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Abstract. Business process optimisation is a strategic activity in organ-
isations because of its potential to increase profit margins and reduce
operational costs. One of the main challenges in this context is concerned
with the problem of optimising the allocation and sharing of resources.
In this work, processes are described using the BPMN notation extended
with an explicit description of execution time and resources associated
with tasks, and can be concurrently executed multiple times. First, a
simulation-based approach for computing certain metrics of interest, such
as average execution time or resource usage, is presented. This approach
applies off-line and is static in the sense that the number of resources does
not evolve over the time of the simulation. In a second step, an alternative
approach is presented, which works online, thus requiring the instrumen-
tation of an existing platform for retrieving information of interest during
the processes’ execution. This second approach is dynamic because the
number of resource replicas is updated over the time of the execution.
This paper aims at stressing pros and cons of both approaches, and at
showing how they complement each other.

1 Introduction

Business process optimisation is a strategic activity in organisations because of
its potential to increase profit margins and reduce operational costs. Optimisa-
tion is, however, a difficult task to be achieved manually since several parameters
should be taken into account (e.g., execution times, resources, costs, etc.). One
of the main challenges in this context is concerned with the problem of optimis-
ing the allocation and sharing of resources. Resource usage is crucial because
it directly impacts the time it takes to execute a process. Moreover, by asso-
ciating a certain cost to each resource, the total cost of executing a process a
certain number of times can be computed. Optimising resource usage reduces
the process execution time and the costs associated with its execution.

In this work, we assume that a description of a business process is given using
the BPMN [24] workflow-based modelling language. BPMN has been standard-
ised by the International Organization for Standardization (ISO). It was first
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published in 2013 and since then it has become the de facto notation for devel-
oping business processes. The BPMN language defines the set of tasks involved
in a process and the order in which they should be executed. Beyond this descrip-
tion of the model, the time it takes to execute each task is also needed, as well
as an explicit description of the resources required for executing each task. This
extended model is precise enough for modelling both behavioural and quantita-
tive aspects of processes.

This paper presents two ways to analyse BPMN processes with time and
resources. Both techniques assume that the process is executed multiple times
and multiple concurrent executions of a process compete for the shared resources.
Such multiple executions correspond to realistic scenarios where a process is not
executed once but several times (one execution per client or user for instance).
Furthermore, both approaches also aim at computing some metrics of interest
such as average execution times, resource usage, and costs. The first approach
applies to design models, without the need for an implementation of the system
running on real resources. To compute the previously mentioned metrics, off-
line simulation techniques are used, assuming that the allocation of resources is
static (i.e., no update of the number of resources during the simulation). This
first approach relies on a specification of a subset of BPMN in rewriting logic [21].
This specification is executable in Maude [6], and the computation of metrics is
achieved by using Maude’s rewriting tools.

The second approach applies at runtime or online, and works by instrument-
ing an existing platform for executable BPMN (Activiti [2] in this work). In this
case, access to a database is used for storing information related to the execution
of the process. This information is particularly useful for computing the process
execution time, resource usage, and costs. This approach is also dynamic in the
sense that the number of replicas for each resource is not defined once and for all,
but can be updated by using the metrics computed during the process execution.
In particular, a strategy that relies on the resource usage values for dynamically
updating the number of replicas of each resource is presented.

The static approach applies to a model of the process, and additional infor-
mation is required such as the probability to execute exclusive branches. This
approach is useful for processes under development, or for potential changes that
need to be evaluated before being applied. The approach can help for instance to
simulate several scenarios and decide whether the number of required resources
needs to be adjusted before the deployment of the process in production. On the
other hand, the dynamic approach accepts as input an executable BPMN process
and provides strategies to update resources at execution time thus allowing a
certain stabilisation of the computed metrics over time (such as execution times
and resource usage). However, this dynamic change does not apply in all con-
texts since it is not systematically possible to dynamically update the number
of any kind of resources (such as human beings).

The organisation of the rest of this paper is as follows. Section 2 introduces
the BPMN notation used in this work. Section 3 overviews the static approach
for analysing resource usage. Section 4 surveys the main ideas of the dynamic
approach for the allocation of resources. Section 5 presents existing works on this
topic. Section 6 concludes by comparing both approaches.
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2 BPMN with Time and Resources

BPMN 2.0 (BPMN, as a shorthand, in the rest of this paper) was published as an
ISO/IEC standard [17] in 2013 and is nowadays extensively used for modelling
and developing business processes. In this paper, for the sake of simplicity, we
focus on activity diagrams including the BPMN constructs related to control-
flow modelling and behavioural aspects. Beyond those constructs, execution time
and resources are also associated with tasks, and probabilities are specified for
exclusive and inclusive split gateways. Figure 1 summarises some of the BPMN
constructs used in this work, with a focus on how time and resources are asso-
ciated with flows and tasks.

