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Preface

This volume contains the formal proceedings of the 14th International Workshop on
Rewriting Logic and its Applications (WRLA 2022), held as a satellite event of the
European Joint Conferences on Theory and Practice of Software (ETAPS 2022) in
Munich, Germany, during April 2–3, 2022.

Rewriting logic is a natural model of computation and an expressive semantic
framework for concurrency, parallelism, communication, and interaction. It can be used
for specifying a wide range of systems and languages in various application fields. It
also has good properties as a metalogical framework for representing logics. Over the
years, several languages based on rewriting logic have been designed and implemented.
The aim of the workshop is to bring together researchers with a common interest in
rewriting logic and its applications and to give them the opportunity to present their
recent works, discuss future research directions, and exchange ideas.

The previousmeetings were held in Asilomar, USA (1996), Pont-a-Mousson, France
(1998), Kanazawa, Japan (2000), Pisa, Italy (2002), Barcelona, Spain (2004), Vienna,
Austria (2006), Budapest, Hungary (2008), Paphos, Cyprus (2010), Tallinn, Estonia
(2012), Grenoble, France (2014), Eindhoven, the Netherlands (2016), Thessaloniki,
Greece (2018), and online as a virtual event (2020).

This year, we received 13 submissions. Each was reviewed by at least three Program
Committee members. After extensive discussions, the Program Committee decided to
accept 11 papers for presentation at the workshop and nine papers for inclusion in
these proceedings. This volume also includes two invited papers by Gwen Salaün and
SebastianMödersheim, two invited tutorials by Santiago Escobar and Rubén Rubio, and
an invited experience report by Peter Csaba Ölveczky.

We sincerely thank all the authors of papers submitted to the workshop, and the
invited speakers for kindly accepting to contribute to WRLA 2022. We are grateful to
the members of the Program Committee and the subreviewers for their careful work in
the review process. We also thank the members of the WRLA steering committee for
their valuable suggestions. Finally, we express our gratitude to all members of the local
organization team of ETAPS 2022, whose work made the workshop possible.

June 2022 Kyungmin Bae
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From Static to Dynamic Analysis
and Allocation of Resources for BPMN

Processes

Francisco Durán1, Yliès Falcone2, Camilo Rocha3, Gwen Salaün2(B),
and Ahang Zuo2

1 ITIS Software, University of Málaga, Málaga, Spain
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France

gwen.salaun@inria.fr
3 Pontificia Universidad Javeriana, Cali, Colombia

Abstract. Business process optimisation is a strategic activity in organ-
isations because of its potential to increase profit margins and reduce
operational costs. One of the main challenges in this context is concerned
with the problem of optimising the allocation and sharing of resources.
In this work, processes are described using the BPMN notation extended
with an explicit description of execution time and resources associated
with tasks, and can be concurrently executed multiple times. First, a
simulation-based approach for computing certain metrics of interest, such
as average execution time or resource usage, is presented. This approach
applies off-line and is static in the sense that the number of resources does
not evolve over the time of the simulation. In a second step, an alternative
approach is presented, which works online, thus requiring the instrumen-
tation of an existing platform for retrieving information of interest during
the processes’ execution. This second approach is dynamic because the
number of resource replicas is updated over the time of the execution.
This paper aims at stressing pros and cons of both approaches, and at
showing how they complement each other.

1 Introduction

Business process optimisation is a strategic activity in organisations because of
its potential to increase profit margins and reduce operational costs. Optimisa-
tion is, however, a difficult task to be achieved manually since several parameters
should be taken into account (e.g., execution times, resources, costs, etc.). One
of the main challenges in this context is concerned with the problem of optimis-
ing the allocation and sharing of resources. Resource usage is crucial because
it directly impacts the time it takes to execute a process. Moreover, by asso-
ciating a certain cost to each resource, the total cost of executing a process a
certain number of times can be computed. Optimising resource usage reduces
the process execution time and the costs associated with its execution.

In this work, we assume that a description of a business process is given using
the BPMN [24] workflow-based modelling language. BPMN has been standard-
ised by the International Organization for Standardization (ISO). It was first
c© Springer Nature Switzerland AG 2022
K. Bae (Ed.): WRLA 2022, LNCS 13252, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-031-12441-9_1
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published in 2013 and since then it has become the de facto notation for devel-
oping business processes. The BPMN language defines the set of tasks involved
in a process and the order in which they should be executed. Beyond this descrip-
tion of the model, the time it takes to execute each task is also needed, as well
as an explicit description of the resources required for executing each task. This
extended model is precise enough for modelling both behavioural and quantita-
tive aspects of processes.

This paper presents two ways to analyse BPMN processes with time and
resources. Both techniques assume that the process is executed multiple times
and multiple concurrent executions of a process compete for the shared resources.
Such multiple executions correspond to realistic scenarios where a process is not
executed once but several times (one execution per client or user for instance).
Furthermore, both approaches also aim at computing some metrics of interest
such as average execution times, resource usage, and costs. The first approach
applies to design models, without the need for an implementation of the system
running on real resources. To compute the previously mentioned metrics, off-
line simulation techniques are used, assuming that the allocation of resources is
static (i.e., no update of the number of resources during the simulation). This
first approach relies on a specification of a subset of BPMN in rewriting logic [21].
This specification is executable in Maude [6], and the computation of metrics is
achieved by using Maude’s rewriting tools.

The second approach applies at runtime or online, and works by instrument-
ing an existing platform for executable BPMN (Activiti [2] in this work). In this
case, access to a database is used for storing information related to the execution
of the process. This information is particularly useful for computing the process
execution time, resource usage, and costs. This approach is also dynamic in the
sense that the number of replicas for each resource is not defined once and for all,
but can be updated by using the metrics computed during the process execution.
In particular, a strategy that relies on the resource usage values for dynamically
updating the number of replicas of each resource is presented.

The static approach applies to a model of the process, and additional infor-
mation is required such as the probability to execute exclusive branches. This
approach is useful for processes under development, or for potential changes that
need to be evaluated before being applied. The approach can help for instance to
simulate several scenarios and decide whether the number of required resources
needs to be adjusted before the deployment of the process in production. On the
other hand, the dynamic approach accepts as input an executable BPMN process
and provides strategies to update resources at execution time thus allowing a
certain stabilisation of the computed metrics over time (such as execution times
and resource usage). However, this dynamic change does not apply in all con-
texts since it is not systematically possible to dynamically update the number
of any kind of resources (such as human beings).

The organisation of the rest of this paper is as follows. Section 2 introduces
the BPMN notation used in this work. Section 3 overviews the static approach
for analysing resource usage. Section 4 surveys the main ideas of the dynamic
approach for the allocation of resources. Section 5 presents existing works on this
topic. Section 6 concludes by comparing both approaches.
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2 BPMN with Time and Resources

BPMN 2.0 (BPMN, as a shorthand, in the rest of this paper) was published as an
ISO/IEC standard [17] in 2013 and is nowadays extensively used for modelling
and developing business processes. In this paper, for the sake of simplicity, we
focus on activity diagrams including the BPMN constructs related to control-
flow modelling and behavioural aspects. Beyond those constructs, execution time
and resources are also associated with tasks, and probabilities are specified for
exclusive and inclusive split gateways. Figure 1 summarises some of the BPMN
constructs used in this work, with a focus on how time and resources are asso-
ciated with flows and tasks.

Fig. 1. Extended BPMN Syntax

Specifically, the node types event, task, and gateway, and the edge type
sequence flow are considered. Start and end events are used, respectively, to
initialise and terminate processes. A task represents an atomic activity that has
exactly one incoming and one outgoing flow. A sequence flow describes two nodes
executed one after the other in a specific execution order. A task and a flow may
have a duration or delay. The timing information associated with tasks and flows
is described as a literal value (a non-negative real number, possibly 0). Resources
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are explicitly defined at the task level. A task that requires resources can include,
as part of its specification, the name of the required resources. Thus, a task is
specified with an amount of time (its duration), and information on its required
resources. Then, once the resources required by a task are acquired, the task is
going to execute for the defined duration.

Gateways are used to control the divergence and convergence of the execution
flow. Three types of gateways are considered for the static analysis: exclusive,
inclusive, and parallel. Gateways with one incoming branch and multiple outgo-
ing branches are called splits, e.g., split inclusive gateway. Gateways with one
outgoing branch and multiple incoming branches are called merges, e.g., merge
parallel gateway. An exclusive gateway chooses one out of a set of mutually
exclusive alternative incoming or outgoing branches. For an inclusive gateway,
any positive number of branches among all its incoming or outgoing branches
may be taken (both BPMN 1.0 and 2.0 semantics for inclusive gateways are
supported). A parallel gateway synchronises concurrent flows for all its incom-
ing branches, and creates concurrent flows for all its outgoing branches.

In the static approach, data-based conditions for split gateways are modelled
using probabilities associated with outgoing flows of exclusive and inclusive split
gateways. The probabilities of the outgoing flows in an exclusive split must
sum up to 1, while each outgoing flow in an inclusive split can be equipped
with a probability between 0 and 1 without a restriction on their total sum.
We will see that only the static approach presented in Sect. 3 does need such
probabilities, whereas the dynamic approach presented in Sect. 4 requires an
executable BPMN process as input (with real data-based conditions). Processes
with looping behavior are supported, as well as unbalanced workflows.

Running Example. For illustration purposes, we present a simple example
of a process describing how clients can deliver goods via an external service
(a mail office for instance). This process is described in Fig. 2. First of all, an
employee collects the goods brought by a client. Then, in parallel, the client pays
for the delivery service and an employee prepares a parcel. The company can
deliver the parcel using a car or using a drone (depending on the distance for
example). Beyond the required resources appearing in the figure, we can also see
times (expressed as durations) associated with tasks. As an example, the average
duration for preparing a parcel is 5 units of time (e.g., 5 min). We also assume
that the probability of delivering by car or by drone is the same (0.5).

Fig. 2. Goods Delivery Process
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3 Static Quantitative Analysis

In this section, we summarise the approach presented in [10] for analysing BPMN
processes with resources. More precisely, we first introduce the specification of
BPMN (syntax and semantics) in Maude’s rewriting logic. Second, we present
the quantitative properties of interest focusing on timing and resource-based
properties. To compute these properties, we leverage Maude’s rewriting capabil-
ities to simulate and extract analysis results on a given BPMN process.

3.1 Process Description

In the Maude specification of BPMN, a process is represented as an object
with sets of flows and nodes as attributes. Nodes can be of five different types:
start, end, task, split, or merge. The representation of each of these types of
elements includes the necessary information. A task node involves an identifier,
a description, two flow identifiers (input and output), a stochastic function or a
value modelling its duration (0 if there is no duration), and a set of resources
required for its execution. A split node includes a node identifier, a gateway type
(exclusive, inclusive, or parallel), an input flow identifier, and a set of output
flow identifiers. A merge node includes a node identifier, a gateway type, a set of
input flow identifiers, and an output flow identifier. The representation of a flow
includes a probability distribution function corresponding to the probability of
executing that flow (1 by default).

3.2 Execution Semantics

The operational semantics of BPMN is defined using a rewrite theory, with
rewrite rules modeling how tokens evolve through a process. This rewrite theory
is executable, which allows us to simulate BPMN processes. In this specification,
each action is modeled as a rewrite rule. For instance, when a token arrives at a
parallel split gateway, the token corresponding to the incoming flow is removed,
and one token is added for each outgoing flow. Technically, rewrite rules operate
on systems composed of a process object and a simulation object.

Simulation Object. While the process object introduced in Sect. 3.1 represents
the BPMN process and does not change during an execution, the simulation
object keeps information on the execution of the process. It stores a collection of
tokens (in a scheduler, see below), a global time (gtime), and a set of resources.
It also keeps track of the quantities being measured during the analysis of a
process. Figure 3 presents the structure of the Simulation object.

Tokens. Tokens are used to represent the evolution of the workflow under exe-
cution. When a process instance is triggered, a token is added to the start node.
The tokens move through nodes and flows of the process. When a token meets a
split gateway (e.g., parallel gateway), several tokens are generated on outgoing
flows, depending on the type of split gateway. On the contrary, when multiple
tokens meet a merge gateway (e.g., inclusive gateway), they are merged into a
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< s : Simulation | tokens : ..., ---- scheduler
gtime : ..., ---- global time
resources : ..., ---- resource set
process-execs : ...., ---- execution times
sync-times : ..., ---- synchronisation times
task-times : ..., ---- task execution times
... >

Fig. 3. Representation of the Simulation Object

single token depending on the type of merge gateway. A token is represented
as a term token(TId, Id, T). Since several executions may happen simultaneously,
each execution has a unique identifier, and tokens are identified by the execution
instance TId they belong to, and the flow or node Id they are attached to. The
expression T represents a timer, of sort Time, modelling a delay on the token.
Once this timer becomes 0, the token may be consumed.

Scheduling. Tokens are stored in a scheduler implemented as a priority queue, so
that they are kept according to their due time. However, even with its timer set
to 0, the token at the front of this queue may be not enough to fire some action.
Consider, for example, a task that requires some resource that is not available
or a parallel merge for which some incoming flow is not yet active. To avoid
blocking situations, the scheduler is provided with a shifting mechanism, which
moves the first active token to the front of the scheduler in case the current head
cannot fire the corresponding action. This scheduler is similar to those used in
typical discrete event simulations.

Resources. Each resource is represented with an identifier, the number of avail-
able replicas (initially the total number), the total amount of time this resource
has been in use, and the intervals of time during which any replica of this resource
was used. These two last parameters are stored during the simulation, and are
particularly useful for analysis purposes. When a task requires several resources,
it atomically uses all of them at once, or waits for them to become available.

Workloads. Simulation-based analysis techniques are typically parameterized by
the workload that represents the way a system is used. They define the rate at
which new instances of a given process are executed. Currently, closed workloads
can be handled by specifying the number of executions and the rate at which
executions are started, that is, their inter-arrival time. The inter-arrival time is
specified as a stochastic expression.

Rewrite Rules for BPMN Constructs. Rewriting rules represent how tokens
evolve through the process and how nodes are executed, thus defining the exe-
cution semantics of BPMN. Each action supported by the system is modelled as
a rewrite rule. These rules are overviewed in the rest of this section to gather an
intuition on the formal semantics (see [8] for the complete specification).

Start/End Events. Figure 4 depicts the rule for the start event. When there is
a token in the execution TId in the start node NId with delay 0 (note the token
at the front of the scheduler in the Simulation object in line 5), then this rule
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1 crl [startProc] :
2 < PId : Process | nodes : (start(NId, FId), Nodes),
3 flows : (flow(FId, SE), Flows),
4 Atts >
5 < SId : Simulation | tokens : (token(TId, NId, 0) Tks), ... Atts1 >
6 < CId : Counter | counter : N >
7 => < PId : Process | nodes : (start(NId, FId), Nodes),
8 flows : (flow(FId, SE), Flows),
9 Atts >
10 < SId : Simulation | tokens : insert(Tks, token(TId, FId, T’)), ... Atts1 >
11 < CId : Counter | counter : N’ >
12 if {T’, N’} := eval(SE, N) .

Fig. 4. Start Event Processing

generates a new token on the outgoing flow of the selected node to initiate the
execution of a process instance (line 10). The insert function puts this token in the
scheduler and the eval function evaluates the stochastic expression SE specifying
the delay of the outgoing flow FId to be assigned to the new token. Details on
the initialisation of time stamps and recorded times for the initiated execution
have been replaced by ellipses. A termination rule, associated to stop events,
consumes tokens when they arrive at those events.

Tasks. A task execution is modelled with two rules. The first rule, the initTask

rule shown in Fig. 5, represents the task initiation, which is applied when a token
with zero time is available for the incoming flow (line 5). If all the resources
required by this task are available, which is checked with the allResourcesAvail-

able function (line 8), then a new token is generated with the task identifier
and the task duration (line 12). Otherwise, the scheduler’s token shifting mech-
anism is invoked (line 20). If available, all required resources are removed from
the set of resources, and the time those resources have been in use is updated
(grabResources&updateTime function, line 18). Since all auxiliary functions in the
right-hand side of the initTask rule are defined equationally, the checking and
grabbing of resources are performed atomically, without introducing any block-
ing issues. Note also that rules update the information on execution times, task
durations, etc. (see, e.g., the update of the task-tstamps attribute, lines 13–16).
This information is important for analysis purposes, as it will be seen in Sect. 3.3.

A second rule, which models task completion, is triggered when there is a
token for that task with zero time. In that case, the token is consumed, a new
one is generated for the outgoing flow, and all resources are released.

Exclusive Gateways. There are two rules for the exclusive gateways, namely, one
for the split and one for the merge. The rule for the split applies when a token
with zero time is available on its incoming flow. A uniformly sampled probability
distribution is used to choose the branch to be executed. The newly created
token is assigned with its run-to-completion time generated by evaluating the
stochastic expression associated with the chosen outgoing flow—this is actually
the case every time a new token is added for a flow. The exclusive merge gateway
is triggered when one of its incoming flows has a token with zero time. In that
case, a new token is generated, assigned to the outgoing flow, and added to the
scheduler.
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1 rl [initTask] :
2 < PId : Process |
3 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
4 < SId : Simulation |
5 tokens : (token(TId, FId1, 0) Tks),
6 task-tstamps : TTSs, gtime : T, resources : Rs, Atts1 >
7 < CId : Counter | counter : N >
8 => if allResourcesAvailable(RIds, Rs)
9 then < PId : Process |
10 nodes : (task(NId, TaskName, FId1, FId2, SE, RIds, SEI), Nodes), Atts >
11 < SId : Simulation |
12 tokens : insert(Tks, token(TId, NId, time(eval(SE, N)))),
13 task-tstamps : if TTSs[TId][NId] == undefined
14 then insert(TId, insert(NId, T, TTSs[TId]), TTSs)
15 else TTSs
16 fi, ---- for loops, stamps get overwritten
17 gtime : T,
18 resources : grabResources&updateTime(RIds, Rs, time(eval(SE, N)), T), Atts1 >
19 < CId : Counter | counter : int(eval(SE, N)) >
20 else ... ---- if necessary, the scheduler is updated
21 fi .

Fig. 5. Task Initiation Rule

Parallel Gateways. The parallel split gateway rule is triggered when a token
with zero time corresponding to the input flow is available. If so, the token is
consumed and one token is added to each of its outgoing flows. The merge rule
for the parallel gateway is executed when there is a token with zero time for
each incoming branch. In that case, these tokens are removed and a new token
is generated for the outgoing flow. In the merge rule, synchronisation times are
also updated.

Inclusive Gateways. The split rule applies when a token with zero time is avail-
able at the incoming flow. Since all outgoing branches are equipped with proba-
bilities, a function in charge of computing the subset of branches to be triggered
is invoked. For each one of the selected branches, a new token is added to the
scheduler. Regarding merge gateways, both BPMN 1.0 and 2.0 semantics are
supported in this research. In BPMN 2.0, merge inclusive gateways behave like
exclusive ones. The 1.0 version of the semantics is more involved [5], since the
merge rule for the inclusive gateway is executed when all the expected tokens
are available with zero time. This requires a global analysis. To check whether
all expected tokens have arrived, a backward traversal that explores the process
upstream and checks whether there are tokens on their way to that merge is
performed. In both cases, once the merge gateway is triggered, the incoming
tokens are removed, a new token is added to the scheduler for the outgoing flow,
and simulation information is updated with synchronisation times.

Loops and Unbalanced Workflows. The modelling of the BPMN execution seman-
tics using tokens and their circulation through the process structure supports
intricate constructs such as loops and unbalanced workflows. As far as loop-
ing behaviour is concerned, a token may circulate back to an already visited
flow without any additional treatment. Similarly, tokens can advance through
flows that are part of balanced or unbalanced gateways, independently of their
structure.
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3.3 Properties

Several kinds of properties or metrics can be computed, particularly timing and
resource-based properties. These properties are meaningful when executing mul-
tiple instances of a process that compete for the shared resources. As for tim-
ing properties, the approach presented in this paper allows the computation of
average execution times (AET) of a process, its variance (Var), and the aver-
age synchronisation time (AST) for merge gateways, representing the time that
elapse from the arrival of the first token through one of its incoming flows to its
activation. Synchronisation times make sense only for parallel and BPMN 1.0
inclusive gateways, since there is no waiting nor synchronisation time for the
other gateways.

As far as resource-based properties are concerned, which is the main focus in
this work, the following properties are computed:

– The global time of usage of all instances of each resource R (GTUR). E.g.,
when executing 10 instances of a process P , with an AET of 42, it is possible
that the two instances of a resource A are used for 56 time units and the
three instances of resource B for 60 time units.

– The expression GTU1
R denotes the average GTU of resource R (i.e., the GTU

per instance of resource R). Thus, although in the previous example GTUB

is greater than GTUA, GTU1
A is 28 and GTU1

B is 20.
– The average usage percentage UPR for a resource R over the global execution

time. E.g., continuing with the running example, on average, an instance of
the resource A is used 24% of the global execution time when executing 200
instances of a process P .

To compute these metrics, Maude rewriting capabilities are used to simulate
and extract analysis results on a given BPMN process. The simulation object
presented in Sect. 3.2 is used to accumulate information of synchronisation times,
task durations, and resource usages. At the end of all executions, these results are
used for computing the expected average times and resource usage percentages.
Since the analysed processes are assumed syntactically correct and processes that
may lead to non-terminating analysis are not considered (e.g., loops without end
events), the verification process always terminates. Indeed, all splits are prob-
abilistic, and time duration and probabilities assigned to the branches respect
specific assumptions (e.g., all probabilities are between 0 and 1, they sum up to
1 in exclusive branches, and times are positive).

Last but not least, if one can associate a cost (in euros for example) to each
kind of resource, we can compute the total cost of the simulation by using the
collected data on execution times and resource usage. We can even go farther by
computing the optimal allocation of resources. This is achieved by expressing this
computation as a multi-objective optimisation problem since we may not want to
reduce costs but also to reduce execution time for example. The solution to this
optimisation problem is computed by using heuristic-based search algorithms
such as gradient descent [26].
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3.4 Example

Let us illustrate this approach with the running example presented in Sect. 2.
Table 1 shows a few experiments consisting of 1,000 tokens with an inter-arrival
time computed with an exponential probability distribution with 2 as the param-
eter. For each row, there is a variation in the input in terms of the number of
replicas of the different resources. As a result, the table gives the total execution
time for executing 1,000 times the process, the average execution time, and the
total cost (assuming a cost per hour of 40, 30, 35, and 25 euros for each resource,
respectively).

Table 1. Experimental Results for the Delivery Process

Resources Total
execution
time

Average
execution
time

Total
costEmployee Car Driver Drone

Inst. Usage % Inst. Usage % Inst Usage % Inst. Usage %

1 99.11 1 72.63 1 72.63 1 34.48 7 063.00 2 794.26 918 190.00

2 99.18 2 69.85 2 69.85 2 35.92 3 528.92 904.02 917 519.74

3 81.42 2 90.37 2 90.37 1 84.09 2 865.94 463.75 788 133.61

4 85.24 3 84.42 3 84.42 2 58.45 2 053.10 131.00 831 508.77

4 86.75 4 57.88 4 57.88 4 33.04 2 017.26 100.40 1 048 976.52

First of all, we can observe a clear correlation between the number of
resources and the execution time/costs. The more resources, the shorter it takes
to execute once the process (or all processes), but the more resources, the higher
cost. Secondly, we can see that the critical resource is the employee since what-
ever is the number of replicas, this resource is always very busy (active more
than 80% of his time). In contrast, drones are less busy except if there is a single
drone and several replicas for the other resources. Finally, if we assume that we
both want to reduce the average execution time and the total cost with an equal
weight (0.5 and 0.5), the optimal resource allocation is 4, 3, 3, and 2 (before last
row in Table 1).

4 Dynamic Quantitative Analysis

In this section, we will show how an existing platform (Activiti [2] in this work)
can be instrumented to extract the required information from its database and
compute properties periodically during the process execution. We will also show
how we can develop dynamic resource allocation strategies for varying the num-
ber of resource replicas at runtime and thus impact the results of these properties.
Note that in this section, we do not have any restrictions on the BPMN syntax,
we just need BPMN processes to be executable. Moreover, there is no need to
have probabilities associated to split exclusive and inclusive gateways, since we
have real data-based conditions.
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4.1 Instrumentation

In this section, we use Activiti as BPMN platform. Activiti is an open-source
workflow engine written in Java that can execute business processes described in
BPMN 2.0. We first require monitoring techniques [4,13] for BPMN processes at
runtime. These techniques are useful because a process is usually not executed
only once. Instead, a process can be executed multiple times. Each execution of
the process is called an instance. An instance of the process can be in one of the
following states: initial means that the instance is ready to start (one token in the
start event), running means that the instance is currently executing and is not
yet completed, completed means that all tokens have reached end events. Tokens
are used to define the behaviour of a process. Similarly to the static approach, an
identifier is used to characterise a specific instance of process execution, and this
identifier is thus associated to all nodes (e.g., tasks) executed by this instance.

Monitoring techniques for BPMN executed using Activiti mostly aim at
analysing the information stored in a database, and extracting the information
required for computing the properties of interest (such as AET and resource
usage percentage). Figure 6 gives an overview of this data extraction. We first
need to retrieve the information regarding task execution and completion. This
is what we can see in Fig. 6 (top right, (a)). For each task, we also extract the cor-
responding process execution instance and the times of beginning and end. This
information is useful for determining which resources were in use and for what
amount of time. Second, we retrieve execution traces for each process instance as
shown in Fig. 6 (bottom right, (b)). An execution trace corresponds to a list of
tasks executed by this specific instance. The tasks are not stored with a specific
order in the database. Therefore, we have to order these tasks by using time
stamps, corresponding to the time at which each task is executed. These time
stamps are computed by the process execution engine, which relies on a global
clock. The execution trace corresponding to a specific instance can be computed
only when the instance is in its completed state.

Fig. 6. Runtime Monitoring of Multiple Executions of a BPMN Process
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4.2 Computation of Properties

Since new instances can execute at any time and possibly infinitely, the dynamic
approach requires extracting data and computing properties on time and
resources periodically. There are several possible strategies to choose the period.
It can be based on a fixed amount of time (e.g., every 10 min) or it can apply
when a certain number of process instances have been completed. These two
strategies can also be combined, e.g., we get data whenever 100 instances have
been completed or every hour if after one hour less than 100 instances have been
completed. The choice of one of these strategies may have a different impact on
the actual results. Note that the choice of this strategy is a parameter of the
approach. In the rest of this section, we rely on a time-based strategy.

When the period completes, the data extraction is triggered. Then, we extract
the required information from these data to compute the properties presented
in Sect. 3.3 on execution times and resource usage. As an example, to compute
the resource usage percentage per resource replica, we analyse the tasks executed
during the last period of time. For these tasks, we look at the resources associated
with each task and sum up the durations each resource was active during that
period. Then, we divide this total time by the number of replica and compute
a percentage out of these numbers by using the time of activity for each replica
out of the time of the period.

As we will see below, the results are represented using curves that show the
different property values (e.g., average execution time) along time.

4.3 Dynamic Resource Allocation

Several strategies can be defined for dynamically changing the number of repli-
cas for each resource. These strategies rely on the metrics computed before and
thus can vary in their choice and implementation. For instance, one strategy can
aim at reducing the average execution time whereas another one may maintain
the resource usage under a certain level, e.g., under 90%. We could also imple-
ment strategies that take several criteria into account at the same time, e.g.,
reduce process execution time while maintaining resource usage below a thresh-
old. Another parameter of the strategy is when to apply this change. A simple
solution is to apply it when we compute new values of the aforementioned prop-
erties. The strategy can rely on this fresh information to decide to change the
number of resource replicas. However, we could decide to apply changes more
or less often to avoid the classic oscillation problem (add one, remove one, add
one, remove one, etc.). As an example, one can decide to change the number
of replicas every three periods of time, every day, or when a certain number of
process instances complete (e.g., 100).

For illustration purposes, we will present an example of strategy in the rest
of this section. This strategy focuses on one specific property, namely the per-
centage of resource usage per replica. The strategy aims at maintaining this
percentage within a certain interval, for instance, [70%, 90%]. After completion
of a period of time, all properties are computed and the strategy then checks if
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the usage percentage for each resource is still included in this interval. If, for a
given resource, this percentage goes above the highest value (e.g., 90% in our
example), one replica of that resource is added. If this percentage goes below the
lowest value (e.g., 70% in our example), one replica of that resource is removed.
Note that we choose in this strategy to follow the same period of time as the
one used for the computation of properties.

4.4 Example

Let us focus again on the goods delivery example introduced in Sect. 2. The
only difference in terms of the input BPMN process is that here we do not need
to make explicit the probabilities of executing the split exclusive gateway. This
decision is taken based on internal data belonging to the (executable) BPMN
process. We use the same workload as in Sect. 3.4, that is, 1000 tokens with
exp(2) as inter-arrival time. There are additional parameters that are required
for the dynamic approach. We use as initial allocation of resource one replica for
each resource type. The targeted interval for resource usage is [70%, 90%]. The
period for updating the metrics is fixed to 10 units of time whereas the strategy
for dynamic resource update applies every 60 units of time.

In the rest of this section, we will show three different figures to give different
insights on the results of the multiple process execution. Figure 7 describes the
evolution of the number of replicas for each kind of resource. The employee
is particularly important because every execution of the process requires an
employee to collect goods and prepare parcels whereas the other resources are not
systematically used for every process execution. One can see that this execution
requires 2 or 3 employees to work properly. Cars and drivers take more time
than drones to deliver goods (10 units of times for cars and 5 units for drones),
therefore more replicas are required for allowing the delivery by car with driver.

Fig. 7. Goods Delivery Process: Evolution of the Number of Replicas

Figure 8 focuses on the usage percentage per replica for each type of resource.
It is worth reminding that the strategy used for these experiments aim at main-
taining the percentage in the interval [70%, 90%]. We can see that from the
beginning the usage percentage for employees is higher than 90% thus explain-
ing why several replicas of employees were added at the beginning in Fig. 7.
After the addition of these replicas for employee, the percentage remains lower.
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The usage percentage for drones is the lower of all resources. We can observe
important variations in all these percentages because we use a short period for
computing these numbers (10 units of time) and because the use of an exclusive
gateway for the delivery induces variations between the use of drones or cars.

Fig. 8. Goods Delivery Process: Resource Usage

Figure 9 shows the evolution of the average execution time. The curve shows
that this time tends to increase at the beginning, but at some point stabilises
(since new executions occur on a periodic basis) and remains around 40 units
of time. We can see peaks at some points of the execution corresponding to an
increase in the number of delivery by car, which takes more time than drones.
This increase in time can be correlated with the addition in Fig. 7 of additional
replicas of cars and drivers.

Fig. 9. Goods Delivery Process: Average Execution Time

5 Related Work

Several works on the analysis and provisioning of resources can be found in the
literature. Schömig and Rau [27] use coloured stochastic Petri nets to specify
and analyse business processes in the presence of dynamic routing, simultaneous
resource allocation, forking/joining of process-control threads, and priority-based
queuing. In their work, each resource is equipped with properties grouped in a
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role defining if the resource is eligible to perform a certain activity. Li et al. [20]
introduce multidimensional workflow nets to model and analyse resource avail-
ability and workload. Oliveira et al. [23] use generalised stochastic Petri nets
for correctness verification and performance evaluation of business processes. In
their work, an activity can be associated with multiple roles and the completion
of an activity can use a portion of the resources available for a role. They also
propose metrics for evaluating process performance such as: the minimum num-
ber of resources needed for a role in order to complete a process, the expected
number of activity instances when completing a process under the assumption
of sufficient resources, and the expected activity response time. Colored Petri
Nets are used in [22] for understanding how bounded resources can impact the
behaviour of a process. They introduce the notion of “flexible resource alloca-
tion” as a way to assign resources associated with a given role based on priori-
ties. In their approach, alternative strategies are used to better allocate a fixed
number of available resources. Havur et al. [15] study the problem of resource
allocation in business processes management systems where constraints can be
assigned to resources (e.g., time of availability) and have dependencies. Their
technique is based on the answer set programming formalism and is capable of
deriving optimal schedules. Sperl et al. [28] describe a stochastic method for
quantifying resource utilisation relative to structural properties of processes and
past executions.

In [29], a solution is presented to optimise resource allocation by focusing
on the structure of the process, and more precisely on dependencies between
resources and tasks. The approach then proposes a solution to adapt the struc-
ture of the business process to better fit the resources available in the enterprise.
The authors in [7] focus on the specification and verification of concurrently run-
ning processes, operating in time-critical scenarios and having assigned a limited
amount of resources. The authors propose to use a fragment of first-order logic
to capture process fragments along the timeline and to combine them in a sound
model, by observing constraints defined on both activity durations and resource
availability. In [25], a contribution to the field of business process simulation is
made by providing a new simulation engine, which supports advanced resource
specificities such as queuing mechanisms, resource dependencies, or simulation
parameters. A conceptual model supports these features and a prototype imple-
mentation of this conceptual model are proposed. Incorporating these features
also allows for more accurate simulation of the processes and obtaining more
relevant performance metrics. Finally, [16] presents a framework to integrate
optimised resource allocation in business processes by adding a new component
called resource manager. It is responsible for maintaining all relevant informa-
tion concerning the availability of resources and for allocating resources to a
process instance. The process designer can specify resource requirements within
the business process model through dedicated resource-allocation activities.

There are many tools supporting the design and management of business
processes (e.g., Activiti, Bonita, Camunda, or Signavio), of which a subset sup-
ports the analysis and optimisation of processes. For instance, this is the case of
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Signavio [1], which packs tools such as the Signavio Process Intelligence for pro-
cess optimisation. It automatically mines process models from currently running
systems and monitors those processes with the purpose of collecting data that
enables end-users to make decisions for process improvement. The proposal here
takes a different approach since the idea is to compare the possibility to make
the decision at design time or at runtime, with static or dynamic allocation of
resources.

This work is part of a long term project with the goal of developing different
tools for the analysis of BPMN processes. [18,19] present an approach transform-
ing BPMN into the input language of the CADP model checker, thus allowing
the automated verification of functional properties and the comparison of BPMN
processes. In [12], basic BPMN processes were specified. This work provides oper-
ations for the estimation of execution times, and uses model-checking techniques
to verify reachability problems and LTL properties. In [9], a model similar to
the current one was proposed and was used for stochastic analysis using the sta-
tistical model checker PVeStA [3]. In [10], Maude is used to model and analyse
the resource allocation of business processes. In that work, optimal allocation is
presented as a multi-objective optimisation problem, where response time and
resource usage are minimised. [11] proposes an automatic analysis technique to
evaluate and compare the execution time and resource occupancy of a busi-
ness process relative to a workload and a provisioning strategy. Four different
strategies were implemented and compared from an experimental perspective.
[14] presents an approach to perform probabilistic model checking of multiple
executions of a BPMN process (including time and resources) at runtime.

6 Concluding Remarks

In this paper, the focus is on business processes developed using the BPMN nota-
tion extended with a description of time and resources. Processes are executed
several times and those multiple instances compete for the shared resources. In
this context, several metrics can be computed, such as average execution time
or resource usage percentage. These metrics are helpful to optimise processes by,
for instance, increasing the usage of resources or reducing the average execution
time. Two different options to compute these metrics have been presented. The
first approach relies on off-line simulation techniques and assumes that the allo-
cation of resources is static (same number of resources). The second approach
applies at runtime, which requires the instrumentation of an existing platform
for executing BPMN processes. This latter approach is dynamic and the num-
ber of replicas can be updated for each resource during execution to adapt to
a change in the resource usage. Both approaches are fully automated and have
been applied to realistic processes.

The static approach is useful for a process that is under development and
thus can be refined before being effectively deployed. This approach thus allows
users to better understand the process and improve it in the early stage of its
development. The static approach does not permit adjusting the resources to
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the workload, but still corresponds to realistic scenarios. This is the case, for
instance, when the number of resources cannot be changed with simple or quick
fixes. Complementarily, the dynamic approach adjusts at runtime the number of
resources, resulting in a more stable resource usage in terms of occupancy per-
centages. However, this dynamic change is not always possible since there are
some specific kinds of resources (such as human beings) that cannot be immedi-
ately or automatically updated. Another difference of the dynamic approach is
that it applies to any executable BPMN (no restriction at the syntactic level),
whereas the static approach works for a subset of BPMN and also requires prob-
abilities for split exclusive and inclusive gateways.

The main perspective of this work is to investigate how AI techniques could
help to develop new allocation strategies based on prediction analytics. More
precisely, such techniques could be used to predict the resource usage in the
short future and the strategy would rely on these values in order to anticipate
the change in the number of resource replicas.
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Abstract. This invited paper extends on the invited talk of the same
title held at WRLA 2022. It highlights, summarizes and connects the
research works on (α, β)-privacy, an approach to the verification of pri-
vacy properties of security protocols. While the de-facto standard is to
express privacy as the trace equivalence of two processes, (α, β)-privacy
goes a radically different way to formulate privacy a reachability problem,
where every state is characterized by two formulae α and β. α formal-
izes all the information that has been deliberately given to the intruder.
β formalizes what the intruder actually has found out by observing mes-
sages, interacting with other agents, and the knowledge of the protocol.
(α, β)-privacy means that in no reachable state β allows to derive more
than α. We describe research papers that define (α, β)-privacy for a fixed
state; the application to vote secrecy and receipt-freeness; and finally a
rewriting-based definition of (α, β)-privacy for a distributed system.

1 Introduction

Privacy is important: you may not feel free to read any book you want, if your
choice of books can be observed by others. In the same way, the privacy of voting
is essential for the democracy. Another example is the vast variety of cards that
can communicate with card readers: an attacker (passive or even active) who
can link several uses of the same card is able to perform mass surveillance. In
fact, vote privacy and unlinkability for RFID protocols are prime examples of
privacy properties of security protocols.

The de-facto standard is to express privacy as the trace equivalence of two
processes (see [8] for a survey): intuitively, from any interaction of sending and
receiving messages, the intruder cannot tell which of the two processes they are
interacting with (we use the gender-neutral they for the intruder). Unlinkability
in RFID protocols, for instance, can be specified as the equivalence between the
scenario where any number of tags perform one session each, and the scenario
where the same tag performs every session. Vote secrecy in a voting protocol
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can for instance be specified by two scenarios that differ from each other only
by swapping the votes of two honest voters.

This way of specifying privacy goals is quite technical and not very declara-
tive. For instance, one may wonder whether slightly different scenarios could be
distinguishable to the intruder and indeed break what we intuitively wanted to
achieve. This is an even bigger problem in more complex properties like receipt-
freeness of voting protocols, i.e., the goal that a bribed1 voter cannot prove to
the intruder how they voted.

(α, β)-privacy provides an alternative way of specifying privacy goals that is
in many cases more declarative. Given a fixed state of the system, we specify two
formulae α and β in Herbrand logic [12], a variant of first-order logic, as explained
below. α formalizes all the information that has been deliberately released, i.e.,
that the intruder may know. β formalizes what the intruder actually has found
out by observing messages, interacting with other agents, and their knowledge of
the protocol. Our privacy goal is, roughly speaking, that all relevant derivations
the intruder can make from β are already entailed by α.

For instance, one possible formalization of unlinkability in (α, β)-privacy has
in every state a formula α consisting of conjuncts Ti ∈ Tags. Here, Tags is the
set of RFID tags, and each Ti is a distinct free variable of α representing the tag
that performed the i-th transaction. Thus, α simply specifies that the intruder
must not find out more about the tags than the trivial fact that they are tags,
in particular the intruder must not be able to tell whether Ti = Tj for any i �= j.

Furthermore, in a possible formalization of vote privacy, α in each state has
just a free variable vi for every cast vote and the information that vi ∈ {0, 1}
(if it is a binary vote). In the state after the voting has finished and ballots
have been tallied, α additionally tells the sum of the vi. This specifies that the
intruder must not learn more about the votes than their sum—the published
election result. In fact, it turns out that this is in some sense equivalent to the
vote swap formulation mentioned above. The more declarative formulation can
thus provide a justification of an existing notion. In contrast to vote swap, the
(α, β)-privacy approach works also for other voting systems where voters can
give a list of preferences for instance. Finally in (α, β)-privacy, receipt-freeness
can be specified as the same goal as vote privacy, just giving as part of β more
information to the intruder about a voter they bribed.

For what concerns β, the most common case will be that it contains a list of
messages that the intruder has observed. While such a message may contain an
encrypted vote vi that the intruder cannot see, they may know the structure of
that message. This gives rise to the concept of a message-analysis problem: can
the intruder perform any experiment on their knowledge that would rule out a
model of α, e.g., showing that two particular votes must be the same. We show
that sometimes this allows for very intuitive manual proofs of privacy when there
is a simple construction to extend an arbitrary model of α to a model of β.

1 There may be a variety of reasons that a voter may try to prove how they voted,
e.g., peer pressure, for simplicity we just say “bribed” in all cases.
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Up till this point, we are only looking at a single state. This leaves aside
many questions of the interaction between the intruder and honest agents. We
give a model of honest agents as sets of transactions, where a transaction models
a small process that is atomic (and contains no repetitions). A transaction may
contain a condition and consequently go into different branches. This gives rise
to a generalization of the message-analysis problem, since the intruder may not a
priori know which branch was taken, so there may be several viable candidates for
the structure of a given message. Vice-versa, if the intruder can establish which
structure the message actually has, they may learn the value of the condition
and thus possibly something about the variables in α. This generalization of the
(α, β)-privacy approach to transition systems is defined using a set of rewrite
rules that symbolically evaluate a given transaction and contrast it with the
observations of the intruder. For example, if in one branch no message is sent,
but the intruder observes a message, then the respective branch is also excluded.

There are two reasons why this paper is called “Rewriting Privacy”: First,
it provides an alternative approach that is more declarative than existing ones;
it can even serve as a justification for the more technical formulation of pri-
vacy goals in previous approaches. This declarativity can also be beneficial
for automation, since we can treat privacy as a reachability problem (rather
than a bi-similarity problem) without restrictions like those that come with diff-
equivalence (cf. Sect. 5). Second, the definition of (α, β)-privacy is very closely
related to term rewriting, as it is based on term algebraic models and Herbrand
logic. Also state transition involve a symbolic execution by the intruder, which
is formalized using rewrite rules.

This paper highlights, summarizes, and connects material from the following
publications and is organized in sections as follows:

– Section two introduces (α, β)-privacy for a fixed state and the message analy-
sis problem. This is based on the article “Mödersheim, S., Viganò, L.: Alpha-
beta privacy. ACM Trans. Priv. Secur. 22(1), 1–35 (2019)” [17].

– Section three discusses the use in voting privacy and receipt freeness. This
is based on the paper “Gondron, S., Mödersheim, S.: Formalizing and Prov-
ing Privacy Properties of Voting Protocols Using Alpha-Beta Privacy. In:
ESORICS 2019. LNCS 11735 (2019)” [13].

– Section four gives the definition of a transition system based on rewrite rules.
This is based on the technical report “Gondron, S., Mödersheim, S., Viganò,
L.: Privacy as reachability (extended version). Tech. rep., DTU (2021)” [14]
available at https://people.compute.dtu.dk/samo/abg.pdf.

– Section five gives conclusions and outlook.

2 Alpha-Beta Privacy for a Fixed State

The inspiration to (α, β)-privacy came from zero-knowledge proofs, i.e., small
protocols between a prover and a verifier that should convince the verifier of
a certain statement, e.g., “Alice is over 18”. This statement being proved, is
definitely revealed to the verifier. The zero-knowledge property means that the

https://people.compute.dtu.dk/samo/abg.pdf
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α1 β1 α2 β2

α0 β0 α3 β3

α4 β4 . . .

Fig. 1. Illustration of the state space.

verifier (or others) should not be able to learn anything else from the zero-
knowledge proof—besides the proved statement. For instance they should not
be able to determine whether or not “Alice is over 65”. However, they can make
inferences from what was proved (and from whatever they already know), for
instance “Alice is over 15”.

(α, β)-privacy is an approach rooted in logic: we want to model an intruder
who can reason about their observations such as received messages and combine
it with their knowledge of the protocol. To that end, we use as a logical framework
Herbrand logic [12]: we model the intruder knowledge as formulae in that logic,
and we consider what the intruder can logically deduce from this knowledge.

Herbrand Logic is a variant of First-Order Logic FOL. The difference to FOL
is that instead of an arbitrary universe, we take the Herbrand universe—the
set of terms generated by the function symbols. For instance, using as function
symbols the constant z and the unary function s, we get a universe isomorphic
to the natural numbers. Herbrand logic is thus very expressive (it can formal-
ize arithmetic), but the actual reason for using it is to be close to the term
rewriting-based models of messages we have: this allows us to represent crypto-
graphic operations with (“free”) function symbols as standard in most black-box
cryptography models. As it is standard, we define the semantics as a model rela-
tion I |= φ between a formula φ and an interpretation I (mapping variables to
the universe, and n-ary relation symbols to a set of n-tuples of the universe).

Since relation symbols in Herbrand logic are interpreted, we can use them
to simulate also interpreted function symbols [12]. We thus can introduce inter-
preted functions as syntactic sugar, and for distinction with normal uninter-
preted functions, we write those functions with square brackets like concr [l].

2.1 The State Space

The general idea is that we model a world of reachable states and each reachable
states contains a pair αi and βi of Herbrand logic formulae that model the
intruder knowledge, as sketched in Fig. 1. Here, αi is the information that has
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been released so far (similar to the proved statements in zero-knowledge proofs)
and βi are the observations that the intruder has made so far.

Alphabets. Let Σ be the alphabet of function and relation symbols used in a
specification. In (α, β)-privacy we identify a subset Σ0 ⊂ Σ that represents the
high-level vocabulary as distinguished from the technical vocabulary Σ \ Σ0. For
instance, in a voting protocol, Σ0 shall contain everything we need to talk about
votes, voters, and candidates, and the rest of Σ contains cryptographic operators
and everything needed in the concrete voting protocol.

Now α shall always be a formula with symbols only in Σ0, i.e., talking about
high-level information (e.g., what votes have been cast and what the sum of the
votes is), while β can be over they entire Σ. We can then define what (α, β)-
privacy means:

Definition 1 ((α, β)-privacy). Given a formula α over Σ0 and a formula β
over Σ. We say (α, β)-privacy holds iff every model of α is consistent with β.

Intuitively that means that from β the intruder does not learn anything (except
“technical” stuff in Σ \ Σ0) that is not implied by α already.

2.2 Example

To model a binary voting protocol, we may use an interpreted function x[·] ∈ Σ0

to map voters (for simplicity say 1, 2, 3...) to their votes in {0, 1}. A reachable
state in the protocol could be that three votes x[1], x[2], x[3] have been cast and
the result is published; let the concrete result be one vote for yes. The formula
α in this state is then:

α ≡ x[1], x[2], x[3] ∈ {0, 1} ∧ x[1] + x[2] + x[3] = 1

The models of α are thus:

Model x[1] x[2] x[3]
I1 1 0 0
I2 0 1 0
I3 0 0 1

These three models represent the three possible worlds that the intruder can
imagine in which α is true. One of the models is the reality, and the intruder
usually does not know which one. Indeed privacy now means that the intruder
cannot exclude any of the models by reasoning in β.

For β we need to specialize to a particular voting protocol and we use the
old and simple but very instructive example of FOO’92 [11]. Here, the cast votes
are published on a bulletin board, and as a first approximation let us forget
about the cryptography and model that the raw votes are published in some
permutation, which we model as an interpreted function π[·] ∈ Σ \ Σ0. Let us
have as the β in the reached state the following bulletin board:

β ≡ x[π[1]] = 1 ∧ x[π[2]] = 0 ∧ x[π[3]] = 0 ∧ π is a permutation on {1, 2, 3}
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I1 I2 I3

x[1] x[2] x[3] x[1] x[2] x[3] x[1] x[2] x[3]

1 0 0 0 1 0 0 0 1

1 0 0 1 0 0 1 0 0

x[π[1]] x[π[2]] x[π[3]] x[π[1]] x[π[2]] x[π[3]] x[π[1]] x[π[2]] x[π[3]]

Fig. 2. For each model of α there is a suitable interpretation of the permutation π,
indicated by the arrows.

Now it is easy to see that (α, β)-privacy holds in this state: any model of α
can be extended to a model of β using a suitable interpretation of π as depicted
by the arrows in Fig. 2.

In fact, this is an example of how easy a privacy proof in (α, β)-privacy can
sometimes be: we just need to find a simple argument why every model of α is
compatible with β, i.e., how the intruder could explain all their observations for
every model of α. Let us conclude the example with an additional twist: suppose
for some security bug the intruder can actually derive that voters 1 and 2 have
voted differently (let us we write .= for equality in Herbrand logic formulae):

β |= x[1] � .= x[2]

This would in fact mean a violation of (α, β)-privacy, because model I3 above
cannot be extended to a model of β. Note that the intruder still cannot tell
whether I1 or I2 is the reality, but they have found out strictly more than we
have allowed by α.

2.3 Message Analysis Problems

We want to model algebraic properties of cryptographic operators like

dscrypt(scrypt(k,m),m) = m and vscrypt(k, scrypt(k,m)) = true

expressing that symmetric encryption (scrypt) and decryption (dscrypt) cancel
each other out, and that one can tell if the decryption was correct (vscrypt).
To model this, we simply take as the Herbrand universe the quotient algebra
of the term algebra by the algebraic identities. Thus, two terms are equal iff
that is a consequence of the given algebraic properties. For instance, let h be
another function symbol modeling a hash function. Then h(m) and h(m′) are
interpreted differently unless m = m′. Thus hash functions in our model (and
in most black-box cryptography models) are collision-free (even though they are
not in reality). We will use generally h for public one-way functions, and we may
in some examples use it as a unary and in some as a binary function.
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Frames and Recipes. Frames are a common concept for modeling intruder knowl-
edge. Rather than just an unordered set of messages as in the original Dolev-Yao
model, a frame gives every item in the set a label. For instance, let the interpreted
function concr [·] be the following mapping from labels l1, . . . , l3 to labels:

concr
l1 scrypt(k1, r1, k2)
l2 k1
l3 scrypt(h(k1, k2), r2, secret)

The use of labels allows us to speak about recipes which are terms built from
only labels and cryptographic operators. When we apply a frame to a recipe, we
simply use the frame like a substitution that substitutes each label of the recipe
with the corresponding term of the frame, for instance:

concr [dscrypt(l2, l1)] = k2

concr [dscrypt(h(l2, dscrypt(l2, l1)), l3)] = secret

It is straightforward to define the behavior of such a frame concr [·] by a formula
in Herbrand logic.

Another standard concept is that of static equivalence which says whether
the intruder is unable to distinguish between two frames: they cannot make an
experiment by building two recipes r1 and r2 that yield the same term in one
frame, and a different term in the other frame:

Definition 2 (Static Equivalence). Two frames concr1 and concr2 are called
statically equivalent, written concr1 ∼ concr2, iff for all recipes r1, r2:

concr1[r1] = concr1[r2] iff concr2[r1] = concr2[r2]

Also this notion is straightforward to formalize in Herbrand logic.

Structural Knowledge. In contrast to trace equivalence approaches, (α, β)-
privacy has only one “reality” in each state with one intruder knowledge (the
messages actually observed), and thus never has two alternative “intruder knowl-
edges” to compare with static equivalence. However, we model, and this is one
of the crucial ideas of (α, β)-privacy, that the intruder knows something about
the structure of the messages in their knowledge. This structural knowledge can
be characterized similarly to the concrete intruder knowledge concr [·] as another
frame, called struct [·] that has the same labels but the terms may contain vari-
ables.

For instance, consider the following state of a hypothetical protocol, and have
α ≡ x ∈ {a, b, c} (where a, b, c are constants the intruder knows initially) and
the intruder has received the message h(a). The intruder cannot directly see a,
but knows that the protocol message is h(x) for whatever x is:
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struct concr
l1 a a
l2 b b
l3 c c
l4 h(x) h(a)

In fact, we shall always have that concr is an instance of struct , namely
filling in for every variable the value that it really has (here a for x). More
formally, let I be the model of α that represents what really happened, then
concr = I(struct).

Since h is a public function, the intruder can now make an experiment:
namely whether h(l1) = l4. This succeeds, and the intruder thus learns that
x = a. This corresponds of course to a guessing attack of the intruder. The sim-
ple way to formalize this and similar reasoning in general is to include in β the
information concr ∼ struct : since concr = I(struct), the intruder can rule out
any model I ′ that allows them to distinguish between concr and struct . Note
that by making concr ∼ struct part of β, we do not state that these two frames
are statically equivalent (in general they are not, due to the variables) but rather
that under every model of β they are statically equivalent. In the above example
we have the experiment h(l1) vs l4 which gives the same in struct iff x = a and
thus excludes the other models of α.

If we modify the example by including an unknown nonce n into the hash:

struct concr
l1 a a
l2 b b
l3 c c
l4 h(n, x) h(n, a)

then (α, β)-privacy actually holds: there is no experiment that allows one to
exclude any of the models of α. Roughly speaking, this is because the intruder
has no way to re-construct the term of l4, not knowing the nonce.

Suppose now there are several runs of the protocol, and we have

α ≡ x1 ∈ {a, b, c} ∧ x2 ∈ {a, b, c}

and the protocol (unwisely) uses the same nonce n twice:

β ≡ struct concr
l1 a a
l2 b b
l3 c c
l4 h(n, x1) h(n, a)
l5 h(n, x2) h(n, b)

The simple experiment to compare l4 and l5 reveals whether x1 = x2, violating
(α, β)-privacy. Using two distinct nonces instead prevents the privacy breach,
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roughly speaking, because the intruder cannot re-construct the messages of l4 or
l5 (not knowing the nonces) and also comparing them does not help (they are
already different because of the distinct nonces).

Thus, we define the message analysis problem as follows:

Definition 3 (Message Analysis Problem). Given a formula α, a model
I |= α (the reality), and a frame struct such that all variables in struct occur
freely in α. Let concr = I(struct) be the concrete frame resulting from instan-
tiating struct with the real values, then we call the message analysis problem
induced by α, I and struct the following formula β:

β = α ∧ φconcr ∧ φstruct ∧ concr ∼ struct

where φconcr and φstruct are formulae formalizing the two said frames.

3 Applications in Vote Privacy

We now illustrate how (α, β)-privacy can be practically used for verifying a
simple voting protocol. This also illustrates some general properties of (α, β)-
privacy like stability under background knowledge. As the concrete protocol we
use the already mentioned protocol FOO’92. Our precise formalization is found
in [13] and it this was inspired by the first formalization in [15].

For this protocol we need the following operators and properties:

getMsg(sign(priv(K),M)) = M vsign(pub(K), sign(priv(K),M)) = true
open(R, commit(R,M)) = M vcommit(R, commit(R,M)) = true

Here all operators except priv are public operators, i.e., the intruder can use
them in recipes. The first line describes electronic signatures: in our model one
can retrieve the text of the signature by getMsg (without knowing any keys)
and verify the signature knowing the corresponding public key. The second line
describes commitments: the first argument of commit is a random secret R and
the second argument the message M being committed on. Until the author of
the commitment releases the secret R, nobody can read the message M . It is a
commitment in the sense that when R is released, everybody can check it is a
commitment with R to message M , so a dishonest agent cannot change what
they committed to.

The messages that will be on the bulletin board in FOO’92 have the form:

sign(priv(a), commit(r[π[j]], x[π[j]]))

where priv(a) is the private key of the administrator,2 and the commitment is
by some voter π[j] (i.e., the voter whose vote is published in position j on the
board), containing a random secret r[π[j]] and the vote x[π[j]] of that voter.
2 In the first part of the protocol (that we omit here for simplicity) these signatures

are issued by the administrator using a blinding signature scheme to prevent that
the administrator can see the votes.
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The reason for the commitment schemes is that a dishonest bulletin board
cannot block votes it does not like, but voters cannot change their vote once it is
on the board. In the final phase, the commitments are opened by the voters: they
identify their position π[j] on the board and send r[π[j]] which is then stored
along with the corresponding signature.

In (α, β)-privacy, we have of course the structural knowledge containing mes-
sages of the above form, and the concrete knowledge where r[·], π[·], and x[·] are
instantiated with concrete values. For instance, again with three voters of whom
one has voted 1, we have the following frames:3

struct concr
l0 pub(a) pub(a)
l1 sign(priv(a), commit(r[π[1]], x[π[1]])) sign(priv(a), commit(17, 1))

r[π[1]] 17
l2 sign(priv(a), commit(r[π[2]], x[π[2]])) sign(priv(a), commit(42, 0))

r[π[2]] 42
l3 sign(priv(a), commit(r[π[3]], x[π[3]])) sign(priv(a), commit(24, 0))

r[π[3]] 24

To show that (α, β)-privacy is preserved in this state, we can show that an
arbitrary model of α can be extended to a model of β, i.e., such that struct ∼
concr . This is fairly easy, following the idea of Fig. 2 discussed earlier: let I0 be
the model of α that is the reality (thus I0(x[i]) is i’s true vote), let π0 be the
real permutation used by the bulletin board, and let finally I by any model of
α. Since the sum of the votes must be the same in I and I0, there must be a
permutation ψ such that I0(x[i]) = I(x[ψ(i)]). Now interpret π[·] as follows:

I(π) := ψ ◦ π0

We write here := to denote that we extend the model I. Thus we have
I(x[π[j]]) = I(x[ψ[π0[j]]]) = I0(x[π0[j]]) and with a suitable interpretation for
r[·] we arrive at a model I where I(concr) = I(struct); i.e., in I, the frames
concr and struct are identical and thus of course also statically equivalent. Since
we can do this for any model I of α, (α, β)-privacy holds.

This demonstrates that also the proof of (α, β)-privacy can be rather declar-
ative and suitable for manual reasoning. There are many cases where the proof
is a bit more difficult: for instance in voting with preferences where the models
of α are not permutations of the votes, the proof is more difficult, and we cannot
in general arrive at constructions where every model I |= α can be extended so
that I |= concr .= struct but only I |= concr ∼ struct , making the proofs a bit
more difficult.

3.1 Receipt Freeness

A related problem to vote secrecy is receipt freeness: we do not want that a voter
can prove how they voted, because this could make the elections vulnerable to
3 For more intuitive reading we have displayed some concrete numbers for the random

values r[·], but in the actual model they are symbolic unguessable constants.
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pressure, extortion, and bribery. Voters may of course tell others how they voted,
but it must always be possible for them to lie about how they voted.

The interesting notion here is the inability to prove how one has voted. The
intruder may pressure an agent to reveal all their secrets like private keys and
all the session data from the voting protocol, but they might lie about it. The
question is thus, if the messages that the intruder receives from a bribed voter
can act as a proof how they voted.

Thanks to the logical approach of (α, β)-privacy, this question can directly
be specified in β: consider a voter Dan (say Dan = 1 is the voter number 1)
who is being bribed by the intruder and we simply model also the structural and
concrete knowledge of Dan as frames structDan and concrDan . Let us pick labels
for these frames that are initially disjoint from those of the intruder knowledge
struct and concr . We now model that Dan tells the intruder some story (be it
true or not) about what is in his knowledge. Let us look again at the FOO’92
example from before and consider that Dan’s vote is the second on the board,
then we may have:

struct concr
l0 . . . . . .
l1 . . . . . .
l2 . . . . . .
l3 . . . . . . structDan concrDan

d0 priv(Dan) priv(Dan) priv(Dan) priv(Dan)
d1 x[Dan] 1 x[Dan] 0
d2 r[Dan] 17 r[Dan] 42
d3 π−1[Dan] 1 π−1[Dan] 2
d4 . . . . . . . . . . . .

The extension of the intruder knowledge by the story of Dan is as follows: the
intruder knows what the structural knowledge of Dan is, because that is inherent
in the protocol; thus this part (highlighted in blue) is determined to be the true
structural knowledge of Dan. The concrete knowledge is what Dan can lie about:
highlighted in red we have the messages that Dan may have told the intruder.
For these red messages Dan can choose any messages he can construct from his
actual knowledge.

So in the example, Dan has told the truth about his private key (note that
both the symbolic and the concrete message are identical as there is nothing to
interpret). He cannot really lie about that, because the intruder knows every-
body’s public key (since the function pub is public): Even though we have no
algebraic properties that directly relate public and private keys, the properties
of signatures allow us to tell that: the intruder can sign an arbitrary message
with whatever Dan tries to pass on as his private key and check if that signature
verifies with Dan’s public key.

