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Abstract. Nowadays, formal cryptographic protocol analysis relies on
symbolic techniques such as narrowing and equational unification, e.g.
Maude-NPA, Tamarin or AKISS crypto tools. In previous works, we devel-
oped a new narrowing strategy, called canonical narrowing, which man-
ages to reduce the state explosion problem by introducing irreducibility
constraints. In this paper, we extend canonical narrowing to handle con-
ditional rules with SMT constraints. We demonstrate the viability of this
method with the Brands and Chaum protocol using time and location
information described as SMT constraints on the real numbers.
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1 Introduction

Formal protocol analysis allows to determine whether an attacker can cause a
protocol to fail any of its security objectives. One of the ways to perform this type
of analysis is through the use of symbolic techniques, such as narrowing. There
are tools for protocol analysis, like Maude-NPA [8], that use narrowing together
with equational unification as a basis. These techniques are efficiently supported
by the Maude language, and are also used in other protocol analysis tools such
as Tamarin [15] or AKISS [4]. In our works [10,14], we already developed a new
narrowing algorithm, called canonical narrowing, which manages to reduce the
state explosion problem by introducing irreducibility constraints.

In a large number of protocols, the use of laws of physics that use real numbers
to represent distances, time, or coordinates is essential. The formal analysis of
this type of protocols can be done using either an explicit model with physical
information, or by using an abstract model without physical information, e.g.,
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untimed, and showing it is sound and complete with respect to a model with
physical information. The former is more intuitive for the user, but the latter
is often chosen because not all cryptographic protocol analysis tools support
reasoning about, e.g., time or space. SMT solvers allow precisely the use of
explicit models with physical information, translating the physical laws into SMT
constraints. In order to analyze these models using narrowing algorithms, there
is a need to extend them so that they are capable of handling these restrictions.
One way to do it is by having narrowing to handle conditional rules, as in [19],
in which each of the constraints will be collected at runtime. In the following
example, we show one of the protocols that use laws of physics. This protocol
really goes beyond existing narrowing approaches such as [10,14,19], since two
cryptographic primitives are combined, exclusive-or over a set of nonces and a
commitment scheme, apart of time and location represented as real numbers,
requiring both irreducibility and SMT constraints.

Example 1. The Brands-Chaum protocol [3] specifies communication between a
verifier V and a prover P. P needs to authenticate itself to V, and also needs
to prove that it is within a distance “d” of it. A typical interaction between
the prover and the verifier is as follows, where NA denotes a nonce generated
by A, SA denotes a secret generated by A, X; Y denotes concatenation of two
messages X and Y , commit(N,S) denotes commitment of secret S with a nonce
N , open(N,S,C) denotes opening a commitment C using the nonce N and
checking whether it carries the secret S, ⊕ is the exclusive-or operator, and
sign(A,M) denotes A signing message M .

P → V : commit(NP , SP )

//The prover sends his name and a commitment

V → P : NV

//The verifier sends a nonce and records the time when this message was sent

P → V : NP ⊕ NV

//The verifier checks the answer message arrives within two times a fixed distance

P → V : SP

//The prover sends the committed secret and the verifier opens the commitment

P → V : signP (NV ;NP ⊕ NV )

//The prover signs the two rapid exchange messages

We assume the participants are located at an arbitrary given topology (par-
ticipants do not move from their assigned locations) with distance constraints,
where travelled time and coordinates are represented by a real number. We
assumed coordinates Px, Py, Pz for each participant P .

The previous informal Alice&Bob notation was naturally extended to include
time in [1] and to include both time and location in [2]. First, we add the time
when a message was sent or received as a subindex Pt1 → Vt2 . Second, the
sending and receiving times of a message differ by the distance between them
just by adding some location constraints

�d(A,B)� := (d(A,B) ≥ 0∧ d(A,B)2 = (Ax −Bx)2 +(Ay −By)2 +(Az −Bz)2)
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Fig. 1. Mafia Attack Fig. 2. Hijacking Attack

Third, the distance bounding constraint of the verifier is represented as an
arbitrary distance d. Time and space constraints are written using quantifier-free
formulas in real arithmetic. For convenience, we allow both 2 ∗ x = x + x and
the monus function x−̇y = if y < x then x − y else 0 as definitional extensions.

Example 2 (Cont’d Example 1). In the following time and space sequence of
actions, a vertical bar differentiates between the process and corresponding con-
straints associated to the metric space. The following action sequence differs
from [1] only on the terms �d(P, V )�.

Pt1 → Vt′
1
: commit(NP , SP ) | t′1 = t1 + d(P, V ) ∧ �d(P, V )�

Vt2 → Pt′
2
: NV | t′2 = t2 + d(P, V ) ∧ t2 ≥ t′1 ∧ �d(P, V )�

Pt3 → Vt′
3
: NP ⊕ NV | t′3 = t3 + d(P, V ) ∧ t3 ≥ t′2 ∧ �d(P, V )�

V : t′3 −̇ t2 ≤ 2 ∗ d
Pt4 → Vt′

4
: SP | t′4 = t4 + d(P, V ) ∧ t4 ≥ t3 ∧ �d(P, V )�

V : open(NP , SP , commit(NP , SP ))
Pt5 → Vt′

5
: signP (NV ;NP ⊕ NV ) | t′5 = t5 + d(P, V ) ∧ t5 ≥ t4 ∧ �d(P, V )�

The Brands-Chaum protocol is designed to defend against mafia frauds, where
an honest prover is outside the neighborhood of the verifier (i.e., d(P, V ) > d)
but an intruder is inside (i.e., d(I, V ) ≤ d), pretending to be the honest prover
as depicted in Fig. 1. The following is an example of an attempted mafia fraud, in
which the intruder simply forwards messages back and forth between the prover
and the verifier. We write I(P ) to denote an intruder pretending to be an honest
prover P .