Fig. 1. Extended BPMN Syntax

Specifically, the node types event, task, and gateway, and the edge type
sequence flow are considered. Start and end events are used, respectively, to
initialise and terminate processes. A task represents an atomic activity that has
exactly one incoming and one outgoing flow. A sequence flow describes two nodes
executed one after the other in a specific execution order. A task and a flow may
have a duration or delay. The timing information associated with tasks and flows
is described as a literal value (a non-negative real number, possibly 0). Resources
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are explicitly defined at the task level. A task that requires resources can include,
as part of its specification, the name of the required resources. Thus, a task is
specified with an amount of time (its duration), and information on its required
resources. Then, once the resources required by a task are acquired, the task is
going to execute for the defined duration.

Gateways are used to control the divergence and convergence of the execution
flow. Three types of gateways are considered for the static analysis: exclusive,
inclusive, and parallel. Gateways with one incoming branch and multiple outgo-
ing branches are called splits, e.g., split inclusive gateway. Gateways with one
outgoing branch and multiple incoming branches are called merges, e.g., merge
parallel gateway. An exclusive gateway chooses one out of a set of mutually
exclusive alternative incoming or outgoing branches. For an inclusive gateway,
any positive number of branches among all its incoming or outgoing branches
may be taken (both BPMN 1.0 and 2.0 semantics for inclusive gateways are
supported). A parallel gateway synchronises concurrent flows for all its incom-
ing branches, and creates concurrent flows for all its outgoing branches.

In the static approach, data-based conditions for split gateways are modelled
using probabilities associated with outgoing flows of exclusive and inclusive split
gateways. The probabilities of the outgoing flows in an exclusive split must
sum up to 1, while each outgoing flow in an inclusive split can be equipped
with a probability between 0 and 1 without a restriction on their total sum.
We will see that only the static approach presented in Sect. 3 does need such
probabilities, whereas the dynamic approach presented in Sect. 4 requires an
executable BPMN process as input (with real data-based conditions). Processes
with looping behavior are supported, as well as unbalanced workflows.

Running Example. For illustration purposes, we present a simple example
of a process describing how clients can deliver goods via an external service
(a mail office for instance). This process is described in Fig. 2. First of all, an
employee collects the goods brought by a client. Then, in parallel, the client pays
for the delivery service and an employee prepares a parcel. The company can
deliver the parcel using a car or using a drone (depending on the distance for
example). Beyond the required resources appearing in the figure, we can also see
times (expressed as durations) associated with tasks. As an example, the average
duration for preparing a parcel is 5 units of time (e.g., 5 min). We also assume
that the probability of delivering by car or by drone is the same (0.5).

Fig. 2. Goods Delivery Process
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3 Static Quantitative Analysis

In this section, we summarise the approach presented in [10] for analysing BPMN
processes with resources. More precisely, we first introduce the specification of
BPMN (syntax and semantics) in Maude’s rewriting logic. Second, we present
the quantitative properties of interest focusing on timing and resource-based
properties. To compute these properties, we leverage Maude’s rewriting capabil-
ities to simulate and extract analysis results on a given BPMN process.

3.1 Process Description

In the Maude specification of BPMN, a process is represented as an object
with sets of flows and nodes as attributes. Nodes can be of five different types:
start, end, task, split, or merge. The representation of each of these types of
elements includes the necessary information. A task node involves an identifier,
a description, two flow identifiers (input and output), a stochastic function or a
value modelling its duration (0 if there is no duration), and a set of resources
required for its execution. A split node includes a node identifier, a gateway type
(exclusive, inclusive, or parallel), an input flow identifier, and a set of output
flow identifiers. A merge node includes a node identifier, a gateway type, a set of
input flow identifiers, and an output flow identifier. The representation of a flow
includes a probability distribution function corresponding to the probability of
executing that flow (1 by default).

3.2 Execution Semantics

The operational semantics of BPMN is defined using a rewrite theory, with
rewrite rules modeling how tokens evolve through a process. This rewrite theory
is executable, which allows us to simulate BPMN processes. In this specification,
each action is modeled as a rewrite rule. For instance, when a token arrives at a
parallel split gateway, the token corresponding to the incoming flow is removed,
and one token is added for each outgoing flow. Technically, rewrite rules operate
on systems composed of a process object and a simulation object.