About the other things Dan has lied here: he claims to have voted 1 (i.e.
supposedly x[Dan]), and that his vote (supposedly π−1[Dan]) is the first item
on the bulletin board. He also takes as his commitment secret the value 17 that
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he found in that entry on the board. (We have abbreviated with . . . in Dan’s
knowledge that he also knows the entire bulletin board; for these items he must
of course tell the truth, but the intruder may not even ask, as this is public
knowledge).

The clou is now that for every model I |= α, Dan can make such a story
(i.e., the messages highlighted in red in the above example) that is consistent
with the rest of the knowledge of the intruder, i.e., I can be extended such that
concr ∼ struct holds.

More generally, we can thus describe receipt freeness as follows:

Definition 4. Given a message analysis problem with a formula α, with the
structural and concrete knowledge of the intruder struct and concr using labels
l1, . . . , ln, as well as the structural and concrete knowledge structDan and
concrDan of an agent Dan with labels d1, . . . , dk.

Then receipt freeness (with respect to this message analysis problem and
Dan’s knowledge) is obtained by extending β with the following liar’s axiom:

φlie(struct, concr, structDan , concrDan) ≡
struct[d1]

.= structDan [d1] ∧ . . . ∧ struct[dk]
.= structDan [dk]

∧ ∃s1, . . . , sk.
(
concr[d1]

.= concrDan [s1] ∧ . . . ∧ concr[dk]
.= concrDan [sk]

∧ genDan(s1) ∧ . . . ∧ genDan(sk)
)

where genDan(s) formalizes that s is a recipe over labels d1, . . . , dk, i.e., the
concrDan [si] are messages Dan can construct.

This means that for every model I |= α and every label di, Dan can generate
a story (the concr [si]) so that the extension of struct by structDan and the
extension of concr by this story still is consistent with concr ∼ struct .

The idea is thus: receipt freeness means that bribed agents like Dan can
consistently lie about their knowledge for every model of α and therefore nothing
they can say allows the intruder to logically rule out any model of α. That is in
our opinion a very declarative way to express receipt freeness, i.e., the inability
to prove what one has done.

Observe that the definition of receipt freeness is independent of the formula
α or the details of the protocol: receipt freeness of a private choice of an agent
simply means that, for every model of α, the agent can consistently lie about
their knowledge. This makes the model also applicable to other areas where we
want to prevent pressuring or bribery of decisions, e.g., in medical prescriptions.

Unfortunately, FOO’92 satisfies receipt freeness only in its final state; in the
intermediate states where the signed commitments are published but not yet
opened, each agent is in the unique position to reveal their own secret to the
intruder, and thus there is not a consistent story for every model. However, the
resulting β formula itself is always consistent: since an agent can say the truth
(si = di), there is always one model of α for which a consistent story exists.
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3.2 Stability Under Background Knowledge

Consider the following situation: a person from a large city moves to a small
village. At the next election, there is one vote for a party that has never received
a vote in this village before. It is quite likely that the person moving in was
the one who cast this vote. But can this actually be consider a breach of voting
privacy? Apparently this works in any voting system where the number of votes
for each party (or candidate) is revealed, no matter how this is implemented.
In fact, we argue that this is background knowledge that one may have about
voters, e.g., having surveys how people tend to vote in different areas.

A question that arises from this is: could such background knowledge together
with observations be used to further degrade the privacy of voters? More for-
mally, consider a state with formulae α and β such that (α, β)-privacy holds.
Suppose the intruder has some background knowledge α0 (over the high-level
alphabet Σ0). Then, they clearly know α ∧ α0 ∧ β, i.e., the intruder can make
inferences from all of these three sub-formulae combined. Does this possibly vio-
late privacy in a way which knowing just α and β just would not? Of course, α0

may allow the intruder to exclude some models of α, but that is just combining
the information α that we deliberately gave them and the background knowl-
edge α0 that we cannot “take away” from them. The question is thus: can we
be sure that the intruder cannot derive even more than α ∧ α0 in this case? The
following result (from [17]) shows that we can indeed be sure:

Theorem 1 (Stability under Background Knowledge). Given a state with
(α, β) as above such that (α, β)-privacy holds, and let α0 be a Σ0 formula. Then
also (α ∧ α0, β ∧ α0)-privacy holds.

Thus, once (α, β)-privacy is established, we do not need to worry that any back-
ground knowledge could cause breaches beyond that background knowledge and
what we deliberately reveal.

4 Privacy as Reachability

So far, we have looked at one state at a time. This does not tell much how the
intruder interacts with other principals, and in fact, what honest agents send
often depends on what they received before and checks that they have made.
Thus, their reaction to a particular input can be revealing to the intruder.

Several popular approaches formulate protocols using rewrite rules, in par-
ticular OFMC [2], Maude-NPA [9], and Tamarin [16]. The basic idea is that a
state is a multi-set of facts which can be easily induced by an operator “ · ” with
the algebraic properties of being associative, commutative, and having a unit.
The rewrite rules can then have the form

AgentState(t1, . . . , tn) · Net(tin) ⇒ AgentState(t′1, . . . , t
′
n) · Net(tout)

meaning that they can be applied in a state that contains a subset of facts
matching the left-hand side (modeling an honest agent in a particular local
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state characterized by terms t1, . . . , tn) and an available input message tin on
the network. These facts are then replaced by the right-hand side under the
match, thereby updating the agent state to terms t′1, . . . , t

′
n and replacing the

received message tin with the reply tout . An advantage of rewrite rules is that
we have directly a notion of an atomic transaction that includes agents receiving
a message, checking conditions of their current state, and if successful, updating
their state, and sending a reply; no other transitions can be made concurrently.

Another popular approach, e.g., used in the tool ProVerif [3], is based instead
on the applied π-calculus. This has the advantage that one does not need to
reason about agents “saving” their local state after each received message and
that we can directly formulate conditional behavior and repetition.

For (α, β)-privacy we have chosen to define a notion of transaction that com-
bines some advantages of both: we have an atomic unit that consists of receiv-
ing, checking, updating, and replying, where the checks may have conditionals
branches for both the positive and negative case. A transaction is a process
following the grammar of Pl:

Pl ::= � x ∈ D.Pl Pr ::= snd(t).Pr

| rcv(x).Pl | cell(s) := t.Pr

| x := cell(s).Pl | � φ.Pr

| if φ then Pl else Pl | 0
| νN.Pr

Pl represents everything that in terms of rewriting rules would be on the left-
hand side, namely receiving rcv(x), reading the current state x := cell(s), and
checking the condition of if φ then Pl else Pl. Dually, Pr is everything that
would be on the right-hand side of a rewrite rule, namely sending snd(t) and
modifying the state cell(s) := t. Note that memory cells here can model also a
session-independent state of an agent like a database.

A new concept is � x ∈ D, which means to non-deterministically pick a value
x from the finite domain D.4 This is indeed where privacy comes into play: for
instance a binary vote may be modeled as � x ∈ {0, 1}. Moreover, we always
release such information to the intruder, i.e., we augment α by the conjunct
x ∈ D upon this state transition. On the right-hand side, we similarly have � φ
meaning that when reaching this, the process declassifies the formula φ (which
thus also gets added to α upon this state transition). Similar to process calculi,
νN represents introduction of fresh constants, and 0 the finished process.

We have one restriction though: we assume that in each path from root to
leaves through the if-then-else tree of a transaction, we encounter the same rcv(x)
steps and the same � x ∈ D steps. This is not a big restriction as the number of
messages received and the number of private choices should normally not depend
on any conditions.

4 The full grammar in [14] is conceptually a bit richer: we may have also a non-
deterministic choice of variables that are not directly relevant for privacy, as well as
random choices with a given distribution. Both we have left out for simplicity here.
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4.1 Example: AF2

As an example, let us use the second protocol from Abadi and Fournet [1] (and
our model in [17]). It is a handshake between agents designed to reveal as little
as possible about participants names and who they are willing to talk to.

Let us have a finite set Agent (there does not need to be a bound on it,
but finiteness means we can in principle enumerate) and let us have a binary
relation talk on Agent with a fixed (but again arbitrary) initial interpretation.
Here talk(a, b) for two agents a and b means that a is willing to talk to b. The
start of the protocol is then the following transaction:

� A ∈ Agent. � B ∈ Agent.
if talk(A,B) then νNA.snd(crypt(pub(B),NA, A))
else 0.

This non-deterministically chooses two agents A and B, and if A indeed wants
to talk to B, it sends its name encrypted with the public key of B. Here NA is
a randomization of the encryption (to prevent guessing attacks when public key
and content is known). This is characterized by the following properties:

dcrypt(priv(X), crypt(pub(X), R,M)) = M

rand(priv(X), crypt(pub(X), R,M)) = R

vcrypt(priv(X), crypt(pub(X), R,M)) = true

where all function symbols are public except priv. Thus, knowing the private
key, one can obtain the message M , the randomness R, and check that it is a
valid encryption.

As syntactic sugar, let us write let x = e P for replacing in P every occurrence
of x by e. The transaction of B receiving and answering such messages is now:

� B ∈ Agent.rcv(M).νNB .
if vcrypt(priv(B),M) = true then

let NA = rand(priv(B),M)
let A = dcrypt(priv(B),M)
if talk(B,A) then

snd(crypt(pub(A),NB ,NA)) (a)
else snd(NB) (b)

else snd(NB) (c)

Thus B is any agent who receives some message M , checks if the message is
encrypted, and if so extracts the sender name A and randomness NA from it. If
B is willing to talk to A, then it now sends the acknowledgement which consists
of some new randomness NB and sending back the randomness NA, encrypted
for A. In all other cases, i.e., if B cannot decrypt or does not want to talk to A,
the answer is just the random NB .

These two transactions together ensure that A and B can make a handshake,
but the intruder observing it cannot find out the name of any of them, since we
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never release anything but the information that the involved A and B are agents,
and also the intruder never knows who is willing to talk to whom.

This privacy property does not hold if the intruder is also an agent i ∈ Agent
knowing their own key pair pub(i) and priv(i): if the intruder sends a message to
a particular agent b and receives an answer that can be decrypted with priv(i)
then the intruder learns that the responder B was indeed b and that talk(b, i)
holds. Of course, the intruder should in this case indeed learn this—the best
protocol could not prevent that. So we can simply specify that we allow this
release of information by replacing line (a) with the following expression:

if A
.= i then � talk(B,A) ∧ B = I(B). snd(crypt(pub(A), NB,NA))

else snd(crypt(pub(A), NB,NA))

Here I stands for the reality (the model of α that is truly the case) and thus
I(B) means the real value of B. Therefore, this says: in case the intruder is the
sender of M , and all checks are satisfied, then the intruder learns exactly that
(B is the person they contacted, and B is willing to talk to them).

However it still has an attack: in the negative cases when one of the checks
failed, the intruder learns that one of the two conditions was not satisfied. Also
this is actually reasonable, so let us also release this information in these cases,
namely replacing the line labeled (b) by the following:

if A
.= i then � ¬talk(B,A) ∨ B � .= I(B). snd(NB)

else snd(NB)

A similar correction is more tricky for the last case (labeled (c)). In the case
that this message was not even an encryption of the expected form, the intruder
should not learn anything from this. However, if the intruder has addressed the
input message to some different agent C �= I(B) and using i as the sender name,
then they should be allowed to learn from the response that either C was not
the agent who received the message or is not talking to i. Thus instead of line
(c) we have:

if vcrypt(priv(C),M) = true ∧ dcrypt(priv(C),M) = i then
� B �= C ∨ ¬talk(B, i) .snd(NB)

else snd(NB)

Finally, a similar change must be done to the first transaction: if B
.= i, the

intruder learns the name of A and that talk(A, i). This is of course similar to the
previous two modifications.

With all these modifications, the protocol is safe, and thus the intruder can
only learn what is really unavoidable: when the intruder sends under their real
name a message to some honest agent and gets a decipherable response, then
the intruder learns the name of that agent and the fact that they are prepared
to talk. Otherwise either it is another agent than addressed or one that is not
willing to talk to the intruder.
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In general, (α, β)-privacy thus allows us to start with a specification that
has a very strict privacy goal, by releasing as few as possible information to the
intruder, and then checking if the protocol is indeed so strong to achieve this
privacy goal. If not, one can deliberately make the choice to relax the privacy
goal by releasing further information that are unavoidable – or in some case to
actually strengthen the protocol.

4.2 Semantics

So far we have just given the syntax of our transaction formalism and relied
on the reader’s intuition how these are actually performed. It is straightforward
to define a “simple” operational semantics that just checks how the protocol
executes without worrying to define what the intruder might actually learn, i.e.,
α and β of each state. To see that this defining of the intruder knowledge is
tricky, consider the second transaction of the above example where both A �= i
and B �= i. In this case, the intruder cannot tell which of the conditions evaluates
to true in this transaction, and thus the intruder cannot know the structure of
the outgoing message for sure, i.e., whether it is a nonce or an encryption.

Thus, in contrast to the struct introduced in the message analysis problem,
we now have to deal with a number of struct i and corresponding conditions φi:
for every label l, the intruder knows a concrete message concr [l] (the message
actually received) but for the structure they know only that it is struct i[l] if φi

holds. What we can ensure though is that exactly one of the φi is true, i.e., these
conditions are pairwise disjoint and cover all cases.

We thus define a symbolic evaluation of the transaction; this can be thought
of as an evaluation performed by the intruder to figure out (as far as possible)
what is actually happening. The state of this symbolic evaluation is characterized
as a set of possibilities where each possibility has the form (P, φ, struct i) where
P is the remainder of the transaction in the possibilities. Also, exactly one of
these possibilities is marked as the real one, i.e., what really happens in this
state—this will in general not be known by the intruder.

The symbolic evaluation of a condition is as follows:

{(if ψ then P1 else P2, φ, struct)} ∪ P =⇒
{(P1, φ ∧ ψ, struct), (P2, φ ∧ ¬ψ, struct)} ∪ P

thus splitting the first possibility into two depending on the two possible out-
comes. The remaining transaction is thus either the process of the then branch
or the else branch. There are similar rules for evaluating memory cell access,
the choice of new variables and release of conditions in α; for the complete set
see [14]. All these rules are performed as normalization rules: i.e., we apply them
to the current symbolic evaluation state until no more rules can be applied. In
the resulting set of possibilities, each process starts with either snd, rcv, or 0.

For evaluating these normalized processes, we have another set of rewrite
rules that apply depending on what is the first step in the possibility that is
marked as the real one:
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– If it is rcv(x).Pi , then the restriction on the occurrences of rcv steps in trans-
actions implies that all other possibilities also start with a rcv(x) step. Now
the intruder can choose an arbitrary recipe r (with labels from the current
frame). In the ith possibility, the resulting message is thus struct i[r], and
we can symbolically simulate that this message is received by replacing each
rcv(x).Pi with Pi[x 
→ struct i[r]].

– If it is snd(t).P , then we can discard all possibilities that do not currently
send, since the intruder can observe whether a message is sent. Thus, we
choose a new label and add to each struct i the respective message t for l.

– If it is 0, then no other possibility can have a rcv step due to our restriction
on their occurrence. We can also discard all possibilities that are sending
(because it is observable that there are no more outgoing messages). Thus
the symbolic evaluation is done since all remaining processes are 0.

From this evaluation we construct the β of the resulting state, because all
the final possibilities have the form (0, struct i, φi), and we have one concr (the
actual messages derived). We can now formulate this as

concr ∼ struct ∧
∧

φi =⇒ struct = struct i

Recall that, by construction, exactly one of the φi is true.

5 Conclusions and Outlook

As a conclusion, let us briefly review what challenges (α, β)-privacy poses for
automated or semi-automated verification methods. The message analysis prob-
lem defined in Sect. 2 is certainly the most basic problem as it arises for every
reachable state even for only a passive intruder. A first work by Fernet and
Mödersheim [10] that gives a decision procedure for a standard set of operators.

In Sect. 4 we have shown that in case of an active intruder and conditional
branching we arrive at a generalization of this problem, namely where we have
several struct i (attached to a condition φi) depending on which branches the
transaction may have taken. We may call this the multi message-analysis prob-
lem. There is a rather näıve decision procedure: generate for each model of I
with I |= φi the corresponding concrI = I(struct i) and check that all resulting
concrI are statically equivalent. This creates an exponential blowup in general,
and we are currently working on a more clever procedure that avoids this by a
symbolic representation.

A second challenge arises from the fact that at each rcv(x) of a process, the
intruder should choose a recipe r over the labels of the current state. This choice
is infinite and, even under reasonable restrictions, very large. The common app-
roach is the lazy intruder or constraint-based approach (see [2,5] for instance),
where we stop searching for solutions whenever the constraint for this intruder
is to generate an arbitrary message. Our ongoing work of integrating this tech-
nique with multi message-analysis problems promises a decision procedure for a
bounded number of transactions.
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For the unbounded case, it is common to abstract from the single “sessions”
by an over-approximation. Unfortunately, this often produces false positives
when not restricting the problem significantly. An approach using type-systems
by Cortier et al. [7] can tame this problem in many instances, and we plan to
investigate if similar type systems could also be helpful for (α, β)-privacy with
unbounded sessions.

To compare with the de-facto standard of trace equivalence, we have shown
in [17] that (α, β)-privacy has at least comparable expressive power, while also
being often more declarative. Tools for deciding trace equivalence (or minor
restrictions of it) for bounded sessions exist, for instance DEEPSEC [6]. For
unbounded sessions, the typical approach is to consider the restriction to diff-
equivalence, which does not compare arbitrary processes, but rather a bi-process
that has for each message a left and right variant [4]. This side-steps the prob-
lem of the different possibilities that arise form the conditionals (i.e., what cor-
responds to the multi-message analysis problem in (α, β)-privacy) since diff-
equivalence requires that the left and right variant either both satisfy the con-
dition or both do not. This allows for efficient unbounded session verification in
tools like ProVerif [3], Maude NPA [9], and Tamarin [16], but limits the num-
ber of protocols that can be considered. We plan to investigate here if a type
system similar to [7] could provide a better compromise between feasibility and
expressiveness.
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Abstract. Nowadays, formal cryptographic protocol analysis relies on
symbolic techniques such as narrowing and equational unification, e.g.
Maude-NPA, Tamarin or AKISS crypto tools. In previous works, we devel-
oped a new narrowing strategy, called canonical narrowing, which man-
ages to reduce the state explosion problem by introducing irreducibility
constraints. In this paper, we extend canonical narrowing to handle con-
ditional rules with SMT constraints. We demonstrate the viability of this
method with the Brands and Chaum protocol using time and location
information described as SMT constraints on the real numbers.

Keywords: Canonical narrowing · SMT solver · Maude · Security
protocols · Brands and Chaum

1 Introduction

Formal protocol analysis allows to determine whether an attacker can cause a
protocol to fail any of its security objectives. One of the ways to perform this type
of analysis is through the use of symbolic techniques, such as narrowing. There
are tools for protocol analysis, like Maude-NPA [8], that use narrowing together
with equational unification as a basis. These techniques are efficiently supported
by the Maude language, and are also used in other protocol analysis tools such
as Tamarin [15] or AKISS [4]. In our works [10,14], we already developed a new
narrowing algorithm, called canonical narrowing, which manages to reduce the
state explosion problem by introducing irreducibility constraints.

In a large number of protocols, the use of laws of physics that use real numbers
to represent distances, time, or coordinates is essential. The formal analysis of
this type of protocols can be done using either an explicit model with physical
information, or by using an abstract model without physical information, e.g.,
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untimed, and showing it is sound and complete with respect to a model with
physical information. The former is more intuitive for the user, but the latter
is often chosen because not all cryptographic protocol analysis tools support
reasoning about, e.g., time or space. SMT solvers allow precisely the use of
explicit models with physical information, translating the physical laws into SMT
constraints. In order to analyze these models using narrowing algorithms, there
is a need to extend them so that they are capable of handling these restrictions.
One way to do it is by having narrowing to handle conditional rules, as in [19],
in which each of the constraints will be collected at runtime. In the following
example, we show one of the protocols that use laws of physics. This protocol
really goes beyond existing narrowing approaches such as [10,14,19], since two
cryptographic primitives are combined, exclusive-or over a set of nonces and a
commitment scheme, apart of time and location represented as real numbers,
requiring both irreducibility and SMT constraints.

Example 1. The Brands-Chaum protocol [3] specifies communication between a
verifier V and a prover P. P needs to authenticate itself to V, and also needs
to prove that it is within a distance “d” of it. A typical interaction between
the prover and the verifier is as follows, where NA denotes a nonce generated
by A, SA denotes a secret generated by A, X; Y denotes concatenation of two
messages X and Y , commit(N,S) denotes commitment of secret S with a nonce
N , open(N,S,C) denotes opening a commitment C using the nonce N and
checking whether it carries the secret S, ⊕ is the exclusive-or operator, and
sign(A,M) denotes A signing message M .

P → V : commit(NP , SP )

//The prover sends his name and a commitment

V → P : NV

//The verifier sends a nonce and records the time when this message was sent

P → V : NP ⊕ NV

//The verifier checks the answer message arrives within two times a fixed distance

P → V : SP

//The prover sends the committed secret and the verifier opens the commitment

P → V : signP (NV ;NP ⊕ NV )

//The prover signs the two rapid exchange messages

We assume the participants are located at an arbitrary given topology (par-
ticipants do not move from their assigned locations) with distance constraints,
where travelled time and coordinates are represented by a real number. We
assumed coordinates Px, Py, Pz for each participant P .

The previous informal Alice&Bob notation was naturally extended to include
time in [1] and to include both time and location in [2]. First, we add the time
when a message was sent or received as a subindex Pt1 → Vt2 . Second, the
sending and receiving times of a message differ by the distance between them
just by adding some location constraints

�d(A,B)� := (d(A,B) ≥ 0∧ d(A,B)2 = (Ax −Bx)2 +(Ay −By)2 +(Az −Bz)2)



Canonical Narrowing with Irreducibility and SMT Constraints 47

Fig. 1. Mafia Attack Fig. 2. Hijacking Attack

Third, the distance bounding constraint of the verifier is represented as an
arbitrary distance d. Time and space constraints are written using quantifier-free
formulas in real arithmetic. For convenience, we allow both 2 ∗ x = x + x and
the monus function x−̇y = if y < x then x − y else 0 as definitional extensions.

Example 2 (Cont’d Example 1). In the following time and space sequence of
actions, a vertical bar differentiates between the process and corresponding con-
straints associated to the metric space. The following action sequence differs
from [1] only on the terms �d(P, V )�.

Pt1 → Vt′
1
: commit(NP , SP ) | t′1 = t1 + d(P, V ) ∧ �d(P, V )�

Vt2 → Pt′
2
: NV | t′2 = t2 + d(P, V ) ∧ t2 ≥ t′1 ∧ �d(P, V )�

Pt3 → Vt′
3
: NP ⊕ NV | t′3 = t3 + d(P, V ) ∧ t3 ≥ t′2 ∧ �d(P, V )�

V : t′3 −̇ t2 ≤ 2 ∗ d
Pt4 → Vt′

4
: SP | t′4 = t4 + d(P, V ) ∧ t4 ≥ t3 ∧ �d(P, V )�

V : open(NP , SP , commit(NP , SP ))
Pt5 → Vt′

5
: signP (NV ;NP ⊕ NV ) | t′5 = t5 + d(P, V ) ∧ t5 ≥ t4 ∧ �d(P, V )�

The Brands-Chaum protocol is designed to defend against mafia frauds, where
an honest prover is outside the neighborhood of the verifier (i.e., d(P, V ) > d)
but an intruder is inside (i.e., d(I, V ) ≤ d), pretending to be the honest prover
as depicted in Fig. 1. The following is an example of an attempted mafia fraud, in
which the intruder simply forwards messages back and forth between the prover
and the verifier. We write I(P ) to denote an intruder pretending to be an honest
prover P .

Pt1→It2 : commit(NP , SP ) | t2 = t1 + d(P, I) ∧ �d(P, I)�
I(P )t2→Vt3 : commit(NP , SP ) | t3 = t2 + d(V, I) ∧ �d(V, I)�

Vt3→I(P )t4 : NV | t4 = t3 + d(V, I) ∧ �d(V, I)�
It4→Pt5 : NV | t5 = t4 + d(P, I) ∧ �d(P, I)�
Pt5→It6 : NP ⊕ NV | t6 = t5 + d(P, I) ∧ �d(P, I)�

I(P )t6→Vt7 : NP ⊕ NV | t7 = t6 + d(V, I) ∧ �d(V, I)�
V : t7−̇t3 ≤ 2 ∗ d

Pt8→It9 : SP | t9 = t8 + d(P, I) ∧ t8 ≥ t5 ∧ �d(P, I)�
I(P )t10→Vt11 : SP | t11 = t10 + d(V, I) ∧ t11 ≥ t7 ∧ �d(V, I)�
I(P )t12→Vt13 : signP (NV ;NP ⊕ NV )| t13 = t12 + d(V, I) ∧ t13 ≥ t11 ∧ �d(V, I)�
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This attack is physically unfeasible, since it would require that 2 ∗ d(V, I) +
2 ∗ d(P, I) ≤ 2 ∗ d, which is unsatisfiable by d(V, P ) > d > 0 and the triangular
inequality d(V, P ) ≤ d(V, I) + d(P, I), satisfied in three-dimensional space. This
attack was already unfeasible in [1] using only the metric space assumptions and
in [2] using a Euclidean space.

However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable), as depicted in Fig. 2, where an intruder located out-
side the neighborhood of the verifier (i.e., d(V, I) > d) succeeds in convincing
the verifier that he is inside the neighborhood by exploiting the presence of an
honest prover in the neighborhood (i.e., d(V, P ) ≤ d) to achieve his goal. The
following is an example of a successful distance hijacking, in which the intruder
listens to the exchanged messages between the prover and the verifier but builds
the last message.

Pt1 → Vt2 : commit(NP , SP ) | t2 = t1 + d(P, V ) ∧ �d(P, V )�
Vt2 → Pt3 , It′

3
: NV | t3 = t2 + d(P, V ) ∧ �d(P, V )�

| t′3 = t2 + d(I, V ) ∧ �d(V, I)�
Pt3 → Vt4 , It′

4
: NP ⊕ NV | t4 = t3 + d(P, V ) ∧ �d(P, V )�

| t′4 = t3 + d(I, P ) ∧ �d(I, P )�
V : t4 −̇ t2 ≤ 2 ∗ d

Pt5 → Vt6 : SP | t6 = t5 + d(P, V ) ∧ �d(P, V )�
| t5 ≥ t3 ∧ t6 ≥ t4

I(P )t7 → Vt8 : signI(NV ;NP ⊕ NV ) | t8 = t7 + d(I, V ) ∧ �d(I, V )�
| t7 ≥ t′4 ∧ t8 ≥ t6

This attack was feasible in [1] using the metric space assumptions, and it was
also possible in three-dimensional space in [2].

In Sect. 2, we provide some preliminaries. In Sect. 3, we introduce our new
canonical narrowing with irreducibility and SMT constraints. In Sect. 4, we
describe our implementation. In Sect. 5, we present some experiments using the
Brands and Chaum protocol that prove its viability. In Sect. 6, we conclude and
give some future work.

2 Preliminaries

We follow the classical notation and terminology from [21] for term rewriting,
and from [16,19] for rewriting logic and order-sorted notions.

We assume an order-sorted signature Σ with a poset of sorts (S,≤). The
poset (S,≤) of sorts for Σ is partitioned into equivalence classes, called con-
nected components, by the equivalence relation (≤ ∪ ≥)+. We assume that each
connected component [s] has a top element under ≤, denoted �[s] and called the
top sort of [s]. This involves no real loss of generality, since if [s] lacks a top sort,
it can be easily added.

We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the
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set of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding
order-sorted term algebras. Given a term t, Var(t) denotes the set of variables
in t.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X
to TΣ(X ). Substitutions are written as σ = {X1 
→ t1, . . . , Xn 
→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X ). The application of substitution σ to
a term t is denoted by tσ or σ(t).

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic
induces a congruence relation =E on terms t, t′ ∈ TΣ(X ) (see [17]). Throughout
this paper we assume that TΣ,s �= ∅ for every sort s, because this affords a
simpler deduction system. We write TΣ/E(X ) and TΣ/E for the corresponding
order-sorted term algebras modulo the congruence closure =E , denoting the
equivalence class of a term t ∈ TΣ(X ) as [t]E ∈ TΣ/E(X ).

The first-order language of equational Σ-formulas is defined as: Σ-equations
t = t′ as basic atoms, conjunction ∧ of formulas, disjunction ∨ of formulas,
negation ¬ of a formula, universal quantification ∀ of a variable x:s in a formula,
and existential quantification ∃ of a variable x:s in a formula. A formula is
quantifier-free (QF) if it does not contain any quantifier. Given a Σ-algebra A,
a formula ϕ, and an assignment α ∈ X 
→ A for the free variables X in ϕ,
A,α |= ϕ denotes that ϕ is satisfied and A |= ϕ holds if ∀α : A,α |= ϕ.

An equational theory (Σ,E) is a pair with Σ an order-sorted signature and
E a set of Σ-equations. An equational theory (Σ,E) is regular if for each t = t′

in E, we have Var(t) = Var(t′). An equational theory (Σ,E) is linear if for
each t = t′ in E, each variable occurs only once in t and in t′. An equational
theory (Σ,E) is sort-preserving if for each t = t′ in E, each sort s, and each
substitution σ, we have tσ ∈ TΣ(X )s iff t′σ ∈ TΣ(X )s. An equational theory
(Σ,E) is defined using top sorts if for each equation t = t′ in E, all variables in
Var(t) and Var(t′) have a top sort. Given two equational theories G = (Σ,E)
and T = (Δ,Γ ), we say T is the background theory of E iff Σ ⊆ Δ and for each
ground Σ-formula ϕ, TΣ/E |= ϕ ⇐⇒ T |= ϕ.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSU W

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSU W

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSU W

E (t = t′) such that σ|W �E ρ|W (i.e., there is a
substitution η such that (ση)|W =E ρ|W ); and (iii) for all σ ∈ CSU W

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩ W = ∅.

A conditional rewrite rule is an oriented pair l → r if ϕ, where l �∈ X , ϕ
is a QF Σ-formula, and l, r ∈ TΣ(X )s for some sort s ∈ S. An unconditional
rewrite rule is written l → r. A conditional order-sorted rewrite theory is a triple
(Σ,E,R, T ) with Σ an order-sorted signature, E a set of Σ-equations, T is a
background theory, and R a set of conditional rewrite rules. The set R of rules
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is sort-decreasing if for each t → t′ (or t → t′ if ϕ) in R, each s ∈ S, and each
substitution σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.

The rewriting relation on TΣ(X ), written t →R t′ or t →p,R t′ holds between
t and t′ iff there exist a p ∈ PosΣ(t), l → r if ϕ ∈ R and a substitution σ,
such that T |= ϕσ, t|p = lσ, and t′ = t[rσ]p. The relation →R/E on TΣ(X )
is =E ;→R; =E . The transitive (resp. transitive and reflexive) closure of →R/E

is denoted →+
R/E (resp. →∗

R/E). A term t is called →R/E-irreducible (or just
R/E-irreducible) if there is no term t′ such that t →R/E t′. For →R/E confluent
and terminating, the irreducible version of a term t is denoted by t↓R/E .

A relation →R,E on TΣ(X ) is defined as: t →p,R,E t′ (or just t →R,E t′) iff
there are a position p ∈ PosΣ(t), a rule l → r if ϕ in R, and a substitution σ such
that T |= ϕσ, t|p =E lσ and t′ = t[rσ]p. Reducibility of →R/E is undecidable
in general since E-congruence classes can be arbitrarily large. Therefore, R/E-
rewriting is usually implemented [13] by R,E-rewriting under some conditions
on R and E such as confluence, termination, and coherence.

We call (Σ,B,E) a decomposition of an order-sorted equational theory
(Σ,E∪B) if B is regular, linear, sort-preserving, defined using top sorts, and has
a finitary and complete unification algorithm, which implies that B-matching is
decidable, and the equations E oriented into rewrite rules

−→
E are convergent, i.e.,

confluent, terminating, and strictly coherent [18] modulo B, and sort-decreasing.
Given a decomposition (Σ,B,E) of an equational theory, (t′, θ) is an E,B-

variant [6,11] (or just a variant) of term t if tθ↓E,B =E t′ and θ↓E,B =E θ.
A complete set of E,B-variants [11] (up to renaming) of a term t is a sub-
set, denoted by [[t]]E,B, of the set of all E,B-variants of t such that, for each
E,B-variant (t′, σ) of t, there is an E,B-variant (t′′, θ) ∈ [[t]]E,B such that
(t′′, θ) �E,B (t′, σ), i.e., there is a substitution ρ such that t′ =B t′′ρ and
σ|Var(t) =B (θρ)|Var(t). A decomposition (Σ,B,E) has the finite variant prop-
erty (FVP) [11] (also called a finite variant decomposition) iff for each Σ-term
t, a complete set [[t]]E,B of its most general variants is finite.

In what follows, the set G of equations will in practice be G = E � B and
will have a decomposition (Σ,B,E).

Definition 1 (Reachability goal). Given an order-sorted rewrite theory
(Σ,G,R, T ), a reachability goal is defined as a pair t

?→∗
R/G t′, where t, t′ ∈

TΣ(X )s. It is abbreviated as t
?→∗ t′ when the theory is clear from the context;

t is the source of the goal and t′ is the target. A substitution σ is a R/G-
solution of the reachability goal (or just a solution for short) iff there is a sequence
σ(t) →R/G σ(u1) →R/G · · · →R/G σ(uk−1) →R/G σ(t′).

A set Γ of substitutions is said to be a complete set of solutions of t
?→∗

R/G t′

iff (i) every substitution σ ∈ Γ is a solution of t
?→∗

R/G t′, and (ii) for any solution

ρ of t
?→∗

R/G t′, there is a substitution σ ∈ Γ more general than ρ modulo G, i.e.,
σ|Var(t)∪Var(t′) �G ρ|Var(t)∪Var(t′).
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This provides a tool-independent semantic framework for symbolic reachabil-
ity analysis of protocols under algebraic properties. Note that we have removed
the condition Var(ϕ) ∪ Var(r) ⊆ Var(l) for rewrite rules l → r if ϕ ∈ R and
thus a solution of a reachability goal must be applied to all terms in the rewrite
sequence. If the terms t and t′ in a goal t

?→∗
T/G t′ are ground and rules have

no extra variables in their right-hand sides, then goal solving becomes a stan-
dard rewriting reachability problem. However, since we allow terms t, t′ with
variables, we need a mechanism more general than standard rewriting to find
solutions of reachability goals. Narrowing with R modulo G generalizes rewriting
by performing unification at non-variable positions instead of the usual match-
ing modulo G. Soundness and completeness of narrowing for solving reachability
goals are proved in [13,20] for unconditional rules R modulo an equational the-
ory G and in [19] for conditional rules R modulo an equational theory G, both
with the restriction of considering only order-sorted topmost rewrite theories,
i.e., rewrite theories were all the rewrite steps happen at the top of the term.

3 Canonical Narrowing with Irreducibility and SMT
Constraints

This section extends the canonical narrowing strategy of [10] with SMT con-
straints.

When (Σ,E ∪ B) has a decomposition as (Σ,B,E), then the initial alge-
bra TΣ/E∪B is isomorphic to the canonical term algebra CΣ/E∪B = (CΣ/E∪B,
→R/E∪B), where CΣ/E∪B = {CΣ/E∪B,s}s∈S and CΣ/E∪B,s = {[t↓−→

E ,B
]B ∈

TΣ/B | t↓−→
E ,B

∈ TΣ,s} and where for each f ∈ Σ, fCΣ/E∪B
([t1]B , . . . , [tn]B) =

[f(t1, . . . , tn)↓−→
E ,B

]B .
We have an isomorphism of initial algebras TΣ/E∪B

∼= CΣ/E∪B. Likewise,
we have an isomorphism of free (Σ,E ∪ B)-algebras TΣ/E∪B(X ) ∼= CΣ/E∪B(X ),
where CΣ/E∪B(X ) = (CΣ/E∪B(X ),→R/E∪B) and

CΣ/E∪B,s(X ) = {[t↓−→
E ,B

]B ∈ TΣ/B(X ) | t↓−→
E ,B

∈ TΣ(X )s}.

The key point of canonical rewriting is that we can simulate rewritings [t]E∪B

→R/E∪B [t′]E∪B by corresponding rewritings [t↓−→
E ,B

]B →R/E∪B [t′↓−→
E ,B

]B and

make rewriting decidable when (Σ,B,
−→
E ) is FVP.

Definition 2 (Canonical Rewriting). Let R = (Σ,E ∪ B,R, T ) be a top-
most order-sorted rewrite theory such that (Σ,E ∪ B) has an FVP decomposi-
tion (Σ,B,E). Let C◦

Σ/E∪B(X )State =
⋃

CΣ/E∪B(X )State, i.e., C◦
Σ/E∪B(X )State =

{t↓−→
E ,B

| t↓−→
E ,B

∈ TΣ(X )State}, so that C◦
Σ/E∪B(X )State ⊆ TΣ(X )State. We then

define the →R/E,B canonical rewrite relation with rules R modulo E ∪ B as
the following binary relation →R/E,B⊆ C◦

Σ/E∪B(X )State×C◦
Σ/E∪B(X )State, where

t →R/E,B t′ iff ∃l → r if ϕ ∈ R and ∃θ with Dom(θ) ⊆ Var(l)∪Var(r)∪Var(ϕ)
and θ = θ↓−→

E ,B
such that: (i) T |= ϕθ, (ii) (lθ)↓−→

E ,B
=E∪B t, and (iii) t′ =B

(rθ)↓−→
E ,B

.
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The claim that →R/E,B exactly captures/bisimulates the →R/E∪B rewrite
relation is justified by the following result.

Theorem 1. For each t, t′ ∈ TΣ(X )State, t →R/E∪B t′ iff t↓−→
E ,B

→R/E,B

t′↓−→
E ,B

.

A term t(x1:s1, . . . , xn:sn) can be viewed as a symbolic, effective method to
describe a (typically infinite) set of terms, namely the set

�t(x1:s1, . . . , xn:sn)� = {t(u1, . . . , un) | ui ∈ TΣ(X )si} = {tθ | θ ∈ Subst(Σ,X )}.

We think as t as a pattern, which symbolically describes all its instances (includ-
ing non-ground). However, since (Σ,B,E) is a decomposition of an equational
theory (Σ,E ∪ B), we can consider only normalized instances of t

�t�−→
E ,B

= {(tθ)↓−→
E ,B

| θ ∈ Subst(Σ,X )}

However, since we are interested in terms that may satisfy some irreducibility
and SMT conditions, we can obtain a more expressive symbolic pattern language
where patterns are constrained by both irreducibility and SMT constraints. That
is, we consider constrained patterns of the form 〈t,Π, ϕ〉 where Π is a finite set
of normalized terms and ϕ is a QF Σ-formula. Then we can define:

�〈t, (u1, . . . , uk), ϕ〉�−→
E ,B

= {(tθ)↓−→
E ,B

| θ ∈ Subst(Σ,X ), T |= ϕθ,

u1θ, . . . , ukθ are
−→
E ,B-normalized}.

The canonical narrowing relation �R/E,B includes irreducibility constraints
only for the left-hand sides of the rules and SMT constraints only from the
conditional part of the rules.

Definition 3 (Canonical Narrowing). Given a topmost order-sorted rewrite
theory (Σ,E ∪ B,R, T ) such that (Σ,B,E) is a decomposition of (Σ,E ∪ B),
the canonical narrowing relation with irreducibility constraints holds between
〈t,Π, ϕ〉 and 〈t′,Π ′, ϕ′〉, denoted

〈t,Π, ϕ〉 �α,R/E,B 〈t′,Π ′, ϕ′〉

iff there exists l → r if ϕ′′ ∈ R, which we always assume renamed, so
that Var(〈t,Π, ϕ〉) ∩ (Var(r) ∪ Var(l) ∪ Var(ϕ′′)) = ∅, and a unifier α ∈
CSU W

E∪B(t = l), where W = Var(〈t,Π, ϕ〉) ∪ Var(r) ∪ Var(l) ∪ Var(ϕ′′), and

1. 〈t′,Π ′, ϕ′〉 = 〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕα ∧ ϕ′′α〉,
2. Πα ∪ {(lα)↓−→

E ,B
} are

−→
E ,B-irreducible, and

3. ϕ′ is satisfiable, i.e., ∃α′ s.t. T |= ϕ′α′.
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Note that we do not require a narrowing step to compute CSUE∪B(t = l)
anymore, we perform regular equational unification but impose an irreducibility
constraint on the normal form of the instantiated left-hand side, which can be
handled in Maude by using asymmetric unification [7], i.e., equational unification
is done with irreducibility constraints.

Irreducibility constraints are computed by using the normalized left-hand side
of the rules that are used in the narrowing steps. SMT constraints are simply
added to the third component and check for satisfiability. Note that we assume
that satisfiability of QF Σ-formulas is decidable, indeed for a subsignature Σ0 ⊆
Σ associated to the background theory T . Maude is using the CVC4 SMT solver
for satisfiability.

Each trace will carry a different set of irreducibility and SMT constraints,
although some of the conditions are shared by having common predecessor nodes.
In each new narrowing step, the list of irreducibility constraints computed pre-
viously in that sequence must be taken into account, so that if it is necessary to
reduce one of the terms appearing in the list to compute a new step, it will be
discarded. Similary, the SMT formula carried along the sequence must be taken
into account, so that if it becomes unsatisfiable after one narrowing step, it will
be discarded.

In this way, we eliminate redundancy as well as branches of the reachability
tree, which will be less and less wide than the tree resulting from using standard
narrowing. In some cases, we will even get infinite reachability trees to become
finite, ensuring termination.

The key completeness property about this relation is the following.

Lemma 1 (Lifting Lemma). Given 〈t,Π, ϕ〉, a
−→
E ,B-normalized substitution

θ, and terms u, v ∈ C◦
Σ/E,B(X ) such that u = (tθ)↓−→

E ,B
, T |= ϕθ, and Πθ are

−→
E ,B-normalized and u →R/E,B v, there is a canonical narrowing step with
irreducibility and SMT constraints

〈t,Π, ϕ〉 �α,R/E,B 〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉

and a
−→
E ,B-normalized substitution γ such that

〈t,Π, ϕ〉 �α,R/E,B 〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉
↓θ ↓γ

�〈t,Π, ϕ〉�−→
E ,B

→R/E,B �〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉�−→
E ,B

(i) θ =B (αγ)|Var(〈t,Π,ϕ〉),
(ii) (rαγ)↓−→

E ,B
=B v,

(iii) Παγ ∪ {((lα)↓−→
E ,B

)γ} are
−→
E ,B-normalized,

(iii) T |= ϕ′γ.

Note that this shows that v ∈ �〈rα,Πα ∪ {(lα)↓−→
E ,B

}, ϕ′〉�−→
E ,B

.
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4 Implementation

To implement SMT constraint handling in the narrowing algorithm, we have used
our implementation of standard/canonical narrowing [14] as a starting point. To
do this, we use the features of the Maude meta-level, thus creating an extension
of the previous meta-level command.

4.1 Our Previous Narrowing Command

The meta-level command we use as a starting point already allows us to choose
between several narrowing algorithms to use. First of all, it allows to invoke the
standard narrowing algorithm, with a behavior similar to the standard narrow-
ing built-in in Maude. It also allows the canonical narrowing algorithm [14] to
be invoked, in which irreducibility constraints are used to reduce the width of
the computed reachability tree. To control the algorithm used along with other
parameters, such as the maximum depth of the tree or the maximum number of
solutions to search for, the command uses ten arguments:

narrowing(Module, Term, SearchArrow, Term, AlgorithmOptionSet, VariantOptionSet, TermList, Qid,

Bound, Bound)

In the implementation of that command, we already prepared an adequate
infrastructure to allow future extensions. Several data structures and substruc-
tures were defined to represent the reachability tree, its nodes, and the solutions
found. Additionally, we divided the implementation into three main parts, which
correspond to the main steps of the algorithm at a theoretical level: (i) the gen-
eration of nodes (terms) in the reachability tree, (ii) the attempt to unify each
new term with the target term, and (iii) the computation of solutions in case the
unification is successful. Those main parts are further broken down into highly
distinguishable subparts, making it easy to make extensions or modifications to
some parts without having to change the rest of the implementation.

4.2 Using Conditional Rules in Narrowing

To manage SMT constraints, our approach has been to use Maude’s conditional
rules to add them as a condition in each of the narrowing steps. The problem that
arises is that the Maude narrowing mechanisms are not capable of processing the
conditional rules. The way to fix this is to transform those conditional rules into
normal rules, in which the new left-hand side of the new rules will contain both
the left-hand side of the conditional rules and the SMT constraints. An operator
should separate both parts, so that later the original term can be distinguished
from the SMT restrictions.

We have implemented a module that is responsible for carrying out the pro-
cess of transformation of conditional rules. This module defines two operators:

op transformMod : Module -> Module .
op transformRls : RuleSet -> RuleSet .



Canonical Narrowing with Irreducibility and SMT Constraints 55

The first receives a module, theory, module with strategy or theory with strat-
egy. In either case, a new operator is added to the set of operators of the module
or theory, which will be used to separate the terms from the SMT constraints
in the transformed rules. It is also necessary to add the import of the Maude
META-TERM module to the converted module, so that it is capable of processing
the addition of this new operator. Finally, this operator calls the other defined
operator, using as an argument the set of rules of the module to be transformed.
For example, the equation used to transform a module without strategy would
be the following:

eq transformMod(mod ModId is Imports sorts Sorts . Subsorts Ops Membs Eqs Rls1 endm)
= mod ModId is Imports (protecting ’META-TERM .)

sorts Sorts . Subsorts
(Ops (op ’_>>_ : ’Boolean ’State -> ’State [ctor poly (0 2)] .))
Membs Eqs transformRls(Rls1) endm .

The second operator, therefore, receives a set of rules, and is in charge of
iterate through it looking for conditional rules. Each time a conditional rule is
found, it is transformed into a new unconditional rule, in which the condition is
added to the left-hand side using the >> operator defined above. The equations
used to do this are as follows:

eq transformRls(Rls1 (crl Lhs => Rhs if (SmtConst = BooleanValue) [Attrs].) Rls2)
= transformRls(Rls1 Rls2) (rl Lhs => ’_>>_[SmtConst,Rhs] [Attrs narrowing] .) .

eq transformRls(Rls1) = Rls1 [owise] .

Thus, if we have a conditional rule of the form crl Lhs => Rhs if
(SmtConst = BooleanValue) [Attrs], it will be automatically transformed
into an unconditional rule of the form rl Lhs => (SmtConst >> Rhs) [Attrs
narrowing], where Lhs and Rhs are variables of Universal type (that is, they
can be instantiated as any sort), SmtConst is a variable that represents the SMT
constraints, and BooleanValue is a Boolean variable expected to be true, used
only to be able to encode SMT constraints in the conditions of the rules. The
new form of the rule after transforming it will allow us later to make the >>
operator disappear and separate the term from the SMT constraints. This is
explained in detail in the following section.

4.3 Extension to Handle SMT Constraints

Once we have prepared the module transformation to convert all the conditional
rules into unconditional ones, we can extend the previous command so that
it processes the SMT terms that will be generated with the new rules. This
extension has been done without making changes at the user level, except for
the addition of possible values to one of the existing arguments, as well as a new
argument that allows to indicate initial SMT constraints:

narrowing(Module, Term, SearchArrow, Term, AlgorithmOptionSet, VariantOptionSet, TermList,
Term, Qid, Bound, Bound)

Until now, the fifth argument, of type AlgorithmOptionSet, only accepted
the standard and canonical values, used to indicate the type of narrowing
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algorithm to use. Now, it also accepts combinations of those two values with
the smt and noCheck values, although the second is a limitation of the first, so
it cannot appear without it. By using the smt value, the transformation of the
conditional rules will be performed in the module used as rewrite theory if neces-
sary. Subsequently, the SMT constraints will be processed during the execution
of the algorithm to check if they are satisfiable at each node of the reachability
tree. If it is also accompanied by the value noCheck, only the transformation of
the rules will be carried out, ignoring the satisfiability of the SMT constraints.

The most relevant changes to the algorithm occur before trying to unify the
term of a new generated node with the target term, since the satisfiability of the
SMT constraints for that node will have to be checked first. Until reaching that
step, not many modifications are needed, since the narrowing steps will be given
using the rules in a usual way, because the transformation of conditional rules
will have been previously carried out just at the beginning of the algorithm, if
the user indicates that SMT constraints are being used. Furthermore, we need to
modify the previously used data structures. Now the main structure must save
the initial SMT constraints indicated by the user. It will also be necessary for
each of the nodes to contain a list of the SMT constraints carried so far. We have
stored that list at each node in a {Term, Bool} pair, where the second value
of the pair indicates the satisfiability of the constraints found in the first value.
Two new operators are introduced in the algorithm that run after the generation
of a new node and renaming of its variables, although they will only be used if
the user indicates that SMT restrictions must be processed:

op evaluateSMT : UserArguments TreeInfo SolutionList -> NarrowingInfo .
op checkSat : UserArguments TreeInfo SolutionList -> NarrowingInfo .

The evaluateSMT operator performs the separation of the SMT constraints
from the new term generated with one of the transformed rules. In turn, it joins
these restrictions with the list of restrictions carried so far, which will come from
the predecessor nodes to the current one and from the initial restrictions indi-
cated by the user. Additionally, it launches to evaluate all those restrictions, to
know if they are satisfiable or not. To do this, we rely on Maude’s SMT interface,
which is available in the meta-level. Specifically, we use the metaCheck [5, §16],
which receives the module to use and the term to evaluate, returning a value of
type Bool. If the result is true, the constraints are satisfiable. Otherwise, false
is returned:

op metaCheck : Module Term ~> Bool [special (...)] .

Note that in case the user has indicated, in addition to the smt value as an
argument, the noCheck value, the evaluateSMT operator will only separate the
SMT constraints from the term, ignoring the rest of the process, since we are
not interested in checking the satisfiability, but in being able to process the
constraints of the initial conditional rules.

The checkSat operator is responsible for processing the result obtained when
executing the metaCheck function. If the restrictions are satisfiable, the next
execution step should be the attempt to unify the term of the node with the
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objective term, to check if it corresponds to one or more solutions of the reacha-
bility problem. If the constraints are not satisfiable, then it will not make sense
to perform the unification step, since we will not consider the term of the node
as valid. We therefore return to the step of generating new nodes, marking the
current node as invalid, so that it is not taken into account later, since we do
not want to generate the possible child nodes of this node either.

4.4 Variable Consistency

As we explained in our previous work [14] on which we based this algorithm, the
way Maude generates the fresh variables may lead to clashes. For this reason,
the fresh variables that are generated in each narrowing step must be renamed
using an internal counter, and using the $ symbol as an identifier. Since the
variables in the SMT constraints are related to those used in the terms, as
well as to the variables in the previously processed SMT constraints, there is a
consistency problem with this renaming. That is why in each narrowing step, we
now have to apply variable substitutions to the SMT constraints so that there
is no such loss of consistency. Specifically, at each narrowing step, the computed
substitution that must be applied to the term of the previous node to take that
step must be applied to the new node’s SMT constraint. The substitution must
also be applied to the SMT constraint list carried along the node branch. In turn,
this list will already come with the variables renamed in the previous steps, so
consistency builds up. Note that the initial SMT restrictions indicated by the
user will also have to be renamed. This is not a problem, since these constraints
are also automatically added to the list of constraints of each node, so it can be
renamed at the same time as the rest.

5 Experiments

For the experiments, we have considered the Brands and Chaum protocol of
Example 2 in two forms: its version with only time, published in [1], and its ver-
sion with time and space, published in [2]. In both, the use of SMT restrictions
is necessary, which in our case are codified with conditional rules. As explain in
Sect. 4, these conditional rules will be processed to transform them into uncondi-
tional rules, in order to correctly obtain the SMT constraints at each narrowing
step.

All the files used to define the new narrowing algorithm, as well as the exper-
iments that we will see next and their results, can be found at the following link:
https://github.com/ralorueda/smt-narrowing.

5.1 Handling SMT Constraints

We rely on the generic rewrite theory for protocol specification, inspired on
the strand spaces [12] used by Maude-NPA [8], used in our previous work on
canonical narrowing [14], but with some modifications that adapt it to include

https://github.com/ralorueda/smt-narrowing
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SMT constraints on the real numbers, inspired on the constraints used in [1,2].
It is a module that allows us to specify a state, made up of sets of strands
and the intruder knowledge, which represents the communication channel. With
it we can represent the protocols in a generic way, adding the corresponding
equational theories for each of them. Later, when coding the narrowing calls, we
will specify the exact strands of each protocol.

In the original module, we had two transition rules. One of them processes
the sent messages, and the other the received messages:

var IK : IntruderKnowledge . var SS : StrandSet . var M : Msg . vars L1 L2 : SMsgList .

rl [receive-msg] : { (SS & [ ( L1 , -(M)) | L2 ]) { (inI(M) , IK) } } =>
{ (SS & [ L1 | (-(M) , L2) ]) { (inI(M) , IK) } } [narrowing] .

rl [send-msg] : { (SS & [ (L1 , +(M)) | L2 ]) { (inI(M) , IK) } } =>
{ (SS & [ L1 | (+(M) , L2) ]) { (nI(M) , IK) } } [narrowing] .

It can be seen in each of them how, for each set of strands, represented in square
brackets, there is a list to the left of the operator | and one to the right. The first
contains the messages to be processed, while the second contains the processed
messages. At each transition, a message (sent or received) is taken from the end of
the list of messages to be processed and moved to the list of processed messages.
In the event that it is a sent message, the correspondence of that message will
also be modified in the communication channel or intruder knowledge.

To adapt the module to protocols using non-linear arithmetic constraints on
the real numbers via satisfiability, we add a conditional rule that is responsible
for processing a new type of data that can appear in the strands sets: con-
straints. Specifically in our case, SMT constraints (type Boolean), which will
be represented in the channel between the messages with the operator { }. We
will therefore now have three rules. One of them is responsible for processing the
messages sent, another the messages received, and another the restrictions that
occur at any given time:

var IK : IntruderKnowledge . var SS : StrandSet . var SSR : StrandSetR .
var SSN : StrandSetN . var M : Msg . vars LeE2 : SMsgList-eE .
var LREe1 : SMsgListR-Ee .

crl [check-contraint] : { (SSR & [ LREe1 , {B:Boolean} | LeE2 ]) { IK } } =>
{ (SSR & [ LREe1 | {B:Boolean} , LeE2 ]) { IK } }

if B:Boolean = true [nonexec] .
rl [receive-msg] : { (SSN & [ LREe1 , -(M) | LeE2 ]) { (inI(M) , IK) } } =>

{ (SSN & [ LREe1 | -(M) , LeE2 ]) { (inI(M) , IK) } } [narrowing] .
rl [send-msg] : { (SS & [ LREe1 , +(M) | LeE2 ]) { (inI(M) , IK) } } =>

{ (SS & [ LREe1 | +(M) , LeE2 ]) { (nI(M) , IK) } } [narrowing] .

Note that in this case we use variables from different sorts, SMsgListR-Ee
and SMsgListR-eE, rather than the ones we used in [14]. This is because we have
created a rule hierarchy, mimicking some optimizations of the Maude-NPA [9],
in such a way that a more defined processing order is followed, significantly
reducing the computation time in the experiments. In this way, whenever there
is a constraint at the end of the list of messages to be processed in a strand set, it
will be processed first. If this is not the case, it will check if there is any received
message at the end of the list of messages to be processed in a strand set, and
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will be processed. If neither of these two cases occurs, then a sent message will
be processed.

5.2 Brands and Chaum with Time

The previous module allows us, in a generic way, to specify protocols that contain
SMT restrictions. To this must be added the specific equational theories of each
protocol. In our case, the first protocol used is Brands and Cham with time [1],
which can be seen as a simplified version of the protocol seen in Example 1, but
does not take into account the coordinates of the messages. Two cryptographic
primitives are combined: exclusive-or over a set of nonces and a commitment
scheme. Exclusive-or is defined with the following properties:

sort NNSet .
subsorts Nonce Secret < NNSet .

op null : -> NNSet .
op _*_ : NNSet NNSet -> NNSet [assoc comm] .
vars X Y : [NNSet] .

eq [idem] : X * X = null [variant] .
eq [idem-Coh] : X * X * Y = Y [variant] .
eq [id] : X * null = X [variant] .

The commitment scheme allows a participant to commit to a chosen hidden value
at an early protocol stage and reveal it later. It is defined with the following
properties:

op commit : Nonce Secret -> NTMsg .
op open : Nonce Secret NTMsg -> [Boolean] .
eq open(N1:Nonce,Sr:Secret,commit(N1:Nonce,Sr:Secret)) = true [variant] .

The open function is defined only for the successful case. This implies the use of
the kind [Boolean] rather than the sort Boolean. We also use additional oper-
ators for this protocol, which allow us to define signing, message concatenation,
and the creation of nonces and secrets.

sorts Msg NTMsg TMsg .
sorts Name Honest Intruder Fresh Secret Nonce .
subsorts NNSet < NTMsg < Msg .
subsorts Nonce Secret < NNSet .
subsort Name < Msg .
subsort Honest Intruder < Name .

ops a b : -> Honest .
op i : -> Intruder .
ops ra1 rb1 rb2 : -> Fresh .
op n : Name Fresh -> Nonce .
op s : Name Fresh -> Secret .
op sign : Name NTMsg -> NTMsg .
op _;_ : NTMsg NTMsg -> NTMsg [gather (e E)] .

Additionally, we add several operators that will allow us to add metadata to
the messages. In them, the sending and receiving times of the messages will be
saved, as well as the identifier of the sender and the receiver.
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sorts TimeInfo NameTime NameTimeSet .
subsort NameTime < NameTimeSet .
subsort TMsg < Msg .

op _@_ : NTMsg TimeInfo -> TMsg .
op _:_ : Name Real -> NameTime .
op mt : -> NameTimeSet .
op _#_ : NameTimeSet NameTimeSet -> NameTimeSet [assoc comm id: mt] .
op _->_ : NameTime NameTimeSet -> TimeInfo .

Note that times will be represented as real numbers, one of the data types
manageable by Maude’s SMT interface. The distance between two participants
A and B is represented by a variable dab:Real.

The module defined with the previous sorts, operators and rules allows us to
code the strands of the Brands and Chaum protocol of Example 1 only with time.
This will be done in the call to the narrowing algorithm, with an initial state and
a target state. In the initial state, the strand sets will contain a list of messages
and constraints to be processed and a list of messages and constraints processed,
which will be empty. In the target state, the lists will have been inverted, so that
all the messages and restrictions to be processed become processed. Consider,
for example, the strands of a prover and a verifier in a regular execution of the
Brands and Chaum protocol with time. With our syntax, they would be specified
in the initial state as follows:

--- Alice, verifier
([nilEe,

-(Commit:NTMsg @ b : t1:Real -> a : t1’:Real),
{(t1’:Real === t1:Real + dab:Real) and dab:Real > 0/1},

+(n(a,ra1) @ a : t2:Real -> b : t2’:Real),
-((n(a,ra1) * NB:Nonce) @ b : t3:Real -> a : t3’:Real),

{(t3’:Real === t3:Real + dab:Real) and dab:Real > 0/1 and t3:Real >= t2’:Real},
{(t3’:Real - t2’:Real) <= (2/1 * dab:Real) and dab:Real > 0/1},

-(SB:Secret @ b : t4:Real -> a : t4’:Real),
{open(NB:Nonce,SB:Secret,Commit:NTMsg)},
{(t4’:Real === t4:Real + dab:Real) and dab:Real > 0/1 and t4:Real >= t3’:Real},

-(sign(b,(n(a,ra1) * NB:Nonce) ; n(a,ra1)) @ b : t5:Real -> a : t5’:Real),
{(t5’:Real === t5:Real + dab:Real) and dab:Real > 0/1 and t5:Real >= t4’:Real}

| nileE]
&
--- Bob, prover
[nilEe,

+(commit(n(b,rb1),s(b,rb2)) @ b : t1:Real -> a : t1’:Real),
-(NA:Nonce @ a : t2:Real -> b : t2’:Real),

{(t2’:Real === t2:Real + dab:Real) and dab:Real > 0/1 and t2:Real >= t1’:Real},
+((NA:Nonce * n(b,rb1)) @ b : t3:Real -> a : t3’:Real),
+(s(b,rb2) @ b : t4:Real -> a : t4’:Real),
+(sign(b,(NA:Nonce * n(b,rb1)) ; NA:Nonce) @ b : t5:Real -> a : t5’:Real)

| nileE])

We can see how the prover, Bob, will first send a commit to the verifier.
Afterwards, the verifier, Alice, sends her nonce to the prover. Subsequently, the
prover will send the XOR of his nonce with the received one, and then sends the
secret. The verifier will open it to confirm everything is okay. Finally, the prover
will send the signs messages. An @ operator appears in each message, after which
the sending and receiving times of the message are saved, as well as the identifier
of the sender and receiver. We can also see how SMT constraints are introduced
after each received message. In them, conditions to be met are specified regarding
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the delivery and reception times. Conditions to satisfy relative to distances are
also specified. For example, in the SMT constraint that is introduced on the
strands of the prover, it is specified that the arrival time of the received message
must be equal to its departure time plus the distance between the prover and
the verifier. It is also specified that this distance must be greater than zero, and
that the sending time of the message must be equal to or greater than the time
in which the previous message was received.

