-to-cysteine R-C,
glycine-to-serine G-S and arginine-to-serine R-S, are the top-six highly mutated
amino acid pairs.

Among all 75 studied cancer types, 79% have at least one arginine-to-histidine
mutation, 73% have at least one arginine to glutamine, 71% have arginine to
tryptophan. For the next two hotspot mutations, this number drops to 55% for
glycine to serine and 48% for arginine to serine. Moreover, in ∼ 84% of the cancer
types at least one of the hotspot mutations has a higher frequency compared to other
mutants. Figure 3 shows the mutation frequency of p53 in two of the highly mutated
cancer types, which are lung (a) and breast (b) cancers. In Fig. 9 in the Appendix,
a histogram of all the mutations in the different types of cancer has been plotted
separately. Similarly, in most of them, the highest frequency mutations belong to
one or more hotspot mutations of p53 protein.

The two-dimensional (2-D), and three-dimensional (3-D) heat map represen-
tations of the amino acid mutations’ frequency have been plotted. Figure 10a in
the Appendix demonstrates a 20×20 matrix with the occurrence frequency of the
corresponding mutations of the p53 protein in 2-D and Fig. 10b in the Appendix
is a 3-D representation, in which zero means there is no amino acid mutation in
that cancer type. The results are color-coded starting from blue, which means there
were no mutations, to yellow as the frequency of that p53 mutation increases. Lung
cancer has been reported to have the highest number of mutations among all cancers.
Arginine to histidine and arginine to tryptophan are the highest frequency mutations
in lung cancer.

Next, we investigate the dissimilarity factor relative to a reference number. First,
we consider lung cancer, which has the highest number of reported mutations. The
dissimilarity factor Δαβ is defined as

Δαβ =
√∑20

i,j=1(p
α
ij − pβij )2
N

=
√∑20

i,j=1(δ
αβ
ij )

2

N
. (3)

where N is the normalization factor, α corresponds to all the other cancer types
relative to cancer type β, and pij is the occurrence probability of a mutation of
i to j . Equation (3), Δαβ , varies from zero to one (0 < Δαβ < 1), whereby 1
indicates that the two compared cancer type mutations are dissimilar (the higher the
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Fig. 2 (a) Summation over all the occurrence frequencies of p53 mutations in 75 different cancers
types, red bars show the occurrence frequency of p53 hotspot mutations, (b) to represent these
large data points better, the same data are shown in 4 subplots in the same order as plot (a) and the
hotspot mutations are labeled in red
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Fig. 3 Frequency of amino acid mutations in the p53 protein in (a) lung and (b) breast cancer
using the IARC database (for only missense and nonsense mutations). The red bars in both plots
represent the hotspot mutations of the p53 protein. They are more frequent in these cancer types as
well

value, the lower the similarity). Moreover, the similarity factor can be obtained from
Δαβ

′ = 1−Δαβ . In Fig. 4a, b, dissimilarity and similarity coefficients are plotted for
all the 75 cancer types. It should be noted that both plots in Fig. 4 are complementary
to each other. One conclusion that can be readily drawn is that most of the cancers
have similar mutations to those found in lung cancer. Furthermore, some of them,
such as cancer of the endocrine glands, placenta and meninges, which have a small
number of mutations, are less likely to have similar amino acid mutations to those
in lung cancer and hence the similarity factor is low.

As a general calculation, by taking each cancer as a reference, dissimilarity
and similarity factors have been obtained for all other cancer types and plotted in
Fig. 11 in the Appendix, which shows a 75 by 75 symmetric matrix for dissimilarity
factors. As explained in Eq. (3), δαβij represents the value of each matrix element.
The diagonal elements are zero since they represent the dissimilarity of a mutation
frequency of each cancer to itself, δββij = 0 and the off-diagonal elements show the
dissimilarity factor between two cancer types.



Fig. 4 Mutation dissimilarity factors (a) and mutation similarity factors (b) obtained from Eq. (3)
for all cancers with respect to the lung cancer (these plots are complementary to each other). Lung
cancer has been assumed to be the reference case due to its highest number of mutations. The more
similar to the reference cancer type, the closer the value to zero is (i.e., similarity for lung cancer
to itself is zero and it means they are identical in terms of mutation types)
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The next stage to this approach is to consider the entropy values corresponding to
the probability distribution of mutations in different cancers. Entropy is an important
concept in studying cancer from the view point of information theory and statistical
thermodynamics [64–72] Based on the second principle of thermodynamics, in an
isolated system, entropy always increases. Also, at the macroscopic level, entropy is
a statistical measure of disorder [73]. Entropy can be computed as a system-specific
entity that allows us to predict the gap between the present and estimate the final
stage of a biological system based on the statistics ofmacroscopic characteristics
of the system. The dynamics of the carcinogenesis process, which, among other
processes that are dysregulated, is associated with the misplacement of internal
cellular information leading to pathological transformations. It can be quantified by
accumulation of genomic mutations, which can be studied by using concepts from
information theory [73]. Previous studies showed that Shannon entropy is a useful
concept for creating a theoretical model of carcinogenesis and prognostic models
for patient survival. In this study, we apply the Shannon entropy relation to obtain
the entropy of p53 mutations in different cancers [72–75]. The Shannon entropy of
a system, which is characterized by a probability distribution pαij , can be computed
using the relation

Sα = −κB
20∑

i,j

pαij ln(p
α
ij ) (4)

where pαij is the occurrence probability of an amino acid mutation and κB is the
Boltzmann constant, κB = 0.0083144621 kJ/mol·K. With the help of Eq. (4) the
entropy values for the studied mutations for various cancers are obtained and plotted
in Fig. 5. As can be clearly seen, lung cancer has the highest entropy. Recall that
lung cancer also has the highest number of p53 mutations. However, this trend is
not seen in the rest of the cancer types. For example, bladder and ovarian cancers
are the second and third ranked cancers, respectively, in terms of the number of
mutations, although here they rank fourth and eleventh among the cancers ordered
by their mutation entropy values.

Also, it is interesting to establish if there is a correlation between the entropy
of p53 mutations for a given type of cancer and the corresponding 5-years survival
rate. Therefore, the 5-year survival rates for the investigated cancer type can be
compared using the available databases. Using the statistical information provided
by the Surveillance, Epidemiology, and End Results (SEER) Program, which is an
authoritative source for cancer statistics located in the United States, the statistical
data on 5-years survival of cancer patients were collected. There is a dedicated
website at https://seer.cancer.gov/. SEER collects and curates information on cancer
cases from around the world. The 5-years survival rates were collected based on
the patient’s information for the period 2009–2015. These values are obtained
comparing survival rates in people who are diagnosed with cancer with those who
are healthy without diagnosed cancer, having the same age, sex, and race [76, 77].
Figure 6 shows a plot of entropy as a function of the survival rate for all the


 2658 51346
a 2658 51346 a
 
https://seer.cancer.gov/


48 S. A. Moghadam et al.

Fig. 5 The Shannon entropy for different cancer types calculated from Eq. (4) (using the
occurrence frequency obtained from the IARC database)
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Fig. 6 Mutation entropy of the p53 protein as a function of 5-years survival rate (using SEER
database). Each of the cancer types is shown with a blue star symbol and only a weak correlation
can be seen
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available cancer types in the SEER database. The data are scattered and only a weak
correlation can be found [76, 77].

As discussed earlier, if it is equally likely for any amino acid to be mutated
to any other amino acid, then it is a reasonable expectation to have the same
probability distribution for any amino acid mutations in every cancer type. However,
our results showed that some of the amino acids are more probable than others in
general. Moreover, in recent decades studies specifically focused on the p53 protein
showed that there are several hotspot mutations in well-defined locations of the p53
sequence. Our results show that most of the p53 hotspot mutations have a higher
occurrence frequency as well. These observations are in contradiction to the natural
selection theory and indicate that the mutation location in the genetic sequence is
important for a mutation to happen and it is not a random event. Therefore, there
should be a correlation between the occurrence probability of a mutation and the
location in the p53 protein sequence. Despite the findings in this study, mutations in
p53 could still be random. However, p53 might activate cell death in abnormal cells
if the mutations do not affect the wild-type activity of p53 [6, 78]. If this is the case,
then only cells with p53 mutations that alter the protein’s tumor suppressor activity
would be reported and hence bias the results showing that some mutations are more
likely than others.

4 Conclusions

In this study, the frequency of p53 mutations of amino acid has been studied in
a large number of cancer types. In terms of the number of somatic mutations,
lung cancer has the highest number of such mutations. After lung cancer, breast,
ovarian, esophageal, brain, and colorectal cancers have the next highest numbers of
mutations. We showed that in 84% of somatic mutations, at least one of the hotspot
mutations has the highest frequency. The top-five highly mutated amino acids
are; arginine-to-histidine, arginine-to-tryptophan, arginine-to-glutamine glycine-to-
serine, arginine-to-serine. Moreover, the Shannon entropy of the mutations was also
computed and analyzed as a possible characteristic of the associated malignancy.
Lung cancer has the highest entropy value of all cancer types and also the highest
number of p53 mutations. However, our results indicate that there is no correlation
between the entropy of p53 mutations and the number of mutations for all cancer
types in general. We also examined the hypothesis that entropy may be correlated
with the 5-year survival rate for the available cancers types as listed in the SEER
database. Except for the lung cancer, which is the most highly mutated cancer, no
obvious trend could be found between the p53 mutation entropy and either the 5-
year patient survival rate or the occurrence frequency of mutations across all cancer
types (Figs. 7, 8, 9, 10, and 11).
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Appendix

Table 1 Cancer types studied with respect to p53 mutations [4]

Database Database Database

Topography total Topography total Topography total

Adrenal gland 65 Liver 1196 Prostate 373

Anus 5 Lung 3047 Pyriform sinus 12

Biliary tract 73 Lymph nodes 762 Rectosigm. 40

Junct.

Bladder 1516 Meninges 2 Rectum 691

BONES (limbs) 53 MOUTH (floor) 94 Renal pelvis 58

BONES (other) 231 MOUTH (other) 689 Salivary gland 22

Brain 1840 Nasal cavity 190 Sinuses 219

Breast 2874 Nasopharynx 62 Skin 1052

Cervix uteri 117 Nerves 79 Small intestine 13

Colon 1144 Oropharynx 259 Soft tissues 406

Colorectum, nos 1758 Other digestive 3 Spinal cord 5

org.

Corpus uteri 217 Other endocrine 7 Stomach 978

gl.

Endocrine 1 Other female 25 Testis 29

glands, nos gen. org.

Esophagus 1873 Other head and 6 Thymus 21

neck

Eye and adnexa 29 Other male gen. 2 Thyroid 121

org.

Female genital 3 Other respir. 22 TONGUE 13

org., nos Syst. (base)

Gallbladder 110 Other sites 4 TONGUE 208

(other)

(continued)
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Table 1 (continued)

Database Database Database

Topography total Topography total Topography total

Gum 81 Other urinary 28 Tonsil 18

org.

Head & neck, nos 665 Ovary 2303 Unknown site 25

Heart/med/pleura 13 Palate 28 Up. Urinary tract, nos 172

Hematop.System 925 Pancreas 490 Ureter 26

Hypopharynx 183 Parotid gland 29 Urinary tract, nos 5

Kidney 147 Penis 14 Uterus 73

Larynx 437 Peritoneum 46 Vagina 3

Lip 30 Placenta 2 Vulva 108

Fig. 7 Somatic mutations of glycine to alanine in different cancers, IARC TP53 database, R20,
July 2019 [24]
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Fig. 8 (a) Numbers of mutations for each cancer type shown in decreasing order. (b) Sum over all
the amino acid occurrence frequencies in each cancer type in Eq. (2) in the same order of appearing
in plot (a)
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Fig. 9 Frequency of amino acid mutations in the p53 protein in different cancers. The data were
extracted using IARC database. Each plot shows the mutations of the p53 protein in specific cancer
types. The red bar shows the p53 hotspot mutations. In almost all of the cancer types at least one
hotspot mutation exists and it is one the highest frequency mutations (in almost 84% of the studied
cases)



Fig. 10 The 2-D (a) and 3-D (b) plot of p53 mutation frequency in lung cancer obtained from
the IARC database. The color bar changes from blue to yellow, which represents the mutation
frequency from 0 to 0.04. Zero means there is no mutation from Wild-Type to that specific
mutant reported in the database, and the higher the frequency of mutations, the more yellow it is
represented as in both (a) and (b) plots. For each mutation, the Wild-Type to mutant is represented
by the first letter representation of the amino acids shown in pink
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Fig. 11 The dissimilarity factors between different cancer types. Using Eq. (3), a 75 by 75 matrix
of dissimilarities has been obtained with respect to each cancer type, i = j columns are zero since
they show the dissimilarity factors of each cancer to itself, and i �= j shows the dissimilarity of
each cancer to the rest of the 74 cancer types. Color bar changes from blue to yellow to show the
dissimilarity of each cancer to the reference cancer type
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Oscillations in Biological Systems

Sándor Kovács

1 Introduction

As it is well known, many physical, chemical and biological phenomena are
modelled by parabolic equations, among these one of the most frequently examined
type is the reaction-diffusion equation. One of the fascinating features of these
equations is the variety of special types of solutions they exhibit. Certain systems of
this type have, for example, travelling wave solutions or rotating waves (cf. [14]) or
via bifurcation analysis one can find a new class of solutions (cf. [13]).

In this chapter we consider the autonomous systems of reaction-diffusion
equations

ut = D�ru + f ◦ (u, μ), (1)

on � × R
+
0 � (r, t), with the usual zero flux boundary and non-negative initial

condition

(n · ∇r)u = 0 on ∂�× R
+
0 , (2)

and

u(·, 0) = u0(·) on �× {0}, (3)

where D is a positive diagonal matrix:
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D := diag(d1, . . . , dn),

the kinetic function

f = (f1, . . . , fn) : Rn × I → R
n

belongs to C1, μ is a parameter in an open interval I ⊂ R, � is a bounded domain
in Rn with piecewise smooth boundary, n is the outer unit normal to ∂� and u0 is a
bounded non-negative, resp. not identically vanishing smooth function.

Insomuch as system (1) is biologically motivated it is necessary to show that (1)
is biologically well-posed. Usually, this means positivity, resp. dissipativeness, i.e.

• the solution

� = (�1, . . . , �n) ∈ �× R
+
0 → R

n

of (1) with non-negative initial data

u0 = (u10, . . . , un0) with ui0 �≡ 0 (i ∈ {1, . . . , n})

remains non-negative for all t ≥ 0 in their domain of existence, resp.
• all solutions of system (1) are bounded and therefore defined for all t ≥ 0.

The first requirement can be formulated as follows: the positive quadrant of the
phase space

{
u = (u1, . . . , un) ∈ R

n : uk ≥ 0 (k ∈ {1, . . . , n}} (4)

is (positively) invariant. This motivates the following

Definition 1.1 A closed subset � ⊂ R
n (positively) invariant region for the local

solution defined by (1), if for suitable T > 0 any solution � having all of its
boundary and initial values in � satisfies

�(r, t) ∈ � ((r, t) ∈ �× [0, T )).

It is obvious that the set � in (4) is a closed subset.
In [5] one can find the following fundamental result about the existence of

(positively) invariant region.

Theorem 1.1 Let m ∈ N and consider the region � of the form

� :=
m⋂

k=1

{r ∈ U : Gi(r) ≤ 0} ,
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where U ⊂ R
n is an open subset and Gi : R

n → R are smooth func-
tions (i ∈ {1, . . . , m}) whose gradient ∇Gi never vanishes. If at each point
r ∈ ∂� we have for all i ∈ {1, . . . , m}:
(i) ∇Gi(r) is a left eigenvector of the diffusion matrix D;
(ii) the functions Gi are quasi-convex, i.e. for all r ∈ U , resp. for all s ∈ R

n the
equality 〈∇Gi(r), s〉 = 0 implies 〈s,∇2Gi(r)s)〉 ≥ 0;

(iii) 〈∇Gi(r), f(r, μ)〉 < 0 (μ ∈ I )
then � is positively invariant for system (1).

As an example we show that the region

� :=
{
(n, T ) ∈ R

2 : 0 ≤ n ≤ a, α ≤ T
}

is an invariant region for the parabolic system

∂tn = k1�rn− n exp (−E/RT ) , ∂tT = k2�rT +Qn exp (−E/RT )

arising in the theory of combustion (cf. [10]) where the quantities T and n denote
the temperature and concentration, respectively, of a combustible substance and
k1, k2, N,E and Q are positive constants, 0 < n(r, 0) < a, 0 < α ≤ T (r, 0).
Indeed, for

f1(n, T , μ) := −n exp (−E/RT ) , f2(n, T ) := Qn exp (−E/RT )

and

G1(n, T , μ) := n−a, G2(n, T ) := −n−ε (ε > 0) resp. G3(n, T ) := α−T

where μ ∈ {k1, k2, N,E, ε} we have

〈∇G1, (f1, f2)〉n=a = −a exp (−E/RT ) < 0,

〈∇G2, (f1, f2)〉n=−ε = −ε exp (−E/RT ) < 0,

resp.

〈∇G3, (f1, f2)〉n>0, T=α = −Qn exp (−E/Rα) < 0.

As a further example we deal with the reaction-diffusion system proposed by
A. Lemarchand and B. Nowakowski (cf. [18]) which describes the macroscopic
evolution of two variable concentrations A and B and is given by the two
deterministic equation
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∂tA = dA�rA+ f1(A,B,μ),
∂tB = dB�rB + f2(A,B,μ)

}
(5)

on � × R
+
0 where � ⊂ R

2 is a bounded, connected spatial domain with piecewise
smooth boundary ∂�, f := (f1, f2) with

f1(A,B,μ) := −αA+ βA2B, f2(A,B,μ) := γ − δB − βA2B (6)

belongs to C1, where μ ∈ {α, β, γ, δ}, dA > 0, dB > 0 represent the diffusion
coefficients, A(r, t) and B(r, t) are the concentrations of the species at time t ∈
[0,+∞) and place r ∈ �.

We show now that the interior of the first quadrant of the phase space of is an
invariant region.

Lemma 1.1 All solutions � = (�1,�2) : � × R
+
0 → R

2 of (5) with positive
initial values �1(0) > 0, �2(0) > 0 remain positive for all t ≥ 0 in their domain
of existence.

Proof We have to show that the region

� :=
{
(A,B) ∈ R

2 : A ≥ 0, B ≥ 0
}
.

is positively invariant for (5). Let assume that � = (�1,�2) : � × R
+
0 → R

2 is a
solution of (5) satisfying positive initial conditions. Clearly, �1 ≡ 0 is a solution of
the first equation. Thus, by uniqueness we can argue that no solution �1(·, t) at any
times t ≥ 0 can become zero in finite time. It is obvious furthermore that (0,−1) is
a left eigenvector of the diffusion matrix

D :=
[
dA 0
0 dB

]
.

Thus, if we set

G(A,B) := −B ((A,B) ∈ �),

then

〈∇G, (f1, f2)〉B=0 = −γ < 0 in �.

This proves that � is invariant for system (5). ��
In what follows we shall consider system (5) restricted to (R+

0 )
2 and show that

all solutions stay bounded in 0 ≤ t ∈ R which implies the existence of solutions for
every t > 0.

Lemma 1.2 System (5) is dissipative.
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Proof Let � = (�1,�2) : �×R
+
0 → R

2 be a solution of (5). Thus, for the second
component of � we have

�̇2 − dB�r�2 ≤ γ − δ�2

in its domain of existence and from the comparison principle (cf. [19, Thm. 10.1.,
p. 94]) we obtain on this domain �2 ≤ � where � is a function of time t satisfying

� ′ = γ − δ�, �(0) := max
r∈�

�2(r, 0).

Clearly, lim+∞� = γ /δ which implies that the function �2(r, ·) (r ∈ �) is defined
on the whole positive half line and

lim sup
t→+∞

max
r∈�

�2(r, t) ≤ γ /δ.

The boundedness of �1 follows similarly. Thus, we have proved that all solutions
of (5) stay bounded in t ∈ R

+
0 which implies the existence of solutions of (5) for

every t > 0. ��
Clearly, a spatially constant solution�(·) = (�1(·),�2(·)) of system (1) satisfies

boundary conditions (2) and the kinetic system

u̇ = f ◦ (u, μ) (7)

The equilibria u of system (7) for which

f ◦ (u, μ) = 0 (μ ∈ I ) (8)

holds are constant solutions of (1), (2) at the same time. If e.g. the equality βγ 2 =
2αδ in system (5) hold then we have a unique interior equilibrium

(
A,B

) :=
( γ
2α
,
γ

2δ

)
.

In order to investigate the local dynamical behavior of system (1) near the
equilibrium u of (7) we linearize (1) at these equilibria. The realisation of the
linearization depends strongly on which type of solution is investigated.

The chapter is organised as follows. In the next section we show how to
investigate the occurrence of rotating waves on two types of planar domains: on disk
and annulus. In the section that follows we examine the possibility the occurrence of
time periodic solution of (1) when the kinetic system (7) exhibits periodic solution,
as well.
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2 Bifurcation of Rotating Waves

In this section we are interested in the problem of finding rotating wave solution
of (1)–(2). The kinetic function f in (1) is required to have the following properties

(F1) f ∈ C2(Rn × I ) and (F2) f(0, μ) = 0 (μ ∈ I ).

Assumption (F1) implies that the kinetic term in (1) depends only on the parameter
μ and the variables u1, . . . , un, furthermore its second order derivative of its
components are continuous. Assumption (F2) requires that �(r) ≡ 0 is a solution
of (1)–(2) for all μ ∈ I .

Rotating waves are nonuniform periodic solutions to partial differential equations
which rotate with a nonzero angular velocity. Thus, rotating waves can exist
mathematically only in problems that have at least SO(2) symmetry (cf. [11]), i.e.
there is a function Rϑ ∈ Lin(R2) with

[
Rϑ
] =

[
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

]
and Rϑ

(
�
) = � (ϑ ∈ [0, 2π)).

The domains disk, resp. annulus

�d :=
{
(x, y) ∈ R

2
∣∣x2 + y2 < 1

}
,

resp.

�a :=
{
(r, ϑ) ∈ R

2
∣∣1 < r < σ := R2/R1, 0 ≤ ϑ < 2π

}
(0 < R1 < R2).

have this property (cf. Fig. 1).

Fig. 1 � = �d and � = �a
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Definition 2.1 Let � be one of the radial symmetric domains �d , �a . A nontrivial
non-negative solution � : �× R

+
0 → R

n of (1) is called rotating wave if there is a
function T : �→ R

n and a number 0 �= c ∈ R (wave speed) such that

�(r, ϑ; t) = T(r, ϑ − ct) ((r, ϑ; t) ∈ �× (0,+∞))

and

T(r, ξ) = T(r, ξ + 2π) (r ∈ (0, 1) ∪ (1, σ ), ξ ∈ [0, 2π))

hold.

Because we are looking for solutions � of (1) for which

(n · ∇r)� = 0 on ∂�× R
+
0 ,

resp.

�(·, 0) = �0(·) ≥ 0 on �× {0}

hold, therefore using polar coordinates (r, ϑ) on � and denoting ξ := ϑ − ct one
can easily see that chain rule implies

∂t� = −c∂ξT, (n · ∇r)� = ∂rT and �r� = �T,

where the Laplacian � is given by

� := 1

r
∂r (r∂r)+ 1

r2
∂ξξ .

This means that T is a periodic function of period 2π in the second variable for
which

D�T + c∂ξT + f(T, μ) = 0 ((r, ξ) ∈ �), (9)

∂rT = 0 ((r, ξ) ∈ ∂�) (10)

hold. Thus, we are interesting to seek those non-zero real numbers c for which
system (9) and (10) has a non-trivial solution.
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2.1 The Linearized Problem

Let u denote one of the interior equilibria of the kinetic system (7). Moving the
origin into u by the coordinate transformation

z1 := u1 − u1, z2 := u2 − u2
and linearizing system (9) and (10) we get the linear boundary value problem

D�z + c∂ξ z +Q(μ)z = 0 in �, (11)

∂rz = 0 on ∂� (12)

whereQ(μ) := ∂1f(u, μ). The Eq. (12) has the form in case of the disc � = �d :

∂rz(1, ξ) = 0 (ξ ∈ [0, 2π)),

and in case of the annulus � = �a :

∂rz(1, ξ) = 0 = ∂rz(σ, ξ) (ξ ∈ [0, 2π)).

It is well know (cf. [4, 6, 9]) that if Jm, resp. Ym denotes the Bessel function,
resp. the Bessel function of second kind (c.f. Fig. 2) both of order m (∈ N) and

0 < νdm,1 < ν
d
m,2 < · · · < νdm,n < . . . (n ∈ N),

resp.

0 < νam,1 < ν
a
m,2 < · · · < νam,n < . . . (n ∈ N)

are the roots of

Fig. 2 The graphs of J1 and of Y1
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J ′
m(·), resp. J ′

m(·σ)Y ′
m(·)− J ′

m(·)Ym(·σ)

then the eigenfunctions of the minus Laplacian on �d , resp. �a with homogeneous
Neumann boundary conditions corresponding to the eigenvalues

εkm,n := (νkm,n)2 (k ∈ {d, a})

are the functions

� � (r, ξ) �→ A(r) exp(ımξ)

where in case of the disc

A(r) :≡ Jm
(
νdm,nr

)
,

resp. in case of the annulus

A(r) :≡ Jm(νam,nr)Y ′
m(ν

a
m,n)− J ′

m(ν
a
m,n)Ym(ν

a
m,nr).

Then the non-trivial solution of the (11) and (12) linear boundary value problem has
the form (cf. [3])

T(r, ξ) = A(r) exp(ımξ)e ((r, ξ) ∈ �) (13)

where e is the eigenvector of the matrix

Qm,n(μ) := Q(μ)− εkm,nD.

corresponding to the eigenvalue ımc. From symmetry considerations rotating wave
solutions of (1) may rotate either clockwise or anticlockwise around the domain
� (cf. [1]). Given a solution with c > 0, there is another solution in the opposite
direction with c < 0 so we will restrict our attention to the case c positive (or
anticklockwise waves).

Thus, the linear boundary value problem (11)–(12) has non-trivial solution if and
only if the matrix Qm,n(μ) has purely imaginary eigenvalues. The eigenvalues z of
Qm,n(μ) are roots of the polynomial

z2 − T r (Qm,n(μ)
)
z+ det

(
Qm,n(μ)

)
(z ∈ C)

where

T r
(
Qm,n(μ)

) = T r(Q(μ))− εkm,nT r(D) (14)

and
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det
(
Qm,n(μ)

) = det(D) ·
(
εkm,n

)2 −� · εkm,n + det(Q(μ)) (15)

with

� := −T r
(
D (PQP)T

)
, resp. P :=

[
0 1
−1 0

]
.

In [2] and in [3] it was shown that for a parameter value μ0 ∈ I the non-linear (9)
and (10) has rotating wave solution only if the linear system (11) and (12) has non-
trivial solution.

In case of system (5) the matrixQ(μ) has for μ = α and u = (A,B) the form

Q(α) =
[
α δ

−2α −2δ

]
,

provided βγ 2 = 4α2δ holds. Therefore we can prove the following

Theorem 2.1 If the boundary value problem (9) and (10)with kinetic term f defined
in (5) has a nontrivial solution, then

dA > dB (16)

must hold.

Proof The matrixQm,n(α) has purely imaginary eigenvalues when

Tr
(
Qm,n(α)

) = 0 and det
(
Qm,n(α)

)
> 0. (17)

The first condition in (17) holds if and only if

α = α0 := αkm,n = 2δ + εkm,n(dA + dB). (18)

When α = αkm,n, then

det
(
Qm,n(α

k
m,n)

)
= dAdB(εkm,n)2 + (2δdA − αkm,ndB)εkm,n.

An easy calculation shows that in this case the polynomial

p(z) ≡ −dBz2 + 2δ(dA − dB)z, (19)

must have a positive root, which is valid if (16) holds. ��
There are only finite number of eigenvalues εkm,n of the minus Laplacian on

�k (k ∈ {d, a}) for which det
(
Qm,n(α

k
m,n)

)
> 0 holds. Because condition (16)
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implies that there is a unique positive root of the polynomial p defined in (19),
say ε̂, therefore rotating wave can bifurcate for system (5) with no-flux boundary
conditions on �k only from the eigenvalue εkm,n for which 0 < εkm,n < ε̂ holds.

2.2 The Nonlinear Problem

Note that the theorem in the last subsection gives necessary but not sufficient
condition for bifurcation of rotating wave. To actually prove that there is a
bifurcation at a critical value α0 requires further analysis: certain transversality
condition must be verified. In [2, 3, 13, 14] there was sketched a method, how the
problem of finding rotating wave solution of (1) and (2) may be converted to one of
finding non-trivial solution of operator equations in appropriate Banach spaces.

Clearly, introducing the new vector of variation S := T − u where u is the
equilibrium of the kinetic system (cf. (8)), (9) and (10) assumes the form

D�S + c∂ξS + F(S, μ) = 0 in � (20)

∂rS = 0 on ∂� (21)

where F(0, μ) = 0 (μ ∈ I ) with F ∈ C2((R+
0 )

2 × I,R2) holds for some open
interval I ⊂ R.

Using the implicit function theorem it can be shown (cf. e.g. [14] and [13]) that at
the critical value α = α0 in (18) the trivial solution 0 of the non-linear problem (20)
and (21) undergoes a bifurcation causing rotating waves and (20) and (21) has the
solution in case of the disc

�(r, ξ ; s) = s
[

cos(nξ)
−em,n cos(nξ + ϕm,n)

]
Jm(ν

d
m,nr)+O(s)

and in the case of the annulus

�(r, ξ ; s) = s
[

cos(nξ)
−em,n cos(nξ + ϕm,n)

]
·

· (Jm(νam,nr)Y ′
m(ν

a
m,n)− J ′

m(ν
a
m,n)Ym(ν

a
m,nr)

)+O(s),

where

em,n :=
√
(εkm,ndA − α)2 + det

(
Qm,n(εkm,n)

)

δ

and
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ϕm,n := tan−1

⎛

⎝

√
det
(
Qm,n(εkm,n)

)

α0 − εkm,ndA

⎞

⎠ with ϕm,n ∈ (0, π/2).

Since s is considered to be small here, we this solution is called a small amplitude
rotating wave.

3 Periodic Solutions of Reaction-Diffusion Systems

In this section we assume that n = 2, and the parameter dependence is not
emphasized in the right hand side of (1), resp. (7), i.e. we deal with the kinetic
system

u̇ = f ◦ u (22)

and the parabolic system

ut = D�ru + f ◦ u, (23)

on a bounded spatial domain � ⊂ R
2 with piecewise smooth boundary with

homogeneous Neumann boundary condition (2), resp. bounded non-negative initial
condition (3), where D is a positive diagonal matrix: D = diag{d1, d2}.

We assume that (22) has a non-constant orbitally asymptotically stable T -perio-
dic solution

p : [0,+∞)→ R
2, p(t + T ) ≡ p(t),

and this solution is, at the beginning, a stable solution of the parabolic system (23),
too. Varying one of the system parameters we consider the situation in which under
certain conditions this spatially constant time periodic solution loses its stability and
a spatially non-constant time periodic solution emerges.

Theorem 3.1 [Andronov-Witt] Let be � : [0,+∞) → R
2 a fundamental matrix

of the variational system

v̇ = (f′ ◦ p)v (24)

with �(0) = I and M the monodromy matrix, i.e. M = �(T ). The asymptotic
orbital stability of p as a solution the kinetic system (22) depends on the modulus of
the Floquet-multiplier of (24), i.e. on the modulus of the second eigenvalue μ20 of
M /μ10 = 1/. p is an orbitally asymptotically stable, resp. unstable solution of (23)
if and only if 0 < μ20 < 1, resp. μ20 ≥ 1, i.e. δ < 0, resp. δ > 0 holds, where
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δ :=
∫ T

0
div(f(p(t)) dt.

Example 3.1 The system corresponding to the Van der Pol’s differential equation

ü+m(u2 − 1)u̇+ u = 0 (25)

has the form

u̇1 = u2, u̇2 = m(1− u21)u2 − u1. (26)

If m > 0 then system (26) has a non-constant periodic solution um with period Tm,
but not in the strip ‖u‖ < 1. The variational system of (26) is

v̇1 = v2, v̇2 = −(1+ 2mumu̇m)v1 +m(1− u2m)v2. (27)

Thus, if

δ = m
∫ Tm

0
(1− u2m(t)) dt = mTm −m

∫ Tm

0
u2m(t) dt < 0

holds, the periodic solution um is orbitally asymptotically stable.

Example 3.2 If λ, ω > 0, then

p(t) := (√λ cos(ωt),√λ sin(ωt)) (t ∈ [0,+∞))

is a non-constant T -periodic solution of the autonomous system

u̇1 = λu1 − ωu2 − u1(u21 + u22),
u̇2 = ωu1 + λu2 − u2(u21 + u22)

}
(28)

where T := 2π/ω. The variational system is

v̇(t) ≡
[ −2λ cos2(ωt) −ω − λ sin(2ωt)
ω − λ sin(2ωt) −2λ sin2(ωt)

]
v(t).

Because

δ =
∫ T

0

{
−2λ cos2(ωt)− 2λ sin2(ωt)

}
dt = −4λπ/ω

the non-constant periodic solution p of (28) is orbitally asymptotically stable.
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Example 3.3 (cf. [7]) If

ϕ(t) := ((1/2) sin(t)− t, t) (t ∈ [0,+∞))

is a derivo-periodic solution (cf. [8]) of the kinetic system (22) and the variational
system (24) has the form

v̇ = Av (29)

with

A(t) :≡
[
sin(t)/(2− cos(t))− 2 cos(t)− 2

2/(2− cos(t)) 1

]
,

then

p(t) :≡ ϕ̇(t) ≡ ((1/2) cos(t)− 1, 1)

is a 2π -periodic solution of (29). It follows that

∫ 2π

0

{
sin(t)

2− cos(t)
− 1

}
dt = −2π < 0,

thus p is orbitally asymptotically stable.

Example 3.4 (Biochemical Oscillator) If ν, μ, η > 0 and the function g belongs to
C1(R2,R) then certain biochemical systems can be modelled by

u̇1 = ν − g(u1, u2) =: f1(u1, u2),
u̇2 = ην − μu2 + g(u1, u2) =: f2(u1, u2)

}
(30)

where

g(0, u2) ≤ 0, g(u1, 0) ≥ 0 (u1, u2 ≥ 0)

and

∂1g(u1, u2) > 0, ∂2g(u1, u2) > 0 (u1, u2 > 0)

holds. If for all u2 > 0

lim
u1→+∞ g(u1, u2) > u2
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Fig. 3 Phase portrait of the system (30) in case g(u1, u2) :≡ u1u22

then (30) has a unique equilibrium (a, b) with b = (1 + η)ν/μ in the positive
quadrant of the phase space. If

γ := ∂2g(a, b)− ∂1g(a, b)− μ > 0

then (a, b) is unstable and (30) has a T -periodic solution p which is orbitally
asymptotically stable (Fig. 3).

Theorem 3.2 (cf. [12, 16]) If

• δ < 0 and d1 = d2 or the difference |d1 − d2| is sufficiently small then p is also
an orbitally asymptotically stable periodic solution of (23)–(2).

• δ < 0,

∫ T

0
∂2f2(p(t)) dt > 0,
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for small ε > 0 d2 = ε and d1 = ε−1, then p is an orbitally asymptotically stable
solution of (22) but unstable solution of (23)–(2).

Clearly, the periodic solution in Example 3.2 remains orbitally asymptotically
stable:

∫ 2π

0
−2λ sin2(ωt) dt = −2λπ < 0,

while the solution in Example 29 becomes unstable:

∫ 2π

0
dt = 2π > 0.

The condition for change of stability in case of Example 3.4 is

∫ T

0
∂2g(p(t)) dt > μT .

3.1 Bifurcation of Time-Periodic Patterns

The linearized system of (23) at p is

vt = D�rv + (f′ ◦ p)v (31)

with boundary conditions

(n · ∇r)v = 0 on ∂�× R
+
0 (32)

and smooth initial conditions

v(r, 0) = v0(r) ≥ 0 on �× {0}, (33)

Using the method of Fourier we obtain a sequence of solutions of (31) and (32):

�kn (r, t) = ψn (r) · ϕnk (t)
(
(r, t) ∈ �× R

+
0

)

(n ∈ N0, k ∈ {1, 2}),

where ψn is the (eigenfunction-)solution of the problem

�rψ = −λnψ, ∂nψ
∣∣
∂�

= 0
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and

ϕnk : [0,+∞)→ R
2 (k ∈ {1, 2})

are two linearly independent solutions satisfying

ϕ̇ = (f′ ◦ p − λnD
)
ϕ (34)

for fixed n. In order to consider the initial condition (33) let us introduce the notation

�n :=
∫

�

v0 (r) ψn (r) dr.

Thus the solution of (31) and (32) has the form

� (r, t) =
∞∑

n=0

ψn (r) exp (Ant)�n
(
(r, t) ∈ �× R

+
0

)

where

An := f′ ◦ p − λnD and exp (An0) = I.

Introducing the notation

exp (Ant)�n ≡: αn1ωn1(t)+ αn2ωn2(t)

and denoting the Floquet-multipliers of (34) by μnk (n ∈ N0, k ∈ {1, 2}) one can
assume that in the stable case μ10 = 1 holds and all other multipliers are in modulus
less than one. If d2 increases then at a certain critical value d∗ the multiplier μ11 =
1 while the rest of the multipliers stay in modulus less than 1. In this situation
system (34) has one periodic solution ω11, while another (linearly independent)
solution tends exponentially to zero. In this case

� (r, t)− (αn0p(t)+ α11ω11(t)ψ1 (r)) −→ 0 (t → ∞)

where

[0,+∞) � t �→ P(t) := αn0p(t)+ α11ψ1 (r)ω11(t)

is the time periodic spatially non-constant solution of (31) and (32), which is called
time-periodic pattern (Fig. 4).

Finally, we note that this pattern P is only a solution of the linearized system (31)
and (32). About the extension of this result to the nonlinear system (23)–(2) we refer
the reader to [15].
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Fig. 4 Periodic pattern for system (30) in case g(u1, u2) :≡ u1u22
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Implementation of the Functional
Response in Marine Ecosystem: A
State-of-the-Art Plankton Model

Anal Chatterjee and Samares Pal

1 Introduction

The study of plankton-fish interaction is one of key area in marine ecology due to
its global existence and importance. Most of plankton-fish interaction dynamics are
based upon classical Lotka-Volterra mechanism, in which growth of zooplankton
depend on phytoplankton and zooplankton predation rate of fish is the growth rate
of fish with a conversion factor.

In complex dynamics, prey species make use of refuge to allow some degree
of protection of the prey from predator. This prevents the predation of the prey
population to some extent. In it’s absence, prey density may increase due to a
simultaneous increase of refuge that will trigger population outbreaks and forms
multiple stable states. Recently, the scientists carried out many outcomes by
considering refuge term in prey-predator system. The author in [1] examined the
global stability of a stage-structured prey-predator model in presence of prey refuge.
The researchers in [2] studied that prey refuge has a positive impact on Leslie-
Gower-prey-predator model.

The phytoplankton (prey) community uses refuge to protect itself from the zoo-
plankton (predator) community. This prevents the predation of the phytoplankton
population to some extent [3–6]. Some researchers are opening new areas for
study by incorporating refuge in the marine plankton system. The analysis of
refuge in [7] showed that it has a strong effect in a phytoplankton-zooplankton
spatiotemporal dynamics system. The authors in [8] establishes the vital role played
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by phytoplankton refuge and toxin on the occurrence and termination of algal
blooms in freshwater lake. The authors in [9] investigated the plankton dynamics
in pond and the impact of zooplankton refuge on growth of tilapia (Oreochromis
niloticus).

There are many environmental fluctuations which are not considered in determin-
istic models as they do not account for the variations in random parameters [10]. In
such cases, a stochastic model is a better choice as they provide a realistic view of the
natural system. Stochastic model of toxic producing phytoplankton-fish are studied
recently in [11] for a clear understanding of the plankton dynamics. The authors
in [11, 12] investigated that high and low value of environmental fluctuations may
lead to the extinction of the population as well as population weakly persistent in
the mean respectively. Recently, the scientists in [13] examined that white noise can
affect directly the survival of plankton population in toxin producing phytoplankton-
zooplankton interaction model.

Based on the above observations, we constructed a three-dimensional model
focusing on the effects of phytoplankton refuge and zooplankton refuge on the
marine ecosystem. Firstly, a mathematical model is designed by considering suitable
functional responses. It is assumed that as per functional response type II the grazing
rate of zooplankton is dependent on the phytoplankton. Zooplankton predation
by fish follows a functional response type III, and the predation rate increases
in a sigmoidal way with prey density. Also, many planktivorous fish feeds on
chironomids, tubifex, or other bottom dwelling invertebrates. Thus, there is chance
of switching to suitable prey which results in a type-III response considering there
is absence of significant time-lag [14]. Further, the roles and the interaction of both
plankton species and refuge phytoplankton and zooplankton are studied.

The paper is organized as follows. After the above introductory section, we move
onto the model construction and the analysis of the deterministic model in Sect. 2
and Sect. 3 respectively. The stochastic counterpart is presented next, results on the
numerical simulations are reported in Sect. 5 and discussed in the final section.

2 The Mathematical Model

Let P , Z and F be the concentration of the phytoplankton, zooplankton and fish
population at time t with carrying capacity K and constant intrinsic growth rate
r. Here α1 and α2 be the maximal zooplankton ingestion rate and conversion rate
for the growth of zooplankton respectively (α2 ≤ α1). Also, let γ1 and γ2 be
the maximal planktivorous fish ingestion rate and conversion rate due to grazing
of herbivorous zooplankton (γ2 ≤ γ1). Further, d1 and d2 represent the mortality
rates of the zooplankton and planktivorous fish biomass respectively. Let h be the
harvesting rate of planktivorous fish population. We consider Holling type II and
Holling III functional forms to illustrate the grazing phenomena with K1 and K2
as half saturation constants. We consider m ∈ [0, 1) and n ∈ [0, 1) are constant
measures of the degree or strength of phytoplankton refuge and zooplankton refuge
respectively.



Implementation of the Functional Response in Marine Ecosystem: A State-of-. . . 101

With these above biological assumptions our model system is [15]

dP

dt
= rP (1− P

K
)− α1(1−m)PZ

K1 + (1−m)P ≡ G1(P,Z, F )

dZ

dt
= α2(1−m)PZ
K1 + (1−m)P − γ1(1− n)2Z2F

K2 + (1− n)2Z2 − d1Z ≡ G2(P,Z, F )

dF

dt
= γ2(1− n)2Z2F

K2 + (1− n)2Z2 − (d2 + h)F ≡ G3(P,Z, F )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Firstly, we analyzed the system (1) with the following initial conditions,

P(0) > 0, Z(0) > 0, F (0) > 0. (2)

Explicitly, the jacobian matrix at E = (P ,Z, F ) can be illustrate as

V =

⎡

⎢⎢⎢⎢⎣

r − 2rP
K

− K1α1(1−m)Z
[k1+(1−m)P ]2 − α1(1−m)P

K1+(1−m)P 0

K1α2(1−m)Z
[K1+(1−m)P ]2

α2(1−m)P
K1+(1−m)P − 2γ1K2(1−n)2Z F

[K2+(1−n)2Z2]2 − d1 − γ1(1−n)2Z2

K2+(1−n)2Z2

0 2γ2K2(1−n)2Z F
[K2+(1−n)2Z2]2

γ2(1−n)2Z2

K2+(1−n)2Z2 − (d2 + h)

⎤

⎥⎥⎥⎥⎦
.

(3)

3 Some Preliminary Results

3.1 Positive Invariance

By setting X = (P, Z, F )T ∈ R3 and G(X) = [G1(X), G2(X), G3(X)]T , with
G : R+3 → R3 and G ∈ C∞(R3), Eq. (1) becomes

Ẋ = J (X), (4)

together with X(0) = (P (0), Z(0), F (0)) = (X1, X2, X3) = X0 ∈ R+3. It is easy
to check that wheneverX(0) ∈ R+3 withXi = 0, for i=1, 2, 3, thenGi(X) |Xi=0≥
0. Then any solution of equation (4) with X0 ∈ R+3, say X(t) = X(t;X0), is such
that X(t) ∈ R+3 for all t > 0.

3.2 Equilibria

The system (1) possesses the following four equilibria: plankton free equilibrium
E0 = (0, 0, 0) and zooplankton free equilibrium E01 = (K, 0, 0), fish free
equilibrium E1(P1, Z1, 0) and coexistence equilibrium E∗ = (P ∗, Z∗, F ∗).
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3.2.1 Plankton Free Equilibrium

E0 is always feasible. The eigenvalues evaluate from (3) at E0 are r > 0, −d1 < 0
and −(d2 + h). Thus, it is clearly indicates that E0 is always unstable.

3.2.2 Zooplankton Free Equilibrium

E01 is always feasible. The eigenvalues evaluate from (3) at E01 are −r , −(d2 + h)
and α2(1−m)K

K1+(1−m)K − d1. Therefore, E01 is asymptotically stable if

m >
Kα2 − d1(K +K1)

K(α2 − d1) (5)

hold.

3.2.3 Fish Free Equilibrium

The population level at E1(P1, Z1, 0) are P1 = K1d1
(α2−d1)(1−m) and Z1 =

rK1α2[K(α2−d1)(1−m)−K1d1]
α1K(1−m)2(α2−d1)2 . Feasibility at E1 exists if α2 > d1 and m <

Kα2−d1(K+K1)
K(α2−d1) . By factorizing jacobian (3) at E1 gives one explicit eigenvalue

γ2(1−n)2Z2
1

K2+(1−n)2Z2
1
−(d2+h) and the quadratic equation λ2+P1

(
r
K

− α1(1−m)Z1
[K1+(1−m)P1]2

)
λ+

α1α2K1(1−m)2P1Z1
[K1+(1−m)P1]3 = 0. Clearly, two roots are negative real parts at E1. Therefore,

stability of E1 is ensured by

R0 = γ2(1− n)2Z2
1

(d2 + h)[K2 + (1− n)2Z2
1]
< 1. (6)

3.2.4 Coexistence Equilibrium

The coexistence equilibrium at E∗ = (P ∗, Z∗, F ∗) are Z∗ = 1
(1−n)

√
(μ2+h)K2[γ2−(μ2+h)] =

q while F ∗ is ensured by solving [K2γ2(α2−d1)(1−m)P ∗−d1K1]
[K1+(1−m)P ∗]γ1(1−n)q[γ2−(μ2+h)] and P ∗ =

B+
√
B2+4AC
2A which is ensured from equation AP ∗ − BP ∗ − C = 0 where

A = rK(1−m), B = [rK(1−m)− rK1] and C = [rKK1 −Kα1(1−m)q].
At E∗, the jacobian matrix of system (1) can be written as

V ∗ =
⎡

⎣
a11 a12 0
a21 a22 a23

0 a32 0

⎤

⎦ ,
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where a11 = α1(1−m)P ∗Z∗
[K1+(1−m)P ∗]2 − rP ∗

K
< 0, a12 = − α1(1−m)P ∗

K1+(1−m)P ∗ < 0, a21 =
K1α2(1−m)Z∗

[K1+(1−m)P ∗]2 > 0, a22 = γ1(1−n)2Z∗F ∗
K2+(1−n)2Z∗2 − 2γ1K2Z

∗F ∗
K2+(1−n)2Z∗2 ∈ R, a23 =

− γ1(1−n)2Z∗2
K2+(1−n)2Z∗2 < 0, a32 = 2γ2K2(1−n)2Z∗F ∗

[K2+(1−n)2Z∗2]2 > 0.
The characteristic equation is

y3 +Q1y
2 +Q2y +Q3 = 0 (7)

where Q1 = −(a11 + a22), Q2 = a11a22 − a12a21 − a23a32; Q3 = a11a23a32.

By the Routh-Hurwitz criteria, all roots of above equation have negative real parts
if and only ifQi > 0, andQ1Q2 −Q3 > 0, i = 1, 2, 3.
Here we consider two cases depending on the sign of a22.

Case 1 When a22>0, then Q1 > 0 if rP
∗

K
− α1(1−m)P ∗Z∗

[K1+(1−m)P ∗]2 >
γ1(1−n)2Z∗F ∗
K2+(1−n)2Z∗2 −

2γ1K2Z
∗F ∗

K2+(1−n)2Z∗2 . Also, Q2 > 0 if −a12a21 > −a11a22 + a23a32 since a11a22 < 0,
a12a21 < 0 and a23a32 < 0.
Here, clearlyQ3 = a32a11a23 > 0.

Case 2 When a22<0 which indicates Q1 > 0 and Q2 > 0 if a11a22 > a12a21 +
a23a32 and obviously,Q3 > 0.

In addition, according to Routh-Hurwitz criterion, Q1Q2 − Q3 > 0 must
be satisfied if Q1Q2 > Q3 which indicates that the system becomes locally
asymptotically stable at E∗ depending upon system parameters.

Remark 1 The system produces a Hopf-bifurcation at the coexistence equilibrium
if the following two conditions are satisfied,

Q1(nc)Q2(nc)−Q3(nc) = 0, Q′
1(nc)Q2(nc)+Q1(nc)Q

′
2(nc)−Q′

3(nc) �= 0.
(8)

3.3 Hopf Bifurcation at Coexistence

Let us consider a value n = nc such that Q1(nc)Q2(nc) − Q3(nc) = 0. Then at
n = nc the characteristic equation (7) becomes (ρ+Q1)(ρ

2+Q2) = 0. Clearly the
equation has three roots which are±√

Q2i and−Q1 i.e. two roots are pair of purely
complex roots and third roots is negative. To examine the transversality condition,
let us consider any point n of ε-neighborhood of nc where ρ1,2 = a(n) ± ib(n).
Putting this in (7) and separate the real and imaginary parts we get the following
results:

a3 − 3ab2 + p1(a2 − b2)+ p2a + p3 = 0 (9)
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(3a2b − b3)+ 2p1ab + p2 = 0 (10)

Since b(n) �= 0, then from (10) we have b2 = 3a2 + 2Q1a +Q2.
Putting the value of b2 in (7) we have

8a3 + 8Q1a
2 + 2a(Q2

1 +Q2)+Q1Q2 −Q3 = 0. (11)

Now differentiating w.r.t n at n = nc we get the following results
[
da
dn

]
n=nc = −

[
1

2(Q2
1 +Q2)

d
dn
(Q1Q2 −Q3)

]

n= nc
�= 0 provided

[
d
dn
(Q1Q2

−Q3)]n= nc �= 0 i.e. second condition of (8).

4 The Stochastic Model

Here, we study our system based on the environmental parameters and their
fluctuations. All the parameters are assumed to be constant with time t . The
stochastic stability of the coexistence equilibrium is tested.

A deterministic system can be extended to stochastic system by two process.
Firstly, by replacing one of the environmental parameters by some random param-
eters and secondly, without changing any particular parameter in deterministic
equations and including a randomly fluctuating driving force [16].

Here we choose the second method. The Gaussian white noise type stochastic
perturbations of the state variables around their steady values E∗ is very effective to
model rapidly fluctuating phenomena which are proportional to the distances P , Z,
F of each population from their equilibrium value P ∗, Z∗, F ∗ [17]. Based on above
assumption, the deterministic system (1) can be extended to the following stochastic
model

dP = G1(P,Z, F )dt + σ1(P − P ∗)dξ1t ,

dZ = G2(P,Z, F )dt + σ2(Z − Z∗)dξ2t , (12)

dF = G3(P,Z, F )dt + σ3(F − F ∗)dξ3t

in which real constant parameters σ1, σ2 and σ3 are considered to be the intensities
of environmental fluctuations and ξ it = ξi(t), i = 1, 2, 3 to be the standard Wiener
processes independent of each other [18].

The stochastic system (12) can be written in compact form like an Itō stochastic
differential system

dXt = G(t,Xt )dt + g(t,Xt )dξt , Xt0 = X0, (13)
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where the solution of above equation Xt = (P,Z, F )T , for t > 0 is known as
Itō process. Here G is the drift coefficient or it can be written as slowly varying
continuous component. The diffusion coefficient is represented by g = diag[σ1(P−
P ∗), σ2(Z − Z∗), σ3(F − F ∗)] of the diagonal matrix which can expressed by
the rapidly varying continuous random component. ξt = (ξ1t , ξ

2
t , ξ

3
t )
T can be

considered as a three-dimensional stochastic process having scalar Wiener process
components with increments �ξjt = ξj (t + �t) − ξj (t) which are independent
Gaussian random variables N(0,�t). The system (12) is known as multiplicative
noise as the diffusion matrix g depends upon the solution of Xt .

4.1 Stochastic Stability of the Coexistence Equilibrium

The stochastic differential system (12) can be centered at its coexistence equilibrium
E∗ by introducing the perturbation vector U(t) = (u1(t), u2(t), u3(t))T , with u1 =
P − P ∗, u2 = Z − Z∗, u3 = F − F ∗. To derive the asymptotic stability in the
mean square sense by the Lyapunov functions method, working on the complete
nonlinear equations (12), could be attempted, following [19]. But for simplicity we
deal with the stochastic differential equations obtained by linearizing (12) about the
coexistence equilibrium E∗. The linearized version of (13) around E∗ is given by

dU(t) = FL(U(t))dt + g(U(t))dξ(t), (14)

where now g(U(t)) = diag[σ1u1, σ2u2, σ3u3] and

FL(U(t)) =
⎡

⎣
a11u1 + a12u2 + a13u3
a21u1 + a22u2 + a23u3
a31u1 + a32u2 + a33u3

⎤

⎦ = MU,

and the coexistence equilibrium corresponds now to the origin (u1, u2, u3) =
(0, 0, 0). Let � = [

(t ≥ t0)× R3, t0 ∈ R+] and let  (t,X) ∈ C(1,2)(�) be a
differentiable function of time t and twice differentiable function of X. Let further

L (t, u) = ∂ (t, u(t))

∂t
+ f T (u(t)) ∂ (t, u)

∂u
+ 1

2
tr

[
gT (u(t))

∂2 (t, u)

∂u2
g(u(t))

]
, (15)

where

∂ 

∂u
=
(
∂ 

∂u1
,
∂ 

∂u2
,
∂ 

∂u3

)T
,

∂2 (t, u)

∂u2
=
(
∂2 

∂uj∂ui

)

i,j=1,2,3
.

With these positions, we now recall the following result, [20].
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Theorem 1 Assume that the functions  (U, t) ∈ C3(�) and L satisfy the
inequalities

r1|U |β ≤  (U, t) ≤ r2|U |β, (16)

L (U, t) ≤ −r3|U |β, ri > 0, i = 1, 2, 3, β > 0. (17)

Then the trivial solution of (14) is exponentially β-stable for all time t ≥ 0.

Remark 2 For β = 2 in (16) and (17), the trivial solution of (14) is exponentially
mean square stable; furthermore, the trivial solution of (14) is globally asymptoti-
cally stable in probability [20].

Theorem 2 Assume aij < 0, i, j = 1, 2, 3, and that for some positive real values
of ωk , k = 1, 2, the following inequality holds

[
2(1+ ω2)a22 + 2a32ω2 + (1+ ω2)σ 22

] [
2a23ω2 + (ω1 + ω2)σ 23

]

> [a12ω1 + a22ω2 + a23(1+ ω2)+ a32(ω1 + ω2)]2 . (18)

Then if σ 21 < −2a11, it follows that

σ 22 < −2a22(1+ ω2)+ 2a32ω2
1+ ω2 , σ 23 < − 2a23ω2

ω1 + ω2 , (19)

where

ω1
∗ = a21

a11 − a12 − a32 , ω2
∗ = a11

a12 − a11 + a32 , a22 < 0. (20)

and the zero solution of system (12) is asymptotically mean square stable.

Proof We consider the Lyapunov function

 (u(t)) = 1

2

[
ω1(u1 + u3)2 + u22 + ω2(u2 + u3)2

]
,

where real positive constants ω1 and ω2 to be define later.
It is straightforward to verify that inequalities (16) are valid for β = 2. Moreover,

L (u(t)) = a11ω1u21 + [a22(1+ ω2)+ a32ω2] u22 + [a23ω2] u
2
3

+u1u2 [a12ω1 + a21(1+ ω2)+ a32ω1]+ u2u3 [a12ω1 + a22ω2 + a23(1+ ω2)
+a32(ω1 + ω2)]+ u3u1 [a11ω1 + a21ω2]

+1

2
tr

[
gT (u(t))

∂2 

∂u2
g(u(t))

]
.
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Now we evaluate that

∂2 

∂u2
=
∣∣∣∣∣∣

ω1 0 ω1

0 1+ ω2 ω2

ω1 ω2 ω1 + ω2

∣∣∣∣∣∣
,

so that we can estimate the trace term as

tr

[
gT (u(t))

∂2 

∂u2
g(u(t))

]
= ω1σ12u12 + (1+ ω2)σ22u22 + (ω1 + ω2)σ32u32.

Introducing (20), the Lyapunov function turn into L (u(t)) = −uTQu, where Q
be the real symmetric matrix

Q =
∣∣∣∣∣∣

−a11ω1 − 1
2ω1σ

2
1 0 0

0 −(1+ ω2)a22 − ω2a32 − 1
2 (1+ ω2)σ 22 Q23

0 Q23 Q33

∣∣∣∣∣∣

where

Q23 = −a12ω1 + a22ω2 + a23(1+ ω2)+ a32(ω1 + ω2)
2

and Q33 = −a23ω2 − 1
2 (ω1 + ω2)σ 23 . Easily, the inequality L (u(t)) ≤ −uTQu

holds. On the other hand, (18) and (19) imply that Q is positive definite and
therefore all its eigenvalues λi(Q), i = 1, 2, 3, are positive real numbers. Let
λm = min{λi(Q), i = 1, 2, 3} > 0. From the previous inequality for L (u(t))
we thus get

L (u(t)) ≤ −λm|u(t)|2,

thus completing the proof.

Remark 3 Theorem 2 provides the necessary conditions for the stochastic stability
of the coexistence equilibrium E∗ under environmental fluctuations, [21]. Thus the
internal parameters of the model together with the intensities of the environmental
fluctuations help in maintaining the stability of the stochastic system.

5 Numerical Simulations

In this section, we undergo the analysis of the dynamic characteristics of plankton-
fish species with the help of numerical simulations. We begin with a reference set
of parametric values (cf. Table 1, [22]) in which the criterion for existence at E∗ =
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Table 1 A set of parametric values

Parameter Definition Default value

r Constant intrinsic growth rate of phytoplankton 8

K Carrying capacity of phytoplankton 1.5

α1 Maximal zooplankton ingestion rate 2

α2 Maximal zooplankton conversion rate 1.5

β1 Maximal fish ingestion rate 1

β2 Maximal fish conversion rate 0.6

d1 Mortality rate of zooplankton 0.3

d2 Mortality rate of fish 0.36

h Harvesting rate of fish 0.015

K1 Half saturation constant for phytoplankton 0.5

K2 Half saturation constant for zooplankton 1

m Measures of the degree or strength of phytoplankton refuge 0.4

n Measures of the degree or strength of zooplankton refuge 0.35

(1.20, 1.97, 1.78) is satisfied and coexistence equilibrium is locally asymptotically
stable (cf. Fig. 1a). Now by varying the different parametric values we study the
dynamic behavior of system (1).

5.1 Effects of n

If the value of strength of zooplankton refuge n = 0.3 is increased, the system
exhibits oscillations around E∗. But high value of n = 0.8, the system switches
to oscillatory behavior around zooplankton free equilibrium E1 (cf. Fig. 1b).
Figures 2a–c depicts the different steady state behaviors of phytoplankton, zoo-
plankton and fish population in the system (1) for the parameter n. Here, we see
two Hopf bifurcation points at nc = 0.3211 and 0.6442 (denoted by a red star
(H)) with first Lyapunov coefficient being −6.351217e−02 and 2.715545e01 which
indicates that a stable and unstable limit cycle bifurcates from the H and loses its
stability respectively. Here n = 0.6443 (LP) and n = 0.6441 (BP) denotes the limit
point and branch point of the system (1) respectively where fish population goes
to extinction. Further, we have plotted a family of limit cycles bifurcates from H
points (cf. Fig. 2d).

5.2 Effects of m

Takingm = 0.8, the system exhibits oscillations aroundE∗ (cf. Fig. 1c). Figures 3a–
c illustrate the different steady state behaviour of each species in the system (1)
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Fig. 1 (a) The equilibrium point E∗ is stable for the parametric values as given in the Table 1. (b)
The figure depicts oscillatory behavior around coexistence equilibrium point E∗ of system (1) for
n = 0.3 (blue line), zooplankton free equilibrium E1 for n = 0.8 (black line) respectively. (c) The
figure depicts oscillatory behavior around E∗ of system (1) for n = 0.8 (blue line)

for the parameter m. Here, we see two Hopf bifurcation points at mc = 0.6069
and 0.8021 (denoted by a red star (H)) with first Lyapunov coefficient being
−3.370275e−02 and −1.339074e−02 which indicates that two stable limit cycle
bifurcates from the H and loses its stability respectively. Here m = 0.9102 (BP)
denotes branch point of the system (1). Further, we have displayed a family of limit
cycles bifurcates from H points (cf. Fig. 3d).



110 A. Chatterjee and S. Pal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

n      (a)

P

H H 

H LPLP
BP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.93.9

n    (b)

Z

H H 

H LPLPBP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

n     (c)

F

H H 

H LPLP

BP

n    (d)
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

0
1

2
3

4
5
0

0.5

1

1.5

2

2.5

3

3.5

4

BP

H PLPL

SNSN
H 

CPL CPL

Z

F

Fig. 2 (a) The figure depicts different steady-state behaviors of phytoplankton for the effect of n.
(b) The figure depicts different steady-state behaviors of zooplankton for the effect of n. (c) The
figure depicts different steady-state behaviors of fish for the effect of n. (d) The family of limit
cycles bifurcate from the Hopf point H for n in (n,Z,F) space

5.3 Effects of r

From Figs. 4a–c it follows the system (1) has two Hopf bifurcation points at
rc = 8.3570 and 4.3791 with first Lyapunov coefficient being −5.840029e−02

and 1.491169e+01, one limit point at 4.3776 and branch point at 4.4284 when we
consider constant intrinsic growth rate of phytoplankton, i.e. r as a free parameter.
To proceed further, a family of stable and unstable limit cycles bifurcating from
Hopf points is plotted (cf. Fig. 4d).
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Fig. 3 (a) The figure depicts different steady-state behaviors of phytoplankton for the effect of m.
(b) The figure depicts different steady-state behaviors of zooplankton for the effect of m. (c) The
figure depicts different steady-state behaviors of fish for the effect of m. (d) The family of limit
cycles bifurcate from the Hopf point H for m in (m,Z,F) space

5.4 Effects of h

To study the impact of harvesting on fish population we vary the parameter h.
We note that the system (1) has one Hopf point at 0.1484 with first Lyapunov
coefficient being 1.059854e+01 one limit point at 0.1486 and branch point at 0.1468
(cf. Fig. 5a). We have drawn a family of unstable limit cycles bifurcating from H
points (cf. Fig. 5b).
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Fig. 4 (a) The figure depicts different steady-state behaviors of phytoplankton for the effect of r .
(b) The figure depicts different steady-state behaviors of zooplankton for the effect of r . (c) The
figure depicts different steady-state behaviors of fish for the effect of r . (d) The family of limit
cycles bifurcate from the Hopf point H for r in (r,Z,F) space

5.5 Hopf-Bifurcation

For clear understanding of a dynamic change due to change in n, m and r , we have
plotted three bifurcation diagrams separately (cf. Fig. 6a–c). Next, we have plotted
two parameter bifurcation diagrams for n−m, n−r andm−r respectively (Figs. 7a–
c) to show the stable zone atE∗. All the numerical results are summarized in Table 2.