Simulation Object. While the process object introduced in Sect. 3.1 represents
the BPMN process and does not change during an execution, the simulation
object keeps information on the execution of the process. It stores a collection of
tokens (in a scheduler, see below), a global time (gtime), and a set of resources.
It also keeps track of the quantities being measured during the analysis of a
process. Figure 3 presents the structure of the Simulation object.

Tokens. Tokens are used to represent the evolution of the workflow under exe-
cution. When a process instance is triggered, a token is added to the start node.
The tokens move through nodes and flows of the process. When a token meets a
split gateway (e.g., parallel gateway), several tokens are generated on outgoing
flows, depending on the type of split gateway. On the contrary, when multiple
tokens meet a merge gateway (e.g., inclusive gateway), they are merged into a
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< s : Simulation | tokens : ..., ---- scheduler
gtime : ..., ---- global time
resources : ..., ---- resource set
process-execs : ...., ---- execution times
sync-times : ..., ---- synchronisation times
task-times : ..., ---- task execution times
... >

Fig. 3. Representation of the Simulation Object

single token depending on the type of merge gateway. A token is represented
as a term token(TId, Id, T). Since several executions may happen simultaneously,
each execution has a unique identifier, and tokens are identified by the execution
instance TId they belong to, and the flow or node Id they are attached to. The
expression T represents a timer, of sort Time, modelling a delay on the token.
Once this timer becomes 0, the token may be consumed.

Scheduling. Tokens are stored in a scheduler implemented as a priority queue, so
that they are kept according to their due time. However, even with its timer set
to 0, the token at the front of this queue may be not enough to fire some action.
Consider, for example, a task that requires some resource that is not available
or a parallel merge for which some incoming flow is not yet active. To avoid
blocking situations, the scheduler is provided with a shifting mechanism, which
moves the first active token to the front of the scheduler in case the current head
cannot fire the corresponding action. This scheduler is similar to those used in
typical discrete event simulations.

Resources. Each resource is represented with an identifier, the number of avail-
able replicas (initially the total number), the total amount of time this resource
has been in use, and the intervals of time during which any replica of this resource
was used. These two last parameters are stored during the simulation, and are
particularly useful for analysis purposes. When a task requires several resources,
it atomically uses all of them at once, or waits for them to become available.

Workloads. Simulation-based analysis techniques are typically parameterized by
the workload that represents the way a system is used. They define the rate at
which new instances of a given process are executed. Currently, closed workloads
can be handled by specifying the number of executions and the rate at which
executions are started, that is, their inter-arrival time. The inter-arrival time is
specified as a stochastic expression.

Rewrite Rules for BPMN Constructs. Rewriting rules represent how tokens
evolve through the process and how nodes are executed, thus defining the exe-
cution semantics of BPMN. Each action supported by the system is modelled as
a rewrite rule. These rules are overviewed in the rest of this section to gather an
intuition on the formal semantics (see [8] for the complete specification).

Start/End Events. Figure 4 depicts the rule for the start event. When there is
a token in the execution TId in the start node NId with delay 0 (note the token
at the front of the scheduler in the Simulation object in line 5), then this rule
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1 crl [startProc] :
2 < PId : Process | nodes : (start(NId, FId), Nodes),
3 flows : (flow(FId, SE), Flows),
4 Atts >
5 < SId : Simulation | tokens : (token(TId, NId, 0) Tks), ... Atts1 >
6 < CId : Counter | counter : N >
7 => < PId : Process | nodes : (start(NId, FId), Nodes),
8 flows : (flow(FId, SE), Flows),
9 Atts >
10 < SId : Simulation | tokens : insert(Tks, token(TId, FId, T’)), ... Atts1 >
11 < CId : Counter | counter : N’ >
12 if {T’, N’} := eval(SE, N) .

Fig. 4. Start Event Processing

generates a new token on the outgoing flow of the selected node to initiate the
execution of a process instance (line 10). The insert function puts this token in the
scheduler and the eval function evaluates the stochastic expression SE specifying
the delay of the outgoing flow FId to be assigned to the new token. Details on
the initialisation of time stamps and recorded times for the initiated execution
have been replaced by ellipses. A termination rule, associated to stop events,
consumes tokens when they arrive at those events.

