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Abstract. In the Maude specification language, the behavior of systems
is modeled by nondeterministic rewrite rules, whose free application may
not always be desirable. Hence, a strategy language has been introduced
to control the application of rules at a high level, without the intricacies
of metaprogramming. In this paper, we give an overview of the Maude
strategy language, its applications, related verification tools, and exten-
sions, illustrated with examples.

1 Introduction

Computation in rewriting logic [29,30] is the succession of independent rule
applications in any positions within the terms. This flexibility is the corner-
stone of its natural representation of nondeterminism and concurrency, but it
is sometimes useful to restrict or guide the evolution of rewriting. For example,
a theorem prover does not blindly apply its inference rules, and the local reac-
tions of a chemical system may be modulated by the environment. Strategies
are the traditional resource to express these concerns, but specifying them in
Maude involved the not so easy task of using its reflective capabilities. This has
changed in Maude 3 with the inclusion of an object-level strategy language to
explicitly control the application of rules [15]. Several operators resembling the
usual programming language constructs and regular expressions allow combining
the basic instruction of rule application to program arbitrarily complex strate-
gies, which can be compositionally defined in strategy modules. The language
was originally designed in the mid-2000s by Narciso Mart́ı-Oliet, José Meseguer,
Alberto Verdejo, and Steven Eker [27] based on previous experience with internal
strategies at the metalevel [12,14] and earlier strategy languages like ELAN [8],
Stratego [10], and Tom [6]. Other similar strategy languages appeared later like
ρLog [26] and Porgy [18]. The first prototype was available as a Full Maude
extension and it was already given several applications [16,21,40–42]. Now, since
Maude 3.0, the language is efficiently implemented in C++ as part of the official
interpreter [15].

As well as an executable specification language, Maude is also a verification
tool and systems modeled with strategies need also be verified. Together with
Narciso Mart́ı-Oliet, Isabel Pita, and Alberto Verdejo, we have extended the
Maude LTL model checker to work with strategy-controlled specifications [38]
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and established connections with external model checkers for evaluating CTL,
CTL*, and μ-calculus properties [36]. More recently, we have also developed a
probabilistic extension of the Maude strategy language whose specifications can
be analyzed using probabilistic and statistical model-checking techniques [32].

This paper is based on an invited tutorial on the Maude strategy language
given at WRLA 2022 and explains the language and the aforementioned related
topics. Section 2 starts with an introduction to the strategy language, Sect. 3
illustrates it with some more examples and includes references for others, Sect. 4
reviews some related tools and extensions, and Sect. 5 concludes with some
remarks for future developments. More information about the strategy language,
examples, and its related tools is available at maude.ucm.es/strategies.

2 A Brief Introduction to the Maude Strategy Language

In this section, we give an introduction to the Maude strategy language through
an example, without claiming to be exhaustive or systematic. For a compre-
hensive informal reference about the language, we suggest its dedicated chapter
in the Maude manual [13, §10]. Formal semantics, both denotational [32] and
operational [28,38], are also available [35].

Let us introduce the following system module WORDS as running example,
where Words are defined as lists of Letters in the latin alphabet. Three rules,
swap, remove, and append, are provided to manipulate words.

mod WORDS is

sorts Letter Word .

subsort Letter < Word .

ops a b c d · · · z : -> Letter [ctor] .

op nil : -> Word [ctor] . *** empty word

op __ : Word Word -> Word [ctor assoc id: nil] .

rl [swap] : L W R => R W L .

rl [remove] : L => nil .

rl [append] : W => W L [nonexec] .

endm

The swap rule permutates two letters in a word, removes removes one, and
append attaches a new letter L to the end of the word. This latter rule is marked
nonexec(utable), since it includes an unbound variable in the right-hand side.
However, we will be able to execute it with the strategy language.

This rewrite system is nonterminating due to the idempotent swap rule. In
fact, for every word with at least two letters, Maude’s rewrite command will
loop.

Maude > rewrite i t . *** does not terminate

However, we can obtain something useful from this module by controlling rewrit-
ing with the strategy language. The command for executing a strategy expression

https://maude.ucm.es/strategies
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α on a term t is srewrite t using α and its output enumerates all terms that
are obtained by this controlled rewriting. Multiple solutions are possible, since
strategies are not required to completely remove nondeterminism. The elemen-
tary building block of the strategy language is the application of a rule, as cannot
be otherwise, whose most basic form is the strategy all that applies any rule in
the module.
Maude > srewrite i t using all .