Implementation of the Functional Response in Marine Ecosystem: A State-of-. . . 113

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

4

h       (a)

F

H 
LPLP

BPBP
0

0.05

0.1

0.15

0

1

2

3
0

0.5

1

1.5

2

2.5

3

h         (b)

PLPL
H 

PBPB

H 

SNSN

CPL CPL

Z

F

Fig. 5 (a) The figure depicts different steady-state behaviors of fish for the effect of h. (b) The
family of limit cycles bifurcate from the Hopf point H for r in (r,Z,F) space

Table 2 Natures of equilibrium points

Parameters Values Eigenvalues Equilibrium points

n 0.321158 (−4.81561,±0.404804i) Hopf (H)

0.644284 (−.0007,±1.39674i) Hopf (H)

0.644318 ((0,±1.39308i) Limit Point (LP)

0.640187 (0, 0.13333± 1.27889i) Branch Point (BP)

m 0.606983 (5.50548,±0.350157i) Hopf (H)

0.802120 (−6.55763,±0.244601i) Hopf (H)

0.910270 (−7.29689,−0.0187574, 0) Branch Point (BP)

r 8.357091 (−5.0378,±0.404562i) Hopf (H)

04.379199 (−.00147,±1.04446i) Branch Point (BP)

4.377626 (0,±1.04446i) Limit Point (LP)

4.428463 (0,±0.929514i) Branch Point (BP)

h 0.148487 (−0.001428,±1.39158i) Hopf (H)

0.148622 (0, 0.04471± 1.38661i) Limit Point (LP)

0.146818 (0, 0.13453± 1.26379i) Limit Point (LP)

5.6 Environmental Fluctuations

Next, we examine the dynamical behavior of the system in the presence of
environmental disturbances. We apply the Euler-Maruyama method and investigate
the stochastic differential equation numerically using MATLAB.

Firstly, we satisfy the conditions for asymptotic stability at E∗ according to the
mean square sense which depends on system parameters of (12) and σ1, σ2, σ3.
Taking σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, the values of intensities of the environmental
perturbations with reference set of parametric values as in Table 1 for which all
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Fig. 6 (a) The bifurcation diagram for n. (b) The bifurcation diagram for m. (c) The bifurcation
diagram for r

the three species coexist and the system is stochastically stable (cf. Fig. 8a). But
it is clearly indicates that the coexistence equilibrium becomes unstable for higher
values of intensities of the environmental perturbations, σ1 = 0.8, σ2 = 0.8, σ3 =
0.7 (cf. Fig. 8b).

6 Discussion

We have formulated a mathematical model sketching the interaction of
phytoplankton-zooplankton-fish species. The main focus is on the functional
response in presence of refuge effects of phytoplankton and zooplankton on the
marine ecosystem. The model parameters are also analysed by either varying one
of them or combining some of them.
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Fig. 7 (a) The two parameters bifurcation diagram for n−m. (b) The two parameters bifurcation
diagram for n− r . (c) The two parameters bifurcation diagram for m− r

The stability of the three possible steady states namely plankton-free, the
zooplankton-free and the coexistence equilibria are determined by studying the
model analytically. The equilibrium states are observed to be related by transcritical
bifurcations provided the parameter values matches suitable conditions. Hopf
bifurcation at the coexistence equilibrium are obtained after analytical results and
are backed by the numerical simulations. By changing the various parameters,
persistent oscillations occur.

Numerically, oscillation of all population is observed when we reduce the
strength of phytoplankton refuge and when the strength of zooplankton is increased.
Further, same results are obtained by increasing the constant intrinsic growth rate
of phytoplankton. The whole system is stabilized by harvesting rate of fish which
plays a crucial role in marine ecosystem.
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Fig. 8 (a) The figures depicts solution of system is stochastically stable for σ1 = 0.1, σ2 = 0.1
and σ3 = 0.1. (b) The figures depicts solution of system is stochastically unstable for σ1 =
0.8, σ2 = 0.8 and σ3 = 0.7

Based on the results,we can conclude that the strength of phytoplankton and
zooplankton refuge, intrinsic growth rate of phytoplankton and harvesting rate of
fish should be maintained within a range in order to avoid extinction of fish and
recurrence bloom.

Environmental noise is further added to the model and it’s low intensities makes
the system stochastic asymptotic stable. High intensity values result in oscillations
with high amplitudes. The model becomes stochastically stable if it fulfills certain
conditions involving the maximum size of the environmental random fluctuations
and the model parameters.
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Optimal Drug Therapy in a
Multi-Pathways HIV-1 Infection Model
with Immune Response Delay

Chittaranjan Mondal, Debadatta Adak, and Nandadulal Bairagi

1 Introduction

Human Immunodeficiency Virus (HIV) type 1 is a lentivirus that causes HIV-1
infection and is responsible for Acquired Immunodeficiency Syndrome (AIDS), a
condition where a failure of the immune system causes life-threatening infections.
When HIV infects the human body, it explicitly attacks CD4+T cells (helper T
cells) that play an essential role in activating other players (e.g., cytotoxic T lympho-
cytes and B cells) of the immune system to fight against any invader. Transmission
of HIV-1 among host cells occurs mainly following two mechanisms, viz., virus-to-
cell and cell-to-cell [1–3]. The free plasma virus infects the healthy CD4+T cells.
On the other hand, the infection spreads from one infected to another uninfected
CD4+T cell in cell-to-cell transmission mode through synapse formation. Only
recently, it has been acknowledged that the cell-to-cell disease transmission mode
is not only a more efficient and faster mode of disease transmission compared to
cell-free mode but also the predominant mode of viral spread in the in-host HIV
infection [1–4].

A basic HIV in-host infection model considers the interaction between the host
cells (CD4+T ) and virus particles without considering the role of cytotoxic T
lymphocytes (CTL) or CD8+T cells, which on activated by CD4+T cells, kills the
infected cells directly. Basic models also do not consider the infection spreading
through cell-to-cell mode. Recently, some mathematical models have extended
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the basic model by considering the multi-mode dissemination of disease [5–8].
Acknowledging the controlling role of CTL cells, Lai and Zou [9] considered a
four-dimensional multi-pathways in-host HIV model. Since immune activation is
not instantaneous but mediated by some time lag, Xu and Zhou [10] modified the
model of Lai and Zou [9] taking into consideration the CTL activation delay and
analyzed the model

ẋ(t) = s − dx(t)+ rx(t)
(
1− x(t)+ αy(t)

K

)
− β1x(t)v(t)

− β2x(t)y(t),
ẏ(t) = β1x(t)v(t)+ β2x(t)y(t)− σy(t)− d1y(t)z(t),
v̇(t) = cσy(t)− d2v(t),
ż(t) = py(t − τ)− d3z(t).

(1)

Here x(t), y(t), v(t) and z(t) represent, respectively, the concentrations of suscep-
tible CD4+T cells (target cells), productively infected CD4+T cells, free plasma
virus and CTL cells at time t . Target cells are infected by free virus particle as well
as infectious CD4+T cells following mass action law with rate constants β1 and
β2, respectively. The time required for the activation of CTL cells is represented by
τ . Here s is the constant input rate, d is the death rate, r (> d) is the proliferation
rate, K is the maximum density of CD4+T cells, and α is a limitation coefficient
of infected cells. The parameters d1, d2, and d3 represent, respectively, the killing
rate of infected cells by CTL, clearance rate of virus particles, and clearance rate of
CTL. The virus replication factor is represented by c, and p is the production rate
of CTL. Here all parameters are non-negative. For an elaborate explanation of this
model, readers are referred to [10] and the references therein.

Antiretroviral therapies (ART) are medications that are used to treat HIV
infection in the human body. It reduces viral load progression and increases the
CD4+T cells count, thus opposing the onset of AIDS and increasing the life span
of HIV-infected individuals. However, the continuous antiretroviral treatment causes
toxicities, drug resistance and adherence. Therefore, antiretroviral drugs should be
used optimally. Different mathematical models have been proposed and studied by
the researchers to analyze the effect of ART drug therapies [12–23] on human body.
These models, however, mainly consider the spread of infection through a single
pathway, which is the cell-free mode. Recently, Mondal et al. [39] has analyzed
a multi-pathways HIV control model in the absence of delay and CTL cells. In
this work, we introduce different blockers in the delay-induced system (1) and then
analyze it. It is to be mentioned that an infected cell may die naturally or through
cell-lysis [29, 31]. In model (1), both types of death have been represented by a
single term σy(t) and the production rate of new virus particles has been represented
by cσy(t), where c is the number of new viruses produced per cell lysis. This may
cause an overestimation of free virus in the blood plasma because the free virus
can be created only through cell lysis, whereas no virus protein can be released
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during normal cell death. Taking care of this fact, we split the total death rate (σ )
of the infected cells into two parts: natural death, d, and death due to cell lysis, μ,
(i.e., σ = d + μ). We now introduce three blockers to reduce viremia. A control
u1(t) ∈ [0, 1] is applied to reduce the transmission of infection through cell-free
mode. This control is mainly reverse transcriptase inhibitor (RTI) drugs that block
the synthesis of viral DNA from HIV-1 RNA, thereby reducing viral infectivity. A
second control u2(t) ∈ [0, 1] is used to block the cellular mechanisms required for
synapse formation, the primary mechanism of cell-to-cell transmission of HIV. We
call it a synapse-forming inhibitor (SI). The third control u3(t) ∈ [0, 1] is applied to
prevent HIV-1 protease from cleaving the HIV-1 polyprotein into functional units,
popularly known as protease inhibitor (PI). Introducing these modifications, the
model (1) reads

ẋ(t) = s − dx(t)+ rx(t)
(
1− x(t)+ αy(t)

K

)
− (1− u1(t))β1x(t)v(t)

− (1− u2(t))β2x(t)y(t),
ẏ(t) = (1− u1(t))β1x(t)v(t)+ (1− u2(t))β2x(t)y(t)− (d + μ)y(t)

− d1y(t)z(t),
v̇(t) = (1− u3(t))cμy(t)− d2v(t),
ż(t) = py(t − τ)− d3z(t).

(2)

The initial conditions are taken as

x(θ) = φ1(θ) > 0, y(θ) = φ2(θ) > 0, v(θ) = φ3(θ) > 0,

z(θ) = φ4(θ) > 0, θ ∈ [−τ, 0], where
φ = (φ1, φ2, φ3, φ4) ∈ C = C([−τ, 0],R4+)

with φi(θ) ≥ 0 (θ ∈ [−τ, 0], i = 1, 2, 3, 4),

(φ1(0), φ2(0), φ3(0), φ4(0)) ∈ C.

(3)

The objectives are to (1) observe how far these blockers can control the viremia, (2)
know whether multi-drug therapy is beneficial over mono-drug therapy, considering
toxicities of the antiviral drugs, (3) explore how immune response delay affect the
plasma viral load in the presence and absence of the blockers and (4) have insights
about the optimal dose of the blockers.

The paper is arranged in the following sequence. In Sect. 2, we present some
preliminary results. Section 3 represents the system analysis and its simulations
when controls are constant. Section 4 deals with the optimal management of
the system when controls are time-dependent. A comparison of different control
schemes is presented here. The paper ends with a discussion in Sect. 5.
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2 Preliminary Results

2.1 Existence and Uniqueness of Solution

Let N = C([−τ, 0],R4+) be the Banach space of continuous real-valued functions
from [−τ, 0] to R

4+ with sup-norm ‖φ‖ = sup−τ≤θ≤0{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|,
|φ4(θ)|}. Following fundamental theory of functional differential equations [24],
for any φ ∈ N and initial conditions (3), the system (2) has a unique solution

Ω(t, φ) = (x(t, φ), y(t, φ), v(t, φ), z(t, φ)).

One can easily prove the following lemma from [10].

Lemma 2.1 Let Ω(t, φ) = (x(t), y(t), v(t), z(t)) be a solution of the system (2)
with initial conditions (3). Then the solution is positively invariant provided u1(t) =
u2(t) = 1 does not hold simultaneously and u3(t) ∈ [0, 1). The solution is uniformly
bounded on the region

Θ =
{
Ω(t, φ) ∈ R

4+ | 0 < x(t) ≤ x0, 0 ≤ y(t) ≤ M

δ
,

0 ≤ v(t) ≤ (1− u3)cd1M
δd2

, 0 ≤ z(t) ≤ pM

δd4

}
,

(4)

where x0 = K
2r [(r − d)+

√
(r − d)2 + 4rs

K
] , δ = min {d, (d + μ)},M = s + rK

4 .
Moreover, there exists �0 > 0 such that lim inf

t→∞ x(t) > �0, i.e., x(t) is uniformly

bounded away from zero.

3 Model Analysis with Fixed Controls

Control parameters ui, i = 1, 2, 3, may be either constant or time-dependent. In
the immediate next section, we analyze the model treating control parameters as
constant.

3.1 Basic Reproduction Number

A threshold quantity, R0, called the basic reproduction number, is used to determine
whether an infection will spread or be washed out. It is considered to be an essential
threshold quantity for the elimination of infection. Typically, R0 is defined by the
expected number of secondary cases produced by an infected cell in a completely
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susceptible host population [25]. Using the next-generation matrix [26], one can
easily prove the following proposition.

Proposition 3.1 If R0 be the basic reproduction number of the system (2) and
R01, R02 are the respective basic reproduction numbers corresponding to the cell-
free infection mode (i.e., β2 = 0) and cell-to-cell infection mode (i.e., β1 = 0)
then R0 = R01 + R02, where R0 = [(1−u1)(1−u3)cμβ1+(1−u2)β2d2]x0

d2(d+μ) , R01 =
(1−u1)(1−u3)cμβ1x0

d2(d+μ) , R02 = (1−u2)β2d2x0
d2(d+μ) and x0 = K

2r [(r − d)+
√
(r − d)2 + 4rs

K
] is

the equilibrium density of CD4+T cells in infection-free state.

Proof The basic reproduction number is determined using the next generation
matrix [26]. The Jacobian matrix J11 of the system (2) at (x0, 0, 0, 0) is

J11 =

⎛

⎜⎜⎝

−d + r(1− 2x0
K
)

−rαx0
K

− (1− u2)β2x0 −(1− u1)β1x0 0
0 (1− u2)β2x0 − (d + μ) (1− u1)β1x0 0
0 (1− u3)cμ −d2 0
0 p 0 −d3

⎞

⎟⎟⎠ .

The sub-matrix of J11 associated with the infectious compartments can be written
as

J12 =
(
(1− u2)β2x0 − (d + μ) (1− u1)β1x0

(1− u3)cμ −d2
)

=
(
(1− u2)β2x0 (1− u1)β1x0

0 0

)
−
(

(d + μ) 0
−(1− u3)cμ d2

)
= F − V.

Then the next generation matrix [26] is defined as

FV −1 = 1

d2(d + μ)
(
(1− u1)(1− u3)cμβ1x0 + (1− u2)d2β2x0 0

(1− u1)(d + μ)β1x0 0

)T
.

The basic reproduction number R0 is then obtained from the spectral radius [26] of
the matrix FV −1 as

R0 = [(1− u1)(1− u3)cμβ1 + (1− u2)β2d2]x0
d2(d + μ)

= (1− u1)β1x0 1

(d + μ)(1− u3)cμ 1

d2
+ (1− u2)β2x0 1

(d + μ) . (5)

In the expression of R0, the terms (1− u1)β1 and (1− u2)β2 indicate, respectively,
the effective infection rate corresponding to the cell-free and cell-to-cell infection
modes; x0 is the equilibrium value of CD4+T cells in the absence of infection;

1
(d+μ) is the average life span of infected CD4+T cells; (1 − u3)cμ is the number
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of virus produced from the infected CD4+T cells and 1
d2

is the average life span of
virus.
For cell-free infection mode (i.e., β2 = 0), J11 can be rewritten as

J21 =

⎛

⎜⎜⎝

−d + r(1− 2x0
K
)

−rαx0
K

−(1− u1)β1x0 0
0 −(d + μ) (1− u1)β1x0 0
0 (1− u3)cμ −d2 0
0 p 0 −d3

⎞

⎟⎟⎠ .

The sub-matrix of J21 associated with the infectious compartments can be written
as

J22 =
( −d1 (1− u1)β1x0
(1− u3)Nd1 −d2

)

=
(
0 (1− u1)β1x0
0 0

)
−
(

(d + μ) 0
−(1− u3)cμ d2

)
= F1 − V1.

One can then similarly compute the basic reproduction number in the case of cell-
free infection mode as

R01 = (1− u1)(1− u3)cμβ1x0
d2(d + μ) = (1− u1)β1x0 1

(d + μ)(1− u3)cμ 1

d2
.

Similarly, the basic reproduction number R02 corresponding to the cell-to-cell
infection mode (i.e., β1 = 0) is

R02 = (1− u2)d2β2x0
d2(d + μ) .

Thus, the basic reproduction number of the system is the sum of the basic
reproduction numbers of two subsystems and is given by R0 = R01 + R02. ��

3.2 Equilibria of the System

It is easy to see that the system (2) has two equilibrium points. A disease-free

equilibrium point E0 = (x0, 0, 0, 0), where x0 = K
2r [(r − d) +

√
(r − d)2 + 4rs

K
]

and an infected equilibrium point E∗ = (x∗, y∗, v∗, z∗), where x∗ = 1
2A(−2B +√

B2 − 4As), y∗ = d3(d+μ)
d1p

(
x∗R0
x0

− 1), v∗ = (1−u3)cμy∗
d2

, z∗ = py∗
d3

. Here x∗ is
the positive root of the quadratic equation

Ax∗2 − Bx∗ − s = 0, (6)
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where A = r
K
(1+ αd3(d+μ)R0

d1px0
)+ d3(d+μ)2R2

0
d1px0

2 (> 0) and B = (r − d)+ rαd3(d+μ)
d1Kp

+
d3(d+μ)2R0
d1px0

(> 0). As A > 0, B > 0, Eq. (6) always has a unique positive root. Note

that y∗ exists if and only if R0 >
x0
x∗ . Susceptible CD4+T cells attains its maximum

value x0 in the absence of infection, giving x0 > x∗. Hence, a sufficient condition
for the existence of y∗ is R0 > 1. If y∗ exists, then v∗ exists if 0 ≤ u3 < 1. Thus,
there exists a unique infected equilibrium point E∗ if

(i) R0 > 1, (ii) u1 = 1 = u2 does not hold simultaneously and

(iii) u3 ∈ [0, 1).

3.3 Stability of the Equilibrium Points

Consider the perturbations

X(t) = x(t)− x̄, Y (t) = y(t)− ȳ, V (t) = v(t)− v̄, Z(t) = z(t)− z̄,

where (x̄, ȳ, v̄, z̄) is any arbitrary equilibrium point of the system (2). Then the
linearized system can be written in the matrix form as

dQ

dt
= MQ(t)+NQ(t − τ),

where

M =

⎛

⎜⎜⎝

a11 a12 a13 0
a21 a22 a23 a24

0 a32 a33 0
0 0 0 a44

⎞

⎟⎟⎠ , N =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 b42 0 0

⎞

⎟⎟⎠ , (7)

Q(t) = (X(t) Y (t) V (t) Z(t))T ,

and the entries of the matricesM and N are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11 = −d + r
(
1− 2x̄+αȳ

K

)
− (1− u1)β1v̄ − (1− u2)β2ȳ,

a12 = − rαx̄
K

− (1− u2)β2x̄, a13 = −(1− u1)β1x̄,
a21 = (1− u1)β1v̄ + (1− u2)β2ȳ, a22 = (1− u2)β2x̄ − (d + μ)− d1z̄,
a23 = (1− u1)β1x̄, a24 = −d1ȳ, a32 = (1− u2)cμ, a33 = −d2,
a44 = −d3, b42 = p.
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The corresponding characteristic equation is given by

�(λ, τ) = det

(
λI −M − e−λτN

)
= 0. (8)

We have the following theorem for the stability of the infection-free equilibrium
point.

Theorem 3.1 The infection-free equilibrium point E0 is locally and globally
asymptotically stable for all delay τ ≥ 0 if R0 < 1.

Proof The characteristic equation in this case becomes

(λ+ s

x0
+ rx0

K
)(λ+ d3)

(
λ2 + (d2 + (d + μ)− (1− u2)β2x0)λ

+ d2(d + μ)(1− R0)

)
= 0.

(9)

This equation has two negative real roots, λ1 = −( s
x0

+ rx0
K
) and λ2 = −d3. The

other two are the roots of the equation

λ2 + (d2 + (d + μ)− (1− u2)β2x0)λ+ d2(d + μ)(1− R0) = 0. (10)

Thus, if R0 < 1 then both roots of the Eq. (10) have negative real parts, implying
that E0 is locally asymptotically stable.

To prove the global stability of the disease-free equilibrium E0, we use Fluctua-
tion Lemma [11]. The following result is true for a continuous and bounded function
f (t):

f∞ = lim sup
t→∞

f (t), f∞ = lim inf
t→∞ f (t).

Since the solutions x = x(t), y = y(t), v = v(t) and z = z(t) of the system (2) are
continuous and bounded,

0 < x∞ ≤ x∞ <∞, 0 ≤ y∞ ≤ y∞ <∞,
0 ≤ v∞ ≤ v∞ <∞, 0 ≤ z∞ ≤ z∞ <∞.

From Lemma 2.1, x = x(t) is bounded in (0, x0], for all t ≥ 0. From Fluctuation
Lemma [11], the last three equations of (2) can then be written as

(d + μ)y∞ ≤ (1− u1)β1x0v∞ + (1− u2)β2x0y∞,
d2v

∞ ≤ (1− u3)cμy∞, (11)

d3z
∞ ≤ py∞.
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First two inequalities of (12) lead to

y∞(1− R0) ≤ 0, where R0 is defined in (5). (12)

Now, suppose R0 < 1, which is the local stability condition of E0. Then the
inequality (12) gives y∞ ≤ 0. Since y∞ is the supremum of y(t), then y∞ is
nonnegative. Therefore, the possible value of y∞ is y∞ = 0 provided R0 < 1,
and hence lim supt→∞ y(t) = 0. If y∞ = 0 and as v(t), z(t) are nonnegative,
from the last two inequalities of (12), we obtain v∞ = 0 and z∞ = 0. Therefore,
lim supt→∞ v(t) = 0 and lim supt→∞ z(t) = 0. Following the Fluctuation Lemma
[11], the first equation of system (2) yields

s−dx∞+ rx∞
(
1− x

∞ + αy
K

)
− (1−u1)β1x∞v− (1−u2)β2x∞y = 0. (13)

From Lemma 2.1, all solutions are nonnegative and if R0 < 1, then
lim supt→∞ y(t) = 0 and henceforth lim supt→∞ v(t) = 0, lim supt→∞ z(t) = 0.
Therefore, if R0 < 1, the solution of y(t) should be y(t) = 0 and hence v(t) = 0,
z(t) = 0. The Eq. (13) then becomes

s − dx∞ + rx∞
(
1− x∞

K

)
= 0

(x∞ − xn)(x0 − x∞) = 0,

This equation has two roots, x0 = K
2r [(r − d) +

√
(r − d)2 + 4rs

K
] > 0 is

the equilibrium density of CD4+T cells in the infection-free state, and xn =
K
2r [(r − d) −

√
(r − d)2 + 4rs

K
] (< 0). Since x∞ is nonnegative, therefore x∞ =

lim supt→∞ x(t) = x0. Therefore, the disease-free steady state, E0, is globally
asymptotically stable if R0 < 1. Note that the stability of the disease-free
equilibrium does not depend on the value of τ . ��
Below we prove the stability of the infected equilibrium point in two cases.

Theorem 3.2 If E∗ exists and τ = 0, then the infected steady state E∗ is locally
asymptotically stable if and only if a1 > 0, (a3+b1) > 0, (a4+b2) > 0, a1(a2+
b0)(a3+b1)−(a3+b1)2−a21(a4+b2) > 0,where ai > 0, bj > 0, i = 1, 2, 3, 4, j =
0, 1, 2, are given below.

Proof The characteristic equation (8) at E∗ is given by

�(λ, τ) = λ4 + a1λ3 + a2λ2 + a3λ+ a4 + (b0λ2 + b1λ+ b2)e−λτ = 0, (14)

where
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = ( s
x∗ + rx∗

K
)+ d2 + d3 + (1−u1)(1−u3)cμβ1x∗

d2
,

a2 = ( s
x∗ + rx∗

K
)(d2 + d3 + (1−u1)(1−u3)cμβ1x∗

d2
)

+ d3(d2 + (1−u1)(1−u3)cμβ1x∗
d2

)+ (d+μ)y∗R0
x0

( rαx
∗

K
+ (1− u2)β2x∗),

a3 = d3( sx∗ + rx∗
K
)(d2 + (1−u1)(1−u3)cμβ1x∗

d2
)

+ (d+μ)y∗R0
x0

[(1− u1)(1− u3)cμβ1x∗
+ (d2 + d3)( rαx∗K + (1− u2)β2x∗)],

a4 = d3(d+μ)y∗R0
x0

[ d2rαx∗
K

+ d2(d+μ)x∗R0
x0

], b0 = d1py∗,
b1 = d1py∗(d2 + s

x∗ + rx∗
K
), b2 = d1d2py∗( sx∗ + rx∗

K
).

Note that ai, bj , i = 1, 2, 3, 4, j = 0, 1, 2 are all positive. At τ = 0, the
characteristic equation (14) then becomes

�(λ, 0) = λ4 + a1λ3 + (a2 + b0)λ2 + (a3 + b1)λ+ (a4 + b2) = 0.

According to Routh-Hurwitz criteria, E∗ will be locally asymptotically stable if and
only if the conditions mentioned in the theorem hold. ��

Theorem 3.3 Assume that E∗ is stable in the absence of delay and the conditions
given in the Theorem (3.2) are satisfied. If (18) has at least one positive root
following one of the conditions specified in (20), then there exists a critical value
τ = τ ∗, where τ ∗ is defined in (21), for which E∗ is locally asymptotically stable
if τ ∈ [0, τ ∗) and unstable for τ > τ ∗. The switching of stability occurs through a
Hopf bifurcation at τ = τ ∗.
For τ > 0, we first investigate whether the Eq. (14) has a pair of purely imaginary
roots of the form λ = ±iω∗, ω∗ ∈ R

+ − {0} for some parametric conditions. In
such a case, putting λ = iω∗ in (14), one gets

(iω∗)4 + a1(iω∗)3 + a2(iω∗)2 + a3(iω∗)+ a4
+ (b0(iω∗)2 + b1(ω∗)+ b2)e−(iω∗)τ = 0.

Separating real and imaginary parts, we have

{
S1 = S3 cos(ω∗τ)− S4 sin(ω∗τ),
S2 = S3 sin(ω∗τ)+ S4 cos(ω∗τ), (15)

where

S1 = (ω∗)4 − a2(ω∗)2 + a4, S2 = a1(ω∗)3 − a3ω∗,

S3 = b0(ω∗)2 − b2, S4 = b1ω∗.
(16)

Summing up the squares of the equations in (15), we get



Optimal Drug Therapy in a Multi-Pathways HIV-1 Infection Model with. . . 129

S21 + S22 = S23 + S24 (17)

Let z = (ω∗)2. Then (17) becomes

H(z) = z4 + A1z
3 + A2z

2 + A3z+ A4 = 0, (18)

where A1 = a21 − 2a2, A2 = a22 + 2a4 − 2a1a3 − b20, A3 = a23 − 2a2a4 − b21 +
2b0b2, A4 = a24 − b22. Therefore, �(λ, τ) = 0 has a purely imaginary root iω∗ if
H(z) = 0 has a positive real root. Differentiation of (18) yields

H ′(z) = 4z3 + 3A1z
2 + 2A2z+ A3.

Let y = z+ A1
4 , so that H ′(z) = 0 becomes

y3 + n1y2 + n2 = 0,

where n1 = A2
2 − 3A2

1
16 , n2 = A3

1
32 − A1A2

8 + A3
4 .

Define, Γ = ( n22 )2 + ( n13 )3, ρ = −1+i√3
2 . We then get [10]

y1 = (−n2
2

+√
Γ )1/3 + (−n2

2
−√

Γ )1/3,

y2 = (−n2
2

+√
Γ )1/3ρ + (−n2

2
−√

Γ )1/3ρ2,

y3 = (−n2
2

+√
Γ )1/3ρ2 + (−n2

2
−√

Γ )1/3ρ,

zl = yl − A1

4
, l = 1, 2, 3.

(19)

Following [40], the existence of positive roots of the equation H(z) = 0 can then
be asserted as

(i) If A4 < 0, then H(z) has at least one positive root.

(ii) If A4 ≥ 0 and Γ ≥ 0, then H(z) = 0 has positive roots

iff z1 > 0 and H(z1) < 0.

(iii) If A4 > 0 and Γ < 0, then H(z) = 0 has positive roots

iff there exists at least one z∗ ∈ {z1, z2, z3}
such that z∗ > 0 and H(z∗) ≤ 0.

(20)

Without loss of generality, we assume that H(z) = 0 has four positive roots, say
z∗k, k = 1, 2, 3, 4. Let ω∗

k = √z∗k . From (15), one then finds
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cos(ω∗
kτ

∗) = H1 = S1S3 + S2S4
S23 + S24

,

sin(ω∗
kτ

∗) = H2 = S1S3 − S2S4
S23 + S24

.

Here S1, S2, S3, S4 are calculated form (16) with ω∗ = ω∗
k . Define

τ
(k)
j =

{ 1
ω∗
k
[arccos(H1)+ 2πj ], H2 ≥ 0,

1
ω∗
k
[2π − arcsin(H1)+ 2πj ], H2 < 0,

where, k = 1, 2, 3, 4, j = 0, 1, 2, 3, . . . , and

τ ∗ = min
1≤k≤4,j≥0

τ
(k)
j . (21)

Let ω̂∗
k be the value of ω

∗
k (k = 1, 2, 3, 4) for which τ ∗ is obtained. Hence ω̂∗3

k =√
ẑ∗k .
To show that the transversality condition of Hopf bifurcation at τ = τ ∗ is also

hold, we differentiate the characteristic equation (14) with respect to τ to obtain

(4λ3 + 3a1λ
2 + 2a2λ+ a3)dλ

dτ
+ (2b0λ+ b1)e−λτ dλ

dτ

− e−λτ (b0λ2 + b1λ+ b2)(λ+ τ dλ
dτ
) = 0.

One then finds

(
dλ

dτ

)−1

= 4λ3 + 3a1λ2 + 2a2λ+ a3
−λ(b0λ2 + b1λ+ b2) + 2b0λ+ b1

λ(b0λ2 + b1λ+ b2) −
τ

λ

= 4λ3 + 3a1λ2 + 2a2λ+ a3
−λ(λ4 + a1λ3 + a2λ2 + a3λ+ a4) +

2b0λ+ b1
λ(b0λ2 + b1λ+ b2) −

τ

λ
.

Using (17), the value of

(
dλ
dτ

)−1

at τ = τ ∗ and λ = iω̂∗
k reads

[(
dλ

dτ

)−1]

λ=iω̂∗
k , τ=τ∗

= N1N2 +N4N5

ω̂∗
kN3

+ iτ ∗

ω̂∗
k

,
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where N1 =
(
4ω̂∗3
k − 2a2ω̂∗

k

)
+ i
(
a3 − 3a1ω̂∗2

k

)
, N2 =

(
ω̂∗4
k − a2ω̂∗2

k + a4
)
+

i
(
a1ω̂

∗3
k − a3ω̂∗

k

)
, N3 =

(
b2 − b0ω̂∗2

k

)2 +
(
b1ω̂

∗
k

)2
, N4 = 2b0ω̂∗

k − ib1, N5 =
(
b2 − b0ω̂∗2

k

)
− ib1ω̂∗

k .

Substituting ω̂∗
k = √ẑ∗k , we then have

[
Re
(dλ
dτ

)−1
]

λ=iω̂∗
k , τ=τ∗

= 4ẑ∗3k + 3A1ẑ
∗2
k + 2A2ẑ

∗
k + A3

N3

= H ′(ẑ∗k)
N3

�= 0, if H ′(ẑ∗k) �= 0,

where H(z) is defined in (18) .

Therefore, the sign of

[
Re
(
dλ
dτ

)−1
]

λ=iω̂∗
k , τ=τ∗

is same as H ′(ẑ∗k). The direction of

Hopf bifurcation depends on the sign of the transversality condition. If the value
of the transversality condition is positive, then the stability of E∗ will change from
a stable to an unstable state through a Hopf bifurcation in the forward direction.
In contrast, its negative value implies the change from an unstable state to a stable
equilibrium through a Hopf bifurcation in the backward direction.

3.4 Simulation Results

System (2) in the absence of delay and control has thirteen parameters. So the
question is which parameters are essential and should be selected for further
investigation. For this, we have performed a sensitivity analysis (see Fig. 1) of the
system parameters (see Table 1) using the Latin Hypercube sampling method. It
shows that c and β2 are the most sensitive parameters. So, we fix other parameter
values and consider c and β2 as the variable parameters for further study.

In Fig. 2, we have drawn the stability region of the disease-free equlilibrium E0
and the existence region of the infected equilibrium E∗ in c − β2 parameter plane
when other parameters remain fixed with u1 = u2 = u3 = 0.5.

Time evolutions of the system (2) with constant controls (Fig. 3, upper row) show
that the disease-free equilibrium E0 is stable when the parameters are selected from
the lower region of Fig. 2 (c = 4, β2 = 0.0001). In fact, the delay has no effect on
the stability ofE0. The disease-free equilibrium is globally asymptotically stable for
all τ ≥ 0 (figures not given). If c = 75, β2 = 0.001 then the parameter values satisfy
the stability conditions of the non-delayed system. Figure 3 (lower row) shows that
the non-delayed system is locally asymptotically stable. Figure 4 is the bifurcation
diagram of the infected population with respect to the delay parameter, τ . It shows
that the system is stable for τ < τ ∗, unstable for τ > τ ∗, and a Hopf bifurcation
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Fig. 1 Sensitivity analysis of the parameters (see Table 1) following Latin hypercube sampling-
partial ranked correlation coefficients (p < 0.00001). Here u1 = u2 = u3 = 0

occurs at τ = τ ∗ = 5.1051 days. Time evolutions of the system populations for
two particular values of τ (τ = 5 and τ = 5.2) represent the stable and unstable
behaviour of the system (Fig. 5).

4 The Optimal Control Problem

In the previous section, we discussed the effect of constant control. Here we assume
that the control parameters are time-dependent. Our objective here is to maximize
the number of healthy CD4+T cells, CTLs, and minimize the number of infected
CD4+T cells and virus particles using three controls. At the same time, we want
to reduce the deleterious side effects of the drugs. For this, we define the objective
functional

J (u1, u2, u3) =
∫ tf

0

(
A1x(t)+ A2z(t)−

(
A3y(t)+ A4v(t)+ B1u

2
1(t)

2

+ B2u
2
2(t)

2
+ B3u

2
3(t)

2

))
dt

(22)

subject to the states (2). In the integrand, the first two terms represent the benefit and
the next two terms indicate the deleterious effects. Here Ai > 0, i = 1, 2, 3, 4, are
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Fig. 2 Stability region of the
disease-free equilibrium E0
and the existence region of
the endemic equilibrium E∗
in c − β2 plane. Parameters
are s = 10, d = 0.02, β1 =
0.00025, r = 0.03,K =
1500, α = 1.2, μ = 0.4, d1 =
0.812, d2 = 3, d3 =
1.618, p = 0.05 and
u1 = u2 = u3 = 0.5

u
1
 = u

2
 = u

3
 = 0.5

0 25 50 75
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Fig. 3 Upper row: Time evolutions of the non-delayed system show that the disease-free
equilibrium E0 is stable when parameters are selected from the lower region of Fig. 2 with c =
4, β2 = 0.0001. Lower row: Figures show that the non-delayed system is locally asymptotically
stable for c = 75, β2 = 0.001. Other parameters are as in Fig. 2

the weight constants, which balance the size of the terms x(t),z(t),y(t) and v(t).
Three square terms are the respective cost of u1(t), u2(t) and u3(t), and B1, B2
and B3 are the weight parameters employed relative to the cost implication of the
controls u1, u2 and u3. Here tf is the final time, where treatment stops. Therefore,
our object is to find the optimal control triplet (û1, û2, û3) such that

J (û1, û2, û3) = max
(u1,u2,u3)∈Ξ

J (u1, u2, u3), (23)

where, Ξ = {(u1(t), u2(t), u3(t)) : ui measurable, 0 ≤ ui(t) ≤ 1, t ∈ [0, tf ], i =
1, 2, 3}.
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Fig. 4 Bifurcation diagram
of the infected CD4+T cell
population with respect to the
delay, τ . The y population is
stable for τ < τ ∗ and
unstable for τ > τ ∗, where
τ ∗ = 5.1051 days. Here
u1 = u2 = u3 = 0.5,
c = 75, β2 = 0.001 and other
parameters are as in Fig. 2
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Fig. 5 Upper row: The infected equilibrium E∗ is stable when τ = 5(< τ ∗). Lower row: The
infected equilibrium E∗ is unstable when τ = 5.2(> τ ∗), where τ ∗ = 5.1051. Here u1 = u2 =
u3 = 0.5 and c = 75, β2 = 0.001. Other parameters are as in Fig. 4

4.1 Existence of an Optimal Control Triplet

Proposition 4.1 There exists an optimal control triplet (û1, û2, û3) ∈ Ξ

with time dependent control problem (2) that maximizes the objective func-
tional J (u1, u2, u3), i.e., J (û1, û2, û3) = max(u1,u2,u3)∈Ξ J (u1, u2, u3).

Proof We use an existence result of Flaming and Rishel [34] and check the
following properties:
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(a1) The set of controls and corresponding state variables is nonempty.
(a2) The control set Ξ is convex and closed.
(a3) The right hand side of the state system is continuous, bounded above by a

sum of the bounded control and state, and can be written as a linear function
of ui with coefficients depending on the state and time.

(a4) The integrand of the objective functional is concave on Ξ .
(a5) There exists constants c1, c2 > 0 and b > 1 such that the integrand of

the objective functional is bounded above by c2 − c1(|u1(t)|2 + |u2(t)|2 +
|u3(t)|2)b/2.

In order to verify these properties, we use a result from Lukes [35] for the existence
of solutions of (2) with bounded coefficients and (a1) is satisfied. By the definition
of Ξ , (a2) is satisfied. As our control system is linear in u1, u2 and u3, the right-
hand side of (2) satisfies (a3) as the solutions are bounded. The integrand of the
objective functional is concave for the control set Ξ and hence a4 is satisfied. For
the last condition

A1x + A2z−
(
A3y + A4v + B1u

2
1

2
+ B2u

2
2

2
+ B3u

2
3

2

)

≤ A1x + A2z− (B1u1
2

2
+ B2u2

2

2
+ B3u3

2

2
)

≤ c2 − c1(|u1|2 + |u2|2 + |u3|2) b2 ,

where c2 depends on the upper bound of x and z, b > 1 and c1 > 0 as B1, B2, B3 >

0. Hence, we conclude that there exists an optimal control triplet. ��
Pontryagin’s minimum principle [36] and state delay provides a necessary condition
for an optimal control triplet (û1, û2, û3). This principle converts (2), (22) and (23)
into a problem which maximizes the Hamiltonian (H)

H(t; x, y, v, z; yτ ; u1, u2, u3; λ1, λ2, λ3, λ4) = A3y(t)+ A4v(t)+ B1u1
2(t)

2

+ B2u2
2(t)

2
+ B3u3

2(t)

2
− A1x(t)− A2z(t)

+ λ1ẋ(t)+ λ2ẏ(t)+ λ3v̇(t)+ λ4ż(t)

(24)

where λi, i = 1, 2, 3, 4, are the co-state or adjoint variables. Applying Pontryagin’s
minimum principle with state delay [36], we obtain the following Proposition.

Proposition 4.2 Suppose (û1, û2, û3) is an optimal control triplet of (22) subject
to the system (2) and (x̂, ŷ, v̂, ẑ) is the corresponding optimal solutions of (2), then
there exists co-state or adjoint variables λi, (i = 1, 2, 3, 4) such that the following
conditions are satisfied with the delay-induced controlled system (2).
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i. Co-state equations:

λ̇1(t) = A1 + λ1(t)
(
d + (1− û1(t))β1v̂(t)

+ (1− û2(t))β2ŷ(t)− r(1− 2x̂(t)+ αŷ(t)
K

)

)

− λ2(t)
(
(1− û1(t))β1v̂(t)+ (1− û2(t))β2ŷ(t)

)
,

λ̇2(t) = −A3 + λ1(t)
(
rαx̂(t)

K
+ (1− û2(t))β2x̂(t)

)

− λ2(t)
(
(1− û2(t))β2x̂(t)− (d + μ)− d1ẑ(t)

)

− λ3(t)(1− û3(t))cμ− χ[0,tf−τ ]pλ4(t + τ),
λ̇3(t) = −A4 + λ1(t)(1− û1(t))β1x̂(t)

− λ2(t)(1− x̂1(t))β1x̂(t)+ λ3(t)d2,
λ̇4(t) = A2 + λ2(t)d1ŷ(t)+ λ4(t)d3,

(25)

with transversality conditions λi(tf ) = 0, i = 1, 2, 3, 4.
ii. Optimality conditions:

H(x̂, ŷ, v̂, ẑ; û1, û2, û3; λ1, λ2, λ3, λ4)
= H(x̂, ŷ, v̂, ẑ; u1, u2, u3; λ1, λ2, λ3, λ4),

which implies

û1(t) =min
{
1,max{0, (λ2(t)− λ1(t))β1x̂(t)v̂(t)

B1
}
}
,

û2(t) =min
{
1,max{0, (λ2(t)− λ1(t))β2x̂(t)ŷ(t)

B2
}
}
,

û3(t) =min
{
1,max{0, λ3(t)cμŷ(t)

B3
}
}
.

(26)

Proof By Pontryagin’s minimum principle with state delay [36], the co-state
equations and its transversality conditions can be solved by
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λ̇1(t) =− ∂H(t)

∂x
, λ1(tf ) = 0,

λ̇2(t) =− ∂H(t)

∂y
− χ[0,tf−τ ]

∂H(t + τ)
∂yτ

, λ2(tf ) = 0,

λ̇3(t) =− ∂H(t)

∂v
, λ3(tf ) = 0,

λ̇4(t) =− ∂H(t)

∂z
, λ4(tf ) = 0,

(27)

where χ[0,tf−τ ] is the characteristic function defined as

χ[0,tf−τ ] =
{
1 if t ∈ [0, tf − τ ],
0, otherwise.

The optimal control triplet û1, û2 and û3 are solved from the optimality conditions

∂H(t)

∂u1
= 0, at u1(t) = û1(t); ∂H(t)

∂u2
= 0, at u2(t) = û2(t);

∂H(t)

∂u3
= 0, at u3(t) = û3(t)

(28)

and we get

∂H(t)

∂u1
=B1u1(t)+ (λ1(t)− λ2(t))β1x(t)v(t) = 0,

∂H(t)

∂u2
=B2u2(t)+ (λ1(t)− λ2(t))β2x(t)y(t) = 0,

∂H(t)

∂u3
=B3u3(t)− λ3(t)cμy(t) = 0.

(29)

We calculate û1(t), û2(t) and û3(t) from the bounds of Ξ in the form of (26). ��
Therefore, the optimal system associated with the system (2) is represented by
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dx̂

dt
=s − dx̂(t)+ rx̂(t)(1− x̂(t)+ αŷ(t)

K
)

− (1− û1(t))β1x̂(t)v̂(t)− (1− û2(t))β2x̂(t)ŷ(t),
dŷ

dt
=(1− û1(t))β1x̂(t)v̂(t)+ (1− û2(t))β2x̂(t)ŷ(t)

− (d + μ)ŷ(t)− d1ŷ(t)ẑ(t),
dv̂

dt
=(1− û3(t))cμŷ(t)− d2v̂(t),

dẑ

dt
=pŷ(t − τ)− d3ẑ(t),

λ̇1(t) =A1 + λ1(t)
(
d + (1− û1(t))β1v̂(t)

+ (1− û2(t))β2ŷ(t)− r(1− 2x̂(t)+ αŷ(t)
K

)

)

− λ2(t)
(
(1− û1(t))β1v̂(t)+ (1− û2(t))β2ŷ(t)

)
,

λ̇2(t) =− A3 + λ1(t)
(
rαx̂(t)

K
+ (1− û2(t))β2x̂(t)

)

− λ2(t)
(
(1− û2(t))β2x̂(t)− (d + μ)− d1ẑ(t)

)

− λ3(t)(1− û3(t))cμ− χ[0,tf−τ ]pλ4(t + τ),
λ̇3(t) =− A4 + λ1(t)(1− û1(t))β1x̂(t)

− λ2(t)(1− x̂1(t))β1x̂(t)+ λ3(t)d2,
λ̇4(t) = A2 + λ2(t)d1ŷ(t)+ λ4(t)d3,

x(0) = x0 > 0, y(0) = y0 > 0, v(0) = v0 > 0, z(0) = z0 > 0,

λi(tf ) = 0, i = 1, 2, 3, 4,

(30)

where

û1(t) = min
{
1,max{0, (λ2(t)− λ1(t))β1x̂(t)v̂(t)

B1
}
}
,

û2(t) = min
{
1,max{0, (λ2(t)− λ1(t))β2x̂(t)ŷ(t)

B2
}
}
,

û3(t) = min
{
1,max{0,−λ3(t)cμŷ(t)

B3
}
}
.
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4.2 Simulation Results

Here we solve the optimal systems (30) numerically by combination of forward
and backward difference approximation methods [37]. The treatment period is
continued for 300 days and therefore, the time interval is considered as [0, tf ],
where tf = 300. The initial values of the state variables are taken as x(0) =
500, y(0) = 100, v(0) = 100 and z(0) = 10 [38]. Since the weight parameters
A1 and A3 are associated with the CD4+T cells, we assign the same values for
them. Considering the same harmful effects of all the inhibitors, the same value for
the weight parameters B1, B2, B3 are considered. Other parameter values remain as
in Table 1. We consider both the mono-drug and multi-drug therapies and compare
their efficacies in controlling viremia under different delays.

4.2.1 Mono-Drug Therapy

Figure 6 represents various outcomes of mono-drug therapies for the system (30)
with τ = 1. The first column of this figure shows the counts of various immune
cells and plasma viruses when the inhibitor u1 is only administered (the case
(u1 �= 0, u2 = 0, u3 = 0)). The last row of this figure gives the respective control
profile. These figures show that no inhibitor can completely remove the infection,
and infected cells persist in all three cases. However, in the case of blocker u3, virus
counts go below detection level, though it exists in the other two cases, but infected
CD4+T cells (y) still persist. It happens due to the cell-to-cell dissemination of
infection. Observe that healthy CD4+T cells count is relatively low in the mono-
drug therapy (u1 = 0, u2 �= 0, u3 = 0) compared to other two cases. Thus, u2
is the worst mono-drug therapy. The respective control profiles indicate that all
the controls should be applied with full efficacy for the entire treatment period,
except for some occasional reduction in the u1 control. This analysis shows that
the mono-drug therapy with the blocker u3 is relatively a better performer because
its application can reduce the free virus particles, thereby reducing the chances of
cell-free infection.

Figure 7 shows the time evolutions of the optimal system (30) for τ = 2 days.
These figures show that plasma concentrations of CD4+T cells, CTLs and virus
particles oscillate in the case of (u1 �= 0, u2 = 0, u3 = 0) and (u1 = 0, u2 �=
0, u3 = 0), but they are stable in the case of mono-drug therapy (u1 = 0, u2 =
0, u3 �= 0) with higher value of susceptible CD4+T cells and lower value of
infected CD4+T cell counts. The free virus particles count (v) also remains below
the detectable level in the latter case. The control profile (last row) also shows a
significant difference for u3 inhibitor compared to the other two controls, where
oscillations are predominant.

Similar simulation results are presented when the delay is further increased to
τ = 2.5 > τ ∗ (Fig. 8), where τ ∗ = 2.37 days. These figures show that plasma
concentrations of CD4+T cells, CTLs, and virus particles oscillate in all three
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Fig. 6 The time variations of susceptible CD4+T cells, infected CD4+T cells, virus particles
and CTLs due to different mono-drug therapy with τ = 1 day. The last row represents the optimal
controls corresponding to each mono-drug therapy. Here τ = 1 and other parameters are s =
10, d = 0.02, β1 = 0.00025, r = 0.03,K = 1500, α = 1.2, μ = 0.4, d11 = 0.812, d22 =
3, d3 = 1.618;p = 0.05; c = 75, β2 = 0.002, A1 = A3 = 5, A2 = A4 = 2 and B1 = B3 =
B3 = 0.1

Fig. 7 The time variations of susceptible CD4+T cells, infected CD4+T cells, virus particles
and CTLs due to different mono-drug therapies with τ = 2 days. The last row represents the
control profiles corresponding to each mono-drug therapy. Here τ = 2 and other parameters are as
in Fig. 6
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Fig. 8 Concentrations of susceptible CD4+T cells, infected CD4+T cells, virus particles and
CTLs with respect to time under different mono-drug therapies with τ = 2.5 days. The last row
represents the control profiles corresponding to each mono-drug therapy. Here τ = 2.5 and other
parameters are as in Fig. 6

control strategies. The control profile also oscillates in each case. Thus, a large
immune activation delay causes significant changes in the plasma counts and control
profile. Therefore, no mono-drug therapy is capable of controlling the viremia in an
HIV-1 infected individual if immune response delay is high.

4.2.2 Multi-Drug Therapy

In the case of a multi-drug therapy, we observed that infection can be removed (i.e.,
where y = 0) in three options. The multi-drug option (u1 �= 0, u2 = 0, u3 �= 0)
cannot eliminate infection, implying that it is the worst combination, but in the other
three cases, both the infected cells and virus particles are eliminated (Fig. 9). It is
to be noted that the control u2 should be used while using multi-drug therapy to
eliminate the infection. However, the control u2 was not an efficient blocker when
administered alone. Control profiles are all most same for three cases except the one
(u1 �= 0, u2 = 0, u3 �= 0), where the infection persists. Considering the cost of
drugs and its side effects, any of the multi-drug therapies (u1 �= 0, u2 �= 0, u3 = 0)
or (u1 = 0, u2 �= 0, u3 �= 0) may be used instead of (u1 �= 0, u2 �= 0, u3 �= 0).
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Fig. 9 The time variations of susceptible CD4+T cells, infected CD4+T cells, virus particles
and CTLs due to different mono-drug therapies with τ = 2.5 days. The last row represents the
control profiles corresponding to each mono-drug therapy. Here τ = 2.5 and other parameters are
as in Fig. 6

5 Discussion

Recent experimental studies show that cell-to-cell disease transmission mode is a
more efficient and faster mode of disease transmission than the cell-free mode in the
case of in-host HIV-1 infection [1, 2, 4]. This paper has studied a multi-pathways
HIV-1 infection model with immune activation delay. The model is further modified
with three different blockers that may be used in controlling the viremia. An RTI
control (u1(t)) is used to inhibit the synthesis of viral DNA from HIV-1 RNA to
inhibit the viral infectivity. A synapse-forming inhibitor (u2(t)) is used to block the
cellular mechanisms required for synapse formation. The third control, a protease
inhibitor (u3(t)) is applied to stop the process of free virus formation. We first
prove that solutions of our system remain positive for all future time assuming
positive initial values. It is also shown that the solutions are uniformly bounded.
The analytical results are presented in two phases. In the first phase, we assume
that the considered controls are time-independent constant controls. In the second
phase, we relaxed this assumption and considered the controls as time-dependent.
Applying the next-generation matrix, we calculated the basic reproduction number
(R0) of the system with constant controls and showed the disease-free equilibrium
is locally and globally asymptotically stable if R0 < 1. The infected steady state,
if it exists, is locally asymptotically stable under some parametric restrictions.
Delay may, however, cause instability in the system. There exists some critical
value (τ ∗) of the delay parameter below which the system is stable and above
which it is unstable. The stability switching occurs through a Hopf bifurcation. If
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the controls are time-dependent variables, then we defined an objective functional
to maximize the healthy CD4+T cells & CTL cells and minimize the infected
CD4+T cells & virus particles. We derived the necessary conditions for optimal
control by applying Pontryagin’s minimum principle. It is analytically shown that
an optimal control triplet exists that maximizes the objective functional. We have
demonstrated the effect of different control measures with mono-drug and multi-
drug therapies with different delays using extensive simulation results. It is shown
that removing infection is not possible, and the infected cells persist in all three
mono-drug protocols. However, in the case of blocker u3, virus counts (v) go
below the detection level, but infected CD4+T cells (y) persist. This, however,
does not happen in the other two controls, where both the infected cells and virus
particles survive. Infected CD4+T cells persist, but the non-zero virus count may
be possible due to the presence of cell-to-cell dissemination of infection and the
use of blocker u3. Such a result has not been shown in any previous study. It is
observable that CD4+T cells count in this case is low compared to the other two
cases. Thus, u2 is the worst mono-drug therapy, and u3 is better. However, when
immune response delay increases, then plasma concentrations of CD4+T cells,
CTLs, and virus particles oscillate in all three mono-control strategies, showing
uncontrolled behavior. The control profile also oscillates in each case. In the case of
a multi-drug therapy, we observed that infection could be removed in three options,
where control u2 is present. The multi-drug option (u1 �= 0, u3 �= 0, u2 = 0),
where u2 is absent, is the worst one. Our study thus shows that immune response
delay significantly affects the system dynamics. If CTL’s response is quicker, then
CD4+T cells count may remain stable but fails to do so if response time increases.
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Mathematical Models of Acoustically
Induced Vaporization of Encapsulated
Nanodroplets

K. Jiang, M. Ghasemi, A. Yu, and S. Sivaloganathan

1 Introduction

Acoustic droplet vaporization (ADV) is a process in which droplets of liquid are
vaporized through the application of ultrasound acoustic waves. Since its initial
description in 1995 [8], the potential usefulness of this process within the medical
field has been explored through proposed and demonstrated applications such as
drug delivery, imaging, and embolic therapy.

The exploitation of this process for medical applications involves the introduction
of droplets, typically several hundred nanometers in size, of an appropriately
selected biocompatible organic compound into a patient’s bloodstream. Ultrasound
is then applied at the required site to induce the vaporization of these nanodroplets
noninvasively and thus achieve the desired clinical purpose. Perfluorocarbons
(PFCs) are the most explored class of compounds for this application due to their
physicochemical properties, their lightest species having a boiling point below
human body temperature, yet remaining metastable in the liquid state due to the
additional Laplace pressure within the droplet arising from surface tension [9].
These droplets are typically encapsulated with either an albumin layer [10], a
polymeric shell [12, 13], or fluorinated surfactants [14] to prevent their rapid
dissolution within the bloodstream, thus improving their lifetime.

The distribution of administered drugs within the body poses a key challenge
within the field of cancer chemotherapy. Severe side effects are caused by the
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cytotoxic effects of these drugs on healthy tissue. In addition, anomalous tumour
vascularization and high interstitial pressure result in spatial drug gradients within
a tumor, leading to the possible survival of cancer cells where drug concentration is
low [15]. This challenge can be addressed through the development of targeted drug
delivery techniques that increase the concentration of drugs within the tumour whilst
minimizing the impact on healthy tissue. The small size of the aforementioned
encapsulated nanodroplets and their stability within the bloodstream allow them
to both circulate around the body and accumulate within tumour tissue through the
enhanced permeability and retention (EPR) effect [16]. Targeted drug delivery can
then potentially be achieved via the selective release of any encapsulated drugs by
inducing ADV through the noninvasive application of a focused ultrasound field.

A limitation of conventional ultrasound imaging techniques is the difficulty
encountered when imaging tissue microvasculature due to the small size of the
microvessels and the poor resolution of signal between the blood and the sur-
rounding tissue [17]. The ADV of encapsulated nanodroplets can turn them into
micrometer-scale gas bubbles which oscillate under the influence of the applied
acoustic field. This enhances the backscattered signal, boosting the contrast between
the vasculature and the surrounding tissue, thus allowing us to overcome the above
limitation [17]. The expansion in volume can also occlude blood vessels feeding
a tumour, starving them of nutrients and thus damaging or eliminating them. The
exploitation of this process for therapeutic benefits is known as embolotherapy [18].

The increase in stability caused by the Laplace pressure across the droplet
surface, together with the encapsulating shell implies that a certain threshold of
acoustic energy must be exceeded in order to achieve vaporization. The dependence
of this threshold on various parameters such as acoustic frequency [11, 19, 20],
pulse length [20–22], pulse repetition frequency [23], droplet size [19, 23] and con-
centration [22], as well as temperature [20, 22, 23] has been studied experimentally
in vitro. A successful mathematical model of the ADV process and its dependence
on some or all of the above factors can be used to optimize this process through the
appropriate selection of an encapsulating shell with suitable physical characteristics,
as well as the parameters of the applied acoustic field. It may also yield useful
behavioural predictions in conditions that have yet to be tested experimentally.

Current physical models of ADV assume the presence of a spherical vapor
bubble within the liquid droplet and an important aspect is the examination of the
evolution of this bubble over time [4, 5]. Hence they build upon and incorporate
early mathematical models of spherical bubble behavior. One such model is Lord
Rayleigh’s examination of the collapse of a spherical cavitation bubble within a
liquid under constant pressure at a distance [28]. This was extended by Plesset to
incorporate the possibility of time-varying external pressure [29]. The combined
works form the basis of what has come to be known as the Rayleigh-Plesset
framework and has since been extended further to incorporate the effects of surface
tension [30], viscosity [31], heat diffusion [30, 32], and compressibility [33].

This paper presents two recent models of the ADV process. These models
utilize the general Rayleigh-Plesset equation accounting for the effects of surface
tension, viscosity, and heat diffusion (although still assuming incompressibility).
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They also incorporate the effect of mass flux across the bubble surface through
evaporation/condensation, as well as pressure contributions from the encapsulating
shell. The first model, developed by Guédra et. al. [4] assumes that the shell exhibits
linear elasticity. The second model, developed by Lacour et. al. [5] builds upon this
by introducing nonlinear elasticity by treating the shell as a Mooney-Rivlin solid to
account for large deformations.

2 Modelling

As shown in the above schematic (Fig. 1), the model represents the radius of the
vapor bubble, the inner and outer radius of the shell as three concentric spheres with
radii R(t), a(t), b(t) respectively. It is assumed that the space within the inner vapor
bubble, between the vapor bubble and the shell, and outside of the shell contains PFP
vapor, liquid PFP, and water respectively. To model the evolution of these values
over time, the following dynamics are taken into account:

1. Vapor behavior within the bubble
2. Mass flux and heat transfer across the bubble surface
3. Heat transfer and fluid flow within the liquid between the bubble surface and the

shell
4. Heat transfer across the shell

Fig. 1 Schematic of the
model setup

External water

Encapsulating
shell

Liquid PFP

PFP Vapor
R(t)

a(t)

b(t)
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5. Heat transfer and fluid flow within the external liquid

2.1 Evolution of Bubble Radius Over Time

The evolution of the bubble radius over time is described by the generalized
Rayleigh-Plesset equation [5] which is obtained as follows. Its derivation begins
with the Navier-Stokes equation for radially symmetric flows

− 1

ρ

∂p

∂r
= ∂u

∂t
+ u∂u

∂r
− ν

[
1

r2

∂

∂r

(
r2
∂u

∂r

)
− 2u

r2

]
(1)

Where, ρ is the density, p is the pressure, u := u(r, t) is the radial velocity at radial
distance r from the bubble center at time t , and ν is the kinematic viscosity. By the
conservation of mass, the radial velocity u must satisfy

u(r, t) =
(
R

r

)2

U(t) (2)

Where U(t) := lim
r→R+ u(r, t) is the velocity of the inner liquid right at the surface of

the bubble. Plugging this into Eq. (1) results in

− 1

ρ

∂p

∂r
= R2U̇

r2
+ 2RṘU

r2
− 2

R4U2

r5
(3)

Noting that the viscosity terms within the right-hand side of Eq. (1) cancel each
other out as a result. (3) can then be integrated across the three domains of inner
liquid [R, a], shell [a, b], and outer liquid [b,∞] to obtain the following [4]

RU̇ + 4ṘU − U2

2
− aä − 3

2
ȧ2 = pL(R)− pL(a)

ρL
(4)

bb̈ + 3

2
ḃ2 = pE(b)− p∞

ρE
(5)

bb̈ − aä + 3

2
(ḃ2 − ȧ2) = pS(a)− pS(b)

ρS
+ σSrr (a)− σSrr (b) (6)

Where subscripts L, S,E are used to denote properties corresponding to the inner
liquid, shell, and outer liquid respectively. pL and pE represent the hydrostatic
pressure within the inner and outer liquid respectively. The shell is assumed to be
a viscoelastic material having both elastic stress and viscous stress terms pS and
σSrr . In addition, taking into account surface tensions, viscosities, shell elasticity,
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Fig. 2 Normal stress
contributions from the outside
and within the bubble

Gas pressure within
the bubble

Hydrostatic pressure

Surface tension

Mass flux

Liquid viscosity

Bubble surface

as well as the mass flux across the bubble surface, the continuity of normal stress
across the bubble surface, shell inner surface, and shell outer surface (Fig. 2) gives
the following [1, 6]

pL(R)+ JU = pV (R)− 4ηL
U

R
− 2

σ

R
+ JUV (7)

pL(a) = pS(a)− σSrr (a)− 4ηL
ȧ

a
+ 2σ1
a

(8)

pE(b) = pS(b)− σSrr (b)− 4ηE
ḃ

b
− 2σ2
b

(9)

Where J is the mass flux across the bubble surface, UV := lim
r→R− u(r, t) is the gas

velocity at the inner surface of the bubble, η is the dynamic viscosity of the medium
denoted by its subscript, and σ, σ1, σ2 are the surface tensions corresponding to the
bubble surface, shell inner surface, and shell outer surface.

Combining Eqs. (4)–(9) results in the generalized Rayleigh-Plesset equation
which describes the evolution of the bubble radius over time.
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(R2U̇ + 2RṘU)

(
ρE − ρS
b

+ ρS − ρL
a

+ ρL

R

)

−R
4U2

2

(
ρE − ρS
b4

+ ρS − ρL
a4

+ ρL

R4

)
= pR − p∞

(10)

Where p∞ is the pressure at infinity arising from an applied acoustic field as follows.

p∞(t) = p0 − pa sin(2πf t) (11)

Where p0 is the ambient pressure, pa is the amplitude of the acoustic wave, and f
is the acoustic frequency. By the conservation of mass, the mass flux J is given by
[3]:

J = ρL(U − Ṙ) = ρV (UV − Ṙ) (12)

Given this mass flux, together with Eq. (2), and noting that the shell is impermeable,
the differential equations describing the evolution of R, a, b over time are given by.

Ṙ = U − J

ρL
(13)

ȧ = R2

a2
U (14)

ḃ = R2

b2
U (15)

2.2 Pressure Contributions

In the process of obtaining Eq. (10), we see that the pressure at the bubble surface
pR can be broken down into contributions from viscosity, surface tension, mass flux,
and shell response respectively.

pR = pV − 2σ̄

R
− 4η̄U

R
+�+ S (16)

Where

η̄ = ηL + (ηS − ηL)
(
R

a

)3

+ (ηE − ηS)
(
R

b

)3

(17)
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σ̄ = σ + σ1

a
+ σ2

b
(18)

pV is the pressure of the gas within the bubble. It can be determined using the
Clausius-Clapeyron relation if the temperature is given (to be discussed in Sect. 2.3).

pV (T ) = pref exp
(
L

rV

(
1

Tref
− 1

T

))
(19)

Where L is the latent heat of vaporization, rV is the specific gas constant, and pref
is the known pressure at a reference temperature Tref
� is the contribution from the mass flux terms appearing in Eq. (7)

� = J (UV − U) (20)

Using Eq. (12), this can be re-expressed as

� = J 2
(

1

ρV
− 1

ρL

)
(21)

The mass flux J itself is obtained from the conservation of energy across the bubble
surface [4], assuming that the temperature distribution is uniform within the bubble
(Sect. 2.3).

J = −KL
L

∂T

∂r

∣∣∣
r→R+ (22)

Where KL is the thermal conductivity of the inner liquid.
S is the contribution from the shell response which will be discussed in Sect. 2.4.