Tasks. A task execution is modelled with two rules. The first rule, the initTask

rule shown in Fig. 5, represents the task initiation, which is applied when a token
with zero time is available for the incoming flow (line 5). If all the resources
required by this task are available, which is checked with the allResourcesAvail-

able function (line 8), then a new token is generated with the task identifier
and the task duration (line 12). Otherwise, the scheduler’s token shifting mech-
anism is invoked (line 20). If available, all required resources are removed from
the set of resources, and the time those resources have been in use is updated
(grabResources&updateTime function, line 18). Since all auxiliary functions in the
right-hand side of the initTask rule are defined equationally, the checking and
grabbing of resources are performed atomically, without introducing any block-
ing issues. Note also that rules update the information on execution times, task
durations, etc. (see, e.g., the update of the task-tstamps attribute, lines 13–16).
This information is important for analysis purposes, as it will be seen in Sect. 3.3.

A second rule, which models task completion, is triggered when there is a
token for that task with zero time. In that case, the token is consumed, a new
one is generated for the outgoing flow, and all resources are released.

Exclusive Gateways. There are two rules for the exclusive gateways, namely, one
for the split and one for the merge. The rule for the split applies when a token
with zero time is available on its incoming flow. A uniformly sampled probability
distribution is used to choose the branch to be executed. The newly created
token is assigned with its run-to-completion time generated by evaluating the
stochastic expression associated with the chosen outgoing flow—this is actually
the case every time a new token is added for a flow. The exclusive merge gateway
is triggered when one of its incoming flows has a token with zero time. In that
case, a new token is generated, assigned to the outgoing flow, and added to the
scheduler.
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1 rl [initTask] :
2 < PId : Process |
3 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
4 < SId : Simulation |
5 tokens : (token(TId, FId1, 0) Tks),
6 task-tstamps : TTSs, gtime : T, resources : Rs, Atts1 >
7 < CId : Counter | counter : N >
8 => if allResourcesAvailable(RIds, Rs)
9 then < PId : Process |
10 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
11 < SId : Simulation |
12 tokens : insert(Tks, token(TId, NId, time(eval(SE, N)))),
13 task-tstamps : if TTSs[TId][NId] == undefined
14 then insert(TId, insert(NId, T, TTSs[TId]), TTSs)
15 else TTSs
16 fi, ---- for loops, stamps get overwritten
17 gtime : T,
18 resources : grabResources&updateTime(RIds, Rs, time(eval(SE, N)), T), Atts1 >
19 < CId : Counter | counter : int(eval(SE, N)) >
20 else ... ---- if necessary, the scheduler is updated
21 fi .

Fig. 5. Task Initiation Rule

Parallel Gateways. The parallel split gateway rule is triggered when a token
with zero time corresponding to the input flow is available. If so, the token is
consumed and one token is added to each of its outgoing flows. The merge rule
for the parallel gateway is executed when there is a token with zero time for
each incoming branch. In that case, these tokens are removed and a new token
is generated for the outgoing flow. In the merge rule, synchronisation times are
also updated.

Inclusive Gateways. The split rule applies when a token with zero time is avail-
able at the incoming flow. Since all outgoing branches are equipped with proba-
bilities, a function in charge of computing the subset of branches to be triggered
is invoked. For each one of the selected branches, a new token is added to the
scheduler. Regarding merge gateways, both BPMN 1.0 and 2.0 semantics are
supported in this research. In BPMN 2.0, merge inclusive gateways behave like
exclusive ones. The 1.0 version of the semantics is more involved [5], since the
merge rule for the inclusive gateway is executed when all the expected tokens
are available with zero time. This requires a global analysis. To check whether
all expected tokens have arrived, a backward traversal that explores the process
upstream and checks whether there are tokens on their way to that merge is
performed. In both cases, once the merge gateway is triggered, the incoming
tokens are removed, a new token is added to the scheduler for the outgoing flow,
and simulation information is updated with synchronisation times.

Loops and Unbalanced Workflows. The modelling of the BPMN execution seman-
tics using tokens and their circulation through the process structure supports
intricate constructs such as loops and unbalanced workflows. As far as loop-
ing behaviour is concerned, a token may circulate back to an already visited
flow without any additional treatment. Similarly, tokens can advance through
flows that are part of balanced or unbalanced gateways, independently of their
structure.
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3.3 Properties

Several kinds of properties or metrics can be computed, particularly timing and
resource-based properties. These properties are meaningful when executing mul-
tiple instances of a process that compete for the shared resources. As for tim-
ing properties, the approach presented in this paper allows the computation of
average execution times (AET) of a process, its variance (Var), and the aver-
age synchronisation time (AST) for merge gateways, representing the time that
elapse from the arrival of the first token through one of its incoming flows to its
activation. Synchronisation times make sense only for parallel and BPMN 1.0
inclusive gateways, since there is no waiting nor synchronisation time for the
other gateways.