Solution 1 Solution 3

rewrites: 1 rewrites: 3

result Word: t i result Letter: i

Solution 2 No more solutions.

rewrites: 2 rewrites: 3

result Letter: t

The previous fragment evaluates all on the term i t yielding three different
solutions, one for swap and two for remove. This is equivalent to the command
search t =>1 W:Word that looks for all terms reachable by a single rewrite from
t, but the strategy language allows for more flexibility. For instance, if we want
to apply only rules with a given label, say swap, we can simply write swap.
Maude > srewrite i t using swap .

Solution 1

rewrites: 1

result Word: t i

No more solutions.

rewrites: 1

Rules are applied in any position of the term by default, as seen in the second
and third solutions of the first srewrite command, or in application of swap
to the word w o n with result {o w n, n o w, w n o}. If this is not desired, the top
modifier can be used to limit their application to the whole term, like in top(swap)

or top(all), whose only result is n o w. For being more precise when applying
rules anywhere, we can also specify an initial substitution to be applied to both
sides of the rule and its condition before matching. For example, swap[L <- w]
would instantiate the rule L W R => R W L to w W R => R W w and yield n o w
and o w n as solutions. Similarly, swap[L <- w, W <- nil] would turn the rule
into w R => R w and produce the single solution o w n.

Substitutions are essential when dealing with nonexecutable rules, like
append in the WORDS module, whose unbound variables can then be instanti-
ated. We can execute top(append[L <- a]) ; top(append[L <- t]) on the word
g o to turn it into a g o a t. In addition to using top for ensuring that the letter
is appended at the end of the word, the previous strategy introduced a new
combinator ; that executes a strategy on the results of the previous one, like
functional composition or concatenation. Its identity element is the strategy con-
stant idle that returns the original term unchanged as only solution. Another
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pervasive combinator is the disjunction or nondeterministic choice of strategies
α1 | · · · | αn, whose results are the union of the results of its operands. For
example, remove[L <- w] | remove[L - n] evaluates on w o n to {o n, w o}.
The identity element of the disjunction is fail, which does not produce any
solution at all. In a broader sense, we say that a strategy fails when it does not
produce any solution.

Suppose we want to calculate all permutations of a given word. This can be
achieved by accumulating the words obtained by successive swaps,

swap | (swap ; swap) | (swap ; swap ; swap) | · · · ,
until no new words are obtained. The iteration combinator α*, which can be
inductively described as idle |α ;α *, expresses this common pattern. Observe
the correspondence between the last strategy combinators and the constructors
of regular expressions:

Regular expressions ε ∅ α | β αβ α∗

Strategy language idle fail α |β α ;β α *

As formalized in [38], the full strategy language is able to describe any recur-
sively enumerable subset of the executions of the original rewrite system, over
both finite and infinite words, but regular languages are specially easily expressed
with these constructs. Coming back to the example, the expression swap * gives
all permutations of the original word, so 24 solutions for g o a t after a total of 81
rewrites. If we only need the solutions that start with g and finish with a letter
other than a, we can execute the strategy swap * ; match g W R s.t. R =/= a

where match P s.t. C is an operator that filters the terms that match a pattern
P and satisfy a condition C. Indeed, it works like an idle when the conditions
hold and like a fail when they do not. Other test variants, xmatch and amatch,
exist for matching with extension for structural axioms (i.e. matching fragments
of the flattened associative and/or commutative operators) or inside subterms,
respectively.

In Spanish, the letter h is not pronounced except when preceded by c, so
texters and tweeters sometimes obviate it against the criteria of the Royal Span-
ish Academy. If we do likewise, we would reduce h o l a to its homophone o l a
with remove[L <- h]. However, we do not want to transform b r o c h a into
b r o c a, because they are pronounced differently. We need a new tool to restrict
the application to a specific context, and this is the subterm rewriting matchrew
operators. Their syntax is similar to that of tests