Using this syntax and coding methodology, we have defined three experiments
in which we test a regular execution of the protocol, a mafia-like attack pattern,
and a hijacking-like attack pattern. In regular execution, we get a solution, which
is expected, since if the protocol is well defined, this execution should be possible.
In the case of the mafia attack, a priori, a solution is also found, which translates
into a possible vulnerability. However, adding the triangle inequality (d(a, i) +
d(b, i)) > d as the initial constraint, together with the constraint d(V, P ) > d > 0,
no solution is found. This is because, for consistency to exist in this execution,
it is necessary that 2 ∗ d(V, I) + 2 ∗ d(P, I) ≤ 2 ∗ d. As mentioned in Sect. 4, the
initial SMT constraints can be written in one of the arguments of the narrowing
command. However, it is possible to perform a hijacking attack, and that is
why by specifying this pattern in one of the experiments, a solution is found.
The attack occurs when an intruder located outside the neighborhood of the
verifier (i.e., d(V, I) > d) succeeds in convincing the verifier that he is inside the
neighborhood by exploiting the presence of an honest prover in the neighborhood
(i.e., d(V, P ) ≤ d).

5.3 Brands and Chaum with Time and Space

The second protocol that we have used for the experiments is an extension of the
previous one: Brands and Chaum with time and space, detailed at a theoretical
level in Example 2. In this case, the coordinates related to the sending and
receiving of each message appear in the metadata of the messages and in the
restrictions, that is, the coordinates of the participants. To be able to write this,
a slight modification of the previous protocol specification is enough, as well as
the addition of a new operator:

sort CoordNameTime .
op _:_,_,_,_ : Name Real Real Real Real -> CoordNameTime .
op _->_ : CoordNameTime NameTimeSet -> TimeInfo .

Once the modification is done, it is possible to encode the new strands. For
example, the strands for a verifier and a prover in a regular execution of the
protocol would now be as follows:

--- Alice, verifier
[nilEe,

-(Commit:NTMsg
@ b : x1:Real,y1:Real,z1:Real,t1:Real -> a : t2:Real),

{(t2:Real === t1:Real + dab1:Real) and (dab1:Real > 0/1) and
((dab1:Real * dab1:Real) === (((x1:Real - ax:Real) * (x1:Real - ax:Real)) +
((y1:Real - ay:Real) * (y1:Real - ay:Real))) +
((z1:Real - az:Real) * (z1:Real - az:Real)))},
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+(n(a,ra1)
@ a : ax:Real,ay:Real,az:Real,t2:Real -> b : t3:Real),

-((n(a,ra1) * NB:Nonce)
@ b : x3:Real,y3:Real,z3:Real,t3:Real -> a : t4:Real),

{(t4:Real === t3:Real + dab3:Real) and (dab3:Real > 0/1) and
((dab3:Real * dab3:Real) === (((x3:Real - ax:Real) * (x3:Real - ax:Real)) +
((y3:Real - ay:Real) * (y3:Real - ay:Real))) +
((z3:Real - az:Real) * (z3:Real - az:Real)))},
{((t4:Real - t2:Real) <= (2/1 * d:Real)) and (d:Real > 0/1)},

-(SB:Secret
@ b : x4:Real,y4:Real,z4:Real,t5:Real -> a : t6:Real),

{open(NB:Nonce,SB:Secret,Commit:NTMsg)},
{(t6:Real === t5:Real + dab4:Real) and (dab4:Real > 0/1) and
((dab4:Real * dab4:Real) === (((x4:Real - ax:Real) * (x4:Real - ax:Real)) +
((y4:Real - ay:Real) * (y4:Real - ay:Real))) +
((z4:Real - az:Real) * (z4:Real - az:Real)))},

-(sign(b,(n(a,ra1) * NB:Nonce) ; n(a,ra1))
@ b : x5:Real,y5:Real,z5:Real,t7:Real -> a : t8:Real),

{(t8:Real === t7:Real + dab5:Real) and (dab5:Real > 0/1) and
((dab5:Real * dab5:Real) === (((x5:Real - ax:Real) * (x5:Real - ax:Real)) +
((y5:Real - ay:Real) * (y5:Real - ay:Real))) +
((z5:Real - az:Real) * (z5:Real - az:Real)))}

| nileE]
&
--- Bob, prover
[nilEe,

+(commit(n(b,rb1),s(b,rb2))
@ b : bx:Real,by:Real,bz:Real,t1:Real -> a : t2:Real),

-(NA:Nonce
@ a : x2:Real,y2:Real,z2:Real,t2:Real -> b : t3:Real),

{(t3:Real === t2:Real + dab2:Real) and (dab2:Real > 0/1) and
((dab2:Real * dab2:Real) === (((x2:Real - bx:Real) * (x2:Real - bx:Real)) +
((y2:Real - by:Real) * (y2:Real - by:Real))) +
((z2:Real - bz:Real) * (z2:Real - bz:Real)))},

+((NA:Nonce * n(b,rb1))
@ b : bx:Real,by:Real,bz:Real,t3:Real -> a : t4:Real),

+(s(b,rb2)
@ b : bx:Real,by:Real,bz:Real,t3:Real -> a : t6:Real),

+(sign(b,(NA:Nonce * n(b,rb1)) ; NA:Nonce)
@ b : bx:Real,by:Real,bz:Real,t3:Real -> a : t8:Real)

| nileE]

The exchange of messages is very similar to what we have seen before, but
in this case the metadata is somewhat more complex, since the sending coor-
dinates are attached to each sending time. In addition, the restrictions are also
complicated, since in this case it will also be necessary to verify that the condi-
tions required for those coordinates are satisfied at each moment. In fact, since
the new constraints are non-linear arithmetic, Maude’s SMT is not capable of
processing them. In order to correctly execute the traces related to this protocol,
we have used a version of Maude called Maude-NRA, which provides an SMT
solver (CVC4) that is capable of processing this type of arithmetic.

Once more, we have performed experiments for this protocol with a regu-
lar execution, a mafia-like attack pattern, and a hijacking-like attack pattern.
The results are similar to the previous ones, although more complex. Regu-
lar execution returns a solution, since it is possible to do it without problems.
The hijacking attack is again possible as well, so a solution is again returned.
Regarding the mafia attack, the same thing happens: a priori it is possible, but
by adding the initial SMT restrictions necessary for the trace to be consistent,
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the attack is impossible. These restrictions are the same as before, but in this
case some relative to coordinates are also added.

6 Conclusions and Future Work

The canonical narrowing strategy with irreducibility and SMT constraints opens
the door to the use of narrowing to analyze protocols that use laws of physics,
such as the Brands and Chaum protocol. It is a greatly generic methodology
of symbolic reachability analysis that manages to prove the existence of traces
of a protocol, giving greater flexibility when defining and specifying them. In
this article we have presented an implementation of canonical narrowing capa-
ble of handling SMT constraints. This allows us to carry out symbolic analysis
of two versions of the Brands and Chaum protocol. Maude-NPA already handled
such protocols, as shown in [1,2], but in an ad-hoc way without the canonical
narrowing presented here. We now have a new algorithm with a powerful theo-
retical framework behind it, which can be useful to both Maude-NPA and other
symbolic protocol analysis tools. As future work, we expect to expand this canon-
ical narrowing to more general cases, clearly increasing its power for protocol
analysis.
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S.A., Rowe, P. (eds.) Protocols, Strands, and Logic. LNCS, vol. 13066, pp. 22–49.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91631-2 2

3. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30
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Abstract. In the Maude specification language, the behavior of systems
is modeled by nondeterministic rewrite rules, whose free application may
not always be desirable. Hence, a strategy language has been introduced
to control the application of rules at a high level, without the intricacies
of metaprogramming. In this paper, we give an overview of the Maude
strategy language, its applications, related verification tools, and exten-
sions, illustrated with examples.

1 Introduction

Computation in rewriting logic [29,30] is the succession of independent rule
applications in any positions within the terms. This flexibility is the corner-
stone of its natural representation of nondeterminism and concurrency, but it
is sometimes useful to restrict or guide the evolution of rewriting. For example,
a theorem prover does not blindly apply its inference rules, and the local reac-
tions of a chemical system may be modulated by the environment. Strategies
are the traditional resource to express these concerns, but specifying them in
Maude involved the not so easy task of using its reflective capabilities. This has
changed in Maude 3 with the inclusion of an object-level strategy language to
explicitly control the application of rules [15]. Several operators resembling the
usual programming language constructs and regular expressions allow combining
the basic instruction of rule application to program arbitrarily complex strate-
gies, which can be compositionally defined in strategy modules. The language
was originally designed in the mid-2000s by Narciso Mart́ı-Oliet, José Meseguer,
Alberto Verdejo, and Steven Eker [27] based on previous experience with internal
strategies at the metalevel [12,14] and earlier strategy languages like ELAN [8],
Stratego [10], and Tom [6]. Other similar strategy languages appeared later like
ρLog [26] and Porgy [18]. The first prototype was available as a Full Maude
extension and it was already given several applications [16,21,40–42]. Now, since
Maude 3.0, the language is efficiently implemented in C++ as part of the official
interpreter [15].

As well as an executable specification language, Maude is also a verification
tool and systems modeled with strategies need also be verified. Together with
Narciso Mart́ı-Oliet, Isabel Pita, and Alberto Verdejo, we have extended the
Maude LTL model checker to work with strategy-controlled specifications [38]
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and established connections with external model checkers for evaluating CTL,
CTL*, and μ-calculus properties [36]. More recently, we have also developed a
probabilistic extension of the Maude strategy language whose specifications can
be analyzed using probabilistic and statistical model-checking techniques [32].

This paper is based on an invited tutorial on the Maude strategy language
given at WRLA 2022 and explains the language and the aforementioned related
topics. Section 2 starts with an introduction to the strategy language, Sect. 3
illustrates it with some more examples and includes references for others, Sect. 4
reviews some related tools and extensions, and Sect. 5 concludes with some
remarks for future developments. More information about the strategy language,
examples, and its related tools is available at maude.ucm.es/strategies.

2 A Brief Introduction to the Maude Strategy Language

In this section, we give an introduction to the Maude strategy language through
an example, without claiming to be exhaustive or systematic. For a compre-
hensive informal reference about the language, we suggest its dedicated chapter
in the Maude manual [13, §10]. Formal semantics, both denotational [32] and
operational [28,38], are also available [35].

Let us introduce the following system module WORDS as running example,
where Words are defined as lists of Letters in the latin alphabet. Three rules,
swap, remove, and append, are provided to manipulate words.

mod WORDS is

sorts Letter Word .

subsort Letter < Word .

ops a b c d · · · z : -> Letter [ctor] .

op nil : -> Word [ctor] . *** empty word

op __ : Word Word -> Word [ctor assoc id: nil] .

rl [swap] : L W R => R W L .

rl [remove] : L => nil .

rl [append] : W => W L [nonexec] .

endm

The swap rule permutates two letters in a word, removes removes one, and
append attaches a new letter L to the end of the word. This latter rule is marked
nonexec(utable), since it includes an unbound variable in the right-hand side.
However, we will be able to execute it with the strategy language.

This rewrite system is nonterminating due to the idempotent swap rule. In
fact, for every word with at least two letters, Maude’s rewrite command will
loop.

Maude > rewrite i t . *** does not terminate

However, we can obtain something useful from this module by controlling rewrit-
ing with the strategy language. The command for executing a strategy expression

https://maude.ucm.es/strategies
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α on a term t is srewrite t using α and its output enumerates all terms that
are obtained by this controlled rewriting. Multiple solutions are possible, since
strategies are not required to completely remove nondeterminism. The elemen-
tary building block of the strategy language is the application of a rule, as cannot
be otherwise, whose most basic form is the strategy all that applies any rule in
the module.
Maude > srewrite i t using all .

Solution 1 Solution 3

rewrites: 1 rewrites: 3

result Word: t i result Letter: i

Solution 2 No more solutions.

rewrites: 2 rewrites: 3

result Letter: t

The previous fragment evaluates all on the term i t yielding three different
solutions, one for swap and two for remove. This is equivalent to the command
search t =>1 W:Word that looks for all terms reachable by a single rewrite from
t, but the strategy language allows for more flexibility. For instance, if we want
to apply only rules with a given label, say swap, we can simply write swap.
Maude > srewrite i t using swap .

Solution 1

rewrites: 1

result Word: t i

No more solutions.

rewrites: 1

Rules are applied in any position of the term by default, as seen in the second
and third solutions of the first srewrite command, or in application of swap
to the word w o n with result {o w n, n o w, w n o}. If this is not desired, the top
modifier can be used to limit their application to the whole term, like in top(swap)

or top(all), whose only result is n o w. For being more precise when applying
rules anywhere, we can also specify an initial substitution to be applied to both
sides of the rule and its condition before matching. For example, swap[L <- w]
would instantiate the rule L W R => R W L to w W R => R W w and yield n o w
and o w n as solutions. Similarly, swap[L <- w, W <- nil] would turn the rule
into w R => R w and produce the single solution o w n.

Substitutions are essential when dealing with nonexecutable rules, like
append in the WORDS module, whose unbound variables can then be instanti-
ated. We can execute top(append[L <- a]) ; top(append[L <- t]) on the word
g o to turn it into a g o a t. In addition to using top for ensuring that the letter
is appended at the end of the word, the previous strategy introduced a new
combinator ; that executes a strategy on the results of the previous one, like
functional composition or concatenation. Its identity element is the strategy con-
stant idle that returns the original term unchanged as only solution. Another
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pervasive combinator is the disjunction or nondeterministic choice of strategies
α1 | · · · | αn, whose results are the union of the results of its operands. For
example, remove[L <- w] | remove[L - n] evaluates on w o n to {o n, w o}.
The identity element of the disjunction is fail, which does not produce any
solution at all. In a broader sense, we say that a strategy fails when it does not
produce any solution.

Suppose we want to calculate all permutations of a given word. This can be
achieved by accumulating the words obtained by successive swaps,

swap | (swap ; swap) | (swap ; swap ; swap) | · · · ,
until no new words are obtained. The iteration combinator α*, which can be
inductively described as idle |α ;α *, expresses this common pattern. Observe
the correspondence between the last strategy combinators and the constructors
of regular expressions:

Regular expressions ε ∅ α | β αβ α∗

Strategy language idle fail α |β α ;β α *

As formalized in [38], the full strategy language is able to describe any recur-
sively enumerable subset of the executions of the original rewrite system, over
both finite and infinite words, but regular languages are specially easily expressed
with these constructs. Coming back to the example, the expression swap * gives
all permutations of the original word, so 24 solutions for g o a t after a total of 81
rewrites. If we only need the solutions that start with g and finish with a letter
other than a, we can execute the strategy swap * ; match g W R s.t. R =/= a

where match P s.t. C is an operator that filters the terms that match a pattern
P and satisfy a condition C. Indeed, it works like an idle when the conditions
hold and like a fail when they do not. Other test variants, xmatch and amatch,
exist for matching with extension for structural axioms (i.e. matching fragments
of the flattened associative and/or commutative operators) or inside subterms,
respectively.

In Spanish, the letter h is not pronounced except when preceded by c, so
texters and tweeters sometimes obviate it against the criteria of the Royal Span-
ish Academy. If we do likewise, we would reduce h o l a to its homophone o l a
with remove[L <- h]. However, we do not want to transform b r o c h a into
b r o c a, because they are pronounced differently. We need a new tool to restrict
the application to a specific context, and this is the subterm rewriting matchrew
operators. Their syntax is similar to that of tests

matchrew P s.t. C by x1 using α1, . . ., xn using αn

but the subterms matched by the variables x1, . . . , xn in its pattern P are rewrit-
ten with strategies α1, . . . , αn. The solutions of this operator are the combinations
of all solutions obtained for every subterm, which are rewritten independently.
For example, matchrew L W by L using remove[L <- h] will safely remove the first
letter of the word if it is an h. For removing h in the middle of the word, we write
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xmatchrew L R by s.t. L =/= c by R using remove[L <- h] to ensure that the previ-
ous letter is not a c. Notice that we have used xmatchrew instead of matchrew,
because we do not want to match the whole term but a fragment of the associa-
tive list of letters. These two strategies can be combined with a nondetermin-
sitic choice α |β to remove any silent h letters in a word. For example, apply-
ing this strategy to h e c h o yields e c h o but not h e c o. Unfortunately, the word
h i p o c l o r h i d r i a is not rewritten to i p o c l o r i d r i a, because only one h
is removed at a time. In order to normalize a term with respect to a strategy, i.e.
to apply a strategy until it cannot be executed further, the language includes the
α ! combinator. Putting the previous strategy under this normalization operator
we obtain an expression that removes all silent h from a word.

Writing strategies as standalone expressions becomes unmanageable as they
grow in size. Strategy modules are available to give them name and define them
modularly. For example, the following strategy module WORDS-STRAT extends the
system module WORDS with two new strategies, rmh and rmh-one, declared with
the strats statement.

smod WORDS-STRAT is

protecting WORDS .

strats rmh rhm-one @ Word .

vars L R : Letter .

var W : Word .

sd rmh := rmh-one ! .

sd rmh-one := matchrew L W by L using remove[L <- h] .

sd rmh-one := xmatchrew L R s.t. L =/= c

by R using remove[L <- h] .

endsm

The sort after the @ sign indicates which terms are intended to be rewritten
by the strategy, although it does not have any practical effect. Each named
strategy is assigned zero or more strategy expressions with definitions that start
by the sd keyword or by csd if they are conditional. In the module above, rmh
is the strategy that removes every silent h in a word, while the two definitions of
rmh-one remove a single h at initial and inner position, respectively. When the
strategy rmh-one is called in rmh, the two definitions for rmh-one are executed
nondeterministically, as if their expressions where joined by the disjunction |
operator.

One of the greatest advantages of strategy modules is the possibility
of defining recursive strategies. For example, the following strategy module
WORDS-REPEAT declares a single recursive strategy remove(l, n) with two param-
eters that removes exactly n occurrences of the letter l in the subject term.

smod WORDS-REPEAT is

protecting WORDS .

strat remove : Letter Nat @ Phrase .
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var N : Letter . var N : Nat .

Its semantics is given by two definitions with disjoint matching patterns. For
removing zero letters, we simply do nothing with idle.

sd remove(L, 0) := idle .

Otherwise, one occurrence of the letter L is deleted with the remove rule and
the strategy itself is called recursively with a decremented counter.

sd remove(L, s N) := remove[L <- L] ; remove(L, N) .

endsm

For example, rewriting b a z a a r with remove(a, 2) gives b z a r and b a z r.
However, rewrite(a, 4) would fail because of the attempt to call remove for
the fourth time. We can make remove(l, n) erase as many occurrences of l as
possible but no more than n with the following change on the second definition:

sd remove(L, s N) := remove[L <- L] ? remove(L, N)

: idle .

We have used the conditional operator α ?β : γ that evaluates β on the results
of α or γ on the original term if α yields no solution. This way, we only invoke
the recursive strategy if the remove rule succeeds, and the execution is finished
when it fails. Conditional operators are quite general since its condition is an
arbitrary strategy and recurrent conditional patterns are given dedicated syntax.
For example, α or-else β executes β only if α fails, and it is equivalent to α ?
idle : β.

3 Some Examples

In this section, we further illustrate the language with three examples. At the
same time, we cite other published works where applications of the language
have been presented.

3.1 Deduction Procedures

In deductive reasoning, inference rules should be carefully applied to reach the
desired conclusions in an efficient way. A free or inadequate application of the
rules may loop or lead to a poor performance in many examples of inference
systems. For instance, the Davis-Putnam-Logemann-Loveland (DPLL) system
for deciding the satisfiability of a Boolean formula has a natural brute-force
split rule that generates two subproblems, where the variable x is respectively
assumed true and false.

(split)
Δ � Γ, x ∨ C

Δ, x � Γ Δ,¬x � Γ,C
if x,¬x �∈ Δ

Of course, repeatedly applying this rule will solve the satisfiability problem, but
at an exponential cost in the best case. The inference system includes other rules



An Overview of the Maude Strategy Language and Its Applications 71

that are better applied first. For example, subsume removes pending clauses with
a satisfied atom.

(subsume)
Δ � Γ, x ∨ C

Δ � Γ
if x ∈ Δ

Hopefully, this may remove some variables in C that do not appear elsewhere,
avoiding some superfluous case distinctions. A first rudimentary strategy for SAT
solving with these rules would be (subsume | · · ·) or-else split where the dots
are occupied by the other simplification rules. A second one can be more selective
and apply split to the variable that cancels the most possible clauses. More
serious strategies for the DPLL rules are programmed in the Maude strategy
language in [20].

Implementations of deduction procedures do not usually individualize the
rules in their code, but rule-based systems like Maude can easily separate the
basic logic and its control using strategies. In the literature, this has been encour-
aged by the Kowalski’s motto Algorithm = Logic + Control [22] or Lescanne’s
Rule + Control approach [24]. This latter work implements in Caml four equa-
tional completion procedures on top of the inference rules by Bachmair and
Dershowitz [5], decoupling at some extent the rules from their control. These
same completion procedures have also been specified using the initial prototype
of the Maude strategy language in [42] and an improved redesign of this speci-
fication is available in [32]. In this latter version, we have clearly separated the
inference rules in a system module COMPLETION and the four deduction proce-
dures in four strategy modules being protected extensions of COMPLETION, as
depicted in Fig. 1. Each procedure is a recursive strategy that maintains the
inference state in its call arguments without modifying the term or adding more
rules.

CRITICAL-PAIRS

COMPLETION

KNUTH-BENDIX

N-COMPLETION S-COMPLETION

ANS-COMPLETION

Functional

System

Strategy

Fig. 1. Equational procedure specification with clear separation of concerns.

Following similar ideas, other examples of deduction procedures are pro-
grammed using the Maude strategy language like congruence closure [16], the
Martelli-Montanari unification procedure [1], and a Sudoku solver [40].
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3.2 Semantics of Programming Languages

Strategies are also meaningful when dealing with semantics of programming
languages. Structural operational semantics define the small-step behavior of
programs through inference rules whose premises are steps for the constituents
of the program. In this sense, they are not much different to the deduction
procedures seen in the previous section, and the Maude strategy language can
be useful to describe them [9]. Strategies are particularly useful to generalize
semantic rules with negative premises or rule precedence, which are not easily
captured otherwise. For example, negation in Prolog is described by the following
rule

(split)
Γ � g �→∗ nil

Γ � (\+ g), gs → gs

that removes the negated goal n+ g from the goal list if g cannot be solved. This
premise can be expressed with the strategy combinator not(α) ≡ α ? fail :
idle. Indeed, we have specified an executable Prolog interpreter in [13] where
negation and cuts are described with strategies.

Let us illustrate the relation between strategies and programming with two
simple strategies for the untyped λ-calculus. We specify the basics of this for-
malism in the following module LAMBDA.

mod LAMBDA is

sorts Var LambdaTerm .

subsort Var < LambdaTerm .

op \_._ : Var LambdaTerm -> LambdaTerm [ctor...] .

op __ : LambdaTerm LambdaTerm -> LambdaTerm [ctor...] .

op subst : LambdaTerm Var LambdaTerm -> LambdaTerm .

*** the equational definition of subst is ommitted

var x : Var . vars M N : LambdaTerm .

rl [beta] : (\ x . M) N => subst(M, x, N) .

endm

As usual, there are only two constructors of λ-terms, abstraction λx.M and
application M N , and we consider a single reduction rule beta that transforms
(λx.M)N into M [x/N ] where every occurrence of x is replaced by N in M .
There may be multiple positions where to apply the β rule in a λ-term, called
β-redexes, but the Church-Rosser theorem tells that the calculus is confluent,
i.e. if we can reduce t →∗ t1 and t →∗ t2, there exists a t′ such that t1 →∗ t′ and
t2 →∗ t′. Nevertheless, how rules are applied still matters, since some reductions
may lead to a normal form while others may diverge for the same term (see
Fig. 2). Another classical result of the λ-calculus tells that repeatedly reducing
the outer leftmost redex always leads to a normal form in case it exists, and this
can be expressed as a strategy.
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(KI)Ω
(KI)Ω

(λy.I)Ω I

K = λx. (λy.x)
I = λx. x
Ω = (λx. xx)(λx.xx)

Fig. 2. Two reduction paths from the λ-term (KI) Ω.

In the strategy module LAMBDA-STRAT, we extend LAMBDA with two strate-
gies normal and applicative for reducing λ-terms, but more variants can be
defined like call-by-value and call-by-name. These are covered in an extended
specification of this example [32,34].

smod LAMBDA-STRATS is

protecting LAMBDA .

strats normal applicative · · · @ LambdaTerm .

vars x y z t : Var . vars M N : LambdaTerm .

The definition of normal describes a single reduction step of the normalization
strategy mentioned in the previous paragraph, i.e. applying beta on the outer
leftmost redex.

sd normal := matchrew \ x . M by M using normal

| top(beta) or-else matchrew M N by M using normal

or-else matchrew M N by N using normal .

For completely reducing a term, we can simply write normal ! with the normal-
ization operator. Alternatively, λ-terms can be reduced in the usual applicative
order, by selecting the inner rightmost redex.

sd applicative := matchrew \ x . M by M using applicative

| matchrew M N by N using applicative

or-else matchrew M N by M using applicative

or-else top(beta) .

However, this new strategy does not ensure that a normal form is reached if
it exists. We can see it by running the K I Omega term of Fig. 2 under both
strategies.

Maude > srew K I Omega using normal ! .

Solution 1

rewrites: 17

result LambdaTerm: \ x . x

No more solutions.

rewrites: 17

The normal form I ≡ λx.x is reached with normal, but it is not with
applicative. Notice that the srewrite command finishes even though the strat-
egy does not terminate.

Maude > srew K I Omega using applicative ! .
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No solution.

rewrites: 11

This is because the srewrite infrastructure is able to detect execution cycles
and interrupt the evaluation of the strategy, but the absence of solutions is the
evidence that applicative reduction does not terminate for this term.

The semantics of other programming languages have been addressed with the
Maude strategy language like Eden [21], the REC language of Glynn Winskel’s
textbook [34], the ambient calculus [31], CCS [27], and the Maude strategy
language itself [38].

3.3 Games

Strategies are pervasive in games, most usually for specifying how players can
solve or win them. Besides the Sudoku solver [40], already mentioned, the strat-
egy language has been used to work out the 15-puzzle [32], the Hanoi tower’s
puzzle [15], to compare different player strategies for Tic-Tac-Toe by model
checking [37], and to solve other smaller games [1].

In addition to expressing procedures for solving a game, strategies can also
specify intrinsic restrictions that are rather difficult to express with rules. For
example, in the river-crossing problem formalization in [36], we use strategies
to enforce a precedence that is part of the rules of the game. Here, we briefly
describe this example without going into details about the data representation,
which are available in the referenced article and in the repository of examples [1].
In the classical river-crossing puzzle, a shepherd needs to cross a river with a
wolf, a goat, and a cabbage using a boat with room for two passengers, the
shepherd included. The problem is that the wolf would eat the goat and the
goat would eat the cabbage as soon as they are left alone without the shepherd
in any side of the river. Our representation of the river is left L | right R
where L and R are sets of characters and left shepherd wolf goat cabbage
| right is the initial state. Four rewrite rules, alone, wolf, goat, and cabbage,
let the shepherd cross alone or with the corresponding passenger to the other
side. Two more rules, wolf-eats and goat-eats, carry out the threat of the
mentioned animal over its “prey”. Moreover, a key restriction is that the wolf
and the goat will never miss the opportunity to eat, so eating must happen
eagerly before moving. For instance, the wolf rule rewrites the initial state to
left goat cabbage | right shepherd wolf, where the goat and the cabbage
are left alone. In this situation, the goat-eats rule must be applied to yield
left goat| right shepherd wolf, but moving alone is also allowed in the
uncontrolled rewrite system. Indeed, we can try to use the search command to
solve the problem, by looking for the final state.

Maude > search initial

=>* left | right shepherd wolf goat cabbage .

Solution 1 (state 31)

states: 32 rewrites: 60
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empty substitution

No more solutions.

states: 36 rewrites: 89

This answer would make us think that the problem is solvable. It is indeed, but
this command is not an evidence, since recovering the path to this solution gives
an invalid sequence of moves.

Maude > show path 31 .

state 0, River: right | shepherd wolf goat cabbage left

===[ wolf ]===>

state 2, River: goat cabbage left | shepherd wolf right

===[ alone ]===>

state 7, River: shepherd goat cabbage left | wolf right

===[ goat ]===>

state 15, River: cabbage left | shepherd wolf goat right

===[ alone ]===>

state 23, River: shepherd cabbage left | wolf goat right

===[ cabbage ]===>

state 31, River: left | shepherd wolf goat cabbage right

In the second state the goat-eats rule should be applied, but alone is applied
instead.

In order to enforce the precedence of eating over moving we can use the
Maude strategy language. The following recursive strategy eagerEating applies
rules under this restriction until the final state is reached.

sd eagerEating :=

(match left | right shepherd wolf goat cabbage) ? idle

: (( eating or-else oneCrossing) ; eagerEating) .

sd eating := wolf-eats | goat-eats .

sd oneCrossing := shepherd | wolf | goat | cabbage .

Notice that nonterminating executions are also admitted by the strategy, but
they are not a problem for the strategy execution engine because of its cycle
detector. We can use the experimental search command controlled by a strat-
egy1 to find a valid solution for the problem.

Maude > search initial =>* left | right shepherd wolf

goat cabbage using eagerEating .

Solution 1 (state 30)

states: 36 rewrites: 72

empty substitution

No more solutions.

states: 36 rewrites: 75

Maude > show path 30 .

state 0, River: shepherd wolf goat cabbage left | right

1 The search-using command is not currently available in the official version of
Maude, but in an extended version with the strategy-aware model checker [38].
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===[ goat ]===>

state 23, River: wolf cabbage left | shepherd goat right

===[ alone ]===>

state 24, River: shepherd wolf cabbage left | goat right

===[ wolf ]===>

state 25, River: cabbage left | shepherd wolf goat right

===[ goat ]===>

state 27, River: shepherd goat cabbage left | wolf right

===[ cabbage ]===>

state 28, River: goat left | shepherd wolf cabbage right

===[ alone ]===>

state 29, River: shepherd goat left | wolf cabbage right

===[ goat ]===>

state 30, River: left | shepherd wolf goat cabbage right

3.4 Other Examples

Beyond the examples already cited in the previous sections, other applications
of the Maude strategy language have been published like specifications of the
Routing Information Protocol [38], membrane systems with several extensions
and model checking [39], the simplex algorithm and a parameterized backtrack-
ing scheme with instances for finding solutions to the labyrinth, 8-queens, graph
m-coloring, and Hamiltonian cycle problems [34], semaphores and processor
scheduling policies [38], a branch and bound scheme [1], Bitcoin smart con-
tracts [4], neural networks [41], and more [27].

4 Related Tools and Extensions

In this section, we briefly describe three extensions and related tools for the
strategy language: an extended model checker for strategy-controlled systems,
the support for reflective manipulation of strategies with some applications, and
a probabilistic extension of the language.

4.1 Model Checking

Model checking [11] is an automated verification technique based on the exhaus-
tive exploration of the execution space of the model. The properties to be checked
are usually expressed in temporal logics like Linear-Time Temporal Logic (LTL)
or Computation Tree Logic (CTL). Its integrated model checker for LTL is one
of the most widely used features of Maude [17]. However, it cannot be applied to
strategy-controlled specifications, since it does not know anything about strate-
gies. In order to solve this, we implemented a strategy-aware extension [33,38] of
this LTL model checker, which has been extended for branching-time temporal
logics in subsequent works [36].
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Intuitively, a strategy describes a subset of the executions of the original
model or a subtree of the original computation tree, so the satisfaction of a linear-
time or branching-time temporal property in a strategy-controlled system should
be evaluated on these representations of its restricted behavior. For example, in
the river-crossing puzzle of Sect. 3.3, the LTL formula � (risky → �¬ goal) (once
a risky state –where an animal is able to eat– is visited, the goal is no longer
reachable) does not hold in the uncontrolled system

Maude > red modelCheck(initial , [] (risky -> [] ~ goal)) .

rewrites: 43

result ModelCheckResult : counterexample(. . ., . . .)

but it does hold when the system is controlled by the eagerEating strategy.

Maude > red modelCheck(initial , [] (risky -> [] ~ goal),

’eagerEating) .

rewrites: 178

result Bool: true

However, the property � goal (the goal is eventually reached) does not hold in
any case, since the shepherd may keep moving in cycles, for example.

Maude > red modelCheck(initial , <> goal , ’eagerEating) .

rewrites: 24

result ModelCheckResult : counterexample(. . ., . . .)

Counterexamples returned by the strategy-aware model checker are executions
allowed by the strategy, which are often shorter or easier to understand. The
usage of the strategy-aware model checker is documented in [38] and it can be
downloaded from maude.ucm.es/strategies, along with examples and documen-
tation. Branching-time properties in CTL, CTL*, and the μ-calculus can also be
checked with the umaudemc tool [36], also available at this website. For example,
we can check the CTL* property A(�¬ risky → E � goal), saying that we can
eventually reach the goal by avoiding risky states, which holds both with and
without strategy.

$ umaudemc check river.maude initial

’A ([] ~ risky -> E <> goal)’

The property is satisfied in the initial state

(36 system states , 197 rewrites , holds in 18/36 states)

$ umaudemc check river.maude initial

’A ([] ~ risky -> E <> goal)’ eagerEating

The property is satisfied in the initial state

(35 system states , 176 rewrites , holds in 17/35 states)

4.2 Reflective Manipulation of Strategies

Even though the strategy language was introduced to avoid the complications of
the metalevel when controlling rewriting, reflection is still useful in the context
of strategies. Like any other Maude feature, the strategy language, strategy

https://maude.ucm.es/strategies
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modules, and the associated operations are reflected at the metalevel [13, §17.3].
First, every combinator of the language is declared as a term of sort Strategy
or its subsorts in the META-STRATEGY module of the Maude prelude.

ops fail idle : -> Strategy [ctor] .

op _[_]{_} : Qid Substitution StrategyList

-> RuleApplication .

op match_s.t._ : Term EqCondition -> Strategy .

op _?_:_ : Strategy Strategy Strategy -> Strategy [...] .

op _[[_]] : Qid TermList -> CallStrategy [ctor prec 21] .

*** and more

Then, strategy modules and their statements are defined as data in META-MODULE.

op sd_:=_[_]. : CallStrategy Strategy AttrSet

-> StratDefinition .

op csd_:=_if_[_]. : CallStrategy Strategy EqCondition

AttrSet -> StratDefinition .

op smod_is_sorts_._______endsm : · · · -> StratModule .

Finally, the srewrite and dsrewrite2 commands are metarepresented in the
META-LEVEL module.

sort SrewriteOption .

ops breadthFirst depthFirst : -> SrewriteOption [ctor] .

op metaSrewrite : Module Term Strategy SrewriteOption

Nat ~> ResultPair? [...] .

Strategies can be reflectively generated and transformed using these tools
with interesting applications. In [37], we explain metaprogramming of strate-
gies with several examples, from a theory-dependent normalization strategy for
context-sensitive rewriting [25] to extensions of the strategy language itself. For
instance, the similar strategy languages ELAN [8] and Stratego [10] include
some constructs that are not available in Maude, like congruence operators
f(α1, . . . , αn) for applying strategies to every argument of a symbol f . However,
these absences are not substantial, since most can be easily expressed using the
combinators of the Maude strategy language, for which an automated translation
can be programmed at the metalevel.

Multistrategies is another more complex extension that allows distribut-
ing the control of the system in multiple strategies α1, . . . , αn orchestrated by
another one γ. Typically, each strategy αk describes the behavior of a com-
ponent, agent, or player of the system, while γ specifies how their executions
are interleaved. Namely, γ can make them execute concurrently at almost rule-
application granularity, by turns, or in other arbitrary ways. Systems controlled
by multistrategies can be executed and model checked with an implementation
that relies on the metarepresentation of the strategy language.

Yet another example is an extensible small-step operational semantics of the
Maude strategy language, already mentioned in Sect. 3.2. It is specified with
2 dsrewrite is the depth-first search variant of srewrite, which does a fair breadth-

first-like search.
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rules and strategies that manipulate terms and strategies at the metalevel [38].
Of course, running strategies or model checking under this semantics is not
useful in practice, since the builtin implementation of the language is much more
efficient. However, experimentation is easier with this specification. For instance,
a synchronized rewrite or intersection operator α∧β denotes the rewriting paths
allowed by both α and β, which cannot be expressed in terms of the original
combinators. Nevertheless, α∧β can be implemented with a pair of two execution
states of the semantics that are advanced in parallel as long as they represent
the same term.

4.3 A Probabilistic Extension

In addition to qualitative properties, quantitative aspects like time, cost, and
probabilities are relevant when analyzing the behavior of systems. Statistical
methods are often used to estimate them by simulation, that is, by evaluating the
measures on many executions generated at random. However, for this analysis to
be sound, all sources of nondeterminism must be quantified. We argued before
that strategies are a useful resource to restrict nondeterminism, but they are
also suitable for quantifying it. Indeed, probabilistic choice operators have been
proposed for ELAN [7] and are available in Porgy [18]. In the context of Maude,
PSMaude [7] proposes a restricted strategy language for quantifying the choice of
positions, rules, and substitutions. These latter specifications can be simulated
and model checked against PCTL properties.

For the specification of probabilities in the Maude strategy language, new
combinators have been added. The first one is equivalent to those of ELAN and
Porgy.

– A quantified version of non-deterministic choice α1 | · · · | αn where each
alternative is associated a weight

choice(w1:α1, . . . ,wn:αn)

Weights wk are terms of sort Nat or Float that are evaluated in the context
where the strategy is executed. The probability of choosing the alternative
αk is σ(wk)/

∑n
i=1 σ(wi) where σ is the current variable context.

– A sampling operator from a probabilistic distribution π to a variable X that
can be used in a nested strategy α

sample X := π(t1, . . . , tn) in α

The repertory of available distributions includes bernoulli(p), uniform(a,
b), norm(μ, σ), exp(λ) (for the exponential distribution), and gamma(α, λ).
Their parameters are also evaluated in the current variable context.

These operators are not currently available in the official version of Maude, but
in the extended version including the strategy-aware model checker in Sect. 4.1.
They can be used in the usual srewrite and dsrewrite commands, and in
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head tail

tail

head

tailhead

Fig. 3. Coin toss module.

the metaSrewrite function. When a sample operator is evaluated, a variable is
sampled at random and the nested α is executed with this random value. When
a choice is executed, one of the strategies is chosen at random according to
their probabilities.

We can apply both statistical and probabilistic model-checking methods on
these specifications enhanced with probabilities. For instance, suppose we model
tossing a coin like in Fig. 3, with two constants head and tail, two homonym
rules, and two homonym atomic propositions. A fair coin can then be modeled
with the strategy choice(1 : head, 1 : tail). The expected number of steps
until the first tail is obtained can be estimated with the scheck subcommand of
umaudemc.

$ umaudemc scheck coin head firstTail.quatex

--assign strategy ’choice (1 : head , 1 : tail) !’

Number of simulations = 46530

μ = 6.00143993122 σ = 5.50060692624 r = 0.0499808311155

The simulation is driven by an expression in the QuaTEx language of
PMaude [2] specified in the firstTail.quatex file, where # means in the next
step.

FirstTail () = if (s.rval("C == tail") == 1) then

s.rval("steps") else # FirstTail () fi ;

eval E[FirstTail ()] ;

However, statistical model checking is more useful when continuous-time aspects
are involved, i.e., when using the sample operator. For discrete models like
this one, we can also use probabilistic model-checking techniques. This is avail-
able through the pcheck subcommand of umaudemc and relies on either the
PRISM [23] or Storm [19] model checkers. The following command is equivalent
to the previous one but using probabilistic methods.

$ umaudemc pcheck coin head ’<> tail ’ --assign strategy

’choice (1 : head , 1 : tail) !’ --steps

Result: 6.0

As well as obtaining expected values, pcheck allows calculating the probabilities
that a temporal formula in LTL, CTL, PCTL, and other logics holds.

$ umaudemc pcheck coin head ’<> <= 5 tail ’

--assign strategy ’choice (1 : head , 1 : tail) !’

Result: 0.96875
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For complementing this haphazard appetizer, more information on the proba-
bilistic extensions can be found in [32] and the strategy language website.

5 Conclusions

In this tutorial, we have provided an overview of the Maude strategy language,
illustrated with several examples, and explained some extensions and associated
tools. We refer the interested reader to the works cited in the paper and to the
maude.ucm.es/strategies website to complete the information about the strategy
language and those tools.

As future work, we plan extending the probabilistic strategy language
in Sect. 4.3 with an operator to quantify the choice of matches

matchrew P s.t. C with weight w by x1 using α1, . . . , xn using αn

and new verification features. Another natural and interesting extension of the
strategy language is its application to narrowing [3].
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Abstract. I have been teaching an introductory formal methods course
based on Maude—first to third- and fourth-year students, and lately to
second-year students—at the University of Oslo for a number of years.
The first part of the course introduces functional modules in Maude
and covers basic topics in term rewriting, whereas the second part of the
course uses Maude to formally model and analyze a number of classic dis-
tributed systems, including: transport protocols such as the alternating
bit and the sliding windows protocols, the two-phase commit protocol
for distributed atomic commitment, distributed algorithms for mutual
exclusion and leader election, and authentication protocols.

In this invited“experience report” Ibrieflymotivate theuseofMaude for
an introductory formal methods course, outline the course content, and
summarize student feedback and my own impressions about the course.

1 Introduction

Too many years ago I had to design an introductory formal methods course
for third-year students at the University of Oslo. The main question was, and
remains: How to teach an elective introductory formal methods course in an
environment where students have never heard about formal methods, and where
our colleagues are not overly receptive to the usefulness and beauty of a giving
formal treatment to computer systems?

In this “invited experience report” I briefly describe the setting and some
challenges when it comes to teaching introductory formal methods courses,
and how these challenges might be overcome (Sect. 2). In Sect. 3 I discuss how
some papers argue that formal methods should be taught. In Sect. 4 I argue
that—based on the criteria for teaching formal methods—rewriting logic [14]
and its accompanying Maude tool [10] should provide a suitable framework for
introducing formal methods to undergraduate students.

I have taken my own medicine and have been teaching formal methods based
on Maude for twenty years; first to third- and fourth-year students, and since
2019 to second-year students. When the course had reached a certain stability
and maturity, I wrote a textbook, called “Designing Reliable Distributed Sys-
tems: A Formal Methods Approach Based on Executable Formal Modeling in
Maude,” which was published in 2018 in Springer’s Undergraduate Topics in
Computer Science series [21]. In Sect. 5 I give an overview of the content of the
c© Springer Nature Switzerland AG 2022
K. Bae (Ed.): WRLA 2022, LNCS 13252, pp. 85–110, 2022.
https://doi.org/10.1007/978-3-031-12441-9_5
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Fig. 1. The structure of the “Programming and Networks” bachelor degree at my
university. The third year is devoted to freely selected courses and is not shown.

course and of this book. Finally, Sect. 6 summarizes my experiences and the
results of the anonymous student evaluation throughout the years.

The longer paper [19] on the same topic gives more details, and presents a
broader case for using Maude for teaching, since—in contrast to this paper—it
is aimed at the formal methods community without expertise in Maude.

2 Setting and Challenges

In this section I discuss some challenges involved in trying to teach formal meth-
ods to undergraduate students at a place like the University of Oslo.

When Turing Award winner and department founder Ole-Johan Dahl was
at the department, formal methods/verification was a mandatory course in the
Bachelor program on “Programming,” and hence around 80 students took the
formal methods course every year. However, since then my esteemed colleagues
have relegated formal methods to an elective course in the periphery of that
Bachelor program, shown in Fig. 1, which shows the courses that the students
should take in the first two years. (The program is in Norwegian, so there is no
English version.) The formal methods course (“IN2100–Logikk for Systemanal-
yse”) has to compete with a course introducing operating systems and computer
networks and one on computability and complexity for the final 10 credits in
this Bachelor program. In such a setting, would an 18–20-year-old student, who
has no idea what formal methods are, choose to take the formal methods course
instead of a (supposedly good, from what I hear) course on operating systems
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and computer networks? I am pretty sure that as a 19-year-old student I would
have taken the OS course instead, and would never have been exposed to for-
mal methods during my studies. However, I was lucky enough to study while
the above-mentioned Ole-Johan Dahl was still teaching, so we had to take the
verification course, which led me to my current path.

This problem is compounded by the fact that students at the University
of Oslo study “Informatics” to quickly get a good job, and therefore prefer
to take more “practical,” seemingly more work-relevant, courses. In a recent
Communications of the ACM blog post [25], Daniel G. Schwartz at the Florida
State University writes that this does not just apply to Norway: “Another issue
is that most CS students are primarily only interested in acquiring the skills that
will enable them to find jobs as software developers. Few have any interest in
pursuing graduate studies and research. For this reason, they see no purpose in
studying theoretical topics.” If this were not enough, our students tend to have
very limited background in mathematics, and tend not to study too much.

How can we overcome such “structural” challenges? Unless the Bachelor cur-
riculum changes, or the course again becomes a third-year course, it would seem
hard to attract students. Therefore, the main hope is to create such a good course
that students recommend the course on an unknown subject to their peers. In-
deed, most students taking the course this year do it because they heard it was
a good course. The problem with this “word-of-mouth” strategy is that students
mostly socialize with students at the same stage in their studies. Because of this,
and because students “try out” many courses at the beginning of the semester,
there is a need to quickly demonstrate the power and usefulness on relevant
problems and applications. Furthermore, the lack of mathematical background1

also means that the course should not be very hard or “theoretic.”
Related to the above challenges, and maybe the reason why the formal meth-

ods course has been relegated to the purgatory of elective courses, is the following
misconception, quoted from [17]:

In industry, formal methods have a reputation for requiring a huge
amount of training and effort to verify a tiny piece of relatively straight-
forward code, so the return on investment is justified only in safety-
critical domains (such as medical systems and avionics).

Fortunately, formal methods and their tools have matured quite a lot, and we
also have a better understanding of what formal methods can and cannot do
well. We need to advertise the success stories of formal methods; for example,
in my course I discuss in some depth: the paper “How Amazon Web Services
Uses Formal Methods” [17] by engineers developing the key cloud computing
systems at Amazon Web Services; the work of Ralf Sasse and others to find
previously unknown flaws in the Internet Explorer web browser using Maude [9];
and the work by David Basin and Ralf Sasse and others who use “Maude-related”
methods to find serious flaws in the 5G standard [23] and, in particular, in the

1 I once got complaints from the head of studies for supposedly having shown a quan-
tifier in a lecture!
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VISA and MasterCard payment systems [5,6]. The main Norwegian newspaper
has even made a short video about the latter, which I show to my students.

Another misconception, that we ourselves quite often perpetuate, is that
formal methods are aimed at safety-critical systems. It is true that society is
increasingly dependent on such systems (from self-driving cars to airplanes and
power distribution systems). However, in a country like Norway, I do not think
that many students will end up developing safety-critical systems. Selling formal
methods for safety-critical systems could therefore be self-defeating. Fortunately,
in contrast to 20–30 years ago, when everybody developed their own systems for
local use, these days cloud computing has led to world-wide services, where “the
winner takes it all” in each kind of “service,” with the profit for being that win-
ner potentially enormous. Together with increasing system complexity, this need
to develop the highest-quality system implies that an additional up-front invest-
ment in system quality really pays off in “mainstream” software development;
this is also the main message of the above AWS paper [17].

Another challenge is the worse and worse mathematical background, and
skepticism toward mathematics, among students. In [25] Schwartz writes that
“most of CS undergrads don’t like mathematics and so-called ‘theory’ courses,
and would prefer to not take them,” and quotes Leslie Lamport, who argues that
“while good programming really requires mathematical precision, [Lamport] also
acknowledges that ‘basically, programmers and many (if not most) computer
scientists are terrified by math.’ ” I guess that the solution to this problem is to
use accessible/intuitive formal methods that do not require much mathematical
background, and/or to make formal methods look more like “programming,”
which they like and master.

Another issue that sometimes pops up is that formal methods are not in-
tegrated with other courses. Therefore, showing the strength of, or at least ex-
emplify the use of, formal methods to model and analyze systems encountered
in other courses would show students—and maybe also our colleagues defining
study plans—the usefulness of formal methods. This could include examples
from security, networking/communication, databases and distributed transac-
tions, operating systems, etc.

The paper [12] discusses the problem of addressing appropriate systems. The
authors write that formal methods courses use examples and case studies that
are either “constructed and thus do relate to practice” or are “based on projects
of industry partners and are thus, too involved for students.” Again, we need to
address problems which look relevant, in fields such as social media, online shop-
ping and other cloud applications (i.e., distributed transactions), and/or in au-
thentication. To be able address relevant problems in different courses/domains
we need an expressive formalism.

3 How to Teach Formal Methods?

Section 2 listed some challenges involved in making students take formal methods
courses when they are not mandatory, and listed some possible “solutions” to
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these challenges. In this section I first briefly discuss a few key papers on teaching
formal methods (see, e.g., [19] and [8] for longer discussions on papers on the
topic), and then try to distill some requirements for courses in formal methods.

3.1 A Few Papers on Teaching Formal Methods.

As its title suggests, in their paper “Teaching Formal Methods for Software
Engineering: Ten Principles,” Cerone, Roggenbach, Schlingloff, Schneider, and
Shaikh list and elaborate on ten principles for teaching formal methods, which
in my view boil down to the following “principles:”

– Formal methods are too large to gain encyclopedic knowledge; we should
just use a few formal methods, since “there is loads to gain by intensively
studying [a] few methods.”

– Formal methods need tools, which “teach the method,” and lab classes, which
should imply that we need a high-quality and fairly stable tool.

– Formal methods are best taught by examples.

In their paper “Teaching Concurrency: Theory in Practice” [1], Aceto, In-
golfsdottir, Larsen, and Srba also share the view that “less is more,” and that we
should repeatedly convey key concepts, instead of providing a broad overview.
They also advocate using automatic verification tools and very expressive and
flexible, yet mathematically simple, executable modeling formalisms, as well as
using modal and temporal logics to specify system requirements.

In the paper with the promising title “Teaching Formal Methods in the Con-
text of Software Engineering,” Liu, Takahashi, Hayashi, and Nakayama take
a somewhat contrarian view [13]. They propose using VDM, refinement, and
Hoare logic, but admit that “none of these techniques is easy to use by ordi-
nary practitioners to deal with real software projects.” In another divergence
from teaching-formal-methods orthodoxy, they claim that “most effective for
students [...] is to write formal specifications by hand, as they learn English as
a foreign language.” Like others, they also argue that “each course should not
be too ambitious; instead it should be focused.” Finally they admit that “there
is little hope to apply refinement calculus in practice.”

There is also a “white paper” on teaching formal methods, “Rooting Formal
Methods Within Higher Education Curricula for Computer Science and Software
Engineering: A White Paper” [8] by a number of participants, including me, at
the First International Workshop on “Formal Methods – Fun for Everybody” in
2019. This paper advocates that a formal methods course must be mandatory for
all Bachelor students in computer science. In addition to also being a proponent
for using small “games” to teach formal methods, this paper emphasizes tool
use, but not industrial tools, which “can cause frustration.”

3.2 What to Teach?

We can try to summarize the various requirements for an introductory course in
formal methods, where such a course is not mandatory, as follows:
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1. It should repeatedly convey key formal methods concepts. But what are these
key concepts? Certainly mathematical modeling/formalization of both sys-
tems/designs and of requirements, and of course reasoning about the models
in terms of model checking and verification, and preferably also model-based
performance estimation. Another key, slightly orthogonal use of formal meth-
ods, is the mathematical analysis of code. More generally, one might also want
to introduce students to logical reasoning in general, dealing with logics, de-
duction rules, models, satisfaction, and may include key folklore results.

2. It should be fun for the students.
3. It should use relevant applications/examples, also related to other courses

the student take, and should seem relevant to today’s systems. To be able to
this, the modeling formalism must be fairly general and expressive.

4. It should use few, but mature, tools, which should seem industry-relevant.
5. We must motivate with industrial success stories.
6. It should be simple and intuitive, and not require much mathematical back-

ground.
7. It should support automatic model checking methods.
8. The formalism must be executable, expressive, and general.

4 Why Teaching Formal Methods Using Maude?

In my view, rewriting logic and its Maude language and tool should be very well
suited to introduce formal methods to undergraduates, as I think that Maude
satisfies the “requirements” in the previous sections as follows:

1. (Repeatedly convey main formal methods concepts.) Maude primarily deals
with modeling systems/designs in rewriting logic. It also supports formalizing
systems requirements in the most elegant and intuitive temporal logic [27],
linear temporal logic (LTL), and provides an LTL model checker. While
Maude’s primary focus is on modeling and model checking of said mod-
els, rewriting logic has been used to define the semantics of many program-
ming languages [15,16], and is the foundation of the K programming lan-
guage semantics and analysis framework [24]. K is a leading tool for formaliz-
ing the semantics of programming languages, and then analyzing programs,
including Ethereum contracts [22]. For model-based performance analysis,
rewriting logic has extensions to timed [18,20] and probabilistic [2] systems,
such that the performance of the resulting probabilistic (and possibly timed)
models can be analyzed by statistical model checking using, e.g., the PVeStA
tool [3]. Finally, teaching Maude also provides an excuse to introduce sim-
ple logics (equational, rewriting, and temporal logics) and their deduction
systems, satisfaction, models, and some folklore (un)decidability proofs.

2. (Fun for students.) What does “fun for students” mean? The students prob-
ably study computer science because they like programming. When I was
a student, I loved functional programming. Maude modeling is essentially
(first-order) functional programming in an object-oriented style.
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3. (Relevant examples.) While simple, the Maude specification formalism is
expressive and general. Therefore, relevant examples from different fields
of computer science can easily be specified by undergraduates; as explained
later, I use examples from security/cryptographic protocols, database courses,
key communication protocols and distributed algorithms in my course.

4. (Few and mature tools.) My course only uses Maude, which is a mature and
high-quality tool.

5. (Motivate with industrial success stories.) There are probably other tools
with more industrial success stories. Maude has been used to find a number
of previously unknown errors in Internet Explorer, as well as to model (as-
pects of) industrial systems such as Google’s Megastore, Apache Cassandra,
Apache ZooKeeper, and so on. However, the Tamarin tool [4] has been used
to break the EMV card payment standard [6] and the 5G standard [23], and
is based on multiset rewriting, and even includes some parts of the Maude im-
plementation. Furthermore, the rewriting-logic-based K framework has been
applied commercially to analyze electronic contracts on the blockchain.

6. (Simple and intuitive.) Maude is based on equational and rewriting logic.
Equations—like (x + y)2 = x2 + 2xy + y2—and their use to simplify an
expression by replacing equals for equals, is something that all students are
familiar with from school. Rewriting is fairly similar, so this simplicity and
intuitive logic is one main strengths of rewriting logic, and should make it
an ideal formalism for introducing formal methods to undergraduates.

7. (Model checking.) Maude provides a range of automatic analysis methods,
including rewriting for quick simulation/prototyping and automatic model
checking methods such as reachability analysis and LTL model checking.

8. (Executable expressive and intuitive formalism.) As elaborated above, the
Maude formalism is both expressive, executable, and simple and intuitive.

Reasons for skepticism include a lack of good documentation for beginners; the
manual is very nice and comprehensive, but is not well suited to learn the formal-
ism for a formal methods novice. Furthermore, I use Full Maude for object-based
modeling, but the lack of error messages in Full Maude is a significant problem. I
understand that others, including Francisco Durán, teach object-based modeling
by “encoding” classes and object rules directly in Maude.

5 Course and Textbook Content

In this section I give an overview of the content of the second-year introduc-
tory formal methods course I teach at the University of Oslo, and of its afore-
mentioned textbook, “Designing Reliable Distributed Systems: A Formal Meth-
ods Approach Based on Executable Modeling in Maude” (Fig. 2). I also mention
interesting exam problems I have given, and some exercises in the book, which
might be useful for professors looking for exam problems.

The course consists of 14–15 90-minute lectures, and of the same number of
90-minute problem-solving sessions. I cannot assume much mathematical knowl-
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edge, even though many (but far from all) students have taken a basic course in
logic before taking my course.

Fig. 2. Course textbook.

The course is divided into two
parts: Part I deals with equational
specification in Maude, and covers ba-
sic theory of algebraic specifications
and term rewrite systems, in addi-
tion to defining equational specifi-
cations using Maude. Part II deals
with specifying and analyzing various
distributed systems in Maude using
rewriting logic. It is implicitly also
meant to introduce some fundamen-
tal algorithms in distributed systems.

5.1 Part I: Equational
Specification in Maude and
Term Rewrite Theory

Equational Specification in Maude
(3 lectures). These lectures in-
troduce basic equational specifica-
tions in Maude, starting with many-
sorted ones, followed by order-sorted
and then membership specifications.
We exemplify such specifications with
Peano natural numbers, with a wide
range of functions on such numbers, and then turn to Boolean values, lists,
multisets, binary trees, and so on.

I then cover the built-in Maude modules BOOL, NAT, INT, STRING, CONVERSION,
and RANDOM, and specification modulo structural axioms such as associativity,
commutativity, and identity. This book includes a section on parametrized mod-
ules/programming in Maude, although I do not teach this in class.

Examples include sorting algorithms such as quicksort, merge-sort, insertion-
sort, and bubble-sort.

Example 1. Lists of natural numbers can be defined as follows in Maude:

fmod LIST-NAT is protecting NAT .

sorts List NeList .

subsort Nat < NeList < List .

op nil : -> List [ctor] .

op _::_ : List List -> List [ctor assoc id: nil] .

op _::_ : NeList NeList -> NeList [ctor assoc id: nil] .

op length : List -> Nat .
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ops first last : NeList -> Nat .

op reverse : List -> List .

vars M N K : Nat . var L : List .

eq length(nil) = 0 . eq length(N :: L) = 1 + length(L) .

eq first(N :: L) = N . eq last(L :: N) = N .

eq reverse(nil) = nil . eq reverse(N :: L) = reverse(L) :: N .

endfm

The module LIST-NAT defines a sort List, for lists of natural numbers, and a
sort NeList, for non-empty such lists. Lists are constructed by the constructors
nil and an infix associative “list concatenation” function _::_, so that a list
〈6, 2, 8, 4, 6〉 is represented as the term 6 :: 2 :: 8 :: 4 :: 6. Since the con-
catenation function is declared to be associative, parentheses are not needed in
this term. Furthermore, since the concatenation constructor is declared to have
identity element nil, any list l is considered identical to the lists l :: nil and
nil :: l, explaining why the equations above do not explicitly consider the case
of singleton lists.

The well-known merge-sort algorithm can then be specified as follows, where
the merge function is declared to be commutative:

fmod MERGE-SORT is protecting LIST-NAT .

op mergeSort : List -> List .

op merge : List List -> List [comm] .

vars L1 L2 : List . vars NEL1 NEL2 : NeList . vars M N : Nat .

eq mergeSort(nil) = nil .

eq mergeSort(N) = N .

ceq mergeSort(NEL1 :: NEL2) = merge(mergeSort(NEL1), mergeSort(NEL2))

if length(NEL1) == length(NEL2)

or length(NEL1) == length(NEL2) + 1 .

eq merge(nil, L1) = L1 .

ceq merge(M :: L1, N :: L2) = M :: merge(L1, N :: L2) if M <= N .

endfm

I also introduce some classic NP-complete problems (Knapsack, Subset Sum,
Traveling Salesman, Hamiltonian Circuit, Clique, etc.) and show in the book
how Subset Sum and Hamiltonian Circuit can be solved in Maude.