Pt1→It2 : commit(NP , SP ) | t2 = t1 + d(P, I) ∧ �d(P, I)�
I(P )t2→Vt3 : commit(NP , SP ) | t3 = t2 + d(V, I) ∧ �d(V, I)�

Vt3→I(P )t4 : NV | t4 = t3 + d(V, I) ∧ �d(V, I)�
It4→Pt5 : NV | t5 = t4 + d(P, I) ∧ �d(P, I)�
Pt5→It6 : NP ⊕ NV | t6 = t5 + d(P, I) ∧ �d(P, I)�

I(P )t6→Vt7 : NP ⊕ NV | t7 = t6 + d(V, I) ∧ �d(V, I)�
V : t7−̇t3 ≤ 2 ∗ d

Pt8→It9 : SP | t9 = t8 + d(P, I) ∧ t8 ≥ t5 ∧ �d(P, I)�
I(P )t10→Vt11 : SP | t11 = t10 + d(V, I) ∧ t11 ≥ t7 ∧ �d(V, I)�
I(P )t12→Vt13 : signP (NV ;NP ⊕ NV )| t13 = t12 + d(V, I) ∧ t13 ≥ t11 ∧ �d(V, I)�
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This attack is physically unfeasible, since it would require that 2 ∗ d(V, I) +
2 ∗ d(P, I) ≤ 2 ∗ d, which is unsatisfiable by d(V, P ) > d > 0 and the triangular
inequality d(V, P ) ≤ d(V, I) + d(P, I), satisfied in three-dimensional space. This
attack was already unfeasible in [1] using only the metric space assumptions and
in [2] using a Euclidean space.

However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable), as depicted in Fig. 2, where an intruder located out-
side the neighborhood of the verifier (i.e., d(V, I) > d) succeeds in convincing
the verifier that he is inside the neighborhood by exploiting the presence of an
honest prover in the neighborhood (i.e., d(V, P ) ≤ d) to achieve his goal. The
following is an example of a successful distance hijacking, in which the intruder
listens to the exchanged messages between the prover and the verifier but builds
the last message.

Pt1 → Vt2 : commit(NP , SP ) | t2 = t1 + d(P, V ) ∧ �d(P, V )�
Vt2 → Pt3 , It′

3
: NV | t3 = t2 + d(P, V ) ∧ �d(P, V )�

| t′3 = t2 + d(I, V ) ∧ �d(V, I)�
Pt3 → Vt4 , It′

4
: NP ⊕ NV | t4 = t3 + d(P, V ) ∧ �d(P, V )�

| t′4 = t3 + d(I, P ) ∧ �d(I, P )�
V : t4 −̇ t2 ≤ 2 ∗ d

Pt5 → Vt6 : SP | t6 = t5 + d(P, V ) ∧ �d(P, V )�
| t5 ≥ t3 ∧ t6 ≥ t4

I(P )t7 → Vt8 : signI(NV ;NP ⊕ NV ) | t8 = t7 + d(I, V ) ∧ �d(I, V )�
| t7 ≥ t′4 ∧ t8 ≥ t6

This attack was feasible in [1] using the metric space assumptions, and it was
also possible in three-dimensional space in [2].

In Sect. 2, we provide some preliminaries. In Sect. 3, we introduce our new
canonical narrowing with irreducibility and SMT constraints. In Sect. 4, we
describe our implementation. In Sect. 5, we present some experiments using the
Brands and Chaum protocol that prove its viability. In Sect. 6, we conclude and
give some future work.

2 Preliminaries

We follow the classical notation and terminology from [21] for term rewriting,
and from [16,19] for rewriting logic and order-sorted notions.

We assume an order-sorted signature Σ with a poset of sorts (S,≤). The
poset (S,≤) of sorts for Σ is partitioned into equivalence classes, called con-
nected components, by the equivalence relation (≤ ∪ ≥)+. We assume that each
connected component [s] has a top element under ≤, denoted �[s] and called the
top sort of [s]. This involves no real loss of generality, since if [s] lacks a top sort,
it can be easily added.

We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the
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set of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding
order-sorted term algebras. Given a term t, Var(t) denotes the set of variables
in t.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X
to TΣ(X ). Substitutions are written as σ = {X1 → t1, . . . , Xn → tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X ). The application of substitution σ to
a term t is denoted by tσ or σ(t).

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic
induces a congruence relation =E on terms t, t′ ∈ TΣ(X ) (see [17]). Throughout
this paper we assume that TΣ,s �= ∅ for every sort s, because this affords a
simpler deduction system. We write TΣ/E(X ) and TΣ/E for the corresponding
order-sorted term algebras modulo the congruence closure =E , denoting the
equivalence class of a term t ∈ TΣ(X ) as [t]E ∈ TΣ/E(X ).

The first-order language of equational Σ-formulas is defined as: Σ-equations
t = t′ as basic atoms, conjunction ∧ of formulas, disjunction ∨ of formulas,
negation ¬ of a formula, universal quantification ∀ of a variable x:s in a formula,
and existential quantification ∃ of a variable x:s in a formula. A formula is
quantifier-free (QF) if it does not contain any quantifier. Given a Σ-algebra A,
a formula ϕ, and an assignment α ∈ X → A for the free variables X in ϕ,
A,α |= ϕ denotes that ϕ is satisfied and A |= ϕ holds if ∀α : A,α |= ϕ.

An equational theory (Σ,E) is a pair with Σ an order-sorted signature and
E a set of Σ-equations. An equational theory (Σ,E) is regular if for each t = t′

in E, we have Var(t) = Var(t′). An equational theory (Σ,E) is linear if for
each t = t′ in E, each variable occurs only once in t and in t′. An equational
theory (Σ,E) is sort-preserving if for each t = t′ in E, each sort s, and each
substitution σ, we have tσ ∈ TΣ(X )s iff t′σ ∈ TΣ(X )s. An equational theory
(Σ,E) is defined using top sorts if for each equation t = t′ in E, all variables in
Var(t) and Var(t′) have a top sort. Given two equational theories G = (Σ,E)
and T = (Δ,Γ ), we say T is the background theory of E iff Σ ⊆ Δ and for each
ground Σ-formula ϕ, TΣ/E |= ϕ ⇐⇒ T |= ϕ.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSU W

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSU W

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSU W

E (t = t′) such that σ|W �E ρ|W (i.e., there is a
substitution η such that (ση)|W =E ρ|W ); and (iii) for all σ ∈ CSU W

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩ W = ∅.

A conditional rewrite rule is an oriented pair l → r if ϕ, where l �∈ X , ϕ
is a QF Σ-formula, and l, r ∈ TΣ(X )s for some sort s ∈ S. An unconditional
rewrite rule is written l → r. A conditional order-sorted rewrite theory is a triple
(Σ,E,R, T ) with Σ an order-sorted signature, E a set of Σ-equations, T is a
background theory, and R a set of conditional rewrite rules. The set R of rules
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is sort-decreasing if for each t → t′ (or t → t′ if ϕ) in R, each s ∈ S, and each
substitution σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.