2.3 Temperature Profile

The determination of the pressure within the gas bubble within Eq. (19) as well as
the mass flux across the bubble surface (22) requires the temperature within the
bubble, as well as the temperature gradient immediately outside the bubble.

2.3.1 Bubble Surface Temperature

The modelling of the bubble surface temperature requires the determination of the
gas velocity field within the bubble. This begins by assuming that it behaves as an
ideal gas. The corresponding enthalpy equation is as follows [2]
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ρV Cp
dT

dt
− dp

dt
= ∇ · (KV∇T ) (23)

Where ρV is the gas density, Cp is its heat capacity under constant pressure, T :=
T (r, t) is its temperature, and KV is its thermal conductivity. The gas velocity field
within the bubble  v is introduced through the continuity equation.

∂ρV

∂t
+∇ · (ρV  v) = 0 (24)

The following ideal gas property is also used

CpρV T = γp

γ − 1
(25)

Where γ := Cp
Cv

is the ratio of the specific heat at constant pressure to the specific
heat at constant volume. Combining Eqs. (23)–(25), keeping in mind the assumption
that the vapor density is constant in space, the following differential equation is
obtained.

dp

dt
+ γp∇ ·  v = (γ − 1)∇ · (KV∇T ) (26)

This is re-expressed as follows using the assumption of spherical symmetry.

∂(r2v)

∂r
= r2

γp

[
γ − 1

r2
KV

∂

∂r

(
r2
∂T

∂r

)
− ṗ

]
(27)

Which is integrated to obtain the vapor velocity field within the bubble

v = 1

γp

[
(γ − 1)KV

∂T

∂r
− rṗ

3

]
(28)

We know that UV = lim
r→R− v(r, t). In addition, since the temperature field within the

bubble is assumed to be spatially uniform, this reduces to

UV = − Rṗ
3γp

(29)

Which can be plugged into the combination of Eqs. (12) and (22) to obtain

Rṗ + 3γp

(
Ṙ − 1

ρV

KL

L

∂T

∂r

∣∣∣
r→R+

)
= 0 (30)

The Clausius-Clapeyron relation given in Eq. (19) provides the time rate of change
of pressure, which is then used to obtain the final differential equation governing the
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evolution of bubble surface temperature (hereby denoted TS) over time.

L

rvT
2
S

dTS

dt
= 3γ

R

(
KL

ρV L

∂T

∂r

∣∣∣
r→R+ − Ṙ

)
(31)

Where the gas density ρV can be obtained from the following ideal gas relation.

ρV = pV

rV T
(32)

2.3.2 Temperature Within the Inner and Outer Liquids

The temperature profiles within the inner and outer liquids are given by the energy
equations [4, 7]

∂T

∂t
+ u(r, t)∂T

∂r
= Dm

r2

∂

∂r

(
r2
∂T

∂r

)
+ 12ηm
ρmcm

(
u(r, t)

r

)2

(33)

Where m ∈ {L,E} represents the medium for which the temperature profile is
being evaluated and D := K

ρc
is the thermal diffusivity. The heat flux is assumed to

be continuous across the shell.

KL
∂T

∂r

∣∣∣
r→a− = KE ∂T

∂r

∣∣∣
r→b+ (34)

And the other boundary conditions are given by the temperature of the bubble
surface and the temperature at infinity, which is held constant.

lim
r→R+ T (r, t) = TS(t) (35)

lim
r→∞ T (r, t) = T∞ (36)

2.4 Shell Contribution

In this review we cover two approaches to modelling the pressure term contributed
by the shell’s response—the Kelvin-Voigt model utilized in Guédra and Coulouvrat
[4], and a later model by Lacour, Guédra and Coulouvrat [5] that models the shell
as a hyperelastic material using the Mooney-Rivlin strain energy density function to
incorporate nonlinear effects that arise as a result of large deformations.

The Kelvin-Voigt model represents the radial component of the viscous stress
tensor that appears in Eqs. (6), (8), and (9) as follows
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σSrr (r) = −4
a2

R3

(
GS
a

3

[
1− R3

10

R3
1

]
+ ηS Ṙ1

R1

)
(37)

Where GS is the shear modulus of the shell and ηS the shear viscosity. This gives
the following expression as the shell response

S = −4

3
GS

(
1− R3

10

R3
1

)(
1− R3

1

R3
2

)
(38)

The Mooney-Rivlin model begins with Mooney’s constitutive relation [34]

� ≈ GS

4
[(1+ β)(I1 − 3)+ (1− β)(I2 − 3)] (39)

Where � is the strain energy density function, G is the shear modulus, β is a fitting
parameter, and I1 and I2 are the first two invariants of the left Cauchy-Green tensor
b = FFT . By expressing the two invariant terms in terms of the principal stretch
λ := r

r0
, the strain energy density function can be reexpressed as

� ≈ GS

4

1∑

i=−1

(1+ iβ) (λ−4i + 2λ2i − 3) (40)

The shell response can be placed in the following form.

S =
b
b0∫

a
a0

� ′(λ)
λ3 − 1

dλ (41)

Which can then be integrated to obtain

S = GS
⎡

⎣
1∑

i=−1,i �=0

1∑

k=0

1+ iβ
−i − 3k

λ−i−3k

⎤

⎦

b
b0

a
a0

(42)

3 Numerical Implementation

The set of equations in the previous section can be consolidated into a model of
the four main state variables U,R, a, and b. The mass flux J is implicated in
multiple sites within the model and its evaluation in turn requires the modelling
of the temperature profile T (r, t) of the system. To that end, the spatial terms within
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the energy equation (33) are discretized using centralized finite differences. The
following variable substitutions were also carried out to keep the boundary points
fixed [3].

x = r − R
a − R ; ∀r ∈ (R, a) (43)

y = l

r − b + l ; ∀r ∈ (b,∞) (44)

Where

l = B
√
DE

ω
(45)

B being a chosen parameter.
The internal and external liquids were discretized evenly into M and N spatial

points respectively. I.e.

∀i ∈ {1, . . . ,M}; xi = i�x; where �x = 1

M
(46)

∀j ∈ {1, . . . , N}; yj = j�y; where �y = 1

N
(47)

This results in a system of ODEs describing the evolution of temperature at
{x1, . . . , xM }, and {y1, . . . , yN }. This system needs to be completed with boundary
and initial conditions at r = R ⇔ x0 = 0 and r → ∞ ⇔ y0 = 0. The evolution of
the bubble surface temperature is described by Eq. (31). By discretizing

∂T

∂r

∣∣∣
r→R+ ≈ T (x1, t)− T (x0, t)

�x
(48)

And rearranging Eq. (31), the evolution of bubble surface temperature can also be
expressed as a function of the current temperature profile.

dTS(t)

dt
= ∂

∂t
T (x0, t) ≈ 3T (x0, t)2rvγ

LR

(
KL

ρV L

T (x1, t)− T (x0, t)
�x

− Ṙ
)

(49)

On the other hand, the temperature at infinity is held constant, so

∂

∂t
T (y0, t) = 0 (50)

The continuity of heat flux across the shell described in Eq. (34) was implemented
by introducing an additional variable Tshell(t) used to obtain the central finite
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differences approximating the one-sided derivatives in Eq. (34).

∂T

∂r

∣∣∣
r→a− = ∂

∂x
T (xM, t) ≈ Tshell(t)− T (xM−1, t)

2�x
(51)

∂T

∂r

∣∣∣
r→b+ = ∂

∂y
T (yN, t) ≈ T (yN−1, t)− Tshell(t)

2�y
(52)

Tshell(t) can then be calculated at each time step by plugging the above into Eq. (34).
To avoid potential numerical difficulties [4], the initial temperature profile is

interpolated between the initial bubble surface temperature and the temperature at
infinity as follows [24]:

T (r, 0) = T (∞, 0)− [T (∞, 0)− TS(0)] exp
(
− r − R(0)
δ − R(0)

)
(53)

Where δ was chosen to be within [R(0), 2R(0)]. The initial bubble surface
temperature was obtained by applying the Clausius-Clapeyron relation to the initial
pressure, which in turn was the combination of the ambient pressure and the Laplace
pressure arising from the surface tension of the interfaces within the system.

TS(0) =
[

1

Tref
− rV

L
ln

(
p0 + 2σ

R(0) + 2σ1
a(0) + 2σ2

b(0)

pref

)]−1

(54)

The evolution of the entire system can then be expressed in the following form.

d

dt

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T (x0, t)

T (x1, t)
...

T (xM, t)

T (yN, t)
...

T (y1, t)

T (y0, t)

U

R

a

b

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T (x0, t)

T (x1, t)
...

T (xM, t)

T (yN, t)
...

T (y1, t)

T (y0, t)

U

R

a

b

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, p∞(t)t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(55)

This was then solved using the numerical method implemented by ode15s within
Matlab® [35].
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Table 1 Parameters used
within the simulations

Unit PFP [25–27] Shell [6] H2O

K W/mK 0.056 0.6

ρ kg/m3 1590 1100 998

c J/kgK 1046 4200

η mNs/m2 0.64 0.05 0.001

rV J/kgK 28.8

L kJ/kg 88

γ 1.05

4 Preliminary Results

4.1 Parameters

The physical properties of PFP, the shell material, and the external water are listed
in the following Table 1.

The additional parameters involved include the vapor pressure of PFP at the
reference temperature of 25 ◦C, Pref = 83.99 kPa [27]. The ambient temperature
and pressure were chosen as T∞ = 37 ◦C, P0 = 1 atm. B, the parameter used in the
variable transformation of radial distance external to the encapsulated droplet shown
in Eq. (45), was chosen to be 10. δ the parameter involved in setting up the initial
temperature profile was chosen to be 1.1R(0). σ , the surface tension coefficient of th
bubble was 0.0095N/m. The surface tension coefficients corresponding to the shell
inner and outer surfaces were assumed to be 0. β, the fitting parameter appearing in
Eq. (39) was chosen to be 1.

The results (Figs. 3 and 4) exhibit two possibilities for the system: continued
expansion through induced droplet vaporization, and bubble collapse. It appears that
a larger amplitude of the driving acoustic wave imparts more energy into the system
and bring it closer to vaporization. A stiffer shell with a higher shear modulus also
provides more resistance acting against the bubble expansion, thus increasing the
ADV threshold. The effect of nonlinearity introduced by the Mooney-Rivlin model
also gives rise to a larger shell response and hence further increasing the energy
required for ADV.

5 Conclusion

Acoustic droplet vaporization (ADV) is a mechanism that holds great promise for
potential clinical applications ranging from contrast agents in ultrasound, to the
administration of drug cargos at specific target sites. The development of appropriate
mathematical models can lead to a deeper understanding of the mechanisms and
factors involved in the ADV process. Although both models discussed in this paper
are based on the Rayleigh-Plesset equation—the models used different constitutive
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Fig. 3 Evolution of vapor bubble radius and shell inner radius as given by the linear elasticity
model under varying amplitudes of the acoustic waves (1 to 5MPa) and two different shell
conditions: left) GS = 100MPa, and right) GS = 200MPa

Fig. 4 Evolution of vapor bubble radius and shell inner radius as given by the nonlinear elasticity
model under varying amplitudes of the acoustic waves (1 to 5MPa) and two different shell
conditions: left) GS = 100MPa, and right) GS = 200MPa

equations. The first model uses linear elasticity theory, whilst the second utilizes
a Mooney-Rivlin model that is more suitable for large shell deformations. These
models can be used to develop some understanding of the mechanisms that drive the
ADV process, as well as to determine key factors in the vaporization process. The
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main purpose of this paper is to present and compare these two models presented in
the literature to study the ADV process.
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Existence of Closed Trajectories in
Lotka–Volterra Systems in R

+
n

A. Bratus, V. Tikhomirov, and R. Isaev

1 Introduction

The existence of closed phase trajectories in the Lotka–Volterra system [1, 2], also
known as predator-prey equations, made it possible to explain many phenomena of
periodic changes in the number of species observed in nature. A. Kolmogorov and
G. Gause proposed another version of this model [3, 4], which allowed recognising
a variety of behaviours, including the occurrence of a limit cycle. These studies have
been advanced in numerous publications, covered in [5, 6]. Of particular interest is
the possibility of closed trajectories in ecological communities of the 〈〈food chain〉〉
type, which can ensure the sustainable development of these systems [6].

Consider the Lotka–Volterra system in Rn+:

dui

dt
= ui(ri − (Au)i). (1)

Here, ui(t) denotes the number of type i species at time t > 0 and ri is the
Malthusian coefficients of i-th species, r = (r1, r2, . . . , rn) ∈ R

n. We imply
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(Au)i =
n∑
j=1
aijuj (t). At the initial time moment, we have ui(0) = u0i ≥ 0, i =

1, n.
Matrix A = {aij }n×n describes the nature of the interaction between species,

where det(A) �= 0. The values aij describe the effect of exposure of j population on
i population. If i = j , then the coefficient aii reflects the intraspecific competition
of species. Let AT mean a transposed matrix A. The matrix A can be represented
as a sum of two matrices: A = B + C, where B = BT , C = −CT . Moreover,
B = A+AT

2 , C = A−AT
2 . The state-space of the system (1) is the positive octant

R
n+ = {u ∈ R

n : ui ≥ 0, ∀i}. Let us introduce the notation intRn+ = {u ∈ R
n :

ui > 0, ∀i}; bdRn+ = R
n+ \ intRn+.

Boundary points Rn+ belong to the coordinate planes ui = 0, which corresponds
to the extinction (or absence) of the i species.

Definition 1 The system (1) is called nondegenerate if for any initial conditions
u0i > 0, i = 1, n there is a number δ > 0, that lim

t→∞
(
inf(ui(t, u0))

)
> δ, i = 1, n.

Definition 2 The system (1) is uniformly bounded if for any initial conditions u0i >
0 i = 1, n there exists such a number K , independent of the initial conditions that
lim
t→∞

(
sup(ui(t, u0))

)≤ K, i = 1, n.

The condition for the nondegeneracy of the system (1) in the absence of
absorbing equilibrium positions, i.e., such equilibrium positions that are located on
the boundary Rn+(bdRn+), in which trajectories can leave Rn+. This condition can be
formulated in the following form [7]. There exists a vector p = (p1, p2, . . . , pn) ∈
intRn+, such that for any fixed point of the system (1) u = (u1, u2, . . . un) ∈ bdRn+,
the inequality holds:

n∑

i=1

pi(ri − (Au)i) > 0.

A necessary condition for the uniform boundedness of the system is the
existence of a single fixed point u ∈ intRn+, such that for any trajectory u(t) =
(u1(t), u2(t), . . . , un(t)) ∈ R

n+ following equality is applied [7]:

lim
t→∞

1

t

∫ t

0
u(t)dt = u, Au = r, r = (r1, r2, . . . , rn).

Theorem 1 Let a nondegenerate uniformly bounded system (1) have a single
equilibrium u ∈ intRn+. If the matrix B is definite or C = 0, then the system has no
closed phase trajectories u(t) ∈ intRn+. If B = 0, then all trajectories of the system
(1) lie on the surfaceM ⊆ intRn+, which is homeomorphic to the ball.

Proof Consider the function:



Existence of Closed Trajectories in Lotka–Volterra Systems in R
+
n 165

V (u) =
n∑

i=1

(
ui − ui(t)+ ui ln ui(t)

ui

)
.

Here, u = (u1, . . . , un) stands for the equilibrium point of the system (1):

Au = r.

Let us calculate the derivative of the function V (u) along the trajectories of the
system (1):

V̇ (u) = (A(u− u), u− u) = (B(u− u), u− u) .

If there is a closed trajectory γt =
{
u ∈ intRn+, ui = ui(t), i = 1, 2, . . . , n

}
, then

∫ T

0
V̇ (u)dt = 0.

In the latter expression, T > 0 is a period of closed trajectory γt . This condition is
certainly not satisfied if the matrix B is definite. If B = 0, then the function V (u) is
an integral of the system.

Since

V (u) = 0,
∂V

∂ui
(u) = 0, ai = ∂2V

∂u2i

(u) > 0,
∂2V

∂ui∂uj
(u) = 0, i �= j,

then V (u) is a strictly convex function that reaches its minimum value at a single
point u ∈ intRn+. All trajectories of the system (1) belong to the set V (u) = const .
In the neighbourhood of the equilibrium, we get the approximation:

V (u) =
n∑

i=1

ai(ui − ui)2 + o(||u− u||2).

According to the Morse–Palais lemma [8], there is a reversible differentiable change
of variable u = ψ(w), such that:

V (w) =
n∑

i=1

λiw
2
i = const > 0, λi > 0, i = 1, 2, . . . , n.

Let us prove that the system (1) has no closed trajectories for C = 0. Consider the
function:
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F(u) =
n∑

i=1

riui − (Bu, u).

The derivative of the function F(u) along the trajectories of the system has the form:

Ḟ (u) =
n∑

i=1

ui (ri − (Bu)i)2 > 0, u ∈ intRn+

Therefore, there is no such value T > 0, at which the integral value would turn to
zero:

∫ T

0
Ḟ (u)dt = 0.

The following example shows that if the matrix B �= 0 is not definite, closed
trajectories in the Lotka–Volterra system may exist [10, 11]. Consider now the
case of a food chain with three types, without taking into account intraspecific
competition:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1 = u1(r1 − a12u2),
u̇2 = u2(−r2 + a21u1 − a23u3),
u̇3 = u3(−r3 + a32u3).

(2)

Here, aij > 0, i �= j, ri > 0, i = 1, 2, 3, u = (u1, u2, u3) ∈ R
3+. The system has

a single equilibrium u ∈ R
3+. Consider the function:

V3(u) =
n∑

i=1

Ci (ui − ui ln ui) .

If we choose the set of constants Ci, i = 1, 2, 3 in such way that Ciai,i+1 =
Ci+1ai+1,i , i = 1, 2, then the function V3(u) is the integral of the system(2), i.e.,
V̇3(u) = 0 [9].

All phase trajectories of the system (2) belong to the set:

' = {u ∈ intRn+ : V3(u) = const
}
.

Consider points (u1, u2, u3), u3 �= u3, belonging to '. From the implicit function
theorem it follows that in a neighbourhood of such points there exist functions u3 =
u3(u1, u2). Moreover, we can express its derivative as:

∂u3

∂ui
= −Vui

Vu3
= − Ci ·

(
(ui − ui)

)·u3
C3 ·

(
(u3 − u3)

)·ui .
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Moreover, the equality holds true:

C2

(
1− u2

u2

)∂u3
∂u1

− C1

(
1− u1

u1

)∂u3
∂u2

= 0. (3)

The integral of this first order partial differential equation has the form:

�1(u1, u2) = C1

(
u1 − u1 lnu1

)
+C2

(
u2 − u2 ln u2

)
.

The function u3 = �(u1, u2) is a solution to the Eq. (3), which represents a
strictly convex surface in a neighborhood of the point (u1, u2) in space (u1, u2, u3).
Wherein, it has the derivatives:

∂�(u1, u2)

∂ui
= 0,

∂2�(u1, u2)

∂u2i

> 0,
∂2�(u1, u2)

∂u1∂u2
= 0, i = 1, 2.

Using the same arguments as in the proof of Theorem 1, we conclude that the
function �(u1, u2), due to a reversible replacement, can be represented in new
coordinates as follows:

�(u1(w1, w2), u2(w1, w2)) = λ1w2
1 + λ2w2

2, λ1, λ2 > 0.

Therefore, the closed level lines of this surface represent phase trajectories. The
result obtained can be generalized to for general equations of food chain n = 2m+1.
In this case,

Vn(u) =
2m+1∑

i=1

Ci · (ui − ui lnui) ,

where nonnegative constants Ci, i = 1, 2, . . . , n satisfy the conditions: Ciai,i+1 =
Ci+1ai+1,i , i = 1, 2, . . . , 2m, n = 2m − 1. These functions are integrals of the
system and belong to the set

'n = {u ∈ intRn+ : Vn(u) = const
}
.

Using the implicit function theorem in a neighborhood of points:

M1 = (u1, u2, u3, u4, . . . , u2m−2, u2m−1), u2m−1 �= u2m−1,

M2 = (u1, u2, u3, u4, . . . , u2m−2, u2m−1), u2m−1 �= u2m−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Mm = (u1, u2, u3, u4, . . . , u2m−3, u2m−2, u2m−1), u2m−1 �= u2m−1,



168 A. Bratus et al.

we can sequentially calculate the partial derivatives
∂u2m−1

∂uk
for k = 1, 2; k =

3, 4; . . . ;
k = 2m− 2, k = 2m− 1 atM1,M2, . . . ,Mm respectively.
Then, the functions uk2m−1 = �k(u2k−1, u2k), k = 1, 2, . . . , m − 1 satisfy a first
order partial differential equation of the form:

∂uk2m−1

∂uk
Ck+1

(
1− uk+1

uk

)
−∂u

k
2m−1

∂uk+1
Ck

(
1− uk

uk

)
= 0.

The integrals of these equations are given by the equalities:

Vk(uk, uk+1) = Ck
(
uk − uk ln uk

)
+Ck+1

(
uk+1 − uk+1 lnuk+1

)

Here, k = 1, 2; k = 3, 4; . . . k = 2m − 2, 2m − 1 respectively. As a
result, repeating the previous reasoning, we obtain for the functions uk2m−1 =
�k(u2k−1, u2k), k = 1, 2, . . . , m − 1 the statement that these functions
in a neighborhood of points M1,M2, . . . ,Mm, represent surfaces in spaces
(u1, u2, u2m−1), (u3, u4, u2m−1), . . . , (u2m−3, u2m−2, u2m−1) respectively. The
cross sections of such surfaces by the planes uk2m−1 = const, (u2m−1 �=
u2m−1) k = 1, 2, . . . , m, are closed phase trajectories of the food chain systems.
The result can be formalized as the theorem below.

Theorem 2 Consider the Lotka-Volterra system of odd dimension n = 2m +
1, m ≥ 2, representig a food chain without intraspecific competition. If it has a
single equilibrium u ∈ R

2m+1+ , then there is a closed phase trajectory that belongs
to (m− 1)-dimensional torus Km−1 ∈ R

2m+1+ .

Proof Let γ1, γ2, . . . , γm−1 be closed phase trajectories of systems in spaces
(u1, u2), (u3, u4), . . . , (u2m−3, u2m−2) respectively. The direct multiplication of
these phase trajectories represents the phase trajectory belonging to (m − 1)-
dimensional torus Km−1 ∈ R

2m+1+ . If the sections of surfaces uk2m−1 = const, k =
1, 2, . . . , m − 1 are chosen in such a way that the time of movement along
each closed trajectory has a rational value, then there is a closed phase trajectory
belonging to the torus Km−1 ∈ R

2m+1+ .
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Asymptotic Stability Analysis for Chaotic
Predator-Prey Model via Active
Controlled Hybrid Compound Difference
Synchronization Strategy

Ayub Khan and Harindri Chaudhary

1 Introduction

The classical predator-prey model (PPM), mathematically and typically realized as
Lotka-Volterra (LV) equations, goes back to 1920s when Alfred J. Lotka [1] and
Vito Volterra [2] have proposed independently these LV equations on population
dynamics to depict an interaction among various constituents elements in a system
via competition or cooperation. Elucidations of such systems may include biological
species, countries, businesses, and others. In the beginning, LV model has been
described as a biological term, yet it is utilised to many diversified areas of research
[3–9]. Interest in and applications are still rising [10–17]. While several additions as
well as modifications to the classical PPM have been considered in the literature, an
interesting twist, namely, that grown-up prey eat baby and juvenile predators, has
been recently considered in the paper [18]. The author firstly sets up the relevant
equations and then computes the ecological limit cycles. Most importantly, Arneodo
et al.[19] in the year 1980 have explained that generalized Lotka-Volterra system
(GLVS) may depict chaos phenomena for a specifically chosen system parameters.
Furthermore, Samardzija and Greller [20] have illustrated in 1988 that GLVS may
behave chaotically from the stable state through rise of a fractal torus. The most
striking feature of chaotic system is its depiction of high sensitivity to initial
conditions.

After the phenomenal work by Poincare [21], Lorenz [22] in 1963 described
chaos phenomenon comprehensively in a deterministic system while examining a
weather prediction model. Early concept of chaos synchronization among chaotic
systems was emerged from pioneered studies conducted by Pecora and Carroll
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[23] in the 1990s using master-slave/leader-follower/drive-response configuration.
Presently, we know of many types of chaos synchronization and chaos control tech-
niques [13, 24–33] etc. to perform asymptotic stability analysis on chaotic systems.
Researchers [34] discussed optimal synchronization problem among Lotka-Volterra
systems via optimal control strategy. Further, researchers [27, 35] investigated
adaptive control scheme to synchronize chaotic GLVSs. Also, researchers [13]
proposed and studied combination difference anti-synchronization among chaotic
GLVSs using adaptive control methodology. Specifically, Er-Wei Bai and Karl E
Lonngren [36] in 1997 first reported active control strategy (ACS) of controlling
chaos found in nonlinear dynamical systems. In addition, compound synchroniza-
tion was initiated by Sun et al. [37] in 2013. Some further researches [30, 38] have
been observed in this direction.

Considering the above discussed facts, our primal focus in this article is to
investigate hybrid compound difference synchronization (HCDS) technique in
four identical chaotic GLVSs via ACS. The remainder of the article is framed
as follows: Sect. 2 presents some mathematical preliminaries to be used in the
coming up sections. Section 3 designs the asymptotic stability theory for HCDS
among chaotic systems using ACS. Section 4 deals with few structural properties
of chaotic GLVS. Further, the active nonlinear controllers are properly designed
to achieve HCDS strategy. Additionally, in view of Lyapunov stability theory, we
have discussed the biological control laws in detail to achieve the asymptotical
stability globally of error dynamics of the given system. Section 5 consists of
numerical simulations, which are performed using MATLAB software, to illustrate
the efficacy and superiority of discussed technique. Further, a comparative study
has been done which exhibits the significance of considered strategy over earlier
published literature. In the end, we have also stated some conclusions and the future
scope of the presented work in Sect. 6.

2 Mathematical Preliminaries

We, in this section, describe a methodology to investigate hybrid compound
difference synchronization (HCDS) technique based on master-slave configuration
in four chaotic systems to be utilized in the coming up sections. Suppose that the
scaling master system is given by

u̇m1 = g1(um1), (1)

and the base second master systems is defined as

u̇m2 = g2(um2), (2)

u̇m3 = g3(um3). (3)
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Corresponding to the aforesaid master systems, assume that the slave system is
represented by

u̇s4 = g4(us4)+ V (um1, um2, um3, us4), (4)

where um1 = (um11, um12, . . . , um1n)
T ∈ Rn, um2 = (um21, um22, . . . , um2n)

T ∈
Rn, um3 = (um31, um32, . . . , um3n)

T ∈ Rn, us4 = (us41, us42, . . . , us4n)
T ∈ Rn

are the state vectors of the respective chaotic/ hyperchaotic systems (1), (2), (3)
and (4), g1, g2, g3, g4 : Rn → Rn are continuous nonlinear vector functions, V =
(V1, V2, . . . .., Vn)

T :Rn×Rn×Rn×Rn → Rn are the properly designed controllers.
Hybrid compound difference synchronization (HCDS) technique is defined as

E = Sus4 − Pum1(Rum3 −Qum2),

where P = diag(p1, p2, . . . .., pn),Q = diag(q1, q2, . . . .., qn), R =
diag(r1, r2, . . . .., rn), S = diag(s1, s2, . . . .., sn) and S �= 0.

Definition 2.1 The chaotic master systems (1)–(3) are said to achieve HCDS with
the slave system (4) if

limt→∞‖e(t)‖ = limt→∞‖Sus4(t)− Pum1(t)(Rum3(t)−Qum2(t))‖ = 0,

where ‖.‖ represents Euclidean norm.

Remark 2.2 Describing matrices P,Q,R and S as scaling matrices. In addition,
P,Q,R, S could be augmented as matrices having functions in state vectors
um1, um2, um3 and us4 as their entries.

Remark 2.3 If S = I and P = Q = R = ξI , for ξ = 1 it turns into
complete compound difference synchronization and for ξ = −1 it converts
to anti-compound difference synchronization. Coexistence of anti and complete
synchronization composes HCDS technique. Thus, the HCDS error attains the
following form :

e = us1 − ξum1(um3 − um2), (5)

where ξ = diag(ξ1, ξ2, . . . , ξn) with ξi = (−1)i+1 for i = 1, 2, 3, . . . .n.

3 Asymptotic Stability Analysis via ACS

In this section, we present the synchronization phenomena to achieve HCDS
approach among three chaotic master systems (1)–(3) and one chaotic slave system
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(4). In this regard, we next properly design the controllers which are described as:

Vi = ζi − (g4)i −Miei, (6)

where
ζi = ξi(g1)i(um3i − um2i )+ ξium1i ((g3)i − (g2)i), for i = 1, 2, . . . . . . ., n.

Theorem 3.1 The considering systems (1)–(4) would attain the proposed HCDS
technique globally and asymptotically, if the nonlinear active controllers are
designed as given in Eq.(6).

Proof Let the error be defined as

ei = us4i + ξium1i (um3i − um2i ), f or i = 1, 2, . . . .., n.

The error dynamical system transforms to

ėi = u̇s4i + ξi u̇m1i (um3i − um2i )+ ξium1i (u̇m3i − u̇m2i )
= ((g4)i + Vi)+ ξi(g1)i(um3i − um2i )+ ξium1i ((g3)i − (g2)i)
= ((g4)i + Vi)+ ζi,

where
ζi = ξi(g1)i(um3i − um2i )+ ξium1i ((g3)i − (g2)i), for i = 1, 2, . . . . . . ., n.
This implies that

ėi = ((g4)i − ζi − (g4)i −Miei)+ ζi
= −Kiei (7)

The typical Lyapunov function V (e(t)) is formulated as:

V (e(t)) = 1

2
eT e

= 1

2
�e2i (8)

Time-derivative of V (e(t)), as defined in Eq. (8), is given by

V̇ (e(t)) = &�ei ėi

Using Eq (8), we obtain

V̇ (e(t)) = �ei(−Miei).
= −�Kie2i ). (9)
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We now select (M1,M2, . . . . . . .,Mn) so that V̇ (e(t)) presented by Eq. (9) turns
into a negative definite function. Therefore, by applying Lyapunov stability theory
[39], we have

limt→∞ei(t) = 0 f or (i = 1, 2, 3).

Thus, the systems (1)–(4) have attained desired HCDS technique using ACS. ��

4 A Numerical Example

We now consider GLVS as the master system:

⎧
⎪⎪⎨

⎪⎪⎩

u̇m11 = um11 − um11um12 + α3u2m11 − α1u2m11um13,
u̇m12 = −um12 + um11um12,
u̇m13 = −α2um13 + α1u2m11um13,

(10)

where (um11, um12, um13)T ∈ R3 is the state vector of system. Also, um11 represents
the prey population and um12, um13 denote the predator populations. For parameters
α1 = 2.9851,α2 = 3,α3 = 2 and initial values (27.5, 23.1, 11.4), scaling master
GLVS exhibits chaotic behaviour as displayed in Fig. 1a.
The base master systems are the similar chaotic GLVSs prescribed respectively as:

⎧
⎪⎪⎨

⎪⎪⎩

u̇m21 = um21 − um21um22 + α3u2m21 − α1u2m21um23,
u̇m22 = −um22 + um21um22,
u̇m23 = −α2um23 + α1u2m21um23,

(11)

where (um21, um22, um23)T ∈ R3 is the state vector of system.

⎧
⎪⎪⎨

⎪⎪⎩

u̇m31 = um31 − um31um32 + α3u2m31 − α1u2m31um33,
u̇m32 = −um32 + um31um32,
u̇m33 = −α2um33 + α1u2m31wm33,

(12)

where (um31, um32, um33)T ∈ R3 is state vector of (11).
The slave system, defined by the similar GLVS, is prescribed as:

⎧
⎪⎪⎨

⎪⎪⎩

u̇s41 = us41 − us41us42 + α3u2s41 − α1u2s41us43 + V1,
u̇s42 = −us42 + us41us42 + V2,
u̇s43 = −α2us43 + α1u2s41us43 + V3,

(13)
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Fig. 1 Phase diagrams for chaotic GLVS in (a) um11 − um12 plane, (b) um12 − um13 plane, (c)
um11 − um13 plane, (d) um11 − um12 − um13 space

where (us41, us42, us43)T ∈ R3 is the state vector of the system. Additionally, the
researchers [20] carried out the detailed analytic study for (10)–(13). Furthermore,
V1, V2 and V3 are active controllers.

Next, the HCDS strategy is proposed for synchronizing the states of chaotic
GLVSs. To achieve this, Lyapunov stability theory (LST) based ACS is employed
and required asymptotic stability criterion is derived.

Here, we have P = Q = R = diag(ξ1, ξ2, ξ3), S = diag(1,−1, 1).
Defining error functions (e1, e2, e3) as

⎧
⎪⎪⎨

⎪⎪⎩

e1 = us41 − ξ1um11(um31 − um21),
e2 = us42 + ξ2um12(um32 − um22),
e3 = us43 − ξ3um13(um33 − um23).

(14)

The major goal of this work is to design the active controllers Vi, (i = 1, 2, 3)which
ensure that error functions as mentioned in Eq.(13) satisfy
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limt→∞ei(t) = 0 f or (i = 1, 2, 3).

The resulting error dynamics turns out to be

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = u̇s41 − ξ1u̇m11(um31 − um21)− ξ1um11(u̇m31 − u̇m21),
ė2 = u̇s42 + ξ2u̇m12(um32 − um22)+ ξ2um12(u̇m32 − u̇m22),
ė3 = u̇s43 − ξ3u̇m13(um33 − um23)− ξ3um13(u̇m33 − u̇m23).

(15)

Using (10), (11), (12) and (13) in (15), the error dynamics becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = (us41 − us41us42 + α3u2s41 − α1u2s41us43 + V1)
+ξ1(um11 − um11um12 + α3u2m11 − α1u2m11um13)(ξ1um31 − ξ1um21)
+ξ1um11(ξ1(um31 − um31um32 + α3u2m31 − α1u2m31um33)
−ξ1(um21 − um21um22 + α3u2m21 − α1u2m21um23),

ė2 = (−us42 + us41us42 + V2)
+ξ2(−um12 + um11um12)(ξ2um32 − ξ2um22)
+ξ2um12(ξ2(−um32 + um31um32)− ξ2(−um22 + um21um22)),

ė3 = (α2us43 + α1u2s41us43 + V3)
+ξ3(α2um13 + α1u2m11um13)(ξ3um33 − ξ3um23)
+ξ3um13(ξ3(α2um33 + α1u2m31um33)− ξ3(α2um23 + α1u2m21um23)).

(16)

Let us now select the active controllers by the rule:

V1 = ζ1 − (g4)1 −M1e1, (17)

where ζ1 = ξ1(g1)1(ξ1um31 − ξ1um21) + ξ1um11(ξ1(g3)1 − ξ1(g2)1), as described
in (5).

V2 = ζ2 − (g4)2 −M2e2, (18)

where ζ2 = ξ2(g1)2(ξ2um32 − ξ2um22)+ ξ2um12(ξ2(g3)2 − ξ2(g2)2),

V3 = ζ3 − (g4)3 −M3e3, (19)

where ζ3 = ξ3(g1)3(ξ3um33 − ξ3um23) + ξ3um13(ξ3(g3)3 − ξ3(g2)3) and M1 >

0,M2 > 0,M3 > 0 are gain constants.
By substituting the active controllers (17), (18) and (19) into (16), we obtain
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⎧
⎪⎪⎨

⎪⎪⎩

ė1 = −M1e1,

ė2 = −M2e2,

ė3 = −M3e3.

(20)

Lyapunov function V (e(t)) is designed as:

V (e(t)) = 1

2
[e21 + e22 + e23]. (21)

It is clear that Lyapunov function V (e(t)) is positive definite in R3.
Therefore, the time-derivative of Lyapunov function V (E(t)) as defined in (20) may
be formulated as:

V̇ (e(t)) = e1ė1 + e2ė2 + e3ė3. (22)

Combining Eq.(20) and Eq.(22), we obtain

V̇ (e(t)) = −M1e
2
1 −M2e

2
2 −M3e

2
3 < 0,

which confirms that V̇ (e(t)) is negative definite.
By applying LST [39], we therefore conclude that HCDS error dynamics is
asymptotic stable globally, i.e., the considered synchronization error e(t) → 0
asymptotically as t → ∞ for each initial values e(0) ∈ R3.

5 Numerical Simulations and Discussions

We in this section present some numerical simulation results for the demonstration
of the effectivity of investigated HCDS technique among chaotic GLVSs via ACS.
The 4th order Runge-Kutta algorithm is used to solve the given ordinary differential
equations. Initial conditions of the considering master systems (10)–(12) and corre-
sponding slave system (13) are (27.5, 23.1, 11.4), (1.2, 1.2, 1.2), (2.9, 12.8, 20.3)
and (14.5, 3.4, 10.1) respectively. In addition, the control gains (M1,M2,M3) are
taken as 2. Also, Fig. 2a–c display the HCDS synchronized trajectories of states
of three master (10)–(12) and one slave system (13) respectively. Furthermore,
synchronization errors (e1, e2, e3) = (−32.25, 271.36,−207.64) converging to 0
as t tends to infinity as depicted in Fig. 2d. Therefore, the discussed HCDS scheme
among three master and one slave systems is illustrated numerically.
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Fig. 2 HCDS synchronized trajectories for GLVS (a) between ws41(t) and wm11(t)(wm31(t) −
wm21(t)), (b) between ws42(t) and wm12(t)(wm32(t) − wm22(t)), (c) between ws43(t) and
wm13(t)(wm23(t)− wm13(t)), (d) HCDS synchronized errors

5.1 A Comparative Study

Researchers [27] achieved hybrid synchronization in GLVSs via adaptive control
method with same set of parameters. It is observed that synchronization error
converges to zero at t =0.8(approx), while in this study, the HCDS technique is
attained via ACS, in which it is noticed that the synchronization error converging
to zero at t = 0.2(approx) as displayed in Fig. 2d. This justifies that our investigated
HCDS scheme via ACS is much preferred over earlier published literature.

6 Conclusion

In this article, the HCDS scheme between four identical chaotic GLVSs via active
control strategy has been investigated. Lyapunov stability theory and master-slave
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configuration has been utilized to construct proper nonlinear active controllers.
Additionally, numerical simulations using MATLAB software have been performed
which suggest that the newly proposed control functions are highly effective in
synchronizing and controlling the chaotic regime of GLVSs to desired set points that
depicts the effectivity and supremacy of the considered HCDS scheme. Remarkably,
the analytic theory is in excellent agreement with the numerical outcomes Also,
in this direction we may expand the proposed HCDS approach in chaotic systems
interfered with external disturbances as well as system uncertainties.
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Modeling Competition in Motionless
Populations

Hamlet Castillo Alvino, Marcos Marvá, and Ezio Venturino

1 Introduction

A key factor when modelling community dynamics consists in the way interactions
take place. The vast majority of the research on community models, that follow in
the wake of Lotka and Volterra [23], assumes that individuals are well mixed and
that any one of them can interact with all the rest. Interestingly, epidemic and eco-
epidemic models do take into account such a major feature distinguishing the type of
transmission [4, 21], that is closely related to the way individuals interact. Recently,
[1–3, 18] addressed a series of community models that implement a social structure
determining how populations interact with each other. Some cases of predator-prey
interactions of this type are instead discussed in [17].

In this paper we consider interference competition between two motionless
populations, for which individual interaction dynamics is definitely different from
mobile living beings [24]. Plants, of course, do belong to this category. Sessile
species competition has been also reported in fungi [25], sponges [30], corals
[5, 12, 14], giant clams, barnacles [10] or most of bivalves [27] are other examples,
along with microorganism that grow up in colonies [20].
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We thus consider two populations that homogeneously occupy two neighboring
territories, but do not mix with each other, at least not significantly. Interactions
among the two species populations can only occur through the common boundaries
of the two cultures in consideration, that border each other. Note that these different
domains occupied by the two populations may well consist also of islands or other
more complicated geometrical shapes.

Thus, these considerations lead us to replace the classical 1–1 interactions among
individuals of the same species with just those with the most immediate neighbors of
a single individual [18]. In the model we thus must prevent that one individual may
compete with all other individuals of the population that are in far away locations.

When the model is written in terms of explicit carrying capacities, the dynamics
of interference competition is driven by the balance between intra- and interspecific
competition [24, 31], or, if the model is formulated with emerging carrying capaci-
ties, by competitive strengths [6, 15, 26]. We prefer the latter approach, see [16]. In
any case, the early theory of competition [11, 19, 29] understands coexistence as the
result of the common interplay of inter- and intraspecific interactions. Specifically
coexistence is obtained when intraspecific competition limits species density more
strongly than interspecific competition. In the present model competition is by far
different than in the classical model, since 1–1 interactions among all individuals
are precluded. In particular, both intra- and interspecific competition are relaxed.
Therefore, we expect competition outcomes to be different than in the classical
model as in the recent extensions [8, 9]. Indeed, interactions seem to be milder in
the model we present herein, so that we expect to find that species are more likely
to coexist.

From a mathematical point of view, the model we present belongs to the general
class of competitive systems in the positive cone, see [13] and the references therein.
This fact precludes the existence periodic solutions and guarantees that solutions
converge to an equilibrium point.

Our main results are the following. When a sessile population competes with a
mobile population, all the competitive outcomes of the classical model are possible.
Besides, conditional bi-stable coexistence in favor of the sessile population is
possible, meaning that both a semi-trivial equilibrium and a coexistence equilibrium
are (locally) asymptotically stable. Thus, whether the sessile population wins or both
populations coexist depends on the system’s initial conditions, i.e. the initial amount
of individuals of each population.

When both competing populations are sessile only species exclusion, with
outcome determined just by the system’s initial conditions, or conditional tri-stable
coexistence, i.e. coexistence, are possible, as it was already shown in [22].

The manuscript is organized as follows: in the next section we compare the
classical logistic single population evolution with the corresponding one of a
motionless population. In Sect. 3, we set the features of non-mobile populations
for which the interactions occur only at the boundary of their respective domains
into a mathematical formulation. Subsequently, we analyze the competition among
mobile and motionless populations in Sect. 4. The interactions of two motionless
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populations are instead analysed in Sect. 5. Finally, we discuss the results achieved
for the various cases in Sect. 6.

2 The Single Population Case

The single population case has been briefly examined also in [18], as a motivation
for further changes in the formulation of herd behavior models. Here however we
focus on a population that does not move, which therefore has its own specific
features, distinguishing it from the more commonly considered mobile populations.

The starting point for a single population is represented by the classical logistic
(or Verhulst) model, namely

x′ = r̂x − ax2, (1)

for which the the population settles at the equilibrium

xc = r̂

a
. (2)

For one single plant living in a plantation, therefore surrounded just by other
plants of the same species, because the interactions occur only with possibly a
fraction b ≤ 1 of the closest neighbors, the model becomes instead:

x′ = r̂x − bax√x. (3)

Equation (3) is a modification of the well-known logistic growth that takes into
account that sessile living beings stand still and interact only with their most
immediate neighbors. Thus, a given individual competes with the nearby ones that
we assume are located at the boundary layer of its “vital space", that is, a circle area
around the individual. Assuming that individuals are homogeneously distributed,
the boundary of each individual’s vital space is proportional to the boundary of
the territory occupied by this species, i.e., proportional to

√
x. Clearly, of the two

possible equilibria of (3), the origin is unstable while the population thrives at level

x∗ = r̂2

b2a2
. (4)

Thus, qualitatively, the two models (1) and (3) behave in the same way. However,
recalling that b ≤ 1, whether a single plant living in a wood or plantation is better off
than a corresponding animal individual living amidst his own consimilars, depends
on the ratio between its net reproduction rate and the intraspecific competition rate.
If the former exceeds the latter, the level at which the vegetable species settles is
certainly higher than the corresponding animal population.
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3 The Competing Sessile Populations Model

The departure model in this case is the classical Lotka-Volterra competition model
with emergent carrying capacities [6, 15, 26] rather than explicit carrying capacities
[23, 31]:

{
x′1 =r1x1 − a11x21 − a12x1x2
x′2 =r2x2 − a22x22 − a21x1x2

(5)

where xi and ri > 0 stand for the amount of individuals and the intrinsic growth
rate of species i = 1, 2, respectively. Coefficients aij > 0 account for intra- (i = j )
and interspecific (i �= j ) competition, for i, j = 1, 2.

The modeling of sessile populations is rather different from the classical
interacting populations of animals that can move around. As assumed in other
investigations concerning herds of herbivores and their predators, [1, 2, 17] or
interference competition [22], we assume here that interactions among different
species, uniformly located in specific territories, occur through their common
boundaries, as stated above. They are assumed to be smooth, motivating the use
of the square root in the interaction terms.

Thus, we denote by x1 and x2 the densities of the populations, i.e., the number of
individuals per surface unit, occupying an area S. Thus the species of the population
i found in the periphery or neighborhood of their environment are proportional to
the perimeter of the patch where the culture is located, whose length depends on√
S. They are therefore proportional in number to the square root of the density,

i.e. to
√
xi, i = 1, 2. Different shapes could be accommodated by taking a different

exponent, other than one-half, in the model formulation. However, in part based
also on the results of [7] for which no fundamentally different results arise, and
for the sake of simplicity, we confine ourselves to the assumption of a smooth
boundary. This, as mentioned, entails the use of the exponent one half in the model
formulation. We next examine in detail the intra- and inter- specific interaction
terms:

• Inter-specific interactions take place on the boundary of each species’ domain. In
view of the previous discussion, as individuals are assumed to be homogeneously
distributed, the interaction between species xi and xj takes the following form:

− diaij√xi√xj , (6)

where the minus sign denotes interactions harming the population i under
consideration, aij stands for the competition interaction coefficient of species
j on population i; 1 ≥ di ≥ 0 is a constant that scales competition to the
fraction of the common perimeter. If species do not interact, i.e. there is no
common boundary, then di = 0. Therefore, diaij , i �= j stands for interspecific
competition and includes information on the fraction of the boundary where
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competition takes place, so that its interpretation is slightly different from the
interaction coefficients of the classical model. In general di �= dj .

• For intraspecific dynamics, we must include the growth rate and possibly
intraspecific competition and therefore use replicas of (3):

x′i = r̂ixi − biaiixi
√
xi, (7)

where r̂i stands for the net intrinsic growth rate, aii is the intraspecific compe-
tition rate. In this context, bi in (7) stands for the proportion between the local
boundary and the perimeter occupied by the entire population, so that 1 ≥ bi ≥ 0.
It is assumed to be the same for all individuals of the same species.

Merging (7) and (6) yields the competing sessile populations model

{
x′1 = r̂1x1 − b1a11x1√x1 − d1a12√x1√x2,
x′2 = r̂2x2 − b2a22x2√x2 − d2a21√x1√x2.

(8)

Theorem 3.1 The positive solutions of system (8) are bounded from above.

Proof Note that

x′i = r̂ixi − biaiixi
√
xi − diaij√xj√xi < r̂ixi − aiixi√xi < 0

for xi >
(
r/aij

)2. In particular, in the positive cone we define a suitable box
B with one corner located at the origin and the opposite one at the point V =(
(r1/d1a12)

2 , (r2/d2a21)
2). The situation thus corresponds to the flow entering into

B. �

Remark 3.1 System (8) is a competitive system (sensu [13]) in the positive cone
R
2+ := (0,+∞)× (0,+∞), in view of the fact that

∂

∂xj

(
r̂ixi − biaiixi√xi − diaij√xj√xi

)
< 0, j �= i, i, j = 1, 2,

and the flow of the system belongs to class C1
(
R
2+
)
. Thus, Theorem 3.1 along with

[13] imply that all the positive solutions of system (8) converge to an equilibrium
point.

Remark 3.2 Note that as pointed out in [28], the right hand side of (8) does not
satisfy the Lipschitz condition, with a consequent loss of uniqueness of the solution
trajectories on the coordinate axes. Thus we need special care in treating vanishing
populations when we change the variables of the system (8) to obtain the auxiliary
system in order to eliminate the singularity. Therefore, to study the trivial and semi-
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trivial equilibrium points, we have to turn to the original formulations (8), compare
the approach of [3].

Hence, we will study the trivial and semi-trivial equilibria directly using model
(8). The trivial and semi-trivial equilibria are the following points:

E0 = (0, 0), E1 =
((

r1

b1a11

)2

, 0

)
, E2 =

(
0,

(
r2

b2a22

)2
)

(9)

Note also that there are square root terms in system (8), so that the stability of
the trivial and semi-trivial equilibrium points (9) cannot be assessed using the
Jacobian matrix which, in turn, works when dealing with coexistence equilibria.
However, square roots make the Jacobian matrix to be involved; we next introduce
an equivalent singularity-free system to overcome such a problem.

4 Mobile and Sessile Populations Interactions

We consider here the interactions between a mobile population competing with a
non-mobile one. Thus the system is a combination of both (5) and (7), giving:

{
x′1 =r1x1 − a11x21 − a12x1x2,
x′2 =r2x2 − a22b2x2√x2 − a21x1x2.

(10)

Proceeding as for system (8), it is easy to realize that the trajectories of (10) are
bounded from above. To analyze the existence of equilibrium points and the long
term behavior of the solutions of (10), we rewrite it in the following more convenient
form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′1 =r1x1
(
1− a11

r1
x1 − a12

r1
x2

)
,

x′2 =r2x2
(
1− a22

r2
b2

√
x2 − a21

r2
x1

)
.

(11)

We rescale the above system with a special change of variables and parameters,
namely wi = aii

ri
xi , cij = aij rj

ajj ri
, to obtain

⎧
⎪⎨

⎪⎩

w′
1 =r1w1 (1− w1 − c12w2) ,

w′
2 =r2w2

(
1− b2

√
a22

r2

√
w2 − c21w1

)
.

(12)
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A further rescaling in system (12) given by ŵ2 = a22
r2
w2, ĉ12 = r2

a22
c12, yields the

so-called special auxiliary system:

⎧
⎨

⎩

w′
1 =r1w1 (1− w1 − ĉ12ŵ2) ,

w′
2 =r2ŵ2

(
1− b2

√
ŵ2 − c21w1

)
.

(13)

Let us recall that Theorem 3.1, as well as remarks 3.1 and 3.2 hold mutatis
mutandi.

4.1 Equilibria

The trivial and semi-trivial equilibria of system (13) are:

E0 = (0, 0) E1 = (1, 0) and E2 =
(
0,

1

b22

)
(14)

We consider the nullclines of system (13), that are given by

ŵ2 = f1(w1) = 1− w1

ĉ12
, ŵ2 = f2(w1) = (c21w1 − 1)2

b22

.

The coexistence equilibria are denoted by E±
3 = (w±

1 , f1(w
±
1 )). They are given

by the intersection of the nullclines, in this case a curve and a straight line. These
solutions can be obtained from the roots of the following quadratic equation:

Psc(w) = 1

ĉ12b
2
2

[
−ĉ12c221w2 + (2̂c12c21 − b22)w + (̂c12 − b22)

]
.

Thus

w1 =
2̂c12c21 − b22 ± b2

√
4̂c12c21(c21 − 1)+ b22

2̂c12c221
. (15)

Imposing that the discriminant of expression (15)

D := 4̂c12c21(c21 − 1)+ b22 (16)

is nonnegative, we find the real roots in the positive cone. The following Lemma 4.1
and Theorem 4.1 summarize these conditions.
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Fig. 1 Competition outcomes of system (10) in the ĉ12 − ĉ21 parameter space as function of the
competitive strengths as defined in Eq. (13). Species 1 (resp. 2) refers to the sessile (resp. mobile)
population

Lemma 4.1 Consider the function

c21 = ψb2 (̂c12) :=
ĉ12 +

√
ĉ12(̂c12 − b22)
2̂c12

, (17)

then, ψb2 is an unimodal function such that:

(1) its domain is the set
{
x ∈ R

+ | 1 ≤ x <∞}

(2) c∗21 = ψb2(1) =
1+
√
1−b22
2 and lim

ĉ12→+∞ψb2 (̂c12) = 1

Proof It follows from direct calculations (Fig. 1). �
Whether there is none, one or two equilibrium points is determined by the sign of

the discriminant (16) of (15) and the quantities defined in the previous Lemma 4.1.

Theorem 4.1 Consider the system (13) and the function (17). Recalling (16) we
find

1. System (13) has no equilibrium points in the positive cone if either

(a) D < 0, see the middle right panel in Fig. 2.
(b) Both 1/c21 < 1 and 1/̂c12 > 1/b22 hold, see top left panel in Fig. 2.

Alternatively we can require ĉ12 < 1 and c21 > 1.
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Fig. 2 Possible phase portraits of system (13). The horizontal (resp. vertical) axis refers to the
sessile (resp. mobile) population. The curve f1 (resp. f2) stands for the nullcline of the sessile
(resp. mobile) population. Solid points represent locally asymptotically stable equilibrium points
while empty points represent unstable equilibria

2. System (13) possesses a single equilibrium point in the positive cone (apart from
the degenerated case D = 0) if either
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(a) Both 1/̂c12 < 1/b22 and 1/c21 < 1 hold, see top right panel in Fig. 2. An
alternative formulation of the above inequalities is ĉ12 > 1 and c21 > 1.

(b) Both 1/̂c12 > 1/b22 and 1/c21 > 1. An alternative formulation of the above
inequalities is ĉ12 < 1 and c21 < 1.

3. System (13) has two equilibrium points in the positive cone if ĉ12 > 1 and
ψb2 (̂c12) < c21 < 1 hold, see the bottom panel of Fig. 2.

Proof It follows from direct calculations on (15) and (16) and geometrical consid-
erations on the intersection of f1 and f2 with the axes. �

4.2 Stability

We focus now on the stability of the existing equilibrium points.

Theorem 4.2 Consider system (13), assuming that r1 > 0 and r2 > 0. Then,

1. The origin is always unstable.
2. Assume now ĉ12 > 1 and c21 > 1. Then by condition 2.(a) of Theorem 4.1, there

exists a single coexistence equilibrium point E+
3 , that is unstable. There exists a

separatrix line connecting the origin withE+
3 that defines the basins of attraction

of E1 and E2.
3. E1 is globally asymptotically stable if and only if 0 < ĉ12 < 1 and c21 > 1.
4. E−

3 is globally asymptotically stable if and only if 0 < ĉ12 < 1 and 0 < c21 < 1.
5. Finally, assume now 0 < c21 < 1 and ĉ12 > 1. Then, by the condition 2.(b) of

Theorem 4.1,

(a) E+
3 and E2 are locally asymptotically stable while Ec− is unstable. There

exist a separatrix connecting the origin with Ec− that defines the basins of
attraction of E2 and E

+
3 , if and only if ĉ12 > 1 and ψb2 (̂c12) < c21 < 1.

(b) E2 is globally asymptotically stable if and only if 0 < c21 < ψb2 (̂c12) and
ĉ12 > 1.

Proof Let us consider the Jacobian matrix of (10)

JF (w1, ŵ2) :=
(
r1(1− w2 − ĉ12w2) −r1ĉ12w1

−r1c21ŵ2 r2(1− b2√ŵ2 − c21w1)− 1
2 r2b2

√
ŵ2

)

We analyze the characteristic equation and apply the Routh-Hurwitz criterion to the
equilibrium points for the various cases of the statement of the theorem:

1. It is easy to see that in the system (13), w′
i > 0 for w1, ŵ2 ∼ 0.

2. The statement holds because the eigenvalues of JF (E1) are λ1 = −r1, λ2 =
r2(1− c21). Therefore, E−

3 is a saddle and E2 and E1 are locally asymptotically
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stable; in such case, there exists a separatrix line through both E−
3 and the origin

that defines the basins of attraction of E1 and E2.
3. Direct calculations yield the eigenvalues of JF (E2), λ1 = −r2(1 − 3

2b2), λ2 =
r1(1 − ĉ12). The statement implies that E2 is stable while E1 is unstable. Also
theorem 4.1 shows that no equilibrium points exist in the positive cone, and the
flow of the system makes E2 globally asymptotically stable.

4. This statement follows by a standard analysis of the flow of the system.
5. We focus first in assessing the stability in case of two coexistence equilibrium

points. This scenario in the system dynamics may arise, when coefficients
vary, essentially in two different ways. On one hand, when D changes from
being negative to positive. On the other hand, already there exits a single
coexistence equilibrium point and the x2-nullcline f2 crosses one of the semi-
trivial equilibrium points in such a way that a second one appears. The dynamical
scenario is the same, no matter how it arises.

Let us rewrite the Jacobian matrix in a more convenient form. System (13)
is of the form w′

i = wifi(wi, wj ), so that at any coexistence equilibrium point
E = (E1, E2) it follows that f1(E) = 0 = f2(E). Thus:

JF (E) :=
( −r1E1 −r1ĉ12E1

−r2c21E2 − 1
2 r2b2

√
E2

)
(18)

From expression (15) for D = 0, the characteristic polynomial of (18) at the
equilibrium point arising when f1 and f2 collide is

λ2 +
(
b22(c21r2 − 2r1)+ 4̂c12c21r1

4̂c12c221

)
λ. (19)

Thus, one eigenvalue is λ1 = 0 and the other one, λ2, because of the hypotheses
of this statement, is negative; in particular, both eigenvalues are simple. Thus, the
eigenvalues are continuous under small perturbations of the parameters involved
in expression (18). As E−

3 and E+
3 appear, λ2 keeps being negative in the

corresponding Jacobian matrices while λ1 becomes negative for JF (E
−
3 ) and

positive for JF (E
+
3 ). This is shown by a standard analysis of the system flow

after the bifurcation takes place.
The second statement of 5. can be proved as 4. �

5 Two Sessile Populations Interactions

System (8) can be rewritten in a more convenient form introducing new variables
and rescaling coefficients by setting
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xi = z2i , ri = r̂i

2
, cii = biaii , cij = diaij

2
, i, j = 1, 2. (20)

This yields the so-called auxiliary system:

{
z′1 =r1z1 − c11z21 − c12z2
z′2 =r2z2 − c22z22 − c21z1

(21)

It is apparent that the non-negative semi-axes are not invariant for the flow of system
(21), so that this system does not help in assessing the stability of the trivial and
semi-trivial equilibrium points.

As before we address first the existence of equilibrium points and then analyze
their stability.

5.1 Equilibria

As mentioned earlier the trivial and semi-trivial equilibria of system (8) are given
by (9). As for the coexistence equilibria, we consider the nullclines of the auxiliary
system (21) corresponding to system (8), given by

z2 = f1(z1) = z1 r1 − c11z1
c12

, z1 = f2(z2) = z2 r2 − c22z2
c21

.

The nullclines cross each other at the origin and their curvature and location imply
that they meet up to three times or none on the positive cone, see Fig. 3, the
discussion below and the discussion and conclusion Sect. 6.

However, system (8) may exhibit two additional coexistence states in the positive
cone. Substituting the second equation into the first one we obtain a fourth-degree
equation:

Qc(z1) = 1

c212

z1Pc(z1) = 0, (22)

whereQc(z1) = f2(f1(z1)) and

Pc(z1) = c22c211z31 − 2c22c11r1z
2
1 + (c11c12r2 + c22r21 )z1 + c12(c12c21 − r1r2).

The geometry of the phase portrait implies that the coexistence equilibrium lies in
the box with the origin and (r1/c1, r2/c2) as opposite vertices. Therefore, we use
Sturm’s Theorem to account for the number of positive roots of equation Pc(z1) =
0. Let us recall that the Sturm’s sequence of equation Pc(z1) = 0 is given by
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Fig. 3 Possible phase portrait of the corresponding auxiliary competition model (21). The
horizontal (resp. vertical) axis refers to the sessile (resp. mobile) population. The curve f1 (resp.
f2) stands for the nullcline of the sessile (resp. mobile) population. Solid points are locally
asymptotically stable equilibria while non solid points are unstable equilibria. Left panel: for
the parameter values r1 = 0.8, r2 = 0.6, c12 = 1.2, c21 = 0.95, c11 = 0.47, c22 = 0.74
condition (26) holds. Central panel: the parameter values r1 = 1, r2 = 1, c12 = 1.51, c21 = 0.52,
c11 = 0.66, c22 = 1.24 fulfill conditions (27) and (28). Thus, the system exhibits the competitive
exclusion principle, as for the classical competition model. Right panel: this scenario represents the
tri-stable scenario. It is obtained for the parameter values r1 = 1, r2 = 1, c12 = 0.28, c21 = 0.13,
c11 = 0.47, c22 = 0.74. In this case either one of the population could outcompete the other one, or
both may coexist. In any case, the ultimate outcome of the system is determined just by the initial
values

Seqc(z1) =
{
Pc(z1), P

′
c(z1), R1(z1), R2(z1)

}
,

where the second term is its derivative of Pc(z1), and the remaining terms
Ri(z1), i = 1, 2, are the remainders of the Euclidean divisions:

R1(z1) = −rem(Pc(z1), P
′(z1)), R2(z1) = −rem(P ′(z1), R1(z1)).

Then evaluating each term of the Seqc at the ends of interval [0, r1/c11] we get
the number of positive roots of Pc(z1) = 0 as the number of changes of sign in
Seqc(0)minus the number of change of signs in Seqc(

r1
c11
). Thus, the actual Sturm’s

sequence is calculated on Pc(z1) instead of onQc(z1). Direct calculations lead to
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P ′
c(z1) = 3c211c22z

2
1 − 4c11c22r1z1 + c11c12r2 + c22r21 (23)

R1(z1) := −
(
2r2c11c12

3
− 2c22r21

9

)
z1 − 9c11c212c21 − 7c11c12r1r2 + 2c22r31

9c1
(24)

R2(z1) := − 9c11c212
4(3c11c12r2 − c22r21 )2

[4c211c12r32 + 27c11c
2
12c22c

2
21 (25)

−18c11c12c22c21r1r2 − c11c22r21 r22 + 4c222c21r
3
1 ]

Theorem 5.1 System (8) has no equilibrium points in the positive cone if

c12c21 − r1r2 > 0 (26)

Proof Consider the Sturm’s sequences Seq(0)

Pc(0) = c12 (c12c21 − r1r2) , P ′
c(0) = c1c12r2 + c22r21 ,

R1(0) = −1

9

(
9c11c212c21 − 7c11c12r1r2 + 2c22r31

c11

)

and R2(0) is given by (25). On the other hand, Seq(r1/c11) consists of

Pc

(
r1

c11

)
= c212c21, P ′

c

(
r1

c11

)
= r2c11c12,

R1

(
r1

c11

)
= −c12(9c12c21 − r1r2)

9

and R2(r1/c11) is, again, given by (25), since it does not depend on z1. Rearranging
terms

R2(0) = −9c11c212
4(3c11c12r2 − c22r21 )2

[4
(
c211c12r

3
2 + c222c21r31

)

+c11c22(27c212c221 − 18c12c21r1r2 − r21 r22 )].

Note that the sign of R2(0) = R2(r1/c11) does not matter, since it is the
same for Seq(0) and Seq(r1/c11). Therefore, gathering signs yield Seq(0) =
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{+,+,−, sign(R2(0))} and Seq(r1/c11) = {+,+,−, sign(R2(0))}, which con-
cludes the proof. �

Assume now that condition (26) fails. Solving Eq. (22) under the assumption that
c12c21 − r1r2 = 0 yields two complex roots along with z1 = 0 as unique real root
with multiplicity 2. Recall that an equilibrium point in the third quadrant exists when
(26) holds. This equilibrium collides with the origin when c12c21 − r1r2 = 0 and
appears in the positive cone as c12c21 − r1r2 becomes negative. Besides, from the
analysis of the Sturm’s sequence for c12c21 − r1r2 < 0 at least one, and up to three,
positive coexistence equilibrium points exist.