Example 2. In the Subset Sum problem the question is: Given a multiset MS of
positive natural numbers and a number K > 0, is there a subset of MS whose
elements have the sum K? This problem can be solved by the following function
subsetSum, where the module also declares a data type Mset of multisets of
nonzero natural numbers:2

2 The function sd gives the difference between two natural numbers, since subtraction
is not defined on natural numbers.
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fmod SUBSET-SUM is protecting NAT .

sort Mset . --- multisets of non-zero natural numbers

subsort NzNat < Mset .

op none : -> Mset [ctor] . --- empty multiset

op _;_ : Mset Mset -> Mset [ctor assoc comm id: none] . --- mset union

op subsetSum : Mset NzNat -> Bool .

vars N K : NzNat . var MS : Mset .

eq subsetSum(none, K) = false .

eq subsetSum(N ; MS, K) =

if N == K then true

else (if N > K then subsetSum(MS, K)

else subsetSum(MS, sd(K, N)) or subsetSum(MS, K) fi)

fi .

endfm

Termination (1+ lecture). This is one of my favorite topics. This part
presents the basics of classic theory on termination of rewriting à la Dershowitz,
in the simple, unsorted, and unconditional case without function attributes. The
book shows one of the well-known proofs for the undecidability of termination
based on reducing the uniform halting for Turing machines to a term rewrite
system termination problem. It then discusses methods for proving termination
using “weight functions” on well-founded domains, before presenting the elegant
theory of simplification orders. Finally, it introduces two such simplification or-
ders: the lexicographic and the multiset path order.

One exercise—used in two exams, to the chagrin of the students—is defining
the lexicographic path order in Maude. This gives a taste of meta-programming:
how an equational specification can be represented as a Maude term.

I loved to teach the theory of simplification orders, but since I started teaching
the course to second-year students, I no longer deal with this nice theory, or with
representing Turing machines as term rewrite systems. The grateful second-year
undergraduate students are taught temporal logic instead.

Confluence (1- lecture). I continue the term rewriting basics by devoting a
(short) lecture and book chapter to introducing students to confluence, again, in
the most basic setting. I cover the expected bases: Newman’s Lemma, unification,
and checking (local) confluence using the Critical Pair’s Lemma. I am not sure
I convey this topic in a particularly interesting way, and I do not believe that
confluence is the favorite topic of most students.

5.2 Equational Logic (1 lecture)

In one, probably quite heavy, lecture I cover equational logic: the deduction sys-
tem (again in the unsorted and unconditional case), undecidability, and the usual
equivalences between deduction in equational logic and equational simplification.
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Then I discuss validity in all structures satisfying the equations E versus
validity in the “intended” structure. Our Maude specifications (also) define the
domains of our data types, so we are mostly interested in properties holding in
models with those elements we have so painstakingly defined. This leads us to in-
ductive theorems. I start by excusing myself that I cannot give a (finitary) sound
and complete proof systems for inductive validity, since such a proof system for
cannot exist due to the negative solution to Hilbert’s Tenth Problem (thankfully
for the students, the argument why that solution leads to the non-existence of
the desired proof system for inductive theorems has been relegated to a long
footnote). I present the general induction principle for data types—which can
be seen as special case of the induction principle for natural numbers—and show
the usual examples (binary trees, lists, natural numbers, etc.). I also show how
Maude sometimes can be used to automatically prove induction theorems (or at
least discharge the proof obligations):

Example 3. We can let Maude prove by induction that our addition function
(defined in the module NAT-ADD) is associative:

fmod NAT-ADD is
sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + M = M .

eq s(M) + N = s(M + N) .

endfm

fmod NAT-ASSOC-IND-PROOF is including NAT-ADD .

ops t t2 t3 : -> Nat .

eq (t + t2) + t3 = t + (t2 + t3) . --- induction hypothesis

endfm

red (0 + t2) + t3 == 0 + (t2 + t3) . --- base case

red (s(t) + t2) + t3 == s(t) + (t2 + t3) . --- inductive case

Both red commands returns true, proving associativity of our addition function.

Models of Equational Specifications. We are doing “mathematical mod-
eling” because we use an equational specification to precisely specify a mathe-
matical model/structure. For equational specifications the models are algebras.
Although I do not teach this to second-year students, I have devoted a chapter of
the textbook to the classics of algebras in the context of algebraic specifications.
This chapter covers many-sorted Σ-algebras, then (Σ,E)-algebras, leading to
the algebras TΣ,E and normal form algebras. I present the proof of Birkhoff’s
Completeness Theorem. Finally, I discuss initial algebras and why they are the
ones we really wanted to specify, and that TΣ,E and the normal form algebra both
are this desired mathematical model specified by an equational specification.
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5.3 Part II: Modeling and Analysis of Dynamic/Distributed
Systems Using Rewriting Logic

In the second part of the course/book, we leave the static world of equations, and
the classic theory of algebraic specification and (term) rewrite systems, and move
to modeling and analyzing distributed, and dynamic systems in general. I am
not aware of any other textbook (in English, at least) that gives an introduction
to the modeling and analysis of distributed systems using Maude.

As mentioned elsewhere, additional goals include:

– giving a brief introduction to fundamental distributed algorithms and other
folklore systems (such as the dining philosophers problem) that the students
should know for “computer science literacy”; and

– looking at systems that are relevant to other courses that students take.

Rewriting Logic and Analysis in Maude (1 lecture). I start by explaining
why equations are not suitable for modeling dynamic systems, and then intro-
duce rewriting logic and its proof system, including the definition of concurrent
steps. This can be introduced by small games (since some papers on teaching
formal methods advocate that).

Example 4. In the following simple model of a soccer game, the term "Malmo
FF" - "Barcelona" 3 : 2 models a state in an (ongoing) game, whereas a state
"Malmo FF" - "Barcelona" finalScore: 4 : 2 represents a finished game.

mod GAME is protecting NAT . protecting STRING .

sort Game .

op _-__:_ : String String Nat Nat -> Game [ctor] .

op _-_finalScore:_:_ : String String Nat Nat -> Game [ctor] .

vars HOME AWAY : String . vars M N : Nat .

rl [homeTeamScores] : HOME - AWAY M : N => HOME - AWAY M + 1 : N .

rl [awayTeamScores] : HOME - AWAY M : N => HOME - AWAY M : N + 1 .

rl [finalWhistle] : HOME - AWAY M : N => HOME - AWAY finalScore: M : N .

endm

Example 5. In the whiteboard game, some natural numbers are written on a
whiteboard. In each step of this exciting game, any two numbers n and m can
be replaced by their arithmetic mean n+m quo 2. Importing the data type Mset
for multisets of numbers from Example 2, this game can be specified as follows:

mod WHITEBOARD is protecting SUBSET-SUM .

vars M N : NzNat .

rl [replace] : M ; N => (M + N) quo 2 .

endm

There is a treasure trove of small examples on this topic in the textbook and
among the exam problems. As a running example, I use modeling the life of a
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person—her age and civil status. This model is then extended to a population;
i.e., a multiset of persons, who can communicate synchronously to get engaged,
and use message passing to separate. Other examples include classics such the
towers of Hanoi, tic-tac-toe, the coffee bean game, modeling all traveling sales-
man trips and using search to find short trips, packing “suitable” knapsacks
(instead of just knowing that there is a suitable knapsack), and simulating the
behaviors of Turing machines.

This lecture also covers the rewrite and search commands of Maude.

Example 6. We can use the rewrite command to simulate one behavior of the
whiteboard game from a given initial state, and search to find all reachable final
states where the resulting number is less than 13. We then exhibit the path to
one such desired final state:3

Maude> rew 6 ; 33 ; 99 ; 1 ; 7 .

result NzNat: 59

Maude> search 6 ; 33 ; 99 ; 1 ; 7 =>! M such that M < 13 .

Solution 1 (state 151)

M --> 12

Solution 2 (state 153)

M --> 11

No more solutions.

Maude> show path 153 .

state 0, Mset: 1 ; 6 ; 7 ; 33 ; 99

===[ rl N ; M => (N + M) quo 2 [label replace] . ]===>

state 10, Mset: 1 ; 6 ; 7 ; 66

===[ rl N ; M => (N + M) quo 2 [label replace] . ]===>

state 51, Mset: 1 ; 7 ; 36

===[ rl N ; M => (N + M) quo 2 [label replace] . ]===>

state 125, Mset: 1 ; 21

===[ rl N ; M => (N + M) quo 2 [label replace] . ]===>

state 153, NzNat: 11

Object-Based Modeling of Distributed Systems (1 lecture). This lecture
first shows that “objects” can be modeled as standard Maude terms, and explains
that the state of a distributed system naturally can be seen as a multiset of
objects and messages.

After showing that all this can be modeled in Maude, I make the possibly
problematic decision to use Full Maude’s support for very convenient object-
oriented syntax, including for subclasses. I prefer a clean theory and un-cluttered
models—at a high cost of lot of frustration when Full Maude.

3 The command echo and some other Maude output are not shown.
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The running example, populations of persons, is ideal for illustrating many
notions of distributed object-based models: dynamic object creation (birth of
children) and deletion (death of a person), rules only involving a single object
(like birthdays), synchronous communication (getting engaged) and message-
based communication (getting separated), and e subclasses to model that some
people are Christians and others are Muslims.

This chapter/lecture also models the dining philosophers problem in an object-
oriented style, and uses Maude’s pseudo-random number generator to model
different variations of blackjack, where the next card is drawn pseudo-randomly
from the remaining cards. We can then perform randomized sim-
ulations to simulate how much money I have left after a day in the casino.

Modeling Communication and Transport Protocols (1 lecture). The
goal of Part II is to model sophisticated distributed systems. To achieve this we
need to model different forms and variations of communication: unicast, multi-
cast, broadcast and “wireless” broadcast, message loss, ordered communication
through links, and so on.

The first “larger” applications are a range of well-known transport protocols
used to achieve ordered and reliable message communication on top of an unre-
liable and unordered communication infrastructure. we begin with a TCP-like
sequence-number-based protocol. When the underlying infrastructure provides
ordered (but lossy) communication between pairs of nodes, the sequence numbers
in the TCP-like protocol can be reduced to 0 and 1, giving us the alternating bit
protocol (ABP). Generalizing the TCP-like protocol and ABP so that a node can
send any one of k different messages at any time, instead of only the same mes-
sage, gives us the sliding windows protocol, supposedly the most used protocol
in distributed systems. I like sliding windows for a homework exercise/project,
since the search commands take some time to finish, which I think is useful for
students who are used to programs always giving immediate feedback.

Distributed Algorithms (1 lecture). As mentioned, one of the goals of the
course is to give a flavor of distributed systems, which we do using a number of
fundamental distributed algorithms that are still used in state-of-the-art cloud-
based transaction systems.

These algorithms are also easy to motivate using modern distributed trans-
actions. For example, in today’s cloud-based world the same eBay item could
have been sold (at the dying moments of an auction) to two different persons;
one through a server in Munich, and one through a server in Vanuatu. Or we
can imagine an online travel agency with the following distributed transaction:

reserve(X ,OSL-CDG,KLM,Dec 6 to 15);
reserve(X ,Ritz, Imperial Suite,Dec 6 to 15);
reserve(X ,Chez M,dinner,Dec 9);
pay(X , 6000 ,MasterCard, 1234567891234567 , 11/20 , ...);
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These examples can motivate the two-phase commit (2PC) protocol: In the eBay
example, Vanuatu can veto Munich’s commit request if it has also sold the item.
In the Paris vacation example, if each single operation (at its own site) goes
through, the entire transaction should be committed. If, however, one of the
operations cannot be performed (there is no money on the credit card, or the
Imperial Suite at the Ritz is not available those days), the entire distributed
transaction must be aborted. 2PC ensures this.

Multiple distributed operations on the same data could lead to “lost up-
dates.” This can motivate the use of distributed mutual exclusion algorithms.

Example 7. In the token-ring-based distributed mutual exclusion algorithm, the
nodes are organized in a ring structure. There is one token, and a node must
hold the token to enter the critical section; when it exits the critical section, or
when a node receives the token without wanting to enter the critical section, it
sends the token to the next node in the ring.

This algorithm, where each node alternates forever between executing out-
side the critical section, and (if possible) executing inside the critical can be
modeled using objects a class Node, whose attribute status can have the values
outsideCS (the node is executing outside the critical section), waitForCS (the
node is waiting to enter the critical section), and insideCS (the node is execut-
ing inside the critical section). The attribute next denotes the “next” node in
the ring. The token is being sent around as a message:

load model-checker

load full-maude31

(omod TOKEN-RING-MUTEX is
sorts Status MsgContent .

ops outsideCS waitForCS insideCS : -> Status [ctor] .

op msg_from_to_ : MsgContent Oid Oid -> Msg [ctor] .

class Node | next : Oid, status : Status .

op token : -> MsgContent [ctor] .

vars O O1 O2 : Oid .

rl [wantToEnterCS] :

< O : Node | status : outsideCS >

=>

< O : Node | status : waitForCS > .

rl [rcvToken1] :

(msg token from O1 to O)

< O : Node | status : waitForCS >

=>

< O : Node | status : insideCS > .

rl [rcvToken2] :
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(msg token from O1 to O)

< O : Node | status : outsideCS, next : O2 >

=>

< O : Node | >

(msg token from O to O2) .

rl [exitCS] :

< O : Node | status : insideCS, next : O2 >

=>

< O : Node | status : outsideCS >

(msg token from O to O2) .

endom)

(omod INITIAL is including TOKEN-RING-MUTEX .

ops a b c d : -> Oid [ctor] . --- object names

op init : -> Configuration . --- an initial state

eq init

= (msg token from d to a)

< a : Node | status : outsideCS, next : b >

< b : Node | status : outsideCS, next : c >

< c : Node | status : outsideCS, next : d >

< d : Node | status : outsideCS, next : a > .

endom)

We can then check whether it is possible to reach a state in which two nodes
are executing in the critical section at the same time:

Maude> (search [1] init =>* REST:Configuration

< O1:Oid : Node | status : insideCS >

< O2:Oid : Node | status : insideCS > .)

No solution.

Distributed mutual exclusion algorithms are ideal exam problems. The book
presents the central server algorithm, the token ring algorithm, and Maekawa’s
voting algorithm, and I have used Lamport’s bakery algorithm and the interest-
ing Suzuki-Kasami algorithm as exam problems.

2PC solves the “same item sold twice problem” by aborting the whole trans-
action, since one site will veto another site’s attempt to commit a (conflicting)
transaction. A better idea is to sell the item to one of the buyers, which leads
us to distributed leader election and distributed consensus. Leader election is a
key part of distributed consensus algorithms, such as Paxos, which again are key
components in many of today’s cloud-based systems, like Google’s Megastore.
The textbook describes the Chang and Roberts ring-based distributed leader
election algorithm and a spanning-tree based useful for wireless systems. I also
introduce distributed consensus, but leave modeling Paxos as an exercise.

Staying on the cloud computing track, a very nice exam problem that illus-
trates how a cloud-based replicated data store can compromise between desired
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levels of consistency, performance, and fault tolerance is inspired by Apache Cas-
sandra: Your data are stored at n replicas; a read or a write request is sent to
all replicas. A client gets the answer (“ok” for writes and the most recent value
of the data item for reads) when k replicas have responded. A lower k gives
improved performance (shorter waiting time for the client) and fault tolerance
(since n − k replicas can crash) improves, while consistency suffers (not even
“read-your-writes” holds when k is low). The system should satisfy “eventual
consistency,” but other transaction guarantees depend on the value of k.

Finally, this chapter presents useful techniques for analyzing fault tolerance
by modeling failures and repairs.

Cryptographic Protocols: Breaking NSPK (1 lecture + 1 guest lec-
ture). One of my favorite chapters/lectures introduces public-key and shared-
key cryptography. We then model the well-known Needham-Schroeder Public-
Key (NSPK) authentication protocol. This is a great example to motivate formal
analysis. The protocol is super small, only three lines, yet its flaws went unde-
tected for 17 years before they were found by formal methods. This demonstrates
that even very small distributed protocols are hard to understand, and that for-
mal methods are useful to find subtle bugs in distributed systems.

It is very easy and natural to model NSPK with four intuitive rewrite rules.
Another 13 or so simple rules model Dolev-Yao intruders. A plain Maude search
for an unwanted “trusted” connection then breaks NSPK in around 100 minutes
on my laptop; the standard search for compromised keys takes a few seconds.
The students understand these models, and can modify them (e.g., to analyze
Lowe’s fix of NSPK) without problems.

NSPK is still a simpler older protocol, and Maude is not a cryptanalysis tool
(although Maude-NPA [11] is a leading one). However, a tool like the Tamarin
prover [4] is based on multiset rewriting, and has been in the news in Norway
and elsewhere for breaking our card payment systems [5,6]. Ralf Sasse from
ETH Zürich has generously given a guest the last two years where he talks
about using Maude to find news flaws in the Internet Explorer web browser as
a summer intern at Microsoft [9], and, especially, how they have used Tamarin
to break the EMV protocol [6] and the 5G standard [23]. This guest lecture has
been mentioned by some students as a highlight of the course.

System Requirements (1 lecture). I devote one lecture to introduce “system
requirements” informally. What are invariants, eventually, until, and response
properties? I explain how to analyze invariants by searching for bad states, and
how to inductively prove (by hand) that something is an invariant for all initial
states. I also discuss state-based versus action-based requirements, and various
kinds of fairness assumptions needed to prove “eventually” properties.

Formalizing andChecking SystemRequirements Using Temporal Logic
(1 lecture). I introduce linear temporal logic (LTL) and the use of Maude’s
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LTL model checker to formalize and then model check system requirements.
We then have a wealth of examples to model check.

Example 8. Consider the token-ring mutual exclusion algorithm in Example 7.
The key liveness property we want to prove is that each node executes in its
critical section infinitely often. This cannot be proved using search, but can easily
be done using LTL model checking. We define a parametric atomic proposition
inCS(o) to hold if node o is currently executing inside its critical section:

(omod MODEL-CHECK-MUTEX is protecting INITIAL . including MODEL-CHECKER .

subsort Configuration < State .

op inCS : Oid -> Prop [ctor] .

var REST : Configuration . var S : Status . var O : Oid .

eq REST < O : Node | status : S > |= inCS(O) = (S == insideCS) .

endom)

We check if each node in init executes infinitely often in its critical section:4

Maude> (red modelCheck(init, ([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d))) .)

result ModelCheckResult : counterexample(...)

The property does not hold: the model checker returns a counterexample where
node d never wants to enter its critical section. We therefore add the following
justice fairness assumption for the first rule: for each node o, if, from some point
on, the first rule is continuously enabled for o (that is, o’s status is outsideCS),
then the first rule must also be taken infinitely often for o (i.e., o’s status must
be waitForCS). We add the following declarations to the above module to define
the formula justAll that encodes this justice assumption:

ops waiting outside : Oid -> Prop [ctor] .

eq REST < O : Node | status : S > |= waiting(O) = (S == waitForCS) .

eq REST < O : Node | status : S > |= outside(O) = (S == outsideCS) .

op just : Oid -> Formula .

op justAll : -> Formula .

eq just(O) = (<> [] outside(O)) -> ([] <> waiting(O)) .

eq justAll = just(a) /\ just(b) /\ just(c) /\ just(d) .

We can check whether the justice fairness assumption justAll implies the
desired property:

Maude> (red modelCheck(init, justAll ->

(([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d)))) .)

result Bool : true �

4 ‘[]’ and ‘<>’ denote the temporal operators � and ♦, respectively, and ‘/\ and ‘->’
denote logical conjunction and implication.
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I have also proved by LTL model checking that all philosophers are guar-
anteed to eat infinitely often in one of the solutions to the dining philosophers
problem. This required formalizing a number of fairness assumptions.

I briefly mention other logics like CTL and CTL∗, LTL with past temporal
operators, and Meseguer’s temporal logic of rewriting, which allows us to reason
about both state-based and action-based properties.

I included temporal logic for second-year students with trepidity. This is a
completely new kind of logic for the students, which should require time and
maturity to understand. I am pleasantly surprised that the students seem to
master temporal logic with only one lecture: their exam solutions show that
they understand temporal logic formulas and can judge whether such a formula
holds in a model.

Real-Time and Probabilistic Systems (not taught). Up to this point, the
models have been untimed. However, the performance of a system is also an
important metric, whose analysis requires modeling time. Furthermore, fault-
tolerant systems must detect message losses and node crashes, which is impos-
sible in untimed asynchronous distributed systems. The course textbook intro-
duces how real-time systems can be modeled and analyzed in Maude, and also
discusses timed extensions of temporal logics.

Randomized simulations, such that those performed simulating playing black-
jack with each card drawn pseudo-randomly, do not provide performance esti-
mates with mathematical guarantees. I need more solid guarantees to quit my
day job and move to Las Vegas. My textbook therefore indicates how probabilis-
tic systems can be modeled in rewriting logic as probabilistic rewrite theories [2].
Such probabilistic models can then be subjected to statistical model checking
(SMC) using Maude-connected tools such as PVeStA [3] and MultiVesta [26],
which estimate the expected value of a path expression up to certain confidence
intervals. Although, in contrast to precise probabilistic model checking, SMC does
not give absolute guarantees, it is considered to be a scalable formal method,
which, since it is based on simulating single paths until the desired confidence
level has been reached, can be easily parallelized.

In contrast to the other chapters in the book, the book only gives a flavor
of these subjects, and does not give details about how to run Real-Time Maude
or PVeStA. I have sometimes taught this part to fourth-year students, but do
not currently teach it to second-year students.

Using Maude on Cloud Systems and the Use of Formal Methods at
Amazon (1 lecture). To give students the impression that Maude can be ap-
plied to analyze industrial designs, in the last lecture I give an overview of the use
of Maude (and PVeStA) to model and analyze both the correctness and per-
formance of cloud transaction systems such as Google’s Megastore (which runs,
e.g., Gmail and Google AppEngine), Apache Cassandra (developed at Facebook
and used by, e.g., Amadeus, CERN, Netflix, Twitter), and the academic P-Store
design, as well as our own extensions of these designs (see [7] for an overview).
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The last lecture should summarize the course: What have you learnt? What
is it useful for? Instead of singing the praises of formal methods myself, I end
the course by quoting the experiences of engineers at Amazon Web Services,
who used formal methods while developing their Simple Storage System and
DynamoDB data store, which are key components of Amazon’s profitable cloud
computing business. The engineers at Amazon used Lamport’s TLA+ formalism
with its model checker TLC. They report that formal methods have been a big
success at Amazon, and describe their experiences in the previously mentioned
paper “How Amazon Web Services Uses Formal Methods” [17] as follows:

– Formal methods found serious “corner case” bugs in the systems that were
not found with any other method used in industry.

– A formal specification is a valuable precise description of an algorithm,
which, furthermore, can be directly tested.

– Formal methods can be learnt by engineers in short time and give good
return on investment.

– Formal methods makes it easy to quickly explore design alternatives and
optimizations.

My textbook does not contain a chapter on the topics covered in this lecture.

6 Evaluation

That I have worked hard on designing what I think should be a good and acces-
sible introduction to formal methods by using Maude does not help much if the
students disagree. The all-important question is therefore: What do the students
think? Unfortunately, I have not solicited their feedback. Instead, the students
have the possibility to provide feedback anonymously on courses signed up for.
Most students do not bother to do this. Therefore, although I am trying to sum-
marize the students’ experiences the best I can, this evaluation is unscientific,
anecdotal, and may suffer from selection bias.

6.1 Summary of Student Feedback

I have gathered anonymous student feedback, administered by the department,
from 2007. In general, only 10%–15% of the students submit responses, and those
include students who quit the course during the semester.

The following tables show the cumulated response to the all-important ques-
tions “How do you rate this course in general?” and “How do you rate the level
(difficulty) of the course?” Since 2019 was the first time the course was given at
the second-year level, I also show the results from 2019 in separate columns. Fur-
thermore, since 2020 and 2021 were destroyed by/taught online due to Covid-19,
I also separate out the results from those years. In particular, I believe, again
without evidence, that the lack of (physical) lectures that make the curriculum
understandable is a larger problem for harder-to-access theoretical courses than
the more “practical” courses that students usually take. Or is Covid-19 just a
convenient scapegoat for the 2020–2021 feedback?
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How do you rate this course in general?

2007–2019 2019 2020–2021

Exceptionally good 15 4 8

Very good 23 3 4

Good 8 0 6

OK (neither good nor bad) 6 1 2

Not that good 1 0 3

Not good 0 0 0

Difficulty/level of the course

2007–2019 2019 2020–2021

Too difficult 1 0 2

Somewhat difficult 38 4 18

OK/Average 38 4 3

Easy 0 0 0

Too easy 0 0 0

An overwhelming majority (75–80%) of the student report that the workload
is “OK” (or average) for the number of credits (10) given.

6.2 Selected Student Comments

The evaluation form allows students to comment on the course in free-text. Below
I quote some student opinions about the course content from 2015 to 2021. What
students liked about the course:

– “Very interesting course where we learnt a lot. A unique course at the bach-
elor level in informatics in Norway.”

– “Different and powerful method for system analysis. Creative textbook.”
– “Learn a different kind of programming language. Learn about algorithms,

and how to model them to check security vulnerabilities. After finishing
the course you have relevant knowledge that some of the world’s leading
companies are looking for.”

– “Programming was fun.”
– “Introduction to a different programming paradigm.”
– “Interesting, but not too extensive, curriculum.”
– “Fun curriculum.”
– “Course content.”
– “IN2100 is the best course I have taken at the University of Oslo.”
– “Showed the importance of the topic.”
– “Interesting topic.”
– “It allows to develop complex systems, and test safety and security of critical

systems as well.”
– “Strong foundations, applicable to real systems, useful for developing robust

systems.”
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– “All in all I think this was a very fun course, clearly one of those I remember
the most from my bachelor. Maude essentially worked well, and even though
I don’t think that I will ever use it after the course, I have learnt a lot by
using it.”

– “I did not choose this course [...] but I loved every week and content.”
– “The assignments are really well balanced between theory and the entertain-

ing Maude programming parts.”
– “One of the best of the ten courses I have taken at the department.”

What the students liked less:

– “Language that is not used much or at all.”
– “Course might be difficult for many of us.”
– “Need more real world critical systems for analysis. [...] Lack of applicability

in industry.”
– “Maude is very frustrating because of bad or (in Full Maude) missing error

messages.”
– “The theory part was more difficult than the rewrite rules part.”
– “Lectures crashed with the lectures in a more “important” course.”
– “Difficult. Unnecessary. Unnecessarily complicated language. Irrelevant.”

Main complaints concern Full Maude and its “peculiarities” (lack of robust-
ness and good error messages) and that there are too few resources about Maude.
Finally, as expected, a number of students do not understand why they need to
learn a programming language that is not widely used. When teaching, we have
to emphasize again and again that we use a convenient language to teach and
illustrate general formal methods principles, so that you could easily work with
more “industrial” tools, like TLA+, after taking this course.

7 Concluding Remarks

In this paper I surveyed a few papers on, and distilled some requirements for,
teaching formal methods. I claimed that rewriting logic and Maude provide an
ideal framework that seems to satisfy these criteria. I have given an overview of
the topics I cover in my second-year course and in its accompanying textbook.
Finally, I summarized the feedback that students provide anonymously to the
university. I end this paper by trying to address some obvious questions, and by
making a suggestion to the organizers of WRLA 2024.

Is Maude really a suitable framework for introducing formal methods to second-
year undergraduate students? This is really a two-pronged question: is Maude
a good tool for teaching formal methods, and is the second year too early to
introduce formal methods?

Concerning the first question, I still think that Maude is a great choice, as I
argue in Sect. 4. It provides an intuitive functional programming style, which I
think students enjoy. Furthermore, despite taking in a lot of well-established term
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rewriting theory, we still manage to model and analyze fundamental distributed
algorithms and protocols, such as sliding windows, all those distributed mutual
exclusion, algorithms for distributed transaction systems, and also cryptographic
protocols like NSPK, which is very easy to model and analyze, even for students.
Maude also encourages us to teach temporal logic, which is quintessential for for-
malizing requirements of distributed systems. The by far main problem is that
I teach object-oriented modeling using Full Maude. The lack of (useful) error
messages in Full Maude understandably frustrates students, and takes away the
pleasures of modeling in Maude. It might well be a mistake to use Full Maude
for modeling object-based distributed systems; even Francisco Durán teaches
object-based modeling using (core) Maude. (Core) Maude will supposedly pro-
vide support for object-based specification in the near future; that would make
my course much better for the students, and cannot happen soon enough.

Regarding the second question, I have no answer or good methodology to
answer it. Results from the first exam for second-year students were encourag-
ing, and student feedback has been as positive as in previous years. However,
it is hard to conclude anything from exam results and other feedback in 2020
and 2021, because of Covid-19. As usual, many students quit the course during
the semester. However, I am not sure that one can gain much insight from this.
It is common in Oslo, since signing up for classes is free, so students “try out”
many courses. Furthermore, competing against a (supposedly good) introduc-
tory course on operating systems and networks for the only optional slot in the
Bachelor program is challenging.

Is the course a success? This is the million-dollar question, and, again, the jury
is still out on this one. I believe that it is fair to say that student evaluations
generally are positive. Is this due to the topics covered and the textbook, or
does the quality of the lectures and exercise seminars also play a role? Fur-
thermore, just a small fraction of the students reply to these surveys, with a
possible selection bias. Eventually, the proof is in the pudding, as they say: do
the students take the course? In a related paper [19] from 2020, I wrote that the
course—due to its precarious place in the Bachelor program—crucially relies on
word-of-mouth recommendation by other students. Then the trend looked good,
going from the usual 15–20 students to 42 students who took the exam in 2020.
But with two years of Covid19-induced closure of the university, the interaction
between students has essentially been non-existent, removing the potential for
word-of-mouth recommendation. So we are back where we were before: between
15 and 20 student will take the exam this year.

Is my way the right way to teach Maude to undergraduates? If we want to
teach Maude, is the way I do it the right way? Based on general evaluation and
what I hear from students, it is tempting to significantly reduce the material on
classic term rewriting and equational logic theory, which takes almost half the
lectures. One could then add more Part II stuff: more fundamental distributed
systems, and/or real-time and probabilistic systems. Maybe meta-programming?
Strategies? Programming “web applications” with Maude’s support for external
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objects, e.g., via sockets and file systems? Or develop Maude semantics for simple
multi-threaded imperative programming languages, which I think would be fun
for the students.

Should I remove this theory? I like the theory on termination, but cannot
convey as much enthusiasm for confluence; and students are not always enam-
ored of equational logic and inductive theorems either. Can I drop the theory
and make the course even more “practical”? If I drop confluence then also the
equational logic part will suffer; furthermore, Maude requires your specifications
to be confluent, so students should know about this. What should I do? If you,
dear reader, teach Maude or related methods, I would love to hear your opinion
and experiences. I would also love to know of interesting distributed systems
that could be included in the course, or given as exam problems.

A suggestion to the organizers of WRLA 2024. With Maude now a mature tool
with an impressive range of applications, it should be ripe for teaching formal
methods. I think that multiple groups around the world are using Maude in
teaching (mostly at the graduate level?). It would be enormously important for
our community to know about each other’s experiences, curricula, and ways
of teaching Maude-based courses. I would therefore like to wrap up this WRLA
2022 “invited experience report” by proposing that the organizer of WRLA 2024
organize a special session on using Maude for teaching, where we can share our
experiences on this important topic.

Acknowledgments. I would like to thank Kyungmin Bae for inviting me to
give an invited talk at WRLA 2022, and for patiently waiting for this paper
to be finished.
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Abstract. A significant task in business process optimization is con-
cerned with streamlining the allocation and sharing of resources. This
paper presents an approach for analyzing business process provisioning
under a resource prediction strategy based on machine learning. A timed
and probabilistic rewrite theory specification formalizes the semantics of
business processes. It is integrated with an external oracle in the form of
a long short-term memory neural network that can be queried to predict
how traces of the process may advance within a time frame. Comparison
of execution time and resource occupancy under different parameters is
included for a case study, as well as details on the building of the machine
learning model and its integration with Maude.

1 Introduction

Business process optimization is the practice of increasing organizational effi-
ciency by improving processes. The main motto of this area in business process
management is that optimized processes lead to optimized business goals. Since
efficiency is one of major quantitative tools in industrial decision making, the
most common goals in process optimization are maximizing throughput and
minimizing costs. For instance, companies that use a business process for a long
time can greatly benefit from increasing the usage of resources within reasonable
limits of redundancy and costs, and streamlining workflows. However, business
process optimization tends to be a multi-objective optimization problem in which
many variables can be involved. One main challenge is to integrate predictive
tools at design stages for business process optimization.

Deep learning models are becoming increasingly important in business appli-
cations because they serve as a basis for monitoring and predicting process
behavior (see, e.g., [10,12]). In particular, applications concerned with resource
allocation, time and cost optimization, fault monitoring, and process discovery
are using event logs to train these models and predict variables of interest. Logs
usually contain information about processes in an organization as a list of events.
Each event is associated to a process instance, which is identified by a case num-
ber. A case is seen as a collection of activities or tasks with attributes. Typically,
c© Springer Nature Switzerland AG 2022
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they include a name or case number, a timestamp, and the resources or costs
associated to it, among other attributes. Recurrent neural networks [14] have
been widely used for performing sequence prediction. They are trained to learn
from information in event logs and predict the next events that are more likely
to occur based on the gained knowledge.

This paper proposes a two-layered approach to formal process optimization.
The first layer uses the prediction power of deep learning models to help antici-
pate the demand of resources (i.e., number of replicas) in a business process from
a partial execution. The second layer, on top of the first one, formally specifies
the concurrent behavior of many instances of the process that compete for the
same collection of resources and replicas. The result is then the integration of
these two layers, resulting in a sophisticated heuristic-oriented technique for the
formal analysis and optimization of business processes. Their quantitative analy-
sis can then be carried out by, e.g., computing the best combination of parameter
values reducing the costs or processing time.

Long short-term memory neural networks (LSTM) [14], a type of recurrent
neural network, are used for sequence prediction as proposed in [11]. More pre-
cisely, given a business process B and a partial trace t of tasks in B, an LSTM
can predict an extension of t that conforms to B based on a (previous) train-
ing with event logs obtained for B. A rewriting logic semantics of the Business
Process Modeling Notation (BPMN) simulates the concurrent behavior of many
instances of B, under a given set of constraints over the resources, by querying
the LSTM as a scheduler and adjusting the number of replicas accordingly. One
novelty of the proposed approach is that resource allocation can happen at exe-
cution time based, not only on the current state of execution of a given instance
of B, but also on some history of previous executions of the process.

For training an LSTM, the approach takes as input a BPMN process B and a
set of traces T of B. The traces T represent executions of B in, e.g., a production
environment. The process B has information about the type of resources needed
to complete the tasks. Therefore, the structure of B and the traces are used to
predict how resources are to be allocated/released in order to optimize their use:
e.g., minimize the time a resource is not being used or, similarly, maximize the
usage of resources meeting some budget and timing constraints associated to the
process’ execution.

The LSTMs used in the proposed approach have been implemented in Python
with Keras and TensorFlow. The integration with Maude is designed via socket
communication, where the rewriting logic semantics is the client of the predic-
tion server written in Python. From the partial concurrent execution of a given
number of instances of a BPMN process in the Maude semantics, the neural
network is queried with a time window. It then returns a sequence of events that
extends the traces of the given instances, i.e., make a prediction on their contin-
uation. This prediction is then used to adjust the number of replicas per resource
at runtime. The analysis is based on the simulation of the execution guided by
such trace. The percentage usage of resources and the number of replicas during
the time span of all replicas, among other, are monitored and summarized for
each experiment.
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Outline. Sections 2 and 3 present overviews, respectively, of BPMN and LSTM
neural networks. Section 4 presents the rewriting semantics of BPMN and its
interaction with the LSTMs. A case study is presented in Sect. 5, while Sect. 6
concludes the paper.

2 The Business Process Modeling Notation (BPMN)

BPMN is a graphical notation for modeling business processes as collections of
related tasks that produce specific services or products. In BPMN, processes
are modeled using graphical representations for tasks and gateways, which are
connected through flows and events. In this work, the focus is on its control flow
constructs, including the most common types of tasks, events, and gateways.

To introduce and illustrate the use of the supported BPMN constructs, and
the analysis techniques presented in this work, the process depicted in Fig. 1 is
used. It describes a parcel ordering and delivery. The process consists of three
lanes: one for clients, one for the order management, and one for the delivery
management. In this process, the client first signs in and then repeatedly looks
for products. Eventually, the client can decide to give up or to make an order by
submitting it to the order management lane. The client then waits for a response
(i.e., acceptance or refusal of this order). However, the client waits for a response
for a maximum amount of time, as is represented by a timer-event branch. If the
order can be completed, then the parcel is received and the client pays for it.
Otherwise (i.e., timeout or order refused), the client fills in a feedback form. As
far as the management lane is concerned, the first task aims at verifying whether
the goods ordered by the client are available. If they are not available, then the
order is canceled; otherwise, the order is confirmed. The order management takes
care of the payment of the order whereas the delivery lane is triggered to prepare
the parcel to be delivered. The delivery may be carried out by car or by drone.

The initiation and finalization of processes are represented by initial and final
events. Events are also used to represent the sending of messages and the firing
of timers. A task represents an atomic activity that has exactly one incoming
and one outgoing flow. A sequence flow describes two nodes executed one after
the other, i.e., imposing an execution order between these nodes. Tasks may send
messages, which in such a case activate the corresponding message flows.

Gateways are used to control the divergence and convergence of the exe-
cution flows. In this work, exclusive, inclusive, parallel, and event-based gate-
ways are supported. Gateways with one incoming branch and multiple outgoing
branches are called splits (e.g., split inclusive gateway). Gateways with one out-
going branch and multiple incoming branches are called merges (e.g., merge
parallel gateway). An exclusive gateway chooses one out of a set of mutually
exclusive alternative incoming or outgoing branches. For an inclusive gateway,
any number of branches among all its incoming or outgoing branches may be
taken. A parallel gateway creates concurrent flows for all its outgoing branches or
synchronizes concurrent flows for all its incoming branches. For an event-based
gateway, it takes one of its outgoing branches or accepts one of its incoming
branches based on events.
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Fig. 1. Running example: parcel delivery.

In addition to the description of specific tasks and their sequencing, collab-
oration diagrams also involve pools and lanes, which are structuring elements
that split processes into pieces. In BPMN, each lane in a collaboration diagram
corresponds to a specific role or resource. However, other resources may also be
involved, and tasks could require multiple resources or instances of the same
resource. Therefore, instead of implicitly associating resources to lanes, in our
approach, resources are explicitly defined at the task level. Hence, a task that
requires resources for its execution can include, as part of its specification, the
required resources. To do it graphically, symbols are associated to each resource
type, and these symbols are depicted inside the corresponding tasks. For exam-
ple, the process in Fig. 1 relies on clerks for the handling of customers’ orders,
workers for parcel packing, and couriers for car delivery. In addition, cars and
drones are used to deliver the parcels. For instance, the diamonds at the right-
top corners of the Check availability, Cancel order, and Confirm order tasks indicate
that one instance of the clerk resource is required for the execution of the tasks.
Task Deliver by car requires instances of the car and courier resources. To avoid
dealing with multiple units of measurement, resources are counted as instances
or replicas, and if more than one instance of a certain resource type is required,
they are depicted as a number of icons in the task.

The process evolves by successively executing its tasks. However, the execu-
tion of a task requires the specified amounts of resources, which may lead to a
competition for such resources: multiple instances of the process may also run
concurrently, and multiple tasks in the same run may require the same resources.
In our running example, e.g., clerks are used in several tasks, and multiple cus-
tomers may be trying to simultaneously purchase products.

3 Using Long Short-Term Memory Neural Networks

Recurrent neural networks (RNNs) are a type of neural networks used to pro-
cess and predict sequential data [14]. They consist of a set of neurons connected
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with each other, where each neuron has an input xt and output ht at a specified
timestamp t, as well as a feedback loop that provides information of the previ-
ous timestamp. LSTM is a type of recurrent neural network used for sequence
prediction. In particular, they are useful for solving problems involving long
sequences that require previous information for larger periods of time. The main
characteristic of this type of networks is their architecture composed by feedback
loops to maintain information over time and a set of gates that control the flow
of information into a memory cell. Memory cells enables the learning of longer
patterns using a group of gates including the forget, input, output gates.

The model used in this work consists of a 2-layer LSTM with one shared
layer. The main layers are in charge of activities and timestamp predictions.
The data from event logs is transformed into a vector representation using one-
hot encoding (i.e., a sequence of bits among which the legal combinations of
values are only those with a single 1): each vector has a 1 in the location that
matches the corresponding task; its maximum length is given by the number of
unique tasks found in the event logs. The vectors are then grouped in a sequence
based on the time of their occurrence and this sequence is divided in a prefix
and suffix. The prefix represents the activities known to have executed, and the
suffix represent the activities to be predicted.

Once the data has been adapted to train the LSTM model, 80% of the avail-
able traces are used as training set and the remaining 20% as the testing set to
evaluate the accuracy of the model. In each prediction, the LSTM model assigns
a probability to all the tasks to decide which one will happen next. Furthermore,
the prediction is adapted to take as input a number of tasks to predict.

4 Rewriting Logic Semantics with LSTM Integration

Two alternative ways of evolving business process models are presented. Namely,
one guided by event logs, obtained from executions of the system, and another
one, equipped with time information and probabilities modeling the actual
behavior of the system, for its simulation. The second one is responsible for
the simulation of the system and the managing and analysis of resources. It is
also in charge of communicating with the Python process performing the predic-
tions. The Maude process submits the event log of the activities carried out and,
periodically, requests predictions. At this time the Maude BPMN process creates
a replica of itself, which will be guided by the event sequence submitted by the
predictor. Once the guidance consumes all the predicted events, the status of
the resources is analyzed to decide on the allocation/releasing of replicas, and
the simulation is restored. In summary, sharing a common representation of the
core elements of processes, one specification defines the evolution of the process
in accordance to the events in the log trace, and the other non-deterministically
advances using the information with which models are annotated.

The information required by each of the specifications is not the same. To
simulate the execution of processes, the process specifications are enriched with
quantitative information. This additional information is added as annotations to
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Fig. 2. Running example: parcel delivery with durations and probabilities.

the process model. Specifically, durations and delays associated to tasks and flows
are expressed as stochastic expressions. Similarly, alternative constructs (split
exclusive and inclusive gateways) are extended with probabilities associated to
outgoing flows. Figure 2 shows the process given in Fig. 1 enriched with such
information.

Data-based conditions for split gateways are modeled using probabilities asso-
ciated to outgoing flows of exclusive and inclusive split gateways. For instance,
notice the exclusive split after the Search products task in the customer lane of the
running example, which has outgoing branches with probabilities 0.6, 0.2, and
0.2, specifying the likelihood of following each corresponding path. The proba-
bilities of the outgoing flows in an exclusive split must sum up to 1, while each
outgoing flow in an inclusive split can be equipped with a probability between
0 and 1 without a restriction on their total sum.

The timing information associated to tasks and flows (durations or delays) is
described either as a literal value (a non-negative real number) or sampled from
a probability distribution function according to some meaningful parameters.
The probability distribution functions currently available include exponential,
normal/Gauss, and uniform (see, e.g., [13]). To simplify the reading of the pro-
cess in Fig. 2, the specification of task durations has been placed apart from
the process description, at the bottom-left corner. In the modelling tool, these
parameters would be specified as properties of the corresponding elements. For
instance, the duration of the Sign in task is specified as Norm(1, 0.5), which means
that it follows a normal distribution with mean 1 and variance 0.5, and the Search
products task follows a uniform distribution in the interval [3, 30], that is specified
as Unif(3, 30). Also to simplify the specification of the process, the delays in all
flows are set to Norm(1.0, 0.2) to express that it takes some time to move from
one task to the following one(s).
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The specification builds on a specification that has evolved along different
extensions through time [2–9].

4.1 The Specification of BPMN Processes

In the Maude specification of BPMN, a process is represented as an object with
sets of nodes and flows as attributes. The representation of each node type
includes the necessary information to describe its structure and to contribute to
the overall process analysis. For instance, a task node involves an identifier, a
description, two flow identifiers (input and output), a stochastic function model-
ing its duration, a set of resources required for its execution, and a set of messages
to be delivered after its completion. A split node includes a node identifier, a
gateway type (exclusive, parallel, inclusive, or event-based), an input flow identi-
fier, and a set of output flow identifiers. A merge node includes a node identifier,
a gateway type, a set of input flow identifiers, and an output flow identifier. The
representation of a flow includes a probability distribution function specifying
its delay, and an optional message or timer. The message blocks the flow until
it is received, whereas the timer represents a delay after which the execution is
triggered.

Given unique identifiers for nodes, flows, resources, and events the process
of the running example can be specified as shown in the excerpt in Fig. 3. It
shows how a Process object has attributes with the definition of its nodes and
flows connecting them. For example, the exclusive split id(“n005") (lines 5–6) has
id(“f004") as incoming flow, and id(“f005"), id(“f006"), and id(“f007"), with associ-
ated probabilities 0.6, 0.2, and 0.2, respectively, as outgoing flows. Furthermore,
the event-based split gate id(“n007") (line 7) has id(“f008") as incoming flow, and
id(“f009"), id(“f010"), and id(“f011") as outgoing flows. Note the definition of these
flows in lines 17–19; after the corresponding delay, they become active upon
the reception of the corresponding messages or by the id(“timeout") timer firing.
Finally, note that the specifications of tasks and flows also include their dura-
tion or delays as stochastic functions. For example, the duration of the Prepare
parcel task follows a normal distribution with average 5 and variance 4, which
is specified by the term Norm(5.0, 4.0). All flows are specified with Norm(1.0, 0.2)
as second argument, stating that they all have a delay that follows a normal
distribution with given parameters.

4.2 Autonomous Processes

A set of rewrite rules specifies how tokens evolve through a process. Each move
of a token inside a BPMN process is modeled as a rewrite rule. E.g., one of
the actions that may occur, and that is modeled by a corresponding rewrite
rule, is that when there is a token in the incoming flow of an exclusive split,
the token is moved to one of the outgoing flows of the gate, with its timer
set to the value resulting from evaluating the stochastic expression of the flow,
which represents the delay of the flow. Objects of classes Simulation, Workload,
and Supervisor manage different aspects of the simulations.
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Fig. 3. Running example: Maude representation of the parcel delivery process.

While process objects represent static processes, and they do not change
along simulations, all the information on process execution is kept in simula-
tion objects. Specifically, a Simulation object stores a collection of tokens (in a
tokens attribute), a global time (gtime), a set of events (events, including mes-
sages and timers), and a set of resources (resources). It also keeps track of the
metrics being computed. For analysis purposes, during the execution of a pro-
cess some information is collected in the corresponding attributes: time stamps,
task durations, and waiting time at parallel and inclusive merge gateways. This
information is necessary for guiding the execution of the process, periodically
evaluating the amount of resource instances, and for presenting the results to
the user for possible optimizations.

Tokens are used to represent the evolution of the workflow under execution.
Since there may be several simultaneous executions of a process, each execution is
identified with a unique identifier, which is used to associate tokens to executions.
Thus, a token is represented as a term token(TId, Id, T), where TId is the execution
instance the token belongs to, Id is the identifier of the flow or node it is attached
to, and T represents a timer, of sort Time, modeling a delay of the token, which
represents the duration of a task or the delay associated to a flow. Once its timer
becomes 0, a token can be consumed.

Tokens are stored in the tokens attribute of the Simulation object—
implemented as a priority queue, so that tokens are processed according to their
due time. However, even if a token is at the front of the queue with timer 0,
it may be required to delay its execution. For example, consider a task that
requires some resource that is not available, or a parallel merge for which some
incoming flow is not yet active. To avoid deadlocks, the scheduler implements a
shifting mechanism that identifies the first active token to the front of the queue
in case the current head needs to be delayed.

For each resource type, a number of instances or replicas are provisioned.
At each moment during a simulation, some of these instances can be in use
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Fig. 4. Task initiation rule.

and others can be available for tasks to use them. Given a number of provi-
sioned resources, if a running task requires resources and they are available,
it blocks them and initiates execution immediately. Indeed, whenever a task
requires several resource types, it atomically picks them, or waits for all of them
to be available. If the required resources are not all available, resource requests
are submitted, and the task remains blocked until its requests are satisfied. To
support this, each resource type keeps a queue of requests.

Each resource type is represented by a resource operator that gathers all
required information: an identifier, the minimum and maximum number of allo-
catable replicas (0, if unlimited), its allocation time, the total number of allocated
replicas, the number of available replicas, the total amount of time the replicas of
this resource type have been in use, and some historical information on resource
usage, request queues, etc., which are handy for analysis purposes.

The execution of a task is modeled with two rules. The first rule, the initTask
rule shown in Fig. 4, represents the task initiation, which is applied when a token
with zero time is available at the incoming flow (line 5). If all the resources
required by this task are available, which is checked with the allResourcesAvailable
function (line 8), then a new token is generated with the task identifier and the
task duration (line 12). Otherwise, the shifting mechanism is invoked (line 20)—
note the ellipsis. If available, all required resources are removed from the resource
set (grabResources function, line 18). Note also that rules update the information
on execution times, task durations, etc. (see, e.g., the update of the task-tstamps
attribute, lines 13–16).

A second rule, which models task completion, is triggered when there is a
token for that task with zero time. In that case, the token is consumed and a
new one is generated for the outgoing flow. All resources are released, and all
the message events associated to that task, if any, are added to the set of events.
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The Simulation object is in charge of collecting the data on the chosen met-
ric for the specified window of time (history length). A supervisor then ana-
lyzes the collected information and, if necessary, decides to update (increase or
decrease) the number of resource instances. Simulation-based analysis techniques
are typically parameterized by the workload, which defines the rate at which new
instances of a given process are executed. In a closed workload, a fixed number
of tokens will be injected in the process, corresponding to the number of times
the process is to be executed.

Finally, a class CtrlSocket is in charge of the interaction with the predictor
component. Every time a process starts or terminates, or the execution of a task
begins or terminates, an event is sent to the predictor. As we will see in Sect. 4.4,
when a prediction is due, the execution of the system stops, and a special event
is sent to the predictor component to notify that a prediction is due.

4.3 Event-Guided Processes

Even though the representation of processes presented in Sect. 4.1 includes
elements like probabilities, durations and delays that are not needed when
the system is guided by a provided event log, the fact that both stages of
the simulations—the autonomous execution described in Sect. 4.2 and the one
described in this section—use the same representation greatly simplifies its spec-
ification, since although the control will be different, the process will just make
a copy of itself to evolve. In fact, the main difference is that whilst in an
autonomous process the execution is guided by tokens, inserted in the process
by a workload manager object, in an event-guided process, it is the events who
guide the execution.

In the context of business processes, event logs are collections of time-
stamped events produced by the execution of business processes. Each event
indicates the execution of a task of the process. For example, an event may
specify that a given task started or completed at a given time. Event logs are
used for different purposes, including process mining, conformance checking,
etc. They may be represented using different formats, like CSV, XES, MXML,
XLSX or Parquet. Independently of the format chosen, they typically include
fields for date and time, event identifier, source, and possibly others, in one way
or another. Today, XES (eXtensible Event Stream) [1] is the most-widely-used
standard for storing event logs.

Since an event may belong to any of the on-going execution sessions, and
we do not require dates or any other information, instead of using any of the
existing formats, our events are represented by sequences of events that include
three values, separated by commas: a session identifier (a number), an event
description, and a time-stamp. Event identifiers may be either initial, for the
beginning of a process session, final, for the final node of a process session, or
a task identifier followed by either -init or -end, representing the beginning and
the end, respectively, of the execution of a task. For example, the following is a
fragment of a sequence of events of our example:
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Fig. 5. Rule initTask for processes guided by events.

298, n004-init, 3703784394059892335/9007199254740992
297, n014-init, 3705754467844272657/9007199254740992
356, n004-end, 1854135580310736077/4503599627370496
282, initial, 463663424722316089/1125899906842624
299, n004-end, 928653259810773583/2251799813685248
281, initial, 464495724782831233/1125899906842624
297, n014-end, 3716244327443022323/9007199254740992

These event sequences are received through a socket, are parsed, and then
represented using appropriate declarations. For example, the event

298, n004-init, 3703784394059892335/9007199254740992

is represented as
event(id("298"), id("n004"), event("init"), 3703784394059892335/9007199254740992)

An object of class Ctrl keeps the list of events, as is in charge of the interaction
with the predictor, reading the sequence of events throw a socket, and then
guiding the execution in accordance with such events.

class Ctrl | events: List{LogEvent}, socket: Maybe{Oid}, buffer: String .

Once in its events attribute, events will guide the execution by activating
rules specifying the different actions that may occur in the system. For example,
rule initTask in Fig. 5 specifies the initiation of a task when an init task event is
at the front of the event sequence. Although not shown in the rule to simplify
the presentation, all the information on the execution (time stampts, resources,
etc.) is gathered as in the autonomous simulations presented in Sect. 4.2. This
information will be used, when the execution consumes all the events in the
prediction, to update the number of instances of the resources. Note that the
initRule mirrors quite closely that for the autonomous execution.

4.4 Resource Adaptation Based on LSTM Predictions

The scheme proposed in [8] is followed for the definition of adaptation strategies.
Among others, in [8], a strategy based on predictions was proposed. However, in
that case, the prediction was carried out by using the execution of autonomous
process itself, looking ahead before making a decision. Here, a process advances
on its execution, but instead log traces are used for the prediction.

The general scheme assumes that resource instances are taken from a pool
when required. However, instead of assuming a fixed number of instances, new
instances may be allocated or released to adjust the offer of available resources
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to their demand, and in this way minimizing costs. The general scheme consists
of periodically evaluating the amount of resources, by looking at different met-
rics on the recent history or the current state. To specify such a mechanism, a
class Supervisor provides attributes time-between-checks, time-to-next-check, to keep
a timer, and check-interval to specify the length of the history to look at.
class Supervisor | time-between-checks: Time, time-to-next-check: Time, check-interval: Time .

This general procedure assumes that decisions are taken in accordance to
some given thresholds, which are also provided as parameters. The algorithm
periodically checks if the value of the considered property is greater than the
upper-bound threshold, in which case a new instance of the resource is allocated
to the set of available resources; if it is smaller than the lower bound, then an
instance is removed so that it is no longer available for use.

The Supervisor class is extended in a subclass SupervisorPrediction to handle the
new strategy. In addition to the thresholds attribute, with ranges for each resource
type, it adds attributes look-ahead-time, to be able to consider different prediction
sizes, and forked-state, to create an event-guided process to be executed on the
prediction to be received from the Python predictor component.

class SupervisorPrediction |
thresholds: Map{Id, Tuple{Float, Float}}, ---- usage thresholds
look-ahead-time: Time
forked-state: Maybe{System} .

subclass SupervisorPrediction < Supervisor .

The rules specifying the behavior of the supervisor object are shown in Fig. 6.
The supervisor-initiate-prediction rule is fired when the value of the time-to-next-check
attribute is zero. It creates a copy of the part of the state needed for the event-
guided execution (Sect. 4.3): the Simulation object collects information on the
execution, including time-stamps and measure of resource usage, and the Process
object. A new object of class CtrlSocket is created to read from the socket and
collect the events to guide the execution. On the right-hand side of the rule there
is a send message: a "PREDICT" event notifies the predictor that it is time to use
the trace submitted until that time to feed the neural network, generate the
prediction, and submit it through the socket.

To mark the end of the prediction, the predictor component will send an
END event. When the CtrlSocket object in the forked-state attribute finds the END
event, the second rule, supervisor-prediction-completed, is fired. It terminates the
event-guided system and updates the resources using the update function. This
operation basically analyzes the resources along the execution of the prediction
and decides whether changing the number of instances of each resource or not
using the thresholds provided. Finally, notice that the tokens are restored in the
Simulation object so that the simulation can be resumed. The time-to-next-check
timer is reset with the value of the time-between-checks attribute.
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Fig. 6. Supervisor’s rules.

5 Case Study

Table 1 presents experimental results, including the average and variance of the
execution times, total cost, and resource usage for different parameters of the
running example. In all these executions, (1) the population is 500; (2) the ranges
for the different resources is [1, 2], except for drones, for which a range [1, 4] was
chosen; (3) the allocation times (AT) go from 2 to 5 for the different resources;
(4) similarly, resource costs are in the range 20–60; and (5) thresholds are fixed to
50 and 85. Of course, many other combinations are possible, but considering all
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Table 1. Outputs for some of the simulations carried out for the delivery example.

TBC LAT Resources Usage (%) Exec time (h) Cost (e)
Name Range AT Cost Thrd Avg Var

1 5 5 car [1, 2] 5 60 (50, 85) 37.87 102.45 12.71 387 547.8
clerk [1, 2] 4 50 43.44

courier [1, 2] 3 40 41.59
drone [1, 4] 2 20 93.34
worker [1, 2] 3 30 52.77

2 10 5 car [1, 2] 5 60 (50, 85) 39.66 101.77 12.49 397 178.6
clerk [1, 2] 4 50 43.28

courier [1, 2] 3 40 47.16
drone [1, 4] 2 20 93.13
worker [1, 2] 3 30 51.15

3 15 5 car [1, 2] 5 60 (50, 85) 36.33 115.96 17.38 386 596.2
clerk [1, 2] 4 50 42.83

courier [1, 2] 3 40 40.73
drone [1, 4] 2 20 93.13
worker [1, 2] 3 30 48.38

4 20 5 car [1, 2] 5 60 (50, 85) 36.90 125.97 21.31 442 300.8
clerk [1, 2] 4 50 41.75

courier [1, 2] 3 40 42.52
drone [1, 4] 2 20 94.84
worker [1, 2] 3 30 45.72

5 25 15 car [1, 2] 5 60 (50, 85) 41.46 90.08 9.07 465 235.8
clerk [1, 2] 4 50 29.76

courier [1, 2] 3 40 41.46
drone [1, 4] 2 20 89.84
worker [1, 2] 3 30 40.35

6 25 5 car [1, 2] 5 60 (50, 85) 38.83 119.81 18.84 431 158.9
clerk [1, 2] 4 50 40.29

courier [1, 2] 3 40 46.54
drone [1, 4] 2 20 92.42
worker [1, 2] 3 30 50.39

of them involves many combinations, and should be handled as an optimization
problem, and use some amenable technique for such a problem, such as genetic
algorithms, or search-based algorithms like hill climbing or simulated annealing.

Although only a few combinations varying the time between checks (TBC)
and the look-ahead time (LAT) are presented, some interesting observations can
be made. TBC takes values 5, 10, 15, 20, and 25 in the different experiments.
Given that the best average execution time is for case 5, with TBC 25, one
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Fig. 7. Number of instances (left) and usage percentage (right) for each resource type
for a simulation with the predictive-usage strategy, TBC = 5, LAT = 5, and Thds =
(50, 85).
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may think that bigger TBCs may be better than smaller ones. However, note
that executions 4 and 6, with TBCs 20 and 25, respectively, show the slowest
executions, 125.95 and 119.81, respectively. Execution 5 has the best execution
time but the worst cost, from those in the table. The smallest cost is shown by
Case 3, with TBS 15 and LAT 5.

If both execution time average and cost are considered, the best combination
is the one shown as case1, with TBC 5 and LAT 5. The data collected along
the simulations are used to generate charts with the evolution of resources. The
charts for Case 1 are depicted in Fig. 7.

6 Concluding Remarks

The results presented here are part of a long-standing effort to provide BPMN
modeling with extensions and formal analysis tools [2–9]. The novelty of this
paper is in the integration of a rewriting logic semantics of BPMN and a deep
learning scheduler for business process optimization. Both the semantics and
scheduler have been presented, including details about their communication and
usage, and illustrated with a running example. The reader is referred to [8] for a
comprehensive summary of related work, complementing the references included
throughout this paper.

Future work includes a detailed comparison of optimization heuristics, such
as the ones presented in [8], with the one presented in this paper. Furthermore,
new case studies need to be developed for such a comparison. Ahother future
research direction is the use of deep learning techniques for business process
optimization in a sense different to the one explored here. Namely, deep learning
methods can be used also for structural optimization of a process under some
given constraints. Finally, the authors plan on making available a tool integrating
most of the techniques and algorithms developed for BMPN formal analysis.
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Abstract. Simulation-based analysis of cyber-physical systems is vital in
the era of Industry 4.0. Co-simulation enables composing specialized sim-
ulation tools via a co-simulation algorithm. In this paper, we provide a
formal model in Maude of co-simulation for complex scenarios involving
algebraic loops and step negotiation. We show not only how Maude can
formally analyze co-simulations, but also how Maude can be used to syn-
thesize co-simulation algorithms, port instrumentations, and parameter
values so that the resulting co-simulation satisfies desired properties.