The rewriting relation on TΣ(X ), written t →R t′ or t →p,R t′ holds between
t and t′ iff there exist a p ∈ PosΣ(t), l → r if ϕ ∈ R and a substitution σ,
such that T |= ϕσ, t|p = lσ, and t′ = t[rσ]p. The relation →R/E on TΣ(X )
is =E ;→R; =E . The transitive (resp. transitive and reflexive) closure of →R/E

is denoted →+
R/E (resp. →∗

R/E). A term t is called →R/E-irreducible (or just
R/E-irreducible) if there is no term t′ such that t →R/E t′. For →R/E confluent
and terminating, the irreducible version of a term t is denoted by t↓R/E .

A relation →R,E on TΣ(X ) is defined as: t →p,R,E t′ (or just t →R,E t′) iff
there are a position p ∈ PosΣ(t), a rule l → r if ϕ in R, and a substitution σ such
that T |= ϕσ, t|p =E lσ and t′ = t[rσ]p. Reducibility of →R/E is undecidable
in general since E-congruence classes can be arbitrarily large. Therefore, R/E-
rewriting is usually implemented [13] by R,E-rewriting under some conditions
on R and E such as confluence, termination, and coherence.

We call (Σ,B,E) a decomposition of an order-sorted equational theory
(Σ,E∪B) if B is regular, linear, sort-preserving, defined using top sorts, and has
a finitary and complete unification algorithm, which implies that B-matching is
decidable, and the equations E oriented into rewrite rules

−→
E are convergent, i.e.,

confluent, terminating, and strictly coherent [18] modulo B, and sort-decreasing.
Given a decomposition (Σ,B,E) of an equational theory, (t′, θ) is an E,B-

variant [6,11] (or just a variant) of term t if tθ↓E,B =E t′ and θ↓E,B =E θ.
A complete set of E,B-variants [11] (up to renaming) of a term t is a sub-
set, denoted by [[t]]E,B, of the set of all E,B-variants of t such that, for each
E,B-variant (t′, σ) of t, there is an E,B-variant (t′′, θ) ∈ [[t]]E,B such that
(t′′, θ) �E,B (t′, σ), i.e., there is a substitution ρ such that t′ =B t′′ρ and
σ|Var(t) =B (θρ)|Var(t). A decomposition (Σ,B,E) has the finite variant prop-
erty (FVP) [11] (also called a finite variant decomposition) iff for each Σ-term
t, a complete set [[t]]E,B of its most general variants is finite.

In what follows, the set G of equations will in practice be G = E � B and
will have a decomposition (Σ,B,E).

Definition 1 (Reachability goal). Given an order-sorted rewrite theory
(Σ,G,R, T ), a reachability goal is defined as a pair t

?→∗
R/G t′, where t, t′ ∈

TΣ(X )s. It is abbreviated as t
?→∗ t′ when the theory is clear from the context;

t is the source of the goal and t′ is the target. A substitution σ is a R/G-
solution of the reachability goal (or just a solution for short) iff there is a sequence
σ(t) →R/G σ(u1) →R/G · · · →R/G σ(uk−1) →R/G σ(t′).

A set Γ of substitutions is said to be a complete set of solutions of t
?→∗

R/G t′

iff (i) every substitution σ ∈ Γ is a solution of t
?→∗

R/G t′, and (ii) for any solution

ρ of t
?→∗

R/G t′, there is a substitution σ ∈ Γ more general than ρ modulo G, i.e.,
σ|Var(t)∪Var(t′) �G ρ|Var(t)∪Var(t′).
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This provides a tool-independent semantic framework for symbolic reachabil-
ity analysis of protocols under algebraic properties. Note that we have removed
the condition Var(ϕ) ∪ Var(r) ⊆ Var(l) for rewrite rules l → r if ϕ ∈ R and
thus a solution of a reachability goal must be applied to all terms in the rewrite
sequence. If the terms t and t′ in a goal t

?→∗
T/G t′ are ground and rules have

no extra variables in their right-hand sides, then goal solving becomes a stan-
dard rewriting reachability problem. However, since we allow terms t, t′ with
variables, we need a mechanism more general than standard rewriting to find
solutions of reachability goals. Narrowing with R modulo G generalizes rewriting
by performing unification at non-variable positions instead of the usual match-
ing modulo G. Soundness and completeness of narrowing for solving reachability
goals are proved in [13,20] for unconditional rules R modulo an equational the-
ory G and in [19] for conditional rules R modulo an equational theory G, both
with the restriction of considering only order-sorted topmost rewrite theories,
i.e., rewrite theories were all the rewrite steps happen at the top of the term.

3 Canonical Narrowing with Irreducibility and SMT
Constraints

This section extends the canonical narrowing strategy of [10] with SMT con-
straints.

When (Σ,E ∪ B) has a decomposition as (Σ,B,E), then the initial alge-
bra TΣ/E∪B is isomorphic to the canonical term algebra CΣ/E∪B = (CΣ/E∪B,
→R/E∪B), where CΣ/E∪B = {CΣ/E∪B,s}s∈S and CΣ/E∪B,s = {[t↓−→

E ,B
]B ∈

TΣ/B | t↓−→
E ,B

∈ TΣ,s} and where for each f ∈ Σ, fCΣ/E∪B
([t1]B , . . . , [tn]B) =

[f(t1, . . . , tn)↓−→
E ,B

]B .
We have an isomorphism of initial algebras TΣ/E∪B

∼= CΣ/E∪B. Likewise,
we have an isomorphism of free (Σ,E ∪ B)-algebras TΣ/E∪B(X ) ∼= CΣ/E∪B(X ),
where CΣ/E∪B(X ) = (CΣ/E∪B(X ),→R/E∪B) and

CΣ/E∪B,s(X ) = {[t↓−→
E ,B

]B ∈ TΣ/B(X ) | t↓−→
E ,B

∈ TΣ(X )s}.

The key point of canonical rewriting is that we can simulate rewritings [t]E∪B

→R/E∪B [t′]E∪B by corresponding rewritings [t↓−→
E ,B

]B →R/E∪B [t′↓−→
E ,B

]B and

make rewriting decidable when (Σ,B,
−→
E ) is FVP.