matchrew P s.t. C by x1 using α1, . . ., xn using αn

but the subterms matched by the variables x1, . . . , xn in its pattern P are rewrit-
ten with strategies α1, . . . , αn. The solutions of this operator are the combinations
of all solutions obtained for every subterm, which are rewritten independently.
For example, matchrew L W by L using remove[L <- h] will safely remove the first
letter of the word if it is an h. For removing h in the middle of the word, we write
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xmatchrew L R by s.t. L =/= c by R using remove[L <- h] to ensure that the previ-
ous letter is not a c. Notice that we have used xmatchrew instead of matchrew,
because we do not want to match the whole term but a fragment of the associa-
tive list of letters. These two strategies can be combined with a nondetermin-
sitic choice α |β to remove any silent h letters in a word. For example, apply-
ing this strategy to h e c h o yields e c h o but not h e c o. Unfortunately, the word
h i p o c l o r h i d r i a is not rewritten to i p o c l o r i d r i a, because only one h
is removed at a time. In order to normalize a term with respect to a strategy, i.e.
to apply a strategy until it cannot be executed further, the language includes the
α ! combinator. Putting the previous strategy under this normalization operator
we obtain an expression that removes all silent h from a word.

Writing strategies as standalone expressions becomes unmanageable as they
grow in size. Strategy modules are available to give them name and define them
modularly. For example, the following strategy module WORDS-STRAT extends the
system module WORDS with two new strategies, rmh and rmh-one, declared with
the strats statement.

smod WORDS-STRAT is

protecting WORDS .

strats rmh rhm-one @ Word .

vars L R : Letter .

var W : Word .

sd rmh := rmh-one ! .

sd rmh-one := matchrew L W by L using remove[L <- h] .

sd rmh-one := xmatchrew L R s.t. L =/= c

by R using remove[L <- h] .

endsm

The sort after the @ sign indicates which terms are intended to be rewritten
by the strategy, although it does not have any practical effect. Each named
strategy is assigned zero or more strategy expressions with definitions that start
by the sd keyword or by csd if they are conditional. In the module above, rmh
is the strategy that removes every silent h in a word, while the two definitions of
rmh-one remove a single h at initial and inner position, respectively. When the
strategy rmh-one is called in rmh, the two definitions for rmh-one are executed
nondeterministically, as if their expressions where joined by the disjunction |
operator.

One of the greatest advantages of strategy modules is the possibility
of defining recursive strategies. For example, the following strategy module
WORDS-REPEAT declares a single recursive strategy remove(l, n) with two param-
eters that removes exactly n occurrences of the letter l in the subject term.

smod WORDS-REPEAT is

protecting WORDS .

strat remove : Letter Nat @ Phrase .
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var N : Letter . var N : Nat .

Its semantics is given by two definitions with disjoint matching patterns. For
removing zero letters, we simply do nothing with idle.

sd remove(L, 0) := idle .

Otherwise, one occurrence of the letter L is deleted with the remove rule and
the strategy itself is called recursively with a decremented counter.

sd remove(L, s N) := remove[L <- L] ; remove(L, N) .

endsm

For example, rewriting b a z a a r with remove(a, 2) gives b z a r and b a z r.
However, rewrite(a, 4) would fail because of the attempt to call remove for
the fourth time. We can make remove(l, n) erase as many occurrences of l as
possible but no more than n with the following change on the second definition:

sd remove(L, s N) := remove[L <- L] ? remove(L, N)

: idle .

We have used the conditional operator α ?β : γ that evaluates β on the results
of α or γ on the original term if α yields no solution. This way, we only invoke
the recursive strategy if the remove rule succeeds, and the execution is finished
when it fails. Conditional operators are quite general since its condition is an
arbitrary strategy and recurrent conditional patterns are given dedicated syntax.
For example, α or-else β executes β only if α fails, and it is equivalent to α ?
idle : β.

3 Some Examples

In this section, we further illustrate the language with three examples. At the
same time, we cite other published works where applications of the language
have been presented.

3.1 Deduction Procedures

In deductive reasoning, inference rules should be carefully applied to reach the
desired conclusions in an efficient way. A free or inadequate application of the
rules may loop or lead to a poor performance in many examples of inference
systems. For instance, the Davis-Putnam-Logemann-Loveland (DPLL) system
for deciding the satisfiability of a Boolean formula has a natural brute-force
split rule that generates two subproblems, where the variable x is respectively
assumed true and false.

(split)
Δ � Γ, x ∨ C

Δ, x � Γ Δ,¬x � Γ,C
if x,¬x �∈ Δ

Of course, repeatedly applying this rule will solve the satisfiability problem, but
at an exponential cost in the best case. The inference system includes other rules
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that are better applied first. For example, subsume removes pending clauses with
a satisfied atom.