Criteria leading to each outcome can be stated by assessing conditions that
control the change of sign of the terms of the Sturm’s sequence. Determining general
conditions is a hard task, since the terms of Seq(0) and Seq(r1/c11) depend on up to
6 parameters. In any case, we equate to zero each term with undetermined sign of the
Sturm’s sequence and solve each expression for one parameter to obtain conditions
on the sign of each term. Solving the equations for ci (resp. cij ) yield conditions for
the exclusion or conditional tri-stability that depend on the so-called handling time
(resp., on the competition strength) of each species.

Theorem 5.2 Consider system (8) and assume that

c12c21 − r1r2 < 0 (27)

Then,

1. Assume that

9 <
r1r2

c12c21
(28)

and consider the straight lines

c±22(c11) =
1

8c21r31
c11

[
18c12c21r1r2 − 27c212c

2
21 + r21 r22 (29)

±
√
(c12c21 − r1r2)(9c12c21 − r1r2)3

]

in the c11 − c22 parameter space, arising by setting R2(0) = 0, see (25). These
lines define a sector region in the positive cone, see Fig. 4. Then,

(a) The slope of c2 = c±2 (c11) is positive.
(b) If (c11, c22) lies in between c2 = c±2 (c11) three nontrivial equilibrium points

Ec±, E3 in the positive cone exist. Ordered by its first component, Ec− <

Ec3 < E
c+.

(c) If (c11, c22) does not lie in between c2 = c±2 (c11) then there exists a single
nontrivial equilibrium point E3 in the positive cone.
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Fig. 4 Species competition outcomes in the c11 − c22 parameter space, as function of the
intraspecific competition ci , i, j = 1, 2. The straight lines c∗2±(c11) show the thresholds values
separating the regions where one or three coexistence equilibria exist in the positive cone. Namely,
there exist three coexistence equilibria region consists of the (c11, c22) such that c∗22−(c11) < c22 <
c∗22+(c11) (green colored area). Outside it, just one coexistence equilibrium is possible. The figure
is generated with the parameter values c12 = 0.5, c21 = 0.07, ri = ki = 1, i = 1, 2

2. Further, if condition

9 >
r1r2

c12c21
(30)

holds, then there exists a single nontrivial equilibrium point E3 in the positive
cone. If condition (30) is an equality, c±2 collide in a single straight line.

Proof The equation R2(0) = 0 is a second order equation in c22 of the form
−a(a2c222+a1c22+a0) = 0. Solving it and rearranging terms we obtain expression
(29). Note that condition (28), which, in particular, entails (27), ensures that the
straight lines (29) are well defined, in the sense that the slopes are not complex but
real numbers.

Note that a0 and a2 are positive; therefore, we need

a1 = 27c212c
2
21 − 18c12c21r1r2 − c212c221

to be negative so that by solving R2(0) = 0 in terms of c22 two positive roots are
obtained. Rearranging terms, a1 is equivalent to

a1 = −(27c12c21(c12c21 − r1r2)+ r1r2(9c12c21 − r1r2))
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therefore, conditions (27) and (28) imply that a1 > 0, which proves 1.(a).
Let us recall that conditions (27) and (28) imply that Seq(0) = {−,+,−, ?}

and Seq(r1/c11) = {+,+, ?, ?}, so that the only way of having three equilibrium
points is that R2(0) > 0 and R1(c11/r1) > 0. Direct calculations show that the latter
condition follows from (28) while the former holds for values of c11 and c22 that are
between the straight lines c22 = c±2 (c11). This completes the proof of 1.(b).

The remaining statements follow in a similar way and the details are omitted. �
In addition, solving the equations for cij (respectively ci) yield conditions for

exclusion or conditional tristability that depend on the so-called on the competition
strength of each species (respectively the handling time). Recall that system (8) has
no equilibrium points in the positive cone, independently of the parameter cij or ci ,
in view of theorem 5.1.

Theorem 5.3 Consider system (8) and assume that condition (27) holds. Then,

1. Assume further that condition (28) is fulfilled and

2

9

c22r
2
1

c11r2
< c12 <

1

4

c22r
2
1

c11r2
:= c̄12, (31)

Consider also the curves

c±21(c12) =
1

27

c22r1(9c11r2c12 − 2c22r21 )± 2
√
c22(c22r

2
1 − 3c11r2c12)3

c11c22c
2
12

(32)
in the c12−c21 parameter space, obtained by settingR2(0) to zero, see expression
(25). These curves define a region in the positive cone, shown in Fig. 5. Then,

(a) If (c12, c21) lies in between c21 = c±21(c12) then there exist three nontrivial
equilibrium points Ec±, E3 in the positive cone, ordered by their first
component, Ec− < Ec3 < E

c+.
(b) If (c12, c21) does not lie in between c21 = c±21(c12) then there exists a single

nontrivial equilibrium point E3 in the positive cone.

2. Besides, if condition (30) holds, then there exists a single nontrivial equilibrium

pointE3 in the positive cone. If condition c12 = 1
3
c22r

2
1

c11r2
, c±21 coalesce into a single

curve. The outcome is also a single positive coexistence equilibrium point.

Proof Let us consider R2(0) = 0, again it is a second order equation of the form
−b(b2c221 + b1c21 + b0) = 0. Solving such an equation in c21 and arranging terms
yields expression (32). Note that the rightmost condition (31) ensures that the curves
(32) are well defined, i.e. the expression under the square root is positive. Coefficient
b2 is positive, so that equation R2(0) = 0 possesses two positive roots if

b1 < 0 ⇔ c12 >
2c22r21
9c11r2
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Fig. 5 Species competition outcomes as function of the intra-species competition parameter cij ,
i, j = 1, 2. The region in green delimited by c21 = c+21(c12), the axes and c12 = c̄12 stands for the
region in the parameter space where 3 positive (non trivial) equilibrium points arise. In the outer
region (in purple) just one coexistence equilibrium is possible. The figure has been generated with
the parameter values c12 = 0.5, c21 = 0.07, ri = ki = 1, i = 1, 2

and

b0 > 0 ⇔ c12 <
c22r

2
1

4c11r2
.

Summing up, c12 fulfilling (31) ensures i) that c±21 are well defined and ii) R2(0)
is positive if c−21(c12) < c21 < c+21(c12). Therefore, Seq(0) = {−,+, ?,+} and
Seq(r1/c11) = {+,+,+,+}, so that the only way of having three equilibrium
points is that R1(0) < 0, that is equivalent to:

c21 >
r1(7c11r2c12 − 2c22r21 )

9c11c212
:= c̃21(c12).

Direct calculations show that c̃21(c12) crosses the c12 axis further away than c
−
21(c12)

does and that c̃21(c12) < c−21(c12). Therefore, c
−
21(c12) < c21 < c+21(c12) implies

c̃21(c12) < c21, which completes the proof of 1.(b).
The remaining statement follows in the same way and is therefore omitted. �



Modeling Competition in Motionless Populations 201

5.2 Stability

We gather in the following theorem the stability conditions of the equilibrium points
found in the previous section.

Theorem 5.4 Consider system (8), assuming that r1 > 0 and r2 > 0. Then,

1. The origin is always unstable and the semi-trivial equilibrium points are always
locally asymptotically stable.

2. Assume that condition (26), c12c21−r1r2 > 0, holds, so that there are no positive
equilibrium points. Then there is a separarix through the origin (which is a
saddle) delimiting the basins of attraction of the semi-trivial equilibrium points.
Thus, one of the species goes extinct depending on the system initial conditions.

3. Assume now that conditions (30) hold. Then there exists a single coexistence
equilibrium point Ec3, that is unstable. There exists a separatrix line passing
through Ec3 and the origin that defines the basins of attraction of E1 and E2.

4. Finally, if conditions (28) and (31) hold, there exist three nontrivial equilibrium
points: Ec3 is locally asymptotically stable while Ec± are unstable. There exist
separatrices passing through the origin and each of Ec± that define a region were
Ec3 is located and define the basis of attraction of E1, E2 and Ec3.

Proof

1. Keeping in mind remark 3.2, consider the nullclines of system (8), given by

f1 : x2 = 1

a212

[
r1
√
x1 − b1a11x1

]2
,

f2 : x1 = 1

a221

[
r2
√
x2 − b2a22x2

]2
,

(33)

Condition (26) imply that the nullclines (33) divide the positive cone in three
different regions, as displayed in Fig. 6. Region I is characterized for x′1 < 0
and x′2 > 0, and the flow points inward on the boundary of region I, so that
it is a trapping region and solutions starting within the closure of region I are
attracted by E2, so that the origin is unstable. Proceeding as before, we find
that region III is a trapping region and any solution starting within the closure
of region III is attracted by E1. It is immediate that E1 and E2 are locally
asymptotically stable just by considering the flow of the system on the straight
lines given by

{
(z1, v2z2), z1 ≥ v2z1

}
and

{
(v1z1, z2), z2 ≥ v1z2

}
respectively,

where (v1zk , v2zk ) are the coordinates of the vertex of the nullcline of zk , k = 1, 2.
2. Consider a perfectly symmetric competition, i.e. c12 = c21, c11 = c22 and r1 =
r2. Then, from the geometry of the phase portrait, the straight line z2 = z1 is
the stable manifold, i.e. a forward invariant curve such that solutions starting on
this line converge to the origin. Besides, it divides the positive cone on the basins
of attraction of the semi-trivial equilibrium points. Furthermore, because of the
continuity of the flow with respect to the system parameter and the uniqueness
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Fig. 6 The phase portrait for the competing populations. The figure is generated with the
parameter values a12 = 0.84, a21 = 1.10, a11 = 0.99, a22 = 0.75, ri = 1, i = 1, 2

of solutions on the positive cone, this invariant manifold changes continuously
as the model parameters change as long as no positive equilibrium points appear
in the positive cone.

3. This proof is an adaptation of the one of Theorem 4.2, item 2.a in [8]. Consider,
as before, the perfectly symmetric case. Then the geometry of the phase plane
ensures that E3 is a saddle-node and that the straight line z2 = z1 is its stable
manifold that defines the basins of attraction of the semi-trivial equilibrium
points. As argued before, this setting remains qualitatively the same as the
coefficients of the system vary continuously whenever no additional equilibrium
points show up in the positive cone.

4. This statement follows mutatis mutandi from the previous one (see also the proof
of Theorem 4.2, statement 2.a in [8]). �

6 Discussion and Conclusions

We now interpret the mathematical results from a biological point of view, com-
paring the new model with the classical one. A first and important remark concerns
both intra- and interspecific competition coefficients. They are expressed in the same
units, 1/(time× individuals) for intra- and interspecific competition, respectively,
in the classical model. However the units in the sessile populations model are:
1/(time × individuals) and 1/time. If populations are counted as number of
individuals, there is no difference, as all these coefficients become frequencies.
However, if the populations represent animals or plants, for instance, a possibility
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is to count them using biomass. In such case there is a difference in the units. But
even if units are different, nullclines can be qualitatively compared, as well as the
structure of each model possible outcome.

The main results are the following.

1. When a mobile and a sessile population compete, the dynamical outcomes are
those of the classical model plus a bi-stable conditional coexistence.

2. Instead, when two sessile populations compete, the competition outcomes are
reduced to competitive exclusion due to the system’s initial conditions and tri-
stable conditional coexistence.

Thus, sessility precludes global outcomes and puts the focus not only on the compet-
itive abilities of each species, but also on the initial amount of individuals. Namely,
there is neither global coexistence, for which species would coexist regardless of
the initial amount of individuals of each one of them, nor global extinction where
a “super-competitor” would rule out the other species independently of the initial
composition of the community.

This is an interesting feature from the management point of view, since pertur-
bations, whether human-driven or not, may drastically change the system outcome.

We next analyze in deeper detail each one of these features.

6.1 Sessile vs Mobile Species Competition

Theorem 4.2 concerns a mobile population 1 competing with a sessile population
2. It follows from this Theorem that all the dynamical outcomes of the classical
model (5) are allowed and, in addition, bi-stable conditional coexistence in favor of
the sessile population arises, except for a bi-stable conditional coexistence region
that reduces the range in which the sessile species outcompetes the mobile one. The
last dynamical outcome has already been observed in [8, 9] when modifying the
classical competition model with Holling type II and IV competitive responses. Also
in [1, 22] when considering social herd-induced behavior in one of the competing
species.

The structure of the regions in the parameter space ĉ12 − c21 leading to each
competitive outcome, see Fig. 2, is equivalent to the one of the classical model
except for the bi-stable conditional coexistence in favor of the sessile species region.
This region is set in the region where the classical model predicts that the mobile
species would be excluded by the sessile species, and borders the species exclusion
due to the system’s initial conditions and (partially) the global coexistence regions,
see Fig. 1. Therefore, in such a region the sessile species 2 cannot be eliminated by
the mobile species 1. On the contrary, the mobile species has the chance of surviving
via coexistence provided that the initial values are appropriate, see the bottom panel
of Fig. 2. Thus, coexistence is more likely to occur than in the classical model.

Interestingly, consider interspecific competition coefficients (̂c12, c21) values
belonging to the region where the sessile species 2 wins. Fixing ĉ12, as the effect of
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the mobile species 1 on the sessile species 2, we find that c21 < φb2 (̂c12) increases
and crosses the curve c21 = φb2 (̂c12), the mobile species 1 has the chance of
surviving via coexistence with the sessile species. A further increment such that
c21 > 1 makes the effect of the mobile species 1 on the sessile species 2 strong
enough so that in the end only one species survives.

We summarize the results as follows:

• From a certain point of view, being sessile is not a serious handicap for a sessile
species that faces competition with a mobile population. This means that the
sessile population will survive for the same parameter value ranges as for the
classical model, although for the parameters in the dark-blue region in Fig. 2 the
sessile species will share the environment with the mobile population.

• In contrast, the mobile population is more likely to survive when facing a sessile
population than a mobile one. This fact is reflected by the above-mentioned
dark blue region in Fig. 1 that corresponds to the dynamical scenario depicted
in the bottom panel of Fig. 2. Note that neither such a region nor nullclines
configurations do exist in the classical model, when both populations are mobile.

6.2 The Intra- and Interspecific Competition Effect for
Nullclines

We first analyze qualitatively the nullclines of system (8) versus the nullclines of
the classical competition model (5). Let us note an important fact concerning both
intra- and interspecific competition coefficients. These coefficients are somewhat
non-comparable since they are expressed in different units, in the classical/sessile
population models. Therefore, even if we plot both nullclines on the same axes, as
in Fig. 7, we do not know how these parameters vary together. Keeping this in mind,
we focus on the x1 nullclines given by

x2 = f1(x1) = 1

a12
(̂r1 − a11x1) x2 = f̂1(x1) = x1

d21 â
2
12

(̂r1 − b1â11√x1)2
(34)

As mentioned earlier the nullcline of species 1 defines the values of population
size of species 2 that allow species 1 to thrive. For instance, the f1 nullcline of the
classical model is a straight line with negative slope, see Fig. 7, blue dotted straight
line, which means that the larger x1 is, the less tolerant to the presence of x2 it is. In
other words, it means that x1 continues growing only if x2 decreases.

Figure 7 represents the possible relative positions of the x1 nullcline in the
classical and sessile populations models.

A first claim is that at low x1 population size the sessile model is highly
tolerant to an increase of the number of individuals for both species 1 and species
2. This feature, which is at odds with the classical model, can be explained by
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considering the peculiarities of the sessile model. Indeed, interactions take place
at the boundary of either the vital surroundings of each individual (intraspecific
case) or the region occupied by each population (interspecific case). On one hand,
at low population size intraspecific competition does not play a major role as the
population grows, since individuals only interact with the nearby ones and there
are only a few of them. At the same time, interspecific interactions take place only
at the boundary of the area occupied by species 1. Thus, population growth is the
main driver of population dynamics at low densities. This trend is maintained at
low densities, while f̂1 is increasing. Direct calculations yield that the maximum of

x̂2 := f̂1(̂x1) = 1

42
r41

b21a
2
11a

2
12

is reached at x̂1 := 1

4

(
r1

b1a11

)2

.

A second claim is that from x̂1 onwards the nullcline decreases, meaning that if
x1 increases slightly, so that intraspecific competition pressure increases, species 1
can keep growing only if species 2 reduces the interspecific competition pressure.
That is, the trend is similar to that of the classical model,

A third feature is that nullclines f̂1 and f1 may not cross the horizontal axis at
the same point. Indeed, the crossing points can be ordered in any way, as shown in
Fig. 7.

Finally, note that both nullclines can meet essentially in four different ways, as
shown in Fig. 7. Let us give an interpretation for instance to panel (A1). In the region

Fig. 7 The nullclines x′1 = 0 of systems (8) and classical model (5)
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below f̂1 (above f1) x1 increases (decreases) in both models. On the contrary, in
the region between f̂1 and f1 species 1 would keep growing if represented by the
classical model but would decrease if represented by the sessile populations model.

Note that the maximum of f̂1 can be below (panel (A1)) or above (panel (A2))
f1.

6.3 The Intra- and Interspecific Interaction and Coexistence
Equilibria

Finally, we examine competition outcomes taking into account intra- and inter-
specific competition, that yield conditions for species exclusion or conditional
tri-stability due to the system’s initial conditions.

We may let either the intraspecific competition parameters cii vary for fixed
values of the interspecific competition parameters cij or the other way around. Note
that coefficient cii is a conglomerate of different factors that include intraspecific
interaction aii and bi , the relation between the perimeter of both the “vital space”
around each individual and the perimeter of the area occupied by the whole
population.

6.4 Varying Intra- Specific Competition Coefficients for Fixed
Values of Interspecific Competition Coefficients

Theorem 5.2 indicates that under conditions (27) and (28) two possible outcomes
are possible: either both species can coexist via tri-stable conditional coexistence or
one of them goes extinct via the system’s initial conditions.

In particular, with (c11, c22) lying between c22 = c±22(c11), namely the straight
lines defined in (29), there is tri-stable coexistence. Thus, consider fixed values of
cij and ri fulfilling the hypotheses of Theorem 5.2. Then, for each fixed value c∗2:

• There is species coexistence via conditional tri-stability for c11 ∈ (c−11, c
+
11)

where c∗22 = c+22(c−11) and c∗22 = c−22(c+11).
• There is one species exclusion due to the system’s initial conditions if c11 /∈
(c−11, c

+
11).

Everything works symmetrically if c11 is fixed and c22 varies. We may conclude
that for each value of cii coexistence is possible for moderate values of cjj , i �= j .
However, either low or large enough values of cii or cjj would break coexistence.

Consistently with the classical model, numerical experiments show that the basin
of attraction of E1 is larger than the basin of attraction of E2 for c11 < c−11.
The result is reversed as c11 > c+11. This feature strongly suggests that the trade-
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Fig. 8 Competition outcomes of system (8) as function of the interspecific competitive interaction
c12, c21 for a fixed value of c11 and increasing values of c22. The figure is based analytic the
expression or numerical calculations depending on each respective case and has been edited to
improve it. Numerically fixed values of the parameters: r1 = 7.5, r2 = 8 c11 = 0.9 and of
c22 = 0.3, 1.1, 2.75, 3.3, and 16.7

off between intra- and interspecific competition forces works differently in sessile
populations and in mobile populations.

6.5 Inter-Specific Competition

We fix now cii > 0 for i = 1, 2 and assume that condition (31) in Theorem 5.3
holds. Then, in a similar way as in the previous paragraph, there are conditions on
the model coefficients that lead either to coexistence via conditional tri-stability or
to species exclusion due to the system’s initial conditions . In contrast, the curves
defining the combination of interspecific competition coefficients leading to each
outcome are nor straight lines and define a closed region on the positive cone,
see Fig. 8. Inside such a region there is conditional coexistence while outside the
competitive exclusion principle rules the system’s outcome. Note that the shape of
such a region changes as the other parameters change (in this case c22 changes as
shown in the caption of Fig. 8). Note that the tri-stability region starts dropping
towards the axis c12 as c22 increases.

Fixing cii and varying cij , this viewpoint is consistent with the classical model,
meaning that a pair (c12, c21) close to the horizontal c12-axis, i.e., c12 > c21, makes
the basin of attraction of E2 larger than the one of E1 and conversely.
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Similarly, when we fix cii , moderate values of cij seem to promote species
coexistence.
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Mathematic Analysis of a SIHV
COVID-19 Pandemic Model Taking Into
Account a Vaccination Strategy

Omar Khyar, Adil Meskaf, and Karam Allali

1 Introduction

Global health as well as the science of epidemiology are currently experiencing
the greatest challenge in history. The pandemic caused by COVID-19, severe
acute respiratory syndrome-related coronavirus SARS-COV-2, this disease which
appeared in Wuhan, China, in December 2019, belongs to a large family of viruses
that can cause various diseases in humans, ranging from the common cold to
respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). All
nations have entered a fierce race to find an effective cure or vaccine to curb the
death rate among the populations which is growing day by day, as well as to
bring a glimmer of optimism after the state of horror and panic that humanity has
experienced and also save States from an unprecedented economic crisis after the
total shutdown and confinement of the people that this mysterious COVID-19 has
pushed the authorities to establish in the world whole.

Expected as the savior of humanity, many specialists consider the vaccine as
our only means of regaining the “life before”, but many questions arise about its
effectiveness and its duration of protection whether in humans or population. All
the epidemics that mankind has known have been eradicated by effective vaccines,
it reveals the truth that a good vaccination strategy saves millions of lives around
the world. The work of a vaccine is to excite and then prepare the immune system
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to recognize viruses, then, if the body is exposed to these same pathogens, it is
immediately ready to destroy them, which helps prevent against the disease.

To fight COVID-19, it has been reported that more than 409.6 million doses
of the vaccine have been administered worldwide. There is already a large gap
between the vaccination programs of different countries, because of this and due
to insufficient vaccine doses around the world, most countries have focused their
early immunization efforts on priority groups such as people. Clinically vulnerable
people in their sixties, sixties and over, with a few exceptions such as doctors,
nurses, police and gendarmes as well as teachers and professors. There are ten
different vaccines so far. The Pfizer-BioNTech vaccine, which has been shown to
be 95 percent effective in reducing coronavirus infections, is currently in use in 77
countries. Most of the vaccines currently in use require two doses for a patient to
be fully immunized, as recently the United States authorized a single dose vaccine
called Johnson and Johnson—this data is compiled from government sources by the
University of Oxford.

Mathematical modeling contributes enormously to the development of epidemi-
ological research allowing a better understanding the evolution of pandemics. To
illustrate this, Many mathematical models have been successfully developed in order
to describe the evolution of infectious diseases [1–8]. The first mathematical models
developed to study the evolution of the COVID-19 pandemic were inspired by SIR
models [9–11]. Then, mathematics researchers proposed a SIQR models with quar-
antine strategy [12–16]. Kucharski et al. [17] have studied a mathematical model
considering all the positive COVID-19 infected cases of Wuhan. An autonomous
system of mathematical model to study the spread of COVID-19 in the Wuhan
city have presented by Ndairou et al. [18] . The controlling status of COVID-19
of Wuhan city have analyzed by Prem et al. [19]. Also, the effective procedure of
COVID-19 disease using isolation have described by Hellewell et al. [20].

In the same epic, we proposed a mathematical model describing all the scenarios
of evolution of the COVID-19 pandemic with a vaccination strategy, we estimate
that the infected individuals, after their recovery, can become susceptible after. We
define our model consisting of four ordinary differential equations illustrating the
interaction between the susceptible S, the real infected I , the hospitalized infected
H and the vaccinated-treated individuals V (Fig. 1).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= +− β(1− ρ)SI + ηI + θH + εV − (d + γ )S,

dI

dt
= β(1− ρ)SI − (d + δ1 + η + α)I ,

dH

dt
= αI − (d + δ2 + θ)H ,

dV

dt
= γ S − (d + ε)V ,

(1)
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Fig. 1 The flowchart of
SIHV epidemic modeling of
COVID-19
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With

S(0) ≥ 0, I (0) ≥ 0, H(0) ≥ 0, V (0) ≥ 0.

Where + is the recruitment rate, β is the disease transmission rate, ρ is the
portion of susceptible human would maintain proper precaution measure for disease
transmission (0 < ρ < 1), ε is the rate of vaccinated individuals who became
susceptible, η and θ are the recovery rates of real infected individuals and the
confirmed infected, respectively, δ1 is the COVID-19 induced death rate of real
infected individuals, α is the rate of transmission from the class of real infected to
the class of confirmed infected, δ2 is the COVID-19 induced death rate of confirmed
infected individuals, γ is the vaccinated susceptible individuals rate and d is the
natural death rate of the population.

Our paper is organized as follows. In Sect. 2, we will study the local stability of
our model. In the next section, we will prove the positivity and the boundedness
results. After, we give the two equilibrium points and calculate the basic reproduc-
tion number of our COVID-19 epidemic model. Section 4 is devoted to illustrate
our theoretical findings by numerical simulations, we will give also a comparison
between the model results and COVID-19 clinical data. The last section concludes
our work.
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2 Positivity and Boundedness of Solutions

Since our problem is related to the population dynamics, we will prove that all model
variables are positive and bounded. First, we will assume that all the parameters in
our model are positive.

Proposition 2.1 For any positive initial conditions S(0), I (0), H(0) and V (0), the
variables of the model (1) S(t), I (t), H(t) and V (t) will remain positive for all
t > 0.

Proof We have the following results :

Ṡ|S=0 = λ+ ηI + θH + εV ≥ 0,

İ |I=0 = 0 ≥ 0,

Ḣ |H=0 = αI ≥ 0,

et

V̇ |V=0 = γ S ≥ 0,

this shows the positivity of solutions for all t ≥ 0.
For the boundedness of the solutions, Let

N(t) = S(t)+ I (t)+ C(t)+ V (t),

according to system (1), we have

dN(t)

dt
= +− dN(t)− δ1I (t)− δ2C(t)) ≤ d

(
+

d
−N(t))

)
,

then we have

d
(
+
d
−N(t))
dt

+ d
(
+

d
−N(t)

)
dt ≥ 0.

Therefore

+

d
−N(t) ≥

(
+

d
−N(0)

)
e−dt
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if
+

d
−N(0) ≥ 0, i.e., S(0)+ I (0)+ C(0)+ V (0) ≤ +

d
, then

S(t)+ I (t)+ C(t)+ V (t) ≤ +

d
.

Thus the region

� =
{
(S, I, C, V ) ∈ R

4+ : S + I + C + V ≤ +

d

}

is a positively invariant set of system (1).

3 Steady States and Local Stability

3.1 Basic Reproduction Number

The basic reproduction number denoted by R0, is the average number of new
infected cases generated by one infected individual when all the population are
susceptible individuals [21]. In order to calculate the basic reproduction number,
we will use the next generation matrix FV −1, where F is the nonnegative matrix of
new infection cases, and V is the matrix of the transition of infections associated to
the model (1)

F =
(
β(1− ρ)S0 0

0 0

)
, V =

(
δ1 + d + α + η 0

−α δ2 + d + θ
)
.

So,

FV −1 =
⎛

⎝
β(1− ρ)S0
δ1 + d + α + η 0

0 0

⎞

⎠ ,

with S0 = +(d + ε)
d(d + ε + γ ) . The basic reproduction number is the spectral radius of

the matrix FV −1. This fact implies that

R0 = +β(1− ρ)(d + ε)
d(d + ε + γ )(δ1 + d + α + η) .
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3.2 Steady States

The steady states of our studied problem (1)are illustrated by the following theorem

Theorem 3.1 The model (1) has a disease-free equilibrium Ef and an endemic
equilibrium E1.

Proof To find the steady states of the system 1, we solve the following system

+− β(1− ρ) SI + εV + θH + ηI − (d + γ )S = 0,

β(1− ρ) SI − δ1I − (d + α + η)I = 0,

αI − δ2H − (d + θ)H = 0,

γ S − (d + ε)V = 0.

After a simple resolution, we obtain

• When I = 0 we find the disease-free equilibrium

Ef =
(

+(d + ε)
d(d + ε + γ ) , 0, 0,

+γ

d(d + ε + γ )
)
.

• When I �= 0 we find the endemic equilibrium defined as follows
E1 = (S∗, I ∗, C∗, V ∗),
where

S∗ = S0

R0
,

I ∗ = (R0 − 1)

-R0
,

H ∗ = α(R0 − 1)

(δ2 + d + θ)-R0
,

V ∗ = γ S0

(d + ε)R0
.

Where - = (d + ε)(δ2 + d + θ)+ α(δ2 + d)
+(δ2 + d + θ) and S0 = +(d + ε)

d(d + ε + γ ) .
It’s clear that E1 is well defined when R0 > 1.
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3.3 Local Stability

3.3.1 Local Stability of the Disease-Free Equilibrium

The local stability of the disease-free equilibrium point Ef =
(

+(d + ε)
d(d + ε + γ ) ,

0, 0,
+γ

d(d + ε + γ )
)
, is given by the following result:

Prop 3.1 When R0 < 1, then the disease-free equilibrium point, E0, is locally
asymptotically stable.

Proof The Jacobian matrix of the system (1) at E0 is given by:

JEf =

⎛

⎜⎜⎝

−(d + γ ) −β(1− ρ)S0 + η θ ε

0 β(1− ρ)S0 − (δ1 + d + α + η) 0 0
0 α −(δ2 + d + θ) 0
γ 0 0 −(d + ε)

⎞

⎟⎟⎠ .

(2)
The characteristic polynomial of JE0 is

PE0(λ) = [λ+ d][λ+ (d + γ + ε)] [λ+ (δ2 + d + θ)] [λ+ (δ1 + d + α + η)(1− R0)].

Therefore, the eigenvalues of J (E0) are given as follow,

λ1 = −d < 0,

λ2 = −(d + γ + ε) < 0,

λ3 = −(δ2 + d + θ) < 0,

λ4 = −(δ1 + d + α + η)(1− R0).

clearly, λ1, λ2 and λ3 are negative. However, λ4 is negative when R0 < 1.

Consequently Ef is locally asymptotically stable when R0 < 1.

3.3.2 Local Stability of the Endemic Equilibrium

The local stability of the endemic equilibrium point E1 = (S∗, I ∗, C∗, V ∗), is
given by the following result:

Prop 3.2 When R0 > 1 then the endemic equilibrium point E1 is locally asymptot-
ically stable.

Proof The Jacobian matrix of the system (1) at E1 is given by:
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JE1 =

⎛

⎜⎜⎜⎜⎝

−β(1− ρ)I − (d + γ ) −β(1− ρ)S + η θ ε

−β(1− ρ)I β(1− ρ)S − (δ1 + d + α + η) 0 0

0 α −(δ2 + d + θ) 0

γ 0 0 −(d + ε)

⎞

⎟⎟⎟⎟⎠
.

(3)
The characteristic polynomial of JE1 is

PE1(λ) = (d + ε + λ)
(
λ3 + A1λ

2 + A2λ+ A3

)

such that:

A1 = d + δ2 + θ + +(d + ε)
S0

,

A2 = +(d + ε)
S0

(d + δ2 + θ)+ β(1− ρ)(d + δ1 + α)(d + ε)I ∗S0
R0S∗

,

A3 = β(1− ρ)I ∗S0
R0S∗

(d + δ1 + α + (d + ε)(d + δ2 + θ)− αθ(d + ε)) .

The first eigenvalue of (3) is λ1 = −(d + ε) < 0, also it is easy to verify that
A1 > 0, A1A2 − A3 > 0 and A3 > 0 if R0 > 1 then by using the Routh-Hurwitz
Theorem, the other eigenvalues of (3) have negative real parts.

Consequently, E1 is locally asymptotically stable when R0 > 1.

4 Numerical Simulations

In this section, we will perform some numerical simulations in order to confirm our
theoretical results and to check the impact of vaccination strategy in fighting against
the spread of COVID-19 pandemic. Indeed, Fig. 2 shows the evolution of infection
for + = 1, ρ = 0.1, η = 0.1, θ = 0.6, d = 0.1,γ = 1.2, ε = 0.03, β = 1.3,
δ1 = 0.7, δ2 = 0.6 and α = 0.4.

Figure 2 depicts the dynamics of all SIHV variables. In this figure, we observe
that all curves drop to zero, except the curves representing the susceptible and
vaccinated individuals. With the used parameters, the basic reproduction number
is less than one (R0 = 0.8797 < 1). Figure 3 shows the time evolution of our
SICV four compartments model. With the used parameters, the basic reproduction
number is more than one (R0 = 1.19721 > 1). We observe that the trajectories
representing real and confirmed infected individuals remain at a strictly positive
level which means that the disease persists. Which is in good agreement with the
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Fig. 2 The dynamical behavior of compartments S, I , H and V revealing the extinction of
COVID-19 disease with R0 = 0.8797 < 1

theoretical result concerning the stability of equilibria, the disease free and the
endemic equilibrium points.

Figure 3 shows the evolution of infection for + = 1, ρ = 0.1, η = 0.1, θ = 0.6,
d = 0.1,γ = 0.75, ε = 0.01, β = 1.3, δ1 = 0.7, δ2 = 0.6 and α = 0.35.

4.1 Application to Morocco COVID-19 Clinical Data

We have chosen to make our comparison, the Moroccan clinical data during the
period between September 12 and March 28 [22]. for the following parameter
values:+ = 1; ρ = 0.1; a = 0.001; η = 0.1; θ = 0.6; d = 0.1; γ = 0.6; ε = 0.01;
β = 1; δ1 = 0.7; δ2 = 0.6; α = 0.2. Figure 4 shows the time evolution of infected
cases, we observe a significant good approach between the curves representing the
model numerical results and the clinical data. Therefore, our model have shown its
efficiency in approaching and predicting the second wave of COVID-19 pandemic.
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Fig. 3 The dynamical behavior of compartments S, I , H and V revealing the persistence of
COVID-19 disease with R0 = 1.19721 > 1

4.2 The Effect of the Vaccination Strategy on COVID-19
Pandemic Spread

In this subsection, we will study the role of the vaccination strategy in reducing the
infection severity of COVID-19 pandemic. Figure 5 shows the time evolution of the
real infected cases for the parameters + = 0.95, ρ = 0, η = 0.1, θ = 0.6, d = 0.1,
γ = 0.1, ε = 0.01, β = 2.6, δ1 = 0.2, dδ2 = 0.1 and α = 0.3. We observe the
effect of vaccination strategy on reducing the spread of the COVID-19 infection.
Indeed, by increasing the vaccination rate a significant reduce of the real infected
individuals is observed which clearly reveals the impact of vaccination strategy in
fighting against the spread of COVID-19 pandemic.

5 Discussion and Conclusion

Mathematical modeling contributes enormously in epidemiological research via
both theoretical and numerical methods allowing a better understanding of the evo-
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lution of the pandemic within populations and to unearth the interactions between
the various factors responsible for the spread of infections between individuals, but
also to provide conditions for the stability of the variables that cause the disease.
Due to the rapid spread of COVID-19, scientific researchers are working day and
night to find an ideal vaccine that eradicates this pandemic. Those efforts can bring
the world back to a normal pre-COVID-19 normal life. The main objective is to find
an adequate vaccination strategy to curb the rapid spread of the virus as well as to
obtain collective immunity to prevent the appearance of new variants of COVID-19.

In this paper, we have studied a mathematical model describing the spread of the
COVID-19 pandemic with a vaccination strategy. The model consisted of four com-
partments, namely, the susceptible S, the real infected I , the confirmed infected H
and the vaccinated individuals V , this type of model takes the abbreviation SIHV .
We have first studied the local stability of our model two state states by calculating
the basic reproduction number of our COVID-19 epidemic model. Finally, we have
confirmed our theoretical results by adequate numerical simulations. An interesting
comparison was also made between the model theoretical results and the COVID-
19 clinical data from Morocco between September 2020 and April 2021. It was also
shown that vaccination strategy plays an essential role in controlling COVID-19
spread. We can conclude from our study that a good vaccination strategy leads to
controlling COVID-19 in target populations.
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Derivation of Macroscopic Equations
from Homogeneous Thermostatted
Kinetic Equations in the Cancer-Immune
System Competition

G. Morgado, L. Masurel, A. Lemarchand, and C. Bianca

1 Introduction

Biologists traditionally choose either the molecular scale or the macroscopic scale
to describe the interactions between the immune system and cancer. They often
introduce complex interaction networks between a large number of actors, including
molecules, tissues, organs, the lymphatic and vascular systems, and involving
feedback loops providing information on the inhibition or stimulation of an effect
[1]. Harnessing the models developed by applied mathematicians and physicists,
we choose to describe the competition between cancer cells and immune system
cells at a mesoscopic scale [2–4]. This intermediate scale of description mobilizes
tools of statistical physics, in particular kinetic theory [5]. In an analogous way to
the Boltzmann equations associated with a diluted gas [5], the kinetic equations
associated with a model of cellular interactions give the evolution of the distribution
functions of the different cell types [6–8]. In order to reproduce the learning
phenomena that concern both immune system cells and cancer cells [9, 10], we
assign a quantity called activity [2] to each cell. Cell activity may grow during
appropriate interactions. A cell with a high activity represents an educated cell.
It should be noted that cell activity should not be confused with the notion of
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active matter, associated with the transduction of energy into oriented motion in
far-from-equilibrium systems [11]. We have adapted the direct simulation Monte
Carlo (DSMC) method [5, 8] to simulate the kinetic equations in an inhomogeneous
system and shown that they include the description of clinically observed phenom-
ena such as the 3Es of immunotherapy [12] for elimination, equilibrium, and escape
of cancer, as well as pseudo-oscillations of the number and mean activity of immune
cells [8].

In this work, we derive approximate macroscopic equations for the concentra-
tions and mean activities of the immune and cancer cells from the kinetic equations
for the distribution functions associated with a homogeneous system. Our aim is
to determine if the homogeneous macroscopic equations are able to reproduce the
3Es and to address the question of possible oscillations. The paper is organized
as follows. In Sect. 2, we present the model and the derivation of macroscopic
equations from the kinetic equations. In Sect. 3, we discuss the results deduced from
the macroscopic equations and compare them to DSMC simulations of the kinetic
equations. Section 4 is devoted to the conclusion.

2 Model at Cell Scale

We consider a model involving three different types of cells, normal cells n, cancer
cells c, and immune cells i [6–8]. Each cell has a given activity u which represents
its level of adaptation towards the other cell types. The activity of an immune cell
measures the efficiency with which it is able to kill a cancer cell. For a cancer cell,
the activity corresponds to its level of aggressiveness towards normal cells and its
ability to be invisible to immune cells. The activities of all cells are initially sampled
from the Gaussian distribution

PR(u) = 1

σ
√
2π

exp

(
− (u− μ)2

2σ 2

)
(1)

of mean μ and variance σ 2. In vivo, cell future depends on complex biological
phenomena that rule the birth and death processes of each cell population. In a
purpose of modeling, we consider a minimal scheme of three processes involving
autocatalytic interactions between the different cell types:

⎧
⎨

⎩
c(u)+ n(u′) kcn(u−u

′)H(u−u′)−−−−−−−−−−−→ c(u+ ε)+ c(u′)
c(u)R

kcn(u−u′)H(u−u′)−−−−−−−−−−−→ n(u′′)
(2)

i(u)+ c(u′) kic(u−u
′)H(u−u′)−−−−−−−−−−→ i(u+ ε)+ i(u′) (3)

c(u)+ i(u′) kci (u−u
′)H(u−u′)−−−−−−−−−−→ c(u+ ε)+ c(u′) (4)



Derivation of Macroscopic Equations from Homogeneous Thermostatted. . . 227

where kcn, kic, and kci are constant. According to the Heaviside step function, each
process occurs only if the activity u of the cell which remains after the interaction
is larger than the activity u′ of the cell which changes of nature. The rate at which
each process occurs is proportional to the difference of activities (u−u′) of the two
interacting cells. The learning of the cancer cell or the immune cell whose nature
does not change after the interaction is reproduced by the increase of its activity by
ε, small compared to μ.

The first process includes the mutation of a normal cell into a cancer cell. When
a normal cell n mutates into a cancer cell c, a new normal cell is injected by the
reservoir R with an activity u′′ sampled from the initial Gaussian distribution given
in Eq. (1). The reservoir of normal cells ensures that the total number of normal cells
remains constant. It also ensures that the mean activity of the normal cells remains
almost constant, close to μ. The second process accounts for the elimination of
a cancer cell by the immune system whereas the third process corresponds to the
elimination of an immune cell by a cancer cell.

Similarly to a mechanical system maintained at constant temperature due to a
thermostat, the system dissipates information according to a friction coefficient α
and is submitted to a field E controlling the fluctuations of activity. Hence, the
activity u of a cell is supposed to obey

du

dt
= E − αu (5)

with

α = E〈u〉/〈u2〉 (6)

where 〈.〉 denotes an ensemble average. The expression of the friction α ensures
that the second moment of the activity 〈u2〉 remains constant. The control of activity
fluctuations reproduces the spreading of information through processes that are not
explicitly considered in the model of interactions. In particular, the dissipation of
information takes into account the death of all cell types [13, 14], which depletes
the system of both highly and poorly educated cells.

2.1 Thermostatted Kinetic Framework

According to the thermostatted kinetic theory, the distribution function fj (t, u) of
each cell type j = c, i, n obeys the following kinetic equation [2, 8, 15]

∂tfj (t, u) = −∂u((E − αu)fj (t, u))+ Ij (7)

where Ij is the interaction operator. For the interaction scheme given in Eqs. (2–4),
the three interaction operators are given by
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Ic =
∫

R+
kcn(u− ε − u′)H(u− ε − u′)fc(t, u− ε)fn(t, u′)du′ (8)

−
∫

R+
kcn(u− u′)H(u− u′)fc(t, u)fn(t, u′)du′

+
∫

R+
kcn(u

′ − u)H(u′ − u)fc(t, u′)fn(t, u)du′

−
∫

R+
kic(u

′ − u)H(u′ − u)fi(t, u′)fn(t, u)du′

+
∫

R+
kci(u− ε − u′)H(u− ε − u′)fc(t, u− ε)fi(t, u′)du′

−
∫

R+
kci(u− u′)H(u− u′)fc(t, u)fi(t, u′)du′

+
∫

R+
kci(u

′ − u)H(u′ − u)fc(t, u′)fi(t, u)du′

Ii =
∫

R+
kic(u− ε − u′)H(u− ε − u′)fi(t, u− ε)fc(t, u′)du′ (9)

−
∫

R+
kic(u− u′)H(u− u′)fi(t, u)fc(t, u′)du′

+
∫

R+
kic(u

′ − u)H(u′ − u)fc(t, u)fi(t, u′)du′

−
∫

R+
kci(u

′ − u)H(u′ − u)fc(t, u′)fi(t, u)du′

In =−
∫

R+
kcn(u

′ − u)H(u′ − u)fc(t, u′)fn(t, u)du′ (10)

+PR(u)
∫

R+

∫

R+
kcn(u

′ − u′′)H(u′ − u′′)fc(t, u′)fn(t, u′′)du′du′′

Each interaction term Ij accounts for all processes that change the nature or
activity of cells of type j = c, i, n. As an example, we make precise how the
interaction term Ii associated with the immune cells is built. The three first terms
of the right-hand side of Eq. (9) are associated with the process given in Eq. (3).
The first and third terms account for the positive contributions to the evolution
of the distribution function of immune cells, i.e. to the processes leading to an
immune cell of activity u after the interaction of an immune cell and a cancer cell.
Specifically, the first term corresponds to the formation of an immune cell of activity
u from an immune cell of activity u − ε before the interaction. The contribution
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of all such interactions is obtained by integrating over all the activities u′ of the
interacting cancer cells. The third term is obtained by assigning the activity u of
the disappearing cancer cell to a newly formed immune cell and integrating over
all the activities u′ of the interacting immune cells. The second term is negative
and corresponds to the disappearance of immune cells of activity u due to their
transformation into immune cells of activity u+ ε. The fourth term is related to the
process given in Eq. (4).

The second term of the right-hand side of Eq. (10) accounts for the effect of
the reservoir of normal cells that injects normal cells of activity u according to
the distribution PR(u) given in Eq. (1) at the rate of consumption of normal cells
imposed by the interaction between a cancer cell and a normal cell.

In order to simulate cell dynamics, we have adapted [6] the direct simulation
Monte Carlo (DSMC) method initially introduced to simulate the Boltzmann
equations associated with a dilute gas [5]. Figure 1a gives the evolution of the
total number Nc of cancer cells and the total number Ni of immune cells for a
critical value of the field E which controls the fluctuations of the activity. Figure 1b
shows the evolution of the mean activities Uc and Ui in the same conditions. The
initial decrease of the number of cancer cells followed by a pseudo-steady state
and the final explosion of Nc illustrate a clinically observed phenomenon, the so-
called 3Es of immunotherapy, i. e. the elimination, the equilibrium, and the escape
of cancer from immunosurveillance [12]. The long induction period before the
explosion is characteristic of the vicinity of a bifurcation between qualitatively
different behaviors, the fast and monotonous explosion of cancer at weaker field
and the control of cancer at stronger field [6–8].

2.2 Macroscopic Equations

The macroscopic quantity Aj for species j = c, i, n, which corresponds to the
average value of the microscopic quantity a, is obtained by integration of the
associated distribution function fj (t, u) over the activities

Aj = 〈a〉 = 1

ρj

∫

R+
a(t, u)fj (t, u)du (11)

where

ρj =
∫

R+
fj (t, u)du (12)

is the concentration of cells of type j in the system. The activity of the j cells is
then
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Fig. 1 Direct simulation of
the kinetic equations:
Illustration of the 3Es of
immunotherapy. (a)
Evolution of the total number
Nc of cancer cells (solid line)
and the total number Ni of
immune cells (dotted line).
(b) Evolution of the mean
activity Uc of cancer cells
(dashed line) and the mean
activity Ui of immune cells
(dash-dotted line). Parameter
values: Total number of
normal cells Nn = 9800,
initial number of cancer cells
Nc(t = 0) = 100, initial
number of immune cells
Ni(t = 0) = 100, initial
activities of all cell types
sampled from a Gaussian
distribution of mean value
μ = 0.5 and standard
deviation σ = 0.2, ε = 10−3,
kic = 10−2, kci = 10−3,
kcn = 10−6, E = 7× 10−5
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Uj = 1

ρj

∫

R+
ufj (t, u)du (13)

Using Eq. (7), we derive the evolution equations for the concentrations ρj and the
activities Uj

dρj
dt

=
∫

R+
Ijdu (14)

dUj
dt

= (E − αUj )− Uj

ρj

dρj
dt

+ 1

ρj

∫

R+
uIjdu (15)

We assume that the dependence of the distribution function fj on the activity is a
Dirac distribution

fj (t, u) = ρj δ(u− Uj ) (16)

We straightforwardly find that

dρn
dt

= 0 (17)

dUn
dt

= 0 (18)

The evolution equations of the concentrations of immune cells ρi and cancer cells
ρc and the associated activities Ui and Uc are given by:

dρi
dt

=kic(Ui − Uc)H(Ui − Uc)ρiρc − kci(Uc − Ui)H(Uc − Ui)ρiρc (19)

dρc
dt

=kcnρn(Uc − Un)H(Uc − Un)ρc − kic(Ui − Uc)H(Ui − Uc)ρiρc
+ kci(Uc − Ui)H(Uc − Ui)ρiρc (20)

dUi
dt

=E − αUi + kic(Uc − Ui + ε)(Ui − Uc)H(Ui − Uc)ρc (21)

dUc
dt

=E − αUc + kcnρn(Un − Uc + ε)(Uc − Un)H(Uc − Un)
+ kci(Ui − Uc + ε)(Uc − Ui)H(Uc − Ui)ρi (22)

In the macroscopic description, Eq. (6) is meaningless and the values of the friction
coefficient α are arbitrarily chosen.
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3 Results

We first look for the stationary states of the macroscopic equations given in
Eqs. (19)–(22). If one excepts the stationary states reached in the specific case where
Un = E/α, the stationary states obey USi = E/α. The system admits two sets of
stationary states S1 = (ρSi , ρ

S
c , U

S
i = E/α,USc = E/α) and S2 = (ρSi , ρ

S
c =

0, USi = E/α,USc (ρ
S
i ). The values of ρSi and ρSc in the set S1 depend on the

initial condition (ρi(t = 0), ρc(t = 0), Ui(t = 0), Uc(t = 0)). In the set S2, ρSc
always vanishes, the value of ρSi is selected by the initial condition, and USc is then
determined by ρSi . Different branches U

S
c (ρ

S
i ) are obtained depending on Un. The

stationary activity of the cancer cells obey

USc (ρ
S
i ) = Un +

kcnερn − α +√(kcnερn − α)2 + 4kcnρn(E − αUn)
2kcnρn

(23)

if Un ≤ E/α − USc (ρSi )

USc (ρ
S
i ) =

E

α
+ ε − α

kciρ
S
i

(24)

if Un ≥ USc (ρSi ) and ρSi ≥ α

kciε

USc (ρ
S
i ) =

−b ±√
b2 − 4ac

2a
(25)

if Un ≤ USc (ρSi ) and
E

α
≤ USc (ρSi ) where

a = −(kcnρn + kciρSi )
b = −α + kcnρn(2Un + ε)+ kciρSi (2Ui + ε)
c = E − kcnρnUn(Un + ε)− kciρSi Ui(Ui + ε)

Typical branches of stationary states as ρSi varies are given in Fig. 2 for three
values of Un. For Un ≤ E/α, the system exhibits a single stable stationary state.
The specific case Un = E/α shows a bifurcation for a critical value ρS,ci . For

ρSi ≤ ρ
S,c
i , the steady activity of the cancer cells USc does not change with ρSi .

For ρSi > ρ
S,c
i , the branch of constant USc becomes unstable and the stable steady

activity of the cancer cells increases as ρSi increases. For Un > E/α, the behavior is
more complex: The system admits simultaneously two stable stationary states and
two unstable stationary states in an interval of ρSi . For large values of ρ

S
i , a stable

stationary state and an unstable one coexist.
Equations (19)–(22) are integrated numerically using Euler’s method. Figure 3

shows the evolution of the concentrations and activities of cancer cells and immune
cells for different values of the field E associated with the thermostat. For a
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Fig. 2 Stationary states (ρSi , ρ
S
c = 0, USi = E/α,USc ) of Eqs. (19–22). Variations of U

S
c (solid

lines for stable branches and squares for unstable branches) and USi (thick long-dashed line) with
respect to ρSi for the following parameter values: ε = 2, kic = 0.5, kci = 0.1, kcn = 0.01,
E = α = 0.2, ρn = 1 for different values of Un (dashed line): (top left) Un = 0.9, (top right)
Un = 1, (bottom) Un = 1.05

sufficiently small value E = 0.1, the system converges toward a stationary state
associated with a nonvanishing value of ρSc belonging to the set S1 of steady states
such that USi = USc = E/α. For a sufficiently large value E = 3 of the field, the
system converges toward a stationary state associated with a vanishing value ρSc = 0
belonging to the set S2 of steady states such that USi = E/α and USc (ρ

S
i ) obeys Eq.

(25).
For an intermediate field value (E = 0.8), the system exhibits an interesting, non-

stationary behavior. In this case, the system goes through three different phases. The
first phase corresponds to a fast decrease of the concentration of cancer cells ρc and
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Fig. 3 Numerical integration of the macroscopic equations given in Eqs. (19)–(22). Evolutions of
the concentration of cancer cells ρc (solid line), the concentration of immune cells ρi (dotted line),
the activity of the cancer cellsUc (dashed line), and the activity of the immune cellsUi (dash-dotted
line). The parameters are: ρn(t = 0) = 1, ρi(t = 0) = 2, ρc(t = 0) = 6.33, Un(t = 0) = 0.5,
Ui(t = 0) = 0.36, Uc(t = 0) = 0, ε = 1.5, kic = 1, kci = 0.5, kcn = 0.1, α = 1, dt = 0.01. (top
left) E = 0.1, (top right) E = 0.8, (bottom) E = 3

a fast increase of the concentration of immune cells ρi , suggesting that the cancer
will eventually fade out. The second phase shows a pseudo-steady state, where the
concentration of immune cells ρi increases slowly and the concentration of cancer
cells ρc looks stable and very small. When the activity of the cancer cells overcomes
the activity of the immune cells, a third phase begins during which the rapid increase
of the concentration of cancer cells is observed. The vanishing of the concentration
of immune cells rapidly follows. This behavior is analogous to the one deduced from
the simulations of the kinetic equations and given in Fig. 1. Hence, for well chosen
values of the field E, the integration of the macroscopic equations typically leads to
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the 3Es of immunotherapy [12], i.e. elimination, equilibrium, and escape of cancer
from the control of the immune system. A more systematic sensitivity analysis of
the macroscopic equations is necessary to explore all the complexity of the model,
in particular with regards to possible pseudo-oscillations. The specific role of the
fluctuations has also to be explored, using for example a Langevin approach or a
master equation [16].

4 Conclusion

In this paper, we derive macroscopic equations from the kinetic equations associated
with the interaction of cancer cells and immune system cells in the presence of a
thermostat controlling the dissipation of cell activity. The first striking feature of
the macroscopic equations is that they possess an infinite number of steady states
for a given set of parameter values. The second remarkable property of the system
is the strong dependence of the behavior on the initial conditions, which select a
given steady state. For a constant value of the friction coefficient α and a small
or large enough field E controlling the efficiency of thermalization, the system
converges toward a steady state for which cancer is controlled. Interestingly, the
3Es of immunotherapy [12] are included in the macroscopic model and observed
for an intermediate field value. The system certainly deserves further investigation,
in particular to determine if the pseudo-oscillations of the number of cells observed
in DSMC simulations require the presence of fluctuations and inhomogeneities [8].
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Oscillations in a System Modelling
Somite Formation

Sándor Kovács, Szilvia György, and Noémi Gyúró

1 Introduction

A minimal models of vertebrae formation were studied in [8] concerning periodic
structures formation. The authors proposed two kinds of reaction-diffusion models,
from which one is of clock-and-wavefront type and the other one is of Turing type.
Our goal is to show that in case of the Turing type model the kinetic system as well
the reaction-diffusion system exhibit oscillating solutions. The chapter is organised
as follows. In the next section we introduce the model. In the section that follows we
examine the existence and stability of some equilibria. In the third section we show
the occurence of Hopf bifurcation in the kinetic system as well as in the parabolic
system.

2 The Model

The model proposed by Annie Lemarchand and Bogdan Nowakowski (cf. [8]),
which describes vertebrae formation is governed by
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∂tA = dA�rA+ fA(A,B),

∂tB = dB�rB + fB(A,B)

⎫
⎬

⎭ (1)

on�×R
+
0 where� is a bounded, connected spatial domain with piecewise smooth

boundary ∂�, dA, dB > 0 represent the diffusion coefficients, A(r, t) and B(r, t)
are the concentrations of the species at time t ∈ [0,+∞) and place r ∈ �. The
kinetic part of the model (1)

Ȧ = fA(A,B) := −αA+ βA2B,

Ḃ = fB(A,B) := γ − δB − βA2B

⎫
⎬

⎭ (2)

(α, β, γ, δ > 0) was inspired from the Schnakenberg model (cf. [9])

Ȧ = A2B − A, Ḃ = −A2B + kSch (3)

and the Gray-Schott model (cf. [4])

Ȧ = −AB2 − k1GSA+ k2GS, Ḃ = AB2 − k3GSB − k4GS. (4)

We are interested in solutions � : � × R
+
0 → R

2 of (2) that satisfy the no-flux
boundary conditions

(n · ∇r)S (r, t) = 0
(
(r, t) ∈ ∂�× R

+
0

)
, (5)

resp. non-negative initial conditions

S (r, 0) = S0 (r) ≥ 0
(
(r, t) ∈ �× {0}) (6)

where S := (A,B), and n denotes the outer unit normal to ∂�.

3 The Kinetic System

It was mentioned in the original paper [8] that parameters α, β, γ, δ are chosen such
that the system possesses three steady states. It is easy to see that this is the case
when

K := βγ 2 − 4α2δ > 0 (7)

holds. In this case the kinetic system (2) exhibits three equilibria in the first quadrant
of the phase space, namely one on the boundary: Eb := (0, γ /δ) and two interior
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equilibria (cf. Fig. 1.): E± := (A∓, B±) where

A± := βγ ±√
βK

2αβ
and B± := α

δ
· A±.

In what follows we study the stability of possible equilibria S := (S1, S2) of the
kinetic system (2) and the possibility of Hopf bifurcations. The coefficient matrix of
the system linearized at S is

A := J(fA,fB)(S1, S2) =
[
−α + 2βS1S2 βS

2
1

−2βS1S2 −δ − βS21

]

with trace

Tr(J(fA,fB)(S1, S2)) = −α + 2βS1S2 − δ − βS21
and determinant

det(J(fA,fB)(S1, S2)) = αδ + αβS21 − 2βδS1S2.

A simple linear stability analysis shows that Eb is always locally asymptotically
stable, because the Jacobian of system (2) at these equilibrium point takes the form

Jb := J(fA,fB)(0, γ /δ) =
[−α 0

0 −δ
]
.

The Jacobians evaluated at E± have the form

J+ := J(fA,fB)(E+) =
⎡

⎣ α
(
√
βK−βγ )2
4α2β

−2α
γ(

√
βK−βγ )
2α2

⎤

⎦

and

J− := J(fA,fB)(E−) =
⎡

⎣ α
(
√
βK+βγ )2
4α2β

−2α − γ (
√
βK+βγ )
2α2

⎤

⎦ .

Based on the form of the characteristic polynomial

z2 − Tr(A)z+ det(A) (z ∈ C)

it is easy to determine the stability of the equilibrium points. It is clear that
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Fig. 1 A phase portrait of system (2) for K < 0, resp. K > 0
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• the matrix J+ is unstable, because

Tr(J+) = α + γ
(√
βK − βγ )
2α2

and

det(J+) = K − γ√βK
2α

,

furthermore det(J+) is negative due to K < βγ 2;
• the matrix J− is stable if and only if

Tr(J−) = α − γ
(√
βK + βγ )
2α2

< 0

hold, because

det(J−) = K + γ√βK
2α

> 0.

Since the determinant of J− stays positive, then Hopf bifurcation can occur only
if the trace is changing its sign. It is easy to calculate that if α > δ then Tr(J−) = 0
if and only if

β = α4

γ 2(α − δ)
holds. Thus, by fixed α, γ, δ, the parameter β will play the role of the bifurcating
parameter.

Theorem 3.1 Suppose that

α > δ and α �= 2δ (8)

hold, then at

β∗ := α4

γ 2(α − δ) (9)

the equilibrium E−(β) of (2) undergoes a Poincaré-Andronov-Hopf bifurcation:
E−(β) loses its stability at β∗ and system (2) has a branch of periodic solutions
bifurcating from E−(β) near β = β∗ (cf. Fig. 2.).
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Fig. 2 A phase portrait of system (2) when (7), (8) and (9) hold

Proof The characteristic polynomial of the matrix A at E−(β) has the form

�A(z, β) := z2 − Tr(β)z+ det(β) (z ∈ C)

where

Tr(β) := Tr (J−(β)) and det(β) := det (J−(β)) .

Clearly,

det(β∗) = α(α − δ) > 0,

resp. from (8)

Tr(β∗) = 0 and
∂

∂β
Tr(β∗) = γ (α − δ)2

α3(α − 2δ)
�= 0

follows, which proves the statements of the theorem (cf. [5, 7]). ��
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4 The Parabolic System

In what follows we consider system (1) with homogeneous Neumann boundary
conditions (5) and nonnegative initial conditions (6). Clearly, a spatially constant
solution �(·) = (�1(·),�2(·)) of system (1) satisfies boundary conditions (5) and
system (2). The equilibria of system (2) are constant solutions of (1), (5) at the
same time. In order to investigate the local dynamical behavior of system (1) near
the equilibria Eb and E± of (2) we linearize (1) at these equilibria. The linearized
system at the equilibrium point

S = (S1, S2) ∈ {Eb,E±}

with the same initial and boundary conditions has the form

∂Z
∂t

= D ·�rZ + AZ in �× R
+
0 (10)

(n · ∇r)Z = 0 in ∂�× R
+
0 (11)

Z (r, 0) = Z0 (r) on �× {0} (12)

where

A := J(fA,fB)(S) =:
[
a11 a12

a21 a22

]
.

Using the method of eigenfunction expansions for the spatial domain� the solutions
of problem (10) and (11) have the form

	(r, t) =
∞∑

n=0

ψn(r) exp (Ant)	0n ((r, t) ∈ �× R
+
0 )

(cf. [6]), where for n ∈ N0

An := A− λnD, 	0n :=
∫

�

Z0 (r) ψn(r) dr

and λn is the nth eigenvalue of the minus Laplacian on � subject to homogeneous
Neumann boundary conditions, resp. ψn is the corresponding normalized eigen-
function, i.e. λn and ψn are solutions of

�ψ = −λψ, ∂ψ

∂n

∣∣∣∣
∂�

= 0.
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It is well known (cf. [3]) that

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn −→ +∞ (n→ ∞)

and the eigenfunctions to different eigenvalues are orthogonal to each other.
According to [1, 2] the equilibrium S of (1), (5) is asymptotically stable if for all

n ∈ N0 the matrix An is stable, i.e. both eigenvalues of An have negative real parts;
furthermore S is unstable if for some index n ∈ N0 there exists an eigenvalue of
An with positive real part. The characteristic polynomial of the matrix An have the
form

�An(z) := z2 − Tnz+Dn (z ∈ C) (13)

where

Tn := Tr(An) = Tr(A)− λn Tr(D)

and

Dn := det(An) = λ2n det(D)− λn (dAa22 + dBa11)+ det(A).

Thus, if S = (S1, S2) = E− then for all β > 0 the characteristic equation of An has
the form

�An(z, β) = z2 − Tn(β)z+Dn(β) = 0 (z ∈ C, n ∈ N0)

where

Tn(β) := α − γ
(
βγ +√

βK
)

2α2
− λn(dA + dB)

and

Dn(β) := λ2ndAdB +
(
dAγ (

√
βK + βγ )
2α2

− dBα
)
λn + K + γ√βK

2α
.

In order to have Hopf bifurcation one has to show that a pair of complex conjugate
roots

μ(β)± ıν(β)

crosses the imaginary axis with non-zero velocity, that is for a β∗ > 0

μ(β∗) = 0, ν(β∗) �= 0 and μ′(β∗) �= 0
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hold. This is fulfilled (cf. [5]) if exists n ∈ N0 and β∗ > 0 such that

Tn(β∗) = 0,
∂

∂β
Tn(β∗) �= 0, Dn(β∗) > 0 (14)

and

Tm(β∗) �= 0, Dm(β∗) �= 0 (n �= m ∈ N0). (15)

We have to remark that β∗ in (9) is always a Hopf bifurcation value, since

T0(β
∗) = 0 and Tn(β

∗) = −λn(dA + dB) < 0 (n ∈ N),

resp.

Dn(β
∗) = λ2ndAdB + α (dA − dB) λn + α(α − δ) > 0 (n ∈ N0)

if

dA > dB and α > δ (16)

hold. This corresponds to the Hopf bifurcation of spatially homogeneous periodic
orbits which have been known from Theorem 3.1. Apparently β∗ is also the unique
value for β for the Hopf bifurcation of spatially homogeneous periodic orbits (cf.
Fig. 3.).

In what follows, we shall search for spatially non-homogeneous Hopf bifurcation
value in case of n ∈ N. For 0 ≤ β ∈ R let define

E(β) := α − γ
(
βγ +√

βK
)

2α2
= α −

γ
(
βγ +√β(βγ 2 − 4α2δ)

)

2α2

then

E(0) = α > 0 and lim
β→+∞E(β) = −∞

and it follows from (7) that

E′(β) = −
γ

(
γ + βγ 2−2α2δ√

β(βγ 2−4α2δ)

)

2α2
< 0 (β > 0).

This means that E is stricktly decreasing and in case of

α > 2δ + λn(dA + dB) (17)
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Fig. 3 Solution of system (1) when (9) and (16) hold

there is a unique solution β = βn > 0 of the equation

E(β) = λn(dA + dB), resp. Tn(β) = 0.

Direct calculation shows that the unique positive solution has the form

βn := α2 (α − λn(dA + dB))2
γ 2 (α − δ − λn(dA + dB))

holds.

Theorem 4.1 The transversality condition, i.e.

μ′(βn) < 0 (n ∈ N0) (18)

is satisfied.