1 Introduction

Modern cyber-physical systems (CPSs), such as, e.g., nuclear power plants, cars,
and airplanes, consist of multiple heterogeneous subsystems that are developed
by different companies using different tools and formalisms [23]. Although these
companies usually do not share their models for commercial reasons, there is
nevertheless a need to determine how the different subsystems interact and to
explore and analyze different design choices as early as possible. One way of
addressing this need is to use, for each subsystem, an interface that provides an
abstraction of that subsystem. Simulation units (SUs) provide such abstractions
and are widely used in industry. A class of SUs are described by the Func-
tional Mock-up Interface Standard [3] (FMI), which is used commercially and is
supported by many tools [7]. An SU implements a well-defined interface and rep-
resents a subsystem by computing its behavioral trace using a dedicated solver.

Co-simulation [11,19] addresses the need to simulate a CPS given as the com-
position of such black-box SUs. Co-simulation transforms a continuous system to
a discrete simulation with discrete interactions between the different SUs. Fur-
thermore, a digital twin can be a co-simulation connected to a physical systems.

The objective of a co-simulation is to capture as accurately as possible the
behavior of the modeled system. This is challenging due to discretization, cyclic
dependencies between the SUs, and the fact that very few assumptions be made
about the SUs: an SU may, e.g., be unable to predict its future state at the next
desired point in time. A co-simulation algorithm is responsible for orchestrating
the interaction of the SUs: it determines how and when the different SUs interact.

Since the co-simulation algorithm should make the virtual system correspond
to its physical counterpart, the virtual system can be analyzed, and different
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design choices can be explored, to predict the behavior of the system to be built.
However, the FMI standard is only informally described, and has been shown
to be inconsistent [5]. For both of the above reasons, there is a need for formal
methods to provide a formal semantics for co-simulation and to provide early
model-based formal analysis of the co-simulations.

However, providing a formal semantics to co-simulation is challenging, due to,
e.g., the complex behavior of the SUs, and the need to resolve cyclic dependencies
between the SUs by fixed-point computations and to perform step negotiation
to ensure that all SUs move in lockstep. Rewriting logic [21], with its modeling
language and high-performance analysis tool Maude [6], should be a suitable
formal method for co-simulation: Its expressiveness allows us to conveniently
specify both complex dynamic behaviors and sophisticated functions (e.g., for
detecting and resolving cyclic dependencies), and Maude provides automatic
formal analysis capabilities for correctness analysis and design space exploration.
Maude also supports connections to external objects, which means that Maude
should be able to orchestrate the composition of real external components.

In this paper we present a formal framework for representing co-simulation
in Maude. We give a formal model for co-simulation beyond the FMI 2.0 stan-
dard, also covering feed-through constraints, input instrumentations, and step
rejection. We then use Maude to synthesize and symbolically execute suitable
scenario-specific co-simulation algorithms, which enables the formal analysis of
the resulting co-simulation. We also show how Maude can be used to synthe-
size instrumentations, parameter values, and co-simulation algorithms for such
complex scenarios so that the resulting system satisfies desired properties. As dis-
cussed in Sect. 6, to the best of our knowledge this paper presents the first for-
mal framework that covers design space exploration of complex co-simulation sce-
narios with algebraic loops and step rejection, and that also synthesizes correct-
by-construction co-simulation algorithms and parameters for such scenarios.

Our framework currently does not connect to real-world SUs/FMUs; the
interfaces of the SUs are abstractly represented in Maude. Nevertheless, as men-
tioned above, since Maude supports external objects, we believe that our frame-
work can be naturally extended to perform co-simulation with real-world FMUs.

The rest of the paper is structured as follows. Section 2 provides necessary
background to Maude and co-simulation. Section 3 presents a Maude model
of co-simulation scenarios and SU behaviors. Section 4 shows how correct-by-
construction co-simulation algorithms can be synthesized and executed in Maude.
Section 5 describes how to synthesize instrumentation and parameter values such
that the resulting co-simulation satisfies desired properties. Section 6 discusses
related work and Sect. 7 gives some concluding remarks.

2 Preliminaries

2.1 Rewriting Logic and Maude

Maude [6] is a rewriting-logic-based executable formal specification language and
high-performance analysis tool for object-based distributed systems.
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A Maude module specifies a rewrite theory (Σ,E ∪ A,R), where:

– Σ is an algebraic signature; i.e., a set of sorts, subsorts, and function symbols.
– (Σ,E ∪ A) is a membership equational logic theory, with E a set of possibly

conditional equations and membership axioms, and A a set of equational
axioms such as associativity, commutativity, and identity, so that equational
deduction is performed modulo the axioms A. The theory (Σ,E ∪A) specifies
the system’s states as members of an algebraic data type.

– R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond ,
specifying the system’s local transitions.

A function f is declared op f : s1 . . . sn -> s. Equations and rewrite rules are
introduced with, respectively, keywords eq, or ceq for conditional equations, and
rl and crl. A conditional rewrite rule has the form crl [l] : t => t′ if c1 /\
. . . /\ cn, where the conditions c1, . . . , cn are evaluated from left to right. A
condition ci can be a Boolean term, an equation, a membership, or a matching
equation u(x1, . . . , xn) := u′ with variables x1, . . . , xn not appearing in t and
not instantiated in c1, . . . , ci−1; these variables become instantiated by matching
u(x1, . . . , xn) to the normal form of the (appropriate instance of) u′. ci can also
be a rewrite condition ui => u′

i, which holds if u′
i can be reached in zero or more

rewrite steps from ui. Mathematical variables are declared with the keywords
var and vars, or can have the form var:sort and be introduced on the fly.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class
C of objects with attributes att1 to attn of sorts s1 to sn. An object instance of
class C is represented as a term < O : C | att1 : val1, . . . , attn : valn >, where
O, of sort Oid, is the object’s identifier, and where val1 to valn are the current
values of the attributes att1 to attn. A system state is modeled as a term of the
sort Configuration, and has the structure of a multiset made up of objects and
messages (and connections in our case).

The dynamic behavior of a system is axiomatized by specifying each of its
transition patterns by a rewrite rule. For example, the rule (with label l)

rl [l] : < O : C | a1 : f(x, y), a2 : O’, a3 : z >

=> < O : C | a1 : x + z, a2 : O’, a3 : z > .

defines a family of transitions in which the attribute a1 of object O is updated
to x + z. Attributes whose values do not change and do not affect the next state,
such as a2 and the right-hand side occurrence of a3, need not be mentioned.

Formal Analysis in Maude. Maude provides a number of analysis methods, in-
cluding rewriting for simulation purposes, reachability analysis, and linear tem-
poral logic (LTL) model checking. The rewrite command frew init simulates one
behavior from the initial state/term init by applying rewrite rules. Given a state
pattern pattern and an (optional) condition cond , Maude’s search command
searches the reachable state space from init for all (or optionally a given number
of) states that match pattern such that cond holds:

search init =>! pattern [such that cond ] .
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The arrow =>! means that Maude only searches for final states (i.e., states that
cannot be further rewritten) that match pattern and satisfies cond . If the arrow is
=>* then Maude searches for all reachable states satisfying the search condition.

2.2 Co-simulation

Complex CPSs are composed of multiple communicating subsystems. For ex-
ample, an autonomous car includes suspension, braking and collision avoidance
subsystems. Co-simulation [12,19] is a technique enabling the discrete simula-
tion of a continuous CPS, using multiple simulation units (SUs). Each such SU
represents a subsystem and interacts with its environment through its ports.

Co-simulation Scenarios. A set of SUs can be composed into a scenario by
coupling the input ports to output ports. A coupling connects an output port
of an SU to an input port of another SU. The coupling restriction states that
the value of an input and an output of a coupling must be the same at all times
in the continuous system. However, in the discrete co-simulation, the coupling
restrictions can only be satisfied at specific points in time called communication
points. Therefore, each SU makes its own assumptions about the evolution of its
input values between the communication points, which can introduce errors in
the co-simulation [2]. An assumption about the evolution of an input can roughly
be divided into two categories [14]:

– Interpolation (or reactive): the SU uses the current value at time t and the
future value at time t + Δ to predict the values in the interval (t, t + Δ).

– Extrapolation (or delayed): the SU uses the current value at time t and the
previous value at time t − Δ to predict the values in the interval (t, t + Δ).

The orchestrator computes the behavior of a scenario as a discrete trace,
while it tries to satisfy the coupling restrictions, by exchanging values between
the coupled ports. The orchestrator aims to find the communication points that
minimize the co-simulation error while ensuring that the SUs move in lockstep
by adapting to the behavior of the scenario. This is tricky, since the orchestrator
needs to regard the SUs as nondeterministic blackboxes about which only few
assumptions can be made. The optimal communication points furthermore de-
pend on the approximation schemes used by the different SUs [13–15,22,24].
Unfortunately, most SUs will silently accept any given communication points,
resulting in hard-to-debug erroneous results.

An example of the kind of nondeterministic behavior that the orchestrator
needs to account for is step rejection, where an SU rejects a future state compu-
tation, since it implements error estimation and concludes that the desired step
size may lead to an intolerable error. The FMI standard allows step rejections;
however, they are generally unpredictable from the orchestrator’s perspective.
An SU implementing error estimation has a maximal step size h, defining the
interval for which it can reliably compute its future state.
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The orchestrator addresses step rejections using step negotiation [17]. A sce-
nario can also contain algebraic loops (cyclic dependencies) between the SUs,
which are resolved using fixed-point computations [17,19,22]. Scenarios with al-
gebraic loops and step rejections are called complex scenarios and are notoriously
hard to simulate, since the orchestrator must adapt to the behavior of the nonde-
terministic SUs to ensure an accurate simulation using“angelic nondeterminism.”

The following definition of an SU is based on [4,16,17]:

Definition 1 (Simulation Unit). A simulation unit (SU) is a tuple

SU � 〈S,U, Y,V, set, get, step〉 ,

where:

– S is a set, denoting the state space of the SU.
– U and Y are sets, of input and output ports, respectively. The union VAR =

U ∪ Y of the inputs and outputs is called the ports of the SU.
– V is a set, denoting the values that a variable can hold. VT = R≥0 × V is the

set of timestamped values exchanged between input and output ports.
– The functions set : S × U × VT → S and get : S × Y → VT set an input

and get an output, respectively.
– step : S ×R>0 → S ×R>0 is a function; step(s,H) = (s′, h) gives the state

s′ after time h, where h is either H or the maximal time that the SU can
progress from state s.

Definition 2 (Scenario). A scenario S is a tuple

S � 〈C, {SUc}c∈C , L,M,R, F 〉

– C is a finite set (of SU identifiers).
– {SUc}c∈C is a set of SUs, where each SUc = 〈Sc, Uc, Yc,V, setc, getc, stepc〉.
– L is a function L : U → Y , where U =

⋃
c∈C Uc and Y =

⋃
c∈C Yc, and

where L(u) = y means that the output y is connected to the input u.
– M ⊆ C denotes the SUs that may reject a future state computation.
– R : U → B is a predicate, which provides information about the SUs’ input

approximation functions.
– F is a family of functions {Fc : Yc → P(Uc)}c∈C . uc ∈ Fc(yc) means that

the input uc feeds through to the output yc of the same SU.

The function R represents the instrumentation of the scenario. An input port u
is reactive if R(u), and is delayed otherwise. Changing the instrumentation of a
scenario changes the algorithm used to simulate the scenario. We assume that
the instrumentation of a scenario is constant throughout the simulation, which
is the case for most commercially used SUs [13]. Our definition extends the FMI
2.0 standard [3] with feed-through and port instrumentation. Figure 1 shows a
way to graphically present co-simulation scenarios.
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f
a g

b
r

d

Fig. 1. A co-simulation scenario with two SUs a and b. The dashed arrow denotes
a feed-through connection, the ports are represented as small squares, the instru-
mentation of an input port is denoted by the letters r (reactive) or d (delayed).
The solid arrows f and g represent couplings.

Co-simulationAlgorithms. Anorchestrator simulatesa scenariobyexecutinga
co-simulation algorithm. A co-simulation algorithm consists of an initialization
procedure and a co-simulation step [3]. This work focuses on the co-simulation
step, which we refer to as “the algorithm” in the paper.

The state of a co-simulation scenario is defined as the combination of the
states of its subcomponents:

Definition 3 (Abstract SU State). The observable abstract state sR of an SU
SUc in a scenario S is an element of the set SR

c = R≥0 × SR
Uc

× SR
Yc

× SR
Vc
, where:

– SR
Uc

: Uc → R≥0 is a function mapping each input port to a timestamp.
– SR

Yc
: Yc → R≥0 is a function mapping each output port to a timestamp.

– SR
Vc

: VARc → V is a function mapping each port to a value.
The first component of the abstract state denotes the time of the SU.

We use the abstract state sRc of an SU c instead of the internal state sc since
the orchestrator cannot observe the latter.

Definition 4 (Abstract Co-simulation State). The abstract co-simulation
state sRS of a scenario S = 〈C, {SUc}c∈C , L,M,R, F 〉 is an element of the set
SR

S = time × SR
U × SR

Y × SR
V where:

– time : C → R≥0 is a function, where time(c) denotes the current simulation
time of SUc. We denote by a time value t ∈ R≥0 the function λc.t, which we
use if all SUs are at the same time.

– SR
U =

∏
c∈C SR

Uc
maps all inputs of the scenario to a timestamp.

– SR
Y =

∏
c∈C SR

Yc
maps all outputs of the scenario to a timestamp.

– SR
V =

∏
c∈C SR

Vc
maps all ports of the scenario to a value.

A co-simulation step P is a sequence of operations that takes a co-simulation
from one consistent state to another consistent state. We write s

P−→ s′ if execut-

ing the co-simulation step P from the state s results in the state s′.

Definition 5 (Co-simulation Step). A co-simulation step P is a sequence of
SU actions that takes a consistent co-simulation state to another consistent co-
simulation state. The state of the co-simulation is consistent if all input ports
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have a source, and all coupled ports have the same value. Formally:

〈
t, sRU , s

R
Y , sRV

〉
P−→

〈
t′, sRU

′
, sRY

′
, sRV

′〉

=⇒ (consistent(
〈
t, sRU , s

R
Y , sRV

〉
) =⇒ (consistent(

〈
t′, sRU

′
, sRY

′
, sRV

′〉
) ∧ t′ > t))

where consistent is defined as:

consistent(
〈
t, sRU , sRY , sRV

〉
) � (∀uc ∈ U∃yd ∈ Y · L(uc) = yd)

∧ (∀uc, yd · L(uc) = yd =⇒ sRV (uc) = sRV (yd))

Informally, the co-simulation step advances the scenario from an initial state
at time t to a final state at time t + H, where H > 0, and ensures that the
coupling restrictions are satisfied at both the initial and the final state.

Figure 2 shows three different co-simulation steps of the scenario in Fig. 1
that are allowed by the FMI standard 2.0 [3].

Algorithm 1

1: (s(H)
A , H) ← stepA(s(0)A , H)

2: (s(H)
B , H) ← stepB(s(0)B , H)

3: fv ← getA(s(H)
A , yf )

4: gv ← getB(s(H)
B , yg)

5: s
(H)
B ← setB(s(s)B , uf , fv)

6: s
(H)
A ← setA(s(H)

A , ug, gv)

Algorithm 2

1: (s(H)
B , H) ← stepB(s(0)B , H)

2: (s(H)
A , H) ← stepA(s(0)A , H)

3: gv ← getB(s(H)
B , yg)

4: s
(H)
A ← setA(s(H)

A , ug, gv)
5: fv ← getA(s(H)

A , yf )
6: s

(H)
B ← setB(s(H)

B , uf , fv)

Algorithm 3

1: (s(H)
B , H) ← stepB(s(0)B , H)

2: gv ← getB(s(H)
B , yg)

3: s
(0)
A ← setA(s(0)A , ug, gv)

4: fv ← getA(s(0)A , yf )
5: s

(H)
B ← setB(s(H)

B , uf , fv)
6: (s(H)

A , H) ← stepA(s(0)A , H)

Fig. 2. Three co-simulation algorithms of the scenario in Fig. 1 conforming to
the FMI Standard (version 2.0).

Although the three algorithms satisfy Definition 5 and consist of the same
actions, they are not equivalent, and simulating with one algorithm instead of
one of the others could change the co-simulation result as shown in [16,18]. To
differentiate between them, we need to consider the semantics of the different
SU actions described in Definition 1.

The semantics described in Definitions 6 to 8 is based on [12,18] and operates
on abstract states. It describes which assumptions the orchestrator can place on
the behavior of SUs and restricts how actions can be composed to construct a
co-simulation step.

Definition 6 (Get Action). A value can be obtained from an output port y of an
SU at time t using the action get(s(t), y). The action changes the state of the
SU according to:

sR
get(s(t),y)−−−−−−−→ (v, sR

′
) =⇒ preGet(y, sR) ∧ postGet(y, sR, sR

′
, v)

Where:

preGet(y,
〈
t, sRU , sRY , sRV

〉
) � sRY (y) < t ∧ ∀u ∈ F (y) · sRU(u) = t
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The precondition above states that no value must have been obtained from the
output y since the SU was stepped (sRY (y) < t). Furthermore, it requires that all
the inputs that feed through to y have been updated, so they are at time t. The
following postcondition ensures that the output is advanced to time t:

postGet(y,
〈
t, sRU , sRY , sRV

〉
,
〈
t, sRU , sRY

′
, sRV

〉
, v) � sRY

′
(y) = t

∧ ∀ym ∈ (Y \ y) · sRY
′
(ym) = sRY (ym)

Definition 7 (Set Action). Setting a value 〈tv, x〉 on the input port u of an SU
using set(s(t), u, 〈tv, x〉) updates the time and value of the input port u such that
they match 〈tv, x〉:

sR
set(s(t),u,〈tv,x〉)−−−−−−−−−−−→ sR

′
=⇒ preSet(u, sR) ∧ postSet(u, v, sR, sR

′
)

Where:

preSet(u, 〈tv, x〉 ,
〈
t, sRU , sRY , sRV

〉
) � sRU(u) < tv

∧ ((R(uc) ∧ sRU(u) = t) ∨ (¬R(uc) ∧ sRU(u) < t))

The precondition says that the input must not have been assigned a new value
since the SU was stepped (sRU(u) < tv). Furthermore, it requires that the value
〈tv, x〉 respects the instrumentation of the input. The following postcondition
ensures that the value and time of the input u are updated so that they match
the value assigned on the input:

postSet(u, 〈tv, x〉 ,
〈
t, sRU , sRY , sRV

〉
,
〈
t, sRU

′
sRY , sRV

′〉
) � tv = sRU

′
(u)

∧ (∀um ∈ (U \ u) · sRU
′
(u) = sRU(u)) ∧ sRV

′
(u) = x

Definition 8 (Step Computation). Stepping an SU using step(s(t),H)
advances the state of the SU by at most H:

sR
step(s(t),H)−−−−−−−−→ sR

′
=⇒ preStep(H, sR) ∧ postStep(H, sR, sR

′
)

Where:

preStep(H,
〈
t, sRU , sRY,sRV

〉
) � ∀u ∈ U · ((R(u) ∧ tSU + H = sRU(u))

∨ (¬R(u) ∧ tSU = sRU(u)))

The above precondition states that all the SU’s inputs have been updated according
to their instrumentation. The following postcondition ensures that the time of the
SU advances by at most H.

postStep(H,
〈
t, sRU , sRY , sRV

〉
,
〈
t′, sRUc

, sRY , sRVc

′〉
) � t + h′ = t′ ∧ h′ ≤ H
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An algorithm P must satisfy Definition 5 while respecting the defined se-
mantics. This means that Algorithm 3 is correct, while Algorithms 1 and 2 are
incorrect since they do not respect the semantics. In particular, Algorithms 1
and 2 try to perform a stepA action without respecting the reactive input ug;
the state of SU A sRA = 〈0, {ug → 0}, {yf → 0}, 〉 does not contain {ug → H}.
Intuitively, we try to step SU A without having provided it with a value on the
reactive input ug; this violates preStepA.

Problem Statement. The two key problems in co-simulation that we address in
this paper (in addition to the formalization of a co-simulation) are:

1. Given a scenario S: Synthesize a co-simulation algorithm P for S. That is,
find a sequence of SU actions P which defines a valid co-simulation algorithm
for S. This involves solving possible algebraic loops and performing step
negotiation to ensure that all SUs move in lockstep.

2. Given a parametric and partially instrumented scenario S, where some SU
parameters are unknown and where the instrumentation is incomplete, i.e.,
not all input ports are reactive or delayed : Find concrete values for the
parameters, and concrete instrumentation of the input ports, such that the
resulting instrumented scenario has desired properties.

3 Modeling Co-simulation Scenarios in Maude

This section describes how we model individual SUs and their composition in
a co-simulation scenario in Maude. Due to space limitations, we only provide
fragments of our Maude model. The entire model, including the synthesis and
execution of co-simulation algorithms (Sect. 4) and the synthesis of instru-
mentations and parameters (Sect. 5) is available at https://github.com/
SimplisticCode/Co-simulation WRLA and consists of around 1400 LOC.

We formalize co-simulation scenarios in an object-oriented style. The state is
a term {SUs connections orchObjects} of sort GlobalState, where SUs is set of
objects modeling simulation units, connections denote the port couplings, and
orchObjects are two additional objects used during synthesis and execution of
co-simulation algorithms (see Sect. 4).

A simulation unit is modeled as an object instance of the following class:

class SU | time : Nat, inputs : Configuration,

outputs : Configuration, canReject : Bool,

fmistate : fmiState, parameters : LocalState,

localState : LocalState .

The attribute time denotes the time of the SU; inputs and outputs denote the
objects modeling the SU’s input and output ports; canReject is true if the SU
implements error estimation (i.e., is an element of the set M); fmistate denotes
the simulation mode (see [3]) of the SU; localState denotes the SU’s internal
state; and parameters denotes the values of the SU’s parameters.

Input and output ports are modeled as instances of the following classes:

https://github.com/SimplisticCode/Co-simulation_WRLA
https://github.com/SimplisticCode/Co-simulation_WRLA
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class Port | value : FMIValue, time : Nat, status : PortStatus, type : FMIType .

class Input | contract : Contract .

class Output | dependsOn : OidSet .

subclasses Input Output < Port .

value and time denote, respectively, the value of the port and the time of its last
set/get operation; status is true if the port was updated at the current time;
contract denotes the input port’s instrumentation (delayed or reactive); and
dependsOn denotes the set of inputs that feed through to the output port.

Example 1. We illustrate our framework using a system where a controller con-
trols the water level of a water tank with constant inflow of water, by opening
and closing a valve in the tank. The system is modeled using one SU for the
tank and one SU for the controller, and has the architecture in Fig. 1 without
the feed-through. The water tank (in its initial state) is modeled as an object

< "tank" : SU | parameters : ("flow" |-> < 5 >), localState : ("waterlevel" |-> < 0 >),
inputs : (< "valveState" : Input | value : < 0 >, time : 0, contract : delayed >),
outputs : (< "waterlevel" : Output | value : < 0 >, time : 0,

status : Undef, dependsOn : empty >)
time : 0, canReject : false >

The tank has one delayed input port and one output port, and the local state
indicates that the tank is empty. The parameter flow denotes the amount of
water that flows into the tank per time unit.

To formalize the behaviors of an SU we formalize the operations set, get,
and step in Definition 1. For example, the get operation that updates the time
and status of a set of output ports is formalized as follows:1

op getAction : Object OidSet -> Object .

eq getAction(< SU1 : SU | >, empty) = < SU1 : SU | > .

eq getAction(< SU1 : SU | time : T,

outputs : (< O : Output | > OS) >, (O , P)) =

getAction(< SU1 : SU | outputs :

(< O : Output | time : T, status : Def > OS) >, P) .

The application-specific behavior of an SU is given by defining its step function:

Example 2. The following definition of the step function in our running example
defines how the water level of the tank changes as a function of the step duration
STEP, the parameter flow, and the state (value) of the input valve:

eq step(< "tank" : SU | time : T, parameters : ("flow" |-> < FLOW >),
inputs : < "valve" : Input | value : < STATE > >,
outputs : < "waterlevel" : Output | time : T >,
localState : ("waterlevel" |-> < LEVEL >) >,

STEP) =
if STATE == 1 then --- valve is open

< "tank" : SU | time : (T + STEP), localState : ("waterlevel" |-> < 0 > ),
outputs : < "waterlevel" : Output | value : < 0 >, time : (T + STEP), status : Undef > >

1 We do not show variable declarations, but follow the convention that variables are
written with capital letters.
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else --- valve is closed
< "tank" : SU | time : (T + STEP), localState : ("waterlevel" |-> < LEVEL + (STEP * FLOW ) >),

outputs : < "waterlevel" : Output | value : < LEVEL + (STEP * FLOW) >,
time : (T + STEP), status : Undef > >

fi .

A connection/coupling connecting the output port o of SU su1 to the input
port i of SU su2 is represented by the term su1 ! o ==> su2 ! i.

We define scenarios using constants simulationUnits and external
Connection to denote, resp., the simulation unit objects and their connections.

Example 3. The SUs and their couplings in our example are defined as follows:

eq simulationUnits =
< "tank" : SU | parameters : ("flow" |-> < 100 >), localState : ("waterlevel" |-> < 0 >),

time : 0, fmistate : Instantiated, canReject : false,
inputs : (< "valveState" : Input | value : < 0 >, type : integer, time : 0,

contract : delayed, status : Undef >),
outputs : (< "waterlevel" : Output | value : < 0 >, type : integer, time : 0,

status : Undef, dependsOn : empty >) >
< "ctrl" : SU | parameters : (("high" |-> < 5 >) , ("low" |-> < 0 >)), canReject : false,

localState : ("valve" |-> < false >), fmistate : Instantiated, time : 0,
inputs : (< "waterlevel" : Input | value : < 0 >, type : integer, time : 0,

contract : reactive, status : Undef >),
outputs : (< "valveState" : Output | value : < 0 >, type : integer, time : 0,

status : Undef, dependsOn : empty >) > .

eq externalConnection = ("tank" ! "waterlevel" ==> "ctrl" ! "waterlevel")
("ctrl" ! "valveState" ==> "tank" ! "valveState") .

The constant setup defines the initial state, and adds appropriate initialized
orchestration objects to the scenario:

op setup : -> GlobalState .

ceq setup = {INIT}

if SCENARIO := externalConnection simulationUnits

/\ validScenario(SCENARIO)

/\ LOOPS := tarjan(SCENARIO)

/\ NeSUIDs := getSUIDsOfScenario(SCENARIO)

/\ INIT := calculateSNSet(SCENARIO OData(1,LOOPS, NeSUIDs)) .

The function validScenario checks whether all inputs are coupled and that
no input has two sources. The function tarjan returns (a possibly empty)
set of algebraic loops in the scenario by searching for non-trivial strongly con-
nected components in the graph constructed using the rules in [16]. The function
getSUIDsOfScenario returns the set of all SU identifiers.Finally,calculateSNSet
checks if step negotiation should be applied in the simulation of the scenario, and
generates a global initial state with orchestration objects that store information
about the discovered algebraic loops and whether step negotiation is needed.

4 Synthesizing and Executing Co-simulation Algorithms

This section describes how co-simulation algorithms for a given scenario can be
synthesized and then executed in Maude.
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4.1 Orchestration Data

The orchestration executes a given co-simulation algorithm on a scenario, and
requires keeping track of the co-simulation algorithm and the execution state.

The following class SimData stores such data about the simulation:

class SimData | SNSet : OidSet, defaultStepSize : NzNat,

actualStepSize : NzNat, unsolvedSCC : AlgebraicLoopSet,

solvedSCC : AlgebraicLoopSet, guessOn : PortSet,

values : PortValueMap, simulationTime : Nat,

suids : NeOidSet .

The attribute SNSet denotes the set M of SUs that may reject to step the desired
step size (see Definition 2); defaultStepSize is the default step duration of the
simulation, and the attribute actualStepSize is the negotiated step duration.
The attributes actualStepSize and defaultStepSize are equal if M = ∅.
The attributes unsolvedSCC and solvedSCC respectively denote the solved and
unsolved algebraic loops. The attribute guessOn denotes the set of ports which
are used to solve algebraic loops using the technique described in [17]; values
is a map linking an input port to a value. The orchestration uses values to
track which values it has obtained but not set on an input port. The attribute
simulationTime describes the current time of the simulation, and suids denotes
the identifiers of the SUs.

The following class AlgoData stores the co-simulation algorithm:

class AlgoData | CosimStep : ActionList, Initialization : ActionList,

Termination : ActionList, endTime : NzNat .

The attributes Initialization and Termination denote the initialization pro-
cedure and termination procedure, respectively. The attribute CosimStep de-
notes the co-simulation step procedure that the orchestration applies until it
reaches the end time of the simulation (given by endTime). All elements of the
algorithm are of the sort ActionList, which is a list of SU operations (where
we do not show actions for handling complex scenarios):

ops Set Get Step Save : -> ActionType [ctor] .

op portEvent:_SU:_PId:_ : ActionType SUID OidSet -> Action [ctor] .

subsort Action < ActionList .

op emptyList : -> ActionList [ctor] .

op _;_ : ActionList ActionList -> ActionList [ctor assoc id: emptyList] .

4.2 Synthesis of Co-simulation Algorithms

We synthesize co-simulation algorithms for a scenario S by first performing and
recording all possible SU actions, and then searching for consistent reachable
final states. Any sequence of SU actions leading to such a state is a co-simulation
algorithm.

A number of rewrite rules model the different SU actions. For example, the
following rewrite rule describes a get operation:
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crl [get-syn] :

< SU1 : SU | fmistate : Simulation, inputs : IS,

outputs : (< O : Output | time : T, status : Undef,

value : V, dependsOn : FT > OS) >

(SU1 ! O ==> SU2 ! I)

< OCH : SimData | values : PV >

< ALG : AlgoData | CosimStep : ALGO >

=>

getAction(< SU1 : SU | >, SU1 ! O)

(SU1 ! O ==> SU2 ! I)

< OCH : SimData | values : insert((SU2 ! I), < T ; V >, PV) >

< ALG : AlgoData | CosimStep : (ALGO ; EVENT) >

if feedthroughSatisfied(FT,IS, T)

/\ EVENT := portEvent: Get SU: SU1 PId: O .

A value V is obtained from the output O of SU1 if the state satisfies all feed-
through constraints FT of the output O (checked by feedthroughSatisfied).
The rule updates the output O using the operation getAction, inserts the out-
put’s value and time < T ; V > into values, and adds the performed action
portEvent: Get SU: SU1 PId: O to its list CosimStep of performed actions.

All such “synthesis” rules in our model follow the same pattern: they rewrite
the scenario while remembering how they did it.

We synthesize a co-simulation algorithm by starting with a consistent initial
state and exploring how a consistent final state can be established. An algorithm
for a given scenario is therefore synthesized using the following rewrite rule:

crl [getAlgorithm]: {INIT} => {getOrchestrator(FINALSTATE)}

if isInitialState(INIT)

/\ LOOPS := tarjan(INIT)

/\ SUIDsNE := getSUIDsOfScenario(INIT)

/\ SIMDATA := initialOrchestrationData(1,LOOPS,SUIDsNE)

/\ CONF := calculateSNSet(INIT) SIMDATA initialAlgorithmData(1)

/\ {CONF} => {FINALSTATE}

/\ allSUsinUnloaded(SUIDsNE, FINALSTATE) .

This rule checks whether the scenario INIT is a suitable initial state using the
predicate isInitialState. Then we construct an initial simulation configura-
tion CONF as in Sect. 3. The key condition that does most of the work is the
rewrite condition {CONF} => {FINALSTATE}, which searches for states reach-
able from CONF until it finds a state FINALSTATE that satisfies the property
allSUsinUnloaded, which ensures that all SUs have been properly simulated and
unloaded. The function getOrchestrator extracts the synthesized co-simulation
algorithm from this final state.

The following Maude command then synthesizes all valid co-simulation algo-
rithms for a given scenario:

Maude> search scenario => FINALSTATE:GlobalState .
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Many SU actions can happen independently at the same time, which means
that multiple valid algorithms often can be synthesized for a scenario. For exam-
ple, there are six different co-simulation algorithms for our water tank scenario.

4.3 Executing Co-Simulation Algorithms

This section describes how co-simulation algorithms can be executed. The state
of such an execution is a term run: algorithm on: scenario with: simData:

op run:_on:_with:_ : Object Configuration Object -> SimState [ctor].

A co-simulation algorithm is executed by sequentially performing its actions,
starting with performing all actions in the Initialization, then performing all
actions of the CosimStep, and finally executing all actions in Termination.

The following rule shows the execution of the first action (Get) in CosimStep:

crl [get-exec] :
run: < ALG : AlgoData | CosimStep : (action: Get SU: SU1 PId: O) ; ALGO >
on: CONF

< SU1 : SU | inputs : IS,
outputs : (< O : Output | time : T, value : V, dependsOn : FT > OS) >

( SU1 ! O ==> SU2 ! INPUT)
with: < OCH : SimData | values : PV >
=>
run: < ALG : AlgoData | CosimStep : ALGO >
on: CONF getAction(< SU1 : SU | >, SU1 ! O) ( SU1 ! O ==> SU2 ! INPUT)
with: < OCH : SimData | values : insert((SU2 ! INPUT), < T ; V >, PV) >

if feedthroughSatisfied(FT, IS, T) .

We can combine algorithm synthesis and execution into the following rewrite
rule, so that rewriting the term runAnyAlgorithm scenario synthesizes and ex-
ecutes a co-simulation algorithm the for co-simulation scenario scenario:

crl [runAlg] : runAnyAlgorithm INIT => run: ORC on: INIT with: SIMDATA

if LOOPS := tarjan(INIT)

/\ SUIDsNE := getSUIDsOfScenario(INIT)

/\ SIMDATA := initialOrchestrationData(1,LOOPS,SUIDsNE)

/\ ALGO := initialAlgorithmData(1)

/\ CONF := calculateSNSet(INIT ALGO) SIMDATA

/\ {CONF} => {FINALSTATE}

/\ ORC := getOrchestrator(FINALSTATE)

/\ allSUsinUnloaded(SUIDsNE, FINALSTATE) .

This rule is similar to the rule getAlgorithm, and also extracts the resulting
algorithm ORC and simulation data SIMDATA.

Example 4. Thewater tank scenario described inExample 3 (waterTankScenario
below) can be simulated by rewriting:

Maude> frew (runAnyAlgorithm waterTankScenario) .

The command returns the final simulation state
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run: < "Algorithm" : AlgorithmData | CosimStep : emptyList , Initialization : emptyList,
Termination : emptyList, endTime : 1 >

on: ("tank" ! "waterlevel" ==> "ctrl" ! "waterlevel")
("ctrl" ! "valveState" ==> "tank" ! "valveState")
< "ctrl" : SU | canReject : false, fmistate : Unloaded, time : 1,

inputs : < "waterlevel" : Input | contract : reactive, status : Def,
time : 1, type : integer, value : < 100 > >,

outputs : < "valveState" : Output | dependsOn : empty, status : Def,
time : 1, type : integer, value : < 1 > >,

localState : "valve" |-> < true >,
parameters :"high" |-> < 5 >, "low" |-> < 0 > >

< "tank" : SU | canReject : false, fmistate : Unloaded, time : 1,
inputs : < "valveState" : Input | contract : delayed, status : Def,

time : 1, type : integer, value : < 1 > >,
outputs : < "waterlevel" : Output | dependsOn : empty, status : Def,

time : 1, type : integer, value : < 100 > >,
localState : "waterlevel" |-> < 100 > ,
parameters : "flow" |-> < 100 > >

with: < "Orchestrator" : SimulationData | SNSet : empty, actualStepSize : 1,
defaultStepSize : 1, guessOn : empty,
simulationTime : 1, solvedSCC : empty,
unsolvedSCC : empty, values : empty,
suids :("ctrl", "tank") >

4.4 Checking Confluence of Synthesized Co-simulation Algorithms

Section 4.2 shows that multiple valid co-simulation algorithms can be synthesized
for a given scenario. Executing all these valid co-simulation algorithms for a given
scenario should give the same result, since all the SUs are deterministic in the
sense that if we try to step an SU A from some initial state s with step size
h, it will always produce the same final state A′. All this indicates that some
actions are independent of each other. Therefore, their relative execution order
is irrelevant, and an optimized algorithm can merge such independent actions
and perform them in parallel.

The following Maude command checks whether all generated co-simulation
algorithms for a scenario scenario result in the same final state:

Maude> search (runAnyAlgorithm scenario) =>! S:SimState .

This search command synthesizes and then executes all co-simulation algorithms
for the scenario scenario. For our water tank scenario, the search produces a
single result, which means that all synthesized algorithms give the same result.

5 Synthesizing Instrumentations and SU Parameters

Our framework makes possible different kinds of design space exploration to al-
low the practitioner to see how different design choices affect the behavior of the
system. This section shows how our framework can be used to synthesize param-
eter values and instrumentations of the inputs that lead to desired simulations.

5.1 Instrumentation of a Scenario

Finding a good instrumentation of the input ports (i.e. deciding whether an input
port should be reactive or delayed) is important not only to achieve accurate
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co-simulation results [14,18,22], but also because some instrumentations of a
scenario may lead to algebraic loops while others do not.

We use reachability analysis to explore the consequences of different instru-
mentations of a scenario to find the instrumentation that yields the desired
simulation results. To explore different instrumentations of a scenario, we create
a partially instrumented scenario, where the some of the input ports have the
contract noContract instead of reactive or delayed.

Example 5. In the following partially instrumented water tank scenario, the in-
put port "valveState" of the SU "tank" and the "waterLevel" input port of
the SU "ctrl" are not yet instrumented:

eq waterTankNotInstrumented =
< "tank" : SU | parameters : ("flow" |-> < 100 >), localState : ("waterlevel" |-> < 0 >),

time : 0, fmistate : Instantiated, canReject : false,
inputs : (< "valveState" : Input | value : < 0 >, type : integer, time : 0,

contract : noContract , status : Undef >),
outputs : (< "waterlevel" : Output | value : < 0 >, type : integer, time : 0,

status : Undef, dependsOn : empty >) >

< "ctrl" : SU | parameters : (("high" |-> < 5 >) , ("low" |-> < 0 >)), canReject : false,
localState : ("valve" |-> < false >), fmistate : Instantiated, time : 0,
inputs : (< "waterlevel" : Input | value : < 0 >, type : integer, time : 0,

contract : noContract , status : Undef >),
outputs : (< "valveState" : Output | value : < 0 >, type : integer, time : 0,

status : Undef, dependsOn : empty >) > .

We use an operator findInstr to instrument such partially instrumented
scenarios, so that the state findInstr(scenario) becomes a fully instrumented
scenario when all ports have been instrumented (rule remove-findInstr). The
rules instr-delayed and instr-reactive set uninstrumented input ports to
be either delayed or reactive:

rl [instr-delayed]:

findInstr(< SU1 : SU | inputs : < I : Input | contract : noContract > IS > C)

=> findInstr(< SU1 : SU | inputs : < I : Input | contract : delayed > IS > C) .

rl [instr-reactive]:

findInstr(< SU1 : SU | inputs : < I : Input | contract : noContract > IS > C)

=> findInstr(< SU1 : SU | inputs : < I : Input | contract : reactive > IS > C) .

crl [remove-findInstr]: findInstr(CONF) => CONF if instrumented(CONF).

The different instrumentations of a partially instrumented scenario are found
and explored using the following rule:

crl [findInstrumentation]: findContracts(INIT) => CONF

if findInstr(INIT) => CONF

/\ empty == tarjan(CONF) --- no algebraic loops

/\ runAnyAlgorithm CONF => run: ORC on: FINAL with: SIMDATA

/\ simulationFinished(ORC)

/\ desiredProperty(FINAL) .
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This rule generates an instrumented scenario CONF from the partially instru-
mented scenario INIT. CONF is then simulated (in the rewrite condition), leading
to a final state FINAL. The instrumentation can be restricted by giving prop-
erties that the instrumented scenario CONF and/or the simulation result FINAL
must satisfy. For example, the condition empty == tarjan(CONF) says that the
instrumentation should not lead to algebraic loops, and the last conjunct in the
condition says that the simulation result FINAL must satisfy desiredProperty .

Example 6. We define desiredProperty to be that the water level of the tank is in
a desired range. The following Maude command then finds all instrumentations
which lead to simulations which end in a desired water level:

Maude> search findContracts(waterTankNotInstrumented) =>! C:Configuration .

This command returns the three instrumentations (with parts replaced by ‘...’)

Solution 1
C:Configuration --> ...
< "ctrl" : SU | inputs : < "waterlevel" : Input | contract : delayed > ... >
< "tank" : SU | inputs : < "valveState" : Input | contract : reactive > ... >

Solution 2
C:Configuration --> ...
< "ctrl" : SU | inputs : < "waterlevel" : Input | contract : reactive > ... >
< "tank" : SU | inputs : < "valveState" : Input | contract : delayed > ... >

Solution 3
C:Configuration --> ...
< "ctrl" : SU | inputs : < "waterlevel" : Input | contract : delayed > ... >
< "tank" : SU | inputs : < "valveState" : Input | contract : delayed > ... >

5.2 Synthesizing SU Parameters

An SU may have different parameters. In our framework, the user can specify a
finite set of possible values for a parameter using a choose operator, and we can
then synthesize those parameter values that result in desired simulations.

Example 7. We want to synthesize the value of the parameter flow of the water
tank such that the water level is above 10 in the final simulation state. The
following predicate defines the desired water level:

op above10 : Configuration -> Bool .

eq above10(CONF < "tank" : SU | localState : "waterlevel" |-> < V > >) = V > 10.

To synthesize a flow value from the set {1, 2, 30} we initialize flow accordingly:

< "tank" : SU | parameters : "flow" |-> choose(< 1 > , < 2 > , < 30 >), ... >

We use the following rule to synthesize parameter values that result in a
simulations that satisfy above10:
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crl [getParamValues] : selectParams(UNITIALIZEDCONF) => CONF

if UNITIALIZEDCONF => CONF

/\ runAnyAlgorithm CONF =>

run: < ALG : AlgData | Initialization : emptyList,

CosimStep : emptyList , Termination : emptyList >

on: FINALSTATE with: SIMULATIONDATA

/\ above10(FINALSTATE) .

The following Maude command gives all initialized scenarios which lead to de-
sired simulations:

Maude> search selectParams(parametricWaterTank) =>! C:Configuration .

Solution 1

C:Configuration --> ... < "tank" : SU | parameters : "flow" |-> < 30 > , ... >

No more solutions.

We can also simultaneously synthesize both desired instrumentations and
parameter values by having noContract ports and choose(...) values.

6 Related Work

A number of papers, e.g. [4,12,16,17], synthesize co-simulation algorithms for
fixed scenarios. In contrast to our paper, this body of work does not provide
formal models of co-simulation, and therefore no formal analysis. We exploit
Maude’s formal analysis features to synthesize suitable instrumentations and
SU parameters, which is not addressed by the mentioned related work.

Design space exploration of SU parameters is described in [8,9]. This work
uses genetic algorithms to find optimal parameters values. However, it does not
consider how different instrumentations can affect the simulation result.

Another example of DSE of a CPS using Maude can be found in [20], where
Maude is used to validate and analyze drone/unmanned aerial vehicle flight
strategies to find the optimal flight strategy using an external simulation engine.
In contrast, we use Maude’s capabilities to validate co-simulation algorithms and
formalize the co-simulation semantics instead of evaluating flight strategies.

Formal methods have been used for co-simulation, e.g., [1,5,18,25,26]. Thule
et al. [25] formalize a given scenario and two given co-simulation algorithms for
that scenario in Promela and use the Spin model checker to compare the two
simulation algorithms, e.g., in terms of reachability. In contrast, we provide a
general formal framework for co-simulation, synthesize co-simulation algorithms
for a given scenario, synthesize instrumentations and parameter values, and cap-
ture a broader class of co-simulation scenarios (e.g., including scenarios with
algebraic loops and step rejection) than those in the case study in [25].

Cavalcanti et al. [5] provide the first behavioral semantics of FMI. They
show how to prove essential properties of co-simulation algorithms using CSP,
and also show that the co-simulation algorithm provided in the FMI standard is
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not consistent. We cover an extension of FMI scenarios, and also include feed-
through, step rejection, and input port instrumentation. Furthermore, as already
mentioned, we also synthesize co-simulation algorithms and parameters.

Amálio et al. [1] show how formal tools can detect algebraic loops in a sce-
nario. We not only detect such loops, but also solve them to synthesize co-
simulation algorithms. Zeyda et al. [26] formalize a co-simulation scenario in
Isabelle/UTP, and prove different properties–including behavioral properties–
about the scenario. In contrast, we use automatic model checking methods to
both synthesize and analyze co-simulation algorithms, and also cover complex
scenarios (algebraic loops, step rejection, etc.) not covered in [26].

On the Maude side, Mason et al. [20] use Maude and statistical model check-
ing to analyze a system of UAVs (“drones”). The key point is that they integrate
a quite realistic “external” UAV simulator, Ardupilot/SITL, into their Maude
simulations. Maude and the simulator communicate by message passing. This
work does not formalize co-simulation in our FMI sense, but shows that Maude
can execute together with, and coordinate, external simulators for CPSs.

7 Concluding Remarks

We have presented a formal model of co-simulation in Maude for complex scenar-
ios with algebraic loops and step negotiation. Using rewrite conditions, we have
used Maude to generate and execute co-simulation algorithms, and to synthesize
port instrumentations and parameter values (albeit from a finite set of possible
values), such that the resulting co-simulation satisfies desired properties.

In future work we should validate our framework on larger applications. We
should also explore how Maude’s symbolic analysis methods can be used to
synthesize algorithms and parameter values from symbolic initial states which
represent infinitely many concrete states. Although users can define complex
behaviors of their SUs, connecting Maude to a solver for real numbers such as
dReal [10] could support defining the continuous dynamics of SUs using differ-
ential equations. Finally, we should exploit Maude’s support for external objects
to execute the synthesized algorithms on real systems.
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19. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput.
Model. Dyn. Syst. 6(2), 93–113 (2000)

20. Mason, I.A., Nigam, V., Talcott, C., Brito, A.: A framework for analyzing adaptive
autonomous aerial vehicles. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS,
vol. 10729, pp. 406–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-74781-1 28

21. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

22. Oakes, B.J., Gomes, C., Holzinger, F.R., Benedikt, M., Denil, J., Vangheluwe, H.:
Hint-based configuration of co-simulations with algebraic loops. In: Obaidat, M.S.,
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Abstract. This work improves the canonical narrowing previously
implemented using Maude 2.7.1 by taking advantage of the new func-
tionalities that Maude 3.2 offers. In order to perform more faithful com-
parisons between algorithms, we have reimplemented Maude’s built-in
narrowing using Maude’s metalevel. We compare these two metalevel
implementations with Maude’s built-in narrowing, implemented at the
C++ level, through a function that collects all the solutions, since the
original command only returns one at a time. The results of these experi-
ments are relevant for narrowing-based protocol analysis tools, as well as
for improving the analysis of many other narrowing-based applications
such as logical model checking, theorem proving or partial evaluation.

Keywords: Canonical narrowing · Reachability analysis · Maude ·
Narrowing modulo · Security protocols

1 Introduction

Since verification of protocol security properties modulo the algebraic properties
of a protocol’s cryptographic functions for an arbitrary number of sessions is
generally undecidable, and the state space is infinite, symbolic techniques such
as unification and narrowing modulo a protocol’s algebraic properties, as well as
SMT solving, are particularly well suited to support symbolic model checking
and theorem proving verification methods.

The Maude-NPA [7] is a symbolic model checker for cryptographic protocol
analysis based on the above-mentioned symbolic techniques, which are efficiently
supported by the underlying Maude language [4]. These Maude-based symbolic
techniques are also used by other protocol analysis tools such as Tamarin [12]
and AKISS [2].
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State explosion is a significant challenge in this kind of symbolic model check-
ing analysis modulo algebraic properties, particularly because unification mod-
ulo algebraic properties can generate large numbers of unifiers when comput-
ing symbolic transitions. Although Maude-NPA has quite effective state space
reduction techniques [6], further state space reduction gains can be obtained by
more sophisticated equational narrowing techniques such as canonical narrow-
ing [8], whose state space reduction advantages were experimentally validated
using Maude 2.7. The main motivation for the present work comes from the fact
that the new unification and narrowing features supported by the current Maude
3.2, as well as its meta-level features, make possible a new implementation of
canonical narrowing that we show can achieve additional computational and per-
formance improvements. Throughout this work, we consider several experimental
examples in order to demonstrate the effectiveness of the new implementation in
Maude 3.2. Below we briefly explain these examples together with their Maude
specification.

The first defined module, Example 5 below, is a classic in the Maude system.
It is the coffee and apple vending machine, in which dollars and quarters are
inserted to buy combinations of those products. The second defined module,
Example 6 below, goes one step further at the level of complexity. In this case
we implement a Maude specification of a very simple protocol using exclusive-or.
Likewise, the third module, Example 7 below, is a very simple module with just
one transition rule where symbolic reasoning takes place modulo the theory of
an abelian group.

A fourth example explores the advantages of canonical narrowing modulo
an equational theory that includes the idempotence property. The reason why
we have chosen this property is because it is highly problematic in automated
reasoning (even for matching and rewriting). It makes easier the representation
of sets, in contrast to multisets, and it is useful when dealing with processes or
agents. If we have several processes working at the same time, and it turns out
that two of them are the same, the idempotence property allows us to eliminate
one of them to avoid redundancy and reduce the use of computational resources.

Example 1. We can modify the equational theory of the vending machine to add
some equations that express idempotence:

mod IDEMPOTENCE-VENDING-MACHINE is
sorts Coin Item Marking Money State . subsort Coin < Money . subsort Money Item < Marking .

op empty : -> Money .
op __ : Money Money -> Money [assoc comm id: empty] .
op __ : Marking Marking -> Marking [assoc comm id: empty] .
op <_> : Marking -> State . ops $ q : -> Coin . ops c a : -> Item .
var M : Marking .

rl [buy-c] : < M $ > => < M c > [narrowing] . eq [idem-dollar] : $ $ M = $ M [variant] .
rl [buy-a] : < M $ > => < M a q > [narrowing] . eq [idem-item-a] : a a M = a M [variant] .
eq [change] : q q q q M = $ M [variant] . eq [idem-item-c] : c c M = c M [variant] .

endm

Note that idempotence is not specified for quarters (q), but only for dollars ($),
apples (a) and cups of coffee (c). This is because there is already an equation that
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reduces the repetition of four quarters to a dollar, so that adding idempotence
for quarters would create a conflict.

If we consider an initial term < M1 > that only contains a variable of type
Money, we would obtain several traces by using the narrowing algorithm. In each
one of the observed narrowing states, it is necessary to unify with the left-hand
side of the rules to determine the new narrowing steps that can be taken. Each of
those possible steps results in a new branch in the reachability tree. One of these
traces takes us to the term < $ a c q q M4 >, which also contains a variable
M4 of type Money. The narrowing sequence associated to this term is as follows:

< M1 > �σ1 < $ a q M2 > �σ2 < a c q M3 > �σ3 < $ a c q q M4 >

where M2 and M3 are also variables of type Money and the computed substitutions
are σ1 = {M �→ $ M2}, σ2 = {M2 �→ $ M3}, and σ3 = {M3 �→ $ M4}. Note that
in the first narrowing step, the substitution applied to the left-hand side of the
rule buy-a is ρ1 = {W1 �→ $ M2} for W1 the variable of a renamed version of rule
buy-a. For the second narrowing step, the substitution applied to the left-hand
side of the rule buy-c is ρ2 = {W2 �→ a q M3} for W2 the variable of a renamed
version of rule buy-c. For the third narrowing step, the substitution applied to
the left-hand side of the rule buy-a is ρ3 = {W3 �→ $ a c q M4} for W3 the variable
of a renamed version of rule buy-a. Note that extra $ are introduced by ρ1 and ρ3
due to equational unification using the variant equations and the axioms.

As we will see later, the use of canonical narrowing will allow us to introduce
irreducibility constraints in the algorithm, which in many cases will significantly
reduce the number of branches in the narrowing reachability tree.

The remaining of this paper is organized as follows. Section 2 provides some
preliminaries on rewriting logic and narrowing. Section 3 gives a detailed pre-
sentation of canonical narrowing. Section 4 describes our new implementation of
canonical narrowing in Maude 3.2. Section 5 presents the experiments carried out
using (i) the standard built-in narrowing, (ii) our implementation of standard
narrowing, and (iii) our implementation of canonical narrowing. Finally, Sect. 6
summarizes the paper and presents some future work. All of the Maude mod-
ules and experiments are available at https://github.com/ralorueda/canonical-
narrowing.

2 Preliminaries

We follow the classical notation and terminology from [17] for term rewriting,
and from [13] for rewriting logic and order-sorted notions.

We assume an order-sorted signature Σ with a poset of sorts (S,≤). The
poset (S,≤) of sorts for Σ is partitioned into equivalence classes, called con-
nected components, by the equivalence relation (≤ ∪ ≥)+. We assume that each
connected component [s] has a top element under ≤, denoted �[s] and called the
top sort of [s]. This involves no real loss of generality, since if [s] lacks a top sort,
it can be easily added.

https://github.com/ralorueda/canonical-narrowing
https://github.com/ralorueda/canonical-narrowing
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We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the
set of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding
order-sorted term algebras. Given a term t, Var(t) denotes the set of variables
in t.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X
to TΣ(X ). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X ). The application of substitution σ to
a term t is denoted by tσ or σ(t).

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic
induces a congruence relation =E on terms t, t′ ∈ TΣ(X ) (see [14]). Throughout
this paper we assume that TΣ,s 	= ∅ for every sort s, because this affords a
simpler deduction system. We write TΣ/E(X ) and TΣ/E for the corresponding
order-sorted term algebras modulo the congruence closure =E , denoting the
equivalence class of a term t ∈ TΣ(X ) as [t]E ∈ TΣ/E(X ).

An equational theory (Σ,E) is a pair with Σ an order-sorted signature and
E a set of Σ-equations. An equational theory (Σ,E) is regular if for each t = t′

in E, we have Var(t) = Var(t′). An equational theory (Σ,E) is linear if for
each t = t′ in E, each variable occurs only once in t and in t′. An equational
theory (Σ,E) is sort-preserving if for each t = t′ in E, each sort s, and each
substitution σ, we have tσ ∈ TΣ(X )s iff t′σ ∈ TΣ(X )s. An equational theory
(Σ,E) is defined using top sorts if for each equation t = t′ in E, all variables in
Var(t) and Var(t′) have a top sort.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSU W

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSU W

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSU W

E (t = t′) such that σ|W �E ρ|W (i.e., there is a
substitution η such that (ση)|W =E ρ|W ); and (iii) for all σ ∈ CSU W

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩ W = ∅.

A rewrite rule is an oriented pair l → r, where l 	∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules. The set R of rules is sort-decreasing if for each t → t′ in R, each
s ∈ S, and each substitution σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.

The rewriting relation on TΣ(X ), written t →R t′ or t →p,R t′ holds between
t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a substitution σ, such
that t|p = lσ, and t′ = t[rσ]p. The relation →R/E on TΣ(X ) is =E ;→R; =E .
The transitive (resp. transitive and reflexive) closure of →R/E is denoted →+

R/E

(resp. →∗
R/E). A term t is called →R/E-irreducible (or just R/E-irreducible) if

there is no term t′ such that t →R/E t′. For →R/E confluent and terminating,
the irreducible version of a term t is denoted by t↓R/E .
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A relation →R,E on TΣ(X ) is defined as: t →p,R,E t′ (or just t →R,E t′) iff
there are a non-variable position p ∈ PosΣ(t), a rule l → r in R, and a substitu-
tion σ such that t|p =E lσ and t′ = t[rσ]p. Reducibility of →R/E is undecidable
in general since E-congruence classes can be arbitrarily large. Therefore, R/E-
rewriting is usually implemented [11] by R,E-rewriting under some conditions
on R and E such as confluence, termination, and coherence.

We call (Σ,B,E) a decomposition of an order-sorted equational theory
(Σ,E∪B) if B is regular, linear, sort-preserving, defined using top sorts, and has
a finitary and complete unification algorithm, which implies that B-matching is
decidable, and the equations E oriented into rewrite rules

−→
E are convergent, i.e.,

confluent, terminating, and strictly coherent [15] modulo B, and sort-decreasing.
Given a decomposition (Σ,B,E) of an equational theory, (t′, θ) is an E,B-

variant [3,10] (or just a variant) of term t if tθ↓E,B =E t′ and θ↓E,B =E θ.
A complete set of E,B-variants [10] (up to renaming) of a term t is a sub-
set, denoted by [[t]]E,B, of the set of all E,B-variants of t such that, for each
E,B-variant (t′, σ) of t, there is an E,B-variant (t′′, θ) ∈ [[t]]E,B such that
(t′′, θ) �E,B (t′, σ), i.e., there is a substitution ρ such that t′ =B t′′ρ and
σ|Var(t) =B (θρ)|Var(t). A decomposition (Σ,B,E) has the finite variant prop-
erty (FVP) [10] (also called a finite variant decomposition) iff for each Σ-term
t, a complete set [[t]]E,B of its most general variants is finite.

In what follows, the set G of equations will in practice be G = E � B and
will have a decomposition (Σ,B,E).

Definition 1 (Reachability goal). [16] Given an order-sorted rewrite theory
(Σ,G,R), a reachability goal is defined as a pair t

?→∗
R/G t′, where t, t′ ∈ TΣ(X )s.

It is abbreviated as t
?→∗ t′ when the theory is clear from the context; t is the

source of the goal and t′ is the target. A substitution σ is a R/G-solution of the
reachability goal (or just a solution for short) iff there is a sequence σ(t) →R/G

σ(u1) →R/G · · · →R/G σ(uk−1) →R/G σ(t′).

A set Γ of substitutions is said to be a complete set of solutions of t
?→∗

R/G t′

iff (i) every substitution σ ∈ Γ is a solution of t
?→∗

R/G t′, and (ii) for any solution

ρ of t
?→∗

R/G t′, there is a substitution σ ∈ Γ more general than ρ modulo G, i.e.,
σ|Var(t)∪Var(t′) �G ρ|Var(t)∪Var(t′).

This provides a tool-independent semantic framework for symbolic reachabil-
ity analysis of protocols under algebraic properties. Note that we have removed
the condition Var(r) ⊆ Var(l) for rewrite rules l → r ∈ R and thus a solution
of a reachability goal must be applied to all terms in the rewrite sequence. If
the terms t and t′ in a goal t

?→∗
T/G t′ are ground and rules have no extra vari-

ables in their right-hand sides, then goal solving becomes a standard rewriting
reachability problem. However, since we allow terms t, t′ with variables, we need
a mechanism more general than standard rewriting to find solutions of reach-
ability goals. Narrowing with R modulo G generalizes rewriting by performing
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unification at non-variable positions instead of the usual matching modulo G.
Specifically, narrowing instantiates the variables in a term by a G-unifier that
enables a rewrite modulo G with a given rule of R and a term position.

Definition 2 (Narrowing modulo G). [16] Given an order-sorted rewrite
theory (Σ,G,R), the narrowing relation on TΣ(X ) modulo G is defined as
t �σ,R,G t′ (or σ� if R,G is understood) iff there is p ∈ PosΣ(t), a rule l → r in
R such that Var(t) ∩ (Var(l) ∪ Var(r)) = ∅, and σ ∈ CSU V

G(t|p = l) for a set V
of variables containing Var(t), Var(l), and Var(r), such that t′ = σ(t[r]p).

The reflexive and transitive closure of narrowing is defined as t �∗
σ,R,G t′ iff

either t = t′ and σ = id, or there are terms u1, . . . , un, n ≥ 1, and substitutions
σ1, . . . , σn+1 s.t. t �σ1,R,G u1 �σ2,R,G u2 · · · un �σn+1,R,G t′ and σ = σ1 · · · σn+1.

Soundness and completeness of narrowing with rules R modulo the equational
theory G for solving reachability goals are proved in [11,16] for order-sorted
topmost rewrite theories, i.e., rewrite theories were all the rewrite steps happen
at the top of the term.

3 Canonical Narrowing

This section gives an overview of the canonical narrowing strategy of [8]. The
canonical narrowing relation �R/E,B includes irreducibility constraints only for
the left-hand sides of the rules.