As far as resource-based properties are concerned, which is the main focus in
this work, the following properties are computed:

– The global time of usage of all instances of each resource R (GTUR). E.g.,
when executing 10 instances of a process P , with an AET of 42, it is possible
that the two instances of a resource A are used for 56 time units and the
three instances of resource B for 60 time units.

– The expression GTU1
R denotes the average GTU of resource R (i.e., the GTU

per instance of resource R). Thus, although in the previous example GTUB

is greater than GTUA, GTU1
A is 28 and GTU1

B is 20.
– The average usage percentage UPR for a resource R over the global execution

time. E.g., continuing with the running example, on average, an instance of
the resource A is used 24% of the global execution time when executing 200
instances of a process P .

To compute these metrics, Maude rewriting capabilities are used to simulate
and extract analysis results on a given BPMN process. The simulation object
presented in Sect. 3.2 is used to accumulate information of synchronisation times,
task durations, and resource usages. At the end of all executions, these results are
used for computing the expected average times and resource usage percentages.
Since the analysed processes are assumed syntactically correct and processes that
may lead to non-terminating analysis are not considered (e.g., loops without end
events), the verification process always terminates. Indeed, all splits are prob-
abilistic, and time duration and probabilities assigned to the branches respect
specific assumptions (e.g., all probabilities are between 0 and 1, they sum up to
1 in exclusive branches, and times are positive).

Last but not least, if one can associate a cost (in euros for example) to each
kind of resource, we can compute the total cost of the simulation by using the
collected data on execution times and resource usage. We can even go farther by
computing the optimal allocation of resources. This is achieved by expressing this
computation as a multi-objective optimisation problem since we may not want to
reduce costs but also to reduce execution time for example. The solution to this
optimisation problem is computed by using heuristic-based search algorithms
such as gradient descent [26].
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3.4 Example

Let us illustrate this approach with the running example presented in Sect. 2.
Table 1 shows a few experiments consisting of 1,000 tokens with an inter-arrival
time computed with an exponential probability distribution with 2 as the param-
eter. For each row, there is a variation in the input in terms of the number of
replicas of the different resources. As a result, the table gives the total execution
time for executing 1,000 times the process, the average execution time, and the
total cost (assuming a cost per hour of 40, 30, 35, and 25 euros for each resource,
respectively).

Table 1. Experimental Results for the Delivery Process

Resources Total
execution
time

Average
execution
time

Total
costEmployee Car Driver Drone

Inst. Usage % Inst. Usage % Inst Usage % Inst. Usage %

1 99.11 1 72.63 1 72.63 1 34.48 7 063.00 2 794.26 918 190.00

2 99.18 2 69.85 2 69.85 2 35.92 3 528.92 904.02 917 519.74

3 81.42 2 90.37 2 90.37 1 84.09 2 865.94 463.75 788 133.61

4 85.24 3 84.42 3 84.42 2 58.45 2 053.10 131.00 831 508.77

4 86.75 4 57.88 4 57.88 4 33.04 2 017.26 100.40 1 048 976.52

First of all, we can observe a clear correlation between the number of
resources and the execution time/costs. The more resources, the shorter it takes
to execute once the process (or all processes), but the more resources, the higher
cost. Secondly, we can see that the critical resource is the employee since what-
ever is the number of replicas, this resource is always very busy (active more
than 80% of his time). In contrast, drones are less busy except if there is a single
drone and several replicas for the other resources. Finally, if we assume that we
both want to reduce the average execution time and the total cost with an equal
weight (0.5 and 0.5), the optimal resource allocation is 4, 3, 3, and 2 (before last
row in Table 1).