Proof It is easy to see that

μ′(βn) = 1

2
· ∂
∂β

Tn(βn) = 1

2
· E′(βn) < 0 (n ∈ N0)

which proves the statement of the theorem. ��
It is also clear that for all n ∈ N

Tn(βn) = 0 and Tm(βn) �= 0 (n �= m ∈ N)

hold.
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Next we will investigate whether

Dm(βn) �= 0 (m ∈ N0),

and in particular, Dn(βn) > 0. It is easy to see that

Dm(βn) = λ2mdAdB +
(
dAγ (

√
βnK + βnγ )
2α2

− dBα
)
λm + K + γ√βK

2α
.

Because

dAγ (
√
βnK + βnγ )
2α2

− dBα = γ dA

2α2
· (E + F)− dBα

where

E := α2 (α − λn(dA + dB))2
γ (α − δ − λn(dA + dB)) ,

and

F :=
√
α4(α − λn(dA + dB))2(α − 2δ − λn(dA + dB))2

γ 2(α − δ − λn(dA + dB))2

we obtain the following result.

Theorem 4.2 If an n ∈ N0 is chosen such that assumptions (17) and

dB < dA · α − λndA
α + λndA (19)

hold, then in system (1) Poincaré-Andronov-Hopf bifurcation takes place: E−(β)
loses its stability at βn and system (1) has a branch of periodic solutions bifurcating
from E−(β) near β = βn.
Proof Obviously, if (17) holds then

F = α2(α − λn(dA + dB))(α − 2δ − λn(dA + dB))
γ (α − δ − λn(dA + dB)) .

Thus,
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γ dA

2α2
· (E + F) = dA ·

{
(α − λn(dA + dB))2
α − δ − λn(dA + dB)

+ (α − λn(dA + dB))(α − 2δ − λn(dA + dB))
α − δ − λn(dA + dB)

}

= dA(α − λn(dA + dB)) [2α − 2δ − 2λn(dA + dB)]
2 (α − δ − λn(dA + dB))

= dA(α − λn(dA + dB)).

Hence, if condition (19) holds then

γ dA

2α2
· (E + F)− dBα = −dB(α + λndA)+ dA(α − λndA) > 0.

This means that Dm(βn) > 0. This with the transversality condition (18) together
proves Hopf bifurcation. ��
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Socio-Ecological Dynamics Generated by
Hydrocarbon Exploration

J. M. Redondo, J. S. Garcia, and J. A. Amador

1 Introduction

Hydrocarbons meet the basic needs of today’s societies such, as access to energy,
heating, cooling, transportation, and production of inputs, as well as being important
for promoting the industry and boosting economic growth. However, exploration
and extraction activities have implications for the entire socio-ecological system,
including environmental impacts, social problems, and governance asymmetries that
lead to questioning the benefits of the use of hydrocarbons [1–3].

One of the environmental problems that hydrocarbon exploration brings with
it is related to noise. Sound is an environmental feature used by some taxa for
food, reproduction, navigation, and avoiding predators. Consequently, soundscape
alterations have the potential to alter the behavior, physiology, and fitness of
individuals [4]. In hydrocarbon exploration, noise pollution is caused by seismic
exploration studies in which oil and gas reserves are identified, while during
hydrocarbon exploitation, in addition to noise, the surface vegetation cover is
removed for the construction of roads, camps, or platforms, and the increase in
human activity that generates disturbance of wildlife and the migration of species
necessary for the preservation of the ecosystem [4–6].
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It is highlighted that the implications of exploration and exploitation are different
in intensity, duration, and frequency, being more impressive the exploitation
activities, but opening the exploration door could open the exploitation door with
it, so there is always the potential risk of losing the landscape ecological structure.

In the exploration of hydrocarbons, problems related to the impacts on biodiver-
sity that can lead to the decrease of fauna in the exploration sites are recognized [7–
9]. It is also known that hydrocarbon exploration is directly related to socioeconomic
impacts that could determine the landscape dynamics. Some of the related positive
impacts include business opportunities and local job creation [5, 10, 11], while
negative impacts include price inflation, the generation of development expectations
that may not come true, economic inequality, and the population transgression
[1, 10].

This chapter focuses on the effects of hydrocarbon exploration in three different
types of landscapes in the Amazon region: pristine landscapes, agricultural land-
scapes, and landscapes with licit and illicit crops. In this way, the coverage of the
different land uses, biodiversity, soil productivity, the hiring of personnel for the
economic activities of the landscape, and situations such as land retention and social
coercion are articulated, with the absence or presence of hydrocarbon exploration.

For the analysis, a systemic approach based on the system dynamics[12, 13]
methodology has been used, which allows obtaining a system of differential
equations with which the simulation of the scenarios representing the three types
of landscapes mentioned has been carried out. The simulation data are theoretical
data that allow a phenomenon explanation, rather than a diagnosis or forecast in
a specific situation. In this way, were obtained valuable arguments for decision-
making via experimentation in controlled simulation environments.

In Sect. 2 the modeling process based on system dynamics is presented to
obtain the mathematical model from which the simulations of the scenarios were
carried out. In Sect. 3 the scenarios for the three proposed landscapes are evaluated,
comparing the results of the presence and absence of hydrocarbon exploration on the
variables of interest. Finally, in Sect. 4 the conclusions of this chapter are presented.

2 System Modeling

The modeling process involves the creation of a causal diagram and the discussion
of its feedback structures (Sect. 2.1), the construction of the Forrester diagram,
definition of the system equations, and the dimensional consistency validation
(Sect. 2.2).

2.1 Causal Diagram

The proposed model is based on the causal diagram presented in Fig. 1, which
is explained in the following lines. The causal diagram is explained firstly from
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Fig. 1 Causal diagram

the landscape relationships without oil activities, while, towards the end, the
hydrocarbon exploration activities are articulated.

The proposed model is based on the causal diagram presented in Fig. 1, which
is explained in the following lines. The causal diagram is explained firstly from
the landscape relationships without oil activities, while, towards the end, the
hydrocarbon exploration activities are articulated.

Four types of general coverage were considered: natural, agricultural, illicit
crops, and urban. It is assumed that the natural areas do not have the opportunity to
increase in area, but they are diminished by agricultural activities and illicit crops,
exclusively.

The agricultural crops vary due to the acquisition of natural areas, the adaptation
of illicit crops to agricultural land, the adaptation of agricultural to illicit crops, and
urbanization.

The illicit crops vary due to the transformation of natural areas, the adaptation
of illicit crops to agriculture, and the adaptation of agriculture to illicit crops. Their
urbanization is not considered because it is assumed that these crops are not usually
very close to urban coverage.

Urban coverage, for its part, will always increase in area, although they do so
very slowly.

The transformation drivers considered are the land retention due to the purchase
speculation of the hydrocarbon industry and the price in the market of the agricul-
tural products obtained, in comparison with the prices, generally very stable, of the
products obtained in illicit crops (coca leaf, coca paste, and cocaine base).

Thus, the price of agricultural products increases the opportunity for profit
in agricultural production, which leads to an increase in forest clearance for
agricultural activities and a decrease in coverage of illicit crops. But forest clearing
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Fig. 2 First loop analyzed in the causal diagram

reduces the coverage of natural areas, which in turn decreases biodiversity, affecting
the productivity of agriculture, thus reducing the food production for local sale. This
decrease in production generates a food shortage for local consumption, making it
scarce and, therefore, increasing the price of agricultural products. In this way, a
positive feedback loop is formed (Fig. 2), which forms the vicious circle in which
natural covers and biodiversity tend to disappear, thus affecting the productivity of
landscapes to produce and supply food to the landscape population.

The price of agricultural products determines the opportunity for illicit crops,
increasing the production of illegal products. This increase demands the hiring of
people who will add within the total set of personnel working in the landscape, who
demand food. If this demand for food is very high, either due to the number of
people or the per capita amount of consumption, food will tend to become scarce,
affecting the price of agricultural products for local consumption. In this way, a
negative feedback loop is formed (Fig. 3) that limits the expansion of the coverage
of illicit crops due to the need to supply food to the landscape population.

The total number of people who work in the landscape, which includes the
personnel who work in agricultural crops, in illicit activities, and in goods and
services, will demand a space to live, which will induce the construction of houses
and, therefore, the increase in urbanization that will reduce agricultural coverage,
affecting food production and, in turn, the person hired for agricultural activities,
conditioning the total number of people who work in the landscape. The negative
loop that emerges, (Fig. 4) explains that to maintain self-sufficiency, urbanization
will have a limit on agricultural coverage or will have to import its supply.

In Fig. 5, is showed that the construction of houses for the accommodation of
people who work in the landscape, including their families, leads to urbanization and
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Fig. 3 Second loop analyzed in the causal diagram

Fig. 4 Third loop analyzed in the causal diagram

an increase in urban coverage, and that enough urbanization reduces construction
of housing. This negative loop shows that construction is limited by the need
to urbanize, that is, the limit is given by the socioeconomic opportunity that the
population finds in the landscape.

When the hydrocarbon exploration activity is carried out, the landscape is
affected in two ways: by the hiring of personnel and by the area that is involved
in the exploration.
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Fig. 5 Last loop analyzed in the causal diagram

In the first case and, according to the type of exploration carried out, the
significant number of points used in the hydrocarbons exploration is considered,
which increases the number of people working in this activity and the number of
people who work in the landscape. This condition becomes changes in the local
food supply and its prices, driving the urbanization in the landscape.

In the second case, the area involved in the hydrocarbon exploration, increases
the expectation for the value of the land, increasing the land retention, which in turn
leads to the forest clearing for agricultural activities.

This retention and the illegal activities lead to increased complaints of social
coercion, which triggers the displacement or emigration of people from the region.
In this way, while job opportunities in the landscape attract population to the
landscape, social coercion forces them to seek opportunities in other places, from
which it is concluded that exploration activity can weigh social coercion in those
regions where the formality of land tenure and the presence of the state are scarce.

2.2 Forrester Diagram

From the causal diagram, were constructed the level and flow diagram presented in
Fig. 6. The state variables were the four interested areas (natural areas, agricultural
coverage, illegal crop coverage, and urban coverage), the four personnel hired to
work in the landscape (for food production, goods and services, illicit crops, and
exploration of hydrocarbons) and the local population, giving rise to the following
differential system:
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dx1

dt
=

⎧
⎪⎪⎨

⎪⎪⎩

−a1x1 H < 0,G ≤ 0

−a1x1 − a2x1 H < 0,G > 0

−a2x1 H ≥ 0

(1)

dx2

dt
=

⎧
⎪⎪⎨

⎪⎪⎩

−a4x2 − a5x2 b1(y1+y2+y3+y4)−x4b1(y1+y2+y3+y4) H < 0,G ≤ 0

a2x1 − a4x2 − a5x2 b1(y1+y2+y3+y4)−x4b1(y1+y2+y3+y4) H < 0,G > 0

a2x1 + a3x3 − a5x2 b1(y1+y2+y3+y4)−x4b1(y1+y2+y3+y4) H ≥ 0

(2)

dx3

dt
=
{
a1x1 + a4x2 H < 0

a3x3 H ≥ 0
(3)

dx4

dt
= a5x2 b1(y1 + y2 + y3 + y4)− x4

b1(y1 + y2 + y3 + y4) (4)

dy1

dt
= b2b3(1+ n)x1x2
x1 + x2 + x3 + x4 (5)

dy2

dt
= a6(y1 + y2 + y3 + y4) (6)

dy3

dt
= b4b5x3 (7)

dy4

dt
= b6k (8)

dz

dt
= a7z+ y1 + y2 + y3 + y4 − z

b7

(
1− b8b9k + x3

x1 + x2 + x3 + x4
)

(9)

Where d/dt denotes the change in time, taking the year as the unit of time and
the restrictions H and G are defined as follows:

H = −b3p(1+ n)x1x2
b10(y1 + y2 + y3 + y4)(x1 + x2 + x3 + x4) (10)

G = b8b9k

x1 + x2 + x3 + x4 (11)

All the variable and parameter abbreviations used in the model, and their measure
units, are found in Table 1.
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Table 1 Abbreviations and measure units used in the model

Name Abbreviation Unit Type

Nature area x1 Ha State variable

Agricultural area x2 Ha State variable

Illegal crops x3 Ha State variable

Urban area x4 Ha State variable

Personnel hired for food production y1 Person State variable

Personnel hired in goods and services y2 Person State variable

Personnel hired in illegal crops y3 Person State variable

Personnel hired for hydrocarbon
exploration

y4 Person State variable

Local population z Person State variable

Rate of cutting down of natural areas
for illicit crops

a1 Percentage/year Constant

Rate of cutting down of natural areas
for agriculture

a2 Percentage/year Constant

Rate of preparation for agricultural
area

a3 Percentage/year Constant

Rate of preparation for illicit crops a4 Percentage/year Constant

Rate of urbanization a5 Percentage/year Constant

Rate of personnel hired in goods and
services

a6 Percentage/year Constant

Net rate of local population increase a7 Percentage/year Constant

Average hectares occupied per person b1 Ha/Person Constant

Personnel hired per ton of food b2 Person/Ton Constant

Food tons produced per hectare per
year

b3 Ton/(Ha*Year) Constant

Personnel hired per ton of illegal
products

b4 Person/Ton Constant

Tons of illegal products produced per
hectare per year

b5 Ton/(Ha*Year) Constant

People hired by each point placed per
year

b6 Person/(Point*Year) Constant

Migration adjustment time b7 Year Constant

Area per point in exploration b9 Ha/Point Constant

Food demand per person per year b10 Ton/(Person*Year) Constant

Points placed for hydrocarbon
exploration

k Point Constant

Naturalness degree n Dimensionless Constant

Illegal products price per ton p US$/Ton Constant

Land retention G Ha Restriction

Opportunity given by the price H Dimensionless Restriction

The mathematical model constructed makes the restriction H strictly negative,
unless the willingness to pay for the products obtained in illicit crops disappears,
in which case it will be null, while the restriction G is strictly positive, provided
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that there are hydrocarbons exploration or an effective presence of the state in the
exercise of formalizing land tenure.

3 Scenarios Assessment

From the mathematical model obtained, a simulation set of different scenarios
was carried out, to review the prospective performance of the model and give
some conclusions. The scenarios considered were: pristine landscape, agricultural
landscape, and landscape of licit and illicit crops. Each scenario is evaluated with the
presence and absence of hydrocarbon exploration, which is represented by placing
exploration points on the landscape.

3.1 Scenario 1: Pristine Landscape

In this ideal scenario, the complete absence of socioeconomic dynamics is repre-
sented. This scenario was simulated considering that the initial coverage values are
zero, except for the coverage of natural areas. The logging rates of natural areas
have also been taken as zero and the local population is zero.

The simulations show a constant amount of natural areas, even with hydrocarbon
exploration, see Fig. 7. Biodiversity simulates a value of 100 % and soil productivity
of 125 %, while the production of licit and illicit crops appears at zero, see Fig. 7.

3.2 Scenario 2: Agricultural Landscape

In this scenario, a landscape with natural areas and socioeconomic dynamics
revolving around agricultural production is represented. There is no presence of
illicit crops. This scenario was simulated considering null the values of coverage of
illicit crops, the clearing of natural areas for illicit crops, and the agricultural soils
adaptation for illicit crops.

In the case in which there is no hydrocarbon exploration, there is less growth
in urban areas from agricultural soils, while the coverage of natural areas remains
intact (Fig. 8). The effect on biodiversity and soil productivity in this scenario leads
to lower but constant values than those presented in the pristine scenario (Fig. 8).

On the other hand, with the hydrocarbons exploration in the landscape, the loss of
natural areas and their conversion to agricultural and urban coverage is notorious,
which in turn decreases both biodiversity and soil productivity (Fig. 9). Note also
that the food production for local sale decreases drastically over time, thus showing
a landscape that is highly dynamic due to its socioeconomic situation (Fig. 9).
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Fig. 7 Behavior of the covers, biodiversity, food production, production of illegal products and
soil productivity in the pristine scenario

The social situation in this scenario shows that economic activity causes immi-
gration to the landscape in conditions where coercion is non-existent (Fig. 8).
However, with hydrocarbon exploration, there is a situation of constant coercion
in the landscape becoming emigration.

3.3 Scenario 3: Landscape of Licit and Illicit Crops

In this scenario, a landscape with natural areas is represented, in which the socio-
economic dynamics depend on agricultural production and illicit crops.
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Fig. 8 Behavior of coverage, biodiversity, food production, production of illegal products and soil
productivity in the agricultural landscape scenario
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Fig. 9 Behavior of coverage, biodiversity, food production, production of illegal products and soil
productivity in the agricultural landscape scenario with hydrocarbons exploration
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Fig. 10 Coverage and social behavior with licit and illicit crops

Without hydrocarbons exploration, illicit crops can grow above agricultural
activity for a certain period (Fig. 10). However, with the increase in urban dynamics,
the agricultural activity becomes dominant and the coverage of illicit crops tends to
disappear. Natural areas are converted into lawful and illicit crop covers, which are
also giving way to urban covers. In this way, a completely transformed landscape
towards the urban-agricultural is obtained.

On the other hand, with hydrocarbons exploration, it is notable that the dynamics
of behavior occur earlier in time, limiting the intensity and duration of illicit
crops in the landscape, but accelerating its transformation towards urban agriculture
(Fig. 11).

Regarding the social situation, it is notable that the presence of illicit crops in the
landscape drastically increases coercion, which in turn increases the emigration of
the landscape population. Once again, the hydrocarbon exploration activity acts as
a social catalyst that does not prevent the existence of socioeconomic behavior but
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Fig. 11 Coverage and social behavior with licit and illicit crops, and hydrocarbons exploration

rather accelerates it. Check Fig. 10 for the absence of hydrocarbon exploration and
Fig. 11 for its presence.

4 Conclusions

From the causal diagram, it is concluded that:

• There is a vicious circle in which natural covers and biodiversity tend to
disappear, while the productivity of landscapes to produce and supply food to
the landscape population is affected.

• There is a limit to the expansion of the coverage of illicit crops, given by the need
to supply food to the population of the landscape.
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• To maintain self-sufficiency, the urbanization of the landscape will have to
impose a growth limit on agricultural coverage or it will have to import its supply.

• The landscape transformation is determined by the socioeconomic opportunity
that the population finds in the landscape.

From the simulations carried out, it is concluded that:

• Exploration activity can intensify social coercion in the landscape, which will be
weighted by informality in land tenure and the absence of state control.

• The cases in which the oil activity could bring undesirable consequences are the
cases when the socio-economic dynamization is greater than the landscape is
capable of assimilating.
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The Maximal Extension of the Strict
Concavity Region on the Parameter
Space for Sharma-Mittal Entropy
Measures

R. P. Mondaini and S. C. de Albuquerque Neto

1 Introduction

The present work aims to complement a previous publication [1] where we
have derived the Generalized Khinchin-Shannon (GKS) Inequalities [2] associated
to Sharma-Mittal Entropy measures. We introduce here the result of maximal
extension of the strict concavity region of this class of entropy measures. In
Sect. 2, we present the state of art of the work with the Sharma-Mittal class as
well as the Information measures associated to it. All the limit processes are then
described carefully together with the consequences of these definitions and their
properties with respect to the assumption of strict concavity. We think that the
notation which has been adopted could appear as awkward, however it is very
efficient for the derivation of all formulae to be presented here and specially for
the proof of strict concavity of Sect. 3. A complete derivation is then done of the
greatest lower bound of the successive epigraph regions, which leads to establish the
maximal extension of the previously adopted strict concavity region of the scientific
literature. In Sect. 4, we then derive some interesting additional matters to a subject
already published in ref. [1], in terms of the difference between escort conditional
probabilities and conditional escort probabilities. Some necessary development
seems to be worthwhile here for a perfect understanding of the results based on the
structure and properties of the probabilistic space and this is presented in appendices
at the end of the paper.
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2 The Sharma-Mittal Class of Entropy Measures

The usual expression of the Sharma-Mittal entropy measures [3], is given by:

(SM)
(s,r)
j1...jt

= (αj1...jt )
1−r
1−s − 1

1− r (1)

These entropies are here defined on arrays of t columns of m rows each and the
αj1...jt symbols are written as:

α
(s)
j1...jt

=
∑

a1,...,at

(
pj1...jt (a1, . . . , at )

)s
(2)

where pj1...jt (a1, . . . , at ) stands for the probability of occurrence of t-sets of
ordered values (a1, . . . , at ) in t columns j1, . . ., jt of a distribution obtained from
an array of m rows and n columns (see Appendix 1).

All the values a1, . . ., at , are running over the values 1, . . ., W and the j -values
are ordered as [4]:

j1 < j2 < . . . < jn

and we have,

j1 = 1, . . . , n− t + 1

j2 = j1 + 1, . . . , n− t + 2

...................................... (3)

jt−1 = jt−2 + 1, . . . , n− 1

jt = jt−1 + 1, . . . , n

There are then
(
n
t

) = n!
t !(n−t)! geometrical objects pj1...jt and each of them has

Wt correspondents pj1...jt (a1, . . . , at ).
For an equiprobable distribution [4],

pj1...jt (a1, . . . , at ) = W−t , (4)

we then get

αj1...jt (W
−t ) = Wt(W−t )s = Wt(1−s) , ∀t (5)
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and the corresponding value of the (SM)j1...jt entropy will be written as:

(SM)
(r)
j1...jt

(W−t ) =
(
Wt(1−s)

) 1−r
1−s − 1

1− r = Wt(1−r) − 1

1− r . (6)

We also introduce an associated Information measure:

I
(s,r)
j1...jt

= − (SM)j1...jt
(αj1...jt )

1−r
1−s

(7)

For an equiprobable distribution, Eq. (4), this can be written as:

I
(s,r)
j1...jt

(W−t ) = −
Wt(1−r) − 1

1− r
Wt(1−r) = 1−Wt(1−r)

(1− r)Wt(1−r) (8)

We then list some special cases of entropies of the Sharma-Mittal class [3, 5–7]
together with their equiprobable versions:

(a) The Havrda-Charvat entropy measure [5], with r = s

(HC)
(s)
j1...jt

= αj1...jt − 1

1− s (9)

(HC)
(s)
j1...jt

(W−t ) = Wt(1−s) − 1

1− s (10)

(b) The Landsberg-Vedral entropy measure [6], with r = 2− s

(LV )
(s)
j1...jt

= αj1...jt − 1

(1− s)αj1...jt
= (HC)

(s)
j1...jt

αj1...jt
(11)

(LV )
(s)
j1...jt

(W−t ) = Wt(1−s) − 1

(1− s)Wt(1−s) = −I (r=s)j1...jt
(12)

(c) The Renyi entropy measure [7]:

R
(s)
j1...jt

= lim
r→1
(SM)

(s,r)
j1...jt

= logαj1...jt
1− s (13)
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R
(s)
j1...jt

(W−t ) = logWt(1−s)

1− s = t (1− s) logW
1− s = t logW (14)

(d) The “nonextensive Gaussian” entropy measure [8]:

G
(r)
j1...jt

= lim
s→1
(SM)

(s,r)
j1...jt

= e(1−r)(GS)j1 ...jt − 1

1− r (15)

G
(r)
j1...jt

(W−t ) = et(1−r) logW − 1

1− r (16)

where

(GS)j1...jt = −
∑

a1,...,at

pj1...jt (a1, . . . , at ) logpj1...jt (a1, . . . , at ) (17)

(GS)j1...jt (W
−t ) = t logW (18)

is the Gibbs-Shannon entropy measure, which is also obtained as the convenient
limit in all previous entropy measures.

lim
s→1
(HC)

(s)
j1...jt

= lim
s→1
(LV )

(s)
j1...jt

= lim
s→1

R
(s)
j1...jt

= lim
r→1

G
(r)
j1...jt

= (GS)j1...jt
(19)

From Eqs. (1) and (2) the Generalized Khinchin-Shannon inequalities can be
written according to ref. [1] as:

1+ (1− r)(SM)(s,r)j1...jt
≤

t∏

l=1

[
1+ (1− r)(SM)(s,r)jl

]
(20)

We can also then write for the information measure in [7]:

1+ (1− r)I (s,r)j1...jt
≥

t∏

l=1

[
1+ (1− r)I (s,r)jl

]
(21)

For the special cases of the Sharma-Mittal class, Eqs. (9), (11), (13), (15), and
(17), we have,

1+ (1− s)(HC)(s)j1...jt ≤
t∏

l=1

[
1+ (1− s)(HC)(s)jl

]
(22)
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1+ (1− s)(LV )(s)j1...jt ≤
t∏

l=1

[
1+ (1− s)(LV )(s)jl

]
(23)

R
(s)
j1...jt

≤
t∑

l=1

R
(s)
jl

(24)

1+ (1− r)G(r)j1...jt ≤
t∏

l=1

[
1+ (1− r)G(r)jl

]
(25)

(GS)j1...jt ≤
t∑

l=1

(GS)jl (26)

The region of the parameter space corresponding to strict concavity of the
Sharma-Mittal class of entropies is usually presented in the literature as the gray
region in Fig. 1 or C = {(s, r)|r ≥ s > 0}. This region is the epigraph region of the
half straight line r = s > 0, corresponding to the Havrda-Charvat entropy, Eqs. (9)
and (2).

Fig. 1 The gray region is the epigraph of the brown half straight line (r = s) corresponding to
the Havrda-Charvat entropy. This region is also assumed to be the strict concavity region in the
literature. The The blue (0 ≤ s < 1, r = 1), green (0 ≤ s < 1, 1 < r ≤ 2) segments of straight
line do correspond to Renyi and Landsberg-Vedral entropies, respectively. The red half straight line
(r > 1, s = 1) stands for the “Gaussian” entropy which has also been defined by Sharma-Mittal
[3]. The point (r = 1, s = 1) does correspond to the Gibbs-Shannon entropy
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3 The Maximal Extension of the Strict Concavity Region in
the Parameter Space of Sharma-Mittal (SM) Entropy
Measures

To undertake the analysis of maximal extension of the strict concavity region for
SM entropies, we shall follow the techniques of construction of the probabilistic
space in Appendix 1. In the next section, we also give some examples as numerical
applications of the methods introduced here.

The requirement for strict concavity of the surface representing a multivariate
function is the negative definiteness of the quadratic form associated to its Hessian
matrix [1, 11]. This means that the principal minors of the Hessian matrix should be
negative and positive alternately (negative those of odd order and positive those of
even order).

We shall now introduce the Hessian matrix of the Sharma-Mittal class of
entropies, Eqs. (1), (2), and (3). Its first derivative is given by:

∂(SM)j1...jt

∂pj1...jt (a
qν
1 , . . . , a

qν
t )

= s

1− s (αj1...jt )
s−r
1−s
(
pj1...jt (a

qν
1 , . . . , a

qν
t )
)s−1

(27)

A generic element of the Hessian matrix could then be written as

Hqνqξ = ∂2(SM)j1...jt

∂pj1...jt (a
qν
1 , . . . , a

qν
t )∂pj1...jt (a

qξ
1 , . . . , a

qξ
t )

= s(αj1...jt )
s−r
1−s
(
pj1...jt (a

qν
1 , . . . , a

qν
t )
)s−2

·
[
s(s − r)
(1− s)2

pj1...jt (a
qν
1 , . . . , a

qν
t )

pj1...jt (a
qξ
1 , . . . , a

qξ
t )
p̂j1...jt (a

qξ
1 , . . . , a

qξ
t )− δνξ

]
(28)

where δνξ is the Kronecker symbol. From Eq. (28) and Appendix 1, the principal
minors are then given by

detHqνqξ (ν, ξ = 1, . . . , k) = (−1)k−1sk(αj1...jt )
k
(
s−r
1−s
)[ k∏

ν=1

pj1...jt (a
qν
1 , . . . , a

qν
t )
]s−2

·
[
s(s − r)
(1− s)2

k∑

ν=1

p̂j1...jt (a
qν
1 , . . . , a

qν
t )− 1

]
, k = 1, . . . ,M, 1 ≤ M ≤ m,

(29)

where p̂j1...jt (a
qν
1 , . . . , a

qν
t ) is the escort probability associated to pj1...jt (a

qν
1 , . . . ,

a
qν
t ) and we have,
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p̂j1...jt (a
qν
1 , . . . , a

qν
t ) =

(
pj1...jt (a

qν
1 , . . . , a

qν
t )
)s

∑

b
qν
1 ,...,b

qν
t

(
pj1...jt (b

qν
1 , . . . , b

qν
t )
)s (30)

with aqνj ; bqνj = 1, . . . ,W ; ν = 1, . . . , k; k = 1, . . . ,M .

∑

a
qν
1 ,...,a

qν
t

p̂j1...jt (a
qν
1 , . . . , a

qν
t ) = 1 (31)

From Eqs. (29) and (30), and Eqs. (42)–(46) of Appendix 1, and Eqs. (64)–(68) of
Appendix 2, the requirement of strict concavity could be given through the second
square bracket of Eq. (29) and we can then write,

⎡

⎢⎢⎢⎣
s(s − r)
(1− s)2

k∑
μ=1

( qμ
m

)s

m∑
μ=1

( qμ
m

)s
− 1

⎤

⎥⎥⎥⎦ < 0, k = 1, . . . ,M. (32)

The curves r(s) given by

s(s − r)
(1− s)2 σk(s)− 1 = 0, k = 1, . . . ,M, (33)

with

σk(s) =

k∑
μ=1

( qμ
m

)s

m∑
μ=1

( qμ
m

)s
(34)

can be written as

rk(s) = s − (1− s)2
sσk(s)

, k = 1, . . . ,M. (35)

The epigraph regions of these curves can be written as

C ∪ Ck = {(s, r)|r ≥ s > 0} ∪
{
(s, r)

∣∣∣∣ s > r ≥ s −
(1− s)2
sσk(s)

}
, k = 1, . . . ,M.

(36)
At the end of Sect. 2, we have emphasized that the epigraph region of the curve

r = s is C = {(s, r)|r ≥ s > 0}, which is usually taken as the region of strict



272 R. P. Mondaini and S. C. de Albuquerque Neto

concavity. Here we define the extended region of strict concavity as the epigraph
region of the highest curve of the set (35)

rm(s) = 2− 1

s
(37)

which is given by the union set:

Cmax = C ∪ Cm = {(s, r)|r ≥ s > 0} ∪
{
(s, r)

∣∣∣∣ s > r ≥ 2− 1

s

}
. (38)

This extended region is depicted in Fig. 2 as the gray region.

Fig. 2 The blue, green, red and brown lines do correspond to Renyi, Landsberg-Vedral, “Non-
extensive” Gaussian and Havrda-Charvat entropies, respectively. The union of the regions C =
{(s, r)| r ≥ s > 0} and Cm = {(s, r)| s > r ≥ 2 − 1/s} is the epigraph region of the black line
and corresponds to the extended region of strict concavity. Some rk(s) functions are also depicted
and they correspond to k = 1, 2, 3, 4, 5, m = 6. We note that r6(0) = 0.5 and the curve r6(s) is
asymptotic to the straight line r = 2
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Fig. 3 An example of a 8× 3
array of 3-sets of amino acids

A C Y

A C Y

A C T

A T C

A Y C

A C Y

T C A

Y A T

4 An Example of Systematic Derivation of σk(s) Curves from
Data Obtained from the Alignement of Protein Domains

In order to give an example of the construction of σk(s) curves, we shall use arrays
of t-amino acids which have been worked intensively on the presentation of results
during the 21st BIOMAT International Symposium [10].

We shall provide an example of a 8 × 3 array of 3-sets of amino acids with 8
rows (Fig. 3). This example will be convenient for readers who intend to work with
classification of amino acids distributions. According to equations of Appendices
1 and 2 there are 6 different groups on this array of equal t-sets of amino acids,
q1, . . ., q6, in the array (38). The symbol αj1j2j3 could then be written as:

αj1j2j3 =
(
pj1j2j3(A

q1 , Cq1 , Y q1)
)s +

(
pj1j2j3(A

q2, Cq2 , T q2)
)s

+
(
pj1j2j3(A

q3, T q3 , Cq3)
)s +

(
pj1j2j3(A

q4 , Y q4, Cq4)
)s

+
(
pj1j2j3(T

q5, Cq5 , Aq5)
)s +

(
pj1j2j3(Y

q6, Aq6 , T q6)
)s
. (39)

We now refer to Eqs. (42)–(44) of Appendix 1 and we get

αj1j2j3 =
(
3

8

)s
+
(
1

8

)s
+
(
1

8

)s
+
(
1

8

)s
+
(
1

8

)s
+
(
1

8

)s
. (40)

From Eqs. (34) and (42), we can also write for the σk(s) functions:

σ1(s) =
(
3
8

)s

αj1j2j3
; σ2(s) =

(
3
8

)s +
(
1
8

)s

αj1j2j3
; σ3(s) =

(
3
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3
;

σ4(s) =
(
3
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3
; σ5(s) =

(
3
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3
;
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Fig. 4 The rk(s) curves and the structure of extended region of strict concavity as obtained from
a 8× 3 array of 3-sets of amino acids

σ6(s) =
(
3
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s +
(
1
8

)s

αj1j2j3
= 1 . (41)

In Fig. 4, the related curves rk(s), Eq. (35), are depicted. As has been emphasized
at the end of Sect. 3, Sect. 3, the epigraph region of the curve corresponding to
σ6(s) = 1 and asymptotic to r = 2, or r6(s) = 2 − 1/s, does correspond to the
extended region of strict concavity.

5 Concluding Remarks

In this work we have chosen to present in detail the extensions of the region of
strict concavity on the space of parameters of the Sharma-Mittal class of entropy
measures. We have emphasized the structure of the parameter space and we believe
that this will be very useful for working with the several special cases of entropies
in models of generalized Statistical Mechanics. Some special (s-r) regions of the
parameter space and the curves r(s) on them could specify models of interest on the
study of diseases and their interconnection from the viewpoint of their evolution
in terms of entropy values [12]. A detailed study has been undertaken on the
Jaccard-like Symbol and its usefulness for analysing the distributions of amino
acids in protein domain families [9]. A forthcoming comprehensive review will be
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Fig. 5 The intersection of the extended region of strict concavity (Fig. 2) with the region of fully
synergetic distributions of amino acids in arrays of m rows and n columns (inherited from the
Hölder inequality). There are also synergetic distributions (non-Hölder specifically configurations
of amino acids) on the complementary region s > 1, r ≥ 2− 1/s

also published with a study of the representative surfaces of entropy measures as
obtained from a systematic parametrization method [9].

As has been emphasized in Appendix 2, the application of the additional
criterium of fully synergetic distributions of amino acids in m × n arrays of m
rows and n columns, will restrict still more the feasible region of the Sharma-Mittal
entropy values associated to these arrays. This is done through the Generalized
Khinchin-Shannon inequalities (Eq. (75)) and [13].

In Fig. 5, we then depict a gray region which is the intersection of the extended
region of strict concavity (Fig. 2) with the region corresponding to full synergy of
the probability distributions. Among all entropy measures belonging to the Sharma-
Mittal entropy class and defined in Sect. 1, the “Gaussian non-extensive” entropy
measure is the only one which remains for r > 2. This is taken as an insight to
undertake the study of evolution of protein domain families and clans working with
this entropy measure.



276 R. P. Mondaini and S. C. de Albuquerque Neto

Appendix 1: The Construction and Properties
of the Probabilistic Space

We fix the ideas for working with a probabilistic space by considering arrays of
amino acids with m rows and n columns. We will then be able to characterize
the protein domain families and the formation of several clans according the
identification provided by expert biologists through alignment techniques. On some
previous works [4], we have stressed that each protein domain family has as its
representative at least one array of m rows and n columns. In this appendix, we
summarize the usual properties of geometric objects associated to these arrays.
These seem to be essential for the description of the structure of the probabilistic
space and they also help to unveil some of its properties which have so far been
unknown in the scientific literature.

First of all we should stress that the symbols αj1...jt of Eq. (2), could also be
written as

αj1...jt=
∑

a
qμ
1 ,...,a

qμ
t

(
pj1...jt (a

qμ
1 , . . . , a

qμ
t )
)s ↔

m∑

μ=1

(qμ
m

)s
t=1, . . . , n, k=1, . . . ,M, 1 ≤ M ≤ m.

(42)

whereM is the number of μ-groups of amino acids and qμ stands for the number of
equal t-sets of the amino acids contained in the μth-group.

The significance of Eq. (42) comes from the definition of probability of occur-
rence:

pj1...jt (a
qμ
1 , . . . , a

qμ
t ) =

nj1...jt (a
qμ
1 , . . . , a

qμ
t )

m
, (43)

and we have the correspondence:

qμ ↔ nj1...jt (a
qμ
1 , . . . , a

qμ
t ). (44)

Since the number of groups is equal toM , this also means that there is a maximum
of m different groups of t-sets or,

qμ ≤ m . (45)

From eqs.(42) and (43), we write

∑

a
qμ
1 ,...,a

qμ
t

nj1...jt (a
qμ
1 , . . . , a

qμ
t )

m
= 1 ↔

m∑

μ=1

(qμ
m

)
= 1 . (46)
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We now pass to the probability unit vector of W components and to their
generalization of geometric objects of (W)t components. From now on, in order
to alleviate the notation, we do not take in consideration the super indices qμ. For
t = 1, pj1(a1) could be represented as a unit vector ofW components:

pTj1 = (pj1(1), . . . , pj1(W)
)
. (47)

The escort vector associated to this vector is

p̂Tj1 =
((
pj1(1)

)s

αj1
, . . . ,

(
pj1(W)

)s

αj1

)
(48)

where

αj1 =
∑

a1

(
pj1(a1)

)s (49)

and

1 =
∑

a1

p̂j1(a1) =
∑

a1

(
pj1(a1)

)s

αj1
(50)

A geometric object of (W)2 components could be also defined through a “�-
product”:

pj1�pj2 = pj1|j2 pTj2 (51)

where pj1|j2 will transform as a column vector.
The structure of this matrix product is given by

(W × 1)(1×W) = (W ×W)

and their components could be written as:

pj1�pj2 =
⎛

⎜⎝
pj1j2(1|1)pj2(1) . . . pj1j2(1|W)pj2(W)

...
. . .

...

pj1j2(W |1)pj2(1) . . . pj1j2(W |W)pj2(W)

⎞

⎟⎠ (52)

where pj1j2(a1|a2) are the components of the column vector of conditional prob-
ability pj1|j2 of the distribution in column j1 with a previous knowledge of the
distribution in column j2.
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Since the components of the matrix 52 are joint probabilities, we then write,

pj1�pj2 =
⎛

⎜⎝
pj1j2(1, 1) . . . pj1j2(1,W)

...
. . .

...

pj1j2(W, 1) . . . pj1j2(W,W)

⎞

⎟⎠ (53)

where pj1j2(a1, a2) are the components of the joint probability of occurrence of the
2-set (a1, a2) in columns j1 and j2.

Analogously a geometric object of (W)3 components could be also defined by
the �-product,

pj1�pj2�pj3 = pj1j2�pTj3 = pj1j2|j3 pTj3 = pj1j2j3 (54)

and the structure of this matrix product is

(W ×W × 1)(1×W) = (W ×W ×W) .

The related (W)3 components could be written as:

pj1�pj2�pj3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pj1j2j3(1, 1, 1) . . . pj1j2j3(1, 1,W)
...

. . .
...

pj1j2j3(W, 1, 1) . . . pj1j2j3(W, 1,W)
...

. . .
...

pj1j2j3(1,W, 1) . . . pj1j2j3(1,W,W)
...

. . .
...

pj1j2j3(W,W, 1) . . . pj1j2j3(W,W,W)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(55)

and so on and so forth for an object of (W)t components:

pj1�pj2� . . .�pTjt = pj1j2...jt−1�pTjt = pj1j2...jt−1|jt pTjt = pj1j2...jt (56)

with the structure of the matrix product given generally by

(W ×W × . . .×W × 1)(1×W) = (W ×W × . . .×W)︸ ︷︷ ︸
t

.

The (W)2, (W)3 components of the associated escort geometric objects of the
objects pj1�pj2 and pj1�pj2�pj3 are given by
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p̂j1� p̂j2 =

⎛

⎜⎜⎜⎜⎝

(
pj1j2 (1,1)

)s
αj1j2

. . .

(
pj1j2 (1,W)

)s
αj1j2

...
. . .

...(
pj1j2 (W,1)

)s
αj1j2

. . .

(
pj1j2 (W,W)

)s
αj1j2

⎞

⎟⎟⎟⎟⎠
(57)

and

p̂j1� p̂j2� p̂j3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
pj1j2j3 (1,1,1)

)s
αj1j2j3

. . .

(
pj1j2j3 (1,1,W)

)s
αj1j2j3

...
. . .

...(
pj1j2j3 (W,1,1)

)s
αj1j2j3

. . .

(
pj1j2j3 (W,1,W)

)s
αj1j2j3

...
. . .

...(
pj1j2j3 (1,W,1)

)s
αj1j2j3

. . .

(
pj1j2j3 (1,W,W)

)s
αj1j2j3

...
. . .

...(
pj1j2j3 (W,W,1)

)s
αj1j2j3

. . .

(
pj1j2j3 (W,W,W)

)s
αj1j2j3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(58)

respectively.
To better understand Eq. (58), we introduce (Fig. 6).
The (W)t components of the geometric object of Eq. (56) are now written as:

Fig. 6 A representative of pj1j2j3 object
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p̂j1� p̂j2� . . .� p̂jt =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
pj1 ...jt (1,...,1)

)s
αj1 ...jt

. . .

(
pj1 ...jt (1,...,1,W)

)s
αj1 ...jt

...
. . .

...(
pj1 ...jt (W,1,...,1)

)s
αj1 ...jt

. . .

(
pj1 ...jt (W,1,...,1,W)

)s
αj1 ...jt

...
. . .

...(
pj1 ...jt (1,W,1,...,1)

)s
αj1 ...jt

. . .

(
pj1 ...jt (1,W,1,...,1,W)

)s
αj1 ...jt

...
. . .

...(
pj1 ...jt (W,W,1,...,1)

)s
αj1 ...jt

. . .

(
pj1 ...jt (W,...,W)

)s
αj1 ...jt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(59)

In order to complete this appendix and to assure its usefulness on the derivation
of the results presented in Sects. 3 and 4, we now treat the case of equiprobable
probabilities of occurrence.

In the case of equiprobable distributions pj1...jt (a1, . . . , at ) = W−t , we have
from Eqs. (43) and (46),

1 =
m∑

μ=1

(qμ
m

)
= mW−t (60)

This means that if m ≥ Wt , we should understand this equation as

WtW−t + (m−Wt) · 0 = 1 (61)

We then see that for equiprobable distributions, the symbols σk from Sects. 3
and 4 do not depend on s and can be written as:

σk =

k∑
μ=1

( qμ
m

)s

m∑
μ=1

( qμ
m

)s
= k(W−t )s

m(W−t )s
= k

m
= k

Wt
, k = 1, . . . ,W t−1,W t , (62)

where we have used Eq. (60).

The corresponding values of r(s) could be written from Eq. (36) of Sect. 3, as:

r(s) = s − (1− s)2
sσ k

= s − (1− s)2
sk

Wt . (63)
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Fig. 7 The rk(s) curves and the structure of the (s-r) space of parameters for some selected k-
values of an equiprobable distribution of probabilities

In Sect. 3, we present a numerical application of Eq. (63), in order to continue the
analysis of the structure of (s-r) space of parameters.

In order to conclude this appendix, we work again with sets of 3-amino acids,
with W 3 = 8000 for an equiprobable distribution and we choose to depict that the
curves corresponding to the values: k = 1, 100, 500, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, on Fig. 7. The last curve r8000(s) = 2− 1

s
was already presented

in Sect. 3 on Fig. 2.

Appendix 2: The Origin of the Generalized Khinchin-Shannon
Inequalities

Let us consider the definition of the conditional of the escort probability:

p̂j1...jt (a1, . . . , at−1|at ) = p̂j1...jt (a1, . . . , at )

p̂jt (at )
(64)

From Eq. (30) we can write, analogously:
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p̂j1...jt (a1, . . . , at ) =
(
pj1...jt (a1, . . . , at )

)s

∑
(b1,...,bt )

(
pj1...jt (b1, . . . , bt )

)s (65)

p̂jt (at ) =
(
pjt (at )

)s

∑
at

(
pjt (at )

)s (66)

In Eqs. (65) and (66), the symbols aj , bj , 1 ≤ j ≤ t , are running over the one-
letter code for the 20 amino acids

aj ; bj = A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y, 1 ≤ j ≤ t .

We then have from Eqs. (64)–(66):

p̂j1...jt (a1, . . . , at−1|at ) =
(
pj1...jt (a1, . . . , at−1|at )

)s

∑
(a1,...,at )

p̂jt (at )
(
pj1...jt (a1, . . . , at−1|at )

)s (67)

We now remember the definition of the escort of the conditional probability

pj1...jt (a1, . . . , at−1|at )̂ =
(
pj1...jt (a1, . . . , at−1|at )

)s

∑
(a1,...,at−1)

(
pj1...jt (a1, . . . , at−1|at )

)s (68)

The left hand sides of Eqs. (67) and (68) are identical if all amino acids of the
t-th column are equal. For instance,

jt −→ (A,A,A,A, . . . , A)︸ ︷︷ ︸
m

(69)

This distribution will then lead to:

p̂Tjt = pjt = 1, 0, 0, 0, . . . , 0︸ ︷︷ ︸
20

(70)

For any other distributions of amino acids in the j th column, the ordering of
the two denominators on the right hand sides of Eqs. (67) and (68) has to be decided
after choosing a protein domain family and its related distribution of probabilities of
occurrence of amino acids. In order to undertake this study, we pay special attention
to some functions of probabilities already defined in ref. [1], together an additional
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definition, X(at ).

U ≡
∑

a1,...,at−1

[
pj1...jt−1(a1, . . . , at−1)

]s = αj1...jt−1 (71)

J ≡
∑

a1,...,at−1

[∑

at

p̂jt (at )pj1...jt (a1, . . . , at−1|at )
]s

(72)

Z ≡
∑

a1,...,at

p̂jt (at )
[
pj1...jt (a1, . . . , at−1|at )

]s = αj1...jt

αjt
(73)

X(at ) ≡
∑

a1,...,at−1

[
pj1...jt (a1, . . . , at−1|at )

]s (74)

The letters U , J , Z, X, have been chosen among those which do not codify the
amino acids: B J O U X Z.

Actually, there is not any ordering between (74) and (71), (72), (73) for a generic
occurrence of amino acids, as have been emphasized in ref. [1]. This assertion could
be also proven “a fortiori” if the amino acid corresponding to at does not occur, or
X(at ) = 0.

It should be also stressed that the condition J ≥ Z i.e., the Hölder inequality
[1, 12] which stands for 1 > s ≥ 0 is sufficient to guarantee the inequality U ≥
Z, which leads to the Generalized Khinchin-Shannon inequalities to be obtained
through iteration:

αj1...jt−1 ≥ αj1...jt

αjt

t → t − 1 ⇒ αj1...jt−2 ≥ αj1...jt−1

αjt−1

≥ αj1...jt

αjt · αjt−1

t → t − 2 ⇒ αj1...jt−3 ≥ αj1...jt−2

αjt−2

≥ αj1...jt

αjt · αjt−1 · αjt−2

...

t → 2 ⇒ αj1 ≥ αj1j2

αj2
≥ αj1...jt

αjt · . . . · αj3 · αj2

⇒ αj1...jt ≤
t∏

l=1

αjl (75)
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However, in Figs. 8 and 9, below, we have tried to characterize the upsurge of
regions in which J ≥ Z for s > 1 by presenting the curves U − Z and J − Z for
two 8 × 3 arrays obtained from the Pfam 27.0 database and a hypothetical 8 × 3
array which has been constructed aiming a better alignment. The results led us to
conjecture that this would occur systematically on greater arrays to be obtained by
working with recent versions of the database. This kind of work is now in progress
and it will be published elsewhere.

Fig. 8 8× 3 arrays of amino
acids: (a) from Pfam
PF01926, rows 25–32,
columns 30-32; (b) from
Pfam PF01926, rows 3–10,
columns 3–5; (c) a
hypothetical 8× 3 array
aiming a good alignment

K A Q

A G E

N T P

V A G

K P Q

V P G

P K C

R P G

V I T

A I I

V I A

V I A

M V V

V L I

A I V

A L I

A A A

A C C

A C A

A C A

A C A

C A A

C C A

C C A

(a) (b) (c)

Fig. 9 The blue, green and red curves do correspond to the matrices (a), (b), and (c) of Fig. 8,
respectively. (a) Study of the Hölder (J ≥ Z) and Non-Hölder (J < Z) probability distributions
from the 8 × 3 arrays of Fig. 8; (b) Study of the viability of Generalized Khinchin-Shannon
Inequalities (U ≥ Z) associated to Hölder probability distributions (J ≥ Z) or J ≥ Z⇒ U ≥ Z.
However, there are distributions of amino acids such that U ≥ Z even where J < Z. The red curve
is an example for s > 1.4537
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Fig. 9 (continued)
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Computational Modeling of Cancer
Response to Oncolytic Virotherapy:
Improving the Effectiveness of Viral
Spread and Anti Tumor Efficacy

H. Lefraich

1 Introduction

Oncolytic virotherapy represents a promising anti-cancer treatment approach, which
involves viruses that have been selectively engineered to infect and destroy cancer
cells, while sparing the surrounding healthy cells [1–4]. These oncolytic viruses
can penetrate cancer cells either through receptor binding, or through fusion with
plasma membrane, then they replicate by taking advantage of signaling pathways
and common mutations inside those cancer cells. Despite the oncolytic viruses can
enter also healthy cells, they do not usually replicate inside these cells and thus
do not destroy them. In fact, the absence of such mutations in healthy cells tends to
abort the replication cycle of the viruses. In 2015, the United States of America Food
and Drug Administration (FDA), based on the recent advances in the understanding
of tumor-virus interactions, approved the first genetically engineered OV (a Herpes
Simplex Virus) as a therapy for the melanoma cancer [3]. However, despite the
fact that multiple oncolytic viruses (OVs) are presently under clinical development
[1, 5], this kind of therapy still has some challenges in terms of effectiveness (as
confirmed by several clinical trials) [6]. This relatively low oncolytic effectiveness
is not only due to premature virus clearance by circulating antibodies and various
immune cells [7], but also the presence of physical barriers inside tumors (e.g.,
interstitial fluid pressure, extracellular matrix (ECM) deposits) that hinder virus
movement [8]. In fact, the ECM has been recognized as a major barrier for anti-
tumor efficacy as it plays a pivotal role in inhibiting virus spread [9–11]. To
face the challenge of improving the intra-tumoral spread of oncolytic viruses,
numerous experimental and clinical approaches are currently being considered,
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from genetically manipulating natural OVs to incorporate additional features for
improving their efficiency [5], to modifications of the physical barriers (e.g., via
ECM degradation) to improve virus spread [11]. Understanding more deeply the
interactions between the extracellular matrix (ECM), uninfected and infected cancer
cells, and oncolytic viruses is therefore of great importance to shed a light on the
biological mechanisms that might improve OV spread by overcoming the physical
barriers inside the tumor micro-environment.

During the last two decades, numerous mathematical models have been applied
to gaining a broader understanding of the dynamics of virotherapy by analyzing
more deeply the interaction between cancer cells and oncolytic viruses. Concern-
ing ordinary differential equations models, one can refer to Wodarz in [12–14],
Komarova and Wodarz [15], Novozhilov et al. [16], Bajzer et al. [17, 18], Tian
in [19, 20] and others [21–24]. Wodarz [13] formulated a simple model with two
differential equations where a virus is interacting with a population of uninfected
and virus-infected tumour cells. Based on this work, Komarova and Wodarz [15]
used a general approach by taking into account a class of models instead of a specific
model and considered two populations: uninfected tumour cells and infected tumour
cells. Wodarz in his paper [14] proposed a model with three populations where he
modeled explicitly the viral population. Then, Tian [20] has proposed an improved
model by incorporating the burst size. The burst size of a virus is the number of new
virions released from a lysis of an infected cell. The model is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dc

dt
= μ1c(1− c + i

C
)− ρcv

di

dt
= ρcv − δii

dv

dt
= bδii − ρcv − δvv

The populations of the model consist of the densities within three groups: uninfected
cancer cells c(t), infected cancer cells i(t), and free virus v(t). The constant C
stands for the maximal tumor size. The termμ1cmodels the rate of growth of cancer
cells, ρcv the rate of infection of cancer cells by the virus, bδii the release of virions
by infected cancer cells, δii the rate of clearance of infected cancer cells, and δvv
the rate of clearance of the virus. Besides, Novozhilov et al. [16] analyzed ratio
based oncolytic virus infection models. Bajzer et al. [17] modeled the specific cancer
virotherapy with measles virus by using three ordinary differential equations, and
then they approached the optimization of viral doses, number of doses and timing
in [18].

Because of the availability of temporal data the majority of these models
approached the oncolytic viruses from temporal dynamics perspective. However,
the main cause of mortality among cancer patients is the spread of primary
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cancer cells to other parts of the body to establish secondary tumours (metastasis).
Moreover, the diffusion of oncolytic viruses within the tumor can play a major
role in the efficacy and success of the treatment [25, 26]. Consequently, the spatial
dependency of the virotherapy needs also to be considered in mathematical models
in order to realistically simulate the clinical observations. This shortcoming of ODE
models necessitates the use of PDEs in the field of computational cancer biology.
More recent advances in tumour imaging provided data on the spatial spread of
tumours and viruses, which then encouraged the emergence of mathematical models
investigating the spatial spread of these viruses. Thus, many partial differential
equation models have been formulated to include both the spatial and temporal
distributions of viruses and cells [27–32]. For instance, Wu et al. [27] and Wein
et al. [28] proposed and analyzed a system of partial differential equations in order
to describe some aspect of oncolytic viral therapy. Camara et al. [29] explored an
important interaction between aggressively invasive glioma cancer cells and the free
oncolytic virus “ONYX-015”. Malinzi et al. [30] developed a reaction-diffusion
system and considered the impact of virotherapy on the concentration of the tumor
cells in the presence of CTL immune response. Then, Malinzi et al. [32] proposed a
PDE based model that study the effect of the combination of oncolytic virotherapy
with chemotherapy.

All suggested computational models have given valuable insights into oncolytic
virotherapy dynamics. Nevertheless, there is a tremendous need to understand the
dynamics of oncolytic virotherapy in the presence of extracellular matrix (ECM),
particularly, to understand the complex interplay among cancer cells, oncolytic
viruses and the extracellular matrix. In fact, tumour cells encounter a large amount
of insoluble intact adhesive molecules of the extracellular matrix (ECM), which
may promote their directed migration at different stages in the process of cancer
invasion. A cell would migrate from a region of low concentration of relevant
adhesive molecules towards a region with a higher concentration. This phenomenon
is termed haptotaxis [33, 34]. Furthermore, the ECM is considered as a major barrier
to virus motility by acting like a porous medium.

In this study, we are interested in a mathematical modeling and computational
approach of oncolytic virotherapy which aims to help us improve our understanding
of the physical barrier that inhibits the virus spread. Therefore, we propose a
mathematical model of oncolytic virotherapy, that accounts for interaction between
uninfected cancer cells, infected cancer cells, extracellular matrix (ECM) and
oncolytic virus. Besides random motion, both uninfected and infected tumour cells
migrate haptotactically towards higher ECM densities, moreover, in addition to
degrading the static ECM upon contact the two cancer populations undergo an
infection-induced transition mechanism conducted by virus particles which are
released by infected cancer cells, and which attack the uninfected part of the
tumor. One of the main contributions of this model consists in taking into account
that the motility rate of virus particles is controlled by the population of ECM
where lowering ECM leads to higher viral diffusion. Accordingly, we defined the
diffusivity of tumour cells as a monotonically decreasing function of ECM density
to model the obstruction of movement by the ECM.
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This chapter is organized as follows. In Sect. 2, the mathematical model as well
as its dimensionless form are presented. The variational formulation, the temporal
discretization, and the finite element scheme of the nonlinear system are presented in
Sect. 3. Finally, we present numerical experiments and summarize the observations
of this study.

2 Mathematical Model

In this section, we present a two-dimensional mathematical model of oncolytic
virotherapy. The model consists of four unknown variables namely the uninfected
cancer cells density, the infected cancer cells density, the ECM density and the
oncolytic virus particles density, which are denoted respectively by c(x, t), i(x, t),
u(x, t) and v(x, t). We consider the system to hold on a bounded spatial domain
� ⊂ R

2, representing a region of tissue. As the tumour cells depend on the closest
blood vessel, we assume that the computational domain � is a disc with a centered
hole inside representing the blood vessel (see Fig. 1). The boundary of the domain
consists of two parts ∂� = ∂�1 ∪ ∂�2, where ∂�1 refers to the intern boundary
delimited by the blood vessel wall, and ∂�2 refers to the extern boundary of �.
Moreover, we estimate the radius of this region supported by the blood vessel
to be rb√

BVF
, where BVF is the blood volume fraction [35, 36], and rb is the

radius of the blood vessel. Concerning the viruses, they attain the tumor through
the blood vessel via ∂�1 and diffuse into it with no flux at ∂�2. Furthermore,
viruses are provided continuously with a constant concentration vb (for instance by
using nanotechnology [37]). Guided by the in vitro experimental protocol in which
invasion takes place within an isolated system, we consider zero-flux boundary
conditions at the blood vessel wall ∂�1 and at the extern boundary of the disc for
the uninfected cancer cells, the infected cancer cells, and also for the ECM.

Uninfected Cancer Cells c(x, t) The underlying modeling assumptions are that
in addition to random cell movement (with Dc as the random motility coefficient),
uninfected cancer cells have a directed haptotactic movement towards higher ECM
gradients (with ηc the haptotactic coefficient). Moreover, cancer cells apart from
possibly proliferating logistically at rateμ1 [38, 39], can decay due to virus infection
at rate ρ. These hypotheses can be described by the following equation:

∂c

∂t
= Dc�c − ηc∇.(c∇u)+ μ1c(1− c

C
− i

C
)− ρcv,

where C is the carrying capacity of the cancer cells and the extracellular matrix.

Infected Cancer Cells i(x, t) Similarly, we assume that the infected cancer cells
can move randomly (with Di as the random motility coefficient) and can migrate
towards higher ECM gradients (with ηi the haptotactic coefficient). As mentioned
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Fig. 1 Computational domain constructed. the computational domain � is a disc with a centered
hole inside representing the blood vessel

above, these cells are infected at rate ρ by the oncolytic virus. Furthermore, these
infected cells die owing to lysis at a rate δi . These assumptions are translated into
the following equation:

∂i

∂t
= Di�i − ηi∇.(i∇u)+ ρcv − δii.

Extracellular Matrix (ECM) u(x, t) The ECM can be regarded as static in the
sense that it does not move, and thus we may neglect any diffusion and migration
terms, however, it undergoes a continuous remodelling by cells in the environment
[40]. We represent this remodeling process by the difference between a logistic
growth term with rate μ2 and a degradation term (where αc is the rate of ECM
degradation by uninfected cancer cells, and αi is the rate of ECM degradation by
infected cancer cells). Thus, the evolution of the ECM is governed by the following
equation:

∂u

∂t
= −u(αcc + αii)+ μ2u(1− u

C
− c

C
− i

C
),
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Oncolytic Virus v(x, t) We assume that the virus can spread randomly in ECM
density-dependent manner through the environment withDv(u) the randommotility
coefficient which quantifies how virus particles outside infected cells can freely
move around less dense ECM. We opt for the phenomenological form:

Dv(u) = Dv(1− u

C
),

where Dv is a reference diffusion in absence of ECM. Furthermore, the virus
particles duplicate at rate b, the burst size of infected cancer cells, which release
the new virions in the environment. However, the number of free virus particles
reduction is mainly due to the natural virion’s death at rate δv , and the trapping
of these virus particles into the cancer cells at rate ρ. In summary, the governing
equation for the density of virus particles is as follows:

∂v

∂t
= ∇(Dv(u)∇v)+ bi − ρcv − δvv.

In summary, we obtain the following system of PDE-ODE equations, where all
the parameters in the system are nonnegative:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
= Dc�c − ηc∇.(c∇u)+ μ1c(1− c

C
− i

C
)− ρcv in �× ]0, T [ ,

∂i

∂t
= Di�i − ηi∇.(i∇u)+ ρcv − δii in �× ]0, T [ ,

∂u

∂t
= −u(αcc + αii)+ μ2u(1− u

C
− c

C
− i

C
) in �× ]0, T [ ,

∂v

∂t
= ∇(Dv(u)∇v)+ bi − ρcv − δvv in �× ]0, T [ .

(1)
Based on the aforementioned assumptions the system is closed with the following
homogenous initial and boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

c(x, 0) = c0(x)
i(x, 0) = i0(x)
u(x, 0) = u0(x)
v(x, 0) = v0(x)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dc
∂c

∂n
+ ηcc ∂u

∂n
= 0 in ∂�× ]0, T [ ,

Di
∂i

∂n
+ ηii ∂u

∂n
= 0 in ∂�× ]0, T [ ,

Dv(u)
∂v

∂n
= 0 in ∂�2 × ]0, T [ ,

v = vb in ∂�1 × ]0, T [ ,

where n is the outward normal vector to ∂� and vb is the value of v at the blood
vessel.

2.1 Dimensionless Form

Let L = 0.1cm and τ = L2

D
, (where D ≈ 10−6 cm2 s−1 according to [41]) be

the characteristic length and time scale respectively. We define the dimensionless
variables as follows:

c̃ = c

C
, ĩ = i

C
, ũ = u

C
, ṽ = v

C
, x̃ = x

L
, t̃ = t

τ

and new parameters via the following scaling:

D̃c = τDc

L2 , D̃i = τDi

L2 , D̃v = τDv

L2 , η̃c = ηc τC
L2 , η̃i = ηi τC

L2 , μ̃1 = τμ1,

ρ̃ = τρC, δ̃i = τδi , α̃c = ταcC, α̃i = ταiC, μ̃2 = τμ2, b̃ = τb, δ̃v = τδv

c̃(x, 0) = c(x, 0)

C
, ĩ(x, 0) = i(x, 0)

C
, ũ(x, 0) = u(x, 0)

C
, ṽ(x, 0) = v(x, 0)

C
.

Henceforth, we drop the tilde over all variables for convenience. The dimensionless
form of the model equations (1) can then be written in the following general form:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
= Dc�c − ηc∇.(c∇u)+ μ1c(1− c − i)− ρcv in �× ]0, T [ ,

∂i

∂t
= Di�i − ηi∇.(i∇u)+ ρcv − δii in �× ]0, T [ ,

∂u

∂t
= −u(αcc + αii)+ μ2u(1− u− c − i) in �× ]0, T [ ,

∂v

∂t
= ∇(Dv(u)∇v)+ bi − ρcv − δvv in �× ]0, T [ ,

Dc
∂c

∂n
+ ηcc ∂u

∂n
= 0 in ∂�× ]0, T [ ,

Di
∂i

∂n
+ ηii ∂u

∂n
= 0 in ∂�× ]0, T [ ,

Dv(u)
∂v

∂n
= 0 in ∂�2 × ]0, T [ ,

v = vb in ∂�1 × ]0, T [ ,

c(x, 0) = c0(x) in �,

i(x, 0) = i0(x) in �,

u(x, 0) = u0(x) in �,

v(x, 0) = v0(x) in �.
(2)

We suppose that c0, i0, u0, v0 ∈ L2(�) and are nonnegative.