Definition 3 (Canonical Constrained Narrowing). [8] Given an order-
sorted rewrite theory (Σ,E ∪ B,R) such that (Σ,B,E) is a decomposition of
(Σ,E∪B), the canonical narrowing relation with irreducibility constraints holds
between 〈t,Π〉 and 〈t′,Π ′〉, denoted

〈t,Π〉 �α,R/E,B 〈t′,Π ′〉

iff there exists l → r ∈ R, which we always assume renamed, so that
Var(〈t,Π〉) ∩ (Var(r) ∪ Var(l)) = ∅, and a unifier α ∈ CSU W

E∪B(t = l), where
W = Var(〈t,Π〉) ∪ Var(r) ∪ Var(l), and

1. 〈t′,Π ′〉 = 〈rα,Πα ∪ {(lα)↓−→
E ,B

}〉, and

2. Πα ∪ {(lα)↓−→
E ,B

} are
−→
E ,B-irreducible.

Soundness and completeness of canonical narrowing with rules R modulo the
equational theory E ∪ B w.r.t. canonical rewriting for solving reachability goals
are proved in [8].

Note that we do not require a narrowing step to compute CSUE∪B(t = l)
anymore, we perform regular equational unification but impose an irreducibility
constraint on the normal form of the instantiated left-hand side, which can be
handled in Maude by using asymmetric unification [5].

The irreducibility constraints are computed by using the normalized left-
hand side of the rules that are used in the narrowing steps. Each trace will carry
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a different set of irreducibility constraints, although several of the conditions are
shared by having common predecessor nodes. In each new narrowing step, the
list of irreducibility constraints computed previously in that sequence must be
taken into account, so that if it is necessary to reduce one of the terms appearing
in the list to compute a new step, it will be discarded. In this way, we eliminate
redundancy as well as branches of the reachability tree, which will be less and
less wide than the tree resulting from using standard narrowing. In some cases,
we will even get infinite reachability trees to become finite, ensuring termination.

Example 2. If we look at the module of Example 1, we can define an equational
unification problem of the form t = t′. Specifically, if we consider the narrowing
trace shown in that example, we can place ourselves in the third term, just
before taking the last step. To compute the next possible steps from that term,
it is necessary to try to unify it with the left-hand side of each of the defined
rules. In this case, we will focus on the rule buy-a, which is also used to take
the first step of the trace. The specification of the unification problem would
then be t = < a c q M3 > and t′ = < W3 $ >, where W3 is a variable of type
Marking (money, items, or combinations of them) corresponding to the variable
of a renamed version of rule buy-a. If we run the unification problem using
Maude’s command, we will get 5 unifiers as a solution:

Maude> variant unify < a c q M3:Money > =? < W3:Marking $ > .

Unifier #1 Unifier #2
M3:Money --> $ %1:Money M3:Money --> q q q #1:Money
W3:Marking --> q c a %1:Money W3:Marking --> c a #1:Money

Unifier #3 Unifier #4
M3:Money --> $ #1:Money M3:Money --> $ q q q %1:Money
W3:Marking --> $ q c a #1:Money W3:Marking --> c a %1:Money

Unifier #5
M3:Money --> q q q %1:Money
W3:Marking --> $ c a %1:Money

Note that ρ3 of Example 1 corresponds to the third unifier. But of those
5 unifiers, there are 3 that could be ignored, since the accumulated substi-
tution makes the left-hand side of the buy-a rule used at the first narrow-
ing step reducible. Canonical narrowing would have computed irreducibility
constraints that come from normalizing the instantiated left-hand side of the
rules when taking the first and second step. That is, the terms < M3 $ >
(i.e., < W1 $ >ρ1↓E,B = < $ $ M2 >↓E,B = < $ M2 > and < $ M2 >σ2↓E,B =
< M3 $ >) and < a q M3 > (i.e., < W2 $ >ρ2↓E,B = < a q M3 >) are assumed
to be irreducible when we want to take the last step of the trace. Maude’s uni-
fication command allows us to indicate this irreducibility constraint using such
that M3 $ irreducible at the end command. If we run it now, we can see how
the number of unifiers found is reduced to 2, since the first, third and fourth
unifiers from the previous command are discarded:

Maude> variant unify < a c q M3:Money > =? < W3:Marking $ >
> such that M3:Money $ irreducible .
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Unifier #1 Unifier #2
M3:Money --> q q q #1:Money M3:Money --> q q q %1:Money
W3:Marking --> c a #1:Money W3:Marking --> $ c a %1:Money

As can be seen, the use of irreducibility constraints manages to reduce the num-
ber of unifiers. By applying them to the narrowing algorithm, as canonical nar-
rowing does, then this implies the reduction of possible steps (branches in the
reachability tree) from the term in which we were, since for each one of the
unifiers found between the term and the right part of a rule, we will have a new
narrowing step.

4 Implementation

Our approach has been to create a meta-level command in which one of the
input parameters allows us to choose between the standard narrowing algorithm
or the canonical narrowing algorithm.

4.1 Using the Meta-level

To achieve the implementation of the command it is necessary to use some calls
to the Maude meta-level available in Maude 3.2. Thanks to this, we can reuse
functionalities that are integrated at the native level in C++, achieving much
better performance than if we implemented them from scratch; as it happened
in the previous implementation in Maude 2.7.

Each user command in Maude is represented by a corresponding command at
the meta-level, allowing us greater control and management of their outputs. For
example, the variant unify command that we saw in Example 2 corresponds to
the metaVariantUnify command at the meta level. It is precisely this command
that we use to carry out the unification step in our implementation, since it allows
us to perform equational unification modulo variant equations and axioms. The
operator that defines the command is the following:

op metaVariantUnify :
Module UnificationProblem TermList Qid VariantOptionSet Nat ~> UnificationPair? .

The command receives six parameters and returns a structure of type
UnificationPair?, an error or a pair consisting of a substitution and an identi-
fier of the family of variables used. The first command received is the module that
defines the rewriting theory to work on. The second is the unification problem to
which solutions are sought. The third is a list of irreducibility terms, which is of
vital importance in the canonical narrowing algorithm. The fourth corresponds
to the identifier of the family of variables to avoid (the one used for the variables
of the unification problem). The fifth is a parameter used to indicate if we want
to filter the returned unifiers. Finally, a natural number parameter is received
in which the unifier to be searched is indicated. We show an execution of this
command in Example 3, using in turn the module of the vending machine with
idempotence as a rewriting system (see Example 1).
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Example 3. Considering the module from Example 1 again as a rewriting sys-
tem, we can use the metaVariantUnify command to find the unifiers seen in
Example 2. We simply indicate the same equational unification problem, and by
means of the last argument of the command we can select each of the unifiers to
obtain. Additionally, we can use an irreducibility condition to reduce the num-
ber of unifiers just like we have seen before. For example, by using the same
irreducibility condition, we can obtain one of the unifiers as follows:

Maude> reduce in META-LEVEL :
> metaVariantUnify(upModule(’IDEMPOTENCE-VENDING-MACHINE, true),
> ’<_>[’__[’a.Item,’c.Item,’q.Coin,’M3:Money]] =? ’<_>[’__[’$.Coin,’W3:Marking]],
> ’<_>[’__[’$.Coin,’M3:Money]], ’@, none, 0) .
result UnificationPair: {

’M3:Money <- ’__[’q.Coin,’q.Coin,’q.Coin,’#1:Money] ;
’W3:Marking <- ’__[’a.Item,’c.Item,’#1:Money],’#}}

Another meta-level functionality that has been necessary to use is the
metaNarrowingApply command. It performs a narrowing step, using the
arguments shown in its definition below. Thanks to this command and the
metaVariantUnify one, we can abstract from the unification processes, which
are the most costly at the computational level. By invoking meta-level com-
mands to do so, execution is done natively in C++ code, which turns out to be
much faster and more efficient. The operator that defines the command is the
following:

op metaNarrowingApply :
Module Term TermList Qid VariantOptionSet Nat -> NarrowingApplyResult? .

In this case, the command receives as the first parameter, again, the module
that represents the rewrite theory to be used. The second parameter represents
the term from which to perform the narrowing step. The third parameter is a list
of irreducibility terms, important for canonical narrowing. The fourth parameter
is the identifier of the family of variables to avoid. The fifth parameter is used
to indicate if we want to filter the returned unifiers in order to get only the
most general unifiers. Finally, the sixth parameter is the step that you want to
take, that is, the “branch” of the tree that you want to generate from the given
term. The result will be of type NarrowingApplyResult?, a data structure that
contains either an error, or the necessary information from the narrowing step
performed.

Example 4. We use again the module from Example 1. As an initial term we
consider the same that we will use later for the experiments whose results are
shown in Table 4. The metaNarrowingApply command allows us to give (among
others) the first step of narrowing from that term:

Maude> reduce in META-LEVEL :
> metaNarrowingApply(upModule(’IDEMPOTENCE-VENDING-MACHINE, true),

’<_>[’M1:Money], empty, ’@, none, 0) .
result NarrowingApplyResult: { ’<_>[’__[’a.Item,’q.Coin,’%1:Money]],’State,

[], ’buy-a, ’M1:Money <- ’__[’$.Coin,’%1:Money], ’M:Marking <- ’%1:Money, ’% }

The output returned by Maude shows how the rule labeled as buy-a has been
used to perform the narrowing step, resulting in two different assignments. On
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the one hand, a dollar is assigned together with a fresh variable to the variable
M1 of type Money. On the other hand, the same fresh variable is assigned to the
variable M2 of type Marking (Note that in this case, this is possible only because
Money is a subsort of Marking).

There is also a metaNarrowingSearch command that performs the entire
instead of only one step, but we have not used it since we need to perform
intermediate operations between each narrowing step to implement the canonical
narrowing algorithm.

4.2 Data Structures and the narrowing Command

All narrowing algorithms perform one-step transitions from one symbolic state to
another—the narrowing steps—using the rewrite rules of the given specification.
We use a tree as a data structure, in which each of these narrowing steps gives
rise to a new node, with its associated term. Thus, the root node of the tree will
have as its associated term the initial term (reduced to normal form) indicated
by the user. At the same time, each of the nodes is itself a data structure, in
which we not only find the associated term, but also some extra information
that allows us to locate the node and generate new terms from it.

Our implementation is built in such a way that ten parameters are requested
from the user to invoke the command, as follows:

narrowing(Module, Term, SearchArrow, Term, Algorithm, VariantOptionSet, TermList, Qid,
Bound, Bound)

The first argument receives the rewrite theory to perform the unification and
narrowing steps. The second and fourth arguments are used to indicate the ini-
tial term and the target term respectively. The third argument corresponds to
the search arrow that we want to use, so that solutions are included or discarded
depending on the rewriting steps performed to achieve them. This argument may
take values to indicate that only solutions that involve a single rewrite step, one
or more steps, or any number of steps can be considered. The combination of
the fifth and sixth parameters will indicate the type of algorithm to use. Com-
binations indicating the use of standard narrowing or canonical narrowing are
currently accepted. The seventh argument is used to indicate a list of initial
irreducibility terms to consider. This argument will be taken into account in all
unification calls and in each narrowing step, allowing the value empty to indi-
cate that we do not want to use irreducibility constraints. The eighth argument
receives the identifier used to name the variables in the initial and target terms,
to avoid later clashes. Finally, the ninth and tenth arguments are used to impose
bounds on the algorithm, being able to indicate a maximum depth to expand
the search tree or a maximum of solutions to search.

4.3 Search for Solutions

When we receive the parameters from the user, the first necessary step is to
verify that the value of the depth limits and solutions are admissible. If they
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are, the strategy to follow will be determined according to the indicated search
arrow.

Once all the above is prepared, the first nodes of the search tree are generated
from the root, that is, from the initial term. The tree will be generated by levels,
so that children of any node belonging to the next level will not be generated until
that level is completely generated. Each node contains its associated term plus
some extra information. Specifically, for each node we need a unique identifier,
a reference to its parent node, the branch of the tree to which it belongs, the
depth to which it is located and, in the case of the use of canonical narrowing,
a list of the irreducibility terms calculated so far in that branch.

Each time a new node is generated, an attempt is made to unify its associated
term with the target term indicated by the user. If unifiers exist, a solution will
be built for each of the unifiers found. To do this, it is necessary to go backwards
through the branch to which the node belongs, combining the substitutions made
to compute the accumulated substitution. If we are using canonical narrowing,
when a new node is generated it will also be necessary to modify the list of
irreducibility terms, adding the irreducibility term that is calculated from the
normalized left-hand side of the rule used to reach the node (see Definition 3).

4.4 Avoiding Variable Clashes

For the generation of new nodes, some calls are made to internal commands of
the Maude meta-level. These commands only allow the indication of a variable
identifier to avoid (which must be the one used previously), preventing possible
variable clashes. Each of the calls to these internal commands will result in a
random use of the rest of the variable identifiers handled by Maude. This gives
rise to the possibility that variables can be repeated in different nodes, which is
not an a priori problem, but it can’t be assumed when it is required to calculate
the cumulative substitution of a reachability solution.

To avoid this problem, we have chosen the strategy of renaming each of
the fresh variables that Maude generates on the fly, using a new identifier, the $
symbol. That is why in the final result returned to the user, all the fresh variables
that contain the narrowing solutions will be identified with that symbol, thus
ensuring that none of them clashes with the rest.

4.5 Algorithm Performance Improvement

Due to the nature of the algorithm and the uses for which it is intended, perfor-
mance of the algorithm plays a very important role. To improve this character-
istic, different aspects have been taken into account regarding the sequence in
which the algorithm acts and the data structures it handles.

Regarding the operators and equations in the code, they have been divided
into three main parts, which correspond to the main steps of the algorithm at a
theoretical level: (i) the generation of nodes (terms) in the reachability tree, (ii)
the attempt to unify each new term with the target term, and (iii) the compu-
tation of solutions in case the unification is successful. Likewise, each of these
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parts is divided into subparts that facilitate not only the understanding of the
code, but also a structured scheme to add new functionalities easily. Thanks to
this, once we reimplemented the standard narrowing algorithm, it was relatively
easy to add the new functionalities that modified it to achieve the canonical
narrowing algorithm.

We can also consider the way in which the algorithm handles the data struc-
tures it works with. A priori, it could be thought that the nodes that are gen-
erated can go to a set of nodes that is subsequently processed. However, our
strategy is to use an ordered list in which the nodes are processed taking into
account an order similar to that of a recursion queue. In the same way, the nodes
that are being processed in that list (that is, those in which the children have
been generated) go to another list. This second list is used for the computation
of the accumulated substitutions in the solutions. There is also another list in
which the found unifiers are stored. It is also ordered to facilitate working with
it recursively and calculating the solutions from the unifiers.

In addition to all this, extra parameters are dragged in the main data struc-
ture and also locally in each of the nodes. These parameters will later help to
perform certain operations more quickly and efficiently. For example, each node
has a reference to its parent node identifier, making it easy to go backwards on
its branch if a cumulative substitution needs to be calculated.

5 Experiments

To test the operation and efficiency of the new command, as well as to check
the performance differences between the different algorithms, we have used the
modules mentioned in the introduction. That is, we used for the experiments
the module of the vending machine (Example 5 below), the module of a protocol
using the exclusive-or property (Example 6 below), the module of a process
counter using the properties of an abelian group, the module of the vending
machine with idempotence (Example 7 below), and Example 1. These modules
allow us to check how the narrowing algorithms behave in those cases, subjecting
the command to executions of different complexity for various applications.

The reimplementation of both the standard narrowing and canonical narrow-
ing in the same command presented in Sect. 4 allows us to perform more faith-
ful comparisons between the algorithms, independently of the standard built-in
narrowing algorithm provided by Maude at the C++ level. However, since the
built-in narrowing returns only one solution when executed via its meta-level
function, we have also built a command that iteratively obtains all solutions.
In this way, in the tables below we include (i) the standard built-in narrowing,
(ii) our implementation of standard narrowing, and (iii) our implementation of
canonical narrowing. It can be noted how, in certain cases, our canonical nar-
rowing algorithm manages to surpass even the built-in narrowing command.
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Table 1. Experiments using the vending machine module.

Algorithm Depth limit Execution time Solutions found

Native 4 32 ms 163

Standard 4 75 ms 163

Canonical 4 60 ms 137

Native 5 112 ms 550

Standard 5 496 ms 550

Canonical 5 324 ms 119

Native 6 460 ms 1850

Standard 6 6384 ms 1850

Canonical 6 2724 ms 1213

Native 7 3092 ms 6216

Standard 7 166828 ms 6216

Canonical 7 45808 ms 3559

5.1 Experiments with the Vending Machine

Example 5. This Maude’s system module is a classic in the Maude community.
It is the coffee and apple vending machine, in which dollars and quarters are
inserted to buy combinations of those products. To do this, we specify that
each coffee costs one dollar and each apple three-quarters of a dollar. Two rules
handle state transitions for those specifications. Furthermore, an equation is used
to specify the change of four-quarters of a dollar to one dollar. Note the addition
of a variable M of type Marking to make the rules and equations ACU-coherent.

mod NARROWING-VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money .
op __ : Money Money -> Money [assoc comm id: empty] .
subsort Money Item < Marking .
op __ : Marking Marking -> Marking [assoc comm id: empty] .
op <_> : Marking -> State .
ops $ q : -> Coin .
ops c a : -> Item .
var M : Marking .
rl [buy-c] : < M $ > => < M c > [narrowing] .
rl [buy-a] : < M $ > => < M a q > [narrowing] .
eq [change] : q q q q M = $ M [variant] .

endm

We use the reachability problem < M1 > �∗
α,R/E,B St where M1 is a variable

of type Money and St is a variable of type State. That is, we are asking for all
the states that can be reached from an initial state containing only quarters
and dollars. It is a fairly generic problem that allows us to see the number of
nodes that are being generated in the reachability tree. Table 1 shows the results
of running the command with this reachability problem.

These initial experiments use a simple rewrite theory and a simple reachabil-
ity problem. As a consequence, the narrowing included natively in Maude turns
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out to be faster than either of our two algorithms, thanks to its coding in C++.
However, we can see that even in these cases, if we compare our standard narrow-
ing implementation with our canonical narrowing implementation, the latter has
always a better performance. This leads us to think that a natively programmed
canonical narrowing would be able to outperform Maude’s standard narrowing
even using these simple parameters. To strengthen this idea, we can look at the
number of solutions (which in this case represent the number of states in the tree)
found. For example, for depth level 7, canonical narrowing is capable of reducing
the number of states generated by almost half regarding standard narrowing. If
it was implemented natively in Maude, its execution time would obviously be
much less, since it has to go through far fewer rewriting steps. In addition, the
decrease in solutions represents in itself a relevant improvement, since those that
come from redundancy in the rewriting traces are being discarded.

5.2 Experiments with a Protocol Using the Exclusive-Or Property

Example 6. The equational theory used in the protocol below corresponds to
the XOR property. Note the addition of the second equation for AC-coherence.

fmod EXCLUSIVE-OR is
sort XOR .
op mt : -> XOR .
op _*_ : XOR XOR -> XOR [assoc comm] .
vars X Y Z U V : [XOR] .
eq [idem] : X * X = mt [variant] .
eq [idem-Coh] : X * X * Z = Z [variant] .
eq [id] : X * mt = X [variant] .

endfm

In the XOR-PROTOCOL module, the equation theory is imported and the rest
of the protocol is implemented. The main structure is a state that stores the set
of messages that have been sent and the new messages to be sent. The exchange
of messages is done between two users for the protocol to take place. The - and +
symbols are used as operators to distinguish between the messages to be received
or sent respectively. The Nonces generation is included in the protocol, as well
as data structures that specify the knowledge that an intruder might have.

mod XOR-PROTOCOL is protecting EXCLUSIVE-OR .
sorts Name Nonce Fresh Msg . subsort Name Nonce XOR < Msg . subsort Nonce < XOR .
ops a b c : -> Name . op n : Name Fresh -> Nonce .
op pk : Name Msg -> Msg . ops r1 r2 r3 : -> Fresh .
sort SMsg . sort SMsgList . subsort SMsg < SMsgList .
ops + - : Msg -> SMsg .
op nil : -> SMsgList .
op _‘,_ : SMsgList SMsgList -> SMsgList [assoc] .

sort Strand . sort StrandSet . subsort Strand < StrandSet .
op ‘[_|_‘] : SMsgList SMsgList -> Strand .
op mt : -> StrandSet .
op _&_ : StrandSet StrandSet -> StrandSet [assoc comm id: mt] .

sort IntruderKnowledge .
op mt : -> IntruderKnowledge .
op inI : Msg -> IntruderKnowledge .
op nI : Msg -> IntruderKnowledge .
op _‘,_ : IntruderKnowledge IntruderKnowledge -> IntruderKnowledge [assoc comm id: mt] .



An Efficient Canonical Narrowing Implementation for Protocol Analysis 165

Table 2. Experiments using the XOR-protocol module.

Algorithm Execution time Solutions found

Native 1660 ms 84

Standard 16124 ms 84

Canonical 2300 ms 1

sort State .
op Sta : -> State .
op ‘{_‘{_‘}‘} : StrandSet IntruderKnowledge -> State .

vars IK IK1 IK2 : IntruderKnowledge . vars A B : Name .
vars X Y Z U V : [XOR] . vars SS SS1 SS2 : StrandSet .
var M : Msg . vars L1 L2 : SMsgList . vars NA NB : Nonce .

rl [r1] : { (SS & [ ( L1 , -(M)) | L2 ]) { (inI(M) , IK) } } =>
{ (SS & [ L1 | (-(M) , L2) ]) { (inI(M) , IK) } }
[narrowing] .

rl [r2] : { (SS & [ (L1 , +(M)) | L2 ]) { (inI(M) , IK) } } =>
{ (SS & [ L1 | (+(M) , L2) ]) { (nI(M) , IK) } }
[narrowing] .

endm

We can define a reachability problem by using a basic message exchange
between users. To do this, we consider a backwards execution, so that the target
term will be the initial state of the message stack, while the initial term will be
the final state. If a solution is found, it means that execution trace exists, so it
could occur in the protocol. The Maude-NPA [7] tool works in a similar way to
this.

Considering X and Y as variables of type Msg, the reachability problem that
we have defined for the experiments is the following:

{[nil, +(pk(a, n(b, r1))), −(pk(b, Y )), +(Y ∗ n(b, r1)) | nil]
& [nil, −(pk(a, X)), +(pk(b, n(a, r2))), −(X ∗ n(a, r2)) | nil]

{inI(X ∗ n(a, r2)), inI(pk(a, X)), inI(pk(b, Y ))}}
?

�∗

{[nil | + (pk(a, n(b, r1))), −(pk(b, Y )), +(Y ∗ n(b, r1)), nil]
& [nil | − (pk(a, X)), +(pk(b, n(a, r2))), −(X ∗ n(a, r2)), nil]

{nI(X ∗ n(a, r2)), nI(pk(a, X)), nI(pk(b, Y ))}}

In this context we are working with a finite search space, so we can ignore the
limit of solutions and the depth limit (although all the solutions are found in
depth 6, so we could also use that depth limit). Results are shown in Table 2.

In this case, the native standard narrowing in Maude again manages to be
faster than our two algorithms, although the difference is less than before. The
usual impact that canonical narrowing has on the number of returned solutions is
further noticeable. As we mentioned before, thanks to carrying out a “pruning”
of the tree by discarding those redundant traces, canonical narrowing is able to
reduce the 84 initial solutions to only 1.

It is important to note here the usefulness of canonical narrowing in the
field of security protocols, and specifically for tools relying on unification and/or
narrowing, such as the Maude-NPA tool [7], Tamarin [12] and AKISS [2]. By
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managing to rule out redundancies when generating the branches of the reach-
ability tree, as seen in Example 2, when we analyze a protocol with canonical
narrowing we achieve higher performance with less numerous reachable states
but still complete results.

5.3 Experiments Using the Properties of an Abelian Group

We have already seen that canonical narrowing is useful even when—due to the
prototype nature of its present implementation—it cannot be faster than the
C++ based native standard narrowing in Maude. We have also concluded that
if it were also integrated natively, it could be substantially faster and generate
fewer states than standard narrowing in many cases. But if we also carry out
experiments with systems in which there are many variants, these claims will be
further reinforced.

We can see the real potential of canonical narrowing by resorting to a module
using only one simple transition rule and the equations of an abelian group.

Example 7. We first implement a simple module defining the properties of an
abelian group. That will be the equational theory used.
fmod ABELIAN-GROUP is

sort Int .
ops 0 1 : -> Int [ctor] .
op _+_ : Int Int -> Int [assoc comm prec 30] .
op -_ : Int -> Int .
vars X Y Z : Int .

eq X + 0 = X [variant] .
eq X + (- X) = 0 [variant] .
eq X + (- X) + Y = Y [variant] .
eq - (- X) = X [variant] .
eq - 0 = 0 [variant] .
eq (- X) + (- Y) = -(X + Y) [variant] .
eq -(X + Y) + Y = - X [variant] .
eq -(- X + Y) = X + (- Y) [variant] .
eq (- X) + (- Y) + Z = -(X + Y) + Z [variant] .
eq - (X + Y) + Y + Z = (- X) + Z [variant] .

endfm

A rewrite theory which consists of a pair of integers that function as process
counters is defined. The first integer represents the processes that are running,
while the second represents those that have finished their execution. The transi-
tion rule represents the termination of a process that was in running, so that the
value of the first integer of the pair is decreased by one, and at the same time
the value of the second integer is increased by one. The transition rule allows for
narrowing, while the abelian group equations allow for the generation of vari-
ants. Combining everything, we get a system of transitions that, despite looking
simple, turns out to be quite complex, due to the large number of variants that
any term will normally have.
mod PROC-COUNTER is protecting ABELIAN-GROUP .

sort State .
op <_,_> : Int Int -> State [ctor] .
vars X Y Z : Int .

rl [finish-proc] : < (X + 1),Y > => < ((X + 1) + (- 1)),(Y + 1) > [narrowing] .
endm
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Table 3. Experiments using the process counter module.

Algorithm Depth limit Execution time Solutions found

Native 1 424 ms 184

Standard 1 420 ms 184

Canonical 1 440 ms 184

Native 2 > 8 h −
Standard 2 > 8 h −
Canonical 2 2752 ms 719

Native 3 > 8 h −
Standard 3 > 8 h −
Canonical 3 12548 ms 2033

Native 4 > 8 h −
Standard 4 > 8 h −
Canonical 4 73070 ms 4969

Considering X and Y are variables of type Int, we use a common initial term:
< 0, 1 + X >. The target term will vary slightly allowing us to fix the depth at
which we want to find the solution. For depth one, it will be < −1, Y >. For
depth two, it will be < −(1 + 1), Y >. For depth three, it will be < −(1 + 1 +
1), Y >, and for depth four, it will be < −(1 + 1 + 1 + 1), Y >.

Apparently, the initial term and the target terms are very simple in this
example, but due to the large number of variants that an abelian group contains,
the computation becomes very complex, since the reachability tree will grow very
quickly in width. Table 3 shows the results of executing the above problems using
different depth limits.

In this case, we can see how the execution time for the first level (i.e., first
reachability problem) is very similar in any of the three algorithms. Further-
more, it is striking that the solutions returned are the same. This is normal, since
canonical narrowing does not have any kind of impact on the first level, because
it has not yet calculated (see Definition 3) irreducibility constraints (unless we
specify them as part of the initial call). However, we can see how from depth
2, our standard narrowing algorithm does not even manage to finish in a rea-
sonable execution time. The built-in narrowing doesn’t do it either. In contrast,
the canonical narrowing algorithm does terminate, returning a large number of
solutions in a relatively short time. The deeper we go into the tree, the more
solutions are found. At the same time, the execution time grows, but it is still
acceptable.

This is a clear example of the enormous improvement that canonical nar-
rowing can bring over standard narrowing in many cases, even using the one
found natively in Maude. Obviously, if we put canonical narrowing at the same
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Table 4. Experiments using the vending machine with idempotence of Example 1

Algorithm Depth limit Execution time Solutions found

Native 3 2268 ms 3804

Standard 3 6528 ms 3804

Canonical 3 708 ms 856

Native 4 ∼ 2 min 40284

Standard 4 ∼ 37 min 40284

Canonical 4 11264 ms 4284

Native 5 > 8 h −
Standard 5 > 8 h −
Canonical 5 ∼ 5 min 18963

level, that is, included in Maude natively, the performance difference would be
extremely large in favor of canonical narrowing, especially in this type of cases.

5.4 Experiments with the Vending Machine Using Idempotence

As we mentioned earlier in the introduction, idempotence is a very important
property in computing, since, for example, set data types enjoy it. Canoni-
cal narrowing seems to behave very well managing this property when com-
pared to standard narrowing (even better than the experiments with an abelian
group). We have done some experiments in which this property is used to cor-
roborate this. We use the vending machine module with idempotence on items
and dollars (see Example 1). The reachability problem defined in this case is
< M1 > �∗

α,R/E,B < $ a c M2 >, where M1 is a variable of type Money and M2
is a variable of type Marking.

Table 4 shows the results obtained when using the reachability problem. We
must bear in mind that in this case, once again, the growth of the tree in width
is very large, due to the large number of variants of the system.

In this case we can see that the executions with a lower depth limit are
extremely fast. However, even in those cases the difference is obvious, with the
canonical narrowing being faster and returning fewer solutions. As we increase
the depth limit, the difference in performance becomes more and more noticeable.

Just by looking at the experiments with depth limit 4, we can see that canon-
ical narrowing achieves a performance at the computational level about 10 times
better than Maude’s native standard narrowing. And if we instead look at our
Maude reimplementation of standard narrowing, for a fair comparison, the dif-
ference is huge. More than half an hour of execution is reduced to just 11 s.
The number of solutions returned is also reduced to one tenth, showing that the
large percentage of those calculated by standard narrowing were unnecessary.
For depth limit 5, the execution times of the standard narrowing are no longer
reasonable, while the canonical narrowing manages to finish in just 5 min.
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6 Conclusions

In this work, we have presented a new efficient implementation of canonical
narrowing in Maude. The algorithm uses irreducibility constraints to reduce the
width of the reachability tree without losing completeness. The experiments that
we have presented demonstrate the improvements that canonical narrowing offers
over standard narrowing, both in terms of performance and solutions. Typically,
the greater the number of variants calculated for each unification problem, the
greater the improvement. Furthermore, the deeper the reachability tree to be
generated, the greater the performance relationship between both algorithms.
The results are important for tools such as Maude-NPA or others that are used
to analyze protocols. They are also relevant in many other areas of computing,
such as when performing symbolic model checking verification of concurrent
systems, theorem proving or partial evaluation.

The most obvious next step is to include the command at the user level,
making the outputs returned by it more readable and understandable. Another
interesting step forward consists of integrating canonical narrowing with the
computation of most general unifiers [1,9]. This would involve combining an
improvement of the standard narrowing algorithm with an improvement in uni-
fication with equations and axioms. If formalized and implemented correctly, this
should result in an even better algorithm than the current canonical narrowing.
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Abstract. Sufficient completeness of an equational program ensures
that each input can be fully evaluated to a data result. Checking this fun-
damental property for programs in expressive equational languages sup-
porting conditional equations, types and subtypes, and rewriting modulo
structural axioms is a challenging problem for which few methods cur-
rently exist. This work presents a new method that reduces sufficient
completeness verification to a standard inductive theorem proving prob-
lem for a wide class of conditional equational programs in such languages.

1 Introduction

Sufficient completeness of an equational program is a fundamental property. It
means that the recursive equations defining each of its functions cover all the
required cases, so that any concrete input evaluates to actual data. Lack of
sufficient completeness is a common programming error, similar to bugs miss-
ing or getting wrong some conditions in an imperative program. Besides being
an essential correctness requirement, sufficient completeness is also an essential
condition in program verification. For example, in inductive theorem proving,
induction is typically based on data constructors, so that the correctness of an
inductive proof essentially depends on the specification’s sufficient completeness.

As equational programming languages become more expressive, their very
richness and power makes achieving sufficient completeness more challenging for
several reasons: (i) the greater expressiveness of conditional equations can lead to
missing some conditions needed for evaluation; (ii) the power and expressiveness
of rewriting modulo structural axioms such as associativity and/or commutativ-
ity and/or identity allows recursive function definitions that use a rich variety of
patterns in its recursive equations; but this greater power, as all power, has to be
used wisely; (iii) types and subtypes naturally support case analysis and, together
with structural axioms, allow definition of very sophisticated data structures; but
this again requires greater care when defining functions.

Although methods for proving sufficient completeness have been studied since
the 1970s s to the present, e.g., [1,2,6,16–22,25,30–33], in general this is an unde-
cidable property [21] whose verification can only be fully automated in restricted
cases. For example, sufficient completeness of unconditional equational programs
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such that the lefthand sides of its recursive equations do not have repeated
variables can be automatically checked by either: (i) tree automata techniques,
e.g., [6], which, using equational tree automata, have been generalized to support
structural axioms, types and subtypes, and context-sensitive rewriting in [18,19];
or (ii) Boolean operations on term patterns [23,30]; in particular, [30] supports
the general order-sorted case, involving types and subtypes. For more general
and expressive classes of programs, verifying completeness becomes harder. As
further discussed in Sect. 6, for expressive equational languages supporting con-
ditional equations, structural axioms and order-sorted typing such as OBJ [15],
CafeOBJ [13] and Maude [5], few sufficient completeness verification methods
currently exist for general programs.

This work proposes a new method of proving sufficient completeness of pro-
grams in expressive equational languages such as the ones mentioned above.
It offers four main advantages: (1) it applies to a class of order-sorted condi-
tional equational programs modulo structural axioms that is quite general in
actual practice; (2) it does not require developing a new sufficient completeness
verification tool, because it reduces such verification to standard inductive theo-
rem proving: any such prover supporting conditional order-sorted specifications
modulo axioms can be used; (3) it supports a hierarchical proof methodology
allowing simpler automated methods, such as those in [19], to be applied to sub-
programs, so that only more complex function definitions need to be dealt with;
and (4) such a hierarchical proof methodology is shared with that in the com-
panion paper [25], which supports verification of both ground confluence, and of
sufficient completeness by methods that nicely complement the one proposed in
this work. Proofs of all theorems are relegated to Appendix B.

2 Preliminaries

I assume familiarity with the notions of an order-sorted signature Σ on a poset
of sorts (S, ď), an order-sorted Σ-algebra A, and the term Σ-algebras TΣ and
TΣ(X) for X an S-sorted set of variables. I also assume familiarity with the
notions of: (i) Σ-homomorphism h : A Ñ B between Σ-algebras A and B,
so that Σ-algebras and Σ-homomorphisms form a category OSAlgΣ ; (ii) order-
sorted (i.e., sort-preserving) substitution θ, its domain dom(θ) and range ran(θ),
and its application tθ to a term t; (iii) preregular order-sorted signature Σ, i.e.,
a signature such that each term t has a least sort, denoted ls(t); (iv) the set
̂S “ S/(ě Y ď)` of connected components of a poset (S, ď) viewed as a DAG;
and (v) for A a Σ-algebra, the set As of it elements of sort s P S, and the
set A[s] “ ⋃

s′P[s] As′ of all elements in a connected component [s] P ̂S. We
furthermore assume that all signatures Σ have non-empty sorts, i.e., TΣ,s “| H
for each s P S. [A Ñ B] denotes the S-sorted functions from A to B. All these
notions are explained in detail in [14,28]. The material below is adapted from
[25,26,29].

Order-Sorted Algebra and E-Unification. An OS equational theory is a pair
T “ (Σ,E), with E a set of (possibly conditional) Σ-equations. OSAlg(Σ,E)
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denotes the full subcategory of OSAlgΣ with objects those A P OSAlgΣ such
that A |“ E, called the (Σ,E)-algebras. OSAlg(Σ,E) has an initial algebra TΣ/E

[28]. If E “ (Σ,E), TE abbreviates TΣ/E . Form(Σ) denotes the set of first-order
Σ-formulas. For T “ (Σ,E) and ϕ P Form(Σ), we call ϕ T -valid, written E |“ ϕ,
iff A |“ ϕ for all A P OSAlg(Σ,E). The inference system in [28] is sound and
complete for OS equational deduction, i.e., for any OS equational theory (Σ,E),
and Σ-equation u “ v we have an equivalence E $ u “ v ô E |“ u “ v.
Deducibility E $ u “ v is abbreviated as u “E v, called E-equality. An E-unifier
of a system of Σ-equations, i.e., of a conjunction φ “ u1 “ v1 ^ . . . ^ un “ vn

of Σ-equations, is a substitution σ such that uiσ “E viσ, 1 ď i ď n. An E-
unification algorithm for (Σ,E) is an algorithm generating a complete set of
E-unifiers Unif E(φ) for any system of Σ equations φ, where “complete” means
that for any E-unifier σ of φ there is a τ P Unif E(φ) and a substitution ρ
such that σ “E (τρ)|dom(σ)Ydom(τ), where “E here means that for any variable
x we have xσ “E x(τρ)|dom(σ)Ydom(τ). The algorithm is finitary if it always
terminates with a finite set Unif E(φ) for any φ. Given a set of equations B used
for deduction modulo B, a preregular OS signature Σ is called B-preregular1 iff
for each u “ v P B and substitutions ρ, ls(uρ) “ ls(vρ).

Convergent Theories and Constructors. Given an order-sorted equational
theory E “ (Σ,E Y B), where B is a collection of associativity and/or com-
mutativity and/or identity axioms and Σ is B-preregular, we can associate to
it a corresponding rewrite theory [27] 	E “ (Σ,B, 	E) by orienting the equations
E as left-to-right rewrite rules. That is, each (u “ v) P E is transformed into
a rewrite rule u Ñ v. For simplicity we recall here the case of unconditional
equations; for how conditional equations (whose conditions are conjunctions of
equalities) are likewise transformed into conditional rewrite rules see, e.g., [24].
The main purpose of the rewrite theory 	E is to reduce the complex bidirec-
tional reasoning with equations to the much simpler unidirectional reasoning
with rules under suitable assumptions. We assume familiarity with the notion
of subterm t|p of t at a term position p and of term replacement t[w]p of t|p by
w at position p (see, e.g., [8]). The rewrite relation t Ñ�E,B t′ holds iff there is a

subterm t|p of t, a rule (u Ñ v) P 	E and a substitution θ such that uθ “B t|p,
and t′ “ t[vθ]p. We denote by Ñ∗

�E,B
the reflexive-transitive closure of Ñ�E,B.

The requirements on 	E allowing us to reduce equational reasoning to rewrit-
ing are the following: (i) vars(v) Ď vars(u); (ii) sort-decreasingness: for each
substitution θ we have ls(uθ) ě ls(vθ); (iii) strict B-coherence: if t1 Ñ�E,B t′1
and t1 “B t2 then there exists t2 Ñ�E,B t′2 with t′1 “B t′2; (iv) confluence (resp.
ground confluence) modulo B: for each term t (resp. ground term t) if t Ñ∗

�E,B
v1

and t Ñ∗
�E,B

v2, then there exist rewrite sequences v1 Ñ∗
�E,B

w1 and v2 Ñ∗
�E,B

w2

1 If B “ B0 Z U , with B0 associativity and/or commutativity axioms, and U identity
axioms, the B-preregularity notion can be broadened by requiring only that: (i) Σ
is B0-preregular in the standard sense that ls(uρ) “ ls(vρ) for all u “ v P B0 and
substitutions ρ; and (ii) the axioms U oriented as rules �U are sort-decreasing in the
sense explained below.
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such that w1 “B w2; (v) termination: the relation Ñ�E,B is well-founded (for 	E

conditional, we require operational termination [24]). If 	E satisfies conditions (i)–
(v) (resp. the same, but (iv) weakened to ground confluence modulo B), then
it is called convergent (resp. ground convergent). The key point is that then,
given a term (resp. ground term) t, all terminating rewrite sequences t Ñ∗

�E,B
w

end in a term w, denoted t!�E , that is unique up to B-equality, and its called
t’s canonical form. Three major results then follow for the ground convergent
case: (1) for any ground terms t, t′ we have t “EYB t′ iff t!�E “B t′!�E , (2) the
B-equivalence classes of canonical forms are the elements of the canonical term
algebra CΣ/E,B , where for each f : s1 . . . sn Ñ s in Σ and B-equivalence classes
of canonical terms [t1], . . . , [tn] with ls(ti) ď si the operation fCΣ/E,B

is defined
by the identity: fCΣ/E,B

([t1] . . . [tn]) “ [f(t1 . . . tn)!�E ], and (3) we have an iso-
morphism TE – CΣ/E,B.

A ground convergent rewrite theory 	E “ (Σ,B, 	E) is called sufficiently com-
plete with respect to a subsignature Ω, whose operators are then called construc-
tors, iff for each ground Σ-term t, t!�E P TΩ . Furthermore, for 	E “ (Σ,B, 	E) suffi-
ciently complete w.r.t. Ω, a ground convergent rewrite subtheory (Ω,BΩ , 	EΩ) Ď
(Σ,B, 	E) is called a constructor subspecification iff TE |Ω – TΩ/EΩYBΩ

. If
EΩ “ H, then Ω is called a signature of free constructors modulo axioms BΩ .
Note that 	E “ (Σ,B, 	E) is sufficiently complete with respect to Ω iff each ground
Σ-term f(u1, . . . , un) with f P ΣzΩ and ui P TΩ , 1 ď i ď n, is 	E,B-reducible,
i.e., f(u1, . . . , un) Ñ�E,B t for some t P TΣ .

Generator Sets generalize standard structural induction on the constructors
of a sort. They are particularly useful for inductive reasoning when constructors
obey structural axioms B like associativity or associativity-commutativity for
which structural induction may be ill-suited. A generator set for a sort s is a
set of constructor terms of sort s or smaller such that, up to B-equality, any
ground constructor term of sort s is a ground substitution instance of one of the
patterns in the generator set. Here is the general definition (identity axioms are
not needed thanks to the theory transformation2 	E �Ñ 	EU in [9]):

Definition 1. For Ω an order-sorted signature of constructors which may sat-
isfy axioms B of associativity and/or commutativity, and s a sort in Ω, a B-
generator set for sort s is a finite set of terms {u1, . . . , uk}, with u1, . . . , uk P
TΩ(X)s and such that

TΩ/B,s “
⋃

1ďiďk

{[ui ρ] P TΩ/B,s | ρ P [X Ñ TΩ]}.

Checking the Correctness of Generator Sets. How do we know that a
proposed generator set {u1, . . . , uk} it truly one modulo axioms B for a given

2 If a theory �G has axioms B ZU , with B associative and/or commutative axioms and
U unit element axioms, then the axioms U can be eliminated by turning them into
rules �U by means of the semantics-preserving theory transformation �G �Ñ �GU defined
in [9], so that the axioms of the semantically equivalent �GU are just B.



Checking Sufficient Completeness by Inductive Theorem Proving 175

sort s and constructors Ω? Assuming that the terms u1, . . . , uk are all linear,
i.e., have no repeated variables—which is the usual case for generator sets—
this check can be reduced to an automatic sufficient completeness check with
Maude’s Sufficient Completeness Checker (SCC) tool [19], which is based on
tree automata decision procedures modulo axioms B. The reduction is extremely
simple: define a new unary predicate s : s Ñ Bool with equations s(ui) “ true,
1 ď i ď k. Then, {u1, . . . , uk} is a correct generator set for sort s modulo B for
the constructor signature Ω iff the predicate s is sufficiently complete, which can
be automatically checked by the SCC tool. Furthermore, if {u1, . . . , uk} is not a
generator set for sort s, the SCC tool will output a useful counterexample.

Inductive Theorem Proving. An inductive theorem prover implements a
sound inference system to prove inductive theorems ϕ in a given equational
theory E , i.e., formulas ϕ such that TE |“ ϕ. Although the methods I present for
proving sufficient completeness by inductive theorem proving do not depend on
the given inductive inference system, the examples presented in Sect. 5 will use
an extended version of the inductive inference system for order-sorted equational
specifications presented in [26].

3 A Hierarchical Methodology

I present a hierarchical methodology to prove sufficient completeness by induc-
tive theorem proving. This methodology uses the same assumptions about the
input theory and about theory hierarchies as those in a similar hierarchical
method for proving ground confluence and sufficient completeness presented in
the companion paper [25], which is not based on the use of a standard inductive
theorem prover. Thus, the two methods help each other and can profitably be
used in combination. Since this section focuses on the assumptions and infras-
tructure common to both methods, it follows closely the presentation in [25].

Basic Assumptions About 	E . We assume throughout a, possibly conditional,
equational theory E “ (Σ,E Y U Y B) such that: (i) Σ decomposes as a disjoint
union Σ “ Δ Z Ω, where Ω are the—intended but not yet proved to be—
constructor symbols that furthermore are free modulo B and Δ are the intended
defined symbols; (ii) B is any combination of associativity and/or commutativity
axioms3, but any binary f P Δ may not satisfy any axioms except commuta-
tivity4; (iii) 	U are sort-decreasing unit axiom rules of the form c(e, x) Ñ x or
3 For any f that is commutative we always assume a top typing f : s s Ñ s0 with all

other typings of the form f : s′ s′ Ñ s′
0, with s ď s′, s0 ď s′

0. Regarding the absence
of unit element axioms, they are precisely the equations U , that will be used as rules
�U (see, e.g., Example 4, and Footnote 2). I.e., our results apply as well to theories
�G with axioms B Z U such that �GU has the properties (i)–(vi) listed in what follows.

4 Since axioms B are primarily used to specify constructor data structures, in actual
practice, limiting axioms for defined symbols is a mild restriction. Furthermore, as
explained in [25, Footnote 3], this restriction on axioms can be lifted a posteriori by
further inductive theorem proving.
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c(x, e) Ñ x, where c is a constructor name and e is an Ω-term. However, c(x, e)
is not an Ω-term because some of c’s type declarations do not belong to Ω
(see Examples 4 and 5 in Sect. 5). This makes it possible for constructors to be
free modulo B in spite of such unit rules; (iv) E “ ⋃

fPΔ Ef , where for each
f P Δ, its associated rewrite rules 	Ef are sort-decreasing and have the form:
	Ef “ {[i] : f(	ui) Ñ ri if Γi}iPI such that: (a) the 	ui are Ω-terms; and (b)
for each i P I, Γi “ ∧

jPJ wj “ w′
j and vars(f(	ui)) Ě vars(ri) Y vars(Γi). (v)

There is a B-compatible recursive path order (RPO) ą (see [8]) such that for
each i P I, f(	ui) ą ri and, for j P J , f(	ui) ą wj and f(	ui) ą w′

j , which makes
the rules 	E Y 	U operationally terminating modulo B. (vi) The rules 	E Y 	U are
strictly B-coherent.

The main goal of this paper is to develop a hierarchical method based on
inductive theorem proving to prove that a theory 	E enjoying properties (i)–(vi)
above is sufficiently complete with respect to a constructor signature Ω. We first
need to consider theory hierarchies based on the “call graph” of 	E .

Call Graph and Theory Hierarchies. We assume that all function symbols
in Δ are subsort-overloaded, i.e., for any f : s1 . . . sn Ñ s and f : s′

1 . . . s′
n Ñ s′

we have [s] “ [s′], and [si] “ [s′
i], 1 ď i ď n. This can always be achieved

by renaming any “ad-hoc overloaded” symbols—i.e., symbols f with typings
f : s1 . . . sn Ñ s and f : s′

1 . . . s′
n Ñ s′ failing the above condition—that might

exist in Δ. Let FΔ be the set of names for the function symbols in Δ, disregarding
their typing. The calling relation is a binary relation C on FΔ, where for each
f, g P FΔ, (f, g) P C iff there exists a rule f(	ui) Ñ ri if Γi in 	Ef such that
the function symbol g occurs in either ri or in Γi. Let C∗ denote the reflexive-
transitive closure of C, and ”C the equivalence relation on FΔ defined by the
equivalence: f ”C g iff fC∗g and g C∗f . Then, the quotient set FΔ/ ”C has an
associated partial order defined by the equivalence [f ] ě [g] ô fC∗g.

The hierarchical method we propose is based on a hierarchy of theory inclu-
sions chosen as follows. Given our theory 	E we: (i) identity a subtheory 	E0

having subsignature Δ0 Z Ω containing all the subsort-overloaded typings of
any f P Δ0 and having rules 	U Y 	E0, with 	E0 “ ⋃

fPΔ0
	Ef , and axioms

B0 “ BΔ0ZΩ “ ⋃

fPΔ0ZΩ Bf , where Bf are the associative and/or commuta-
tive axioms, if any, for f in B, and such that 	E0 Y 	U is sufficiently complete
with respect to Ω and ground convergent. Of course, we should choose 	E0 as
big as possible: in the worse case we may have 	E0 “ H and keep only 	U . We
furthermore assume that we can find a sequence of theory inclusions:

	E0 ⊂ 	E1 ⊂ . . . 	En´1 ⊂ 	En

such that: (a) 	En “ 	E , (b) each 	Ek has signature Δk Z Ω containing all subsort-
overloaded typings of any f P Δk and having axioms Bk “ BΔkZΩ and, besides
	U , rules 	Ek “ ⋃

fPΔk

	Ef , where for each k ě 1 and each rule [i] : f(	ui) Ñ
ri if Γi in 	Ef , the condition Γi is a conjunction of 	Ek´1-equalities, (c) for each
0 ď k ă k ` 1 ď n, there exists a function symbol g P FΔk`1zFΔk

such that
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FΔk`1 “ FΔk
Z [g]; that is, we add all the symbols in a new ”C-equivalence class

[g] to climb up each step in the theory hierarchy.

The Hierarchical Proof Method. All now boils down to finding proof meth-
ods to climb up the theory hierarchy one step at a time. We then repeat this
method n times, with n the length of the chain of theory inclusions. That is,
we focus on a single theory inclusion 	E0 ⊂ 	E , where 	E0 has already been proved
ground convergent and sufficiently complete with respect to the constructor sig-
nature Ω, and then prove that 	E is also ground convergent and sufficiently com-
plete as follows. First of all, we define a new theory 	EΔ, with the same rules
	E Y 	U as in 	E , and having also a theory inclusion 	E0 ⊂ 	EΔ, but where, if Σ0

and Σ are the respective signatures of 	E0 and 	E , and Δ “ ΣzΣ0, then 	EΔ

has a signature ΣΔ that extends Σ0 by: (i) adding to each connected com-
ponent of the poset of sorts (S, ď) of Σ0 the kind [s] as a new top sort, i.e.,
∀s′ P [s], s′ ď [s], and (ii) lifting to the kind levels all f P Σ. That is, we extend
the function symbols of Σ0 by adding for each f : s1 . . . sn Ñ s, n ě 1, in Σ
a function symbol f : [s1] . . . [sn] Ñ [s] to ΣΔ. In 	EΔ the axioms B are lifted
to kinds. Note that ΣΔ adds no new terms to the original sorts s P S, i.e.,
TΣΔ(X)s “ TΣ0(X)s. For three concrete examples of the 	EΔ construction, see
modules OE-DELTA, NAT-PRESBURGER-DELTA and and MULTISET-ALGEBRA-DELTA
in Sect. 5. The hierarchical proof methodology then proceeds as follows:

1. We first prove that 	EΔ is ground convergent.
2. We then prove that for any f P Δ, maximal typing f : s1, . . . , sn Ñ s and

ground constructor substitution ρ, the term f(x1, . . . , xn)ρ, with xi of sort
si, 1 ď i ď n, can be rewritten with some rule in 	EΔ.

3. (1) and (2) actually prove that 	E is ground convergent and sufficiently com-
plete with respect to Ω.

Methods for proving (1), as well as a proof that (1) and (2) imply (3) can be
found in [25]. In this paper we focus on a new method that reduces proving (2)
to a proof by standard inductive theorem proving.

4 Proving Sufficient Completeness Inductively

The reduction of sufficient completeness proofs to inductive proofs is based on
a new general theory transformation 	E �Ñ 	E : defined below.

The 	E �Ñ 	E : Transformation. We assume a ground convergent and possibly
conditional theory (with rules having no extra variables in their righthand side
or condition) 	E “ (Σ,B, 	E) such that: (i) B are associativity and/or commu-
tativity axioms and Σ is B-preregular; (ii) all its function symbols are subsort-
overloaded; (iii) its poset of sorts (S, ă) is such that each connected component
[s] of S has a top sort, which we denote J[s] P [s]; (iv) any f : s1 . . . sn Ñ s, n ě 1,
in Σ has also a typing f : J[s1] . . . J[sn] Ñ J[s]; (v) there is a B-compatible RPO
ą making 	E operationally terminating. In what follows 	E will always be a the-
ory of the form 	EΔ as defined in the methodology of Sect. 3. The transformation
	E �Ñ 	E : maps 	E “ (Σ,B, 	E) to 	E : “ (Σ:, B, 	E Y 	EΣ), where:
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– Σ: extends Σ by adding: (i) a fresh new sort Pred of predicates with a constant
tt not related to any other sort in the subsort order; and (ii) for each connected
component [s] of the sort poset (S, ă) in Σ and each s′ P [s] a unary function
symbol :s′ : J[s] Ñ Pred called a sort predicate.

– the set 	EΣ of rewrite rules contains: (i) for each s P S a rule,

x :s Ñ tt

where x is a variable of sort s; (ii) for each f : s1 . . . sn Ñ s in Σ, n ě 0, a rule,

f(x1, . . . , xn) :s Ñ tt if x1 :s1 “ tt ^ . . . ^ xn :sn “ tt

where xi has sort J[si], 1 ď i ď n; (iii) for each s ă s′ in (S, ă) a rule,

x :s′ Ñ tt if x :s “ tt.

where x has sort J[s].
Two key results about the 	E �Ñ 	E : transformation include:

Theorem 1. Under the assumptions on 	E, 	E : is operationally terminating.

Theorem 2. Under the assumptions on 	E, 	E : is ground convergent. Further-
more, for each s P S and t P TΣ,J[s] we have the equivalences:

(t :s)!�E: “ tt ô s ě ls(t!�E) and (t :s)!�E: “ t!�E :s ô s ě| ls(t!�E).

Reducing Sufficient Completeness Checking to Inductive Reasoning.
As already mentioned our focus of interest is in the transformation: 	EΔ �Ñ 	E :Δ,
which will give us the desired reduction of sufficient completeness checking to
inductive theorem proving. Here is the main theorem:

Theorem 3. Let 	E0 ⊂ 	E and 	E0 ⊂ 	EΔ be theory inclusions satisfying the
assumptions in Sect. 3, where 	E0 is sufficiently complete with respect to Ω and
	EΔ has already been proved ground convergent. Then, for all f P Δ, maximal
typing f : s1, . . . , sn Ñ s of f , and all ground constructor substitutions ρ, the
term f(x1, . . . , xn)ρ, with xi of sort si, 1 ď i ď n, can be rewritten with some
rule in 	EΔ if for FΔ “ {f1, . . . fk}, and each maximal typing fj : si

1 . . . si
nj

Ñ si,
i P Ij, for each fj, 1 ď j ď k, we have,

T�E:Δ |“
∧

1ďjďk,iPIj

fj(xi
1, . . . , x

i
nj

) :si “ tt

where xi
m has sort si

m, 1 ď m ď nj.

The reason for proving the above conjunction as an inductive theorem, as
opposed to proving each conjunct fj(xi

1, . . . , x
i
nj

) : si “ tt separately, is that,
since FΔ is one of the nodes in the calling graph of 	E , the symbols in FΔ call each
other, typically due to some mutual recursion. Therefore, it may be considerably
easier to prove the entire conjunction than proving each conjunct separately. Let
us see a simple example.
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Example 1. (Odd and Even). Let OE be the theory of the Peano Naturals with
sort Nat , which imports the Booleans, has constructors 0 and s : Nat Ñ Nat ,
and with Δ the predicates odd : Nat Ñ Bool and even : Nat Ñ Bool , which are
defined by rules: odd(0) Ñ false, even(0) Ñ true, odd(s(n)) Ñ �even(n), and
even(s(n)) Ñ �odd(n), so that the calling graph has the single equivalence class
node {odd , even}. Then, to prove sufficient completeness with the above method
we just need to prove in OE :Δ the inductive theorem:

odd(n):Nat ^ even(n):Nat

Theorem 3 has a quite useful corollary for finite sorts.

Corollary 1. Under the assumptions and notation in Theorem 3, if a maximal
typing in Δ, say, fj : si

1 . . . si
nj

Ñ si is such that TΩ/B,si
is a finite set, say,

TΩ/B,sj
“ {[u1], . . . , [um]}, then Theorem 3 still holds replacing the conjunct

fj(xi
1, . . . , x

i
nj

) :si “ tt by the disjunction:

∨

1ďkďm

fj(xi
1, . . . , x

i
nj

) “ uk.

Theorem 3 and Corollary 1 provide the desired reduction of sufficient complete-
ness checking for 	E to inductive theorem proving in 	E :Δ. In fact, if all operators
in Δ have finite sorts, the conjunction of disjunctions in Corollary 1 can be
inductively proved just in 	EΔ.

Example 2. (Odd and Even Revisited). From the above corollary it follows that
to prove sufficient completeness of OE it is enough to prove that

(odd(n) “ true _ odd(n) “ false) ^ (even(n) “ true _ even(n) “ false)

is an inductive theorem of OEΔ.

5 Some Examples

As a warmup exercise, let us prove sufficient completeness of the OE theory
in Example 1. Of course, since the equations are left-linear, a different, auto-
matic proof based on tree automata can be given for OE using, for example,
Maude’s SCC tool [19]. But one can easily find similar mutually recursive func-
tion definitions—for example, conditional ones—outside the scope of automated
tools.

Example 3. In Maude, the theory OEΔ can be specified as follows:

fmod OE-DELTA is protecting BOOL-OPS .

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op odd : [Nat] -> [Bool] .
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op even : [Nat] -> [Bool] .

var n : Nat .

eq odd(0) = false .

eq odd(s(n)) = not(even(n)) .

eq even(0) = true .

eq even(s(n)) = not(odd(n)) .

endfm

where [Nat] and [Bool] are the “kind” supersorts automatically added by
Maude above, respectively, Nat and Bool, and therefore need not be declared.
The theory BOOL-OPS can be trivially shown to be sufficiently complete by truth
table inspection, so in this case the theory OE0 in the inclusion OE0 ⊂ OEΔ is
just BOOL-OPS together with the constructors {0, s}. Also, OE-DELTA can easily
be checked to be confluent and terminating. As pointed out in Example 2, we
just need to prove that:

(odd(n) “ true _ odd(n) “ false) ^ (even(n) “ true _ even(n) “ false)

is an inductive theorem of OE-DELTA. We can do so by standard induction on n
(which is a special case of the GSI rule in5 [26]). The Base Case can be proved
automatically by the Equality Predicate Simplification rule (EPS) in [26]. For the
Induction Step we have induction hypotheses: odd(k) “ true _ odd(k) “ false
and even(k) “ true _ even(k) “ false, and need to prove the conjunction:

(odd(s(k)) “ true_odd(s(k)) “ false)^(even(s(k)) “ true_even(s(k)) “ false)

where k is a fresh constant of sort Nat . Using the EPS simplification rule this
goal reduces to:

(�(even(k)) “ true _ �(even(k)) “ false) ^ (�(odd(k)) “ true _ �(odd(k)) “ false)

Applying the Split rule ( SP) in [26] with the induction hypothesis disjunction
even(k) “ true _ even(k) “ false we get subgoals:

even(k) “ true Ñ
(�(even(k)) “ true _ �(even(k)) “ false) ^ (�(odd(k)) “ true _ �(odd(k)) “ false)

and

even(k) “ false Ñ
(�(even(k)) “ true _ �(even(k)) “ false) ^ (�(odd(k)) “ true _ �(odd(k)) “ false)

5 The inference rules in [26] have been extended in work submitted for publication. In
the examples in the section some rules will be used in their extended form.
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Applying the Inductive Contextual Rewriting (ICC) rule in [26], both of these
subgoals automatically simplify to the goal:

�(odd(k)) “ true _ �(odd(k)) “ false

After applying the SP rule to this goal with the disjunction hypothesis odd(k) “
true_odd(k) “ false we again get two goals that can be automatically discharged
by means of the ICC rule. This finishes the sufficient completeness proof for OE .

I next present a Presburger arithmetic specification for which I am not aware
of any proof of sufficient completeness by any other method than the one here.