Definition 2 (Canonical Rewriting). Let R = (Σ,E ∪ B,R, T ) be a top-
most order-sorted rewrite theory such that (Σ,E ∪ B) has an FVP decomposi-
tion (Σ,B,E). Let C◦

Σ/E∪B(X )State =
⋃

CΣ/E∪B(X )State, i.e., C◦
Σ/E∪B(X )State =

{t↓−→
E ,B

| t↓−→
E ,B

∈ TΣ(X )State}, so that C◦
Σ/E∪B(X )State ⊆ TΣ(X )State. We then

define the →R/E,B canonical rewrite relation with rules R modulo E ∪ B as
the following binary relation →R/E,B⊆ C◦

Σ/E∪B(X )State×C◦
Σ/E∪B(X )State, where

t →R/E,B t′ iff ∃l → r if ϕ ∈ R and ∃θ with Dom(θ) ⊆ Var(l)∪Var(r)∪Var(ϕ)
and θ = θ↓−→

E ,B
such that: (i) T |= ϕθ, (ii) (lθ)↓−→

E ,B
=E∪B t, and (iii) t′ =B

(rθ)↓−→
E ,B

.
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The claim that →R/E,B exactly captures/bisimulates the →R/E∪B rewrite
relation is justified by the following result.

Theorem 1. For each t, t′ ∈ TΣ(X )State, t →R/E∪B t′ iff t↓−→
E ,B

→R/E,B

t′↓−→
E ,B

.

A term t(x1:s1, . . . , xn:sn) can be viewed as a symbolic, effective method to
describe a (typically infinite) set of terms, namely the set

�t(x1:s1, . . . , xn:sn)� = {t(u1, . . . , un) | ui ∈ TΣ(X )si} = {tθ | θ ∈ Subst(Σ,X )}.

We think as t as a pattern, which symbolically describes all its instances (includ-
ing non-ground). However, since (Σ,B,E) is a decomposition of an equational
theory (Σ,E ∪ B), we can consider only normalized instances of t

�t�−→
E ,B

= {(tθ)↓−→
E ,B

| θ ∈ Subst(Σ,X )}

However, since we are interested in terms that may satisfy some irreducibility
and SMT conditions, we can obtain a more expressive symbolic pattern language
where patterns are constrained by both irreducibility and SMT constraints. That
is, we consider constrained patterns of the form 〈t,Π, ϕ〉 where Π is a finite set
of normalized terms and ϕ is a QF Σ-formula. Then we can define:

�〈t, (u1, . . . , uk), ϕ〉�−→
E ,B

= {(tθ)↓−→
E ,B

| θ ∈ Subst(Σ,X ), T |= ϕθ,

u1θ, . . . , ukθ are
−→
E ,B-normalized}.

The canonical narrowing relation �R/E,B includes irreducibility constraints
only for the left-hand sides of the rules and SMT constraints only from the
conditional part of the rules.

Definition 3 (Canonical Narrowing). Given a topmost order-sorted rewrite
theory (Σ,E ∪ B,R, T ) such that (Σ,B,E) is a decomposition of (Σ,E ∪ B),
the canonical narrowing relation with irreducibility constraints holds between
〈t,Π, ϕ〉 and 〈t′,Π ′, ϕ′〉, denoted

〈t,Π, ϕ〉 �α,R/E,B 〈t′,Π ′, ϕ′〉

iff there exists l → r if ϕ′′ ∈ R, which we always assume renamed, so
that Var(〈t,Π, ϕ〉) ∩ (Var(r) ∪ Var(l) ∪ Var(ϕ′′)) = ∅, and a unifier α ∈
CSU W

E∪B(t = l), where W = Var(〈t,Π, ϕ〉) ∪ Var(r) ∪ Var(l) ∪ Var(ϕ′′), and

1. 〈t′,Π ′, ϕ′〉 = 〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕα ∧ ϕ′′α〉,
2. Πα ∪ {(lα)↓−→

E ,B
} are

−→
E ,B-irreducible, and

3. ϕ′ is satisfiable, i.e., ∃α′ s.t. T |= ϕ′α′.
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Note that we do not require a narrowing step to compute CSUE∪B(t = l)
anymore, we perform regular equational unification but impose an irreducibility
constraint on the normal form of the instantiated left-hand side, which can be
handled in Maude by using asymmetric unification [7], i.e., equational unification
is done with irreducibility constraints.

Irreducibility constraints are computed by using the normalized left-hand side
of the rules that are used in the narrowing steps. SMT constraints are simply
added to the third component and check for satisfiability. Note that we assume
that satisfiability of QF Σ-formulas is decidable, indeed for a subsignature Σ0 ⊆
Σ associated to the background theory T . Maude is using the CVC4 SMT solver
for satisfiability.

Each trace will carry a different set of irreducibility and SMT constraints,
although some of the conditions are shared by having common predecessor nodes.
In each new narrowing step, the list of irreducibility constraints computed pre-
viously in that sequence must be taken into account, so that if it is necessary to
reduce one of the terms appearing in the list to compute a new step, it will be
discarded. Similary, the SMT formula carried along the sequence must be taken
into account, so that if it becomes unsatisfiable after one narrowing step, it will
be discarded.

In this way, we eliminate redundancy as well as branches of the reachability
tree, which will be less and less wide than the tree resulting from using standard
narrowing. In some cases, we will even get infinite reachability trees to become
finite, ensuring termination.

The key completeness property about this relation is the following.

Lemma 1 (Lifting Lemma). Given 〈t,Π, ϕ〉, a
−→
E ,B-normalized substitution

θ, and terms u, v ∈ C◦
Σ/E,B(X ) such that u = (tθ)↓−→

E ,B
, T |= ϕθ, and Πθ are

−→
E ,B-normalized and u →R/E,B v, there is a canonical narrowing step with
irreducibility and SMT constraints

〈t,Π, ϕ〉 �α,R/E,B 〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉

and a
−→
E ,B-normalized substitution γ such that

〈t,Π, ϕ〉 �α,R/E,B 〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉
↓θ ↓γ

�〈t,Π, ϕ〉�−→
E ,B

→R/E,B �〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉�−→
E ,B

(i) θ =B (αγ)|Var(〈t,Π,ϕ〉),
(ii) (rαγ)↓−→

E ,B
=B v,

(iii) Παγ ∪ {((lα)↓−→
E ,B

)γ} are
−→
E ,B-normalized,

(iii) T |= ϕ′γ.

Note that this shows that v ∈ �〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉�−→
E ,B

.
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4 Implementation

To implement SMT constraint handling in the narrowing algorithm, we have used
our implementation of standard/canonical narrowing [14] as a starting point. To
do this, we use the features of the Maude meta-level, thus creating an extension
of the previous meta-level command.