3 Finite Element Scheme

The mathematical model (2) considered in the previous section is a highly nonlinear
coupled system of partial and ordinary differential equations. Thus, we can’t afford
to solve it analytically. Aiming to solve it numerically, we present a finite element
scheme in this section. First, we derive the variational formulation for the uninfected
and infected cancer cells density equations, the ECM density equation and the
virus density equation. Further, we present the temporal discretization of the model
equations. Finally, we describe a fixed-point-iteration to handle the nonlinear terms
in the system (2) and we provide an appropriate numerical scheme.
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3.1 Variational Formulation

In order to show the numerical formulation of the problem, let V =
L2(0, T ;H 1(�)) be the space of approximate solutions and W = H 1(�) be
the space of tests functions. Let Wh be a finite element space of Lagrange P1
included in W and V h = L2(0, T ;Wh) be the finite dimensional subspace of V .
The Faedo-Galerkin formulation for the problem is given by, finding ch, ih, uh ∈ V
and vh ∈ V such that vh = vhb in ∂�1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂ch
∂t
, φ
)
+ ac(ch, ch, ih, uh, vh, φ) = 0(

∂ih
∂t
, φ
)
+ ai(ih, ch, uh, vh, φ) = 0(

∂uh
∂t
, φ
)
+ au(uh, uh, ch, ih, φ) = 0(

∂vh
∂t
, ψ
)
+ av(vh, ch, ih, uh, ψ) = 0

ch(x, 0) = ch,0(x) in �,
ih(x, 0) = ih,0(x) in �,
uh(x, 0) = uh,0(x) in �,
vh(x, 0) = vh,0(x) in �,

(3)

for all φ ∈ Wh and ψ ∈ Wh such that ψ = 0 in ∂�1, and a. e. t ∈ ]0, T [ where:

ac(c1, c2, i, u, v, φ) = Dc
∫

�

∇c1.∇φdx−ηc
∫

�

c1∇u.∇φdx−μ1

∫

�

c1(1−c2−i)φdx+ρ
∫

�

c1vφdx,

ai(i, c, u, v, φ) = Di
∫

�

∇i.∇φdx−ηi
∫

�

i∇u.∇φdx−ρ
∫

�

cvφdx+δi
∫

�

iφdx,

au(u1, u2, c, i, φ) =
∫

�

u1(αcc + αii)φdx − μ2

∫

�

u1(1− u2 − c − i)φdx,

av(v, c, i, u, ψ) =
∫

�

Dv(u)∇v.∇ψdx−b
∫

�

iψdx+ρ
∫

�

cvψdx+δv
∫

�

vψdx,

ch,0(x), ih,0(x), uh,0(x) and vh,0(x) are respectively the projections of c0(x), i0(x),
u0(x) and v0(x) onWh.

3.2 Discrete Problem

In this section, we present the temporal discretization of the coupled variational sys-
tem (3), where we discussed the application of Crank-Nicolson time discretization.
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3.2.1 Temporal Discretization

Let 0 = t0 < t1 < ... < tN = T be a decomposition of the considered time interval
]0, T [ , and δt = tn+1 − tn, n = 0, 1, ..., N − 1 denotes the uniform time step. In
addition, we use cnh (x) := ch (x, tn) , inh (x) := ih (x, tn) , unh (x) := uh (x, tn) and
vnh (x) := vh (x, t

n) to denote the approximation of the solutions at time tn. We
apply the implicit Crank-Nicolson discretization scheme, which is second order and
A-stable, then the semi-discrete form of the system (3) reads:

For given cn−1
h , in−1

h , un−1
h and vn−1

h with c0h = ch,0, i
0
h = ih,0, u

0
h = uh,0 and

v0h = vh,0, find cnh, inh, unh ∈ Wh and vnh ∈ Wh such that vnh = vhb in ∂�1 such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
cnh − cn−1

h

δt
, φ

)
+ 1

2
ac(c

n
h, c

n
h, i

n
h, u

n
h, v

n
h, φ) = −1

2
ac(c

n−1
h , cn−1

h , in−1
h , un−1

h , vn−1
h , φ)

(
inh − in−1

h

δt
, φ

)
+ 1

2
ai(i

n
h, c

n
h, u

n
h, v

n
h, φ) = −1

2
ai(i

n−1
h , cn−1

h , un−1
h , vn−1

h , φ)

(
unh − un−1

h

δt
, φ

)
+ 1

2
au(u

n
h, u

n
h, c

n
h, i

n
h, φ) = −1

2
au(u

n−1
h , un−1

h , cn−1
h , in−1

h , φ)

(
vnh − vn−1

h

δt
, ψ

)
+ 1

2
av(v

n
h, c

n
h, i

n
h, u

n
h, ψ) = −1

2
av(v

n−1
h , cn−1

h , in−1
h , un−1

h , ψ)

(4)
for all φ ∈ Wh and ψ ∈ Wh such that ψ = 0 in ∂�1.

3.2.2 Numerical Scheme

The nonlinearity in the semi-discrete form of the system (4) besides the coupling
between the equations makes the computations a very challenging task. In one hand,
a fully implicit treatment of the nonlinear and coupled terms leads to a coupled
nonlinear algebraic system and it will be a very tough task to solve it with a nonlinear
solver, in the other hand an explicit treatment leads to a linearized system in which
the equations are solved simultaneously. However, it may require a severe restriction
on the time step. Accordingly, we suggest a fixed-point iteration method [42] to treat
the nonlinear and coupled terms semi-implicitly. For instance, let us explain briefly
the fixed point iteration steps for a nonlinear term in the uninfected cancer cells
density equation in the time interval (tn−1, tn). Let cnh,0 = cn−1

h , unh,0 = un−1
h and

inh,0 = in−1
h and we replace the nonlinear integral terms in the uninfected cancer

cells density with:

∫

�

cnh,k∇unh,k.∇φdx �
∫

�

cnh,k∇unh,k−1.∇φdx,
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∫

�

cnh,k(1− cnh,k − inh,k)φdx �
∫

�

cnh,k(1− cnh,k−1 − inh,k−1)φdx

for k = 0, 1, 2, .... We iterate until the residual of the system (4) is less than the
prescribed threshold value

(
10−8

)
or until the maximal number of iterations is

reached. Finally, we set cnh = cnh,k and advance to the next time step. We handle
the nonlinear and coupled terms in all other equations in a similar way by using the
above prescribed iteration of fixed point type. Consequently, the linearized form of
the system (4) in the interval (tn−1, tn) reads:

For given cnh,0 = cn−1
h , inh,0 = in−1

h , unh,0 = un−1
h and vnh,0 = vn−1

h with c0h =
ch,0, i

0
h = ih,0, u

0
h = uh,0 and v0h = vh,0, find cnh,k, i

n
h,k, u

n
h,k and v

n
h,k satisfying

vnh,k = vhb in ∂�1 such that for all φ ∈ Wh and ψ ∈ Wh with ψ = 0 in ∂�1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
cnh,k, φ

)+ δt

2
ac(c

n
h,k, c

n
h,k−1, i

n
h,k−1, u

n
h,k−1, v

n
h,k−1, φ) =

(
cn−1
h , φ

)
− δt

2
ac(c

n−1
h , cn−1

h , in−1
h , un−1

h , vn−1
h , φ)

(
inh,k , φ

)+ δt

2
ai (i

n
h,k, c

n
h,k, u

n
h,k−1, v

n
h,k−1, φ) =

(
in−1
h , φ

)
− δt

2
ai (i

n−1
h , cn−1

h , un−1
h , vn−1

h , φ)

(
unh,k, φ

)+ δt

2
au(u

n
h,k, u

n
h,k−1, c

n
h,k, i

n
h,k, φ) =

(
un−1
h , φ

)
− δt

2
au(u

n−1
h , un−1

h , cn−1
h , in−1

h , φ)

(
vnh,k, ψ

)+ δt

2
av(v

n
h,k, c

n
h,k, i

n
h,k, u

n
h,k, ψ) =

(
vn−1
h , ψ

)
− δt

2
av(v

n−1
h , cn−1

h , in−1
h , un−1

h , ψ)

(5)

4 Numerical Simulation and Results

In this section, we investigate numerically the model introduced previously. We
aim to observe the cancer response to oncolytic virotherapy via tracking the model
behaviour with respect to several aspects such as: cancer cells density, tumour load
(c + i), or cancer suppression.

For the numerical investigation, we first choose a baseline parameters (see
Table 1) which are mainly based on the published studies in [29, 36, 41, 43] and
present accordingly the spatial propagation of the oncolytic virus at several time
stages. Second, we vary some of the parameters involved in virus dynamics and
spread: the virus replication rate b, the infection rate of cancer cells ρ, and the death
rate of infected cancer cells δi . Finally, based on the obtained results with different
parameter values, we discuss the condition that can improve tumour suppression.

Visualizing the Oncolytic Viral Diffusion
In Figs. 2 and 3 we present the spatial propagation of the oncolytic virus for different
relative time stages.
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Table 1 Baseline parameters values for the model

Dimensional
Parameter value Non dimensional value Unit Reference

Dc (Diffusion coefficient
of uninfected cancer
cells)

0.00675 – mm2/h [29]

Di (Diffusion coefficient
of infected cancer cells)

0.0054 – mm2/h [29]

Dv (Diffusion coefficient
of viruses in the
reference case)

0.036 – mm2/h [29]

ηc (Haptotaxis
coefficient of uninfected
cancer cells)

– 2.85× 10−2 cm2 s−1 M−1 [43]

ηi (Haptotaxis coefficient
of infected cancer cells)

– 2.85× 10−2 cm2 s−1 M−1 [43]

μ1 (Proliferation rate of
uninfected cancer cells)

– 0.25 h−1 [43]

ρ (Infection rate of cells
by viruses)

– 79× 10−3 mm2/h virus [29]

δi (Death rate of infected
cancer cells)

0.05 – 1/h [29]

αc (Degradation rate of
ECM by uninfected
cancer cells)

– 0.15 1/h [41]

αi (Degradation rate of
ECM by infected cancer
cells)

– 0.075 1/h [41]

μ2 (ECM remodelling
rate)

– 0.015 1/h [41]

b (Virus replication rate) 2 – 1/h [31]

δv (Clearance rate of
viruses)

0.025 – 1/h [29]

C (Carrying capacity for
cancer cells and ECM)

106 – Cells/mm3 [29]

rb (Radius of the blood
vessel)

0.01 – mm Estimated

BVF (Blood volume
fraction)

0.05 – – [36]

vb (Value of v at the
blood vessel)

0.01× 106 0.01 Cells/mm3 Estimated

c0 (Initial condition of
uninfected cancer cells)

0.5× 106 0.5 Cells/mm3 Estimated

i0 (Initial condition of
infected cancer cells)

0 0 Cells/mm3 Estimated

u0 (Initial condition of
ECM)

0.5× 106 0.5 Cells/mm3 Estimated

v0 (Initial condition of
viruses)

0 0 Cells/mm3 Estimated
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In the following, we will discuss the outcomes of varying some parameters in
the model. The main focus here is on the key parameters that are relevant to the
oncolytic viruses. All the other parameter remain the same as in Table 1.

Virus Replication Rate (Burst Size) Known to be crucial within virotherapy
treatment, the virus replication rate is the number of virus particles released by
an infected cancer cell. We start our investigation by focusing first on the rate
b at which the virus duplicate. We perform numerical experiments with b = 0,
b = 2, b = 4, b = 9 and b = 200. Consequently, we found that there are two
threshold value for the burst size. When the burst size is below the first threshold
value the virotherapy always fails and the tumour grows to its maximum (carrying
capacity) size (see Fig. 4). When the burst size is between the two threshold values,
we obtain a partial success of the virotherapy as illustrated in Figs. 5 and 6. As an
increase in the burst size will lead to a decrease in the tumour load, we can reach
a minimum tumour load by genetically increasing the burst size of the virus up
to the second threshold value, and still have a stable partial therapeutic success.
However, once the burst size is above the second threshold, we obtain periodic
oscillations with decay (Fig. 7), and if the burst size is large enough the tumour
load can drop to an undetectable level then the cancer starts growing again (see
Fig. 8). While the concept of oscillating tumour may seem abnormal, such behaviour
have been seen in experimental observations and also in several ODE based viral
dynamic models [15, 17, 23, 44, 45]. Furthermore, the oscillatory behaviour can be
seen as analogous to the typical behaviour of predator-prey systems, where each
population depends on the other for survival. The long period orbit can be viewed
as a complete tumour eradication or tumour remission. In fact, a long period orbit
can be biologically interpreted also as a complete tumour eradication: if the cancer
cells population drops below certain level, this could signify extinction especially if
we take into account increased clearance due to nutrient deficiency or a moderate
reinforcement of virotherapy with another type of therapy. Long period orbits can
also be considered as a remission or recurrence where reducing the amplitude of
the orbit and increasing the period between the oscillations correspond to a more
successful treatment. Furthermore, increasing exaggeratedly the burst size leads to
an increase in the ECM density which will reduce the viral diffusion (see Fig. 8d).

Infection Rate of Cancer Cells In the following, we study the influence of viral
infection rate (ρ) on the cancer dynamic. Experimental studies have shown that
increasing the infection rate of cancer cells plays a pivotal role in the development
of new anti-cancer therapies [46]. Aiming to investigate this aspect, we performed
several simulation tests where we decreased and increased the baseline value ρ =
79× 10−3 by a factor of three (to ρ3 and 3ρ, respectively). As illustrated in Fig. 9 a
three fold decrease in the infection rate leads to a poorer elimination of the cancer
cells, compared to the case where the infection rate is increased three fold.

Death Rate of Infected Cancer Cells The death rate of infected cancer cells is
the rate at which the infected cells are eliminated from the system by anti-viral
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(a)

(b)

Fig. 2 Spatial propagation of the oncolytic virus for different relative time stages. (a) t=0. (b) t=10
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(a)

(b)

Fig. 3 Spatial propagation of the oncolytic virus from relative time t=100 to T=720. (a) t=100.
(b) T=720
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Fig. 4 Dynamics of the model at point (0, 0.16) for b = 0. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) ECM

immune response [47]. We reduce δi by a factor of four (δi/4), then we notice
that uninfected cancer cells are reduced dramatically (see Fig. 10d). This result is
expected because the persistence of infected cancer cells promote the replication of
more viruses inside these cells. Contrarily, increasing δi by a factor of four (4δi)
results in a weaker suppression of cancer cells as illustrated in Fig. 10a–c. However,
the parameter δi alone does not show a clear influence towards the elimination of
the tumour cells.

5 Conclusion

In this study, we introduced a system of partial differential equations coupled to
an ordinary differential equation to simulate the treatment of cancer by using ther-
apeutic viruses. The mathematical model illustrates the spatiotemporal dynamics
between virotherapy, infected and uninfected cancer cells. The nonlinear terms
in the coupled equations are handled semi-implicitly using an iteration of fixed-
point type. The numerical simulations were carried out for different values of
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Fig. 5 Evolution of the tumour load at point (0, 0.16) for b = 2
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Fig. 6 Dynamics of the model at point (0, 0.16) for b = 4. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) Tumour load
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Fig. 7 Dynamics of the model at point (0, 0.16) for b = 9. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) Tumour load

the parameters related to virus dynamics and spread, namely, the burst size, the
infection rate, and the clearance rate of infected cancer cells. The results showed
that an improved therapy can be obtained by increasing the burst size, increasing
the infection rate, and decreasing the death rate of infected cancer cells. However,
since the tumour load can drop to an undetectable level then grows back, this mean
that oncolytic virotherapy may not be able to eliminate all tumour cells from the
body tissue. Thus, it’s necessary to incorporate another treatment with virotherapy.
In our study, the viruses are delivered continuously, a future research could include
different delivery methods for viruses. Finally, another research point could be an
investigation of the role of the immune system in the virotherapy.
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Fig. 8 Dynamics of the model at point (0, 0.16) for b = 200. (a) Uninfected tumour cells. (b)
Infected tumour cells. (c) Viruses. (d) ECM
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Fig. 9 Evolution in time of the tumour load at point (0, 0.16) showing two variations of the
baseline viral infection rate ρ (namely: (a). Tumour load for ρ3 ; (b). Tumour load for ρ; and (c).
Tumour load for 3ρ)
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Fig. 10 Evolution in time of the tumour load at point (0, 0.16) showing two variations of the
baseline infected cancer cells death rate δi (namely: (a) Tumour load for δi/4, (b) Tumour load for
δi , and (c) Tumour load for 4δi ); and (d) the evolution of Uninfected cancer cells for δi/4



308 H. Lefraich

Reference

1. C. Fountzilas, S. Patel and D. Mhalingam, Oncotarget 8, 1729 (2017).
2. H. L. Kaufman, F. J. Kohlhapp and A. Zloza, Nat. Rev. Drug Discov 14, 642 (2015).
3. J. Pol, G. Kroemer and L. Galluzzi, Oncoimmunology 5, e1115641 (2016).
4. S. J. Russel, K. W. Peng and J. C. Bell, Nat. Biotechnol. 30, (2012).
5. A. Timalsina, J. P. Tian and J. Wang, Bull. Math. Biol. 79, (2017).
6. H. Fukuhara, Y. Ino and T. Todo, Cancer. Sci. 107, (2017).
7. R. Alemany, Clinical and Translational Oncology 15, 182 (2013).
8. H. Wong, N. Lemoine and Y. Wang, Viruses 2, 1 (2010).
9. B. Kaur, T. Cripe and E. Chiocca, Curr Gen Ther 9, (2009).
10. N. Kuriyama, H. Kuriyama, C. Julin, K. Lamborn and M. Israel, Hum Gene Ther 11, 1729

(2000).
11. N. Dmitrieva, L. Yu, M. Viapiano, T. Cripe, E. Chiocca, J. Glorioso and B. Kaur, Clin. Cancer

Res. 17, 1362 (2011).
12. D. Wodarz, Gene Ther Mol Biol 8, 137 (2004).
13. D. Wodarz, Cancer Research 61, 3501 (2001).
14. D. Wodarz, Human Gene Therapy 14, 153 (2003).
15. N. Komarova and D. Wodarz, Journal of Theoretical Biology 263, 530 (2010).
16. A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Biology Direct 1, 1 (2006).
17. Z. Bajzer, T. Carr, K. Josic, S. G. Russel and D. Dingli, Journal of Theoretical Biology 252,

109 (2008).
18. M. Biesecker, J.-H. Kimn, H. Lu, D. Dingli and Z. Bajzer, Bulletin of Mathematical Biology

vol. 72, 469 (2010).
19. A. Friedman, P. Tian, G. Fulci, A. Chiocca and J. Wang, Cancer Research Vol 66, 2314 (2006).
20. P. Tian, Mathematical Biosciences and Engineering Vol 8, 841 (2011).
21. A. E.-A. Laaroussi, M. E. Hia, M. Rachik, E. Benlahmar and Z. Rachik, Applied Mathematical

Sciences 8, 929 (2014).
22. P. S. Kim, j. j. Crivelli, I.-K. Choi, C.-O. Yun and J. R. Wares, Mathematical Biosciences and

Engineering 12, 841 (2015).
23. D. Dingli, C. Offord, R. Myers, K.-W. Peng, T. Carr, K. Josic, S. Russell and Z. Bajzer, Cancer

Gene Therapy 16, 873 (2009).
24. M. A. Nowak and R. M. May, Oxford University Press, (2000).
25. C. Alvarez-Breckenridge, B. Choi, C. Suryadevara and E. Chiocca, Curr. Opin. Virol. 13, 25

(2015).
26. M. A. Nowak, C. R. M. Bangham, Science 272, 74 (1996). 2, 131 (2011).
27. J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Bulletin of Mathematical Biology vol. 63,

731 (2001).
28. L. M. Wein, J. T. Wu and D. H. Kirn, Cancer Research vol. 63, 1371 (2003).
29. B. I. Camara, H. Mokrani and E. Afenya, Mathematical Biosciences and Engineering 10, 565

(2013).
30. J. Malinzi, P. Sibanda and H. Mambili-Mamboundou, Mathematical Biosciences 263, 102

(2015).
31. J. Malinzi, A. Eladdadi and P. Sibanda, J. Biological Dynamics 11, 244 (2017).
32. J. Malinzi, R. Ouifki, A. Eladdadi, D. F. M. Torres and K. A. J. White, Math. Biosci. Eng. 15,

1435 (2018).
33. S. B. Carter, Nature213, 256 (1967).
34. A. S. G. Curtis, Journal of Embryology and Experimental Morphology22, 305 (1969).
35. J. Pascal, E. L. Bearer, Z. Wang, E. J. Koay, S. A. Curley and V. Cristini, Proceeding of the

National Academy of Sciences vol. 110, 14266 (2013).
36. Z. Wang, R. Kerketta, Y. L. Chuang, PLoS Computational Biology vol. 12, e1004969 (2016).
37. K. T. Nguyen, Journal of Nanomedicine & Nanotechnology vol. 2, (2011).
38. A. Laird, J. Cancer18, 490 (1964).



Computational Modeling of Cancer Response to Oncolytic Virotherapy:. . . 309

39. C. Guiot, P. Degiorgis, P. Delsanto, P. Gabriele and T. Diesboeck, Journal of Theoretical
Biology 225, 147 (2003).

40. T. Cox and J. Erler, Dis. Model Mech 4, 165 (2011).
41. M. A. J. Chaplain and G. Lolas, Netw. Heterog. Media 1, 399 (2006).
42. S. Ganesan and L. Tobiska, Internat. J. Numer. Methods Fluids 57, 119 (2008).
43. L. Peng, D. Trucu, P. Lin, A. Thompson and M. A. J. Chaplain, Bulletin of Mathematical

Biology 79, 389 (2017).
44. L. R. Paiva, C. Binny, S. C. Ferreira and M. L. Martins, Cancer Research vol. 69, 1205 (2009).
45. M. I. Titze, J. Frank, M. Ehrhardt, S. Smola, N. Graf and T. Lehr, European Journal of

Pharmaceutical Sciences vol. 97, 38 (2017).
46. J. Maroun, M. M. Noz Alia, A. Ammayappan, A. Schulz, K. W. Peng and S. Russel, Future

Medicine 12, 193 (2017).
47. A. Filley and M. Dey, Frontiers in Oncology 106, 8 (2017).



Propensity Matrix Method for Age
Dependent Stochastic Infectious Disease
Models

P. Boldog, N. Bogya, and Z. Vizi

1 Introduction

Quick and effective response to an emerging infection requires a large amount
of information about the course of the epidemic (such as infection and recovery
rate, latency period, etc.) and state of the art mathematical models. As it has been
observed during the COVID-19 pandemic, the information at our disposal is highly
limited, especially at the very beginning of the disease outbreak—when we have to
act quickly. Thus, our models, and therefore their computer implementations have
to be modified drastically on a daily basis.

Experts from the field of mathematical epidemiology, such as Rost et al. [1]
and Barbarossa [2], usually apply deterministic models to predict the spread of the
disease as a first approximation. Nevertheless, realistic models (with several classes
of infection, age structure or spatial patches) tend to get difficult to analyze. Fur-
thermore, deterministic models do not produce information about several important
aspects of the epidemic, such as the variance of the state variables or the probability
of certain events (like extinction) that are particularly important at the beginning of
the outbreak.

Stochastic modeling approach offers feasible alternatives for tackling the above
mentioned problems. Although the governing equation (the so called stochastic
master equation) is often analitically intractable, numerical simulations of the
corresponding Markov process and the average of the generated time series provides
valuable information of several aspects of the epidemic.

Gillespie’s stochastic simulation algorithm [4] (SSA) was originally designed
to produce exact realisations of the stochastic master equation in case of coupled
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chemical reaction systems. Since then, the scope of the SSA has been extended
[7] in the last 40 years to stochastically simulate other chemical or biological
phenomena. Gillespie’s algorithm also yields a convenient method of simulation
to gather information about an epidemic in the stochastic approach.

During the COVID-19 pandemic, one important lesson was that, quick imple-
mentation of—possibly complicated—stochastic epidemic models with several age
groups is crucial for effective forecasting. The aim of the present paper is to provide
a method that enables researchers to quickly prototype, build and modify robust
stochastic epidemic models with age structure.

The structure of the paper is as follows: in the remaining subsections of the
Introduction, we introduce Gillespie’s first reaction method and provide a Python
code for the case of the SIR model. In Sect. 2, we introduce our propensity matrix
approach and extend our model implementation with age structure. Then, we
demonstrate the flexibility of our approach by generalizing the model with other
state variables to investigate an epidemiologically more realistic age-stratified model
containing the E (exposed) and the D (dead) classes additionally. In Sect. 3, we
introduce the update graph to make the algorithm much more efficient in terms of
computation. Then in Sect. 4, we demonstrate the strength of stochastic epidemic
models via some experiments with a hypothetical population. Finally, we summarize
and discuss our results in Sect. 5.

1.1 Gillespie’s Stochastic Simulation Algorithms

Considering a group of chemical species (S1, S2, . . . , Sn) reacting in a coupled
system with reaction channels (R1, R2, . . . , Rm) in a well mixed environment,
Gillespie’s stochastic simulation algorithms are based on answering two questions
[4]:

(i) What kind of reaction (R1, R2, . . . , Rm) will the next reaction be?
(ii) In what time (τ ) will it occur?

Gillespie formulated two distinct, but mathematically identical versions of the SSA:
the so called ‘direct method’ (DM) and the ‘first-reaction method’ (FRM). The main
difference is in the way of deciding which reaction channel to fire. The first-reaction
method generates m random time values (τ1, . . . , τm) for the m possible reactions
from the corresponding exponential distributions and selects the reaction channel
with the least time to fire. Alternatively, the direct method only requires two random
numbers (one from a uniform distribution and one from an exponential distribution).
Considering the fact that if there are more than 2 possible reactions then the FRM
requires more computation and memory than the DM, moreover drawingm random
numbers from exponential distributions requires calculating m logarithms, we may
conclude that the computational cost of the first-reaction method is even greater [3].
As we are about to work with robust systems of reactions, we only review and make
use of the direct method in the following.
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1.1.1 The Direct Method Algorithm

The direct method SSA creates stochastic realizations of the corresponding Markov
chain that is continuous in time and discrete in state variables. Technically, starting
from the vector of initial values (X1(0), . . . , Xn(0)) ∈ N

n
0, the time series of the

state variables (X1(t), . . . , Xn(t)) ∈ N
n
0 is generated by constantly updating the

state variables in properly generated subsequent times (τ ) according to the answers
to question (i) and (ii).

To this end, the reaction probability density function, P(τ, μ)dτ , is defined
[3]. That is, at time t , the next reaction in the reaction chamber will occur in the
differential time interval (t + τ, t + τ + dτ) with the probability P(τ, μ)dτ , and
will be an Rμ reaction (μ ∈ 1, . . . , m).

It can be shown that [3], with the procedure called conditioning, the two
variable density function P(τ, μ) can be written as the product of two one-variable
probability density functions:

P(τ, μ) = P1(τ ) · P2(μ|τ). (1)

In particular, from the paper of Gillespie [3], it turns out to be

P(τ, μ) = aμ · e−τ ·a,

where the symbol aμ stands for the so called propensity function that characterizes
reaction Rμ, and may depend on the quality, and actual number of the reactants or
the environment, etc. For convenience, we use the notation a = ∑m

μ=1 aμ for the
sum of the propensity functions.

At time t let P1(τ )dτ be the probability that the next reaction will occur between
times t + τ and t + τ + dτ , independent of which reaction it might be. Similarly,
P2(μ|τ) is the probability that the next reaction will be the Rμ reaction, given that
the next reaction occurs at t + τ . The probability P1(τ ) is obtained by summing the
reaction probability density function over all possible μ values:

P1(τ ) =
m∑

μ=1

P(τ, μ) = a · e−τ ·a. (2)

Substituting P1(τ ) into (1) and solving for P2(μ|τ) we obtain

P2(μ|τ) = aμ

a
. (3)

It is clear that
∫∞
0 P1(τ )dτ = ∫∞

0 a · e−τ ·a = 1. Moreover,
∑m
μ=1 P2(μ|τ) =∑m

μ=1
aμ
a

= 1.
With these notations and probability distributions, the direct method SSA can be

described as follows.
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(1) Initialization:

(i) set t ← 0,
(ii) set initial values (X1(0), . . . , Xn(0)) ∈ N

n
0,

(iii) prescribe halting conditions CH .

(2) Calculate propensity functions aμ for all μ ∈ 1, 2, . . . , m.
(3) Decide when the next reaction will occur: choose τ according to Eq. (2),

(i) choose r1 from (0, 1) with a uniform distribution,
(ii) obtain τ = (1/a) ln(1/r1).

(4) Decide which reaction occurs: choose μ according to Eq. (3),

(i) choose r2 from (0, 1) with a uniform distribution,
(ii) take μ to be the integer for which

μ−1∑

j=1

aj < r2a ≤
μ∑

j=1

aj .

(5) Update time and state variables:

(i) calculate change (�X1, . . . ,�Xn) ∈ Z
n in number of reactants according

to μ,
(ii) change the number of molecules according to

(X1(t + τ),. . ., Xn(t + τ))=(X1(t),. . .,Xn(t))+(�X1,. . .,�Xn),

(iii) set t ← t + τ .
(6) Halt if CH = T rue else continue the process with Step (2).

1.2 Gillespie’s Algorithm for the SIR Model

The well known deterministic SIR model is a system of ordinary differential
equations (4), and it is one of the simplest models to capture the spread of an
infection in a population without demography. It separates the population into three
classes: S(t)—the number of susceptible, I (t)—the number of infected, and R(t)—
the number of recovered individuals in the population at time t , the symbol ()′ stands
for the usual time derivative. The model defines two reactions that we will call events
from now on. Susceptible individuals get infected with rate β by making effective
contact with infected individuals in the population. Infected individuals recover at
a rate γ , and the per capita contact between S and I is SI

N
. We consider a constant
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Table 1 The table shows the possible events in the SSA in case of the SIR epidemic model

Event Transition Change (�S,�I,�R) Propensity Probability

Infection S → I (−1,+1, 0) a1 = β SI
N

p1 = a1
a

Recovery I → R (0,−1,+1) a2 = γ I p2 = a2
a

population size N = S(t) + I (t) + R(t) and the following rate of change in the
classes:

⎧
⎪⎪⎨

⎪⎪⎩

S′ = −β SI
N

I ′ = β SI
N − γI

R′ = γI.

(4)

In this section, by following the work of Gillespie [4] and Allen [5], we apply the
direct method SSA to the SIR model (4). In the stochastic simulation algorithm “. . .
the reaction constants are viewed not as reaction ‘rates’ but as reaction ‘probabilities
per unit time’ . . .” [3]. Thus, we follow the practice of Allen [5] and use the same
notations for the corresponding parameters in both aproaches.

The code we implemented can be found in our GitHub repository [11]. It is
important to note that, as we prepare to handle robust models in a flexible way, we
will not follow the common practice of reducing the state variables with decoupling
(4) by using the fact that N is constant in time.

In the stochastic SIR model, state variables S(t), I (t), R(t) ∈ {0, 1, . . . , N}, and
t ∈ [0,∞). In Table 1, we summarise the possible events with the corresponding
transitions, change in state variables, and we also define the belonging propensity
functions and probabilities. The intervent time τ is generated from the exponential
distribution (2) with parameter 1/a, where a = β SI

N
+ γ I and the probability

distribution of the possible events is p1 = a1/a and p2 = a2/a (with propensities
a1 = β SI

N
, a2 = γ I ).

2 The Propensity Matrix Method for Age Dependent
Stochastic Epidemic Models

In order to extend the SSA algorithm to handle the required age structure, we make
the following definitions and assumptions:

• assume a population of N individuals,
• the population is divided into l classes (l = 3 in the SIR model) according to the

characteristics of the epidemic: X1, . . . , Xl ,
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• the population is stratified into n age groups,
• this partition of the population leads us to the n · l compartments (that we will

call state variables as well) at time t :

X1
1(t), X

1
2(t), . . . , X

n
l−1(t), X

n
l (t)

• an event (or reaction) during the simulation corresponds to a transition of an
individual from one compartment to another in the same age group,

• we consider the epidemic in such a short time scale when aging is not significant,
thus we assume there is no transition between age groups,

• we assume that there is no demography (birth or natural death) during this short
time—if death is incorporated in the model, it only occurs due to the infection,

• the same transitions occur in every age group—possibly with zero rate.

Now, we define the propensity matrices as follows: for age group i, we define
propensity matrix Mi with index i in the following way: element Mi(j, k) = aij,k
of the propensity matrix represents the propensity function corresponding to the
transition of an individual from compartment Xij → Xik (at age group i).

In case of particular models when it is clear from the context we would use
the more convenient aiXj ,Xk notation for the propensity of transition Xij → Xik .
For instance in case of the age structured SIR model we do not bother with the
complicated indexing, simply note the propensity of transition Si → I i by aiS,I .
It is clear that the propensity matrix is the adjacency matrix of the transition graph
containing zero elements whenever a transition never happens and the propensities
respectively (cf. Fig. 2).

During the simulation, we calculate the propensity matrix for every age group.
Since, we observe the same transitions in every age group, we can outsource the
repeating calculations into n cycles, obtaining a cleaner and more compact code.

Then we choose the intervent time τ from distribution (2), where a is the sum of
all propensities over all propensity matrices:

a =
n∑

g=1

l∑

f=1

l∑

h=1

a
g
f,h, (5)

and choose the next event from distribution

P2 ((transition j → k at age group i)|τ) = pij,k =
aij,k

a
. (6)

Basically, one can obtain a transition from distribution (6) by choosing a random real
r ∈ (0, 1) with uniform distribution and summing the propensities of all transitions
over all age groups, then choosing transition Xj → Xk at age group i whenever
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n∑

g=1

l∑

f=1

l∑

h=1

a
g
f,h < r · a ≤

i∑

g=1

j∑

f=1

k∑

h=1

a
g
f,h.

Eventually, we have to update time: t ← t+τ and the state variables with the change
vector (�X1

1, . . . ,�X
n
l ), where only �Xij = −1 and �Xik = +1 are nonzero

elements:

(X1
1(t + τ), . . . , Xnl (t + τ)) = (X1

1(t), . . . , X
n
l (t))+ (�X1

1, . . . ,�X
n
l ).

With these assumptions and notations we are prepared to present the propensity
matrix algorithm that derives the time evolution of the state variables.

2.1 Algorithm Propensity Matrix Method

(0) Fix the order of the state variables: (X1
1, . . . , X

n
l ).

(1) Initialize: Set t ← 0, initial values (X1
1(0), . . . , X

n
l (0)), and halting condition

CH .
(2) Calculate propensity matricesMi for all age groups i ∈ {1, . . . , n}.
(3) Choose intervent time τ from P(τ) = a · e−τ ·a where a comes from (5),

(4) Choose the next reaction from the distribution pij,k =
aij,k
a

(6),
(5) Update state variables and time.
(6) Halt if CH = T rue else continue with step 2.

Propensity matrices of epidemic models are sparse, since, from one compart-
ment, there are usually only one or very few transitions to other compartments.
We also emphasise that this data structure provides a convenient way to easily
modify our model by including new transitions (like waning immunity), or deleting
transitions between age groups. Also, by extending the number of state variables,
we can further introduce new classes (like exposed, latent, hospitalized, dead or
recovered). In the following, we present the propensity matrices of two epidemic
models.

2.2 The Age Structured SIR Model with Waning Immunity

When we extend model (4) with age structure we have to consider the effect of
every infected age group on the susceptible population of age group i, furthermore
to include waning immunity to (4) we consider the Ri → Si transitions with age
dependent rate ωi , in the general case. Naturally, with ωi = 0 for i ∈ {1, . . . , n} we
get back to the case where waning immunity is not applied in the process. Hence,
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ai
SI =

1
N

Si ·
n∑

f=1

βfIf

ai
SR = αiSi

ai
IR = γiIi R

I
S

RIS

a

SI
ia

i

i

SRa i

Fig. 1 Propensity matrix and the corresponding propensities of the SIR model

with age dependent transmission rates βi , recovery rates γi and waning rates ωi we
obtain the system of ODEs for age group i:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Si
′ = − 1

N
Si ·

n∑

f=1

βf If + ωiSi

Ii
′ = 1

N
Si ·

n∑

f=1

βf If − γ Ii

Ri
′ = γ Ii − ωiSi

(7)

In the stochastic simulation formulation, let the order of state variables be (Xi1 =
Si,X

i
2 = Ii, Xi3 = Ri). Thus, the possible transitions and the belonging propensities

(with the previously simplified noation) in age group i in this model are infection
(aiSI ), waning immunity (aiSR) and recovery (aiIR). The propensity matrix and the
corresponding propensities can be seen in Fig. 1, where ‘•’ stand for a zero element
of the matrix. Python code for this model is included in the repository [11].

2.3 SEIRD Model with Age Structure and Waning Immunity

One strength of the propensity matrix technique is the flexibility in terms of
computer implementation. For instance, several disease models require an exposed
class E, as right after infection susceptibles usually do not show symptoms during
the latency period of length 1/εi . Thus with rate ε people move from class Ei to
class Ii . The corresponding propensity is aiEI = εiEi . We can further add class D to
our model, that counts the death cases caused by the infection: with age dependent
mortality rate piγ people move from class Ii to Di with the belonging propensity
aiID = piγ Ii . We also assume that recovered people loose immunity against the
disease with rate ω, thus, the corresponding propensity is aiRS = ωiRi .

Let the order of state variables at age group i be Xi1 = Si,X
i
2 = Ei,X

i
3 =

Ii, X
i
4 = Ri,X

i
5 = Di and aijk stands for the propensity of transition from
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D

R
IESi i i

i

i

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Si
′ = − 1

Ni
Si ·

∑n
f=1 βf If + ωiRi

Ei
′ = 1

Ni
Si ·

∑n
f=1 βf If − εiEi

Ii
′ = εiEi − γIi

Ri
′ = (1− pi)γIi − ωiRi

Di
′ = piγIi

IR

RS

a

EIa

a

SEa

i

a

iD
iR
iI

iS
iE

iDiRiIiEiS Transition Propensity

Infection a
i
SE =

1

Ni

Si ·
n∑

f=1
βf If

Going infectious a
i
EI = εEi

Recovery a
i
IR = (1 − pi)γIi

Death due to infection a
i
ID = piγIi

Waning of immunity a
i
RS = ωRi

Fig. 2 The SEIRD model with age structure and waning immunity. Possible transitions with
the belonging propensities are: infection, going infectious from exposed, recovery, death due to
infection and loss of immunity

compartment j to k at age group i. For flowchart of the process and the governing
ODE model with the propensity matrix and the remaining propensities see Fig. 2.

3 Updating the Propensities

Gillespie [4] suggests that “. . .it is necessary to recalculate only those quantities
aν , corresponding to reactions Rν , whose reactant population levels were just
altered. . .” in the reaction selection step.

Probably the most well known attempt to get around this concern belongs to
Gibson and Bruck [8]. Their Next Reaction Method (NRM) may be regarded
as an extension of Gillespie’s original first reaction method. They define the so
called reaction dependency graph that contains information about which propensity
function (aν) needs to be updated according to the chosen reaction in the selection
step. However, in the detailed comparison of the DM, FRM and NRM by Cao et al.
[6] it is found that “even with the best data structure, the NRM is less efficient than
the DM except for a very specialized class of problems”. As Scvehm [9] points out,
this is mostly due to the fact that in case of the Gibson-Bruck method “the simulator
engine spends most of its execution time for maintaining the priority queue of the
tentative reaction times”.

In this section we provide a dependency graph like method to make use of the
fact that upon a transition event mostly only a small number of propensity functions
have to be recalculated. For instance in case of the age structured SEIRD model
in Sect. 2.3 the waning immunity event at age group i only changes state variable
Ri and Si hence it only influences propensity function aiRS and aiSE . All other
propensities in age group i and every other propensities in the other age groups
remain unchanged, that is 3 + (n − 1) · 5 = 5n − 2 number of events in case of n
age groups.
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Fig. 3 Update graph of the SEIRD model. The figure shows the bipartite update graph that
contains information about the classes and propensity functions to be updated upon event selection

In our methodology, in every iteration step after choosing the transition from
distribution (6), we selectively update the propensity values based on this transition.
We do this with the help of a suitable data structure that is a directed bipartite graph,
called the Update Graph (UG) and is defined the following way: let C be the set
of nodes associated with the classes (cf. Sect. 2) and let T be the other set of nodes
representing the possible transitions between the classes. The edge c → tXj ,Xk
(where tXj ,Xk is the transition from Xj to Xk) exists only if the class of a modified
state variable c ∈ C updates the propensity of transition tXj ,Xk ∈ T . Also edge
tXj ,Xk → c exists only if c = Xj or c = Xk . For convenience we note that from
any node tXj ,Xk ∈ T there are always two edges pointing out, one to class Xj and
the other one to class Xk .

However from class c ∈ C there may be several edges pointing to different
transitions, for instance in the SEIRD model infection, recovery and death are
all depending on the number of I individuals in a given age group. We also
point out that (in case of the SEIRD model) Si individuals can be infected not
only by individuals from compartment Ii but from all compartment Ig at all age
groups, g ∈ {1, . . . , n}. Therefore, change in any infectious compartment affects
the propensity for transitions in all age groups. Thus upon an infection event all
propensities agSE, g ∈ {1, . . . , n} have to be updated. In more complicated models
there may be several infectious classes (such as latent or in case of ebola models
even dead individuals may cause infection). To this end, in general, we flag (*) the
classes c∗ that influence propensities across all age groups and also flag transitions
t∗ that have to be updated for all age group whenever a compartment from a flagged
class changed. We handle this issue in the computer implementation.

For instance the two part of the UG of the SEIRDmodel with waning immunity is
shown on Fig. 3. The left part of the figure shows edges tXjXk → c and the right part

shows edges c → tXjXk . Class I
∗ and transition S

∗−→ E is flagged thus whenever
an I i compartment changes all propensities aiSE need to be updated.

During the simulation, after the event selection step we end up with the
coordinate triple (i, j, k) that selects transition tXj ,Xk at age group i. By using the
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tXj ,Xk → c edges of the graph (left figure) we update the state variables according to
Xij (t+τ) = Xij (t)−1, andXik(t+τ) = Xik(t)+1 and all otherXif (t+τ) = Xif (t)
remain unchanged. Next we update the propensity aijk according to the c→ tXj ,Xk
edges. If we encounter and edge that points from a flagged class to a flagged
transition then we updated all aijk for i ∈ {1, . . . , n}.

3.1 Propensity Matrix Method Extended with the Update
Graph

(0) Initialisation step:

• Fix the order of the state variables: (X1
1, . . . , X

n
l )

• Construct the Update Graph according to Sect. 3
• Set t ← 0, initial values (X1

1(0), . . . , X
i
l (0)), and halting condition CH .

• Calculate propensity matricesMi for all age groups i ∈ {1, . . . , n}
(1) Selection step:

• Choose intervent time from P(τ) = a · e−τ ·a where a comes from (5),
• Choose the next reaction tXj ,Xk at age group i from the distribution pij,k =

aij,k
a

(6),

(2) Update step:

• Time: t ← t + τ
• Update state variables: by using the tXj ,Xk → c edges of the graph update
Xij (t+τ) = Xij (t)−1, andXik(t+τ) = Xik(t)+1 and all otherXif (t+τ) =
Xif (t) remain unchanged,

• Update propensities: update the propensity aijk according to the c→ tXj ,Xk
edges. If we encounter and edge that points from a flagged class to a flagged
transition then we updated all aijk for i ∈ {1, . . . , n}.

(3) Halt if CH = T rue else continue with step 2.

4 Experiments

In this section, we demonstrate the advantages of the stochastic approach and the
flexibility of the propensity matrix—update graph method by experimenting with
some real life problems.

During the following simulations, we consider a population of 200,000 individu-
als divided into three age groups (0–14, 15–59 and 60+), with the aggregated contact
matrix from Prem et al. [10] and with the population distribution of Hungary from
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Fig. 4 Population related parameters of the demonstrated experiments. Agregated contact matrix
(left) and age stratification (right) of the investigated model population. Both data collection
corresponds to the Hungarian society

Table 2 Parameters of the
demonstrated epidemic

Parameter Value/age-dependent vector

Incubation period (ε−1) 5.2 (days)

Infectious period (γ−1) 5.0 (days)

Time spent immunized (ω−1) 180 (days)

Infection rate (β) 0.05

Probabilty of death (pi ) (0.0000451, 0.00117, 0.0281)

the Hungarian Central Statistical Office (KSH) age-stratification [12] (cf. Fig. 4).
We symmetrised the contact matrix according to Sec. 2.3.3. in Röst et al. [1].

Using the stochastic SEIRDmodel with immunity waning from Sec.2.3 we inves-
tigate the course of a COVID-19 epidemic with aggregated parameters from Rost et
al. [1] (cf. Table 2). Every simulation starts with I1(0) = 10 infected individuals in
age group 1 at t = 0—all other individuals considered to be susceptible according to
the age partition (S1(0) = 29119, S2(0) = 117637, S3(0) = 53234). The governing
propensity functions can be found in Sect. 2.3.

The left part of Fig. 5 shows the time series of the age aggregated state variables∑3
i=1 Si,

∑3
i=1 Ei , etc. from a single simulation outcome. We can observe that

during the “first wave” the exposed class peaks before the infected class, and class
S and R shows oscillation due to loss of immunity. The right part of Fig. 5 shows
the time series of the three age groups of class S from the same simulation.

On Fig. 6 we focus on the peak size of the epidemic and show the effect of contact
reduction in the early stage of the disease spread (on day 45 in this case). By 10, 20,
and 30% of contact reduction we mean that we multiply every element of the contact
matrix with 0.9, 0.8 and 0.7 respectively. The simulation was halted 10 days after
the peak. We can notice that a uniform contact reduction of 30% in every age group
may decrease the peak size by 1/3, and in the meanwhile it also delays the time of
the peak.

Montecarlo simulations, such as any version of Gillespie’s SSA can only
serve information about the process if we run several stochastic realisations and
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Fig. 5 Stochastic realisation of the SEIRD model with immunity waning. Time series of the
age aggregated state variables (left), and the three susceptible age groups (right) from the same
realisation of the stochastic SEIRD model. For the parameters cf. Fig. 4 and Table 2

Fig. 6 Effect of contact
reduction in the early stage of
the epidemic. In this
simulation we applied a
10, 20 and 30% uniform
contact reduction in the total
contact structure of the
population. The simulation
stops 10 days after the peak

investigate the statistics of them. Thus it is always important to know how many
simulations we need for plausible conclusions.

In the following experiments we run a large number of simulations the following
way: we obtain 100 simulations (for having enough data for statistical analysis) and
for the daily sampled time series of every single compartmentXij (t) we evaluate the
mean μXij

(t) and variance σXtj (t). We also calculate the mean value and variance

for the time of the peak (μt , σt ) and for the size of the peak (μs, σs). Then after
each simulation we check whether 95% of the collected first peak sizes are in the
confidence interval [μs − 2σs, μs + 2σs] as well as in [μt − 2σt , μt + 2σt ] and stop
the routine, if this condition is fulfilled.

On both part of Fig. 7, with solid red curve, we plotted the mean of the daily
sampled time aggregated infected compartments

∑3
i=1 μIi (t). The blue band on the

left plot shows the minimal and maximal values we calculated for each days from
the ensemble of the independent realisations of the process as well. Let us remark
that the band at the top (around the peak) is almost flat, meaning that the different
simulations produced similar peak sizes but different peak times. On the right part
of Fig. 7 the highlighted rectangle shows the 2σt wide and 2σs high confidence
interval around the maximum of the mean. Thus we may conclude that the peak
of the epidemic occurs between day 63 and 79 and it is expected to be between
approximately 27,900 and 28,600 with 95% probability.
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Fig. 7 Time series of the daily sampled aggregated infected classes. The red curve shows the daily
sampled

∑3
i=1 μIi (t) in case of 110 simulations around the peak of the first wave. The blue band

on the left shows the daily sampled minimal and maximal values of the stochastic ensemble, the
blue rectangle on the right represents the 2σt wide and 2σs high confidence interval around the
maximum of the mean

5 Summary and Discussion

In this paper we introduced our approach that we use in our forecasting work to
quickly implement age structured stochastic epidemic models. The core idea, the so
called propensity matrix method, serves a data structure to handle the propensities
and select the upcoming reaction/event to execute in a convenient way, in case of
robust epidemic models. In Sect. 2 we introduced this method and the algorithm that
obtains the time evolution of the state variables. In Sect. 3 we further improved the
algorithm by introducing the so called update graph that helps us to speed up the
algorithm by updating only the minimal number of propensities that are required to
be updated due to the change in the state variables. Finally in Sect. 4 we showed
some real life experiments to demonstrate the strength of the stochastic approach
and the flexibility of our method.

We note here that after publicating the preprint on arXiv, we came across the
article of Indurkhya and Beal [13] (2010), that also uses a similar directed bipartite
graph (the so called Update Dependency Graph) to store information about the state
variables and propensities to be updated. They also showed that their data structure
is more memory efficient than the ones used in former aproaches as the memory
they use scales with O(n) instead of O(n2) in case of n reactions [13].

The speed of the simulation is usually a limiting factor of stochastic simulations.
Generating a stochastic ensemble to analyse require several independent runs of
the simulation and therefore is typically expensive in terms of computational
time. From coding perspective interpreted languages like Python may have low
performance. The simulation time may be reduced by several magnitudes using
low-level languages like C or C++. The propensity matrix algorithm can be easily
applied to such languages. We provide our sample code in Python to emphasize the
algorithm and help readability as much as possible.

However, from the modeling perspective simulation of whole trajectories during
years, from the outbreak untill the very end of the epidemic, is usually unnecessary
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in practice. Information provided by stochastic simulations is particularly valuable
(i) in the beginning of the epidemic—when only a small portion of the population is
infected, (ii) in case of parameter estimation, (iii) when we want to make short-term
forecasts, or (iv) we want to gain information of the variance of state variables or
events—such like in Sect. 4 where we estimated the number of infected individuals
near the peak of the epidemic. Thus, reducing the scope of the simulation to shorter
time intervals is usually a convenient way of dealing with speed.

Incorporating demography and aging into our models may change the process
drastically in a long term and may lead to much more realistic models. However,
in case of short term simulations it usually leads to unnecessary complications and
a number of (aging) events that occupies the simulation engine and leads to slower
simulations. Moreover in case of a small number of age groups the change between
two age groups during a short term simulation remains negligible. However, if
unavoidable, we suggest that instead of Gillespie’s [3] exact stochastic algorithm
consider an approximating algorithm when aging events occur in discrete time
steps, say on every 30th day of the simulation, and the appropriate portion of the
population in compartment Xij (for j ∈ {0, . . . , l}) moves to compartment Xi+1

j if
i �= n, dies whenever i = n. In the meanwhile appropriate portion of newborns
need to be added into the susceptible, immunised or the infected compartments
(according to the model assumptions) of age group 1.
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Modeling the Insect-Vectors-Mediated
Phytoplasm Transmission in
Agroecosystems

Francesca Acotto, Mattia Berera, Giulia Malano, and Ezio Venturino

1 Introduction

The aim of this paper is to formulate and analyze particular insects-plants interac-
tions, with the former being often harmful for crops, [1]. Specifically, we consider
a leafhopper vector that introduces pathogenic phytoplasm into a susceptible
population of seasonal plants. The agroecosystem is assumed to be possibly infected
by different phytoplasm strains. The latter differ only by the presence or the absence
of a specific effector protein, whose effect renders infected plants more palatable to
the insect vector, that are assumed not to have alternative food sources. Indeed, it
is known that the insect herbivores behavior towards plants can be mediated by
molecular interactions, [3, 9]. The model is conceived to forecast the effect of this
protein on the pathogen spread among the plant and insect populations. We envisage
a closed epidemiological system with no insect migrations and consider only a fixed
strain of phytoplasm.

Models for this situation have already appeared in the literature [6]. Also, the
presence of effector proteins in agriculture has been demonstrated [2, 4, 5, 8], and
can be used in various situations [7].

Two different scenarios are presented. In the first one we assume that the farmer
regularly checks the crop, so that to control the spread of the pathogen, infected
plants are possibly removed and replaced by healthy ones. Thus the total seasonal
plant population is fixed in time. In the second one, this last restriction is removed
and the infection may propagate freely among the plants, via the action of insect
vectors.
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In particular, we would like to elucidate the role played by the effector protein in
the agroecosystem dynamics.

In the next section we introduce the system controlled by the farmer, and analyze
it assessing its equilibria and their stability. Section 3 contains the second situation,
with a nonconstant plant population. A final discussion on the role of the effector
proteins concludes the paper.

2 The Model Incorporating the Farmer’s Behavior

2.1 Model Assumptions

As mentioned, here the number of plants in the agroecosystem is fixed: each
diseased plant that dies or is discovered by the farmer is removed and is replaced
with a new susceptible healthy plant. This assumption also allows us to disregard
possible vertical phytoplasm transmission in the plant population.

Demographics is instead considered for the insect vector population. This is
motivated by the fact that during the good season, while plants grow and produce
fruits and seeds for the next year, insects instead experience generally several
reproduction times. It is not uncommon that during the spring and summer, three
or more generations are found, with average insects lifetimes spanning around a
few weeks. No farmer’s control action on the insects diffusion and their damages
is assumed to occur. Also, here we allow the pathogen to be possibly vertically
transmitted. The assumption however could be easily removed by setting the
corresponding parameter to zero, in case it is found not to hold for specific species.

2.2 Model Setup

Let S represent the susceptible plants population, I represent the one of infected
plants, U stand for the susceptible insects and V for those infected. Further, let C
denote the whole plants population in the agroecosystem,

C = S + I. (1)

The model under consideration consists of two simple equations for the susceptible
and infected plants and another similar two for the insects. They are connected by
the fact that each infected subpopulation is recruited via susceptible interactions
with infected of the other subpopulation.

Susceptible plants become indeed infected when bitten by an insect-vector able
to transmit the phytoplasm. Let us define a as the preferential attraction probability
of insects towards infected plants. Let also λ be the phytoplasm transmission rate.
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Now the term (1− a)λV S represents the rate at which vectors are attracted by, bite
and transmit the phytoplasm to susceptible plants and therefore infect them. Note
that in this term, no role is exerted by the healthy insects, because at least in this
context, they do not harm the plants. In reality, they suck sap, therefore they damage
the plants, but do not transmit the pathogenic phytoplasm, and this is what is of
interest here. Furthermore, we model the farmers’ behavior, who removes at rate μ
the infected plants and replaces them by new susceptible ones. The plants dynamics
is therefore captured by the following equations:

dS

dt
= μI − (1− a)λV S, dI

dt
= (1− a)λV S − μI. (2)

Insects are subject to demographics, with birth rate b, natural mortality n and
subject to intraspecific competition. However, since they are partitioned among
carriers and susceptibles, we must distinguish between their relative influences. We
denote by cXY , X, Y ∈ {U,V } the negative action exerted by the subpopulation
Y on the subpopulation X. As for the phytoplasm vertical transmission, we allow
it, denoting by p the fraction of insect offsprings generated by carrier parents of
the previous generation. Thus these new insects bear the phytoplasm since egg
disclosure. Adult insects phytoplasm transmission occurs via biting of an infected
plant. In this case we must take into account both plant subpopulations, because
if a healthy insect bites a susceptible plant, it does not become infected. Let the
plant-insect phytoplasm transmission be denoted by σ . This must be a function
of susceptible insects and infected plants, thus σ = σ(I, U). Now the insect has
the choice of the plant to bite, and thus the rate at which it finds an infected
plant depends on the latter abundance in the whole plant population. The fraction
IC−1 gives the probability of picking one infected plant among all plants. We also
denote by β the phytoplasm acquisition rate. Further, because phytoplasm cannot
be transmitted in the absence of plants, we set the transmission to zero if C = 0.
Overall, the pathogenic phytoplasm transmission from plant to insect is modeled via
the function

σ(I, U) =
⎧
⎨

⎩
β
IU

C
, C �= 0

0 C = 0
. (3)

To complete the insects infection process, we need to take into account also their
preferential attraction toward infected plants, a. We also assume that phytoplasm
carrying does not alter insect natural mortality. Combining all these features and
(3), we thus obtain for C �= 0

dU

dt
= b(1− p)V + bU − aβ IU

C
− cUUU2 − cUV UV − nU, (4)

dV

dt
= bpV + aβ IU

C
− cVV V 2 − cVUVU − nV. (5)



330 F. Acotto et al.

Remark 1 Note that for C = 0, the Eq. (2) are trivial, plants vanish, S = I = 0,
and only the subsystem (4) and (5) remains, that will be analysed in detail below.

The complete model is made by Eqs. (2), (4), and (5), where all the parameters
are assumed to be nonnegative. Further restrictions, in view of what we have
discussed above, are a ∈ (0, 1), p ∈ [0, 1], these parameters being probabilities.
Note that for the former the particular cases a = 0 and a = 1 are excluded,
because the protein cannot render the infected or healthy plants entirely appetizing
or unappetizing for the insect. The former conditions are supplemented by the
following assumptions: healthy insects are more competitive than sick ones, thus
some coefficients cXY are comparable; namely,

cUV ≤ cVU , cUV ≤ cUU , cV V ≤ cVU . (6)

Also, the insect birth rate exceeds their mortality rate, i.e.

b ≥ n; (7)

indeed, if this were not the case, by adding the Eqs. (4) and (5) we find that the
whole insect population would vanish. In fact its dynamics would become

d(U + V )
dt

= b(V +U)−n(V +U)−cUUU2−cUV UV −cVV V 2−cVUVU < 0.

A complete list of the parameters is given in Table 1.

2.3 Equilibria Analysis

2.3.1 The Insect-Only Subsystem

For C = 0, from (4) and (5) we obtain the equilibria P0 = (0, 0), P1 = (U1, 0),
P∗ = (U∗, V∗), with

U1 = b − n
cUU

; V∗ = 1

cVV
(bp − cVUU∗ − n),

while U∗ is a positive root of the quadratic
∑2
k=0 akU

k = 0 with

a2 = cUV cVU

cVV
− cUU , a0 = b(1− p)

cVV
(bp − n),

a1 = b − n− cUV

cVV
(bp − n)− cVU

cVV
b(1− p),
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Table 1 Description, dimensions and basic assumptions about the parameters, assumed all to be
positive

Description Dimension Assumptions

a Insects preferential attraction
probability toward infected
plants

– a ∈ (0, 1)

b Insects natural birth rate
1

[t] b ≥ n
cXY Intraspecific competition rate

of classX individuals over class
Y individuals, [X, Y ∈ {U,V }]

1

[t] cUV < cVU , cUV < cUU , cVV < cVU

C Number of plants, fixed – C = S + I > 0

n Insects natural mortality rate
1

[t]
p Probability of insects vertical

phytoplasm transmission
– p ∈ [0, 1]

β Phytoplasm acquisition rate
for insects from plants

1

[t]
λ Phytoplasm transmission rate

from insects to plants

1

[t]
μ Infected plants mortality rate

and replanting rate of suscepti-
ble plants

1

[t]

which also must satisfy, to ensure nonnegativity of V∗,

U∗ ≤ bp − n
cVU

. (8)

To be fulfilled, this implies also

bp ≥ n (9)

which in turn gives a0 ≥ 0. Thus by Descartes rule, a positive root U∗ is obtained
by requiring also a2 > 0 or a1 > 0. In summary, feasibility of P∗ is ensured by (9)
and at least one of the following conditions

bcVV ≤ ncVV + cUV (bp − n)+ cVUb(1− p), cUV cVU ≤ cVV cUU . (10)

Feasibility for P1 holds unconditionally, being ensured by (7).
The Jacobian of (4) and (5) is

̂J =
[
b − n− 2cUUU − cUV V b(1− p)− cUV U

−cVUV bp − 2cVV V − cVUU − n
]
.
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At the origin its eigenvalues would give the stability condition b < n, which
cannot hold in view of (7), so that it is always unstable.

For P1 we find instead n < b, ensured by (7), and

(bp − n)cUU < (b − n)cVU . (11)

At P∗, we apply the Routh-Hurwitz conditions. The trace condition is always
satisfied,

cVV U∗V∗ + cUUU2∗ + b(1− p)V∗ > 0.

Stability is thus ruled only by the sign of the determinant; stable coexistence of
healthy and infected insects occurs for

V∗ >
U∗

b(1− p)cVV [U∗(cVUcUV − cUUcVV )− cVUb(1− p)]. (12)

2.3.2 The Complete Model

In view of the parameter assumptions, specifically here λ,μ > 0 and a �= 1, from
(2) note that I = 0 implies S = 0 or V = 0. Thus the search for the system’s
equilibria is somewhat eased. We find the points

Ê1 = (C, 0, 0, 0), Ê2 =
(
C, 0,

b − n
cUU

, 0

)
, Ê3 =

(
C − Î3, Î3, 0, b − n

cVV

)
,

where the latter exists only in the very special case of full vertical phytoplasm
transmission:

p = 1, (13)

and where

Î3 = (1− a)λ(b − n)C
cVV μ+ (1− a)λ(b − n) .

The equilibrium Ê1 corresponds to the insect-and-disease-free equilibrium, with
the whole plantation being healthy and insects-free, while Ê2 instead represents
the disease-free point with both plants and insects thriving. Note also that equilibria
with S = 0, while the other populations do not vanish, cannot occur in this situation,
because the new susceptible plants are always introduced in the field by the farmer,
to replace the diseased ones that he removes.
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We now investigate the coexistence equilibrium. Combining the constraint
equation (1) with the equation of the infected plants, we find

I = (1− a)λCV
μ+ (1− a)λV .

By substitution into the equilibrium equations obtained from (4) and (5), we find the
following non-linear system:

cUUU
2 + a(1− a)βλ

μ+ (1− a)λV UV + cUV UV + (n− b)U + b(p − 1)V = 0,

cV V V
2 − a(1− a)βλ

μ+ (1− a)λV VU + cVUVU + (n− bp)V = 0.

It turns out that this system is of order three, which makes an analytical study
essentially impossible.

Alternatively, the coexistence point Ê4 = (C− Î4, Î4, Û4, V̂
∗) has the population

values

Î4 = (1− a)λCV̂ ∗

μ+ (1− a)λV̂ ∗ ,

Û4 = (bp − n)μ− (1− a)cVV λV̂ ∗2 − [cVV μ+ (1− a)(n− bp)λ]V̂ ∗

(1− a)cVUλV̂ ∗ + cVUμ+ a(1− a)βλ ,

with feasibility condition obtained by imposing the numerator of Û4 to be positive,
namely

(bp − n)μ ≥ (1− a)cV V λV̂ ∗2 + [cVV μ+ (1− a)(n− bp)λ]V̂ ∗ (14)

and where V̂ ∗ is a positive root of the fifth order algebraic equation

â5V
5 + â4V 4 + â3V 3 + â2V 2 + â1V + â0 = 0

whose coefficients depend on the model parameters. Note also that the condition
Î4 < C is easily seen to be always satisfied.

Both these analytic approaches essentially fail and we need to investigate this
point numerically.
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2.4 Local Stability Analysis

The Jacobian matrix associated with the model (2), (4), (5) is

Ĵ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(1− a)λV μ 0 −(1− a)λS
(1− a)λV −μ 0 (1− a)λS

0 −aβ U
C

Ĵ 3,3 Ĵ 3,4

0 aβ
U

C
Ĵ 4,3 Ĵ 4,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with

Ĵ 3,3 = b − aβ I
C

− 2cUUU − cUV V − n ,
Ĵ 3,4 = b(1− p)− cUV U ,

Ĵ 4,3 = aβ I
C

− cVUV ,
Ĵ 4,4 = bp − 2cV V V − cVUU − n .

Because the first two rows of Ĵ are linearly dependent, at least one of the eigenvalues
of Ĵ vanishes. Thus no equilibrium is asymptotically stable, but at most it can only
be stable.

At Ê1 the nonvanishing eigenvalues are −μ, b − n, bp − n, but in view of (7)
the second one is always positive, implying that this equilibrium is unconditionally
unstable, unless b = n in which case it is stable but not asymptotically.