(subsume)
Δ � Γ, x ∨ C

Δ � Γ
if x ∈ Δ

Hopefully, this may remove some variables in C that do not appear elsewhere,
avoiding some superfluous case distinctions. A first rudimentary strategy for SAT
solving with these rules would be (subsume | · · ·) or-else split where the dots
are occupied by the other simplification rules. A second one can be more selective
and apply split to the variable that cancels the most possible clauses. More
serious strategies for the DPLL rules are programmed in the Maude strategy
language in [20].

Implementations of deduction procedures do not usually individualize the
rules in their code, but rule-based systems like Maude can easily separate the
basic logic and its control using strategies. In the literature, this has been encour-
aged by the Kowalski’s motto Algorithm = Logic + Control [22] or Lescanne’s
Rule + Control approach [24]. This latter work implements in Caml four equa-
tional completion procedures on top of the inference rules by Bachmair and
Dershowitz [5], decoupling at some extent the rules from their control. These
same completion procedures have also been specified using the initial prototype
of the Maude strategy language in [42] and an improved redesign of this speci-
fication is available in [32]. In this latter version, we have clearly separated the
inference rules in a system module COMPLETION and the four deduction proce-
dures in four strategy modules being protected extensions of COMPLETION, as
depicted in Fig. 1. Each procedure is a recursive strategy that maintains the
inference state in its call arguments without modifying the term or adding more
rules.

CRITICAL-PAIRS

COMPLETION

KNUTH-BENDIX

N-COMPLETION S-COMPLETION

ANS-COMPLETION

Functional

System

Strategy

Fig. 1. Equational procedure specification with clear separation of concerns.

Following similar ideas, other examples of deduction procedures are pro-
grammed using the Maude strategy language like congruence closure [16], the
Martelli-Montanari unification procedure [1], and a Sudoku solver [40].
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3.2 Semantics of Programming Languages

Strategies are also meaningful when dealing with semantics of programming
languages. Structural operational semantics define the small-step behavior of
programs through inference rules whose premises are steps for the constituents
of the program. In this sense, they are not much different to the deduction
procedures seen in the previous section, and the Maude strategy language can
be useful to describe them [9]. Strategies are particularly useful to generalize
semantic rules with negative premises or rule precedence, which are not easily
captured otherwise. For example, negation in Prolog is described by the following
rule

(split)
Γ � g �→∗ nil

Γ � (\+ g), gs → gs

that removes the negated goal n+ g from the goal list if g cannot be solved. This
premise can be expressed with the strategy combinator not(α) ≡ α ? fail :
idle. Indeed, we have specified an executable Prolog interpreter in [13] where
negation and cuts are described with strategies.

Let us illustrate the relation between strategies and programming with two
simple strategies for the untyped λ-calculus. We specify the basics of this for-
malism in the following module LAMBDA.

mod LAMBDA is

sorts Var LambdaTerm .

subsort Var < LambdaTerm .

op \_._ : Var LambdaTerm -> LambdaTerm [ctor...] .

op __ : LambdaTerm LambdaTerm -> LambdaTerm [ctor...] .

op subst : LambdaTerm Var LambdaTerm -> LambdaTerm .

*** the equational definition of subst is ommitted

var x : Var . vars M N : LambdaTerm .

rl [beta] : (\ x . M) N => subst(M, x, N) .

endm

As usual, there are only two constructors of λ-terms, abstraction λx.M and
application M N , and we consider a single reduction rule beta that transforms
(λx.M)N into M [x/N ] where every occurrence of x is replaced by N in M .
There may be multiple positions where to apply the β rule in a λ-term, called
β-redexes, but the Church-Rosser theorem tells that the calculus is confluent,
i.e. if we can reduce t →∗ t1 and t →∗ t2, there exists a t′ such that t1 →∗ t′ and
t2 →∗ t′. Nevertheless, how rules are applied still matters, since some reductions
may lead to a normal form while others may diverge for the same term (see
Fig. 2). Another classical result of the λ-calculus tells that repeatedly reducing
the outer leftmost redex always leads to a normal form in case it exists, and this
can be expressed as a strategy.
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(KI)Ω
(KI)Ω

(λy.I)Ω I

K = λx. (λy.x)
I = λx. x
Ω = (λx. xx)(λx.xx)

Fig. 2. Two reduction paths from the λ-term (KI) Ω.