4.1 Our Previous Narrowing Command

The meta-level command we use as a starting point already allows us to choose
between several narrowing algorithms to use. First of all, it allows to invoke the
standard narrowing algorithm, with a behavior similar to the standard narrow-
ing built-in in Maude. It also allows the canonical narrowing algorithm [14] to
be invoked, in which irreducibility constraints are used to reduce the width of
the computed reachability tree. To control the algorithm used along with other
parameters, such as the maximum depth of the tree or the maximum number of
solutions to search for, the command uses ten arguments:

narrowing(Module, Term, SearchArrow, Term, AlgorithmOptionSet, VariantOptionSet, TermList, Qid,

Bound, Bound)

In the implementation of that command, we already prepared an adequate
infrastructure to allow future extensions. Several data structures and substruc-
tures were defined to represent the reachability tree, its nodes, and the solutions
found. Additionally, we divided the implementation into three main parts, which
correspond to the main steps of the algorithm at a theoretical level: (i) the gen-
eration of nodes (terms) in the reachability tree, (ii) the attempt to unify each
new term with the target term, and (iii) the computation of solutions in case the
unification is successful. Those main parts are further broken down into highly
distinguishable subparts, making it easy to make extensions or modifications to
some parts without having to change the rest of the implementation.

4.2 Using Conditional Rules in Narrowing

To manage SMT constraints, our approach has been to use Maude’s conditional
rules to add them as a condition in each of the narrowing steps. The problem that
arises is that the Maude narrowing mechanisms are not capable of processing the
conditional rules. The way to fix this is to transform those conditional rules into
normal rules, in which the new left-hand side of the new rules will contain both
the left-hand side of the conditional rules and the SMT constraints. An operator
should separate both parts, so that later the original term can be distinguished
from the SMT restrictions.

We have implemented a module that is responsible for carrying out the pro-
cess of transformation of conditional rules. This module defines two operators:

op transformMod : Module -> Module .
op transformRls : RuleSet -> RuleSet .
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The first receives a module, theory, module with strategy or theory with strat-
egy. In either case, a new operator is added to the set of operators of the module
or theory, which will be used to separate the terms from the SMT constraints
in the transformed rules. It is also necessary to add the import of the Maude
META-TERM module to the converted module, so that it is capable of processing
the addition of this new operator. Finally, this operator calls the other defined
operator, using as an argument the set of rules of the module to be transformed.
For example, the equation used to transform a module without strategy would
be the following:

eq transformMod(mod ModId is Imports sorts Sorts . Subsorts Ops Membs Eqs Rls1 endm)
= mod ModId is Imports (protecting ’META-TERM .)

sorts Sorts . Subsorts
(Ops (op ’_>>_ : ’Boolean ’State -> ’State [ctor poly (0 2)] .))
Membs Eqs transformRls(Rls1) endm .

The second operator, therefore, receives a set of rules, and is in charge of
iterate through it looking for conditional rules. Each time a conditional rule is
found, it is transformed into a new unconditional rule, in which the condition is
added to the left-hand side using the >> operator defined above. The equations
used to do this are as follows:

eq transformRls(Rls1 (crl Lhs => Rhs if (SmtConst = BooleanValue) [Attrs].) Rls2)
= transformRls(Rls1 Rls2) (rl Lhs => ’_>>_[SmtConst,Rhs] [Attrs narrowing] .) .

eq transformRls(Rls1) = Rls1 [owise] .

Thus, if we have a conditional rule of the form crl Lhs => Rhs if
(SmtConst = BooleanValue) [Attrs], it will be automatically transformed
into an unconditional rule of the form rl Lhs => (SmtConst >> Rhs) [Attrs
narrowing], where Lhs and Rhs are variables of Universal type (that is, they
can be instantiated as any sort), SmtConst is a variable that represents the SMT
constraints, and BooleanValue is a Boolean variable expected to be true, used
only to be able to encode SMT constraints in the conditions of the rules. The
new form of the rule after transforming it will allow us later to make the >>
operator disappear and separate the term from the SMT constraints. This is
explained in detail in the following section.

4.3 Extension to Handle SMT Constraints

Once we have prepared the module transformation to convert all the conditional
rules into unconditional ones, we can extend the previous command so that
it processes the SMT terms that will be generated with the new rules. This
extension has been done without making changes at the user level, except for
the addition of possible values to one of the existing arguments, as well as a new
argument that allows to indicate initial SMT constraints:

narrowing(Module, Term, SearchArrow, Term, AlgorithmOptionSet, VariantOptionSet, TermList,
Term, Qid, Bound, Bound)

Until now, the fifth argument, of type AlgorithmOptionSet, only accepted
the standard and canonical values, used to indicate the type of narrowing
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algorithm to use. Now, it also accepts combinations of those two values with
the smt and noCheck values, although the second is a limitation of the first, so
it cannot appear without it. By using the smt value, the transformation of the
conditional rules will be performed in the module used as rewrite theory if neces-
sary. Subsequently, the SMT constraints will be processed during the execution
of the algorithm to check if they are satisfiable at each node of the reachability
tree. If it is also accompanied by the value noCheck, only the transformation of
the rules will be carried out, ignoring the satisfiability of the SMT constraints.

The most relevant changes to the algorithm occur before trying to unify the
term of a new generated node with the target term, since the satisfiability of the
SMT constraints for that node will have to be checked first. Until reaching that
step, not many modifications are needed, since the narrowing steps will be given
using the rules in a usual way, because the transformation of conditional rules
will have been previously carried out just at the beginning of the algorithm, if
the user indicates that SMT constraints are being used. Furthermore, we need to
modify the previously used data structures. Now the main structure must save
the initial SMT constraints indicated by the user. It will also be necessary for
each of the nodes to contain a list of the SMT constraints carried so far. We have
stored that list at each node in a {Term, Bool} pair, where the second value
of the pair indicates the satisfiability of the constraints found in the first value.
Two new operators are introduced in the algorithm that run after the generation
of a new node and renaming of its variables, although they will only be used if
the user indicates that SMT restrictions must be processed:

op evaluateSMT : UserArguments TreeInfo SolutionList -> NarrowingInfo .
op checkSat : UserArguments TreeInfo SolutionList -> NarrowingInfo .

The evaluateSMT operator performs the separation of the SMT constraints
from the new term generated with one of the transformed rules. In turn, it joins
these restrictions with the list of restrictions carried so far, which will come from
the predecessor nodes to the current one and from the initial restrictions indi-
cated by the user. Additionally, it launches to evaluate all those restrictions, to
know if they are satisfiable or not. To do this, we rely on Maude’s SMT interface,
which is available in the meta-level. Specifically, we use the metaCheck [5, §16],
which receives the module to use and the term to evaluate, returning a value of
type Bool. If the result is true, the constraints are satisfiable. Otherwise, false
is returned:

op metaCheck : Module Term ~> Bool [special (...)] .