4 Dynamic Quantitative Analysis

In this section, we will show how an existing platform (Activiti [2] in this work)
can be instrumented to extract the required information from its database and
compute properties periodically during the process execution. We will also show
how we can develop dynamic resource allocation strategies for varying the num-
ber of resource replicas at runtime and thus impact the results of these properties.
Note that in this section, we do not have any restrictions on the BPMN syntax,
we just need BPMN processes to be executable. Moreover, there is no need to
have probabilities associated to split exclusive and inclusive gateways, since we
have real data-based conditions.
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4.1 Instrumentation

In this section, we use Activiti as BPMN platform. Activiti is an open-source
workflow engine written in Java that can execute business processes described in
BPMN 2.0. We first require monitoring techniques [4,13] for BPMN processes at
runtime. These techniques are useful because a process is usually not executed
only once. Instead, a process can be executed multiple times. Each execution of
the process is called an instance. An instance of the process can be in one of the
following states: initial means that the instance is ready to start (one token in the
start event), running means that the instance is currently executing and is not
yet completed, completed means that all tokens have reached end events. Tokens
are used to define the behaviour of a process. Similarly to the static approach, an
identifier is used to characterise a specific instance of process execution, and this
identifier is thus associated to all nodes (e.g., tasks) executed by this instance.

Monitoring techniques for BPMN executed using Activiti mostly aim at
analysing the information stored in a database, and extracting the information
required for computing the properties of interest (such as AET and resource
usage percentage). Figure 6 gives an overview of this data extraction. We first
need to retrieve the information regarding task execution and completion. This
is what we can see in Fig. 6 (top right, (a)). For each task, we also extract the cor-
responding process execution instance and the times of beginning and end. This
information is useful for determining which resources were in use and for what
amount of time. Second, we retrieve execution traces for each process instance as
shown in Fig. 6 (bottom right, (b)). An execution trace corresponds to a list of
tasks executed by this specific instance. The tasks are not stored with a specific
order in the database. Therefore, we have to order these tasks by using time
stamps, corresponding to the time at which each task is executed. These time
stamps are computed by the process execution engine, which relies on a global
clock. The execution trace corresponding to a specific instance can be computed
only when the instance is in its completed state.

Fig. 6. Runtime Monitoring of Multiple Executions of a BPMN Process
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4.2 Computation of Properties

Since new instances can execute at any time and possibly infinitely, the dynamic
approach requires extracting data and computing properties on time and
resources periodically. There are several possible strategies to choose the period.
It can be based on a fixed amount of time (e.g., every 10 min) or it can apply
when a certain number of process instances have been completed. These two
strategies can also be combined, e.g., we get data whenever 100 instances have
been completed or every hour if after one hour less than 100 instances have been
completed. The choice of one of these strategies may have a different impact on
the actual results. Note that the choice of this strategy is a parameter of the
approach. In the rest of this section, we rely on a time-based strategy.

When the period completes, the data extraction is triggered. Then, we extract
the required information from these data to compute the properties presented
in Sect. 3.3 on execution times and resource usage. As an example, to compute
the resource usage percentage per resource replica, we analyse the tasks executed
during the last period of time. For these tasks, we look at the resources associated
with each task and sum up the durations each resource was active during that
period. Then, we divide this total time by the number of replica and compute
a percentage out of these numbers by using the time of activity for each replica
out of the time of the period.

As we will see below, the results are represented using curves that show the
different property values (e.g., average execution time) along time.

4.3 Dynamic Resource Allocation

Several strategies can be defined for dynamically changing the number of repli-
cas for each resource. These strategies rely on the metrics computed before and
thus can vary in their choice and implementation. For instance, one strategy can
aim at reducing the average execution time whereas another one may maintain
the resource usage under a certain level, e.g., under 90%. We could also imple-
ment strategies that take several criteria into account at the same time, e.g.,
reduce process execution time while maintaining resource usage below a thresh-
old. Another parameter of the strategy is when to apply this change. A simple
solution is to apply it when we compute new values of the aforementioned prop-
erties. The strategy can rely on this fresh information to decide to change the
number of resource replicas. However, we could decide to apply changes more
or less often to avoid the classic oscillation problem (add one, remove one, add
one, remove one, etc.). As an example, one can decide to change the number
of replicas every three periods of time, every day, or when a certain number of
process instances complete (e.g., 100).

For illustration purposes, we will present an example of strategy in the rest
of this section. This strategy focuses on one specific property, namely the per-
centage of resource usage per replica. The strategy aims at maintaining this
percentage within a certain interval, for instance, [70%, 90%]. After completion
of a period of time, all properties are computed and the strategy then checks if
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the usage percentage for each resource is still included in this interval. If, for a
given resource, this percentage goes above the highest value (e.g., 90% in our
example), one replica of that resource is added. If this percentage goes below the
lowest value (e.g., 70% in our example), one replica of that resource is removed.
Note that we choose in this strategy to follow the same period of time as the
one used for the computation of properties.