In the strategy module LAMBDA-STRAT, we extend LAMBDA with two strate-
gies normal and applicative for reducing λ-terms, but more variants can be
defined like call-by-value and call-by-name. These are covered in an extended
specification of this example [32,34].

smod LAMBDA-STRATS is

protecting LAMBDA .

strats normal applicative · · · @ LambdaTerm .

vars x y z t : Var . vars M N : LambdaTerm .

The definition of normal describes a single reduction step of the normalization
strategy mentioned in the previous paragraph, i.e. applying beta on the outer
leftmost redex.

sd normal := matchrew \ x . M by M using normal

| top(beta) or-else matchrew M N by M using normal

or-else matchrew M N by N using normal .

For completely reducing a term, we can simply write normal ! with the normal-
ization operator. Alternatively, λ-terms can be reduced in the usual applicative
order, by selecting the inner rightmost redex.

sd applicative := matchrew \ x . M by M using applicative

| matchrew M N by N using applicative

or-else matchrew M N by M using applicative

or-else top(beta) .

However, this new strategy does not ensure that a normal form is reached if
it exists. We can see it by running the K I Omega term of Fig. 2 under both
strategies.

Maude > srew K I Omega using normal ! .

Solution 1

rewrites: 17

result LambdaTerm: \ x . x

No more solutions.

rewrites: 17

The normal form I ≡ λx.x is reached with normal, but it is not with
applicative. Notice that the srewrite command finishes even though the strat-
egy does not terminate.

Maude > srew K I Omega using applicative ! .
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No solution.

rewrites: 11

This is because the srewrite infrastructure is able to detect execution cycles
and interrupt the evaluation of the strategy, but the absence of solutions is the
evidence that applicative reduction does not terminate for this term.

The semantics of other programming languages have been addressed with the
Maude strategy language like Eden [21], the REC language of Glynn Winskel’s
textbook [34], the ambient calculus [31], CCS [27], and the Maude strategy
language itself [38].

3.3 Games

Strategies are pervasive in games, most usually for specifying how players can
solve or win them. Besides the Sudoku solver [40], already mentioned, the strat-
egy language has been used to work out the 15-puzzle [32], the Hanoi tower’s
puzzle [15], to compare different player strategies for Tic-Tac-Toe by model
checking [37], and to solve other smaller games [1].

In addition to expressing procedures for solving a game, strategies can also
specify intrinsic restrictions that are rather difficult to express with rules. For
example, in the river-crossing problem formalization in [36], we use strategies
to enforce a precedence that is part of the rules of the game. Here, we briefly
describe this example without going into details about the data representation,
which are available in the referenced article and in the repository of examples [1].
In the classical river-crossing puzzle, a shepherd needs to cross a river with a
wolf, a goat, and a cabbage using a boat with room for two passengers, the
shepherd included. The problem is that the wolf would eat the goat and the
goat would eat the cabbage as soon as they are left alone without the shepherd
in any side of the river. Our representation of the river is left L | right R
where L and R are sets of characters and left shepherd wolf goat cabbage
| right is the initial state. Four rewrite rules, alone, wolf, goat, and cabbage,
let the shepherd cross alone or with the corresponding passenger to the other
side. Two more rules, wolf-eats and goat-eats, carry out the threat of the
mentioned animal over its “prey”. Moreover, a key restriction is that the wolf
and the goat will never miss the opportunity to eat, so eating must happen
eagerly before moving. For instance, the wolf rule rewrites the initial state to
left goat cabbage | right shepherd wolf, where the goat and the cabbage
are left alone. In this situation, the goat-eats rule must be applied to yield
left goat| right shepherd wolf, but moving alone is also allowed in the
uncontrolled rewrite system. Indeed, we can try to use the search command to
solve the problem, by looking for the final state.

Maude > search initial

=>* left | right shepherd wolf goat cabbage .

Solution 1 (state 31)

states: 32 rewrites: 60
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empty substitution

No more solutions.

states: 36 rewrites: 89

This answer would make us think that the problem is solvable. It is indeed, but
this command is not an evidence, since recovering the path to this solution gives
an invalid sequence of moves.