At Ê2 one eigenvalue is zero and another one is immediate, n − b < 0. We
then apply the Routh-Hurwitz criterion for the remaining minor of order two to
respectively obtain, for the trace and the determinant,

μ−
[(
p − cVU

cUU

)
b −

(
1− cVU

cUU

)
n

]
> 0; (15)

μ

[(
p − cVU

cUU

)
b −

(
1− cVU

cUU

)
n

]
+ (1− a)aβλb − n

cUU
< 0. (16)

Now (15) follows if the bracket is negative, which is ensured by

(pcUU − cVU )b < (cUU − cVU )n. (17)
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Table 2 Feasibility and local stability conditions for the system (2), (4), (5) equilibria

Equilibria Feasibility Stability

Ê1 = (C, 0, 0, 0) — For b > n unstable; for b = n stable
but not asymptotically stable

Ê2 = (C, 0, b−n
cUU
, 0) b > n (15), (16); sufficient: (18)

Ê3 = (C − Î3, Î3, 0, b−ncVV
) p = 1, b > n (19) stable

but not asymptotically stable

Ê4 = (C − Î4, Î4, Û4, V̂
∗) V̂ ∗ > 0, U4(V̂

∗) > 0 Numerical

Similarly, (16) can be ensured if in addition to (17) we require also

(pcUU − cVU )b < (cUU − cVU )n− (1− a)aβλb − n
μ

. (18)

At Ê3 all the eigenvalues of the Jacobian are explicitly known, in view of (13);
two of them are always negative, because of (7)

n− b < 0, −
[
(1− a)λb − n

cVV

]
< 0.

Thus the remaining nonzero one alone determines the stability of this equilib-
rium:

1

cVV

(
(1− a)aβλ

μ+ (1− a)λb−n
cVV

+ cUV
)
< 1. (19)

Coexistence is investigated numerically.
Table 2 summarizes the findings.
From Table 2 a transcritical bifurcation is observed for which Ê2 emanates from

Ê1 as soon as b increases past n. In Figs. 1 and 2 a transcritical bifurcation relating
equilibria Ê4 and Ê2 is shown to occur in terms of the bifurcation parameters β and
λ respectively. The other parameter values for these figures are

a = 0.5, b = 9, cUU = 0.15, cUV = 0.10, (20)

cVU = 0.25, cV V = 0.20, n = 6, μ = 7.

Also, the chosen initial conditions are

S0 = 300, I0 = 0, U0 = 150, V0 = 1. (21)
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Fig. 1 Transcritical bifurcation from Ê4 to Ê2 as the bifurcation parameter β decreases below the
threshold β̂ ≈ 0.75. The other parameter values are given in (20), with additionally p = 0.5 and
λ = 11. Initial conditions given by Eq. (21)
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Fig. 2 Transcritical bifurcation from Ê4 to Ê2 as the bifurcation parameter λ decreases below the
threshold λ̂ ≈ 1.25. The other parameter values are given in (20), with additionally p = 1 and
β = 2. Initial conditions given by Eq. (21)
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3 The Model with Variable Plant Population

In this second formulation, we account for plants intra-species competition, birth
rate and natural mortality. Using the same variables already defined in Eqs. (2), (4),
and (5) but introducing some new parameters in addition to the ones previously
used, the current model becomes:

dS

dt
= rS + rI − (1− a)λV S − cSI SI − cSSS2 −mS (22)

dI

dt
= (1− a)λV S − cISIS − cII I 2 − (μ+m)I (23)

dU

dt
= b(1− p)V + bU − aβ IU

S + I − cUUU2 − cUV UV − nU (24)

dV

dt
= bpV + aβ IU

S + I − cVV V 2 − cVUVU − nV . (25)

In the Eq. (22), r represents the plants reproduction rate, and m their natural
mortality. Note that the following assumption is necessary,

r > m, (26)

because otherwise, summing Eqs. (22) and (23) we would obtain

d(S + I )
dt

= (r −m)(S + I )− cSI SI − cSSS2 − cISIS − cII I 2 − μI < 0

and the whole plant population would vanish, making the model useless.
In addition, cSI represents the intraspecific pressure exerted by infected over

susceptible plants, while cSS is the corresponding pressure due to healthy plants on
other healthy ones. In Eq. (23), corresponding terms are cIS denoting the pressure
of susceptibles over infected plants, and cII the intraspecific pressure of infected
over other infected plants. The remaining Eqs. (24) and (25) for insect vectors are
the same as in the previous model, namely Eqs. (4) and (5), with the only change
due to the fact that now in the standard incidence term, the total plant population C
is no longer constant, but must be replaced by S + I .

Assumptions similar to (6) on the new coefficients are made, namely

cSI < cIS, cSI < cSS, cII < cIS. (27)

The newly introduced parameters, their meaning, units of measurement and assump-
tions are also reported in Table 3.
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Table 3 Additional parameters in model (22)–(25) and related assumptions

Description Dimension Assumptions

cXY Intraspecific competition
coefficient
of Y over X, with
X, Y ∈ {S, I }

1

[t] cXY > 0 cSI < cIS cSI < cSS cII < cIS

m Natural plants death rate
1

[t] m > 0

r Natural plants birth rate
1

[t] r > m

3.1 Equilibria Feasibility

Because Eqs. (24) and (25) are the same as for (4) and (5), apart from the
replacement of C with S + I , the plant free case S = I = 0 has been already
discussed in Sect. 2.3.1 and therefore is no longer considered in what follows.

The points that are possible equilibria for the system (22)–(25) are

E1 =
(
r −m
cSS

, 0, 0, 0

)
, E2 =

(
r −m
cSS

, 0,
b − n
cUU

, 0

)

the former being unconditionally feasible in view of (26), the latter also, using
both (26) and (7). In addition, the particular healthy-insects-free case E3 =
(S3, I3, 0, V3) can be obtained, by assuming perfect vertical transmission

p = 1. (28)

Easily from (24) and (25), U3 = 0, V3 = V2 = (b − n)c−1
VV . The plants populations

can be obtained from (22)–(23). From the latter,

S = �(I) = cII I + μ+m
cIS(I∞ − I ) I, I∞ = (1− a)λ(b − n)

cIScV V
. (29)

Thus �(I) has a negative zero and crosses the origin raising up to infinity at I∞,
this representing its only feasible branch, while for I > I∞ it is negative. Further,
its derivative at the origin is positive,

�′(0) = cVV μ+m
(1− a)λ(b − n) > 0. (30)

Also, by adding the equilibrium equations corresponding to (22) and (23), we
obtain a conic section

�(I, S) = cII I 2+cSSS2+(cIS+cSI )SI−(r−m−μ)I−(r−m)S = 0. (31)
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Discarding the degenerate cases, from its invariants, we observe that � is an ellipse
in case 4cII cSS > cIS + cSI and a hyperbola conversely. This conic goes through
the origin and crosses the axes at the pointsQI = (I 0, 0) andQS = (0, S0) with:

S0 = r −m
cSS

, I 0 = r −m− μ
cII

.

Now, S0 > 0 in view of (26), while the sign of I 0 is not determined. Note that if we
try to assess the sign of the slope at the points at which the conic intersects the axes,
by implicit differentiation, we find

dS

dI
= 2cII I + (cIS + cSI )S − (r −m− μ)

r −m− 2cSSS − (cIS + cSI )I ,

so that

dS

dI
|QI = cII I

0

r −m− (cIS + cSI )I 0 ,
dS

dI
|QS = 1− μ+ (cIS + cSI )S0

r −m < 1,

while at the origin we find

� ′(O) = dS

dI
|O = μ

r −m − 1 > −1.

In spite of these calculations, the signs of the derivatives, although still useful
to discard some possible situations arising below, are not enough to discriminate
between the two possible types of conic sections. Therefore we must examine them
both. Further implicit differentiation produces, after evaluation at the origin,

d2S

dI 2
|O = − 2

2cSS + r −m
[
(cSS + cIS + cSI )dS

dI
|O + cII

]
.

Remark 2 From this expression, if S′(0) > 0 it follows S′′(0) < 0. Thus at the
origin, a positive slope must be coupled with a negative curvature.

Case A : Suppose � is an ellipse: there are two cases:

(a) r > m + μ for which I 0 > 0; the feasible part of � consists just of
an arc in the first quadrant joining the pointsQI andQS ;

(b) r < m + μ for which I 0 < 0; the feasible part of � consists just of
an arc joining the origin and the pointQI .

Case B : Suppose � is a hyperbola: there are six cases:

(1) I 0 > 0, � ′(O) < 0 and � ′′(O) < 0: the feasible part of � consists
just of a convex arc in the first quadrant joining the points QI and
QS ;
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(2) I 0 > 0, � ′(O) > 0 and � ′′(O) < 0: the feasible part of � consists
just of an arc joining the origin and the point QI and a convex arc
emanating fromQS ;

(3) I 0 < 0, � ′(O) > 0 and � ′′(O) < 0: the feasible part of � consists
just of a concave arc emanating from the origin and a convex arc
emanating fromQS ;

(4) I 0 < 0, � ′(O) < 0 and � ′′(O) > 0: the feasible part of � consists
just of a concave arc emanating fromQS ;

(5) I 0 < 0, � ′(O) < 0 and � ′′(O) < 0: the feasible part of � consists
just of a convex arc emanating fromQS ;

(6) finally, I 0 > 0, � ′(O) > 0 and � ′′(O) > 0: the feasible part
of � consists of an arc joining the origin and the point QS and a
concave arc emanating from QI ; however, in view of Remark 2 this
case cannot arise.

The susceptible S3 and infected I3 populations at equilibrium E3 are obtained
by the intersections of � and � lying in the first quadrant. Examining the various
situations, we are led to the following conclusions:

Case A : � is an ellipse:

(a) the feasible intersection with � is always guaranteed;
(b) the feasible intersection with � is guaranteed if and only if �′(0) >

� ′(O).

Case B : � is a hyperbola:

(1) here � ′(O) < 0 < �′(0); exactly one intersection of �(I) and � is
guaranteed;

(2) (i) if �′(0) < � ′(O), given that � has the vertical asymptote, two
intersections between � and the two feasible branches of � are
always guaranteed;

(ii) if �′(0) > � ′(O), given that � has the vertical asymptote,
exactly one intersection of�(I) with the branch of� emanating
fromQS exists;

(3) (i) if �′(0) < � ′(O), given that � has the vertical asymptote, two
intersections between � and the two feasible branches of � are
always guaranteed;

(ii) if �′(0) > � ′(O), given that � has the vertical asymptote,
exactly one intersection of�(I) with the branch of� emanating
fromQS exists;

(4) here � ′(O) < 0 < �′(0); in this case there is always one feasible
intersection between � and �;

(5) here � ′(O) < 0 < �′(0); in this case there is always one feasible
intersection between � and �.

The coexistence equilibrium E∗ = (S∗, I ∗, U∗, V ∗) is investigated numerically.
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3.2 Equilibria Stability

The Jacobian matrix J associated with the model (22)–(25) is the following:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

J 1,1 r − cSI S 0 (a − 1)λS

−cISI − (a − 1)λV J 2,2 0 −(a − 1)λS

aβ IU
(S+I )2 aβ IU

(S+I )2 − aβ U
S+I J 3,3 J 3,4

−aβ IU
(S+I )2 aβ U

S+I − aβ IU
(S+I )2 J 4,3 J 4,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

with

J 1,1 = r −m− cSI I − 2cSSS + λ(a − 1)V ,

J 2,2 = −m− μ− 2cII I − cISS ,

J 3,3 = b − n− 2cUUU − cUV V − aβ I

S + I ,

J 3,4 = −cUV U − b(p − 1),

J 4,3 = aβ I

S + I − cVUV,

J 4,4 = bp − cVUU − 2cVV V − n.

For the equilibrium E1, we find the eigenvalues

m− r < 0,
cIS(m− r)
cSS

− μ−m < 0, b − n ≥ 0, bp − n

so that it is unstable, unless b = n, in which case we obtain stability but not
asymptotic stability.

Two eigenvalues of the Jacobian evaluated at E2 are explicitly found, m− r < 0
and n − b < 0 both negative in view of (26) and (7). Using the Routh-Hurwitz
criterion on the remaining minor of order two, we are led to the stability conditions

(bp − n)− (μ+m)− cIS

cSS
(r −m)− cVU

cUU
(b − n) < 0, (32)

(
cIS

cSS
(r −m)+ μ+m

)(
bp − n− cVU

cUU
(b − n)

)
<
λβa(a − 1)(b − n)

cUU
.(33)

Further, estimating the second term on the left of condition (33) as follows
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bp − n− cVU

cUU
(b − n) = b

[
p − n

b
− cVU

cUU
(1− n

b
)

]

= b
(
p − n

b

) [
1− cVU

cUU

1− n
b

p − n
b

]
> b

(
p − n

b

) [
1− cVU

cUU

]

the condition (33) can be rewritten as

bcUU

(
1− cVU

cUU

)(
p − n

b

)
< − λβa(1− a)(b − n)cSS

cIS(r −m)+ cSS(μ+m) .

Remark 3 Now (32) holds if

p <
n

b
< 1 (34)

by (7) and (26). Conversely, using

bp − n− cVU

cUU
(b − n) < (b − n)

(
1− cVU

cUU

)
< 0,

it also holds if

n

b
< p < 1, cVU > cUU . (35)

Remark 4 This last condition is certainly not met if either one of the following sets
of inequalities hold:

n

b
< p, cVU < cUU ; p <

n

b
< 1, cVU > cUU . (36)

Therefore, in such case, E2 is certainly unstable.

At E3 the characteristic equation factorizes into the product of two quadratic
equations, stemming each from a suitable minor of order 2. We can apply once
more the Routh-Hurwitz conditions to these submatrices, to find two sets of stability
conditions, namely

J (E3)1,1 + J (E3)2,2 < 0, (37)

J (E3)1,1J (E3)2,2 +
(
cISI3 + λ(b − n)(a − 1)

cV V

)
(r − cSI S3) > 0,

where
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Fig. 3 Transcritical bifurcation from E4 to E2 as the bifurcation parameter β decreases below the
threshold β̂ ≈ 1.75. The other parameter values are given by (39) and p = 0.5 and λ = 12. Initial
conditions given below by Eq. (21)

J (E3)1,1 = r −m− cSI I3 − 2cSSS3 + λ(b − n)(a − 1)

cV V
,

J (E3)2,2 = −m− μ− 2cII I3 − cISS3
and

J (E3)3,3+n−2b+bp < 0, J (E3)3,3(n−2b+bp) > J (E3)4,3b(1−p) (38)

with

J (E3)3,3 = b − n− cUV (b − n)
cVV

− aβI ∗

S3 + I ∗ , J (E3)4,3 = aβI ∗

S3 + I ∗ − cVU (b − n)
cVV

.

Coexistence is shown numerically to be stable, for suitable parameter choices.
We also show transcritical bifurcations arising for the pair of equilibria E4 to E2

as the bifurcation parameters β (Fig. 3) and λ (Fig. 4) vary. The remaining parameter
values used in these figures are

a = 0.5, b = 19, cUU = 0.1, cUV = 0.2, cVU = 0.4, (39)

cVV = 0.3, cSS = 0.014, cSI = 0.023, cIS = 0.042,

cII = 0.035, n = 15, m = 0.5, r = 4, μ = 0.3.

Table 4 summarizes these findings.
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Fig. 4 Transcritical bifurcation from E4 to E2 as the bifurcation parameter λ decreases below the
threshold λ̂ ≈ 7.25. The other parameter values are given by (39) and p = 1 and β = 3. Initial
conditions given below by Eq. (21)

Table 4 Feasibility and local stability conditions for the system (22)–(25) equilibria, where the
assumptions on the parameters (7) and (26) are implicitly used

Equilibria Feasibility Stability

E1 = ( r−m
cSS
, 0, 0, 0) – Unstable if b > n

simply stable if b = n
E2 = ( r−m

cSS
, 0, b−n

cUU
, 0) – (32), (33); sufficient (34), (35)

E3 = (S3, I3, 0, b−ncVV
) (28), see text: Cases A and B

for I3 > 0 and S3 > 0
Numerical

E4 = (S∗, I ∗, U∗, V ∗) Numerical Numerical

4 The Effector Protein Action on the Agroecosystem

For the model (2), (4), (5), we use the following reference parameter values:

b = 9, cUU = 0.15, cUV = 0.10, cVU = 0.25, cV V = 0.20, (40)

n = 9, p = 0.5, β = 12, C = 300, λ = 11, μ = 7.

For model (22)–(25) the same initial conditions (21) are used, but the reference
parameter values are



Modeling the Insect-Vectors-Mediated Phytoplasm Transmission in Agroecosystems 345

0 5 10

time

100

200

300
S

a=0.8
a=0.6
a=0.4
a=0.2

0 5 10

time

0

100

200

I

0 0.5 1 1.5 2

time

50

100

150

U

0 2 4 6 8

time

0

2

4

6

8

V

Fig. 5 Model (2), (4), (5): Equilibrium Ê1 obtained with parameter values (40) and initial
conditions (21)

b = 19, cUU = 0.1, cUV = 0.2, cVU = 0.4, cV V = 0.3, (41)

cSS = 0.014, cSI = 0.023, cIS = 0.042, cII = 0.035, n = 19,

m = 0.5, p = 0.5, r = 4, β = 11, λ = 12, μ = 0.3.

Figures 5, 6, 7, 8, 9, 10 contain the simulations for model (2), (4), (5). In
particular, Fig. 5 shows the solutions behavior in the particular case of b = n,
while in all the other ones b > n. Note that all the possible system’s equilibria are
shown to arise, for suitable parameter choices. Clearly, the parameter a does not
influence the final outcome, in the sense that changing it does not alter the point that
is ultimately achieved. However, it does affect the speed at which the equilibrium
is reached. Although in the transient phase there might be some slight differences,
compare the frame for V in Fig. 6, in general a higher value of a helps in removing
faster the infected and boosts the susceptible plants growth; these remarks hold in a
lesser way for insects. An exception for the infected insects is however given by the
coexistence equilibrium Ê4 of Fig. 9, their number being increased by a larger value
of the effector protein.

Completely similar remarks hold for the simulations involving model (22)–(25),
Figs. 11, 12, 13, 14, 15, and 16. Again, Fig. 11 shows the particular case b = n = 19,
while the remaining ones assume b > n.
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Fig. 6 Model (2), (4), (5): Equilibrium Ê4 obtained with parameter values (40), but for n = 6 < b,
and initial conditions (21)
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Fig. 7 Model (2), (4), (5): Equilibrium Ê2 obtained with parameter values (40), but for n = 6 < b,
β = 3, λ = 2 and initial conditions (21)
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Fig. 8 Model (2), (4), (5): Equilibrium Ê3 obtained with parameter values (40), but for n = 6 < b,
p = 1 and initial conditions (21)
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Fig. 9 Model (2), (4), (5): Equilibrium Ê4 obtained with parameter values (40), but for n = 6 < b,
p = 1, β = 2 and initial conditions (21)
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Fig. 10 Model (2), (4), (5): Equilibrium Ê2 obtained with parameter values (40), but for n = 6 <
b, p = 1, β = 2, λ = 1 and initial conditions (21)
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Fig. 11 Model (22)–(25): Equilibrium E1 obtained with parameter values (41) and initial
conditions (21)
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Fig. 12 Model (22)–(25): Equilibrium E4 obtained with parameter values (41) but for n = 15 and
initial conditions (21)
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Fig. 13 Model (22)–(25): Equilibrium E2 obtained with parameter values (41) but for n = 15,
β = 1 and initial conditions (21)



0 0.5 1 1.5 2

time

50

100

150

200

250

300

S
a=0.8
a=0.6
a=0.4
a=0.2

0 0.5 1 1.5 2

time

50

100

150

200

I

0 2 4 6

time

0

50

100

U

0 5 10

time

5

10

15

V

Fig. 14 Model (22)–(25): Equilibrium E3 obtained with parameter values (41) but for n = 15,
p = 1 and initial conditions (21)
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Fig. 15 Model (22)–(25): Equilibrium E4 obtained with parameter values (41) but for n = 15,
p = 1, β = 3 and initial conditions (21)
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Fig. 16 Model (22)–(25): Equilibrium E2 obtained with parameter values (41) but for n = 15,
p = 1, β = 3, λ = 3 and initial conditions (21)
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An Interdisciplinary Model-Based Study
on Emerging Infectious Disease: The
Curse of Twenty-First Century

Anal Chatterjee and Suchandra Ganguly

1 Introduction

We have stepped in early days of 2021 and have carried with us the curse of
2020- COVID-19. It is wreaking havoc on the whole world at present, after its
emergence in Wuhan in December 2019 and then global spread since February
2020 [1]. It has been declared as the Public Health Emergency of International
concern in January 2020 and a pandemic in March 2020 byWHO. The first case was
reported in Wuhan city of Hubei Province in south China on 31, December 2019
as unidentified pneumonia [2]. It is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). As of 12 January 2021, more than 90.9 million cases
have been confirmed, with more than 1.94 million deaths attributed to COVID-19.
The disease has been able to put the world into a halt. The disease affects individuals
in different ways ranging from no, mild, moderate to even severe symptoms
requiring hospitalization. The most common symptoms include fever, dry cough,
tiredness and less common symptoms are aches and pains, sore throat, diarrhoea,
conjunctivitis, headache, loss of taste or smell, a rash on skin, or discolouration
of fingers or toes. The disease mainly spreads by airborne transmission. When an
infected person coughs, sneezes or speaks the infectious droplets are emitted and
can enter another individual by mouth, nose or eyes [3]. It can also spread via
fomites when an healthy individual comes in contact of them and the virus reaches
their mucous membranes. There is no particular drug available for treatment. Only
symptomatic treatment is recommended as per countries policies. Thus, preventive
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measures becomes more important than ever. Recommended preventive measures
include social distancing, wearing face masks in public, ventilation and air-filtering,
hand washing, covering one’s mouth when sneezing or coughing, disinfecting
surfaces, and monitoring and self-isolation for people exposed or symptomatic [4].

In this scenario, the awareness and adherence to the preventive measures
becomes utmost important. Media plays a key role in this aspect. In today’s
era where media literally dictates one’s decisions, it is essential that they play
a fruitful role in such pandemic situations. During sudden outbreaks, the public
needs access to timely and reliable information about the disease symptoms and
its prevention [5]. Nowadays, social media are often seen as fast and effective
platforms for searching, sharing, and distributing health information among the
general population [6]. Media, thus becomes an essential weapon in our fight against
COVID-19. The beneficial guidelines for preventing COVID-19 were reinforced
among people through prominent advertisements on commonly used social media
platforms. Facebook, Instagram, and television media posted the importance of
‘social distancing’ and ‘stay at home’ through free of cost and frequent, widespread
ads. The printed media was utilized by supermarkets to promote their stores
following the social distancing protocols. During road and air travel, there is
continuous mention of ads like ‘Stay home, stay safe,’ ‘Face covers mandatory in
public,’ ‘COVID-19: less is more, avoid gatherings’, ‘give extra space with each
other and on the road,’ and ‘wash your hands, stay healthy, avoid COVID-19’.
This repetition is essential to consolidate the role of them in preventing the disease
spread. This campaign was run extraordinarily by the media using all resources and
its subtypes [7]. In our study, we have focused on this role of media and how it helps
in reducing the spread of COVID-19.

In the present article, we formulated and analyzed a 4-compartment epidemi-
ological model to study the impact of media on the spread of COVID-19, in a
variable population with immigration. In the modeling process, we have assumed
a population N which is the summation of susceptible unaware, susceptible aware
and the infected classes respectively. The susceptible class (both aware and unaware)
becomes diseased only by direct contact with the infected class. A part of the
susceptible class will make conscious efforts to avoid being in contact with the
infected under influence of media. The probability of contracting infection for
individuals in aware class is less than those who are in unaware class. Further, we
assume that a proportion of individuals recover and a fraction of these recovered
individuals will join the aware susceptible class while the others will join the
unaware susceptible class (may be due to ignorance, lacunae on their parts etc.).
It is also assumed that the growth rate of the cumulative density of media coverage
is proportional to the mortality caused by diseases in the infected population. Our
study finds that when immigration is increased, the system becomes unstable. Also
we found that the use of face masks and the efficiency of face mask, both are
vital for maintaining a stable equilibrium. Further, we find that by increasing the
implementation of media coverage above a threshold value, the system undergoes
from stable to unstable through Hopf-bifurcation. Also, the proportion of infected
individuals always decreases with an increase in the density of media coverage. In
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the next section, we formulate a mathematical model and examine the equilibrium
point and stability of the system. Numerical results are given in later section. Finally,
the paper ends with a brief discussion.

2 Literature Review

The World is now facing one of the biggest health challenge in human history in
the form of COVID-19. The authors in [7] analyzed the role of mass media and
public health communications from December 31, 2019 to July 15, 2020. They
reviewed that the media played a dual role in this pandemic situation. They proved
advantageous for spreading essential health information, health guidelines, helped
in adherence to hygienic practices through repeated advertisements. The media
ran the COVID-19 data through live update dashboards which played a big role
for providing current situation reports. A trend among people to use telehealth
and telemedicine was also noted. But at the same time, various misinformation
like unscientific cures, unverified medicines, etc. were also spread using various
media platforms. Fear and panic among the general population was also promoted
by various media platforms. The authors in [8] concluded that social media has
both advantage and disadvantage. The proper use of this will lead to the spread
of essential information while misuse will lead to the spread of false information,
myths, etc. So, the author advised that to be responsible while disseminating
information through social media. Study of the influence of social media on public
health measures of COVID-19 via public health awareness and public health
behavioral changes in Jordan [9] through quantitative approach was adopted. A
web questionnaire was used and 2555 social media users were sampled. The
findings revealed that there is a positive influence of media on public health
protection against COVID-19 as a pandemic. The analysis of a mathematical model
[10] to study the impact of awareness programs by media on the prevalence
of infectious disease revealed that by increasing the rate of implementation of
awareness programs by media, the number of infected individuals decline and
the system remains stable upto a threshold value, after crossing which the system
oscillates. The scientists in [11] developed a three-dimensional mathematical model
to study the impact of media coverage on the spread and control of infectious
diseases. Stability analysis of the model revealed that the disease-free equilibrium
is globally-asymptotically stable when the basic reproduction number (R0) is less
than unity. When R0 > 1, the media influence is found to be strong enough. A
mathematical model was developed and used to assess the efficacy of face masks,
hospitalization and quarantine on COVID-19 [12]. The results revealed the above-
mentioned interventions efforts should be high to control the outbreak in a short
period of time. It also revealed that the interventions strength should be increased
to eliminate the disease but only the sole use of face mask may not be enough in
doing so.
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3 Basic Assumptions and Model Formulation

B1: Let N(t) be the total population at time t the region under consideration.
Here we consider that the total population is divided into three classes like
susceptible unaware population (Sw), susceptible aware population (Sa) and
infective population (I).

B2: Let the rate of immigration of susceptible is A. Also, we consider that M be
the cumulative density of media coverage driven by the media in that region
at time t which is related to the infective. We assume that diseases spread due
to the contact between the susceptible and the infective only.

B3: It is assumed that susceptible avoid being in contact with the infective due
to awareness through media coverage and forms a another class with a
proportion λ called the aware susceptible. We assume that after treatment,
a proportion of infected individuals recover and join susceptible class. After
recovery, a fraction p of recovered people will join aware susceptible class
whereas (1−p) will join unaware susceptible class.

B4: It is notified that the growth rate of the cumulative density of media
coverage is proportional to the disease induced mortality rate of the infected
population. Here β represents the contact rate of unaware susceptible with
infective class and λ be the dissemination rate of awareness through media
among susceptible due to which they form a different class. Here β1 is a
fraction which denotes the reduced probability of contracting infection and
its value lies between 0 and 1.

B5: A proportion cn of population wear face masks correctly and consistently
in public places. Let εn be the efficacy of the face masks. Therefore, Fn =
1− εncn represents the fraction which enters the infected class. A proportion
h of aware population maintain social distance. The proper use of face masks
reduces disease transmission effectively.

B6: The parameters d, γ and α denote the natural death rate, recovery rate and
disease induced death rate respectively. Here, λ0 represents the transfer rate
of aware individuals to unaware susceptible class. The implementation of the
awareness through media is proportional to the number of disease induced
deaths.

B7: Let, the density of media coverage increase with increase in disease related
death rate α. Here k be the proportionality constant which governs the
implementation of awareness through media. We assume that μ0 is the
depletion rate of the media coverage due to ineffectiveness, social and
psychological barriers in the population, etc. The parameter m represents the
density level of media coverage on the disease from other region.

With these above assumptions our model system (Fig. 1) is
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Fig. 1 Schematic diagram

dSw

dt
= A− βFnSwI − λSwM − dSw + λ0Sa + (1− p)γ I ≡ G1(Sw, Sa, I,M)

dSa

dt
= λSwM + pγ I − β1β(Fn − h)SaI − dSa − λ0Sa ≡ G2(Sw, Sa, I,M)

dI

dt
= βFnSwI + β1β(Fn − h)SaI − γ I − αI − dI ≡ G3(Sw, Sa, I,M)

dM

dt
= kαI − μ0M +m ≡ G4(Sw, Sa, I,M).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
The system (1) has to be analyzed with the following initial conditions,

Sw(0) > 0, Sa(0) ≥ 0, I (0) ≥ 0,M(0) ≥ 0. (2)

Using the fact that N = Sw + Sa + I , the system (1) transform to the following
system:
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dN

dt
= A− dN − αI ≡ G1(N, Sa, I,M)

dSa

dt
= λ(N − Sa − I )M + pγ I − β1β(Fn − h)SaI − dSa − λ0Sa ≡ G2(N, Sa, I,M)

dI

dt
= βFn(N − (1− β1)Sa − I )I − β1βhSaI − (γ + α + d)I ≡ G3(N, Sa, I,M)

dM

dt
= kαI − μ0M +m ≡ G4(N, Sa, I,M).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)
Now it is sufficient to discuss system (3) rather that system (1). Here the region of
attraction which is given by the set Γ = {(N, Sa, I,M) ∈ R4+ : 0 ≤ Sw, I ≤
N ≤ A

d
, 0 ≤ M ≤ kα( A

d
)+m
μ0

}. According to existence and uniqueness theorem,
the trajectories can not approach to unfeasible domain from positive octant which
indicates that solution remain in positive octant. This ensure that the system is well
defined.

Explicitly, the jacobian matrix at E = (N, Sa, I ,M) can be defined as

J =

⎡

⎢⎢⎣

−d 0 −α 0
λM m22 m23 λ(N − Sa − I )
βFnI −βFn(1− β1)I − β1βhI m33 0
0 0 kα −μ0

⎤

⎥⎥⎦ , (4)

where m22 = −(λM + β1β(Fn − h)I + d + λ0),
m23 = −λM + pγ − β1β(Fn − h)Sa,
m33 = βFnN − βFn(1− β1)Sa − 2βFnI − β1βhSa − (γ + α + d).

4 Some Preliminary Results

4.1 Equilibria

The system (1) possesses the following equilibria: Disease free equilibrium (DFE)
E0 = (A

d
, mλA
d(mλ+(d+λ)μ0) , 0,

m
μ0
) and endemic equilibrium E∗ = (N∗, S∗a , I ∗,M∗).

4.1.1 Disease Free Equilibrium

E0 is always feasible. The eigenvalues evaluate from (4) at E0 are −d < 0, −d −
λ0 < 0, −μ0 and (R0 − 1). Thus, it is clearly indicates that E0 is asymptotically
stable if

R0 = βAFn

d(γ + α + d) < 1 (5)
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hold. Here R0 is the basic reproduction number of system (3). Clearly, E∗ exists for
R0 > 1.

4.1.2 Endemic Equilibrium

The endemic equilibrium at E∗ = (N∗, S∗a , I ∗,M∗) are N∗ =
β
d
Fn[A−(α+d)I∗]−(γ+α+d)

β(1−β1)Fn+ββ1h ,M∗ = kαI∗+m
μ0

while I∗ is ensured by solving

A1I
∗2 + A2I

∗ + A3 = 0, (6)

where A1 = β1β
2(Fn−h)(α+d)

c
− κλα2

dμ0
− kαλ

μ0
− kαλ

μ0

β
dc
Fn(α + d),

A2 = Aαkλ
dμ0

− λαm
dμ0

− mλ
μ0

+ pγ − β1β
2

dc
(Fn − h)FnA + β1β(Fn−h)(γ+α+d)

c
− (d +

λ0 + λm
μ0
)
β
dc
Fn(α + d)+ kαλ

μ0c
[β
d
FnA− (γ + α + d)],

A3 = (d + λ0 + λm
μ0
)Fn

βA
dc

+ Amλ
dμ0

− (d + λ0 + λm
μ0
)(
γ+α+d
c
), where c = β(1 −

β1)(Fn)+ ββ1h. Now for I ∗ > 0, solving (6) we get I ∗ = −A2±
√
A2−4A1A3
2A1

.
At E∗, the jacobian matrix of system (3) can be written as

J ∗ =

⎡

⎢⎢⎣

n11 0 n13 0
n21 n22 n23 n24

n31 n32 n33 0
0 0 n43 n44

⎤

⎥⎥⎦ ,

where n11 = −d < 0, n13 = −α < 0, n21 = λM∗ > 0, n22 = −λM∗ −
ββ1(Fn − h)I ∗ − d − λ0 < 0, n23 = −λM∗ + pγ − β1β(Fn − h)Sa < 0,
n24 = λ(N∗ − S∗a − I ∗) > 0, n31 = βFnI

∗ > 0, n32 = −β(1 − β1)FnI ∗ −
β1βhI

∗ < 0, n33 = −βFnI ∗ < 0, n43 = kα > 0, n44 = −μ0 < 0.
Now the corresponding characteristic equation is

ω4 +Q1ω
3 +Q2ω

2 +Q3ω +Q4 = 0,

where the coefficientsQI , I = 1, 2, 3, 4 areQ1 = −(n11 + n22 + n33 + n44) > 0,
Q2 = n11n22 + n22n33 + n33n11 + n11n44 + n22n44 + n33n44 − n23n32 − n13n31,
Q3 = n13n31n44 + n23n32n44 + n11n23n32 + n13n31n22 − n11n22n44 − n11n33n44
−n22n33n44 − n11n22n33 − n13n21n32 − n24n32n43,
Q4 = n11n22n33n44+n13n21n32n44+n11n24n32n43−n11n44n23n32−n13n22n31n44.

Now, Q2 > 0 if n23n32 > (n11n22 + n11n33 + n22n33 + n11n44 + n22n44 +
n33n44 − n13n31).

Also,Q3 > 0 if (n13n31n44+n13n31n22−n11n22n44−n11n33n44−n22n33n44−
n11n22n33−n24n32n43) > n13n21n32−n11n23n32−n23n32n44. ThenQ1Q2−Q3 >

0 if Q1Q2 > Q3 as well as Q3(Q1Q2 −Q3)−Q2
1Q4 > 0 if Q3(Q1Q2 −Q3) >
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Q2
1Q4. Then, by the Routh-Hurwitz criterion, E∗ is locally asymptotically stable

which depending upon system parameters.

Remark The system could have a Hopf-bifurcation at the coexistence equilibrium
if the following two conditions are satisfied,

Q1(Ac)Q2(Ac)−Q3(Ac) = 0, Q′
1(Ac)Q2(Ac)+Q1(Ac)Q

′
2(Ac)−Q′

3(Ac) �= 0. (7)

4.2 Hopf Bifurcation at Coexistence

Theorem (Hopf-Bifurcation) If ψ1(A) > 0, then the equilibrium E∗ of system (3)
is locally asymptotically stable. If there exists Ac ∈ R such that ψ1(Ac) = 0 and
(
dψ1
dA
) |Ac �= 0, then as A passes through Ac, a Hopf-bifurcation occurs at E∗.

For positive equilibrium E∗ = (N∗, S∗a , I ∗,M∗), the characteristic equation is

ω4 +Q1ω
3 +Q2ω

2 +Q3ω +Q4 = 0.

Define

ψ1(A) = Q1(A)Q2(A)Q3(A)−Q2
3(A)−Q2

1(A)Q4(A). (8)

Let ωi(i = 1, 2, 3, 4) be the roots of above characteristic equation. Then we have

ω1 + ω2 + ω3 + ω4 = −Q1,

ω1ω2 + ω1ω3 + ω1ω4 + ω2ω3 + ω2ω4 + ω3ω4 = Q2,

ω1ω2ω3 + ω1ω3ω4 + ω2ω3ω4 + ω1ω2ω4 = −Q3,

ω1ω2ω3ω4 = Q4. (9)

If there exists Ac ∈ R such that ψ2(Ac) = 0, then by the Routh-Hurwitz criterion
at least one root, say ω1, has real part equal to zero. From the fourth equation of (8)
it follows that Im ω1 = ω0 �= 0, and hence there is another root, say ω2, such that
ω2 = ω1. Since ψ2(A) is a continuous function of its roots, ω1 and ω2 are complex
conjugate forA in an open interval includingAc. Therefore, the equation in (8) have
the following form at Ac,

ω3 + ω4 = −Q1,

ω20 + ω3ω4 = Q2,

ω20(ω3 + ω4) = −Q3,

ω20ω3ω4 = Q4. (10)
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Fig. 2 (a) The equilibrium point E∗ is stable for the parametric values as given in (11). (b)
The figure depicts oscillatory behavior around the coexistence (endemic) equilibrium point E∗ of
system (1) for k = 4.2. (c) The figure depicts oscillatory behavior around coexistence (endemic)
equilibrium point E∗ of system (3) for A = 450. (d) The figure depicts disease free equilibrium
E0 for A = 250

If ω3 and ω4 are complex conjugate, from the first Eq. (9) it follows that 2Re ω3 =
−Q1 < 0. If ω3 and ω4 are real, from the first and fourth equations of (9)
it follows that ω3 < 0 and ω4 < 0. Also after some calculations it follows
that d

dγ2
Re(ω1)A=Ac = − Q1

2[Q2
1Q4+(Q1Q2−2Q3)

2]
dψ1
dA

|Ac �= 0. Thus, we have the

following result.
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Fig. 3 (a) The figure depicts oscillatory behavior around coexistence (endemic) equilibrium point
E∗ of system (3) for εn = 0.1. (b) The figure depicts oscillatory behavior around coexistence
(endemic) equilibrium point E∗ of system (3) for cn = 0.01

5 Numerical Simulations

In this section, we study the impact of awareness programs with the help of
numerical simulation. Here we investigate the effects of the various parameters
on the qualitative behavior of the system, by using MATLAB. We begin with a
parametric values[10, 13, 14]

A = 400, β = 0.00002, β1 = .2, λ = 0.0002, λ0 = .02, γ = .6, α = 0.02,

d = 0.01, μ0 = 0.06, εn = 0.5, cn = .1, h = 0.02, k = 0.8, p = 0.05,m = .05.
(11)

Dealing with above set of parametric values, we note that the system is locally
asymptotically stable at endemic equilibrium E∗ = (39637, 7834, 182, 37) in
which R0 = 1.2698(cf. Fig. 2a). Taking k = 4.2, the system exhibits oscillations
around E∗ (cf. Fig. 2b). Figure 2c illustrate the oscillatory behavior of each
population for high value of A (A = 450). Analytical, we see that endemic
equilibrium E∗ exists if A > d(γ+α+d)

β
. We obtain the critical value of immigration

rate A = 333, above which the endemic equilibrium exists. Taking A = 250,
we observe that the system exhibits disease free equilibrium E0 which satisfy our
analytical finding (cf. Fig. 2d). It is interesting to see that low value of εn = 0.1
and cn = 0.01 play a big impact to destabilize the whole system respectively (cf.
Fig. 3a, b). Now for clear understanding of dynamic change, we plot a bifurcation
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Fig. 4 (a) Bifurcation diagram for k. (b) Bifurcation diagram for A. (c) Bifurcation diagram for
εn. (d) Bifurcation diagram for cn

diagram with respect to k. Form Fig. 4a, it follows that lower values of k, the system
is stable but above a threshold value of k = kc, the system losses its stability
and periodic solution arises through Hopf-bifurcation. Further, we also vary A as
a free parameter, a bifurcation diagram (cf. Fig. 4b) indicates that the system looses
its stability for high value of A after it crosses the critical value. Further, we plot
another two bifurcation diagrams for efficacy of the face masks i.e. εn and masks
compliance, cn respectively. It is clear to see that the system looses stability for low
value of these two parameters (cf. Fig. 4c, d). Figure 5a illustrates the different
steady state behaviour of infected class in the system (3) for the parameter A.
Here, we see a Hopf bifurcation points at A = 419 (denoted by a red star (H))
with eigenvalues−0.103689,−0.001029,±0.52642i and first Lyapunov coefficient
being −1.881669e−10 and generates a family of stable limit cycle bifurcates from
the H and loses its stability. Here A = 333(BP ) denotes the branch point of the
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Fig. 5 (a) The figure depicts different steady-state behaviors of infected population for the effect
of A. (b) Two parameter bifurcation diagram for A − cn. (c) Two parameter bifurcation diagram
for A− εn. (d) Two parameter bifurcation diagram for A− k

system (3) with eigenvalues are o,−0.06,−0.03,−0.01. Figure 5b–d represent two
parameters bifurcation diagrams for A− cn, A− εn and A− k respectively.

6 Discussion

The information and the awareness of the preventive strategy for COVID-19 is
majorally emphasized through media coverage. So, in our paper we have analyzed
a 4-compartment mathematical model. It is assumed that pathogens are transmitted
via direct contact between the susceptible and the infective. The model exhibits two
equilibria like the disease-free equilibrium and endemic equilibrium under certain
conditions. Firstly, the model is studied analytically and shown that when the basic
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reproduction number R0 < 1, the system exhibits disease-free equilibrium. For
R0 > 1, it leads to the existence of an endemic equilibrium.

Our study indicates that if we increase the density of media coverage, the number
of infected individuals decline. But after crossing the threshold value, system
becomes unstable. The constant immigration may be one of the possible reasons of
such outcomes. Further, we observe that lower value of immigration rate the system
becomes disease-free equilibrium. Also, the efficacy of face mask and it’s usage in
public areas helps in keeping the system stable.
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Effect of Incubation Delay in an SIRS
Model: Hopf Bifurcation and Stability
Switch

Tanuja Das and Prashant K. Srivastava

1 Introduction

The infectious diseases spread in the population when the infectious agents are
transmitted from infective to susceptible in a direct or indirect way. For instance,
in diseases such as COVID-19, Measles, Gonorrhea, etc. the infectious agents
are directly transmitted, whereas in diseases such as Malaria, Lyme disease, the
infection is transmitted by the vectors. Once the healthy individual is exposed to the
infectious agent, the infectious agent takes some time to develop in the host. This
time period is considered as incubation period, after which a susceptible becomes
infectious and may spread the infection further. This incubation delay length is not
fixed and depending on the disease’s biological mechanism, it may vary from several
days (COVID-19) to several weeks (smallpox). The other factors which may impact
the disease incubation period include the disease severity, people’s immunity, and
the amount of infectious agents people are exposed to.

In order to study the effect of the incubation period on the dynamics of a
particular disease, one of the way to incorporate it in a model is via use of discrete
time delay in a compartmental model. However, such introduction increases the
complexity of the system from mathematical point of view as delay differential
equation model systems possess solutions on infinite dimensional functional spaces.
Still, it is very interesting to examine such models and study the dynamical
properties as exhibited by the delay models. In works [7, 11, 15, 17], one can see the
complex behavior of system for the positive time delays. Authors in [9, 12, 13] found
the delay dependent conditions under which system become globally asymptotically
stable. In works [4, 10], it is observed that systemmay have same stable nature for all
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delay length conditionally. The incubation delay parameter leads the disease system
through the local Hopf bifurcation in the works in [7, 11, 15–17], as a result local
stability nature of the system will change. It is notable that the stability properties
are affected in most cases by a critical value of the delay. For this delay threshold,
the dynamical properties change significantly.

To impede the disease transmission, one of the most important ways is reducing
the effective interaction between susceptible and infective people. The information
about presence of disease in population induces inhibitory behaviour changes
among healthy populations [1]. Looking at the influence of inhibitory effect in
people, various form of incidence functions are used in disease modeling literature
[3, 5, 6, 8, 18]. For example, the Monod—Haldane type incidence function Sf (I) =
S

βI

1+mI 2 , β,m > 0 was introduced by Xiao and Ruan in 2007 [14]. This function
reflects the non monotonic interaction behavior of people, which means upto a
certain range I = 1√

m
the susceptible interact with increasing number of infective

(as df
dI
> 0 for I < 1√

m
) and after that susceptible interact with decreasing number

of infective (as df
dI
< 0 for I > 1√

m
). Here the parameter m is introduced because

of changing behavioral response of individual due to inhibitory effect. Authors in
[19], studied this function for the delay model.

In this work an SIRS model is proposed where the incidence rate is considered
as S βI

1+mI 2 . Also, the time delay is incorporated for the disease incubation period.
In the next section we describe the delay differential equation system and establish
the basic properties. In Sect. 3, local stability of all the equilibrium points along
with Hopf bifurcation is provided. In Sect. 4, numerical simulation is performed to
explore the analytical results of Sect. 3. At the end, the discussion along with the
conclusion are provided.

2 Model Mathematical Form

The total population is divided into three classes—the susceptible class S(t), the
infective class I (t) and the recovered class R(t) at any time t . Healthy individuals
are recruited in the susceptible class following logistic growth rate where b is the
intrinsic growth rate and K is the maximum capacity of individual in susceptible
class when there is no infection. The parameter β is representing the rate of disease
transmission from susceptible class to infective class which follows a simplified
Monod-haldane type incidence to represent the inhibitory behaviour of healthy
individuals against the disease. Parameter m is related to the changing behavioral
response of individual due to inhibitory effect [18]. The rate parameters α, and δ
denote the recovery rate and mortality rate of infective individuals, respectively.
The parameter γ is representing the rate at which individuals from the recovered
class revert back to the susceptible class after losing their immunity. In case, γ = 0,
then recovered individuals become permanent immune and remain in the recovered
class forever. Parameter d represents the natural death rate of individuals in all the
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three classes. Here, we assume that upon infection, individuals spend an incubation
time before becoming infectious and this time is reflected via a discrete time delay τ
in the incidence rate function in the infective class rate equation. Hence, the disease
dynamics is represented by the below mentioned set of delay differential equations:

dS(t)

dt
= bS(t)

(
1− S(t)

K

)
− βS(t)I (t)

1+mI 2(t) + γR(t),

dI (t)

dt
= βS(t − τ)I (t − τ)

1+mI 2(t − τ) − (d + δ)I (t)− αI (t),
dR(t)

dt
= αI (t)− dR(t)− γR(t),

(1)

with initial conditions S(θ) = S0 ≥ 0, I (θ) = I0 ≥ 0, R(θ) = R0 ≥ 0 and θ ∈
[−τ, 0], where (S(θ), I (θ), R(θ)) ∈ C([−τ, 0],R3+): a Banach space of continuous
functions.

2.1 Positivity and Boundedness

In order ensure the positivity of all the population classes (S, I, R) we consider the
initial population size so that all the populations remain positive for all time.

Beside, the sum of all the population classes, N(t) = S(t)+ I (t + τ)+R(t + τ)
satisfies the equation,

dN

dt
= bS

(
1− S

K

)
− d(N − S)− δI (t + τ) ≤ dN + (b + d)SM,

where SM = max{S(0),K}. Then the biological feasible region of system (1)
becomes,

Γ :=
{
(S, I, R) ∈ R

3+ : 0 ≤ S, I, R ≤ (b + d)SM
}
, SM = max{S(0),K}.

2.2 Existence of Equilibrium Point

For the system (1), there always exists the disease free equilibrium points E0 =
(0, 0, 0), andE1 = (K, 0, 0). Then following Ref.[2] the basic reproduction number
is obtained as

R0 = βK

d + δ + α .
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Table 1 Number of possible endemic equilibrium points for R0 > 1

Coefficients Endemic
Cases A4 A2 A1 A0 Number of I∗ equilibrium point

1 < R0 ≤ 2 + + + − 1 E∗
2 < R0 + − + − 3 E3∗, E2∗, E1∗

or, 1 or, E∗

Also for system (1), there exists the endemic equilibrium point E∗ = (S∗, I∗, R∗)
with S∗ = 1+mI 2∗

β
(d+δ+α),R∗ = αI∗

d+γ . I∗ is the real positive solution of h(I∗) = 0,
where,

h(I∗) := A4I
4∗ + A3I

3∗ + A2I
2∗ + A1I∗ + A0. (2)

Here coefficients A4 = bm2(d+δ+α)2(d+γ ),A3 = 0,A2 = mb(d+δ+α)2(d+
γ )(2−R0), A1 = ((d + γ )(d + δ)+ dα)β2K and A0 = b(d + δ + α)2(1−R0).

Clearly, for R0 < 1 all coefficients of h(I∗) = 0 (A4, A3, A2, A1, A0) are non-
negative which means there is no sign change. Thus, no equilibrium point exists for
R0 < 1. Further, for R0 > 1 we obtain A4 > 0 and A0 < 0 and so the equation
h(I∗) = 0 has at least a real positive solution. This follows from the continuity of the
h(I ∗) and h(0) < 0 and h(I ∗)→ +∞ as I ∗ → ∞. Hence, an endemic equilibrium
point exists forR0 > 1.

In fact there is a possibility that h(I∗) = 0 has multiple real positive roots. In
Table 1 we show the number of possible real positive solution of h(I∗) = 0 and the
corresponding endemic equilibrium points.

We summarise the above discussion in the following theorem.

Theorem 2.1 For the system (1), no endemic equilibrium point exists whenR0 ≤ 1,
a unique endemic equilibrium point exists when 1 < R0 ≤ 2 and multiple endemic
equilibrium points may exist when R0 > 2.

3 Stability Analysis

In this section we will analyze the local stability properties of equilibrium points.
First we will determine the stability of endemic equilibrium point for all non neg-
ative time delay. The linearization system of model (1) at the endemic equilibrium
point E∗ = (S∗, I∗, R∗) is given by

dY

dt
= M1Y (t)+M2Y (t − τ), (3)
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where,

M1 =
⎡

⎢⎣
− bS∗
K

−βS∗(1−mI 2∗ )
(1+mI 2∗ )2 γ

0 −(d + δ + α) 0
0 α −(d + γ )

⎤

⎥⎦ , M2 =
⎡

⎢⎣
0 0 0
βI∗

1+mI 2∗
βS∗(1−mI 2∗ )
(1+mI 2∗ )2 0

0 0 0

⎤

⎥⎦ ,

(4)
and Y (t) = [S(t), I (t), R(t)]T .
Then the corresponding characteristic equation of the linearized system (3) is given
by

|M1 +M2e
−λτ − λI3×3| = 0, (5)

where I3×3 is the third order identity matrix. Then Eq. (5) gives,

∣∣∣∣∣∣∣∣

b(1− 2S∗
K
)− βI∗

1+mI 2∗ − λ −βS∗(1−mI 2∗ )
(1+mI 2∗ )2 γ

βI∗
1+mI 2∗ e

−λτ βS∗(1−mI 2∗ )
(1+mI 2∗ )2 e

−λτ − (d + δ + α)− λ 0

0 α −(d + γ + λ)

∣∣∣∣∣∣∣∣
= 0.

Or,

φ(λ, τ) := λ3 + B2λ
2 + B1λ+ B0 + (C2λ

2 + C1λ+ C0)e
−λτ = 0, (6)

where,

B2 =− b(1− 2S∗
K
)+ βI∗

1+mI 2∗
+ 2d + δ + α + γ,

B1 =(d + δ + α)(d + γ )− (b(1− 2S∗
K
)− βI∗

1+mI 2∗
)(2d + δ + α + γ ),

B0 =− (b(1− 2S∗
K
)− βI∗

1+mI 2∗
)(d + δ + α)(d + γ ),

C2 =− βS∗(1−mI 2∗ )
(1+mI 2∗ )2

,

C1 =βS∗(1−mI 2∗ )
(1+mI 2∗ )2

(b(1− 2S∗
K
)− d − γ ),

C0 =b(1− 2S∗
K
)
βS∗(1−mI 2∗ )
(1+mI 2∗ )2

(d + γ )− αγ βI∗
1+mI 2∗

.

(7)

It is easily seen that Eq. (6) becomes an algebraic equation of λ when τ = 0.
Then following Routh-Hurwitz criterion we can say that all roots of Eq. (6) are with
negative real part if following conditions are satisfied,
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(B2 + C2)(B1 + C1)− (B0 + C0) > 0, B2 + C2 > 0, B0 + C0 > 0, (8)

and at least one of the root of Eq. (6) is positive provided B0 + C0 < 0. Hence
when τ = 0, E∗ is stable when conditions (8) are satisfied and is unstable when
B0 + C0 < 0.

Equation (6) becomes a transcendental equation of λ when τ > 0. Then it has
infinitely many complex roots and finding all these roots is impossible. In order to
determine the stability of endemic equilibrium E∗, we find only the pure imaginary
roots of Eq. (6). Because then only the real part of roots cross the imaginary axis for
changing the time delay and consequently stability nature of E∗ may be changed.
Let λ = ιω (ω ∈ R/0) is the purely imaginary root obtained at τ = τ ∗, and so
φ(ιω, τ ∗) = 0 (Eq. (6)). In the following we will evaluate the values of ω and τ ∗
and their existence conditions.

For this, we substitute λ = ιω, (ω ∈ R/0) in (6) when τ = τ ∗ and we have,

− ιω3 − B2ω
2 + B1ιω + B0 + (−C2ω

2 + C1ιω + C0)e
−ιωτ∗ = 0. (9)

Comparing the real and imaginary parts in (9), we get,

B2ω
2 − B0 = (C0 − C2ω

2) cosωτ ∗ + C1ω sinωτ ∗, (10)

ω3 − B1ω = C1ω cosωτ ∗ − (C0 − C2ω
2) sinωτ ∗. (11)

Now squaring and adding both side of Eqs. (10) and (11), we obtain,

(B2ω
2 − B0)

2 + (ω3 − B1ω)
2 = (C0 − C2ω

2)2 + C2
1ω

2. (12)

Putting ω2 = m1 in Eq. (12), we get,

ξ(m1) = m3
1 +D2m

2
1 +D1m1 +D0 = 0, (13)

whereD2 = B2
2 −C2

2 −2B1 = (b(1− 2S∗
K
)− βI∗

1+mI 2∗ )
2+4m(d+ δ+α)2 I 2∗

(1+mI 2∗ )2 +
(d + γ )2 > 0, D1 = B2

1 − C2
1 − 2B0B2 + 2C0C2, and D0 = B2

0 − C2
0 .

Note that only the real positive value of m1 in Eq. (13) can imply existence of
ω ∈ R/0. Hence, we consider the cases when Eq. (13) has positive root(s)- unique
or multiple (and distinct).

Also, since D2 > 0, the Eq. (13) always has a simple positive real root m1 = ω21
(say) when,

D0 = B2
0 − C2

0 < 0. (14)

So the characteristic equation φ(ιω, τ ∗) = 0 has a pair of purely imaginary roots
±ιω1 when (14) is satisfied.

Define,
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τ ∗ = τ ∗k (ω) =
{

1
ω
[cos−1(g1(ω))+ 2πk], if g2(ω) > 0,

1
ω
[2π(k + 1)− cos−1(g1(ω))], if g2(ω) < 0,

(15)

for all k = 0, 1, 2, . . ., where g1(ω) = C1ω(ω
3−B1ω)+(C0−C2ω2)(B2ω2−B0)
(C0−C2ω2)2+C2

1ω
2 and

g2(ω) = C1ω(B2ω
2−B0)−(ω3−B1ω)(C0−C2ω2)
(C0−C2ω2)2+C2

1ω
2 .

The corresponding time delay values τ ∗ = τ ∗1k (k = 0, 1, 2 . . .) satisfying
φ(ιω1, τ

∗) = 0 are obtained using Eqs. (10) and (11) and given as follows,

τ ∗ = τ ∗1k (ω1) =
{

1
ω1

[cos−1(g1(ω1))+ 2πk], if g2(ω1) > 0,
1
ω1

[2π(k + 1)− cos−1(g1(ω1))], if g2(ω1) < 0,
(16)

for all k = 0, 1, 2, . . ..

Lemma 3.1 The characteristic equation (6), i.e., φ(λ, τ) = 0, has one conjugate
pair of purely imaginary roots ιω1 when τ = τ ∗1k obtained from (16) for k =
0, 1, . . ., provided condition (14) is true.

Further, the Eq. (13) has two distinct positive real roots m21 = ω221, m22 = ω222
(say) if,

D1 < 0, D0 > 0, Δ = 18D2D1D0−4D3
2D0+D2

2D
2
1−4D3

1−27D2
0 > 0. (17)

Thus the characteristic equation φ(ιω, τ) = 0 (Eq. (6)) has two conjugate pairs of
purely imaginary roots ±ιω21,±ιω22 if conditions in (17) hold. The corresponding
time delay values τ ∗ = τ ∗21k satisfy φ(ιω21, τ ∗21k ) = 0 and τ ∗ = τ ∗22k satisfy
φ(ιω22, τ

∗
22k
) = 0 for k = 0, 1, 2, . . ., where τ ∗21k = τ ∗k (ω21) and τ ∗22k = τ ∗k (ω22)

(τ ∗k (ω) are defined in (15)).

Lemma 3.2 The characteristic equation (6), i.e., φ(λ, τ) = 0, has two conjugate
pairs of purely imaginary roots ιω21, ιω22 respectively when τ = τ ∗21k , τ ∗22k obtained
from (15) for k = 0, 1, . . ., if conditions in (17) are true.

3.1 Existence of Hopf Bifurcation and Switch of Stability
Property

It is known that the existence of purely imaginary characteristic roots may lead
the system through Hopf bifurcation at the equilibrium point. So according to
Lemmas 3.1 and 3.2, system (1) may exhibit Hopf bifurcation at the endemic
equilibrium point for non zero time delay i.e., for τ = τ ∗1k , τ

∗
21k
, τ ∗22k > 0,

k = 0, 1, 2, . . .. For system (1), there exists Hopf bifurcation at delay critical value
τH = τ ∗1k , τ ∗21k , τ ∗22k provided,
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(H1) all roots of φ(λ, τH ) = 0 are with negative real part except one pair of purely
imaginary root ιωH (ωH = ω1, ω21, ω22), and

(H2)
[
Re
(
dλ
dτ

)−1
]∣∣∣λ=iωH ,
τ=τH

�= 0.

Differentiating φ(λ, τ) = 0 with respect to τ we have,

(dλ
dτ

)−1 = 3λ2 + 2B2λ+ B1

λe−λτ (C2λ2 + C1λ+ C0)
+ 2C2λ+ C1

λ(C2λ2 + C1λ+ C0)
− τ

λ
.

So the transversality condition (H2) becomes,

Re
(dλ
dτ

)−1
∣∣∣∣λ=ιωH ,
τ=τH

= ξ ′(ω2H )
(C0 − C2ω

2
H )

2 + C2
1ω

2
H

. (18)

Lemma 3.3 Assume condition in (14) is satisfied and τ ∗10 is the first positive critical
value of τ . Then,

(1) if all roots of characteristic equation (6), φ(λ, τ) = 0 are with negative real
part for τ = 0 (i.e., E∗ is stable at τ = 0), then all roots have negative real part
for 0 < τ < τ ∗10 and have positive real part for τ > τ ∗10 . For τ = τ ∗10 , all roots
of (6) are with negative real part except one pair of purely imaginary root.

(2) If one root of characteristic equation (6), φ(λ, τ) = 0 is with positive real part
for τ = 0 (i.e., E∗ is unstable at τ = 0), then at least one root has positive real
part for all τ > 0.

Proof When (14) is satisfied, then we have D0 < 0, ξ(∞) > 0 and m1 = ω21
is simple real positive root of ξ(m1) = 0 (Eq. (13)), therefore ξ ′(ω21) is always
positive. So from (18) we have,

Re
(dλ
dτ

)−1
∣∣∣∣λ=ιω1,
τ=τ∗10

> 0, ∀k = 0, 1, 2, . . . . (19)

i.e., the transversality direction (H2) is positive in this case. So the purely imaginary
roots for τ = τ ∗1k become complex with positive real part for τ > τ ∗1k , k = 0, 1, . . ..
Hence the proof. ��
Lemma 3.3 implies that (H1)− (H2) are true for τ = τ ∗10 when E∗ is stable at τ = 0
and so τ ∗10 is called the delay hopf critical value. Therefore, we can conclude the
following theorem.

Theorem 3.1 For the system (1), Hopf bifurcation occurrs with respect to time
delay when τ = τ ∗10 and (8) holds. The solutions, converge to the endemic
equilibrium point E∗ for τ < τ ∗10 and bifurcate from the endemic equilibrium point
E∗ in periodic form for τ ≥ τ ∗10 .
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Lemma 3.4 Assume conditions in (17) are satisfied and τ ∗210 , τ
∗
220

are the first two
positive critical values of τ in τ ∗21k , τ

∗
22k

for k = 0, 1, . . ..

(1) If all roots of characteristic equation (6), φ(λ, τ) = 0 are with negative real
part for τ = 0 (i.e., E∗ is stable at τ = 0), then all roots have negative real
part for 0 < τ < τ ∗210 , τ > τ

∗
220

and have positive real part for τ ∈ (τ ∗210 , τ ∗220).
For τ = τ ∗210, τ ∗220 , all roots of (6) are with negative real part except one pair of
pure imaginary root, provided τ ∗210 < τ

∗
220

.
(2) If one root of characteristic equation (6), φ(λ, τ) = 0 is with positive real part

for τ = 0 (i.e., E∗ is unstable at τ = 0), then all roots have positive real part
for 0 < τ < τ ∗220 , τ > τ

∗
210

and have negative real part for τ ∈ (τ ∗220 , τ ∗210). For
τ = τ ∗22, τ ∗21, all roots of (6) are with negative real part except one pair of pure
imaginary root, provided τ ∗220 < τ

∗
210

.

Proof Again, since D0 > 0, ξ(∞) > 0 and m1 = m21 = ω221, m1 = m22 = ω222
are two simple real positive roots of ξ(m1) = 0 (Eq. (13)) such that ω22 <

ω21, therefore ξ ′(ω221) is positive and ξ ′(ω222) is negative. So in this case, the
transversality condition (H2) becomes,

Re
(dλ
dτ

)−1
∣∣∣∣λ=ιω21,
τ=τ∗21k

> 0, Re
(dλ
dτ

)−1
∣∣∣∣λ=ιω22,
τ=τ∗22k

< 0,∀k = 0, 1, 2, . . . . (20)

Hence, the proof. ��
Lemma 3.4 implies the conditions such that (H1)− (H2) are hold for τ = τ ∗210, τ ∗220
and so τ ∗210, τ

∗
220

are called the delay hopf critical value. Therefore, we can conclude
the following theorem.

Theorem 3.2 For the system (1), Hopf bifurcation is occurred with respect to time
delay when τ = τ ∗210, τ ∗220 .
(1) The system solutions, converge to the endemic equilibrium point E∗ for 0 <

τ < τ ∗210 , τ > τ ∗220 and bifurcate from the endemic equilibrium point E∗ in
periodic form for ∈ [τ ∗210, τ ∗220 ] when (8) holds.

(2) The system solutions, converge to the endemic equilibrium point E∗ for ∈
(τ ∗220, τ

∗
210
) and bifurcate from the endemic equilibrium point E∗ in periodic

form for 0 < τ < τ ∗220 , τ > τ
∗
210

when (8) does not hold.

Now we will illustrate the local stability criterion of disease free equilibrium points
E0(0, 0, 0) and E1(K, 0, 0).

Theorem 3.3 The disease free equilibrium point E0 is unstable for all τ ≥ 0.

Proof It can be verified easily. ��

Theorem 3.4 The disease free equilibrium pointE1 is locally asymptotically stable
for R0 < 1 and is unstable for R0 > 1 for all τ ≥ 0.
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Proof The characteristic equation (6) at E1(K, 0, 0) becomes

φ0(λ, τ ) := λ3 +B20λ
2 +B10λ+B00 + (C20λ

2 +C10λ+C00)e
−λτ = 0, (21)

where B20 = 2d+ δ+α+γ +b, B10 = (d+ δ+α)(b+d+γ )+b(d+γ ), B00 =
b(d+ δ+α)(d+γ ), C20 = −βK , C10 = −(b+d+γ )βK , C00 = −b(d+γ )βK .