4.4 Example

Let us focus again on the goods delivery example introduced in Sect. 2. The
only difference in terms of the input BPMN process is that here we do not need
to make explicit the probabilities of executing the split exclusive gateway. This
decision is taken based on internal data belonging to the (executable) BPMN
process. We use the same workload as in Sect. 3.4, that is, 1000 tokens with
exp(2) as inter-arrival time. There are additional parameters that are required
for the dynamic approach. We use as initial allocation of resource one replica for
each resource type. The targeted interval for resource usage is [70%, 90%]. The
period for updating the metrics is fixed to 10 units of time whereas the strategy
for dynamic resource update applies every 60 units of time.

In the rest of this section, we will show three different figures to give different
insights on the results of the multiple process execution. Figure 7 describes the
evolution of the number of replicas for each kind of resource. The employee
is particularly important because every execution of the process requires an
employee to collect goods and prepare parcels whereas the other resources are not
systematically used for every process execution. One can see that this execution
requires 2 or 3 employees to work properly. Cars and drivers take more time
than drones to deliver goods (10 units of times for cars and 5 units for drones),
therefore more replicas are required for allowing the delivery by car with driver.

Fig. 7. Goods Delivery Process: Evolution of the Number of Replicas

Figure 8 focuses on the usage percentage per replica for each type of resource.
It is worth reminding that the strategy used for these experiments aim at main-
taining the percentage in the interval [70%, 90%]. We can see that from the
beginning the usage percentage for employees is higher than 90% thus explain-
ing why several replicas of employees were added at the beginning in Fig. 7.
After the addition of these replicas for employee, the percentage remains lower.
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The usage percentage for drones is the lower of all resources. We can observe
important variations in all these percentages because we use a short period for
computing these numbers (10 units of time) and because the use of an exclusive
gateway for the delivery induces variations between the use of drones or cars.

Fig. 8. Goods Delivery Process: Resource Usage

Figure 9 shows the evolution of the average execution time. The curve shows
that this time tends to increase at the beginning, but at some point stabilises
(since new executions occur on a periodic basis) and remains around 40 units
of time. We can see peaks at some points of the execution corresponding to an
increase in the number of delivery by car, which takes more time than drones.
This increase in time can be correlated with the addition in Fig. 7 of additional
replicas of cars and drivers.

Fig. 9. Goods Delivery Process: Average Execution Time

5 Related Work

Several works on the analysis and provisioning of resources can be found in the
literature. Schömig and Rau [27] use coloured stochastic Petri nets to specify
and analyse business processes in the presence of dynamic routing, simultaneous
resource allocation, forking/joining of process-control threads, and priority-based
queuing. In their work, each resource is equipped with properties grouped in a
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role defining if the resource is eligible to perform a certain activity. Li et al. [20]
introduce multidimensional workflow nets to model and analyse resource avail-
ability and workload. Oliveira et al. [23] use generalised stochastic Petri nets
for correctness verification and performance evaluation of business processes. In
their work, an activity can be associated with multiple roles and the completion
of an activity can use a portion of the resources available for a role. They also
propose metrics for evaluating process performance such as: the minimum num-
ber of resources needed for a role in order to complete a process, the expected
number of activity instances when completing a process under the assumption
of sufficient resources, and the expected activity response time. Colored Petri
Nets are used in [22] for understanding how bounded resources can impact the
behaviour of a process. They introduce the notion of “flexible resource alloca-
tion” as a way to assign resources associated with a given role based on priori-
ties. In their approach, alternative strategies are used to better allocate a fixed
number of available resources. Havur et al. [15] study the problem of resource
allocation in business processes management systems where constraints can be
assigned to resources (e.g., time of availability) and have dependencies. Their
technique is based on the answer set programming formalism and is capable of
deriving optimal schedules. Sperl et al. [28] describe a stochastic method for
quantifying resource utilisation relative to structural properties of processes and
past executions.