Maude > show path 31 .

state 0, River: right | shepherd wolf goat cabbage left

===[ wolf ]===>

state 2, River: goat cabbage left | shepherd wolf right

===[ alone ]===>

state 7, River: shepherd goat cabbage left | wolf right

===[ goat ]===>

state 15, River: cabbage left | shepherd wolf goat right

===[ alone ]===>

state 23, River: shepherd cabbage left | wolf goat right

===[ cabbage ]===>

state 31, River: left | shepherd wolf goat cabbage right

In the second state the goat-eats rule should be applied, but alone is applied
instead.

In order to enforce the precedence of eating over moving we can use the
Maude strategy language. The following recursive strategy eagerEating applies
rules under this restriction until the final state is reached.

sd eagerEating :=

(match left | right shepherd wolf goat cabbage) ? idle

: (( eating or-else oneCrossing) ; eagerEating) .

sd eating := wolf-eats | goat-eats .

sd oneCrossing := shepherd | wolf | goat | cabbage .

Notice that nonterminating executions are also admitted by the strategy, but
they are not a problem for the strategy execution engine because of its cycle
detector. We can use the experimental search command controlled by a strat-
egy1 to find a valid solution for the problem.

Maude > search initial =>* left | right shepherd wolf

goat cabbage using eagerEating .

Solution 1 (state 30)

states: 36 rewrites: 72

empty substitution

No more solutions.

states: 36 rewrites: 75

Maude > show path 30 .

state 0, River: shepherd wolf goat cabbage left | right

1 The search-using command is not currently available in the official version of
Maude, but in an extended version with the strategy-aware model checker [38].
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===[ goat ]===>

state 23, River: wolf cabbage left | shepherd goat right

===[ alone ]===>

state 24, River: shepherd wolf cabbage left | goat right

===[ wolf ]===>

state 25, River: cabbage left | shepherd wolf goat right

===[ goat ]===>

state 27, River: shepherd goat cabbage left | wolf right

===[ cabbage ]===>

state 28, River: goat left | shepherd wolf cabbage right

===[ alone ]===>

state 29, River: shepherd goat left | wolf cabbage right

===[ goat ]===>

state 30, River: left | shepherd wolf goat cabbage right

3.4 Other Examples

Beyond the examples already cited in the previous sections, other applications
of the Maude strategy language have been published like specifications of the
Routing Information Protocol [38], membrane systems with several extensions
and model checking [39], the simplex algorithm and a parameterized backtrack-
ing scheme with instances for finding solutions to the labyrinth, 8-queens, graph
m-coloring, and Hamiltonian cycle problems [34], semaphores and processor
scheduling policies [38], a branch and bound scheme [1], Bitcoin smart con-
tracts [4], neural networks [41], and more [27].

4 Related Tools and Extensions

In this section, we briefly describe three extensions and related tools for the
strategy language: an extended model checker for strategy-controlled systems,
the support for reflective manipulation of strategies with some applications, and
a probabilistic extension of the language.

4.1 Model Checking

Model checking [11] is an automated verification technique based on the exhaus-
tive exploration of the execution space of the model. The properties to be checked
are usually expressed in temporal logics like Linear-Time Temporal Logic (LTL)
or Computation Tree Logic (CTL). Its integrated model checker for LTL is one
of the most widely used features of Maude [17]. However, it cannot be applied to
strategy-controlled specifications, since it does not know anything about strate-
gies. In order to solve this, we implemented a strategy-aware extension [33,38] of
this LTL model checker, which has been extended for branching-time temporal
logics in subsequent works [36].
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Intuitively, a strategy describes a subset of the executions of the original
model or a subtree of the original computation tree, so the satisfaction of a linear-
time or branching-time temporal property in a strategy-controlled system should
be evaluated on these representations of its restricted behavior. For example, in
the river-crossing puzzle of Sect. 3.3, the LTL formula � (risky → �¬ goal) (once
a risky state –where an animal is able to eat– is visited, the goal is no longer
reachable) does not hold in the uncontrolled system

Maude > red modelCheck(initial , [] (risky -> [] ~ goal)) .

rewrites: 43

result ModelCheckResult : counterexample(. . ., . . .)

but it does hold when the system is controlled by the eagerEating strategy.

Maude > red modelCheck(initial , [] (risky -> [] ~ goal),

’eagerEating) .

rewrites: 178

result Bool: true

However, the property � goal (the goal is eventually reached) does not hold in
any case, since the shepherd may keep moving in cycles, for example.