Example 4. (Presburger Arithmetic) Consider the following specification of
Presburger Arithmetic for the naturals:

fmod NAT-PRESBURGER is protecting TRUTH-VALUE .

sorts NzNat Nat .

subsort NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [assoc comm] .

op _+_ : NzNat NzNat -> NzNat [ctor assoc comm] .

op _>_ : Nat Nat -> Bool .

vars n m : Nat . var k : NzNat .

eq n + 0 = n [variant] .

eq k > 0 = true [variant] .

eq n + k > n = true [variant] .

eq 0 > m = false [variant] .

eq n > n = false [variant] .

eq n > n + m = false [variant] .

endfm

The equations are size-decreasing and therefore clearly terminating. It is easy to
check that they are also confluent using Maude’s Church-Rosser Checker [10].
Furthermore, these equations enjoy the finite variant property [7,12]; this can
be easily checked in Maude by the method proposed in [4]. Therefore, E Y B-
unification in this theory is finitary [12]. The [variant] attribute allows Maude
to use this knowledge to compute E YB-unifiers. Note that the lefthand sides of
the second, fourth and fifth rules for > are non-linear. This places the sufficient
completeness checking problem outside the scope of equational tree automata
techniques such as those used in [19]. That the equations defining > are suf-
ficiently complete is intuitively clear; but giving a formal proof in a suitable
inference system is a different matter. Here is where the new inductive method-
ology is helpful. Of course, calling 	E the entire theory, and 	E0 the theory obtained
by dropping the > operator, we get a subtheory 	E0 that is convergent and suf-
ficiently complete. This is intuitively clear, since any term of sort Nat is either
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0, and thus a constructor, or is of the form 1` n. . . `1, and therefore a construc-
tor term. This can be automatically checked with Maude’s SCC tool [19]. Our
theory 	EΔ is then:

fmod NAT-PRESBURGER-DELTA is protecting TRUTH-VALUE .

sorts NzNat Nat .

subsort NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [assoc comm] .

op _+_ : NzNat NzNat -> NzNat [ctor assoc comm] .

op _+_ : [Nat] [Nat] -> [Nat] [assoc comm] .

op _>_ : [Nat] [Nat] -> [Bool] .

vars n m : Nat . var k : NzNat .

eq n + 0 = n [variant] .

eq k > 0 = true [variant] .

eq n + k > n = true [variant] .

eq 0 > m = false [variant] .

eq n > n = false [variant] .

eq n > n + m = false [variant] .

endfm

where 	EΔ can easily be checked to be terminating and convergent. Since the sort
Bool is finite, we can use Corollary 1 to reduce proving the sufficient complete-
ness of 	E to proving in 	EΔ the inductive theorem:

x > y “ true _ x > y “ false

with x, y of sort Nat. Let us prove this theorem using the inference system
proposed in [26]. Using the generator set {0, 1, 1 ` k} for sort Nat, where k has
sort NzNat, we can induct on, say, x and apply the Generator Set Induction
rule (GSI) to get three sub goals: (1) 0 > y “ true _ 0 > y “ false, (2)
1 > y “ true _ 1 > y “ false, and (3) k ` 1 > y “ true _ k ` 1 > y “ false with
induction hypothesis k > y “ true _ k > y “ false, where k is a fresh constant
of sort NzNat.

By applying the Case rule (CAS) (which is similar to GSI but does not add
induction hypotheses) to y with the same generator set for Nat, both goals (1)
and (2) split into three subgoals each. For example, goal (1) generates subgoals:
(1.1) 0 > 0 “ true _ 0 > 0 “ false, (1.2) 0 > 1 “ true _ 0 > 1 “ false, (1.3)
0 > k′ ` 1 “ true _ 0 > k′ ` 1 “ false, with k′ a fresh variable of sort NzNat.
All such subgoals can be automatically discharged by the Equality Predicate
Simplification rule (EPS). For example, the above three subgoals (1.1)–(1.3)
can all be discharged by the EPS rule using the third rule for >. Regarding goal
(3), we can use the induction hypothesis k > y “ true _ k > y “ false to apply
the Split rule (SP) with predicate term k > y to get subgoals:

(3.1) k > y “ true Ñ (k ` 1 > y “ true _ k ` 1 > y “ false)
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(3.2) k > y “ false Ñ (k ` 1 > y “ true _ k ` 1 > y “ false)

The key point to observe is that both goals are clauses whose respective con-
ditions are equations between terms in a theory 	EΔ enjoying the finite variant
property, and therefore having a finitary 	EΔ-unification algorithm. The “only”
problem is that, to perform such a variant unification, we would like to replace
the fresh constant k by fresh variables k of the same sort. In fact, using an
extended version of the Constructor Variant Unification Left rule (CVUL)—
which allows and justifies this replacement of fresh constants by fresh variables—
we can do just that.

Applying CVUL to (3.1) involves solving the premise equation k > y “
true, which yields two constructor variant unifiers: α1 “ {y �Ñ 0}, α2 “ {k �Ñ
p ` q, y �Ñ p}, where p, q have of sort NzNat. Since the “magic” of the CVUL
rule involves converting the original and resulting variables that correspond to
constants (in this case, k, p and q) back into fresh constants, we then get the
following instantiated conclusions as subgoals:

(3.1.1) k ` 1 > 0 “ true _ k ` 1 > 0 “ false

(3.1.2) p ` q > p “ true _ p ` q > p “ false

(3.1.1) (resp. (3.1.2)) can be immediately discharged by EPS simplification using
the first equation (resp. the second equation) for >.

We can likewise apply CVUL to (3.2) by solving the premise equation k >
y “ false, which yields the single constructor variant unifier β “ {y �Ñ k ` z},
where z has sort Nat. We then get the instantiated conclusion:

(3.2.1) k ` 1 > k ` z “ true _ k ` 1 > k ` z “ false

which can be discharged by applying the CAS rule to variable z—with the same
generator set for sort Nat—followed by EPS simplification.

This finishes the proof of sufficient completeness for the above Presburger
arithmetic specification. This formal proof is important because, together with
the fact that the constructors are free modulo associativity and commutativity,
it ensures that we can use this specification to decide quantifier-free Presburger
arithmetic formulas using the variant satisfiability algorithm in [29].

The previous example has illustrated the fact that proving the sufficient com-
pleteness of unconditional theories when lefthand sides of rules are nonlinear can
be nontrivial. The case of conditional theories can be even harder. The follow-
ing example, besides illustrating the application of these method to conditional
theories for a function whose result sort is infinite, does also illustrate that the
hierarchical framework used here is the same as the one used in the compan-
ion paper [25], where a theory of multisets of numbers was used as a running
example. The example below illustrates that the method for proving sufficient
completeness in [25]—based on constrained patterns– and the one presented here
complement each other : one can use either method. In [25], sufficient complete-
ness of the intersection function X , which is specified by conditional rules, was
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proved. Here I prove it instead by induction, counting on the ground convergence
of the corresponding theory 	EΔ already proved in [25]. The Maude specification
for 	EΔ is given below. That for the original theory 	E is given in Appendix A.

Example 5. (Multisets). The theory 	EΔ for multisets is as follows:

fmod MULTISET-ALGEBRA-DELTA is

protecting TRUTH-VALUE .

sorts Nat NeMult Mult .

subsort Nat < NeMult < Mult .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op mt : -> Mult [ctor] . *** empty multiset

op _,_ : Mult Mult -> Mult [assoc comm] . *** multiset union

op _,_ : NeMult NeMult -> NeMult [ctor assoc comm] . *** multiset union

op _.=._ : Nat Nat -> Bool [comm] . *** nats equality

op _in_ : Nat Mult -> Bool . *** membership

op _\_ : Mult Mult -> Mult . *** difference

op _/\_ : [Mult] [Mult] -> [Mult] . *** intersection

op s : [Mult] -> [Mult] [ctor] .

op _,_ : [Mult] [Mult] -> [Mult] [assoc comm] .

op _.=._ : [Mult] [Mult] -> [Bool] [comm] .

op _in_ : [Mult] [Mult] -> [Bool] .

op _\_ : [Mult] [Mult] -> [Mult] .

vars n m k : Nat . vars U V W : Mult .

eq U,mt = U . *** unit equation

eq n .=. n = true .

eq 0 .=. s(n) = false .

ceq s(n) .=. s(m) = false if n .=. m = false .

eq n in mt = false .

eq n in n = true .

ceq n in m = false if (n .=. m) = false .

eq n in (n,U) = true .

ceq n in (m,U) = false

if (n .=. m) = false /\ (n in U) = false .

eq mt \ U = mt .

eq U \ mt = U .

eq m \ m = mt .

ceq m \ n = m if n .=. m = false .

eq (m,U) \ m = U .

ceq (m,U) \ n = m,(U \ n) if n .=. m = false .

eq U \ (n,V) = (U \ n) \ V .
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eq mt /\ V = mt .

ceq n /\ V = n if (n in V) = true .

ceq n /\ V = mt if (n in V) = false .

ceq (n,U) /\ V = n,(U /\ (V \ n)) if (n in V) = true .

ceq (n,U) /\ V = U /\ V if (n in V) = false .

endfm

In this case, the subtheory E0 is everything except the kinds, the operator X
and its defining equations. To show that X is sufficiently complete, we need
to prove in 	E :Δ the inductive theorem:

U X V :Mult “ tt

We apply the GSI rule to variable U with generator set {H, x, (y,Q)} with x, y
of sort Nat and Q of sort NeMult and get subgoals: (1) H X V : Mult “ tt ,
which is automatically discharged by EPS simplification, (2) x X V :Mult “ tt
and (3) (y,Q) X V : Mult “ tt , with induction hypotheses y X V : Mult “ tt
and Q X V :Mult “ tt . We can now apply to goal (2) the Split rule (SP) with
predicate term x P V to get subgoals:

(2.1) x P V “ true Ñ x X V :Mult “ tt

(2.2) x P V “ false Ñ x X V :Mult “ tt

which can both be automatically discharged using the ICC simplification rule.
Likewise, we can apply SP to goal (3) with predicate term y P V to get subgoals:

(3.1) y P V “ true Ñ (y,Q) X V :Mult “ tt

(3.2) y P V “ false Ñ (y,Q) X V :Mult “ tt

which can both be automatically discharged using the ICC simplification rule.
The reason why this is so is worth pointing out. The ICC rule can use the
next-to-last conditional equation defining X to simplify the consequent of
(3.1) to y, (Q) X (V zy) :Mult “ tt ; but then it can use the induction hypothesis
QXV :Mult “ tt and the rules X,Y :Mult Ñ tt if X :Mult “ tt ^X :Mult “ tt ,
X : Mult Ñ tt if X : Nat “ tt , and x : Nat Ñ tt in 	E :Δ, where x has sort
Nat and X,Y have sort [Mult], to further simplify the conclusion to tt “ tt ,
thus discharging the goal. In the case of subgoal (3.2), the ICC rule just uses
the last conditional equation defining X and then the induction hypothesis
Q X V :Mult “ tt . This finishes the proof of the sufficient completeness of X .

6 Related Work and Conclusions

Research on sufficient completeness goes back to Guttag’s thesis in the 1970’s
and includes, e.g., [1,2,6,16–22,25,30–33]. Four papers most closely related to
this work, because all of them deal with order-sorted theories, are [31], [1], [17]
and [25]. The work in [31] provides some useful methods for proving sufficient
completeness of order-sorted CafeOBJ specifications and shares with this work
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the use of module hierarchies; however, the methods used in [31] do not seem
to support rewriting modulo axioms. The work in [1] has several relevant simi-
larities with the present work: (i) it supports conditional order-sorted theories;
and (ii) it emphasizes that proofs of sufficient completeness and of ground con-
fluence help each other. However, [1] does not support rewriting modulo axioms.
The paper [17] did not support rewriting modulo axioms either; but it has two
relevant similarities with the present work: (i) it could analyze specifications in
membership equational logic [3,28], which is also supported by Maude and is
more general than order-sorted equational logic; and (ii) it used a previous ver-
sion of the Maude Inductive Theorem prover to discharge verification conditions.
In comparison with [17], the implicit similarity is that the 	E �Ñ 	E : transformation
in this work endows 	E with membership equational logic reasoning capabilities,
while remaining within the simpler order-sorted framework. The relation with
the companion paper [25] has already been discussed in the body of the paper:
they complement each other.

In conclusion, I have presented a new hierarchical methodology to verify
sufficient completeness by inductive theorem proving and have illustrated it
with three examples. Since order-sorted specifications contain many-sorted and
unsorted ones as special cases, the sufficient completeness proof methods pre-
sented here apply in particular to many-sorted and unsorted specifications in
any equational language supporting them. In fact, Example 1 is many-sorted. It
would be highly desirable to combine the inference systems for proving ground
convergence in [11] with those in [25] and in [11] within a tool that would also
support verification of sufficient completeness by the hierarchical methods in [25]
and in this paper. Such a tool would use as a backend the new Maude Induc-
tive Theorem Prover under construction—which supports an extension of the
inference sytem in [26] illustrated in the examples of Sect. 5.

Acknowledgements. I cordially thank the anonymous referees for their excellent
suggestions for improving the paper.

A Multiset Theory

fmod MULTISET-ALGEBRA is

protecting TRUTH-VALUE .

sorts Nat NeMult Mult .

subsort Nat < NeMult < Mult .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op mt : -> Mult [ctor] . *** empty multiset

op _,_ : Mult Mult -> Mult [assoc comm] . *** multiset union

op _,_ : NeMult NeMult -> NeMult [ctor assoc comm] . *** multiset union

op _.=._ : Nat Nat -> Bool [comm] . *** nats equality

op _in_ : Nat Mult -> Bool . *** membership

op _\_ : Mult Mult -> Mult . *** difference

op _/\_ : Mult Mult -> Mult . *** intersection
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vars n m k : Nat . vars U V W : Mult .

eq U,mt = U . *** unit equation

eq n .=. n = true .

eq 0 .=. s(n) = false .

ceq s(n) .=. s(m) = false if n .=. m = false .

eq n in mt = false .

eq n in n = true .

ceq n in m = false if (n .=. m) = false .

eq n in (n,U) = true .

ceq n in (m,U) = false

if (n .=. m) = false /\ (n in U) = false .

eq mt \ U = mt .

eq U \ mt = U .

eq m \ m = mt .

ceq m \ n = m if n .=. m = false .

eq (m,U) \ m = U .

ceq (m,U) \ n = m,(U \ n) if n .=. m = false .

eq U \ (n,V) = (U \ n) \ V .

eq mt /\ V = mt .

ceq n /\ V = n if (n in V) = true .

ceq n /\ V = mt if (n in V) = false .

ceq (n,U) /\ V = n,(U /\ (V \ n)) if (n in V) = true .

ceq (n,U) /\ V = U /\ V if (n in V) = false .

endfm

B Proofs

Proof of Theorem 1. We can extend the RPO order on function symbols
making 	E operationally terminating modulo B by adding, for (S, ă) the sort
poset in 	E , the new ordered pairs :s ą tt for each sort s P S, as well as the pairs
: s ą : s′ ą tt for each s, s′ P S such that s > s′. It is easy to check that this

order makes the new added rules in 	EΣ operationally terminating. Note that
this crucially depends on B containing only associativity and/or commutativity
axioms by assumption, since any axioms for an identity element for a binary
function symbol f could make the rule f(x1, x2) : s Ñ tt if x1 : s1 “ tt ^ x2 :
s2 “ tt non-terminating. ��
Proof of Theorem 2. All terms in 	E can be rewritten with Ñ�E: iff they can
be rewritten with Ñ�E , so we only need to prove ground convergence for ground
terms of sort Pred in 	E :, which are either tt , which is in canonical form, or ground
terms of the form t :s for some sort s P S. Any rewrite sequence t :s Ñ∗

�E: w must
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be either of the form: (i) t :s Ñ∗
�E t′ :s, or (ii) of the form t :s Ñ∗

�E t′ :s Ñ�EΣ ,B tt .
In particular, this applies to terminating sequences, so that all canonical forms
of ground terms of sort Pred must be of the from (a) tt , or of the form (b) t!�E :s.
	E : will be ground convergent if we can prove that any ground predicate term t :s
has a unique canonical form. This follows from the following lemma, whose easy
proof by structural induction on the term structure of t is left to the reader:

Lemma 1. For any ground term t in 	E, t :s Ñ�EΣ ,B tt iff ls(t) ď s.

Uniqueness (up to B-equality) of the canonical normal form of a ground predicate
term t :s then follows easily from the fact that, since 	E is ground convergent, then
it is also sort-decreasing, so that for any rewrite sequence t :s Ñ∗

�E t′ :s Ñ∗
�E t!�E :s

we must have ls(t′) ě ls(t!�E). Therefore, either (a) ls(t!�E) ď s and the canonical
form of t :s is tt , or (b) ls(t!�E) ď| s and the canonical form of t :s must be t!�E :s,
so that the two equivalences stated in the theorem hold. ��
Proof of Theorem 3. For any f P Δ, maximal typing f : s1, . . . , sn Ñ s and
ground constructor substitution ρ, we need to show that the term f(x1, . . . , xn)ρ,
with xi of sort si, 1 ď i ď n, is 	EΔ-reducible assuming that for FΔ “ {f1, . . . fk}
and each family {fj : sj

1 . . . sj
nj

Ñ sj}1ďjďk of maximal typings in ΣzΣ0, we
have,

T�E:Δ |“
∧

1ďjďk

fj(x
j
1, . . . , x

j
nj

) :sj “ tt

where xj
i has sort sj

i . In particular, we have that T�E:Δ |“ f(x1, . . . , xn) : s “ tt.
Suppose that for some ground constructor substitution ρ the term f(x1, . . . , xn)ρ
is 	EΔ-irreducible. Since 	E :Δ is ground confluent and tt is irreducible, we then
must have f(x1, . . . , xn)ρ :s!�E:Δ “ tt. But since f(x1, . . . , xn)ρ is irreducible, this
can only happen if f(x1, . . . , xn)ρ :s Ñ�EΣ

tt . But since ls(f(x1, . . . , xn)ρ) “ [s]
and [s] > s, this is impossible by Lemma 1. ��
Proof of Corollary 1. Since 	EΔ is assumed ground convergent, if a maximal
typing in Δ, say, f : s1 . . . sn Ñ s is such that TΩ/B,s is a finite set, say, TΩ/B,s “
{[u1], . . . , [um]}, we need to show that if

(‡) T�EΔ |“
∨

1ďiďm

f(x1, . . . , xn) “ ui.

with xj of sort sj , 1 ď j ď n, holds, then, replacing the conjunct f(x1, . . . , xn):
s “ tt by the disjunction

∨

1ďiďm f(x1, . . . , xn) “ ui in the conjunction of The-
orem 3, the theorem still holds. We reason by contradiction assuming that the
resulting conjunction after this replacement is an inductive theorem of T�E:Δ but
Theorem 3 fails. In particular, all other conjuncts for the remaining maximal typ-
ings of Δ are inductive theorems of T�E:Δ , so that, by the above proof of Theorem
3, all corresponding ground instances for those operators and their typings are
reducible. Therefore, the theorem can only fail if there is a ground constructor
substitution ρ such that the term f(x1, . . . , xn)ρ is 	EΔ-irreducible. But since (‡)
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holds, then by the ground convergence of 	EΔ there must be [uk] P {[u1], . . . , [um]}
such that (f(x1, . . . , xn)ρ)!�EΔ “B uk. But since f(x1, . . . , xn)ρ is 	EΔ-irreducible,
this is impossible. ��
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Abstract. Both complete definition of functions by equations and deter-
minism (i.e., evaluation to a unique result), are fundamental correctness
properties of equational programs. But for expressive functional lan-
guages supporting conditional equations, types and subtypes and rewrit-
ing modulo axioms, proof methods for verifying such properties under
general conditions are currently quite limited. This work proposes a hier-
archical proof methodology where both properties are simultaneously
verified in a hierarchical manner under termination assumptions.

1 Introduction

Equational programs define functions by means of equations. Such programs
may be faulty in various ways. A common problem is lack of complete defini-
tion, that is, for a specific concrete input the program cannot be evaluated to
concrete data. This is called lack of sufficient completeness. Maude [7] color
codes unevaluated function symbols in the result of an evaluation to alert the
user when this happens. A more subtle problem is lack of determinism. For any
input, a terminating equational program should evaluate to a unique result. Lack
of determinism may not be detected at runtime, since a functional expression
will evaluate to some result following a given evaluation strategy that assumes
such determinism.

These two properties, completeness and determinism, are fundamental for
program correcteness and are assumed when proving many other properties,
for example by inductive theorem proving. For expressive equational languages
supporting conditional equations, types and subtypes and rewriting modulo
axioms like associativity and/or commutativity and/or identity such as OBJ
[19], CafeOBJ [15] and Maude [7], decision procedures ensuring these properties
only exist for restricted program classes of unconditional, terminating programs
not involving associative but noncommutative axioms. For them: (i) joinabil-
ity of critical pairs (see, e.g., [9]) ensures determinism; and (ii) equational tree
automata methods can check sufficient completeness if lefthand sides of equa-
tional definitions are left-linear [25]. Even under those restrictions, checking (i)
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is only a sufficient condition for determinism. This is because only a weaker con-
dition, namely, ground joinability of critical pairs is needed, since an equational
program only executes concrete inputs, i.e., ground terms. There are many per-
fectly fine equational programs whose critical pairs are ground joinable but not
joinable. For a good example, see the equational definition of finitary set theory
in [12]. Alas, ground joinability of critical pairs is an undecidable property [28].
Checking completeness and determinism of function definitions becomes much
harder for conditional specifications, where both checks are undecidable. But
this does not make the need to ensure these fundamental properties any less
pressing.

Ground joinability of critical pairs is called ground confluence, and, under the
assumption of operational termination, ground convergence. As further discussed
in Sect. 4, a lot of work has been done on proof methods for both sufficient
completeness, e.g., [5,8,22–25,27,29,30,39,42,44] and ground confluence, e.g.,
[1,3,4,12,14,16,17,28,41,46]. However, for equational order-sorted conditional
programs modulo axioms, the only prior work we are aware of is that in [39] and
[12]. This paper develops new proof methods for both completeness and ground
convergence of such programs. For ground convergence it further advances the
ideas in [12]. Two key features of our proof methodology are that: (i) sufficient
completeness and ground convergence proofs help and depend on each other;
and (ii) the proof methods are hierarchical and therefore incremental: proofs are
obtained by climbing up a tower of theory inclusions.

2 Preliminaries

We assume familiarity with the notions of an order-sorted signature Σ on a
poset of sorts (S, ď), an order-sorted Σ-algebra A, and the term Σ-algebras TΣ

and TΣ(X) for X an S-sorted set of variables. We also assume familiarity with
the notions of: (i) Σ-homomorphism h : A Ñ B between Σ-algebras A and
B, so that Σ-algebras and Σ-homomorphisms form a category OSAlgΣ ; (ii)
order-sorted (i.e., sort-preserving) substitution θ, its domain dom(θ) and range
ran(θ), and its application tθ to a term t; (iii) preregular order-sorted signature
Σ, i.e., a signature such that each term t has a least sort, denoted ls(t); (iv)
the set ̂S “ S/(ě Y ď)` of connected components of a poset (S, ď) viewed as a
DAG; and (v) for A a Σ-algebra, the set As of its elements of sort s P S, and
the set A[s] “ ⋃

s′P[s] As′ of all elements in a connected component [s] P ̂S. We
furthermore assume that all signatures Σ have non-empty sorts, i.e., TΣ,s “| H
for each s P S. [A Ñ B] denotes the S-sorted functions from A to B. These
notions are explained in [18,36]. The material below is adapted from [34,37].

Order-Sorted Algebra and E-Unification. An OS equational theory is a pair
T “ (Σ,E), with E a set of (possibly conditional) Σ-equations. OSAlg(Σ,E)

denotes the full subcategory of OSAlgΣ with objects those A P OSAlgΣ such
that A |“ E, called the (Σ,E)-algebras. OSAlg(Σ,E) has an initial algebra TΣ/E

[36]. If E “ (Σ,E), TE abbreviates TΣ/E . For Σ an OS-signature, Form(Σ)
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denotes the set of its first-order formulas, whose atoms are Σ-equations. Given
T “ (Σ,E) and ϕ P Form(Σ), we call ϕ T -valid, written E |“ ϕ, iff A |“ ϕ for all
A P OSAlg(Σ,E). We call ϕ T -satisfiable iff there exists A P OSAlg(Σ,E) with ϕ
satisfiable in A; that is, there exists an assignment a, i.e., and S-sorted function
a P [fv(ϕ) Ñ A] with fv(ϕ) the free variables of ϕ, such that A, a |“ ϕ. Note that
ϕ is T -valid iff ¬ϕ is T -unsatisfiable. The inference system in [36] is sound and
complete for OS equational deduction, i.e., for any OS equational theory (Σ,E),
and Σ-equation u “ v we have an equivalence E � u “ v ô E |“ u “ v.
Deducibility E � u “ v is abbreviated as u “E v, called E-equality. An E-unifier
of a system of Σ-equations, i.e., of a conjunction φ “ u1 “ v1 ^ . . . ^ un “ vn

of Σ-equations, is a substitution σ such that uiσ “E viσ, 1 ď i ď n. An E-
unification algorithm for (Σ,E) is an algorithm generating a complete set of
E-unifiers Unif E(φ) for any system of Σ equations φ, where “complete” means
that for any E-unifier σ of φ there is a τ P Unif E(φ) and a substitution ρ
such that σ “E (τρ)|dom(σ)Ydom(τ), where “E here means that for any variable
x we have xσ “E x(τρ)|dom(σ)Ydom(τ). The algorithm is finitary if it always
terminates with a finite set Unif E(φ) for any φ. Given a set of equations B used
for deduction modulo B, a preregular OS signature Σ is called B-preregular1 iff
for each u “ v P B and substitutions ρ, ls(uρ) “ ls(vρ).

Convergent Theories and Sufficient Completeness. Given an order-sorted
equational theory E “ (Σ,E YB), where B is a collection of associativity and/or
commutativity and/or identity axioms and Σ is B-preregular, we can associate
to it a corresponding rewrite theory [35] 	E “ (Σ,B, 	E) by orienting the equations
E as left-to right rewrite rules. That is, each (u “ v) P E is transformed into
a rewrite rule u Ñ v. For simplicity we recall here the case of unconditional
equations. Since in this work we will consider conditional theories 	E , we refer
to [32] for full details on the general definition of convergent theory. The main
purpose of the rewrite theory 	E is to reduce the complex bidirectional reasoning
with equations to the much simpler unidirectional reasoning with rules under
suitable assumptions. We assume familiarity with the notion of subterm t|p of
t at a term position p and of term replacement t[w]p of t|p by w at position
p (see, e.g., [9]). The rewrite relation t Ñ�E,B t′ holds iff there is a subterm

t|p of t, a rule (u Ñ v) P 	E and a substitution θ such that uθ “B t|p, and
t′ “ t[vθ]p. We denote by Ñ˚

�E,B
the reflexive-transitive closure of Ñ�E,B . For

	E unconditional, the convergence requirements are as follows (see [32] for 	E
conditional): (i) vars(v) Ď vars(u); (ii) sort-decreasingness: for each substitution
θ, ls(uθ) ě ls(vθ); (iii) strict B-coherence: if t1 Ñ�E,B t′1 and t1 “B t2 then
there exists t2 Ñ�E,B t′2 with t′1 “B t′2; (iv) confluence (resp. ground confluence)
modulo B: for each term t (resp. ground term t) if t Ñ˚

�E,B
v1 and t Ñ˚

�E,B
v2, then

1 If B “ B0 Z U , with B0 associativity and/or commutativity axioms, and U identity
axioms, the B-preregularity notion can be broadened by requiring only that: (i) Σ
is B0-preregular in the standard sense that ls(uρ) “ ls(vρ) for all u “ v P B0 and
substitutions ρ; and (ii) the axioms U oriented as rules �U are sort-decreasing in the
sense explained below.
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there exist rewrite sequences v1 Ñ˚
�E,B

w1 and v2 Ñ˚
�E,B

w2 such that w1 “B w2;

(v) termination: the relation Ñ�E,B is well-founded (for 	E conditional, we require

operational termination [32]). If 	E satisfies conditions (i)–(v) (resp. the same, but
(iv) weakened to ground confluence modulo B), then it is called convergent (resp.
ground convergent). The key point is that then, given a term (resp. ground term)
t, all terminating rewrite sequences t Ñ˚

�E,B
w end in a term w, denoted t!�E , that

is unique up to B-equality, and its called t’s canonical form. Ground convergence
implies three major results: (1) for any ground terms t, t′ we have t “EYB t′ iff
t!�E “B t′!�E , (2) the B-equivalence classes of canonical forms are the elements of
the canonical term algebra CΣ/E,B, where for each f : s1 . . . sn Ñ s in Σ and B-
equivalence classes of canonical terms [t1], . . . , [tn] with ls(ti) ď si the operation
fCΣ/E,B

is defined by the identity: fCΣ/E,B
([t1] . . . [tn]) “ [f(t1 . . . tn)!�E ], and (3)

we have an isomorphism TE „“ CΣ/E,B.
A ground convergent rewrite theory 	E “ (Σ,B, 	E) is called sufficiently com-

plete with respect to a subsignature Ω, whose operators are then called construc-
tors, iff for each ground Σ-term t, t!�E P TΩ . Furthermore, for 	E “ (Σ,B, 	E) suffi-
ciently complete w.r.t. Ω, a ground convergent rewrite subtheory (Ω,BΩ , 	EΩ) Ď
(Σ,B, 	E) is called a constructor subspecification iff TE |Ω „“ TΩ/EΩYBΩ

. If
EΩ “ H, then Ω is called a signature of free constructors modulo axioms BΩ .
Note that 	E “ (Σ,B, 	E) is sufficiently complete with respect to Ω iff each ground
Σ-term f(u1, . . . , un) with f P Σ \ Ω and ui P TΩ , 1 ď i ď n, is 	E,B-reducible,
i.e., f(u1, . . . , un) Ñ�E,B t for some t P TΣ .

Generator Sets. Generator sets generalize standard structural induction on
the constructors of a sort. They are particularly useful for inductive reason-
ing when constructors obey structural axioms B including associativity and/or
associativity-commutativity for which structural induction may be ill-suited.

A generator set for a sort s is a set of constructor terms of sort s or smaller
such that any ground constructor term of sort s is a ground substitution instance
of one of the patterns in the generator set. Here is the general definition (identity
axioms are not needed thanks to the theory transformation 	E �Ñ 	EU in [10]):

Definition 1. For an order-sorted signature of constructors Ω—which may sat-
isfy axioms B of associativity and/or commutativity—and s a sort in Ω, a B-
generator set for sort s is a finite set of terms {u1, . . . , uk} Ď TΩ(X)s such
that

TΩ/B,s “
⋃

1ďiďk

{[ui ρ] P TΩ/B,s | ρ P [X Ñ TΩ]}.

Checking the Correctness of Generator Sets. How do we know that a
proposed generator set {u1, . . . , uk} it truly one modulo axioms B for a given
sort s and constructors Ω? Assuming that the terms u1, . . . , uk are all linear,
i.e., have no repeated variables—which is the usual case for generator sets—
this check can be reduced to an automatic sufficient completeness check with
Maude’s Sufficient Completeness Checker (SCC) tool [25], which is based on



On Ground Convergence and Completeness 195

tree automata decision procedures modulo axioms B. The reduction is extremely
simple: define a new unary predicate s : s Ñ Bool with equations s(ui) “ true,
1 ď i ď k. Then, {u1, . . . , uk} is a correct generator set for sort s modulo B for
the constructor signature Ω iff the predicate s is sufficiently complete, which can
be automatically checked by the SCC tool. Furthermore, if {u1, . . . , uk} is not a
generator set for sort s, the SCC tool will output a useful counterexample.

3 Proving Ground Convergence And Sufficient
Completeness Hierarchically

Basic Assumptions About 	E. We assume throughout a conditional equa-
tional theory E “ (Σ,E Y U Y B) such that: (i) Σ decomposes as a disjoint
union Σ “ Δ Z Ω, where Ω are the—intended but not yet proved to be—
constructor symbols, that furthermore are free modulo B, and Δ are the intended
defined symbols. (ii) B is any combination of associativity and/or commutativity
axioms,2 but any binary f P Δ may not satisfy any axioms except commuta-
tivity.3 (iii) 	U are sort-decreasing unit axiom rules of the form c(e, x) Ñ x or
c(x, e) Ñ x, where c is a constructor name and e is an Ω-term. However, c(x, e)
is not an Ω-term because some of c’s type declarations do not belong to Ω (see
Example 1). This makes it possible for constructors to be free modulo B in spite
of such unit rules. (iv) E “ ⋃

fPΔ Ef , where for each f P Δ, its associated rewrite
rules 	Ef are sort-decreasing and have the form: 	Ef “ {[i] : f(	ui) Ñ ri if Γi}iPI

2 Furthermore, for any f that is commutative we always assume a top typing f : s s Ñ
s0 with all other typings of the form f : s′ s′ Ñ s′

0, with s ď s′, s0 ď s′
0. Regarding

the absence of unit element axioms, they are precisely the equations U , that will be
used as rules �U (see, e.g., Example 1). The point is that, for both confluence and
termination purposes, if �G has axioms BZU , with B associative and/or commutative
axioms and U unit element axioms, then the axioms U can be eliminated by turning
them into rules �U thanks to the semantics-preserving theory transformation �G �Ñ �GU

defined in [10], so that the axioms of the semantically equivalent �GU are just B.
Therefore, Our results apply as well to theories �G with axioms B Z U such that �GU

has the properties (i)–(vi) listed in what follows.
3 Since axioms B are primarily used to specify constructor data structures, in actual

practice, limiting axioms for defined symbols to just commutativity is a mild restric-
tion. Furthermore, this restriction can be removed a posteriori in the following sense.
After �E has been shown ground convergent and sufficiently complete, if we can prove
by inductive theorem proving that the initial algebra TE does satisfy additional asso-
ciativity and/or commutativity axioms for some binary f P Δ, then we can add to
�E : (a) those extra axioms for f , and (b) the A-, resp. AC-extensions (see [40]) of the
rules �Ef in the sense of (iv) below (to ensure B-coherence). One can then show that
the theory thus extended is also ground convergent and sufficiently complete if its
rules remain operationally terminating modulo the extended axioms. For example,
in the MULTISET-ALGEBRA module of Example 1, we can prove the associativity and
commutativity of the intersection operator X as inductive theorems and then add
those properties as axioms of X (the AC-extensions of �EX do not need to be added
explicitly: they are added automatically by Maude).
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such that: (a) the 	ui are Ω-terms; and (b) for each i P I, Γi “ ∧

jPJ wj “ w′
j and

vars(f(	ui)) Ě vars(ri) Y vars(Γi). (v) There is a B-compatible recursive path
order (RPO) ą (see [9]) such that for each i P I, f(	ui) ą ri, and f(	ui) ą wj , w

′
j ,

j P J , which makes the rules 	E Y 	U operationally terminating modulo B. (vi)
The rules 	E Y 	U are strictly B-coherent.

The main goal of this paper is to develop hierarchical methods to prove that
a theory 	E enjoying properties (i)–(vi) above is ground convergent. As it turns
out, such hierarchical methods will also allow us to prove that 	E is sufficiently
complete with respect to its hypothesized constructor signature Ω. As we shall
see, hierarchical proofs of ground convergence and of sufficient completeness
will help each other. Since the rules in 	E can be conditional, they are generally
outside the scope of equational tree-automata methods for checking sufficient
completeness supported by tools like Maude’s Sufficient Completeness Checker
(SCC) [25], which assume unconditional and left-linear rules: new proof methods
are needed. Sufficient completeness is important both for program correcteness
and because it allows constructor-based inductive reasoning.

Calling Graph and Theory Hierarchies. We assume that all function sym-
bols in Δ are subsort-overloaded, i.e., for any f : s1 . . . sn Ñ s and f : s′

1 . . . s′
n Ñ

s′ we have [s] “ [s′], and [si] “ [s′
i], 1 ď i ď n. This can always be achieved by

renaming Δ. Let FΔ be the set of names for the function symbols in Δ, disre-
garding their typing. The calling relation is a binary relation C on FΔ, where
for each f, g P FΔ, (f, g) P C iff there exists a rule f(	ui) Ñ ri if Γi in 	Ef

such that the function symbol g occurs in either ri or in Γi. Let C˚ denote the
reflexive-transitive closure of C, and ”C the equivalence relation on FΔ defined
by the equivalence: f ”C g iff fC˚g and g C˚f . Then, the quotient set FΔ/ ”C

has a partial order defined by the equivalence [f ] ě [g] ô fC˚g.
The hierarchical method we propose is based on a hierarchy of theory inclu-

sions chosen as follows. Given our theory 	E we: (i) identity a subtheory 	E0
having subsignature Δ0 Z Ω containing all the subsort-overloaded typings of
any f P Δ0 and having rules 	U Y 	E0, with 	E0 “ ⋃

fPΔ0
	Ef , and axioms

B0 “ BΔ0ZΩ “ ⋃

fPΔ0ZΩ Bf , where Bf are the associative and/or commuta-
tive axioms, if any, for f in B, and such that 	E0 Y 	U is sufficiently complete
with respect to Ω and ground convergent. Of course, we should choose 	E0 as
big as possible: in the worse case we may have 	E0 “ H and keep only 	U . We
furthermore assume that we can find a sequence of theory inclusions:

	E0 Ă 	E1 Ă . . . 	En´1 Ă 	En

such that: (a) 	En “ 	E , (b) each 	Ek has signature Δk Z Ω containing all subsort-
overloaded typings of any f P Δk and having axioms Bk “ BΔkZΩ and, besides
	U , rules 	Ek “ ⋃

fPΔk

	Ef , where for each k ě 1 and each rule [i] : f(	ui) Ñ
ri if Γi in 	Ef , the condition Γi is a conjunction of 	Ek´1-equalities, (c) for each
0 ď k ă k ` 1 ď n, there exists a function symbol g P FΔk`1\FΔk

such that
FΔk`1 “ FΔk

Z [g]; that is, we add all the symbols in a new ”C-equivalence class
[g] to climb up each step in the theory hierarchy. Let us see an example.
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Example 1 (Multisets of Natural Numbers). As a running example we use a
theory of multisets of natural numbers with number equality .“. and multiset
membership P predicates, multiset difference \ , intersection X and union
, . Its Maude specification (with self-explanatory syntax for (Σ,E Y U Y B)) is:

fmod MULTISET-ALGEBRA is

protecting TRUTH-VALUE .

sorts Nat Mult .

subsort Nat < NeMult < Mult .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op mt : -> Mult [ctor] . *** empty multiset

op _,_ : Mult Mult -> Mult [assoc comm] . *** multiset union

op _,_ : NeMult NeMult -> NeMult [ctor assoc comm] . *** multiset union

op _.=._ : Nat Nat -> Bool [comm] . *** nats equality

op _in_ : Nat Mult -> Bool . *** membership

op _\_ : Mult Mult -> Mult . *** difference

op _/\_ : Mult Mult -> Mult . *** intersection

vars n m k : Nat . vars U V W : Mult .

eq U,mt = U . *** unit equation

eq n .=. n = true .

eq 0 .=. s(n) = false .

ceq s(n) .=. s(m) = false if n .=. m = false .

eq n in mt = false .

eq n in n = true .

ceq n in m = false if (n .=. m) = false .

eq n in (n,U) = true .

ceq n in (m,U) = false

if (n .=. m) = false /\ (n in U) = false .

eq mt \ U = mt .

eq U \ mt = U .

eq m \ m = mt .

ceq m \ n = m if n .=. m = false .

eq (m,U) \ m = U .

ceq (m,U) \ n = m,(U \ n) if n .=. m = false .

eq U \ (n,V) = (U \ n) \ V .

eq mt /\ V = mt .

ceq n /\ V = n if (n in V) = true .

ceq n /\ V = mt if (n in V) = false .

ceq (n,U) /\ V = n,(U /\ (V \ n)) if (n in V) = true .

ceq (n,U) /\ V = U /\ V if (n in V) = false .

endfm

Its calling graph is described in Fig. 1.
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Fig. 1. Calling Graph of Multiset Operations

Let 	E denote the above theory of multisets of natural numbers, with the
defined operations .“. , P , \ , and X , and the usual Boolean operations.
Its constructors Ω are: 0, s, J and K, H, and the union operator , for non-
empty multisets. 	E satisfies properties (i)–(vi). Furthermore, we have a tower of
theories:

	E.“.,P Ă 	E.“.,P, \ Ă 	E
where each theory contains the Boolean values, plus the constructors, plus the
mentioned operations, plus the rules defining such operations. 	E.“.,P is both con-
vergent and sufficiently complete, so we just have two steps to climb up the tower
to prove 	E both ground convergent and sufficiently complete.

The Hierarchical Proof Method. All now boils down to finding proof meth-
ods to climb up the theory hierarchy one step at a time. We then repeat this
method n times, with n the length of the chain of theory inclusions. That is,
we focus on a single theory inclusion 	E0 Ă 	E , where 	E0 has already been proved
ground convergent and sufficiently complete with respect to the constructor sig-
nature Ω, and then prove that 	E is also ground convergent and sufficiently com-
plete as follows. First of all, we define a new theory 	EΔ, with the same rules
	E Y 	U as in 	E , and having also a theory inclusion 	E0 Ă 	EΔ, but where, if Σ0

and Σ are the respective signatures of 	E0 and 	E , and Δ “ Σ \ Σ0, then 	EΔ has
a signature ΣΔ that extends Σ0 by: (i) adding to each connected component
[s] P ̂S of the poset of sorts (S, ď) of Σ0 [s] itself as a new “kind” top sort,
i.e., @s′ P [s], s′ ă [s], and (ii) lifting to the kind levels the f P Σ. That is, we
extend Σ0 by adding to ΣΔ a function symbol f : [s1] . . . [sn] Ñ [s] for each
f : s1 . . . sn Ñ s, n ě 1, in Σ. In 	EΔ the axioms B are lifted to kinds. For
example, for the theory inclusion 	E.“.,P, \ Ă 	E in our running example, Σ0, Σ
and ΣΔ can be depicted as follows (subsort inclusions in vertical lines):
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Note that ΣΔ adds no new terms to the original sorts S, i.e., TΣΔ(X)s “
TΣ0(X)s, s P S. The hierarchical proof methodology then proceeds as follows:

1. We first prove that 	EΔ is ground convergent.
2. We then prove that for any f P Δ, typing f : s1, . . . , sn Ñ s maximal in the

subsort order, and ground constructor substitution ρ, f(x1, . . . , xn)ρ, with xi

of sort si, 1 ď i ď n, can be rewritten with some rule in 	EΔ.
3. By Theorem 1, (1) and (2) actually prove that 	E is both ground convergent

and sufficiently complete with respect to Ω.

All we now need to do is to give a sound inference system that will allow
us to carry out the proofs for (1) and (2), and then prove Theorem 1. The
inference system for proving (1) and (2) works in the context of the theory
inclusion 	E0 Ă 	EΔ, where 	E0 has equations U Z E0 Z B0. Properties are specified
as constrained properties of the form p | ϕ, where p is a property and ϕ is a
conjunction of Σ0-equations. Semantically, p | ϕ describes the set [[p | ϕ]] of
ground constructor instances of property p that satisfy ϕ. More precisely:

[[p | ϕ]] “ {pθ | θ P [X Ñ TΩ ] ^ E0 � ϕθ}.

The hierarchical inference system uses two kinds of constrained properties:

1. For proving that all instances of a term f(x1, . . . , xn) by a ground substi-
tution ρ are 	Ef , B-reducible, where f P Δ, we use constrained properties of
the form red(f(u1, . . . , un)) | ϕ, where the ui are Ω-terms. By definition,
red(f(u1, . . . , un)) | ϕ holds iff for each ground constructor substitution ρ

such that ϕρ holds in E0, the term f(u1, . . . , un)ρ is 	Ef , B-reducible.
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2. For proving the ground joinability of a conditional critical pair4 (CCP) of
the form: ϕ ñ t “ t′ for the theory 	EΔ, we represent this property as the
constrained property t Ó t′ | ϕ and think of Ó as a binary predicate.
We always assume that sorts of all variables in t Ó t′ | ϕ are in S and ϕ is
a conjunction of E0-equalities, which will always be the case for any CCP of
	EΔ. By definition, t Ó t′ | ϕ holds iff for each ground constructor substitution5

ρ such that E0 � ϕρ there exist u, v such that tρ Ñ˚
�EΔ

u “B v ˚
�EΔ

Ð t′ρ.

The Shared Hierarchical Inference System. We first introduce the infer-
ence rules applicable to both joinabilily and reducibility goals, i.e., goals either of
the form (i) t Ó t′ | ϕ, with t, t′ ΣΔ-terms; or of the form (ii) red(f(u1, . . . , un)) |
ϕ, with f P Δ and the ui Ω-terms. The key feature shared by both kinds of goals
is that their constraint ϕ is a conjunction of Σ0-equations. By assumption, 	E0 is
ground convergent, sufficiently complete with respect to Ω, and the constructors
Ω are free modulo B0, with B0 associative and/or commutative axioms.

In the shared inference system we assume constrained terms p | ϕ of the form
(i) or (ii). The shared inference rules are the following:

Narrowing the Condition (NA)

{(p | Γi ^ ϕ[ri]p)αi,j}iPI,αi,jPUnif B(f(�v)“f(�ui))

p | ϕ[f(	v)]p

where the 	v are Ω-terms, f P Σ0\Ω is defined by rules {[i] : f(	ui) Ñ ri if Γi}iPI

whose variables are always assumed disjoint of those in p | ϕ, and where
Unif B(f(	v) “ f(	ui)) denotes the set of B-unifiers of the equation f(	v) “ f(	ui).

Unification (UN)
{(p | ϕ)θ}θPUnif UYE0YB0

(ψ)

p | ϕ ^ ψ

where ^ is assumed AC, and ψ is a set of Σ0-equations such that ψ has a finite
set of most general U Y E0 Y B0-unifiers. This is guaranteed to happen if either
ψ is a conjunction of Ω-equations or, more generally, a conjunction of equations
in a protected subtheory of 	E0 that has the finite variant property [13].

4 For a detailed definition of CCPs in an order-sorted setting see [11].
5 The ground joinability of the CCP ϕ ñ t “ t′ is normally stated as the joinability

tα Ó t′α for all ground substitution α such that E0 � ϕα. However, since, by ground
convergence and sufficient completeness of �E0 and the sort of all variables being in
S, any such α can be normalized to a ground constructor substitution α!�E0

, it can

easily be shown that the CCP is ground joinable iff the property t Ó t′ | ϕ holds.



On Ground Convergence and Completeness 201

Equality Simplification (ES)

p | ϕ!�E“
0

p | ϕ

where ϕ!�E“
0

denotes the canonical form of ϕ in the ground convergent theory
	E“
0 extending 	E0 with equality predicates defined in [21], which allows formula

simplifications such as, e.g., (J “ K ^ ψ)!�E“
0

“ K, and (0 “ s(u) ^ ψ)!�E“
0

“ K.

Case (CA)
{(p | ϕ){x �Ñ vi}}iPI

p | ϕ

with x P vars(p) a variable of sort s and {vi}iPI a generator set for sort s in Ω,
where all variables in {vi}iPI are assumed fresh.

Split (SP)
{p | ϕ ^ ψi}iPI

p | ϕ

where TΣ0/E0YB0 |“ ∨

iPI ψi and vars(
∨

iPI ψi) Ď vars(p | ϕ).

Generalization (GN)
p′ | ψ

p | ϕ

where ∃θ p′θ “B p, and TΣ0/E0YUYB0 |“ ϕ ñ (ψθ).

Empty Goal (H)
p | K

Ground Joinability Inference System. The goals to be proved are those
associated to the conditional critical pairs in 	EΔ that are not in 	E0. The addi-
tional inference rules include: (i) constrained versions of the ground joinability
rules in [12] (not needed for our running example); and (ii) the following two
rules:

Join (JN)
u Ó v | ϕ if u “B v

Contextual Rewriting (CR)

w Ó w′ | ϕ u Ñ˚
�EΔY�ϕ

w v Ñ˚
�EΔY�ϕ

w′

u Ó v | ϕ

where (i) t denotes the ground term obtained by replacing the variables in t by
corresponding fresh constants, (ii) 	ϕ is the rewrite condition associated to ϕ as
explained in [11] (for example a condition x P U “ J ^ x ˚ y “ 0 yields the
rewrite condition x P U Ñ J ^ x ˚ y Ñ 0, and (ii) 	ϕ denotes the set of ground
rewrite rules u1 Ñ u2 such that u1 Ñ u2 is a conjunct in 	ϕ.
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Example 2. For the theory inclusion 	E.“.,P, \ Ă 	E in our running example, the
ground joinability goals associated to the theory 	EΔ are:

y, (x X (V \y)) Ó x, (y X (V \x)) | y P V “ J ^ x P V “ J
y, ((x,W ) X (V \y)) Ó x, ((y,W ) X (V \x)) | y P V “ J ^ x P V “ J

corresponding to the only two CCPs not already proved joinable for 	E0 that
cannot be proved joinable by Maude’s Church-Rosser Checker tool. The proof
of the first goal is shown below; we leave proving the second goal as an exercise.
Note that, due to width constraints, the proof is broken up into named fragments.
As is usual for proof trees, we place the root of the proof tree, fragment P0, at
the bottom and the remaining proof branch fragments ascending vertically.

P2,3

JN
x, (x X ((x, W )\x)) Ó x, (x X ((x, W )\x)) | J

NA
y, (x X ((y, W )\y)) Ó x, (y X ((y, W )\x)) | x ¨“¨ y “ J

P2,2

JN
y, x Ó x, y | J

CR
y, (x X ((y, x)\y)) Ó x, (y X ((y, x)\x)) | J

NA
y, (x X ((y, m)\y)) Ó x, (y X ((y, m)\x)) | x ¨“¨ m “ J

P2,1

JN
y, x Ó x, y | J

CR
y, (x X ((y, x, W ′)\y)) Ó x, (y X ((y, x, W ′)\x)) | J

NA
y, (x X ((y, m, W ′)\y)) Ó x, (y X ((y, m, W ′)\x)) | x ¨“¨ m “ J

P2

P2,1 P2,2 P2,3
NA

y, (x X ((y, W )\y)) Ó x, (y X ((y, W )\x)) | x P (y, W ) “ J
NA

y, (x X ((z′, W )\y)) Ó x, (y X ((z′, W )\x)) | y ¨“¨ z′ “ J ^ x P (z′, W ) “ J

P1

JN
y, (y X (y\y)) Ó y, (y X (y\y)) | J

NA
y, (x X (y\y)) Ó x, (y X (y\x)) | x ¨“¨ y “ J

NA
y, (x X (y\y)) Ó x, (y X (y\x)) | x P y “ J

NA
y, (x X (z\y)) Ó x, (y X (z\x)) | y ¨“¨ z “ J ^ x P z “ J

P0

P1 P2
NA

y, (x X (V \y)) Ó x, (y X (V \x)) | y P V “ J ^ x P V “ J

Ground Reducibility Inference System. To show 	EΔ sufficiently complete
with respect to Ω we need to prove goals of the form red(f(x1, . . . , xn)) | J,
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with f P Δ, f : s1 . . . sn Ñ s a maximal typing for f in 	E , and xi of sort si,
1 ď i ď n. The inference rules that can be applied to prove such goals include
all the shared rules plus the rule:

Rewrite (RW)
red(f(	v)) | ψ

where f P Δ and there is a rule (f(	u) Ñ r if Γ ) P 	Ef and a substitution θ
such that f(	v) “B f(	u)θ and TΣ0/E0YUYB0 |“ ψ ñ (Γθ).

Example 3. In our running example we leave as an exercise for the reader the
proofs of ground convergence and sufficient completeness for the first theory
inclusion 	E.“.,P Ă 	E.“.,P, \ as well as the RPO-modulo-based proof of opera-
tional termination of 	E (for which the MTA tool [20] can be used), and prove in
detail both properties for the second theory inclusion 	E.“.,P, \ Ă 	E . The proof of
sufficient completeness needs to prove the single goal red(U X V | J), with U, V
of sort MSet . Using the generating set {H, x, (y,W )} for sort MSet , we get the
proof tree (rendered in a table due to width constraints as was done previously):

P3

RW
red((y,W ) X V ) | y P V “ J RW

red((y,W ) X V ) | y P V “ K
SP

red((y,W ) X V ) | J

P2

RW
red(x X V ) | x P V “ J RW

red(x X V ) | x P V “ K
SP

red(x X V ) | J

P1

RW
red(H X V ) | J

P0

P1 P2 P3
CA

red(U X V ) | J

Therefore, assuming that the remaining proof obligations left as exercises for the
reader have already been discharged, we have proved for our running example
that: (1) the theory 	EΔ for multisets of natural numbers is ground convergent,
and (2) all instances of the term U X V by a ground constructor substitution ρ

are 	EΔ-reducible, i.e., 	EΔ is sufficiently complete with respect to Ω. Thanks to
our methodology, we can conclude that (3) 	E itself is also ground convergent and
sufficiently complete with respect to Ω, thus illustrating the entire hierarchical
methodology. Fact (3) is a consequence of the following general theorem, whose
proof can be found in Appendix A:

Theorem 1. Under the already-stated assumptions on a theory inclusion 	E0 Ă
	E, if 	EΔ is ground convergent and sufficiently complete with respect to Ω, then
	E is also ground convergent and sufficiently complete with respect to Ω.
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Of course, the correctness of the hierarchical proof methodology crucially
depends on the soundness of its inference system, i.e., on the following theorem,
whose proof can also be found in Appendix A:

Theorem 2 (Soundness Theorem). Under the stated assumptions for the theory
inclusion 	E0 Ă 	EΔ and for the joinability and reducibility goals, if the inference
system proves a joinability goal of the form t Ó t′ | ϕ, then t Ó t′ | ϕ holds
in 	EΔ. Likewise, if the inference system proves a reducibility goal of the form
red(f(u1, . . . , un)) | ϕ, then red(f(u1, . . . , un)) | ϕ holds in 	EΔ.

4 Related Work and Conclusions

Research on sufficient completeness goes back to Guttag’s thesis in the 1970’s
and includes, e.g., [5,8,22–25,27,29,30,38,39,42,44].

Early papers on methods to prove ground confluence appeared in the 1980s,s,
including [46] and [41]. Subsequent work includes, e.g., [1,3,4,12,14,16,17,28].
Since confluence implies ground confluence, work on methods and tools to prove
confluence, e.g., [2,26,39,43,45] is also relevant. However, there are many ground
confluent specifications that are not confluent.

Both sufficient completeness (even for unconditional theories as soon as a
symbol is associative or associative-commutative) and ground confluence (again,
even for conditional theories) are undecidable properties (see, respectively, [29]
and [28]). This is not surprising, since both are inductive properties.

On sufficient completeness, two papers most closely related to this work,
because both deal with order-sorted theories, are [39] and [4]. The work in [39]
provides some useful methods for proving sufficient completeness of order-sorted
CafeOBJ specifications and shares with our work the feature of exploiting module
hierarchies; however, the methods used in [39] do not seem to support rewrit-
ing modulo axioms. The work in [4] shares a number of important ideas with
the present work, including: (i) it supports conditional order-sorted theories;
and (ii) it emphasizes that proofs of sufficient completeness and of ground con-
fluence help each other, and, like us, it provides an inference system to prove
both properties. Differences from [4] include that it does not support rewriting
modulo axioms and that—as in the SPIKE prover [6], whose implementation
it extends—instantiation of variables by terms in a generating set are favored
over unification and narrowing-based approaches like ours. In that sense, our
work also bears some loose similarities to an extensive body of work on ground
confluence proof methods originating in the “inductionless induction” approach
to inductive theorem proving, including, [1,3,14,16,17], all of which use nar-
rowing and unification in their inference rules. However, besides the fact that
the inference systems in that body of work are quite different from ours, none
of that work supports order-sorted theories or rewriting modulo axioms. The
work on ground confluence that is most closely related to ours is the one in
[12]. In fact, the present work should be seen as further progress along the lines
initiated in [12]. Specifically: (i) as pointed out in Sect. 3, our inference rules
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for ground confluence include and extend those in [12]; and (ii) our hierarchi-
cal methods for proving ground confluence of conditional order-sorted theories
extend and complement those presented in [12]. A key improvement in terms
of greater applicability is that the theory inclusions 	E0 Ă 	E allowed in [12] had
to obey the fairly restrictive assumption that some chosen sorts in 	E0 could not
have any extra terms in 	E . Our use of the theory inclusion 	E0 Ă 	EΔ, for which
that assumption holds by construction, completely obviates this restriction.

In conclusion, we have presented a new hierarchical methodology to prove
conditional equational programs sufficiently complete and ground convergent.
We have illustrated how the inference system works with the help of a running
example. More inference rules can be added. For example, the Unfeasibility
rule in [11] is an obvious addition. Also, a tool combining the inference systems
in [12,33] and in this work would allow further experimentation and would be
quite useful in many verification efforts, not just for Maude, but also for the less
general cases of many-sorted or unsorted equational programs in any language.

Acknowledgements. We cordially thank the anonymous referees for their very help-
ful suggestions, that have helped us improve the manuscript.

A Proofs

Proof of the Soundness Theorem 2

Proof. For each inference rule we must show that if the premises of the rule hold,
then the conclusion follows. We do so for each inference rule. Recall that in all
applications, i.e., to prove either a ground joinability or a ground reducibility
property in 	EΔ, the meaning of p | ϕ holding is that it does so for all its ground
constructor substitutions ρ such that ϕρ holds in 	E0.
Shared Inference Rules. Except for rule GN, all these rules correspond to
equivalences. That is, the premises hold iff the conclusion does. Let us consider
each inference rule.

– NA. For any ground constructor substitution ρ, at position p in ϕ the term
f(	vρ) has constructor term arguments. Therefore, by sufficient completeness
of 	E0, there is a rewrite rule in 	E0f

, say rule [i] whose lefthand side f(	ui) is
B-matched by f(	vρ) with a ground constructor substitution γ, i.e., f(	v)ρ “B

f(ui)γ, and whose condition instance Γiγ holds in 	E0. Therefore, we can
rewrite f(	vρ) to the instance riγ of its righthand side. Therefore, there is a B-
unifier αi,j of the equation f(	v) “ f(ui) and a ground constructor substitution
δ such that ρ Z γ “ αi,jδ. Therefore ϕρ holds in 	E0 iff (Γi Y ϕ[ri]p)αi,jδ does,
and of course uρ “B uαi,jδ. In brief, the equivalence summarizes symbolically
(by narrowing) all the possible ways in which all ground constructor instances
of condition ϕ can be rewritten in one step at position p.
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– UN. If (ϕ ^ ψ)ρ holds in 	E0, then ψρ does, i.e., ρ is a U Y E0 Y B0-unifier
of ψ. Therefore, there must be a U Y E0 Y B0-unifier θ of ψ and a ground
constructor substitution γ such that ρ “UYE0YB0 θγ. The equivalence follows
naturally from this fact.

– ES. The main result about equality predicates in [21] is that for any Boolean
formula ϕ and ground constructor substitution ρ, ϕρ holds in ground con-
vergent 	E0 iff ϕ!E“

0
ρ does. In particular, this equivalence holds when ϕ is a

conjunction of equalities.
– CA. The equivalence follows from the definition of a generating set for the

sort s of x, since for any ground constructor substitution ρ, ρ(x) must be
such that ρ(x) “B viγ for some vi in such a set and ground constructor
substitution γ.

– SP. The equivalence between the premises and the conclusion follows from
the semantic equivalence TΣ0/E0YB0 |“ ϕ ô ∨

iPI ψi ^ ϕ, plus the Boolean
equivalence (A _ B) ñ C ” (A ñ C) ^ (B ñ C).

– GN. This is the only shared rule tat is not an equivalence, i.e., where the
premise implies the consequence but need not be equivalent to it. The prop-
erty p′ρ must hold (i.e., p′ρ’s ground reducibility, or p′ρ’s ground joinability,
depending on p) whenever ψρ does. In particular, if ϕγ holds, then ψθγ does,
and therefore p′θγ does. That is, p′θ | ϕ holds. But p′θ “B p. The result then
follows from the fact that for either ground reducibility or ground joinability
properties q, q′ such that q “B q′, q | ϕ holds iff q′ | ϕ does. This follows in
either case from the assumption that the rules 	U Y 	E are strictly B-coherent.

– H. Since no ground substitution can satisfy K, u | K holds trivially.

Ground Joinability Inference System. The proof of the constrained version
of the ground confluence inference rules in [12] follows easily from that of the
unconstrained inference rules in [12]. The soundness of rule JN holds trivially
from the very notion of joinability. A proof of soundness for the CR inference
rule can be found in [11].