Note that in case the user has indicated, in addition to the smt value as an
argument, the noCheck value, the evaluateSMT operator will only separate the
SMT constraints from the term, ignoring the rest of the process, since we are
not interested in checking the satisfiability, but in being able to process the
constraints of the initial conditional rules.

The checkSat operator is responsible for processing the result obtained when
executing the metaCheck function. If the restrictions are satisfiable, the next
execution step should be the attempt to unify the term of the node with the



Canonical Narrowing with Irreducibility and SMT Constraints 57

objective term, to check if it corresponds to one or more solutions of the reacha-
bility problem. If the constraints are not satisfiable, then it will not make sense
to perform the unification step, since we will not consider the term of the node
as valid. We therefore return to the step of generating new nodes, marking the
current node as invalid, so that it is not taken into account later, since we do
not want to generate the possible child nodes of this node either.

4.4 Variable Consistency

As we explained in our previous work [14] on which we based this algorithm, the
way Maude generates the fresh variables may lead to clashes. For this reason,
the fresh variables that are generated in each narrowing step must be renamed
using an internal counter, and using the $ symbol as an identifier. Since the
variables in the SMT constraints are related to those used in the terms, as
well as to the variables in the previously processed SMT constraints, there is a
consistency problem with this renaming. That is why in each narrowing step, we
now have to apply variable substitutions to the SMT constraints so that there
is no such loss of consistency. Specifically, at each narrowing step, the computed
substitution that must be applied to the term of the previous node to take that
step must be applied to the new node’s SMT constraint. The substitution must
also be applied to the SMT constraint list carried along the node branch. In turn,
this list will already come with the variables renamed in the previous steps, so
consistency builds up. Note that the initial SMT restrictions indicated by the
user will also have to be renamed. This is not a problem, since these constraints
are also automatically added to the list of constraints of each node, so it can be
renamed at the same time as the rest.

5 Experiments

For the experiments, we have considered the Brands and Chaum protocol of
Example 2 in two forms: its version with only time, published in [1], and its ver-
sion with time and space, published in [2]. In both, the use of SMT restrictions
is necessary, which in our case are codified with conditional rules. As explain in
Sect. 4, these conditional rules will be processed to transform them into uncondi-
tional rules, in order to correctly obtain the SMT constraints at each narrowing
step.

All the files used to define the new narrowing algorithm, as well as the exper-
iments that we will see next and their results, can be found at the following link:
https://github.com/ralorueda/smt-narrowing.

5.1 Handling SMT Constraints

We rely on the generic rewrite theory for protocol specification, inspired on
the strand spaces [12] used by Maude-NPA [8], used in our previous work on
canonical narrowing [14], but with some modifications that adapt it to include

https://github.com/ralorueda/smt-narrowing
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SMT constraints on the real numbers, inspired on the constraints used in [1,2].
It is a module that allows us to specify a state, made up of sets of strands
and the intruder knowledge, which represents the communication channel. With
it we can represent the protocols in a generic way, adding the corresponding
equational theories for each of them. Later, when coding the narrowing calls, we
will specify the exact strands of each protocol.

In the original module, we had two transition rules. One of them processes
the sent messages, and the other the received messages:

var IK : IntruderKnowledge . var SS : StrandSet . var M : Msg . vars L1 L2 : SMsgList .

rl [receive-msg] : { (SS & [ ( L1 , -(M)) | L2 ]) { (inI(M) , IK) } } =>
{ (SS & [ L1 | (-(M) , L2) ]) { (inI(M) , IK) } } [narrowing] .

rl [send-msg] : { (SS & [ (L1 , +(M)) | L2 ]) { (inI(M) , IK) } } =>
{ (SS & [ L1 | (+(M) , L2) ]) { (nI(M) , IK) } } [narrowing] .

It can be seen in each of them how, for each set of strands, represented in square
brackets, there is a list to the left of the operator | and one to the right. The first
contains the messages to be processed, while the second contains the processed
messages. At each transition, a message (sent or received) is taken from the end of
the list of messages to be processed and moved to the list of processed messages.
In the event that it is a sent message, the correspondence of that message will
also be modified in the communication channel or intruder knowledge.

To adapt the module to protocols using non-linear arithmetic constraints on
the real numbers via satisfiability, we add a conditional rule that is responsible
for processing a new type of data that can appear in the strands sets: con-
straints. Specifically in our case, SMT constraints (type Boolean), which will
be represented in the channel between the messages with the operator { }. We
will therefore now have three rules. One of them is responsible for processing the
messages sent, another the messages received, and another the restrictions that
occur at any given time:

var IK : IntruderKnowledge . var SS : StrandSet . var SSR : StrandSetR .
var SSN : StrandSetN . var M : Msg . vars LeE2 : SMsgList-eE .
var LREe1 : SMsgListR-Ee .

crl [check-contraint] : { (SSR & [ LREe1 , {B:Boolean} | LeE2 ]) { IK } } =>
{ (SSR & [ LREe1 | {B:Boolean} , LeE2 ]) { IK } }

if B:Boolean = true [nonexec] .
rl [receive-msg] : { (SSN & [ LREe1 , -(M) | LeE2 ]) { (inI(M) , IK) } } =>

{ (SSN & [ LREe1 | -(M) , LeE2 ]) { (inI(M) , IK) } } [narrowing] .
rl [send-msg] : { (SS & [ LREe1 , +(M) | LeE2 ]) { (inI(M) , IK) } } =>

{ (SS & [ LREe1 | +(M) , LeE2 ]) { (nI(M) , IK) } } [narrowing] .

Note that in this case we use variables from different sorts, SMsgListR-Ee
and SMsgListR-eE, rather than the ones we used in [14]. This is because we have
created a rule hierarchy, mimicking some optimizations of the Maude-NPA [9],
in such a way that a more defined processing order is followed, significantly
reducing the computation time in the experiments. In this way, whenever there
is a constraint at the end of the list of messages to be processed in a strand set, it
will be processed first. If this is not the case, it will check if there is any received
message at the end of the list of messages to be processed in a strand set, and
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will be processed. If neither of these two cases occurs, then a sent message will
be processed.

5.2 Brands and Chaum with Time

The previous module allows us, in a generic way, to specify protocols that contain
SMT restrictions. To this must be added the specific equational theories of each
protocol. In our case, the first protocol used is Brands and Cham with time [1],
which can be seen as a simplified version of the protocol seen in Example 1, but
does not take into account the coordinates of the messages. Two cryptographic
primitives are combined: exclusive-or over a set of nonces and a commitment
scheme. Exclusive-or is defined with the following properties:

sort NNSet .
subsorts Nonce Secret < NNSet .

op null : -> NNSet .
op _*_ : NNSet NNSet -> NNSet [assoc comm] .
vars X Y : [NNSet] .

eq [idem] : X * X = null [variant] .
eq [idem-Coh] : X * X * Y = Y [variant] .
eq [id] : X * null = X [variant] .