Maude > red modelCheck(initial , <> goal , ’eagerEating) .

rewrites: 24

result ModelCheckResult : counterexample(. . ., . . .)

Counterexamples returned by the strategy-aware model checker are executions
allowed by the strategy, which are often shorter or easier to understand. The
usage of the strategy-aware model checker is documented in [38] and it can be
downloaded from maude.ucm.es/strategies, along with examples and documen-
tation. Branching-time properties in CTL, CTL*, and the μ-calculus can also be
checked with the umaudemc tool [36], also available at this website. For example,
we can check the CTL* property A(�¬ risky → E � goal), saying that we can
eventually reach the goal by avoiding risky states, which holds both with and
without strategy.

$ umaudemc check river.maude initial

’A ([] ~ risky -> E <> goal)’

The property is satisfied in the initial state

(36 system states , 197 rewrites , holds in 18/36 states)

$ umaudemc check river.maude initial

’A ([] ~ risky -> E <> goal)’ eagerEating

The property is satisfied in the initial state

(35 system states , 176 rewrites , holds in 17/35 states)

4.2 Reflective Manipulation of Strategies

Even though the strategy language was introduced to avoid the complications of
the metalevel when controlling rewriting, reflection is still useful in the context
of strategies. Like any other Maude feature, the strategy language, strategy

https://maude.ucm.es/strategies
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modules, and the associated operations are reflected at the metalevel [13, §17.3].
First, every combinator of the language is declared as a term of sort Strategy
or its subsorts in the META-STRATEGY module of the Maude prelude.

ops fail idle : -> Strategy [ctor] .

op _[_]{_} : Qid Substitution StrategyList

-> RuleApplication .

op match_s.t._ : Term EqCondition -> Strategy .

op _?_:_ : Strategy Strategy Strategy -> Strategy [...] .

op _[[_]] : Qid TermList -> CallStrategy [ctor prec 21] .

*** and more

Then, strategy modules and their statements are defined as data in META-MODULE.

op sd_:=_[_]. : CallStrategy Strategy AttrSet

-> StratDefinition .

op csd_:=_if_[_]. : CallStrategy Strategy EqCondition

AttrSet -> StratDefinition .

op smod_is_sorts_._______endsm : · · · -> StratModule .

Finally, the srewrite and dsrewrite2 commands are metarepresented in the
META-LEVEL module.

sort SrewriteOption .

ops breadthFirst depthFirst : -> SrewriteOption [ctor] .

op metaSrewrite : Module Term Strategy SrewriteOption

Nat ~> ResultPair? [...] .

Strategies can be reflectively generated and transformed using these tools
with interesting applications. In [37], we explain metaprogramming of strate-
gies with several examples, from a theory-dependent normalization strategy for
context-sensitive rewriting [25] to extensions of the strategy language itself. For
instance, the similar strategy languages ELAN [8] and Stratego [10] include
some constructs that are not available in Maude, like congruence operators
f(α1, . . . , αn) for applying strategies to every argument of a symbol f . However,
these absences are not substantial, since most can be easily expressed using the
combinators of the Maude strategy language, for which an automated translation
can be programmed at the metalevel.

Multistrategies is another more complex extension that allows distribut-
ing the control of the system in multiple strategies α1, . . . , αn orchestrated by
another one γ. Typically, each strategy αk describes the behavior of a com-
ponent, agent, or player of the system, while γ specifies how their executions
are interleaved. Namely, γ can make them execute concurrently at almost rule-
application granularity, by turns, or in other arbitrary ways. Systems controlled
by multistrategies can be executed and model checked with an implementation
that relies on the metarepresentation of the strategy language.

Yet another example is an extensible small-step operational semantics of the
Maude strategy language, already mentioned in Sect. 3.2. It is specified with
2 dsrewrite is the depth-first search variant of srewrite, which does a fair breadth-

first-like search.
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rules and strategies that manipulate terms and strategies at the metalevel [38].
Of course, running strategies or model checking under this semantics is not
useful in practice, since the builtin implementation of the language is much more
efficient. However, experimentation is easier with this specification. For instance,
a synchronized rewrite or intersection operator α∧β denotes the rewriting paths
allowed by both α and β, which cannot be expressed in terms of the original
combinators. Nevertheless, α∧β can be implemented with a pair of two execution
states of the semantics that are advanced in parallel as long as they represent
the same term.