In [29], a solution is presented to optimise resource allocation by focusing
on the structure of the process, and more precisely on dependencies between
resources and tasks. The approach then proposes a solution to adapt the struc-
ture of the business process to better fit the resources available in the enterprise.
The authors in [7] focus on the specification and verification of concurrently run-
ning processes, operating in time-critical scenarios and having assigned a limited
amount of resources. The authors propose to use a fragment of first-order logic
to capture process fragments along the timeline and to combine them in a sound
model, by observing constraints defined on both activity durations and resource
availability. In [25], a contribution to the field of business process simulation is
made by providing a new simulation engine, which supports advanced resource
specificities such as queuing mechanisms, resource dependencies, or simulation
parameters. A conceptual model supports these features and a prototype imple-
mentation of this conceptual model are proposed. Incorporating these features
also allows for more accurate simulation of the processes and obtaining more
relevant performance metrics. Finally, [16] presents a framework to integrate
optimised resource allocation in business processes by adding a new component
called resource manager. It is responsible for maintaining all relevant informa-
tion concerning the availability of resources and for allocating resources to a
process instance. The process designer can specify resource requirements within
the business process model through dedicated resource-allocation activities.

There are many tools supporting the design and management of business
processes (e.g., Activiti, Bonita, Camunda, or Signavio), of which a subset sup-
ports the analysis and optimisation of processes. For instance, this is the case of
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Signavio [1], which packs tools such as the Signavio Process Intelligence for pro-
cess optimisation. It automatically mines process models from currently running
systems and monitors those processes with the purpose of collecting data that
enables end-users to make decisions for process improvement. The proposal here
takes a different approach since the idea is to compare the possibility to make
the decision at design time or at runtime, with static or dynamic allocation of
resources.

This work is part of a long term project with the goal of developing different
tools for the analysis of BPMN processes. [18,19] present an approach transform-
ing BPMN into the input language of the CADP model checker, thus allowing
the automated verification of functional properties and the comparison of BPMN
processes. In [12], basic BPMN processes were specified. This work provides oper-
ations for the estimation of execution times, and uses model-checking techniques
to verify reachability problems and LTL properties. In [9], a model similar to
the current one was proposed and was used for stochastic analysis using the sta-
tistical model checker PVeStA [3]. In [10], Maude is used to model and analyse
the resource allocation of business processes. In that work, optimal allocation is
presented as a multi-objective optimisation problem, where response time and
resource usage are minimised. [11] proposes an automatic analysis technique to
evaluate and compare the execution time and resource occupancy of a busi-
ness process relative to a workload and a provisioning strategy. Four different
strategies were implemented and compared from an experimental perspective.
[14] presents an approach to perform probabilistic model checking of multiple
executions of a BPMN process (including time and resources) at runtime.

6 Concluding Remarks

In this paper, the focus is on business processes developed using the BPMN nota-
tion extended with a description of time and resources. Processes are executed
several times and those multiple instances compete for the shared resources. In
this context, several metrics can be computed, such as average execution time
or resource usage percentage. These metrics are helpful to optimise processes by,
for instance, increasing the usage of resources or reducing the average execution
time. Two different options to compute these metrics have been presented. The
first approach relies on off-line simulation techniques and assumes that the allo-
cation of resources is static (same number of resources). The second approach
applies at runtime, which requires the instrumentation of an existing platform
for executing BPMN processes. This latter approach is dynamic and the num-
ber of replicas can be updated for each resource during execution to adapt to
a change in the resource usage. Both approaches are fully automated and have
been applied to realistic processes.

The static approach is useful for a process that is under development and
thus can be refined before being effectively deployed. This approach thus allows
users to better understand the process and improve it in the early stage of its
development. The static approach does not permit adjusting the resources to
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the workload, but still corresponds to realistic scenarios. This is the case, for
instance, when the number of resources cannot be changed with simple or quick
fixes. Complementarily, the dynamic approach adjusts at runtime the number of
resources, resulting in a more stable resource usage in terms of occupancy per-
centages. However, this dynamic change is not always possible since there are
some specific kinds of resources (such as human beings) that cannot be immedi-
ately or automatically updated. Another difference of the dynamic approach is
that it applies to any executable BPMN (no restriction at the syntactic level),
whereas the static approach works for a subset of BPMN and also requires prob-
abilities for split exclusive and inclusive gateways.

The main perspective of this work is to investigate how AI techniques could
help to develop new allocation strategies based on prediction analytics. More
precisely, such techniques could be used to predict the resource usage in the
short future and the strategy would rely on these values in order to anticipate
the change in the number of resource replicas.
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094905-B-I00 (Spanish MINECO/FEDER). The third author was in part supported
by the ECOS-NORD project FACTS (C19M03).

References

1. Signavio (2019). https://www.signavio.com
2. Activiti: Open source business automation. Accessed Dec 2021
3. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and

quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
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