The commitment scheme allows a participant to commit to a chosen hidden value
at an early protocol stage and reveal it later. It is defined with the following
properties:

op commit : Nonce Secret -> NTMsg .
op open : Nonce Secret NTMsg -> [Boolean] .
eq open(N1:Nonce,Sr:Secret,commit(N1:Nonce,Sr:Secret)) = true [variant] .

The open function is defined only for the successful case. This implies the use of
the kind [Boolean] rather than the sort Boolean. We also use additional oper-
ators for this protocol, which allow us to define signing, message concatenation,
and the creation of nonces and secrets.

sorts Msg NTMsg TMsg .
sorts Name Honest Intruder Fresh Secret Nonce .
subsorts NNSet < NTMsg < Msg .
subsorts Nonce Secret < NNSet .
subsort Name < Msg .
subsort Honest Intruder < Name .

ops a b : -> Honest .
op i : -> Intruder .
ops ra1 rb1 rb2 : -> Fresh .
op n : Name Fresh -> Nonce .
op s : Name Fresh -> Secret .
op sign : Name NTMsg -> NTMsg .
op _;_ : NTMsg NTMsg -> NTMsg [gather (e E)] .

Additionally, we add several operators that will allow us to add metadata to
the messages. In them, the sending and receiving times of the messages will be
saved, as well as the identifier of the sender and the receiver.
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sorts TimeInfo NameTime NameTimeSet .
subsort NameTime < NameTimeSet .
subsort TMsg < Msg .

op _@_ : NTMsg TimeInfo -> TMsg .
op _:_ : Name Real -> NameTime .
op mt : -> NameTimeSet .
op _#_ : NameTimeSet NameTimeSet -> NameTimeSet [assoc comm id: mt] .
op _->_ : NameTime NameTimeSet -> TimeInfo .

Note that times will be represented as real numbers, one of the data types
manageable by Maude’s SMT interface. The distance between two participants
A and B is represented by a variable dab:Real.

The module defined with the previous sorts, operators and rules allows us to
code the strands of the Brands and Chaum protocol of Example 1 only with time.
This will be done in the call to the narrowing algorithm, with an initial state and
a target state. In the initial state, the strand sets will contain a list of messages
and constraints to be processed and a list of messages and constraints processed,
which will be empty. In the target state, the lists will have been inverted, so that
all the messages and restrictions to be processed become processed. Consider,
for example, the strands of a prover and a verifier in a regular execution of the
Brands and Chaum protocol with time. With our syntax, they would be specified
in the initial state as follows:

--- Alice, verifier
([nilEe,

-(Commit:NTMsg @ b : t1:Real -> a : t1’:Real),
{(t1’:Real === t1:Real + dab:Real) and dab:Real > 0/1},

+(n(a,ra1) @ a : t2:Real -> b : t2’:Real),
-((n(a,ra1) * NB:Nonce) @ b : t3:Real -> a : t3’:Real),

{(t3’:Real === t3:Real + dab:Real) and dab:Real > 0/1 and t3:Real >= t2’:Real},
{(t3’:Real - t2’:Real) <= (2/1 * dab:Real) and dab:Real > 0/1},

-(SB:Secret @ b : t4:Real -> a : t4’:Real),
{open(NB:Nonce,SB:Secret,Commit:NTMsg)},
{(t4’:Real === t4:Real + dab:Real) and dab:Real > 0/1 and t4:Real >= t3’:Real},

-(sign(b,(n(a,ra1) * NB:Nonce) ; n(a,ra1)) @ b : t5:Real -> a : t5’:Real),
{(t5’:Real === t5:Real + dab:Real) and dab:Real > 0/1 and t5:Real >= t4’:Real}

| nileE]
&
--- Bob, prover
[nilEe,

+(commit(n(b,rb1),s(b,rb2)) @ b : t1:Real -> a : t1’:Real),
-(NA:Nonce @ a : t2:Real -> b : t2’:Real),

{(t2’:Real === t2:Real + dab:Real) and dab:Real > 0/1 and t2:Real >= t1’:Real},
+((NA:Nonce * n(b,rb1)) @ b : t3:Real -> a : t3’:Real),
+(s(b,rb2) @ b : t4:Real -> a : t4’:Real),
+(sign(b,(NA:Nonce * n(b,rb1)) ; NA:Nonce) @ b : t5:Real -> a : t5’:Real)

| nileE])

We can see how the prover, Bob, will first send a commit to the verifier.
Afterwards, the verifier, Alice, sends her nonce to the prover. Subsequently, the
prover will send the XOR of his nonce with the received one, and then sends the
secret. The verifier will open it to confirm everything is okay. Finally, the prover
will send the signs messages. An @ operator appears in each message, after which
the sending and receiving times of the message are saved, as well as the identifier
of the sender and receiver. We can also see how SMT constraints are introduced
after each received message. In them, conditions to be met are specified regarding
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the delivery and reception times. Conditions to satisfy relative to distances are
also specified. For example, in the SMT constraint that is introduced on the
strands of the prover, it is specified that the arrival time of the received message
must be equal to its departure time plus the distance between the prover and
the verifier. It is also specified that this distance must be greater than zero, and
that the sending time of the message must be equal to or greater than the time
in which the previous message was received.

Using this syntax and coding methodology, we have defined three experiments
in which we test a regular execution of the protocol, a mafia-like attack pattern,
and a hijacking-like attack pattern. In regular execution, we get a solution, which
is expected, since if the protocol is well defined, this execution should be possible.
In the case of the mafia attack, a priori, a solution is also found, which translates
into a possible vulnerability. However, adding the triangle inequality (d(a, i) +
d(b, i)) > d as the initial constraint, together with the constraint d(V, P ) > d > 0,
no solution is found. This is because, for consistency to exist in this execution,
it is necessary that 2 ∗ d(V, I) + 2 ∗ d(P, I) ≤ 2 ∗ d. As mentioned in Sect. 4, the
initial SMT constraints can be written in one of the arguments of the narrowing
command. However, it is possible to perform a hijacking attack, and that is
why by specifying this pattern in one of the experiments, a solution is found.
The attack occurs when an intruder located outside the neighborhood of the
verifier (i.e., d(V, I) > d) succeeds in convincing the verifier that he is inside the
neighborhood by exploiting the presence of an honest prover in the neighborhood
(i.e., d(V, P ) ≤ d).