4.3 A Probabilistic Extension

In addition to qualitative properties, quantitative aspects like time, cost, and
probabilities are relevant when analyzing the behavior of systems. Statistical
methods are often used to estimate them by simulation, that is, by evaluating the
measures on many executions generated at random. However, for this analysis to
be sound, all sources of nondeterminism must be quantified. We argued before
that strategies are a useful resource to restrict nondeterminism, but they are
also suitable for quantifying it. Indeed, probabilistic choice operators have been
proposed for ELAN [7] and are available in Porgy [18]. In the context of Maude,
PSMaude [7] proposes a restricted strategy language for quantifying the choice of
positions, rules, and substitutions. These latter specifications can be simulated
and model checked against PCTL properties.

For the specification of probabilities in the Maude strategy language, new
combinators have been added. The first one is equivalent to those of ELAN and
Porgy.

– A quantified version of non-deterministic choice α1 | · · · | αn where each
alternative is associated a weight

choice(w1:α1, . . . ,wn:αn)

Weights wk are terms of sort Nat or Float that are evaluated in the context
where the strategy is executed. The probability of choosing the alternative
αk is σ(wk)/

∑n
i=1 σ(wi) where σ is the current variable context.

– A sampling operator from a probabilistic distribution π to a variable X that
can be used in a nested strategy α

sample X := π(t1, . . . , tn) in α

The repertory of available distributions includes bernoulli(p), uniform(a,
b), norm(μ, σ), exp(λ) (for the exponential distribution), and gamma(α, λ).
Their parameters are also evaluated in the current variable context.

These operators are not currently available in the official version of Maude, but
in the extended version including the strategy-aware model checker in Sect. 4.1.
They can be used in the usual srewrite and dsrewrite commands, and in
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head tail

tail

head

tailhead

Fig. 3. Coin toss module.

the metaSrewrite function. When a sample operator is evaluated, a variable is
sampled at random and the nested α is executed with this random value. When
a choice is executed, one of the strategies is chosen at random according to
their probabilities.

We can apply both statistical and probabilistic model-checking methods on
these specifications enhanced with probabilities. For instance, suppose we model
tossing a coin like in Fig. 3, with two constants head and tail, two homonym
rules, and two homonym atomic propositions. A fair coin can then be modeled
with the strategy choice(1 : head, 1 : tail). The expected number of steps
until the first tail is obtained can be estimated with the scheck subcommand of
umaudemc.

$ umaudemc scheck coin head firstTail.quatex

--assign strategy ’choice (1 : head , 1 : tail) !’

Number of simulations = 46530

μ = 6.00143993122 σ = 5.50060692624 r = 0.0499808311155

The simulation is driven by an expression in the QuaTEx language of
PMaude [2] specified in the firstTail.quatex file, where # means in the next
step.

FirstTail () = if (s.rval("C == tail") == 1) then

s.rval("steps") else # FirstTail () fi ;

eval E[FirstTail ()] ;

However, statistical model checking is more useful when continuous-time aspects
are involved, i.e., when using the sample operator. For discrete models like
this one, we can also use probabilistic model-checking techniques. This is avail-
able through the pcheck subcommand of umaudemc and relies on either the
PRISM [23] or Storm [19] model checkers. The following command is equivalent
to the previous one but using probabilistic methods.

$ umaudemc pcheck coin head ’<> tail ’ --assign strategy

’choice (1 : head , 1 : tail) !’ --steps

Result: 6.0

As well as obtaining expected values, pcheck allows calculating the probabilities
that a temporal formula in LTL, CTL, PCTL, and other logics holds.

$ umaudemc pcheck coin head ’<> <= 5 tail ’

--assign strategy ’choice (1 : head , 1 : tail) !’

Result: 0.96875
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For complementing this haphazard appetizer, more information on the proba-
bilistic extensions can be found in [32] and the strategy language website.

5 Conclusions

In this tutorial, we have provided an overview of the Maude strategy language,
illustrated with several examples, and explained some extensions and associated
tools. We refer the interested reader to the works cited in the paper and to the
maude.ucm.es/strategies website to complete the information about the strategy
language and those tools.

As future work, we plan extending the probabilistic strategy language
in Sect. 4.3 with an operator to quantify the choice of matches

matchrew P s.t. C with weight w by x1 using α1, . . . , xn using αn

and new verification features. Another natural and interesting extension of the
strategy language is its application to narrowing [3].
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