Equation (21) is a cubic polynomial in λ for τ = 0. Thus, following Routh-
Hurwitz criterion we can say that all roots of Eq. (21) are with negative real part for
R0 < 1 as

(B20 + C20)(B10 + C10)− (B00 + C00) = (b + d + γ ){(b(d + γ )+ (b + d + γ )
(d + δ + α)(1−R0))+ (d + δ + α)2(1−R0)

2} > 0,

B20 + C20 = b + d + γ + (d + δ + α)(1−R0) > 0,

B00 + C00 = b(d + γ )(d + δ + α)(1−R0) > 0,

and one root of Eq. (21) is positive forR0 > 1 as (B00+C00)|R0>1 < 0. Therefore,
E1 is locally asymptotically stable for R0 < 1 and is unstable for R0 > 1 when
τ = 0.

Equation (21) becomes a transcendental equation of λ when τ > 0. Then
proceeding similar calculations as was done for Eqs. (9)–(12), at E1 Eq. (13) takes
the following form,

ξ0(m1) := m3
1 +D20m

2
1 +D10m1 +D00 = 0, (22)

where D20 = B2
20 − C2

20 − 2B10 = b2 + (d + γ )2 + (d + δ + α)2(1−R2
0),

D10 = B2
10 −C2

10 − 2B00B2 + 2C00C20 = b2(d + γ )2 + 2(b+ d + γ )β2K2 + (b+
d + γ )2(d + δ + α)2(1−R2

0),
and D00 = B2

00 − C2
00 = b2(d + γ )2(d + δ + α)2(1−R2

0).
WhenR0 < 1, we haveD20,D10,D00 > 0. So there does not exist any real positive
root of Eq. (14) and so any purely imaginary root of Eq. (21) does not exist for any
positive time delay. Therefore if E1 is locally stable for τ = 0, remains stable for
all τ > 0 when R0 < 1.
When R0 > 1 then D00 < 0 and so purely imaginary roots ιω0 exist at τ = τ0.

Since Re
(
dλ
dτ

)−1
∣∣∣∣λ=ιω0,
τ=τ0

= ξ ′0(ω20)
(C00−C20ω20)2+C2

10ω
2
0
> 0, so similar to Lemma 3.3, E1

remains unstable for all τ > 0 as it is unstable for τ = 0 when R0 > 1. Hence the
proof. ��
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4 Numerical Observation

In this section, we exhibit the effect of incubation time delay on the stability
properties of model system (1). We have discussed in Theorem 3.1 that endemic
equilibrium point switches its stability property with varying time delay and con-
sequently the dynamics of system will change and consequently a Hopf bifurcation
appears. Therefore, for the purpose of exhibiting stability switch of equilibrium,
we vary the time delay τ ∈ (0, 20] and fix the others parameters at K = 1000,
b = 0.0044, d = 0.003, δ = 0.003, β = 0.001, α = 0.26, m = 0.0001,
γ = 0.0001.

Continuing with these parametric value, we obtain basic reproduction number
R0 = 3.76 > 1. The coefficients of Eq. (2) become A2 = −5.5 × 10−8 < 0,
A1 = 0.00026 > 0, A0 = −0.00085 < 0 and we find unique endemic equilibrium
point E∗ = (266.3, 3.34, 279.89) (following Table 1) for this selected parametric
set of values. Endemic equilibrium E∗ satisfies condition (8) when τ = 0 as we
have,
(B2 + C2)(B1 + C1) − (B0 + C0) = 1.77 × 10−6 > 0, B2 + C2 = 0.005 > 0,
B0+C0 = 2.7×10−6 > 0. Therefore E∗ is locally asymptotically stable for τ = 0.
Again E∗ satisfies condition in (14) when τ > 0 as we getD0 = −1.5×10−12 < 0.
Hence one pair of purely imaginary root ±ιω1 = ι0.016 is obtained when τ =
9.8 = τ ∗10 (evaluated using (15)) according to the Lemma 3.1. The transversality

condition (19) also holds true at E∗ as Re
(
dλ
dτ

)−1
∣∣∣∣λ=ι0.016,
τ=9.8

= 46.2 is positive. So

from Lemma 3.3, τ = τ ∗10 = 9.8 is the critical value of delay for appearance of
Hopf bifurcation in this case. Therefore Theorem 3.1 is valid which assures the
existence of Hopf bifurcation at τ = τ ∗10 = 9.8 and indicates the appearance of
two different dynamical behavior for different values of τ , i.e., for τ < τ ∗10 and for
τ ≥ τ ∗10 . When time delay is smaller than the critical value of delay (i.e., τ = 4 <
9.8), then solution trajectories initiated from any population level always converge
to the endemic equilibrium point E∗, as shown in Fig. 1(left). When time delay is
larger than the critical value of delay (i.e., τ = 17 ≥ 9.8), then solution trajectories
initiated from any population level converge to a closed periodic orbit around E∗, as
shown in Fig. 1(right), thus showing oscillatory solutions. Figure 2 shows the time
series plots for the S(t), I (t) and R(t) populations with τ = 4 (left) and τ = 17
(right).

The closed periodic orbit generated at this delay length is seen in Fig. 3(left).
Figure 3(right) depicts the Hopf bifurcation diagram with respect to the incubation
delay bifurcation parameter. In this figure, the plane τ = τ ∗10 indicates the
bifurcation value and before this critical value E∗ is locally stable and after this
delay critical value E∗ is unstable and starts showing oscillatory solutions. This
instability property of equilibrium will be continued for all τ > τ ∗10 = 9.8. From
Fig. 3(right) it is noticed that the period of the closed periodic orbits generated
for τ ≥ τ ∗10 = 9.8 is increasing if the incubation delay length is increased after
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Fig. 1 Phase diagram of system (1) at τ = 4 < τ ∗10 = 9.8 depicted stable E∗ (left). Phase diagram
of system (1) at τ = 17 > τ ∗10 = 9.8 depicted unstable E∗ (right)
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Fig. 2 Time series plots for the susceptible, infective, recovered populations converging to S∗, I∗,
R∗ respectively for τ = 4 < τ ∗10 = 9.8 (left). Time series plot of all population showing oscillatory
solutions for τ = 17 > τ ∗10 = 9.8 (right)

Fig. 3 Phase diagram of system (1) at τ = 17 > τ ∗10 = 9.8 showing the closed periodic orbit
(left). Hopf bifurcation diagram with respect to time delay τ depicting stability property switch of
E∗ from stable (green color) to unstable (black color) at τ = τ ∗10 = 9.8 and the appearance of
closed periodic orbits (red curves) bifurcated from unstable E∗ after τ = τ ∗10 = 9.8 (right)

τ = τ ∗10 = 9.8. Therefore the fluctuation range of infective level will increase when
incubation delay length is further increased after τ = τ ∗10 = 9.8, as depicted in
Fig. 4.
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Fig. 4 Bifurcation plot
depicting the fluctuation
range of infective cases after
τ > τ ∗10 = 9.8
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Fig. 5 Plot of maximum real part of the characteristic roots of Eq. (6) for τ ∈ [0, 20] (left). Plot
of pair of purely imaginary characteristic roots of Eq. (6) for τ = τ ∗10 = 9.8 (right)

We have discussed earlier in Sect. 3 that the stability property of endemic
equilibrium point will switch due to Hopf bifurcation in system as the time delay
parameter changes. This happens when the real part of characteristic roots (Eq. (6))
crosses the imaginary axis for varying time delay. Using the same parametric values
as above, in Fig. 5(left) we plot the maximum real part of the characteristic roots of
Eq. (6) and note that it crosses the imaginary axis at τ = 9.8 and so the maximum
real part of root for τ < 9.8 becomes negative to positive for τ > 9.8 and in
Fig. 5(right) we see the purely imaginary characteristic roots (ι0.016) of Eq. (6)
obtained for τ = 9.8. Hence Fig. 5 assures the stability switch phenomenon of E∗
depicted in the bifurcation diagram (Fig. 3)(right).

Now we discuss the effect of behavioral response m and disease transmission
rate β on stability behaviour of system (1). For this purpose we take the time delay
τ ∈ (0, 30) and fix others parameters at K = 1000, b = 0.0044, d = 0.003,
δ = 0.003, α = 0.26, γ = 0.0001.

If m is varied within (0.0001, 0.0005) and β = 0.001, then we obtain R0 =
3.76 > 1 and A2 ∈ (−2.74 × 10−7,−5.5 × 10−8), A1 ∈ (0.00025, 0.00026), and
A0 ∈ (−0.00084,−0.00086). A unique endemic equilibrium point E∗ exists for
all m ∈ (0.0001, 0.0005). This E∗ satisfies condition (8) for τ = 0 because we
get (B2 + C2)(B1 + C1) − (B0 + C0) ∈ (1.77 × 10−6, 3.9 × 10−6), B2 + C2 ∈
(0.005, 0.0073), B0 + C0 ∈ (2.6 × 10−6, 2.7 × 10−6) and satisfies (14) for τ > 0
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Fig. 6 Bifurcation plot in τ − m plane for τ ∈ (0, 30), m ∈ (0.0001, 0.0005) depicted stability
switch of E∗ (left). Bifurcation plot in τ −β plane for τ ∈ (0, 30), β ∈ (0.00085, 0.0016) depicted
stability switch of E∗ (right). The stability property of E∗ is stable in the green color region and is
unstable in the red color region

because we get D0 ∈ (−1.5 × 10−12,−1.3 × 10−12) for m ∈ (0.0001, 0.0005).
Therefore critical value of delay parameter τ ∗10 ∈ (9.8, 307) are obtained following
Theorem 3.1 for m ∈ (0.0001, 0.0005), and plotted in Fig. 6(left) by the black
intersection curve of the red and green color region for the range of τ ∈ (0, 30).

Further, for β ∈ (0.00084, 0.0016) and m = 0.0001, we obtain R0 ∈ (3.1, 6.1)
and A2 ∈ (−1.25 × 10−7,−3 × 10−8), A1 ∈ (0.00018, 0.00066), and A0 ∈
(−0.0016,−0.0006). The unique endemic equilibrium point E∗ is obtained for
this range of β ∈ (0.00084, 0.0016). Again, E∗ satisfies condition (8) for τ = 0
because we get (B2 + C2)(B1 + C1) − (B0 + C0) ∈ (1.2 × 10−6, 2 × 10−6),
B2 + C2 ∈ (0.0008, 0.002), B0 + C0 ∈ (2.4 × 10−6, 3.1 × 10−6) and satisfies
condition in (14) for τ > 0 because we getD0 ∈ (−4.8×10−12,−2.9×10−14) for
β ∈ (0.00084, 0.0016). Therefore critical value of delay parameter τ ∗10 ∈ (2, 1636)
are obtained following Theorem 3.1 for β ∈ (0.00084, 0.0016), and plotted in
Fig. 6(right) by the black intersection curve of the red and green color region for
the range of τ ∈ (0, 30).

Furthermore, Theorem 3.1 implies that E∗ is locally asymptotically stable for
τ < τ ∗10 and is unstable for τ ≥ τ ∗10 . Therefore in Fig. 6, E∗ is stable in the green
color region and is unstable in the red color region. It is noticed from Fig. 6(left) that
higher value of behavioral response parameterm increases the chance so that system
remains in stable mode for larger incubation time delay. Also, from Fig. 6(right), we
note that the higher disease transmission rate β reduces this chance.

5 Conclusion

To understand the impact of incubation delay length on the model dynamics
we considered a delayed SIRS model by introducing the incubation period as
delay parameter. We chose a simplified Monod Haldane type information induced
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incidence function. We analysed the model and observed that stability of disease
free equilibrium point is independent of incubation delay length. It is locally stable
if basic reproduction number (R0) is less than unity and is unstable if (R0) is
greater than unity. The unique endemic equilibrium (when it exists) for R0 > 1
is observed to be stable below the threshold value of the delay parameter and once
the delay crosses it, there exists Hopf-bifurcation. Thus oscillations and stability loss
are obtained in presence of incubation delay. We also note that system may remain
stable for higher delay values if behaviour response parameter is large or disease
transmission rate is small. Therefore, the stability of the system may be impacted
by the incubation delay and will depend on its length.
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Modelling the Role of TV and Internet
Coverage on Mitigating the Spread of
Infectious Diseases

Rakesh Medda, Samares Pal, and Joydeb Bhattacharyya

1 Introduction

Infectious diseases are spreading throughout the world at an alarming rate which
becomes a global concern. People have health issues all around the world, especially
in underdeveloped countries [1]. Rural residents are in danger of death owing to poor
health care [2, 30]. In India, public hospitals struggle to treat serious illnesses due to
poor medical facilities [5]. Mathematical models are commonly recognized as one
of the most effective techniques for forecasting the modes of transmission of many
infectious diseases. In the event of a severe pandemic, when health care systems
are unable to protect people from newly developing viruses, spreading first-hand
knowledge on preventive measures via TV, social media, and the internet is an easy,
quick, and cost-effective strategy to minimize disease burden [7, 21–23].

Media coverage through TV and internet has a major role and it is the most
authoritative source of information. Because of this, it influences governments’
health care engagement and thus has a significant influence on the control of the
epidemic. By educating the public through the TV and internet coverage [4], people
can reduce the spread of diseases by taking simple precautions such as social
distancing [28], wearing face masks [13, 16], quarantine [10], vaccination [6], etc.
The media is a major player in infectious disease outbreaks because of this.

During the last few decades, various studies of the efficacy of media efforts
to suppress infectious diseases have been conducted [8, 11, 17, 18, 20, 25, 27].
The majority of these research assume that media will help minimize disease
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transmission. Liu and Cui [18], for instance, provided a model in which the contact
rate was modelled as a decreasing function of infectious individuals. Kiss et al.
[12] proposed a model in which all conscious persons are classified as receptive or
indifferent to media campaigning. They demonstrated that disseminating awareness
information affected infection prevention. Funk et al. [8] established a SIRS model
for spreading awareness during an epidemic outbreak and discovered that awareness
campaigns can slow disease spread. Misra et al. [19] investigated the effect of
awareness efforts on emerging diseases by assuming that media campaigns create
an isolated aware class that is immune to infection. They determined that, while
the disease cannot be completely removed from the population, it may be managed.
Additionally, Misra et al. [20] investigated a paradigm in which susceptible classes
become aware classes as a result of a Holling type-II functional reaction between the
susceptible and the awareness programmes. In this model, delaying the execution of
awareness programmes results in periodic solutions via Hopf-bifurcation. Samanta
et al. [27] discussed a scenario in which the aware class is less likely to contract
the illness than the non-conscious class. They discovered that increasing the growth
rate of a media campaign results in a decrease in infected individuals, but only up to
a certain point. Notably, the immigration rate is critical for regulating the system’s
dynamics. Some mathematical models are provided for certain infectious diseases
to examine the influence of time delay in implementing awareness initiatives [9, 24]
and It is noticed that by including time delay in the modelling process, the system
becomes destabilized. Kumar et al. [14] recently developed an optimal control
problem to examine the effect of information on illness prevalence. The authors
assumed that information grows at a pace proportional to the saturation function
of infected people. Agaba et al. [3] used a SIRS model to examine the effect on
the dynamics of infectious diseases of the propagation of private awareness as a
result of direct interaction between unaware and aware persons and public awareness
as a result of information campaigns. Their findings indicate that both public and
individual awareness have the potential to prevent illness spread.

The purpose of this study is to examine the role of TV and internet coverage on
the occurrence of epidemic breakouts. In this current study, we consider media as
a combination of TV and internet coverage. To begin, we determine how much
media attention is necessary to mitigate the epidemic’s impact. The model is
extensively analyzed using mathematical and numerical techniques to handle these
epidemiological difficulties.

In the rest of the paper: In the next section, a mathematical model is created to
assess the role of TV and internet broadcasting on infectious disease. We investigate
the model to show some basic properties such as positivity and boundedness of
the system. We found disease-free and endemic equilibria and explored their local
stability features. The fundamental reproduction number is stated. The existence
of Transcritical and Hopf-bifurcation has been shown in subsequent sections.
Numerical simulations are used to depict the effects of various epidemiologically
significant parameters on the epidemic curve and gain insight into the proposed
models’ dynamics. In the last section, we conclude the paper with noteworthy
findings.
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2 Model Formulation

Let N(t) be the total number of human populations in a particular region at time
t > 0. The overall human populationN(t) is separated into three mutually exclusive
classes: those who are prone to infection i.e., the susceptible population X(t), those
who are already infected i.e., the infected population Y (t), and those who are aware
of the infection i.e., the aware population Xa(t). For our current study, we’re going
to assume that no new people currently infected with the disease will enter the
investigated region at any time in the future; thus, we will use A to represent that
constant influx of new individuals without prior knowledge of the ongoing epidemic.

We assume that the human population is evenly distributed and the disease is
transmitted exclusively through direct contact between individuals who are infected
and those who are susceptible to it at a rate of β. Aware individuals don’t just mean
people who are aware of the ongoing epidemics; rather, these individuals are those
who are knowledgeable about the disease prevention and management process. The
aware population may lose their awareness after a while by returning to the unaware
class i.e. susceptible class at a rate λ0Xa. It is possible for those infected to recover
from the disease by receiving appropriate treatment, or they can recover by the
body’s immune system going into action. Following recovery, a fraction σ of the
recovered class γ Y will join the aware class as a result of previous exposure to
disease while the remaining fraction (1 − σ) will join the unaware class due to
ignorance about the ongoing epidemic.

In addition, let M(t) be the cumulative density of media-initiated awareness
campaigns driven by TV and internet in that area at time t . Most of the media
available to the public are delivered via TV and the internet, from which people
can learn information about disease prevention. Thus, to make awareness more
easily accessible, we have focused on two media: TV and the internet. While
awareness propagation can increase behavior alterations such as self-quarantine and
social distance, people will use these strategies to reduce their overall susceptibility.
People’s attention is predominantly focused on TV coverage, so as the number of
aware individuals grows, it is reasonable to assume that the growth rate of internet
coverage will slow down. The growth of the combined media coverage due to both
TV and internet is assumed to be proportional to the infected populations, while the

growth rate of internet coverage decreases by a factor f (Xa) = θ Xa

ω +Xa . Thus, the

net growth rate of media coverage due to internet will be μi

(
1− θ Xa

ω +Xa
)
. In

our model, we have considered media coverage as a convex combination of TV and
the internet to propagate the process of mitigating the transmission of infectious
diseases. Additionally, let M0 be the constant baseline amount of advertisements
in the investigated region. The effectiveness of TV and internet coverage is sub-
stantially reduced over time because of the inefficiency and psychological barriers;
thus, advertisements through TV and internet become less influential and resulting
in media decline with a disappearing rate δ. Further, advertising on TV and the
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Fig. 1 Schematic diagram for the system (1)

internet is believed to have an impact on susceptible individuals and therefore it
is believed that they form an isolated class known as the aware class to protect
themselves from infection. Additionally, it is assumed that the advertisements on
TV and internet have a limited effect on the susceptible population, and as a result,

the susceptible population becomes aware at a rate of λ
XM

p1 +M . The constant p1

denotes the half-saturation point for the effect of TV and internet advertisements
on unaware susceptible individuals, and it reaches half of its maximum value λX
when the cumulative number of advertisements to aware the population reaches p1.
Infections are eradicated as a result of recovery, disease-related mortality, or natural
death, at rates of γ , d ′ and d, respectively.
The dynamic variables within this study are diagrammatically represented in Fig. 1.
Based on these model assumptions, the dynamics of the model is governed by the
following system of non-linear differential equation:

dX

dt
= A− βXY − λ XM

p1 +M + (1− σ)γ Y + λ0Xa − dX,
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dY

dt
= βXY − (γ + d ′ + d)Y,

dXa

dt
= λ XM

p1 +M + σγY − λ0Xa − dXa, (1)

dM

dt
= α1μi

(
1− θ Xa

ω +Xa
)
Y + α2μtY − δ(M −M0),

where X(0) > 0, Y (0) ≥ 0, Xa(0) > 0, andM(0) ≥ M0.
Using the fact that X + Y + Xa = N , the above system reduces to the following
system:

dY

dt
= β(N − Y −Xa)Y − (γ + d ′ + d)Y,

dXa

dt
= λ(N − Y −Xa)M

p1 +M + σγY − λ0Xa − dXa,
dN

dt
= A− dN − d ′

Y, (2)

dM

dt
= α1μi

(
1− θ Xa

ω +Xa
)
Y + α2μtY − δ(M −M0),

where Y (0) ≥ 0, Xa(0) > 0, N(0) > 0, and M(0) ≥ M0. Epidemiological
descriptions of model parameters involved in system (2) and their values used for
numerical simulations are listed in Table 1.

2.1 Basic Properties

We will prove that the values of all the model (1) variables remain non-negative
throughout the entire time period. For this, we shall need to prove the following
claim.

2.2 Positivity of Solutions

Lemma 2.1 The solution X(t), Y (t), Xa(t) andM(t) of the model system (1) with
initial conditions X(0) > 0, Y (0) ≥ 0, Xa(0) > 0,M(0) ≥ M0 are positive for all
t > 0.

Proof First, we will prove the positivity of Y (t) and Xa(t) as positivity of X(t)
depends on positivity of Y (t) and Xa(t). From the second equation of the model
system (1), we have
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Table 1 Model Parameters of system (2)

Parameters Descriptions Values References

A Immigration in the
susceptible population class

3 Assumed

β Contact rate of susceptible
with infected individuals

0.00002 [19]

λ Dissemination rate of
awareness among the
susceptible individuals

0.02 Assumed

λ0 Transfer rate of aware
individuals to susceptible
class

0.0024 Assumed

p1 Half saturation constant 160 Assumed

σ Fraction of recovered
individuals joining the aware
class

0.1 Assumed

ω Half saturation constant 6000 [23]

γ Recovery rate of infected
individuals

0.32 Assumed

d ′ Disease induced death rate 0.0001 Assumed

d Natural death rate of human
population

0.00004 [23]

μi The growth rate of
broadcasting the information
through internet

0.08 Assumed

μt The growth rate of
broadcasting the information
through TV

0.003 Assumed

δ Diminution rate of TV and
internet coverage due to
inefficiency and
physiological barrier

0.06 [20, 27]

M0 Baseline number of media
coverage through TV and
internet

10 Assumed

θ The decay of internet
coverage with the increase in
the number of individuals

0.0005 [23]

α1 and α2 Convex combination
constant (α1 + α2 = 1)

α1 = 0.5, α2 = 0.5 Assumed

Y (t) = Y (0)exp
(∫ t

0
[βX(s)− (γ + d ′ + d)]ds

)
, Y (0) > 0.

Which implies that Y (t) ≥ 0 for all time t ≥ 0
Again, from the fourth equation of the model system (1) can be written as;
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dM(t)

dt
exp(δt)+ δMexp(δt) =

[{
α1μi

(
1− θ Xa

ω +Xa
)
+ α2μt )Y (t)+ δM0

}]
exp(δt)

And, thus

M(t) = M(0)exp(−δt)+
∫ t

0
exp(−δ(t − s))

[{
α1μi

(
1− θ Xa(s)

ω +Xa(s)
)
+ α2μtY (s)+ δM0

}]
ds.

where ,M(0) > 0. This implies thatM(t) > 0 for all t > 0. Similarly, we can show
that Xa(t) > 0 for all t > 0.

Now from the first equation of the model system (1), we have

(
dX(t)

dt
+ f1(t)X(t)

)
exp

(∫ t

0
f1(s)ds

)
= f2(t)exp

(∫ t

0
f1(s)ds

)

Where f1(s) = βY (s)+λ M(s)
p1+M(s) +d and f2(t) = A+(1−σ)γ Y (t)+λ0Xa(t)

X(t) = X(0)exp
(
−
∫ t

0
f2(s)ds

)
+exp

(
−
∫ t

0
f2(s)ds

)
×
∫ t

0
f3(s)exp

(∫ s

0
f2(u)du

)
ds,X(0) > 0.

This implies that X(t) > 0 for all t > 0. Thus, the solutions X(t), Y (t), Xa(t)
and M(t) of the model system (1) with initial conditions X(0) > 0, Y (0) ≥ 0,
Xa(0) > 0, and M(0) ≥ M0 are positive for all t > 0. This completes the proof.

��
Now, it is sufficient to study the model system (2) in detail rather than system

(1).

Lemma 2.2 For the solutions of model system (2), The region of attraction is given
by the set,

Ω = {(Y,Xa,N,M) ∈ R
4+ : 0 ≤ Y,Xa ≤ N ≤ A

d
, 0 ≤ M ≤

(
(α1μt + α2μr)A

δd
+M0

)
= Mr }

and attracts all solutions initiating in the interior of the positive orthant.

Proof From the third equation of system (2), we have

dN

dt
= A− dN − d ′

Y ≤ A− dN.

Using comparison theorem , we get

0 ≤ N(t) ≤ A

d
+ (N(0)− A

d
e−dt ≤ A− dN.
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Thus, as t → ∞, 0 ≤ N ≤ A
d
. Hence 0 ≤ N ≤ A

d
for any t > 0. Since X =

N − Y −Xa ≥ 0, therefore 0 ≤ Y,Xa ≤ N ≤ A
d
.

Now, from the fourth equation of the system (2), we obtain

dM

dt
= α1μi(1− θ Xa

ω +Xa )Y + α2μtY − δ(M −M0) ≤ (α1μi + α2μt )A
d

+ δM0 − δM0.

Applying the differential inequality theory [15], we get

lim sup
t→∞

M(t) ≤ (α1μi + α2μt)A
dδ

+M0 = Mr(say).

Hence 0 ≤ M(t) ≤ Mr for all t > 0. ��

3 Equilibrium Analysis

In this section, all possible steady state solutions of the system (2) are analyzed. The
system (2) has the following two equilibria:

(i) Disease-free equilibrium (DFE) E0 =
(
0,

AλM0

d{λM0 + (λ0 + d)(p1 +M0)} ,
A
d
,M0

)
,

(ii) Endemic equilibrium E∗ = (Y ∗, X∗
a,N

∗,M∗).
The disease-free equilibrium E0 of the system (2) exists always and the conditions
for feasibility of endemic equilibrium of the system (2) is discussed in later
subsection.

3.1 Basic Reproduction Number

The basic reproduction number R0 is a global index that public health organisations
use to determine the severity of an epidemic outbreak. Epidemiologically, the basic
reproduction number indicates the number of secondary cases produced by an
infectious individual in a population composed entirely of susceptible individuals.
Here, we will determine reproduction number R0 of the system (2) using the next-
generation operator method [29].
Let, x = (Y,Xa,N,M)

T , F (x) be the matrix of new infection and V (x) be the
matrix of transition terms. Then, the model system (2) can be written as:

dx

dt
= F (x)− V (x),
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where F (x) =

⎡

⎢⎢⎣

βY (N − Y −Xa)
0
0
0

⎤

⎥⎥⎦, V (x) =

⎡

⎢⎢⎣

(γ + d ′ + d)Y
V2

−A+ dN + dY
V4

⎤

⎥⎥⎦,

V2 = −λ(N − Y − Xa) M

p1 +M − σγY + (λ0 + d)Xa and V4 = −α1μi(1 −

θ
Xa

ω +Xa )Y − α2μt + δ(M −M0)

Now, The Jacobian of F (x) and V (x) at DFE E0 =
(
0, AλM0
d{λM0+(λ0+d)(p1+M0)} ,

A
d
,M0

)
are represented by

F =

⎡

⎢⎢⎢⎢⎣

βA

d

(λ0 + d)(p1 +M0)

λM0 + (λ0 + d)(p +M0)
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎥⎦
and

V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

γ + d ′ + d 0 0 0

λM0

p1 +M0
− σγ λM0

p1 +M0
+ (λ0 + d) − λM0

p1 +M0
−λp1(

A
d
−X0

a)

(p1 +M0)2

d ′ 0 d 0

−α1μi(1− θ X0
a

ω +X0
a

)− α2μt 0 0 δ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

The basic reproduction number is given by R0 = ρ(FV −1), where ρ is the
spectral radius of the next-generation matrix (FV −1). Thus, from the model (2), we
obtain the expression for R0 as

R0 = βA

d(γ + d ′ + d)
(

(λ0 + d)(p1 +M0)

λM0 + (λ0 + d)(p1 +M0)

)
. (3)

3.2 Feasibility of the Endemic Equilibrium

For system (2), an endemic equilibrium is denoted by E∗ = (Y ∗, X∗
a,N

∗,M∗), the
components of which are positive solutions to the system’s equilibrium equations.
From the third equation of equilibrium equations, we get

N − Y = A− (d + d ′)Y
d

(4)

Using (4), from first equilibrium equation, we get

Xa = β(A− (d + d ′)Y )− d(γ + d ′ + d)
βd

(5)
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It is worth noting here that in order for Xa to be positive, we must have Y <
βA−d(γ+d ′+d)

β(d ′+d) = Yb (say) also noted Yb > 0 if R0 > 1.
From Eq. (5),we have

H(Y) =
(
1− θ Xa

ω +Xa
)

= βdω + (1− θ)[β(A− (d ′ + d)Y )− d(γ + d ′ + d)]
βdω + β(A− (d ′ + d)Y )− d(γ + d ′ + d) (6)

Differentiating with respect to Y , we obtain

H ′(Y ) = θβ2dω(d ′ + d)
[βdω + β(A− (d ′ + d)Y )− d(γ + d ′ + d)]2 (7)

Clearly, H ′(Y ) > 0. Further form fourth equilibrium equation of system (2), we
have

M

p1 +M = δM0 + (α1μiH(Y )+ α2μt)Y
δ(p1 +M0)+ (α1μiH(Y )+ α2μt)Y (8)

substituting (4), (5) and (8) in second equilibrium equation, we obtain a equation in
Y as:

P(Y ) =λ
(

δM0 + (α1μiH(Y )+ α2μt)Y
δ(p1 +M0)+ (α1μiH(Y )+ α2μt)Y

)(
γ + d ′ + d

β

)
+ σγY

− (λ0 + d)
[
β(A− (d ′ + d)Y )− d(γ + d ′ + d)

βd

]
(9)

From Eq. (9), we have the following:

(i) βP (0) =
[
λ

M0

p1 +M0
(γ + d ′ + d)− (λ0 + d)

(
βA

d
− (γ + d ′ + d)

)]
<

0 if R0 > 1.

(ii) βP (Yb) =
[
λ

(
δM0 + (α1μi+α2μt)Yb

δ(p1+M0)+(α1μi + α2μt)Yb
)
(γ+d ′+d)+βσγYb

]
> 0.

(iii) P ′(Y ) > 0 in (0, Yb).

Thus, there exists an unique positive root of P(Y ) in the interval (0, Yb), say Y =
Y ∗, if R0 > 1. Now, using the value of this Y = Y ∗ in Eqs. (4), (5), and (8), we
get positive values of N∗, X∗

a and M∗. Therefore, the endemic equilibrium E∗ =
(Y ∗, X∗

a,N
∗,M∗) is feasible in (0, Yb), provided that R0 > 1.
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4 Local Stability Analysis

Theorem 4.1

(i) The Disease free equilibrium E0 is always feasible and its stable when R0 < 1
and unstable whenever R0 > 1.

(ii) The endemic equilibrium E∗ is feasible whenever R0 > 1 and is locally
asymptotically stable if F1 > 0, F2 > 0, F3 > 0, F4 > 0, and F1F2F3 >
F 2
3 + F 2

1F4, where Fi’s (i = 1, . . . , 4) are defined in the proof.

Proof The Jacobian matrix of system (2) is given by

J =

⎛

⎜⎜⎝

j11 −βY βY 0
j21 j22 j23 j24

−d ′ 0 −d 0
j41 j42 0 −δ

⎞

⎟⎟⎠ ,

where,

j11 = β(N − 2Y −Xa)− (γ + d ′ + d), j21 = − λM

p1 +M + σγ

j22 = − λM

p1 +M − (λ0 + d), j23 = λM

p1 +M , j24 = λp1(N − Y −Xa)
(p1 +M)2 ,

j41 = α1μi
(
1− θ Xa

ω +Xa
)
+ α2μt , j42 = − α1μiθωY

(ω +Xa)2

Now, at the disease-free equilibrium point E0, we compute the Jacobian, which is
given by

JE0 =

⎛

⎜⎜⎝

j011 − (γ + d ′ + d) 0 0 0
j021 j022 j

0
23 j

0
24

−d ′ 0 −d 0
j041 0 0 −δ

⎞

⎟⎟⎠

where

j011 = βA

d

(
(λ0 + d)(p1 +M0)

λM0 + (λ0 + d)(p1 +M0)

)
, j021 = − λM0

p1 +M0
+ σγ

j022 = − λM0

p1 +M0
− (λ0 + d), j023 = λM0

p1 +M0
, j024 = λp1A

d(p1 +M0)2

(
(λ0 + d)(p1 +M0)

λM0 + (λ0 + d)(p1 +M0)

)
,

j041 = α1μi
(
1− θ X0

a

ω +X0
a

)
+ α2μt

and X0
a = AλM0

d{λM0 + (λ0 + d)(p1 +M0)} .
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The Jacobian matrix evaluated at E0 has four eigenvalues: −δ, −d,
−
(

λM0

p1 +M0
+ λ0 + d

)
and (γ + d ′ + d)[R0 − 1]. It is clear that first three

eigenvalues are negative and last one is dependent on the value of R0. If, R0 > 1
then fourth eigenvalue is positive, and so the DFE(E0) is unstable (cf. Fig. 2).
Furthermore, when R0 < 1, all the eigenvalues are negative and so DFE(E0) is
stable (cf. Fig. 2).
Now, at the endemic equilibrium E∗, the Jacobian matrix is denoted by JE∗ and
given by

JE∗ =

⎛

⎜⎜⎝

−βY ∗ −βY ∗ βY ∗ 0
−j∗21 −j∗22 j∗23 j∗24
−d ′ 0 −d 0
j∗41 −j∗42 0 −δ

⎞

⎟⎟⎠

where

j∗21 = λM∗

p1 +M∗ − σγ, j∗22 = λM∗

p1 +M∗ + (λ0 + d), j∗23 = λM∗

p1 +M∗ , j
∗
24 = λp1(N

∗ − Y ∗ −X∗
a)

(p1 +M∗)2
,

j∗41 = α1μi(1− θ X∗
a

ω +X∗
a

)+ α2μt , j∗42 = α1μiθωY
∗

(ω +X∗
a)

2
.

Now, we use Routh-Hurwitz criterion to demonstrate the local stability of the
endemic equilibrium E∗. The characteristic equation of the matrix JE∗ is obtained
as:

D(ζ) ≡ ζ 4 + F1ζ 3 + F2ζ 2 + F3ζ + F4 = 0, (10)

where

F1 = λM∗

p1 +M∗ + λ0 + 2d + δ + βY ∗,

F2 = dδ +
(

λM∗

p1 +M∗ + λ0 + d
)
(d + δ)+ j∗24j∗42 + β(λ0 + 2d + d ′ + σγ + δ)Y ∗,

F3 = dδ
(

λM∗

p1 +M∗ + λ0 + d
)
+ dj∗24j∗42 + βδ(d ′ + d)Y ∗ + β(d + δ)(λ0 + d + σγ )Y ∗,

+βd ′(λ0 + d)Y ∗ + βj∗24(j∗41 + j∗42)Y ∗

F4 = βdδ(λ0 + d + σγ )Y ∗ + βd ′δ(λ0 + d)Y ∗ + βdj∗24(j∗41 + j∗42)Y ∗ + βd ′j∗24j∗42Y ∗.

Thus, by applying the Routh-Hurwitz criterion to the preceding characteristic
equation (10), we can assert that all eigenvalues of the Jacobian matrix JE∗ will
be lie in the complex plane’s left-half if the following condition is satisfied:

Fi > 0 (i = 1, . . . , 4) and ψ = F1F2F3 − F 2
3 − F 2

1 F4 > 0.
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Hence, so long as the above conditions are satisfied, the endemic equilibrium E∗ is
locally asymptotically stable. ��

5 Existence of Transcritical Bifurcation

As a result of the preceding theorem (4.1), we can see that as R0 increases through
1, the stability of disease free equilibrium point E0 changes from stable to unstable.
As a result, we employ R0 as the bifurcation parameter.

Theorem 5.1 The system (2) undergoes transcritical bifurcation at the disease free
equilibrium E0 when the bifurcation parameter R0 = 1

Proof Let, Z = (Y,Xa,N,M) and fW(Z, β) vector represented by

fW(Z, β) =

⎛

⎜⎜⎝

f1(Z, β)

f2(Z, β)

f3(Z, β)

f4(Z, β)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

β(N − Y −Xa)Y − (γ + d ′ + d)Y
λ
(N−Y−Xa)M

p1+M + σγY − λ0Xa − dXa
A− dN − d ′

Y

α1μi

(
1− θ Xa

ω+Xa
)
Y + α2μtY − δ(M −M0)

⎞

⎟⎟⎟⎟⎠

By differentiating the above function with respect to β, we obtain

DβfW =

⎛

⎜⎜⎝

(N − Y −Xa)Y
0
0
0

⎞

⎟⎟⎠

Now, at R0 = 1, the Jacobian matrix of the system (2) around the disease free
equilibrium is given by

J (E0) =

⎛

⎜⎜⎝

0 0 0 0
j021 j

0
22 j

0
23 j

0
24

−d ′ 0 −d 0
j041 0 0 −δ

⎞

⎟⎟⎠

Here, J (E0) has a simple zero eigenvalue with corresponding left eigenvec-

tor u = (
1 0 0 0

)T
and right eigenvector v = (

1 v2 v3 v4
)T

, where v2 =
d ′
d
j023 − j021 − j041j

0
24
δ

j022

, v3 = d ′

d
and v4 = j041

δ
.

Now, at R0 = 1 we have the following,



396 R. Medda et al.

(
uT DβfW

)

E0
= 0,

and

(
uT (DZDβfW)v)

)

E0
= A

d

(
(λ0 + d)(p1 +M0)

λM0 + (λ0 + d)(p1 +M0)

)
�= 0,

and also
(
uT ((DZZfW)(v, v))

)

E0
=
(
uT
∑
(eiv

T DZ(DZfi)
T v)
)

E0

= −2d(γ + d ′ + d)
A(λ0 + d)

[
d ′

d
(λ0 + d)+ j041j

0
24

δ
+ σγ

]
�= 0.

Therefore, from Sotomayor’s theorem [26], we can conclude that the system (2)
undergoes a transcritical bifurcation at E0 when R0 crosses R0 = 1 (cf. Fig. 2). ��

Fig. 2 One parameter bifurcation diagram with R0 as a bifurcation parameter illustrating a
transcritical bifurcation at R0 = 1 when the transmission rate (β) crosses the critical value
β = 0.0000113. For R0 < 1, the system is stable at the DFE (E0), whereas for R0 > 1, the
system is stable at the endemic equilibrium (E∗)
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From Fig. 2, the conditionR0 ≤ 1 ensures that the disease can be eradicated from
the population for sufficiently low contact rate.

6 Existence of Hopf-Bifurcation

From Fig. 3 we observe that the system exhibits oscillations about the endemic
equilibrium when α1 crosses some critical value α1c ∈ (0, 0.4). To determine nature
of bifurcation, we choose α1 as a bifurcation parameter. For this, we express the
coefficients in characteristic equation (10) as functions of α1:

ζ 4 + F1(α1)ζ 3 + F2(α1)ζ 2 + F3(α1)ζ + F4(α1) = 0, (11)

It is noted that all Fi’s (i = 1 − 4) are positive and let at α1 = α1c the following
condition holds

(ψ(α1))α1=α1c = F1(α1c )F2(α1c )F3(α1c )− F 2
3 (α1c )− F 2

1 (α1c )F4(α1c ) = 0.
(12)

then at α1 = α1c the above Eq. (11) is written as:
(
ζ 2 + F3

F1

)(
ζ 2 + F1ζ + F1F4

F3

)
= 0 (13)

Fig. 3 Time evolution for the infected population density, exhibiting the existence of the stable
endemic state at α1 = 0.01 (in red) and an oscillatory endemic state at α1 = 0.4 (in blue)
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Let, ζi (i= 1, 2, 3, 4), are the roots of the above Eq. (13). It is clear that the Eq. (13)

has two purely imaginary roots i.e. ζ1,2 = ±iω0, where ω0 =

√
F3

F1
. For Hopf-

bifurcation to exist, all roots except ±iω0 must lie in the left half of the complex
plane. To ascertain the nature of the remaining two roots (i.e., ζ3, ζ4), we have the
following :

ζ3 + ζ4 = −F1 (14)

ω20 + ζ3ζ4 = F2 (15)

ω20(ζ3 + ζ4) = −F3 (16)

ω20ζ3ζ4 = F4 (17)

Now, first we check if ζ3, ζ4 are real, then from Eq. (17) we get ζ3 and ζ4 are of the
same sign as F4 > 0 and from Eq. (14) implies that they should be negative i.e.,
ζ3 < 0, ζ4 < 0. Further, if ζ3 and ζ4 are complex conjugate, then 2Re(ζ3) = −F1,
i.e., ζ3 and ζ4 have negative real parts. Thus, in both case, the roots ζ3, ζ4 lie in
the left half of the complex plane. Now, we verify the transversality condition to
find out the interval under which Hopf-bifurcation occurs. For this let at any point
α1 ∈ (α1c − ε, α1c + ε) and ζ1,2 = κ ± iη, putting this values in Eq. (11), we get

κ4 + F1κ3 + F2κ2 + F3κ + F4 + η4 − 6κ2η2 − 3F1κη
2 − F2η2 = 0, (18)

4κη(κ2 − η2)− F1η3 + 3F1κ
2η + 2F2κη + F3η = 0 (19)

Since, η(α1) �= 0, from Eq. (19), we get

− (4κ + F1)η2 + 4κ3 + 3F1κ
2 + 2F2κ + F3 = 0 (20)

putting this value of η2 in Eq. (18), we have

−64κ6 − 96F1κ
5 − 16(3F 2

1 + 2F2)κ
4 − 8(F 3

1 + 4F1F2)κ
3

−4(F 2
2 + 2F 2

1 F2 + F1F3 − 4F4)κ
2 − 2F1(F

2
2 + F1F3 − 4F4)κ

−(F1F2F3 − F 2
3 − F 2

1 F4) = 0 (21)

Differentiating above equation with respect to α1 and by using κ(α1c ) = 0, we have

[
dκ

dα1

]

α1=α1c
=
[

d
dα1
ψ(α1)

−2F1(F 2
2 + F1F3 − 4F4)

]

α1=α1c
(22)
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using the value of F4(α1c ) =
(
(F1(α1c )F2(α1c )F3(α1c )−F 2

3 (α1c )

F 2
1 (α1c )

)
from Eq. (12), we

obtain

[
dκ

dα1

]

α1=α1c
=
[

d
dα1
ψ(α1)

−2F1(F1F3 + (2F3F1 − F2)2
]

α1=α1c
�= 0

if
[
d
dα1
ψ(α1)

]

α1=α1c
�= 0. Therefore, the transverality condition holds if

[
d
dα1
ψ(α1)

]

α1=α1c
�= 0. Hence, we have the following theorem for Hopf-bifurcation

existence.

Theorem 6.1 The Hopf-bifurcation occurs in the reduced model system (2) around
the endemic equilibrium E∗ if the there exists α1 = α1c such that:

(i) Fi(α1c ) > 0 (i = 1, . . . , 4),
(ii) ψ(α1c ) = 0,

(iii)
[
R dζi (α1)

dα1

]

α1=α1c
�= 0 for i= 1, 2

i.e.,
[
d
dα1
ψ(α1)

]

α1=α1c
�= 0.

Due to the complexities in the algebraic expressions of ψ(α1) and
dψ
dα1

, we use
numerical simulations to verify the transversality conditions for a Hopf bifurcation.
From Fig. 4 we see that the system undergoes a Hopf bifurcation when α1 crosses
α1c = 0.28.

To identify the changes in the infected population density with the changes
in infection rate and baseline media cover, in Fig. 5a we plot a two-parameter
bifurcation diagram with β andM0 as bifurcation parameters. We observe that any
increase in the infection rate increases the number of infected individuals in the
system. However, the increase in the baseline media coverage helps in decreasing
the infected population density. We also observe that if the baseline media coverage
is high, the disease can be eradicated with a moderately low infection rate.
Fig. 5b represents the changes in the infected population with the changes in
infection rate and recovery rate. We observe that any increase in the recovery rate
helps in reducing the number of infected individuals. When the recovery rate is low,
there is a surge in infected individuals in the system.
From Fig. 6a we observe that the increase in the dissemination rate of awareness
among susceptible individuals plays a major role in eradicating the disease.
However, if the infection rate is high, the disease can thrive in the population even
with a high awareness level. Also, a sufficiently high infection rate can lead to
oscillatory dynamics of the system about the endemic state.

From Fig. 6b we observe that restricting the immigration of the susceptible
individuals can help eradicate the disease. However, even a moderate increase in
immigration can lead to a persistence of the disease in the population. In this case,
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Fig. 4 Verification of the transversality conditions for Hopf bifurcation when α1 crosses α1c
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Fig. 5 The changes in the infected population density with the changes in (a) infection rate and
baseline media cover, and (b) infection rate and recovery rate
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Fig. 6 Two parameter bifurcation of the system with respect to the parameters (a) λ and β; (b) A
and β; (c) α1 and λ; (d) α2 and λ

the system exhibits dynamic instability followed by stability about the endemic
equilibrium with the increase in the infection rate.

Further, we observe that the viewer’s preference for the TV over the internet
plays no significant difference in the system dynamics (c.f. Fig. 6c, d).

7 Discussion

Awareness campaigns through TV and internet advertisements promote awareness
and bring behavioral changes in viewers on mitigating the spread of infectious
disease. In this current work, we have proposed and scrutinized a nonlinear
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mathematical model for infectious disease control by taking into account a convex
combination of the roles of TV and internet coverage in imparting awareness among
the human population. By investigating the proposed model, we obtain two possible
feasible equilibria: the disease-free equilibrium (E0) and the endemic equilibrium
(E∗). We employed the next-generation technique to calculate an expression for
the basic reproduction number R0 and observed that whenever R0 < 1 is satisfied,
the disease-free equilibrium exists and is stable. However, when the value of R0 is
greater than unity, the disease-free equilibrium becomes unstable and the endemic
equilibrium E∗ appears. The endemic equilibrium is locally asymptotically stable
under certain conditions. Taking R0 as a bifurcation parameter, we observe that the
system (2) switches its stability through a transcritical bifurcation. The existence
of Hopf-bifurcation has been noticed when α1 crosses α1c = 0.28 (see Fig. 4). We
have investigated the role of some key parameters of our model in managing the
disease. It is observed that with the increase in the infection rate, more individuals
in the system become infected, whereas an increase in the baseline media coverage
contributes to a reduction in the infected population density. It is also observed
that there is a surge in the number of infected individuals as long as the recovery
rate is low. The results suggest that the spread of the disease can be minimized or
even can be completely eradicated from the system if the distribution of awareness
information through TV and the internet among the susceptible population is
sufficiently high, ensuring a strong baseline awareness in the population.

The study found that at the early stage TV and internet coverage are quite
effective. The effect of isolation and the rate of awareness among susceptible
persons owing to TV and internet commercials are also found to help reduce disease
spread. Aside from this, some other factors such as immunization, cleanliness, social
distancing and voluntary quarantine are also essential aspects in the community for
disease eradication.
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Potential Severity, Mitigation, and
Control of Omicron Waves Depending
on Pre-existing Immunity and Immune
Evasion

F. A. Bartha, P. Boldog, T. Tekeli, Z. Vizi, A. Dénes, and G. Röst

1 Introduction

At the end of November 2021, according to the World Health Organization, the
B.1.617.2 Delta variant accounted for 99% of COVID-19 cases around the world
[1]. Yet in recent weeks, we have observed the rise of the B.1.1.529 lineage,
designated as the Omicron variant. This variant was first reported to the WHO
on 24th November, and as of 9th December, Omicron sequences have been found
already in 63 countries [2], in spite of travel restrictions. Omicron transmission
dynamics can be estimated from sharp turning points in epidemiological trends,
widespread genome sequencing or by S–gene target failure (SGTF), which is a
proxy for Omicron [3]. Omicron has out-competed Delta in South Africa in a short
time [4], and rapid growth of cases has been observed in the United Kingdom [5]
and Denmark [6].

There is accumulating evidence of high transmissibility and immune-evasion
capability of the Omicron variant [3, 5, 7, 8]. Ongoing neutralization studies indicate
a significant drop in vaccine efficacy [9], and increased frequency of reinfection has
been reported in South Africa [8].

There is an urgent need to estimate the potential impact of this variant. Modelling
for the United Kingdom has been posted on 11th December [5]. However, since
countries have different levels of pre-existing immunity either from vaccination or
from previous infections, and different non-pharmaceutical measures are in place,
we can expect that countries will be affected differently. Our goal here is to provide
a quick assessment of this threat, considering these country-specific factors.
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2 Methods

2.1 Potential Control of Delta and Omicron

The effective reproduction number corresponding to the Delta variant (denoted by
R�t ) at a given time characterizes the current transmission of the infection in a
population. It can be obtained by the correction of the basic reproduction number
(R�0 ) with the mitigating effect of the actual non-pharmaceutical interventions
(NPI) and the population immunity level (p) in reducing transmission. That is,
R�t = R�0 · (1− NPI) · (1− p). Similarly, if the Omicron is already present in the
same population, its effective reproduction number isRot = Ro0 ·(1−NPI)·(1−po),
where Ro0 is the basic reproduction number of the Omicron variant, and po is the
population immunity against this variant.

We introduce parameter e for the extent of immune evasion, expressing that
immunity p to prior variants is reduced by e · p with respect to Omicron, that is
po = p · (1 − e). Let pSA be the population immunity in South Africa, and let
q = Rot /R�t at the time of the emergence of Omicron. Then, we have the relation

Ro0 · (1− NPI) · (1− pSA · (1− e)) = q ·R�0 · (1− NPI) · (1− pSA). (1)

In a country with a combination of pre-existing immunity p and NPIs, to achieve
R�0 ≤ 1 and Ro0 ≤ 1, one needs

NPI > 1− 1/(R�0 · (1− p)), and NPI > 1− 1/(Ro0 · (1− po), (2)

respectively.

2.2 Transmission Dynamics of Omicron

To estimate the potential of an Omicron wave, we employ a compartmental model
of disease dynamics, which is monitoring the temporal change of the number of
infected individuals in the population, separately with and without pre-existing
immunity. The technical details of the model and the numerical code are described
in the Supplement. Most parameters are estimated from the literature, while p and
e are varied in a feasible interval. The differential equations are solved for many
combinations of p and e, thus we can assess the total epidemic size, the peak size
and the peak time of the Omicron wave for a range of scenarios.
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2.3 Parametrization

Current estimates from South-Africa and United Kingdom indicate that in those
countries Rot /R�t ≈ 4 [7, 10–12], which means that an Omicron-case generates
four times more cases than a Delta-case. As baseline parameters, we chooseR�0 = 6
[13, 14], and for South Africa at the time of the emergence of Omicron we assume
q = Rot /R�t = 4, and pSA = 0.85 [15], but these key parameters can easily be
varied to explore the sensitivity of the outcome. The choice of pSA is consistent
with the observed R�t in South Africa in a period before Omicron [10]. Previous
experience in European countries shows that strict lockdowns can achieve an 82%
drop in the effective reproduction number [16], hence we consider NPI < 0.82. For
the compartmental model, following [5], the average incubation period is assumed
to be 2.5 days, and the average infectious period is assumed to be 5 days, each
following a gamma distribution.

3 Results

Since the NPIs affect the transmission of both variants in the same way, from
q = Rot /R�t = 4, we have Ro0 · (1 − po) = 4 · R�0 · (1 − p). Such a four-fold
advantage of Omicron can emerge either from inherently higher transmissibility or
a larger susceptible pool, when immunity obtained by vaccination or prior infection
by other variants does not protect against the new variant as effectively. There
is an obvious trade-off relationship between these two factors determining the
transmission fitness: the higher the transmissibility, the lower the immune evasion
must be to maintain the four-fold ratio of the effective reproduction numbers.

With our baseline parameters, from (1), we obtain the relation

Ro0(1− 0.85 · (1− e)) = 3.6,

showing that if immune evasion is significant, then Ro0 must be more moderate. In
particular, Ro0 < R�0 whenever e > 0.53.

Consider a country with population immunity p, where Delta is controlled, then
by (2), NPI > 1− 1/(6 · (1− p)). The necessary NPIs to control Omicron can also
be found from (1) and (2) as

NPI > 1− (1− 0.85 · (1− e))/(3.6 · (1− p · (1− e))).

The necessary NPIs are plotted in Fig. 1 as a function of p for various values of
e. As we can see, the NPIs that are sufficient against Delta are not enough to stop the
spreading of Omicron, for any considered combination of p and e. Since Omicron
containment requires very stringent NPIs, the invasion of this variant is likely to
result in widespread infection.
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Fig. 1 The necessary level of non-pharmaceutical interventions (NPI) to control the Omicron and
Delta (dashed) variants as a function of pre-existing immunity

Fig. 2 Heatmap of the total
number of infections (as
fraction of the population)
during Omicron wave,
depending on pre-existing
immunity and Omicron’s
immune evasion, assuming
that no further mitigation
measures will be
implemented. We select
examples from a feasible
parameter region highlighted
by a rectangle

To estimate the severity of future Omicron waves in countries where Delta is
under control, we solve our transmission model for a range of parameters (p, e),
and when population immunity is below the Delta herd immunity threshold, we
employ the necessary NPIs (the red dashed curve in Fig. 1) to achieveR�t ≤ 1. The
heatmap in Fig. 2 shows the fraction of the population infected during the Omicron
wave with respect to the parameters (p, e) space. One can see that the only scenarios
not to have a significant outbreak are the following: the population has extremely
high immunity and Omicron is not very immune evasive (bottom right corner); or
the competitive advantage of Omicron emanates from high immune evasion rather
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(a) (b)

(c) (d)

Fig. 3 Epidemic curves of the Omicron wave under various assumptions on the pre-existing
immunity and the variant’s immune evasion, in the absence any additional measures. (a) p = 0.6,
e = 0.8, NPI = 0.58. (b) p = 0.9, e = 0.8, NPI = 0.00. (c) p = 0.6, e = 0.5, NPI = 0.58. (d)
p = 0.9, e = 0.5, NPI = 0.00

than inherent transmissibility and at the same lockdown-like NPIs are in place (top
left corner): none of which are plausible. We chose examples a, b, c, d from the
highlighted rectangle of a feasible parameter region for more detailed investigation,
but in our published code [17] we provide an interactive tool that makes exploring
other scenarios very easy for the reader.

The time course of the Omicron outbreak in the four selected scenarios are
depicted in Fig. 3. The dark red colour represents infected population without
prior immunity, while the pink colour represents infected population having been
vaccinated or previously infected. In the insets, the cumulative infected fraction is
shown, and the grey colour represents the population with prior immunity, while
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the lighter shade is the portion becoming available for Omicron-infections due to
immune evasion.

Potential Omicron waves may have very different characteristics. In countries
with very high population immunity, where Delta is contained with very mild or
without NPIs, one can expect an extremely rapid increase of cases and a high peak
in a matter of weeks, especially if Omicron is highly immune evasive (scenarios
b and d in Fig. 3). If population immunity is moderate and strong NPIs are being
employed to contain Delta, then the Omicron wave is more flattened, as long as the
NPIs remain in place (scenarios a and c in Fig. 3). In this case, as opposed to the
high immunity scenarios, the peak is lower if immune evasion is higher.

Besides the sheer number of infections, to assess the severity of the outbreaks, it
is very important to take into consideration the prior immune status of the population
getting infected. For example, despite in b and d the peak is much higher than
in a and c, if Omicron infections of those with prior immunity turn out to be
overwhelmingly mild, than the severity is much better reflected by the number of
infected without prior immunity, that is the red curves without the pink part in Fig. 3.
In this measure, the a and c are more severe. For scenarios b and d, reintroducing
measures with NPI = 0.4 can reduce the peak size roughly to half, and delaying the
peak by a month, as shown in Fig. 4.

(a) (b)

Fig. 4 Effect on the Omicron wave: introducing moderate NPIs in countries with high immunity
against the Delta variant. Scenarios (3(b)) and (3(d)) from Fig. 3. (a) p = 0.9, e = 0.8, NPI = 0.40.
(b) p = 0.9, e = 0.5, NPI = 0.40
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4 Discussion

The Omicron variant is spreading across the globe with unprecedented speed. Hence
there is great urgency to assess its potential consequences, despite all uncertainties
about its epidemiological parameters. Our calculations suggest that any combination
of current measures and population immunity and, that is just sufficient to suppress
the Delta variant, will not be able to contain Omicron. Hence widespread Omicron
transmission is expected. However, the impact of the Omicron wave on various
countries can be very different depending on the level of pre-existing population
immunity, and the immune evasion property of Omicron. The severity of the disease
caused by Omicron is yet unclear, however previous immunity appears to reduce
the risk of severe outcome [5]. To further improve the assessment, we constructed
a transmission dynamics model that tracks the emerging infections in the groups
with and without pre-existing immunity separately. This allowed us to investigate a
range of scenarios, and we found that in countries with high immunity but mild NPIs
a very sharp epidemic curve is expected with a high peak, but a smaller fraction of
infections are from the high risk population (those without pre-existing immunity).
On the other hand, countries with moderate immunity that employ stricter NPIs at
the moment to fight Delta, can have a flatter Omicron curve, but with more infections
from the high risk group. Once disease severity will be clarified with and without
pre-existence immunity, the overall severity of the outbreak could be determined
as a simple linear combination of the number of infected in those sub-populations.
In case of high severity, reintroducing further NPIs might be needed to mitigate
the Omicron waves, and that would also buy some time to expedite vaccination
programs and booster roll-outs.
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Appendix: Supplementary Material

Trade-Off Between Inherent Transmissibility and Immune
Evasion Capability

The contour formula (1) results in a trade-off between immune evasion and the
spreading capability of the Omicron variant when all other parameters are kept fixed.
In Fig. 5, we demonstrate this phenomenon fixingR�0 and q to their baseline values
and allowing uncertainty of the pre-existing immunity (pSA ) in South Africa.

Note that the scenarios with Ro0 < R�0 on Fig. 5 are to the right of the
contour with special focus. Clearly, even when considering only pSA ≈ 0.85, the
uncertainty of Ro0 is substantial as potential values lie within a range of [1.5, 24],
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Fig. 5 Ro0-contours
visualizing the trade-off
between transmissibility
(∼ Ro0) and immune evasion
(e) of the Omicron variant.
The rectangle marks a
feasible parameter region for
South Africa, the highlighted
contour agrees with the
transmissibility of Delta

where 24 = q · R�0 is the theoretical extreme when there is no immune evasion
whatsoever. If we restrict our attention to a more feasible immune evasion region,
similar to what was highlighted on the y-axis of Fig. 2, we may bound our estimate
toRo0 ∈ [1.5, 13].

Transmission Dynamics Model

The transmission dynamics is based on an SE2I4R model, generalized from SEIR
by assuming gamma-distributed incubation and infectious periods, using the Erlang
parameters n = 2 and m = 4. The sixteen compartments s(t), sp(t), 1

j
s (t), 1

j
p(t),

iks (t), i
k
p(t), rs(t) and rp(t)—with j = 1, 2; k = 1, 2, 3, 4—represent fraction of

the population being in different disease and immunity status. The compartment s
designates population level susceptibility, without any pre-existing immunity to any
of the variants, while sp stands for susceptibles to Omicron despite of being immune
to earlier variants due to a past infection or vaccination. Susceptibles (either from s
or sp) can get infected upon adequate contact with an infectious person (from one
of iks or ikp) with transmission rate β, and moved to the corresponding first latent
compartment. For both pathways i = s, p, the latent class comprises the two stages
11i , 1

2
i . The length of the latent period is α

−1, thus, one moves with the rate 2α from
the first latent stage to the second and thereon to the first infectious compartment,
alike. The model features four infectious stages stretching over the infectious period
γ−1, again, for both pathways. Individuals transition from one infected stage to
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the next one, as well as removed from the fourth with the rate 4γ . This linear chain
ensures that the infectious period is gamma distributed. We do not model the clinical
outcome of disease progression and all non-infectious individuals eventually enter
an r class. Note that this does not pose any restrictions on assessing the severity
of the Omicron wave as said severity is in direct correlation with the transmission
dynamics of the epidemics captured by model time series and the corresponding
peak and final size.

The above considerations are summarized in the compartmental ODE system:

s′(t) = −βs(t)
4∑

k=1

(iks (t)+ ikp(t)), s′p(t) = −βsp(t)
4∑

k=1

(is (t)
k + ikp(t)),

11s
′
(t) = βs(t)

4∑

k=1

(iks (t)+ ikp(t))−2α11s (t), 11p
′
(t) = βsp(t)

4∑

k=1

(iks (t)+ikp(t))−2α11p(t),

12s
′
(t) = 2α11s (t)− 2α12s (t), 12p

′
(t) = 2α11p(t)− 2α12p(t),

i1s
′
(t) = 2α12s (t)− 4γ i1s (t), i1p

′
(t) = 2α12p(t)− 4γ i1p(t),

i2s
′
(t) = 4γ i1s (t)− 4γ i2s (t), i2p

′
(t) = 4γ i1p(t)− 4γ i2p(t),

i3s
′
(t) = 4γ i2s (t)− 4γ i3s (t), i3p

′
(t) = 4γ i2p(t)− 4γ i3p(t),

i4s
′
(t) = 4γ i2s (t)− 4γ i4s (t), i4p

′
(t) = 4γ i2p(t)− 4γ i3p(t),

r ′s (t) = 4γ is(t), r ′p(t) = 4γ ip(t),

with the transmission rate β = R0γ (1−NPI). Here, the level of non-pharmaceutical
interventions NPI(t) is assumed to be constant in the timeframe of each numerical
simulation. Finally, the computations were carried out using the initial values s(0) =
1− p, sp(0) = e · p, and a small amount of initial Omicron-infected.

Supplementary Source Codes

The software used in our analysis and for generating all figures is available on
Github [17] with an option for direct experiments in Google Colab. We implemented
our solution as a Jupyter notebook with Python kernel using the standard libraries
for computation (scipy, numpy) and visualization (matplotlib).

The code is structured as follows. First, global parameters are defined such as
R�0 , pSA , and q enabling effortless sensitivity analysis of the results. Then, the
methodological core is set up to computeRo0, suppressing NPIs in various scenarios,
and to carry out numerical simulations of the ODE model. Finally, the code snippets
for visualization are enabled and a multitude of figures are produced, many of which
are equipped with an interactive interface to ease the exploration of the parameter
space.
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Fig. 6 Reproduction number
of Omicron when introduced
into a population where Delta
is controlled

Invasion Reproduction Number of Omicron

The effective reproduction number at the time of introduction into a population is
shown in Fig. 6. The values in the figure are in line with the empirically estimated
value of Rot = 3.7 for the UK [5].

Severity Assessment

The overall severity of an Omicron wave might be assessed by the number of
infected individuals who had no prior immunity, as they are at higher risk of severe
disease outcome. Figure 7 shows the comparison of heatmaps.

A striking difference is that while the peak size of all infected is the highest
when pre-existing immunity and immune evasion are both very high, meanwhile
this is a relatively favorable situation in terms of peak size of the infected without
prior immunity. A similar comparison can be made between the total number of
infections (Fig. 2) and counting only those without prior immunity Fig. 8.
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(a) (b)

Fig. 7 Peak size of the Omicron wave in the whole population, and in the sub-population without
pre-existing immunity. (a) Peak size of all infected. (b) Peak size of infected without prior
immunity

Fig. 8 Total number of
infections without
pre-existing immunity during
the Omicron wave, as the
fraction of the total
population

Sensitivity to Parameters

Our publicly available code [17] make it easy for anyone to explore the sensitivity
of the outcomes to the key parameters. A higher value pSA would mean that the
Omicron is less transmissible hence more controllable by NPIs, see Fig. 9.
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Fig. 9 The necessary level of non-pharmaceutical interventions to control the Omicron and the
Delta variants as a function of pre-existing immunity, when pSA = 0.94

Varying R�0 around 6 does not change the main features of the figures. Decreasing
q makes the epidemic curves flatter, however for q = 3 the invasion reproduction
number of Omicron is becoming already too small compared to the observations
from UK [5].
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