5.3 Brands and Chaum with Time and Space

The second protocol that we have used for the experiments is an extension of the
previous one: Brands and Chaum with time and space, detailed at a theoretical
level in Example 2. In this case, the coordinates related to the sending and
receiving of each message appear in the metadata of the messages and in the
restrictions, that is, the coordinates of the participants. To be able to write this,
a slight modification of the previous protocol specification is enough, as well as
the addition of a new operator:

sort CoordNameTime .
op _:_,_,_,_ : Name Real Real Real Real -> CoordNameTime .
op _->_ : CoordNameTime NameTimeSet -> TimeInfo .

Once the modification is done, it is possible to encode the new strands. For
example, the strands for a verifier and a prover in a regular execution of the
protocol would now be as follows:

--- Alice, verifier
[nilEe,

-(Commit:NTMsg
@ b : x1:Real,y1:Real,z1:Real,t1:Real -> a : t2:Real),

{(t2:Real === t1:Real + dab1:Real) and (dab1:Real > 0/1) and
((dab1:Real * dab1:Real) === (((x1:Real - ax:Real) * (x1:Real - ax:Real)) +
((y1:Real - ay:Real) * (y1:Real - ay:Real))) +
((z1:Real - az:Real) * (z1:Real - az:Real)))},
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+(n(a,ra1)
@ a : ax:Real,ay:Real,az:Real,t2:Real -> b : t3:Real),

-((n(a,ra1) * NB:Nonce)
@ b : x3:Real,y3:Real,z3:Real,t3:Real -> a : t4:Real),

{(t4:Real === t3:Real + dab3:Real) and (dab3:Real > 0/1) and
((dab3:Real * dab3:Real) === (((x3:Real - ax:Real) * (x3:Real - ax:Real)) +
((y3:Real - ay:Real) * (y3:Real - ay:Real))) +
((z3:Real - az:Real) * (z3:Real - az:Real)))},
{((t4:Real - t2:Real) <= (2/1 * d:Real)) and (d:Real > 0/1)},

-(SB:Secret
@ b : x4:Real,y4:Real,z4:Real,t5:Real -> a : t6:Real),

{open(NB:Nonce,SB:Secret,Commit:NTMsg)},
{(t6:Real === t5:Real + dab4:Real) and (dab4:Real > 0/1) and
((dab4:Real * dab4:Real) === (((x4:Real - ax:Real) * (x4:Real - ax:Real)) +
((y4:Real - ay:Real) * (y4:Real - ay:Real))) +
((z4:Real - az:Real) * (z4:Real - az:Real)))},

-(sign(b,(n(a,ra1) * NB:Nonce) ; n(a,ra1))
@ b : x5:Real,y5:Real,z5:Real,t7:Real -> a : t8:Real),

{(t8:Real === t7:Real + dab5:Real) and (dab5:Real > 0/1) and
((dab5:Real * dab5:Real) === (((x5:Real - ax:Real) * (x5:Real - ax:Real)) +
((y5:Real - ay:Real) * (y5:Real - ay:Real))) +
((z5:Real - az:Real) * (z5:Real - az:Real)))}

| nileE]
&
--- Bob, prover
[nilEe,

+(commit(n(b,rb1),s(b,rb2))
@ b : bx:Real,by:Real,bz:Real,t1:Real -> a : t2:Real),

-(NA:Nonce
@ a : x2:Real,y2:Real,z2:Real,t2:Real -> b : t3:Real),

{(t3:Real === t2:Real + dab2:Real) and (dab2:Real > 0/1) and
((dab2:Real * dab2:Real) === (((x2:Real - bx:Real) * (x2:Real - bx:Real)) +
((y2:Real - by:Real) * (y2:Real - by:Real))) +
((z2:Real - bz:Real) * (z2:Real - bz:Real)))},

+((NA:Nonce * n(b,rb1))
@ b : bx:Real,by:Real,bz:Real,t3:Real -> a : t4:Real),

+(s(b,rb2)
@ b : bx:Real,by:Real,bz:Real,t3:Real -> a : t6:Real),

+(sign(b,(NA:Nonce * n(b,rb1)) ; NA:Nonce)
@ b : bx:Real,by:Real,bz:Real,t3:Real -> a : t8:Real)

| nileE]

The exchange of messages is very similar to what we have seen before, but
in this case the metadata is somewhat more complex, since the sending coor-
dinates are attached to each sending time. In addition, the restrictions are also
complicated, since in this case it will also be necessary to verify that the condi-
tions required for those coordinates are satisfied at each moment. In fact, since
the new constraints are non-linear arithmetic, Maude’s SMT is not capable of
processing them. In order to correctly execute the traces related to this protocol,
we have used a version of Maude called Maude-NRA, which provides an SMT
solver (CVC4) that is capable of processing this type of arithmetic.

Once more, we have performed experiments for this protocol with a regu-
lar execution, a mafia-like attack pattern, and a hijacking-like attack pattern.
The results are similar to the previous ones, although more complex. Regu-
lar execution returns a solution, since it is possible to do it without problems.
The hijacking attack is again possible as well, so a solution is again returned.
Regarding the mafia attack, the same thing happens: a priori it is possible, but
by adding the initial SMT restrictions necessary for the trace to be consistent,
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the attack is impossible. These restrictions are the same as before, but in this
case some relative to coordinates are also added.

6 Conclusions and Future Work

The canonical narrowing strategy with irreducibility and SMT constraints opens
the door to the use of narrowing to analyze protocols that use laws of physics,
such as the Brands and Chaum protocol. It is a greatly generic methodology
of symbolic reachability analysis that manages to prove the existence of traces
of a protocol, giving greater flexibility when defining and specifying them. In
this article we have presented an implementation of canonical narrowing capa-
ble of handling SMT constraints. This allows us to carry out symbolic analysis
of two versions of the Brands and Chaum protocol. Maude-NPA already handled
such protocols, as shown in [1,2], but in an ad-hoc way without the canonical
narrowing presented here. We now have a new algorithm with a powerful theo-
retical framework behind it, which can be useful to both Maude-NPA and other
symbolic protocol analysis tools. As future work, we expect to expand this canon-
ical narrowing to more general cases, clearly increasing its power for protocol
analysis.
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S.A., Rowe, P. (eds.) Protocols, Strands, and Logic. LNCS, vol. 13066, pp. 22–49.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91631-2 2

3. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30
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