Ground Reducibility Inference System. The only inference rule is RW.
Suppose that ψρ holds in 	E0. Then, Γθρ does; and by the rule’s assumptions
f(	v)ρ is reducible, as desired.

This finishes the proof of the Soundness Theorem. �

Proof of Theorem 1

Proof. First of all, note that, considering TΣ(X) and TΣΔ(X) as sets, i.e., dis-
regarding sorts, we have an inclusion TΣ(X) Ď TΣΔ(X). Also, for each s P S
we have a set equality TΣ0,s(X) “ TΣΔ,s(X). In particular, TΣ Ď TΣΔ , and
TΣ0,s “ TΣΔ,s for each s P S.

Second, 	E and 	EΔ have the exact same CCP’s. To begin with, in both cases
the rules not in 	E0 are the same, namely 	EΔ. Furthermore, in both cases, the
only CCP’s that do not come from 	E0 can be of only two kinds: (i) between a unit
rule in 	U and a rule in 	Ef for some f P Δ, where the unit rule’s lefthand side
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unifies with a constructor subterm of the lefthand side of one of f ’s constructor
arguments; or (ii) between two, not necessarily different, rules in 	Ef for some
f P Δ. In case (i), the unifier generating the CCP must be a constructor unifier
so that the resulting CCP is the same in both 	E and 	EΔ, and its condition is a
Σ0-condition. In case (ii), the CCP comes from two—not necessarily different,
but variable-renamed if i “ j to ensure disjoint variables—rules [i] : f(	ui) Ñ
ri if Γi and [j] : f( 	uj) Ñ rj if Γj and its associated order-sorted unifier
(in either 	E or 	EΔ) solves the equation f(	ui) “ f( 	uj). We claim that the order-
sorted unifiers of the equation f(	ui) “ f( 	uj) are the same in 	E and in 	EΔ. Recall
that, by assumption, Bf is either empty or a commutativity axiom. If Bf “ H,
then α is a unifier of f(	ui) “ f( 	uj) iff it is a unifier of the system of equations
ui,1 “ uj,1 ^ . . . ^ ui,k “ uj,k, where k is the number of arguments of f . If f

is commutative, the only difference is that in 	E the axiom f(x1, x2) “ f(x2, x1)
is such that x1, x2 have sort s for f : s s Ñ s0 the maximal typing of f ,
whereas in 	EΔ x1, x2 have kind [s]. This, however, makes no difference, since,
by the Decomposition inference rule for a commutative symbol of order-sorted
unification (see [31] and [7] §15.1), α is a unifier of f(ui,1, ui,2) “ f(uj,1, uj,2)
iff it is a unifier of the disjunction of systems of equations (ui,1 “ uj,1 ^ ui,2 “
uj,2) _ (ui,1 “ uj,2 ^ ui,2 “ uj,1). Therefore, the CCPs are the same and the
unifiers are constructor unifiers, so that the CCP’s condition is a Σ0-condition.

Third, for ground terms we have proper inclusions of rewrite relations,

Ñ�E0
Ă Ñ�EΔ Ă Ñ�E Ă TΔ

Σ ˆ TΔ
Σ .

The first inclusion is proper because there are terms in TΣ\TΣ0 that can be
rewritten with Ñ�EΔ . The second inclusion is proper because, by the definition
of ΣΔ, a rule in the theory 	EΔ, say, [i] : f(	ui) Ñ ri if Γi, can, only be enabled
to rewrite a term f(	v) if the terms 	v are Σ0-terms. That is, Ñ�EΔ performs
rewritings exactly like Ñ�E , but only in a “weakly innermost” manner (“weakly”
because the Σ0-terms 	v need not be constructors).

Fourth, for any t P TΣ , t!�EΔ is a constructor term. Suppose not, i.e., there is
a t P TΣ such that t!�EΔ is not a constructor term. But since we have an inclusion
of rewrite relations Ñ�E0

Ă Ñ�EΔ and 	E0 is sufficiently complete, this means that
t!�EΔ must contain a subterm of minimal size of the form f(	v) with f P Δ and
the terms 	v constructor terms. But this is impossible, since all such terms have
been proved 	EΔ-reducible.

Fifth, for any t P TΣ , if t Ñ˚
�E v and v is in 	E-canonical form, then v is a

constructor term. This follows from the containments of rewrite relations Ñ�E0

Ă Ñ�EΔ Ă Ñ�E , the fourth property above, and the sufficient completeness of 	E0.
Finally, we are now ready to prove that 	E is ground convergent. Note that,

by the fifth property above, 	E is then also sufficiently complete with respect to
Ω. Since we have the containment of ground rewrite relations Ñ�EΔ Ă Ñ�E , the
ground convergence of 	E will follow from the fourth and fifth properties above
if we can prove that for each t P TΣ and each ground constructor term v such
that t Ñ˚

�E v we have v “B t!�EΔ .
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Lemma 1. For each t P TΣ, if t Ñ˚
�E u and u is a constructor term, then

u “BΩ
t!�EΔ .

Proof. Suppose not. Let us choose a term t P TΣ such that: (i) t Ñ˚
�E u, u is a

constructor term, and u “| BΩ
t!�EΔ , and (ii) for ą the RPO order modulo proving

	E operationally terminating, t is a minimal element among the set of terms in
TΣ such that (i) holds. This can only happen if t is not a constructor term.
Therefore, we have t Ñ�E t′ Ñ˚

�E u. Note that t ą t′. Therefore, by the minimality
assumption for t, we must have u “BΩ

t′!�EΔ . Let us now consider the one-step
rewrite t Ñ�E t′. This means that there is a rule f(	u) Ñ r if Γ in 	U Y 	E with
the 	u constructor terms (rules in 	U , though unconditional, also have this form),
a ground substitution α and a term position p such that t|p “B f(	u)α, Γα holds
in 	E , and t′ “ t[rα]p. Since ą is a B-compatible RPO order and all rules are
assumed ą-operationally-terminating, for each equality w “ w′ in Γ we must
have t ą wα,w′α. Therefore, by the minimality hypothesis on t, we must have
(wα)!�EΔ “BΩ

(wα)!�E “BΩ
(w′α)!�E “BΩ

(w′α)!�EΔ , so that Γα also holds in 	EΔ

and, for the same reason, Γρ holds in 	EΔ for the constructor substitution ρ “
α!�EΔ obtained by normalizing each α(x) with x in the domain of α. Therefore,
we have a rewrite t[f(	u)ρ]p Ñ�EΔ t[rρ]p. Furthermore, t “B t[f(	u)α]p, and we
have rewrite sequences t[f(	u)α]p Ñ˚

�EΔ
t[f(	u)ρ]p, and t[rα]p Ñ˚

�EΔ
t[rρ]p, and

since t ą t′ “ t[rα]p, we must have u “BΩ
t[rρ]p!�EΔ . In summary, we have the

sequence of rewrites in 	EΔ,

t[f(	u)α]p Ñ˚
�EΔ t[f(	u)ρ]p Ñ�EΔ t[rρ]p Ñ˚

�EΔ t[rρ]p!�EΔ

with u “BΩ
t[rρ]p!�EΔ . But by t “B t[f(	u)α]p and the convergence of 	EΔ we also

must have t!�EΔ “BΩ
t[rρ]p!�EΔ “BΩ

u, contradicting the assumption u “| BΩ
t!�EΔ ,

as desired. �

This finishes the proof of Theorem 1. �
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Abstract. Cyber-Physical Systems, such as Autonomous Vehicles
(AVs), are operating with high-levels of autonomy allowing them to
carry out safety-critical missions with limited human supervision. To
ensure that these systems do not cause harm, their safety has to be rig-
orously verified. Existing works focus mostly on using simulation-based
methods which execute simulations on concrete instances of logical sce-
narios in which systems are expected to function. The level of assurance
obtained by these methods is, therefore, limited by the number of simula-
tions that can be carried out. A complementary approach is to produce,
instead, proofs that vehicles are safe for all instances of logical scenar-
ios. This paper investigates how Rewriting modulo SMT applied to Soft
Agents, a rewriting framework for the specification and verification of
Cyber-Physical system, can be used to generate such proofs in an auto-
mated fashion. In particular, rewrite rules specify the executable seman-
tics of systems on logical scenarios instead of concrete scenarios. This is
accomplished by generating at each execution step a set of (non-linear)
constraints whose satisfiability are checked by using SMT-solvers. Intu-
itively, a model of such set of constraints corresponds to a concrete exe-
cution on an instance of the corresponding logical scenario. We demon-
strate how to specify and verify scenarios in this framework using an
example involving a vehicle platoon. Finally, we investigate the trade-
offs between how much of the verification is delegated to search engines
(namely Maude) and how much is delegated to SMT-solvers (e.g., Z3).

1 Introduction

Autonomous Vehicles (AVs) are expected to soon reach higher-levels of auton-
omy, being able to drive through complex environments with no or little human
supervision. To achieve this, however, it is necessary to produce a rigorous safety
assurance argument [12]. An assurance strategy based on collecting data by run-
ning AVs on the streets is not feasible [13] as it would require billions of miles of
data for achieving confidence in the results. Symbolic methods based on formal
models have been advocated [23] as a means for safety assurance.
c© Springer Nature Switzerland AG 2022
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A safety assurance strategy begins by first identifying abstract scenarios,
called logical scenarios [19], such as lane changing or platooning or pedestrian
crossing, in which AVs have to avoid harm. These logical scenarios contain details
about the situations in which a vehicle shall be able to safely operate,1 such as
which types and number of actors, e.g., vehicles, pedestrians, operating assump-
tions, e.g., range of speeds, and road topology, e.g., number of lanes. The system
safety is then verified with respect to each scenario. The challenge, however, is
that there are infinitely many instances for any given logical scenario.

To overcome this challenge, existing work can be divided into two different
approaches. The first approach [5,9,16] is to use simulation-based methods that
run a sufficiently large number of simulations using vehicle simulators [8]. A
limitation of this approach is that a possibly large number of simulations need
to be generated for each logical scenario, and even then critical situations may
be missed. The second approach is to use algorithms [1,22] that are proved
to generate safe trajectories under the assumption that the remaining agents
behave correctly. These safe planners can then be integrated with advanced
(high-performance, but not safe) controllers as fall-back options whenever safety
assurance is low [7]. There are two limitations with this approach. The first
limitation is that safety proofs have to be constructed manually. The second
limitation is that these proofs consider only planning and not other aspects such
as sensing, knowledge bases, and communication channels that are used in AV
applications [5,16].

This paper’s main goal is to address the limitations of these two types of
approaches by proposing a rewriting framework, based on Soft Agents [24], that
enables the automated construction of vehicle level safety proofs, i.e., produce
proofs that AVs are safe for all instances of a logical scenario. Such safety proofs
provide greater confidence on the safety of AVs, complementing other verification
evidence such as simulation-based verification techniques.

Towards achieving this goal, we make the following contributions:

– Soft Agents Framework with Rewriting Modulo SMT: We propose an
executable symbolic Soft Agents framework [24] where instead of considering
concrete values for attributes such as agent’s speed, position and acceleration,
it represents these values as symbols whose possible values are specified by
a set of (real non-linear) constraints. This is accomplished by extending the
current Soft Agents framework with Rewriting Modulo SMT [20]. Soft Agent
specifications can be executed by using Maude extensions with SMT [14]. In
contrast to existing frameworks that can execute only instances of logical sce-
narios, symbolic soft agents can execute logical scenarios producing symbolic
traces, each denoting a possibly infinite number of concrete executions of the
logical scenario.

– Vehicle Platooning Specification: We demonstrate the Soft Agent frame-
work by using a simple, but realistic vehicle platooning application. We illus-
trate how vehicle behavior and safety properties can be specified in Soft
Agents, explaining how design choices may affect verification performance.

1 Also called Operational Design Domain (ODD).
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vl, αlvf, αf
vehf vehl

posf posldist

Fig. 1. Platooning Logical Scenario: The follower vehicle vehf and vehl are in a straight
lane with respectively velocities and accelerations vf , αf and vl, αl. posf is the position of
front of vehf and posl is the position of the back of the vehl. We consider vehicle positions
to be only the x-component increasing with as one follows to the right direction of the
road. The distance between the vehicles dist = posl − posf .

– Verification Trade-off between Rewriting and Constraint Solving:
For the verification of systems, Soft Agents make uses of rewriting (through
Maude [4]) and of SMT-solvers (through Z3 [6]). In particular, rewriting cap-
tures the evolution of the system by accumulating constraints. The constraint-
solver, on the other hand, generates proofs that a property is satisfied or
that a property is unsatisfiable. We investigate in this paper the trade-offs
between how much of verification is delegated to rewriting and how much to
the constraint-solver. On the one hand, the more fine grained is the rewrit-
ing, e.g., searching with more constrained system evolutions, the greater is
the number of states the search engine has to traverse leading to a greater
number of calls to the SMT-solver, but the simpler are the problems that the
solver has to solve. On the other hand, the more coarse is the rewriting, e.g.,
searching with less constrained system evolutions, the fewer are the calls to
the SMT-solver, but the larger are problems that the constraint solver has to
solve. Our experiments indicate that these trade-offs need to be considered
in order to verify more challenging properties.

Plan. We start in Sect. 2 by describing a motivating example: a logical sce-
nario from a vehicle platooning case study, which is used as running example.
Section 3 introduces symbolic rewriting, then recalls the soft agents framework
and its generalization to symbolic rewriting with SMT solving. Section 4 presents
key elements of the symbolic vehicle platooning logical scenario, including con-
trol decisions, safety properties, and search patterns for reachability analysis.
Section 5 presents experiments evaluating trade-offs between size of search space
and complexity of constraints to solve. We conclude by discussing related work
in Sect. 6 and future work in Sect. 7.

2 Motivating Example

Our motivating example is a platooning scenario which is a typical Level 3 auton-
omy2 use-case. This scenario takes place in a highway as illustrated by Fig. 1.
The vehicle vehf , called follower vehicle, follows autonomously, i.e., only with
2 For the levels of autonomy, see the SAE classification described in [11].
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human supervision, vehicle vehl, called leader vehicle. The vehicles are driving
in a highway lane and therefore are expected to have a speed within some given
range of values normally obtained by considering legal speeds and the vehicle’s
capabilities, e.g., speeds between 60 km/h and 130 km/h. Moreover, the acceler-
ation (and deceleration) capabilities of the vehicles are also bounded, typically
between −8m/s2 and 2m/s2.

The goal of the follower vehicle is to maintain a safe distance to the leader
vehicle, but still be close enough to profit from the wind shadow of the leader
vehicle yielding upto 17% of fuel savings [26]. Since the speed of the vehicles
may vary, it is not appropriate to define a safe distance as an absolute quantity,
but in terms of time to react. That is, the distance will depend on the relative
speeds of the vehicles.

As an example, building on ideas from [7], we define the following three
properties for the platooning logical scenario:

Psafer := dist ≥ vf × (1[s] + gapsafer) − vl × 1[s], (1a)
Psafe := vf × (1[s] + gapsafer) − vl × 1[s]) > dist ≥ vf × (1[s] + gapsafe) − vl × 1[s], (1b)

Punsafe := dist < vf × (1[s] + gapsafe) − vl × 1[s] (1c)

Intuitively, their satisfaction is conditional on the distance (dist) between the
vehicles; their speeds (vl and vf); and the parameters gapsafer and gapsafe which
are time to react parameters, typically a few seconds. Moreover, gapsafer > gapsafe,
which means that the instance of a logical scenario satisfies Psafer (or simply safer)
if the vehicles vehl and vehf have a greater distance between them. Finally, an
instance of a logical scenario satisfies Punsafe (or simply unsafe) if distance is to
small to satisfy Psafe or Psafer.

A description of the function of a vehicle, such as platooning, using formal
notations and ranges of parameters is called a logical scenario [15]. The objective
is to prove that an implementation of a controller for the platooning function
is safe, that is either Psafer or Psafe is satisfied for all concrete instances of this
logical scenario. This is challenging as there are infinitely many such instances.

3 Symbolic Soft Agents Framework

We begin with an overview of challenges in modeling cyber-physical systems
(CPSs), then recall the main features of soft agent specifications, and then briefly
discuss the generalization to symbolic form.

3.1 Overview

A soft agent (SA) model of a CPS makes explicit both discrete changes (cyber
actions, control settings) and continuous change (in the physical environment).
Following ideas developed in Real Time Maude [18], soft agent models have
instantaneous rules that specify agents decision processes that generate actions
such as communication or setting control parameters; and a timeStep rule that
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models the passage of some interval of time, updating the state according to a
model of the time-dependent aspects of the state.

In contrast to the usual realtime specifications, soft agent CPS specifications
involve variables, such as speed, distance, etc., that are dense and their evolutions
over time are not discrete events. Moreover, system properties, such as safety
properties, are expressed using these variables, e.g., keeping a given distance
to the vehicle ahead rather than timing properties such as network delay or
execution time. Verification of safety properties for CPS specifications involves
reasoning about possibly infinitely many states and properties whose parameters
may change continuously over time.

Two challenges for safety analysis of CPS specifications are (1) soundness
of discrete time sampling execution; and (2) checking for reachability of unsafe
states from a possibly infinite set of instances of a logical scenario. Challenge (1)
includes choosing the timestep intervals small enough so that no unsafe situations
are missed, while not being so fine grained that the state space becomes unman-
ageable. This is a design time concern, for example choosing the frequency with
which sensors are read and control settings are updated. The latter challenge (2)
involves the coverage and state space management with time properties.

Real Time Maude addresses (1) in [17], defining conditions on a timed rewrite
theory that guarantee soundness and completeness of model checking based on
maximal time elapsed discrete time sampling. Unfortunately, soft agent analysis
problems generally do not meet these conditions. Narrowing is one approach to
checking reachability from a possibly infinite initial set of system states. Maude
supports narrowing modulo a rich collection of equational theories, but narrow-
ing using conditional rules is not supported [4], and soft agent relies heavily on
conditional rules.

New ideas are needed to address the verification challenges. We propose a
form of symbolic rewriting that combines rewriting and constraint solving.

1. We represent logical scenarios as symbolic system states, representing a set of
concrete states. A logical scenario consists of a pattern (a term with pattern
variables called symbols) together with a set of constraints on values of the
symbols.3

2. A symbolic rewrite rule introduces new symbols and additional constraints
representing new values of the pattern variables. The resulting logical scenario
represents the instances reachable from instances of the starting pattern using
the rewrite rule.

3. Symbolic rule conditions use symbolic function evaluation to generate new
symbols and their constraints.

The point of symbolic analysis is to check properties of concrete systems
represented by concrete scenarios. Thus we want to connect symbolic executions
to concrete executions. The concrete executions may be obtained from a concrete

3 Mathematically, a logical scenario is a term with variables. To be able to rewrite
logical scenarios in Maude, we replace variables by symbols, which formally are
uninterpreted constants.
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form of the rewrite rules, or simply using the symbolic rules with grounding
constraints of the form, sym == ground term.

To describe the desired symbolic-concrete connection, we need a little nota-
tion. The basic idea is analogous to that presented in [20]. We assume a rewrite
theory T = (Σ,B ∪ E,R) with signature Σ, axioms B, equations E, and rules
R. Assume further an equational subtheory T0 of T axiomatizing the theory in
which the constraints are solved by the SMT solver. We use sS, sS0, sS1 . . . . to
denote logical scenarios (symbolic states) and cS, cS0, cS1 . . . to denote concrete
states (ground states with no symbols). Let σ, σ0, σ1, . . . denote substitutions
mapping symbols to concrete terms (values). A logical scenario is structured as
a pair (sP, sC) consisting of a pattern, sP, and a constraint, sC, on the symbols
of sP. sC represents a quantifier free formula in the language of T0.

Application of a substitution, σ, to a logical scenario, sS = (sP, sC) (written
(σsP)), gives an instance of sS if the domain of σ contains all the symbols of sS
and σ satisfies sC (T0 |= sCσ). We say σ1 extends σ0, written σ1 � σ0 if the
domain of σ1 contains the domain of σ0 and σ0(v) = σ1(v) (wrt. T ) for v in the
domain of σ0. Finally, we let −→c denote the concrete rewrite relation induced by
T , and −→s denote the symbolic rewrite relation induced by T . Then the desired
connection between the rewrite relations is give by the following Soundness and
Completeness properties. These correspond to Theorems 1 and 2 of [20] and can
be proved by analogous arguments.

Soundness. If sS0 −→s sS1 and σ0 gives an instance of sS0, then there exists
σ1 � σ0 such that cS1 is equivalent (in T ) to sP1σ1 and σ0(sP0) −→c cS1.

Completeness. If σ0 gives an instance of sS0 and σ0(sP0) −→c cS1 then there
exists sS1, and σ1 � σ0 such that σ1 gives an instance of sS1 with cS1 equivalent
to σ1(sP1) and sS0 −→s sS1 where σ1 gives an instance of sS1.

3.2 The Structure of Soft Agent Rewriting

In soft agents, a system state consists of a set of agent terms together with a
unique environment term. Abstractly an agent term has the form A(id,attrs)
where id is the agent identifier, and attrs is a set of named attributes including
the agents local knowledge base (local KB), and a set of pending tasks and
actions each labeled by the time until ready for execution. An environment term
has the form E(ekb) where ekb is a knowledge base representing the physical
state of the system and contextual information such as location of features or
bounds on location.

There are two rewrite rules: doTask and timeStep. The doTask rule has the
form

crl[doTask]: A(id,attrs) E(ekb) => A(id,attrs’) E(ekb) if taskConds

where taskConds has clauses for reading sensors from the environment, evalu-
ating possible actions, and updating the local KB, pending tasks, and actions.
The timeStep rule has the form
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crl[timeStep]: A(id1,attrs1) ... A(idk,attrsk) E(ekb) =>

A(id1,attrs1’) ... A(idk,attrsk’) E(ekb’) if stepConds

where stepConds has a clause to execute ready actions (with time delay 0) and
update time-dependent symbols to capture the passing of time. There are also
clauses to update time parameters (clocks, delays...), transmit messages, and
share knowledge amongst the agents. Executing actions affects parameters that
control how the physical state evolves (change of acceleration, direction, on/off
switches . . . ). Passing time lets the physical model run for the specified interval
of time, updating the physical state (position, energy level, . . . ) according to
laws parameterized by the control settings.

3.3 Symbolic Soft Agent Rewriting

To enable symbolic execution of soft agent specifications we abstract system
states as terms of the form SA[uu] SE[vv] where SA is a pattern with symbols
uu whose structure captures the state aspects that are not changed during exe-
cution, for example the number of agents, their ids, attribute names, and any
persistent structure in attribute values. Similarly, SE[vv] is a pattern, with sym-
bols vv capturing the persistent structure in the environment knowledge base.
uu and vv are disjoint lists of symbols. For example, in a platooning scenario,
symbols in vv would represent values including the position, acceleration, and
velocity of each vehicle. Mathematically, we represent the symbolic constraint
as a separate state component. In practice, we represent it as an element of the
environment knowledge base.

Intuitively, the execution of a logical scenario constructs new constraints con-
taining fresh symbols representing new values of the system’s physical attributes.
As for (concrete) soft agents, there are two rewrite rules for symbolic soft agents.
At the framework level, the symbolic rules are obtained by replacing the clauses
in the rule conditions of concrete rules by symbolic versions that refer to sym-
bolic versions of the functions involved. It is the job of the specifier to define
these symbolic functions and their symbolic evaluation equations. In the vehicle
platooning case, symbolic functions were obtained by systematically transform-
ing the original concrete versions. In the next section we give examples of key
elements of the symbolic vehicle platooning system.

4 Vehicle Specifications

This section details how one can specify logical scenarios including safety prop-
erties by specifying the vehicle platooning example described in Sect. 2. While
the specifications below are declarative, i.e., closely resemble textbook formu-
las, we do assume that the reader is familiar with the Maude syntax [4]. Our
starting point is a concrete specification of the vehicle platooning described
in [5]. It contains several features, such as vehicle controllers and communica-
tion protocol specifications, which have been ported to the symbolic machinery



Automating Safety Proofs About Cyber-Physical Systems 219

described below. The complete code can be found at https://github.com/SRI-
CSL/VCPublic.git in the folder symbolic-platooning. To execute this code
you will need the Maude integration with Z3 which can be found at [14].

4.1 Basic Symbolic Sorts

RealSym is the sort of real values. It contains concrete values, i.e., real numbers,
or symbols of the form vv(i) or vv(i,str) where i is a Nat uniquely identifying
a symbol and str is a string describing the intuitive meaning of the symbol, used
for improved readability. The term mkNuVar(i,id,str) evaluates to a (fresh)
symbol with identifiers id,str, where id is an agent identifier and str is a string
with a short description of the fresh symbol.

Example 1. The following symbols represent the initial conditions for the fol-
lower ag1, namely, its position, speed, maximum acceleration, maximum decel-
eration, and initial acceleration.

eq v1posx = vv(2,"ag1-positionX") . eq v1posy = vv(3,"ag1-positionY") .

eq v1vel = vv(5,"ag1-speed") . eq maxacc1 = vv(9,"ag1-maxAcc") .

eq maxdec1 = vv(10,"ag1-maxDec") . eq acc1 = vv(32,"ag1-acc") .

SymTerm is the sort of symbolic terms containing arithmetic expressions con-
structed inductively using basic arithmetic operators (e.g., addition, subtraction,
division, multiplication) and elements of RealSym. They are used to specify con-
straints of sort Boolean involving symbols.

Example 2. The following constraint using the symbols in Example 1 specifies
that ag1’s acceleration is bounded by the maximum acceleration and decelera-
tion: (acc1 <= maxacc1) and (acc1 >= maxdec1).

4.2 Knowledge Specifications

Cyber-physical systems reason using knowledge about their locations, speeds,
direction, and accelerations and of the surrounding objects. Such knowledge is
represented using a sort Info. Knowledge base elements are of the form info @
t where t is a logical time, i.e., the number of time steps since the beginning.

Vehicle locations are two-dimensional, speeds are real values, and directions
are vectors specified using two locations and a magnitude:

op loc : SymTerm SymTerm -> Loc .

op speed : Id RealSym -> Info .

op dir : Id Loc Loc SymTerm -> Info .

Example 3. The agent ag1’s initial knowledge base, that is, at logical tick 0,
contains the following terms, specifying its initial position, speed, acceleration
and direction:

(at(ag1,loc(v1posx,v1posy)) @ 0) (speed(ag1,v1vel) @ 0)

(accel(ag1,acc1) @ 0)

(dir(v(1),loc(v1ix,v1iy),loc(v1tx,v1ty),v1mag) @ 0)

https://github.com/SRI- CSL/VCPublic.git
https://github.com/SRI- CSL/VCPublic.git
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Based on the above notation, we can specify symbolically typical definitions,
such as the distance between two locations:

op ldist : Nat Loc Loc -> NatSymTermBoolean .

eq ldist(i,loc(x0,y0),loc(x1,y1))

= {s(i),vv(i,"dist"), (vv(i,"dist") >= 0/1) and

vv(i,"dist") * vv(i,"dist") === ((y1 - y0) * (y1 - y0) +

(x1 - x0) * (x1 - x0)) } .

This definition creates a fresh symbol, vv(i,"dist") together with the con-
straint specifying the Euclidean distance. Notice that we need to specify that
the distance is a non-negative value. Similar specifications can be made for other
distance measures, such as, Manhattan distance.

The following operator specifies how an agent’s location, loc(x,y), is updated
to loc(nuVarX,nuVarY) given an (average) speed, spd, and a direction.

op upVLoc : Nat Id Loc SymTerm Info -> NatLocBoolean .

ceq upVLoc(i,id,loc(x,y),spd,dir(id,loc(x0,y0),loc(x1,y1),mag))

= {i + 2,loc(nuVarX,nuVarY),cond}

if nuVarX := mkNuVar(i,id,"-positionX")

/\ nuVarY := mkNuVar(i + 1,id,"-positionY")

/\ cond1 := (x0 === x1) and (not (y0 === y1)) and

(nuVarX === x) and (nuVarY === y + spd)

/\ cond2 := (not (x0 === x1)) and (y0 === y1) and

(nuVarX === x + spd) and (nuVarY === y)

/\ cond3 := (not (x0 === x1)) and (not (y0 === y1)) and

(nuVarX === (x + spd * (x1 - x0) / mag)) and

(nuVarY === (y + spd * (y1 - y0) / mag))

/\ cond := cond1 or cond2 or cond3 .

We made some design choices in this definition. The first design choice is to split
it into three different cases. The first case (cond1) is when the agent is moving
vertically, the second case (cond2) horizontally, and the third case (cond3) when
it is moving in the quadrant. In this way we help the constraint solver to avoid
to solve the harder non-linear constraint involved in the third case whenever the
agent is moving only along the x-axis and only along the y-axis. The second
design choice was to include the magnitude in the definition of dir which may
seem redundant as it can be specified from the two associated locations. However,
by doing so, we avoid the need to generate fresh symbols and new constraints
whenever the magnitude is needed as in the third case of upVLoc.

Finally, we also capture symbolically the fact that the physical system is
continuous while the cyber part of the system works in logical ticks. The size
of the tick is specified by the term tickSize(dt), where dt is symbol denoting
the size of the tick. Typically it is fixed during the whole execution by using a
constraints, e.g., dt === 1/10, specifying a tick duration of 100ms. We assume
here for simplicity that all agents use the same tick duration. However, agents
with different tick duration can also be specified. When the soft agent machinery
updates the agent’s positions using upVLoc it scales accordingly the speed to the
tick size by multiplying the speed with dt.
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4.3 Soft-Constraint Controller

Agents decide which action to take based on their local knowledge base, which
is updated by reading their sensors, and taking into account different concerns,
such as safety and efficiency. For vehicle platooning, as described in detail in [5],
there are two main concerns, safety, i.e., maintaining a safe distance between
vehicles, and fuel-efficiency, i.e., maintaining a distance between vehicles that is
not too great.

The controller is specified in a similar way to the knowledge functions
described above by using existing symbols, creating new symbols, and using
contraints to determine its possible values.

The following equation specifies the controller evaluation to rank the possible
actions that the vehicle can take from a safety perspective. In particular, it takes
as input i, for creating fresh symbols, vmin,vmax, respectively, the minimum
and maximum speeds that the vehicle is allowed to use, vminD,vmaxD, the min-
imum and maximum desired speeds according to the safety parameters (gapsafe,
gapsafer), and the constraints cond on the existing symbols. It then returns a
range of speeds that are safe specified by the interval between the fresh sym-
bols vv(i)and vv(i + 1). However, the concrete values for vv(i),vv(i + 1)
depend on the relation between the possible speeds (vmin,vmax) and the desired
speeds vminD,vmaxD as detailed by the constraints cond11,cond21,...,cond61.

ceq symValSpeedRed(i,str,vmin,vmax,vminD,vmaxD,cond) =

{i + 2, [vv(i),vv(i + 1),nuCond and cond]}

if cond1 := vmin >= vmaxD

/\ cond11 := vv(i) === vmin and

vv(i + 1) === ((vmin + vmax) / 2/1) and cond1

/\ cond2 := vmax <= vminD

/\ cond21 := vv(i) === ((vmin + vmax) / 2/1)

and vv(i + 1) === vmax and cond2

...

/\ cond6 := vmin >= vminD and vmax < vmaxD

/\ cond61 := vv(i) === vmin and vv(i + 1) === max and cond6

/\ nuCond := (cond11 or cond21 or cond31 or cond41 or cond51 or cond61) .

In the definition above, the effort of determining which condition applies is del-
egated to the constraint solver. As we will investigate in Sect. 5, this will lead to
great performance penalties.

An alternative way to expressing the same controller is to return six possi-
bilities as specified by the following equation, rather than the single disjunction
nuCond:

ceq symValSpeedRed-Split(i,str,vmin,vmax,vminD,vmaxD,cond) =

{i + 2, [vv(i),vv(i + 1),cond11 and cond]}

{i + 2, [vv(i),vv(i + 1),cond21 and cond]}

...

{i + 2, [vv(i),vv(i + 1),cond61 and cond]}

if cond1 := vmin >= vmaxD

...

/\ cond61 := vv(i) === vmin and vv(i + 1) === vmax and cond6.



222 V. Nigam and C. Talcott

With this new definition the choice of which condition is applicable is left to the
search engine, i.e., Maude.

A similar choice occurs when specifying how the time advancement affects
agent’s speeds. Several cases occur due to the fact that logical scenarios assume
that vehicle’s speeds are bounded. For example, depending on the tick duration,
current speed and maximum acceleration, an agent’s speed may reach the max-
imum speed or not before completing a logical tick. For analyzing the impact of
delegating such enumeration of cases to the SMT-solver or to the search engine,
we implemented two versions of time advancement: timestep that returns one
output with a constraint with a disjunct for each case, as in symValSpeedRed;
and timestep-split that returns several outputs, one for each possible case as
symValSpeedRed-split.

4.4 System Configurations

As described in Sect. 3, a system configuration of sort ASystem is a collection of
agent configurations and an environment configuration.

An agent configuration has the form [id : class | attrs ], where id is
the agent’s unique identifier, class is its class, e.g., vehicle, and attrs are its
attributes which include its local knowledge base written lkb : kb, where lkb
is a label and kb is the local knowledge base contents.

An environment configuration has the form [eId | ekb] where ekb is the
environment knowledge base which specifies state of the world. The environment
knowledge base contains the knowledge item constraints(i,cond) where i is
the current index of fresh variables, and cond is the constraints (accumulated)
on the existing symbols.

Example 4. The initial configuration of a platooning scenario described in Sect. 2
is as follows:

asysI = { [eid | (kb constraint(i,condI))]

[v(0) : veh | lkb : kb0 ] [v(1) : veh | lkb : kb1 ] }

where kb is the environment knowledge base specifying among other things, the
vehicles’s actual locations and speeds, while kb0 and kb1 are the vehicle v(0)
and v(1)’s local knowledge bases. The constraint condI contains the constraints
on these values as per the logical scenario. It contains for example constraints
on the acceleration of vehicles (see Example 2) and the following constraints:

(v1vel >= vellb1) and (v1vel <= velub1) and (v0posy > v1posy)

which specify that the follower vehicle’s speed is bound within the bounds vellb1
and velub1. Moreover, the following vehicle v(1) is behind the leader v(0).

Notice that such a symbolic system configuration may correspond to infinitely
many concrete system configuration, i.e., concrete instances of the specified pla-
tooning scenario.
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4.5 Safety Properties

We are interested in generating proofs regarding the safety of logical scenarios,
such as the one specified in Example 4. The specification of safety property is
formalized using the operator:

op mkSPCond : SP ASystem -> SPSpec .

This function takes a property (an identifier in SP) and a system configuration,
and returns a safety property of sort SPSpec of the form:

op {_,_,_,_} : Nat SymTerms Boolean Boolean -> SPSpec .

The first element is the new symbol index, the second is the new (auxiliary) sym-
bols created for specifying the property, which are then constrained by the third
element. The last element specifies the safety property based on the auxiliary
symbols and the previously existing symbols in the given system configuration.

For example, the first safety property in Eq 1b is specified as follows:

ceq mkSPCond(saferSP, { conf env }) = {k + 1,dis,cond00,nucond}

if [id0 | kb] := env

/\ (atloc(v(0),l0) @ t0) (atloc(v(1),l1) @ t1)

(speed(v(0),v0) @ t2) (speed(v(1),v1) @ t3)

(gapSafety(v(1),gapSafer,gapSafe)) (constraint(n,cond)) kb1 := kb

/\ {k,dis,cond00} := ldist(n,l1,l0)

/\ nucond := (dis >= ((1/1 + gapSafer) * v1) - v0) .

Notice the use of the function ldist that creates the auxiliary fresh symbol dis.
Using mkSPCond, we specify an operator (definition elided)

op enforceSP : SP ASystem -> ASystem.

For example, enforce(saferSP,asysI) returns a configuration in which the
conditions (cond00 and nucond from mkSPCond) are added to the set of con-
straints. This means that the resulting configuration will only have instances
asysI that satisfy the saferSP. The term isSatModel(enforce(saferSP,
asysI)) calls the SMT-Solver and returns an assignment for asysI symbols:

ag0-positionX |-> (0/1).Real, ag0-positionY |-> (1/1).Real

ag1-positionX |-> (0/1).Real, ag1-positionY |-> (0/1).Real,

ag0-speed |-> (7/1).Real, ag1-speed |-> (2/1).Real,

ag1-safer |-> (3/1).Real

This state satisfies the saferSP property for a gapsafer of value 3.

4.6 Verifying Logical Scenarios

We can now use Rewriting Modulo SMT [20] to verify and effectively generate
safety proofs of the specifications above in an automated fashion. Consider the
following search:
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search enforceSP(safeSP,setStopTime(asysI,2)) =>*
asys such that checkSP(unsafeSP,asys) .

No solution. states: 63 rewrites: 394686 in 20134ms

It attempts to find any instance of system configuration asys that satisfies
unsafeSP (see Eq. 1c) starting from any instance of asysI that satisfies property
safeSP. Moreover, the term setStopTime(asysI,2) specifies that the search is
bound to two logical ticks, i.e., search stops after two tick rules. The search
engine combined with the SMT-solver can generate proofs that no instance of
reachable states are unsafe. However, as shown Sect. 5, the complexity of the
problem greatly increases when considering larger logical tick bounds.

5 Trade-Offs Between Rewriting and Constraint Solving

The verification of logical scenario involves rewriting and constraint solving.
Rewriting enumerates possible system states while the constraint solver attempts
to check the satisfiability of constraints. As demonstrated in Sect. 4.3, how much
of verification is delegated to rewriting and how much to the constraint solver can
be adjusted by leaving the non-determinism in the constraints, e.g., by placing
disjunctions in the constraints, or to the rewriting, e.g., returning instead for
each disjunct an output, a rewriting choice.

Delegating verification to the rewriting engine means that the search tree is
larger leading to more calls to the SMT-solver, but each call involves simpler
constraints to solve, i.e., with less disjunctions and therefore less cases to con-
sider. Delegating verification to the constraint solver, on the other hand, means
a smaller search space traversed by the rewriting engine leading to less calls to
the constraint solver, but with more complex constraints.

To demonstrate this, we considered three cases according to the specifications
described in Sect. 4.3:

– More SMT Less Search: This case uses symValSpeedRed for the controller
and timestep for the time step evolution. This means that all cases are
specified as disjunctions in the constraint that will need to be solved by the
solver.

– Less SMT More Search: This case uses symValSpeedRed-split for the
controller and timestep-split for the time step evolution. This means that
all cases are specified as different outputs that need to be traversed by the
rewriting engine.

– Balanced: This case uses symValSpeedRed for the controller and the speci-
fication timestep-split for the time step evolution. This means that some
cases are specified as constraints and others as outputs.

To evaluate the different cases, we executed the command:

search enforceSP(safeSP,setStopTime(asysI,Bound)) =>! asys
such that isSat(asys) .

which enumerates all the reachable symbolic configurations that are satisfi-
able exactly in Bound time ticks, i.e., number of applications of the timeStep
rule.
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Table 1. Experiments with the Platooning Logical Scenario Verification. DNF denotes
that the experiment was aborted after 5 h. The experiment results are expressed as
states/time, where states is the total number of states in the search tree and time is
the time needed to traverse all states. The experiments were carried out in a 2.2 GHz
6-Core Intel Core i7 machine with 16 GB memory.

Time Bound Pruning More SMT Less Search Balanced Less SMT More Search

2

No 19/20.4s 71/2.5s 1427/29.7s

Tick 19/32.4s 63/8.3s 497/47.4s

All 19/56.0s 63/11.6s 296/52.7s

3

No DNF DNF 42827/3054s

Tick DNF DNF 2484/3412s

All DNF DNF 1976/5238s

A second dimension that we investigated was on the way we can prune the
search tree. We considered the following cases:

– All Pruning: At each rewrite rule for doTask, which evaluates an agent’s
actions, and tick, which applies the agent’s actions, we placed a check
whether the resulting configuration is satisfiable. This means that the search
tree has only satisfiable configurations with the price of calling the SMT-
Solver at each step.

– No Pruning: As opposed to the All Pruning case, rewrites doTask nor
tick did not check the satisfiability of the resulting configuration. The check
was made only at the configuration resulting from applying the number to
ticks specified by the bound. This means that the search tree is not pruned,
and therefore, more states are traversed.

– Tick Pruning: The third case does a check on the configuration resulting
from timeStep rewrites, but not on doTask. In this way, we still prune the
search tree without calling the SMT-solver at each rewriting step.

Table 1 summarizes our experiments with these scenarios using bounds of two
and three cs. The best case was not pruning the tree and delegating verification
to the search tree when considering greater time bounds. The balanced case had
better results when considering lower time bounds.

Interestingly, pruning the tree, while had a great effect on number of states,
it did not improve the time required to traverse the tree. We believe that this can
be further improved if the search engine uses the SMT-solver in a more clever
way, in particular, using its incremental solving features. This would allow the
solver to re-use work done in previous calls.

6 Related Work

Existing work for the verification of autonomous cyber-physical systems can be
divided into three different approaches.
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The first approach [9] is to use simulation-based methods that run a suffi-
ciently large number of simulations using simulators [8]. A main advantage of
this approach is that it can be used to verify the actual artifacts, e.g., machine
learning artifacts, used in applications and rely on vehicle simulators to generate
very complicated and high-fidelity scenarios. However, as already mentioned, as
each simulation is run using a concrete instance of a logical scenario, a limitation
of this approach is that possibly a large number of simulations need to be gener-
ated for each logical scenario. Our work complements this work by enabling the
specification and verification of vehicle behavior using symbolic methods cov-
ering all instances of a logical senario, and enables early verification of designs
before expensive artifacts are built.

The second approach is to use safe controllers [1,22] that are guaranteed
to generate safe trajectories under the assumption that the remaining agents
behave correctly. A limitation of this type of work is that it focuses only on
individual functions, typically control algorithms without taking into account
other functions needed for AVs, e.g., sensing, knowledge bases, and communica-
tion channels. As shown in [7], safe controllers can be integrated with advanced
(high-performance, but not safe) controllers as fall-back options whenever safety
assurance is low. In particular, a formal framework for Run Time Assurance
(RTA) is presented, and conditions are given that, if satisfied by a safe con-
troller and associated monitor, guarantee that integration with an untrusted
control maintains safe operation. The paper leaves open methods to verify that
a controller satisfies its RTA requirements. Our work has been greatly inspired
by [7] and the result is complimentary. Symbolic rewriting combined with SMT
solving provides automated methods to verify correctness of time sampling mech-
anisms and safety requirements.

The third approach [16,18,25], similar to the non-symbolic Soft Agents, are
formal frameworks that enable the specification and verification of other func-
tions, besides trajectory planning [5,10]. However, as with the first approach, the
evidence that can be produced by these frameworks is based on running simu-
lations or model checking concrete scenario instances. Therefore, it also suffers
the limitation that a large number of simulations need to be carried out, or a
large sample of senario instances must be model checked.

The Soft Agent execution strategy is based on the Real Time Maude max-
imal time elapse (MTE) execution strategy for real time theories [18]. In [17]
two conditions for soundness and completeness of model checking Real Time
Maude specifications based on the MTE execution strategy are given. The first
condition, time robustness, is a property of the rewrite theory. It requires that
timesteps of any duration are allowed, and a timestep can be subdivided without
changing the end result. The second condition requires that atomic propositions
are stable with respect to time: at most one change during a time step. These
conditions hold for a wide range of Real Time Maude specifications, timing
of protocols, network performance, or discrete events used for defining system
behavior of, e.g., manufacturing plants. SA specifications are concerned with
physical properties of a system such as bounds on distance, change of position,
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use of resources to express both safety and goal satisfaction properties. SA spec-
ifications are time robust, but the properties of interest are generally not stable
with respect to time. Thus, we can not directly use the Real Time Maude results.
Work is in progress to define an analog to stability for system properties that
evolve over time.

A formal mathematical foundation for symbolic rewriting modulo SMT is
presented in [20]. Our work is essentially a mapping of these ideas to be exe-
cutable in Maude with an integrated SMT solver. The soft agents doTask rule
is not technically topmost, but could easily be modified to be topmost without
changing any behavior in our examples. Also, the theory T has non-axiom equa-
tions that are not in T0 These equations define functions is a straight forward
way, so they do not cause a problem for our symbolic rewriting but may challenge
narrowing. Our logical scenarios are ground terms from Maude’s perspective and
correspond to terms whose only variables have builtin sorts (in T0). On the other
hand, search starts with terms that possibly have non builtin variables in [20].
Generating new symbols to update values plays a similar role to the fresh sub-
stitution used in the symbolic rewrite relation of [20]. Important future work
is to better understand criteria for allowing equations over non-builtin sorts, to
make symbolic rewriting modulo SMT more generally applicable.

A notion of guarded term is introduced in [2] as a method to reduce the
search state space in symbolic rewriting modulo SMT. A guarded term is a
pair consisting of a term and a constraint, or the disjunction of a set of guarded
terms. The paper develops the formal theory of rewriting with guarded terms and
presents experiments based on the CASH protocol showing state space reduction
for various forms of guard. Although the paper motivates guards by a need to also
reduce complexity of constraints sent to the SMT solver, no results on constraint
size are reported. The results in the present paper seem to suggest that not only
the size of state space matters for automation, but also the size of constraints
that are sent to the SMT-Solver. It will be interesting to see if guards can be used
to control the tradeoffs between search space size and constraint size explored
in the present paper.

7 Conclusions

This paper proposes an extension of Soft Agents frameworks with Rewriting
Modulo SMT to enable the automated generation of safety proofs of CPS. We
demonstrate its expressiveness with a vehicle platoon scenario which is a com-
mon feature of autonomous vehicles. We carry out a collection of experiments
demonstrating that delagating verification to rewriting has a positive impact in
verification performance.

We are planning to use this framework in several directions that comple-
ment related work. We are currently automating the verification conditions for
RTA [7]. We also believe that our framework is applicable to problems other
than vehicle safety, for example it could be used to enable symbolic security
verification by extending our previous work [5].
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Inspired by the presentation at WRLA 2022 on the Python bindings for
Maude [21], we adapted our implementation to use the Python bindings instead
of MaudeSE [14]. This enables full access to SMT-solver interface, including to
new SMT-solvers such as CVC5 [3]. In the future, we plan to implement Python
libraries based on these Python bindings for Maude to improve usability of the
Soft Agents framework and quick integration to other tools/methods.

Acknowledgments. Talcott was partially supported by the U. S. Office of Naval
Research under award numbers N00014-15–1-2202 and N00014-20–1-2644, and NRL
grant N0017317-1-G002.
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20. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Logical Algebraic Methods Program. 86(1), 269–297 (2017)

21. Rubio, R.: Maude as a library: an efficient all-purpose programming interface. In:
Rewriting Logic and its Applications (WRLA) (2022)

22. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars. CoRR, abs/1708.06374 (2017)

23. Sifakis, J.: Autonomous systems - an architectural characterization. CoRR,
abs/1811.10277 (2018)

24. Talcott, C., Nigam, V., Arbab, F., Kappé, T.: Formal specification and analysis of
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Abstract. Session types are a well-established approach to communica-
tion correctness in message-passing programs. We present an executable
specification of the operational semantics of a session-typed π-calculus,
implemented in the Maude system. We also develop an executable specifi-
cation of its associated algorithmic type checking, and describe how both
specifications can be integrated. We further explore how our executable
specification enables us to detect well-typed but deadlocked processes by
leveraging reachability and model checking tools in Maude. Our develop-
ments define a promising new approach to the (semi)automated analysis
of communication correctness in message-passing concurrency.

1 Introduction

This paper presents an executable rewriting semantics for a π-calculus equipped
with session types. Widely known as the paradigmatic calculus of interaction, the
π-calculus [5,9] offers a rigorous platform for reasoning about message-passing
concurrency. Session types are arguably the most prominent representative of
behavioral type systems [3], which can statically ensure that processes respect
their ascribed interaction protocols and never exhibit errors and mismatches.

The integration of (variants of) the π-calculus with different formulations of
session types has received much attention from foundational and applied perspec-
tives. As a result, our understanding about (abstract) communicating processes
and their typing disciplines steadily reaches maturity. Despite this progress, rig-
orous connections with more concrete representation models fall short. In par-
ticular, the study of session-typed π-calculi within frameworks and systems like
Maude [2] seems to remain unexplored. This gap is an opportunity to investi-
gate the formal systems underlying session-typed π-calculi (reduction semantics
and type systems) from a fresh yet rigorous perspective, taking advantage of the
concrete representation given by executable semantics in Maude.

Looking at session-typed π-calculi from the perspective of Maude is insight-
ful, for several reasons. First, Maude enables the systematic validation of such
formal systems and their results, improving over pen-and-paper developments.
Second, as there is not a canonical session-typed π-calculus, but actually many
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K. Bae (Ed.): WRLA 2022, LNCS 13252, pp. 230–250, 2022.
https://doi.org/10.1007/978-3-031-12441-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12441-9_12&domain=pdf
http://orcid.org/0000-0002-6488-8649
http://orcid.org/0000-0002-1452-6180
https://doi.org/10.1007/978-3-031-12441-9_12


Executable Semantics for Session-Based Concurrency in Maude 231

different formulations (with varying features and properties), an implementation
in Maude could provide a concrete platform for uniformly representing them all.
Third, resorting to Maude as a host representation framework for session-typed
π-calculi could help in addressing known limitations of static type checking for
deadlock detection, leveraging tools already available in Maude.

This paper presents our work on pursuing these three directions. We adopt
the session-typed π-calculus developed by Vasconcelos [13] as the basis for our
implementation in Maude. For this typed language, dubbed sπ, we first imple-
ment its (untyped) reduction semantics as a rewriting semantics, essentially
extending prior work on representing the π-calculus in Maude (see below). Then,
we implement its associated algorithmic type system, also given in [13]. Well-
typedness in [13] ensures fidelity (i.e., well-typed processes respect at runtime
their ascribed protocols) but does not rule out deadlocks and other kinds of insid-
ious circular dependencies. To address this, we leverage reachability and model
checking in Maude. Our Maude developments are publicly available online.1

To our knowledge, we are the first to represent session-typed π-calculi using
Maude. Prior works have used rewriting logic to investigate the operational
semantics for variants of the π-calculus. Viry [14,15] defines the reduction seman-
tics of a synchronous π-calculus as a rewrite theory, which is implemented in
ELAN. The work of Thati et al. [12] considers an untyped, asynchronous π-
calculus, whose labeled transition semantics is implemented as a rewrite the-
ory, which is used to formalize an associated may-testing preorder. The work of
Pitsiladis and Stefaneas [7] concerns a typed process calculus but in a different
context, in which types are used to enforce privacy properties. Indeed, such work
gives a Maude implementation of the labeled transition semantics of a privacy-
oriented variant of the π-calculus and a Maude implementation of its associated
type system, which is implemented as a membership equational theory.

The rest of this paper is organized as follows. Next, Sect. 2 summarizes the
syntax and semantics of sπ. Section 3 describes the definition of our rewriting
semantics for sπ in Maude, whereas Sect. 4 presents the rewriting implementa-
tion of the algorithmic type checking. Section 5 presents our developments on
deadlock detection. Section 6 closes with some concluding remarks. An extended
version, available online, contains additional material [8].

2 The Typed Process Model

The typed process calculus sπ, formalized by Vasconcelos [13], is a variant of the
synchronous π-calculus with constructs for session-based concurrency. Here we
summarize its syntax and semantics.

The calculus sπ relies on a base set of variables, ranged over by x, y, . . .. Vari-
ables denote channels (or names). Processes interact to exchange values, which
can be variables or booleans. Variables can be seen as consisting of (dual) end-
points on which interaction takes place. Rather than non-deterministic choices

1 See https://gitlab.com/calrare1/session-types.

https://gitlab.com/calrare1/session-types


232 C. A. Ramı́rez Restrepo and J. A. Pérez

P | Q ≡ Q | P P | 0 ≡ P

P | (Q | R) ≡ (P | Q) | R (νxy) 0 ≡ 0

(νxy)(νwz)P ≡ (νwz)(νxy)P (νxy)P | Q ≡ (νxy)(P | Q) If x, y /∈ fv(Q)

if true then P1 else P2 P1 if false then P1 else P2 P2

Fig. 1. Structural congruence Rules for sπ

among prefixed processes, there are two complementary operators: one for offer-
ing a finite set of alternatives (called branching) and one for choosing one of
such alternatives (selection). More formally, the syntax of values, qualifiers, and
processes is presented below:

v :: = x | true | false q :: = un | lin

P :: = 0 | xv.P | q x(y).P | P1 | P2 | (νxy)P |
if v then P1 else P2 | x � {li : Pi}i∈I | x � l.P

The inactive process is denoted as 0. The output process xv.P sends the value
v along x and continues as P . The process q x(y).P denotes an input action on
x, which prefixes P . The qualifier q is used for inputs, which can be linear (to
be executed exactly once) or shared. The process un x(y).P denotes a persistent
input action, which corresponds to (input-guarded) replication in the π-calculus.
The parallel composition P1 | P2 denotes the concurrent execution of P1 and P2.
The process (νxy)P declares the scope of co-variables x and y to be P . These
co-variables are intended to be the complementary ends of a communication
channel. Given a boolean v, the process if v then P1 else P2 continues as P1 if v
is true; otherwise it continues as P2. The branching process x � {li : Pi}i∈I offers
multiple alternative branches P1, P2, . . . (each with a label l1, l2, . . .), along x; it
is meant to interact with a selection process x� l.P , which uses x to indicate the
choice of the alternative labeled l and then continues as P .

As usual, q x(y).P binds variable y in P and (νxy)P binds co-variables
x, y in P . The sets of free and bound variables of a process P , denoted fv(P )
and bv(P ), are defined accordingly. Process P [v/y] denotes the capture-avoiding
substitution of variable y by value v in process P .

The operational semantics for sπ is given as a reduction semantics, which,
as customary, relies on a structural congruence relation, the smallest congru-
ence relation on processes that satisfy the axioms in Fig. 1. Structural congru-
ence includes the usual axioms for inaction and parallel composition as well as
adapted axioms for scope restriction, scope extrusion, and conditionals. Armed
with structural congruence, the rules of the reduction semantics are presented in
Fig. 2. Rules [R-LinCom] and [R-UnCom] induce different patterns for process
communication, depending on the qualifier of their corresponding input action.
Indeed, processes xv.P and q y(z).Q can synchronize if x and y are co-variables.
This is only possible if both processes are underneath a scope restriction (νxy).
When this occurs, processes xv.P and q y(z).Q continue respectively as P and
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(νxy)(xv.P | lin y(z).Q | R) (νxy)(P | Q[v/z] | R)
[R-LinCom]

(νxy)(xv.P | uny(z).Q | R) (νxy)(P | Q[v/z] | un y(z).Q | R)
[R-UnCom]

j ∈ I

(νxy)( j .P | {li : Qi}i∈I | R) (νxy)(P | Qj | R)
[R-Case]

P P

P | Q P | Q

P P

(νxy)P (νxy)P
[R-Par] [R-Res]

P ≡ P P Q Q ≡ Q

P Q
[R-Struct]

Fig. 2. Reduction semantics for sπ

Q[v/z]. When q = un then process q y(z).Q remains (Rule [R-UnCom]); other-
wise, process q y(z).Q disappears (Rule [R-LinCom]). Rule [R-Case] stands for
the case synchronization: processes x�lj .P and y�{li : Qi}i∈I can synchronize if
they are underneath a scope restriction (νxy). Process x�lj .P reduces to process
P and process y � {li : Qi}i∈I reduces to process Qj . Rules for parallel compo-
sition, scope restriction, and structurally congruent processes (Rules [R-Par],
[R-Res], [R-Struct]) are as usual.

As an example, consider the processes:

P1 = un y1(t).tfalse.0 P2 = lin y1(w).wtrue.0 P3 = x1x2.y2(z).az.0

P = (νx1y1)(νx2y2)(P1 | P2 | P3)

Starting from P , there are two possible sequences of reductions depending
on the processes involved in the initial synchronization in the co-variables x1,
y1. If the synchronization involves P1 and P3 then we have:

P −→−→ (νx1y1)(νx2y2)(P1 | P2 | afalse.0)

On the other hand, if P2 and P3 synchronize then we have:

P −→−→ (νx1y1)(νx2y2)(P1 | atrue.0)

The standard form of a process, defined in [13], will be crucial for the exe-
cutable specification of the reduction semantics. We say P is in standard form if it
matches the pattern expression (νx1y1)(νx2y2) . . . (νxnyn)(P1 | P2 | . . . | Pk),
where each Pi is a process of the form xv.Q, qx(y).Q, x � l.Q or �{li : Qi}i∈I .
Every process is structurally congruent to a process in standard form.

3 Rewriting Semantics for sπ

Syntax. Our rewriting semantics for sπ adapts the one in [12], which is defined
for an untyped π-calculus without sessions. There is a direct correspondence
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between the syntactic categories (values, variables, qualifiers, and terms) and
Maude sorts (Value, Chan, Qualifier, and Trm, respectively). We also have
some auxiliary sorts such as Guard, Choice, and Choiceset.

sorts Value Chan Qualifier Trm Guard Choice Choiceset .

subsort Choice < Choiceset .

subsort Chan < Value .

op _{_} : Qid Nat -> Chan [prec 1] .

ops lin un : -> Qualifier [ctor] .

ops True False : -> Value [ctor] .

op __(_) : Qualifier Chan Qid -> Guard [ctor prec 5] .

op _<_> : Chan Value -> Guard [ctor prec 6] .

op nil : -> Trm [ctor] .

op new[__]_ : Qid Qid Trm -> Trm [ctor prec 10] .

op _|_ : Trm Trm -> Trm [ctor assoc comm prec 12 id: nil] .

op if_then_else_fi : Value Trm Trm -> Trm [ctor prec 8] .

op _ << _._ : Chan Qid Trm -> Trm [ctor prec 15] .

op _ >> {_} : Chan Choiceset -> Trm [ctor prec 17] .

op _._ : Guard Trm -> Trm [ctor prec 7] .

op _:_ : Qid Trm -> Choice .

op empty : -> Choiceset [ctor] .

op __ : Choiceset Choiceset -> Choiceset [ctor assoc comm id: empty] .

Following the syntax in Sect. 2, values can be variables or booleans. We rep-
resent booleans as the constructors True and False whereas we distinguish vari-
ables (sort Chan) as values through the subsort relation. The only constructor
for variables _{_} takes a Qid and a natural number. Each production rule for
processes is represented using a constructor, as expected. Notice that the con-
structor for input guards __(_) is preceded by a qualifier. Process 0 is denoted
as nil and a single guarded term is represented by the constructor _._. The
constructor for scope restriction new[__]_ uses two instances of Qid, since it
declares a pair of co-variables. The constructor for conditionals is parametric on
an instance of Value. We add constructors for selection and branching process
terms; their definition is as expected. In particular, the constructor for branching
processes relies on instances of Choiceset, which consists of sets of pairs of Qid
and process terms. We use instances of Qid to represent labels.

Substitutions. As we have seen, the semantics of sπ relies on substitutions of
variables with values. To deal with substitutions in Maude, we follow Thati
et al.’s approach [12] and use Stehr’s CINNI calculus [11], an explicit substitution
calculus, which provides a mechanism to implement α-conversion at the language
level. The idea behind CINNI is to syntactically associate each use of a variable x
to an index, which acts as a counter of the number of binders for x that are found
before it is used. In CINNI, there are three types of substitution operations:
A simple substitution of a variable a for a variable x takes place if the index
of x is 0; the index is decreased by 1 otherwise. A shift substitution over a
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Type Meaning

Simple substitution [a := x] a{0} �→ x [a := x] a{n + 1} �→ a{n}
[a := x] b{m} �→ b{m}

Shift substitution ↑a a{n} �→ a{n + 1} ↑a b{m} �→ b{m}
Lift substitution ⇑a (S) a{0} �→ a{0} ⇑a (S) a{n + 1} �→ ↑a (S a{n})

⇑a (S) b{m} �→ ↑a (S b{m})

increases by 1 the index and a substitution S can be lifted to skip one index.
Any substitution over a variable a has no effect on other variables.

We now present the definition of explicit subtitutions for sπ using an app-
roach similar to the one in [11]. We firts present the definition of the variable
substitutions. We use the sort Subst and the substitution application is per-
formed by the operator __, which takes a substitution and a variable. We define
the three substitutions above as presented there, by means of some equations.
sort Subst .

op [_:=_] : Qid Value -> Subst .

op [shiftup_] : Qid -> Subst .

op [lift__] : Qid Subst -> Subst .

op __ : Subst Chan -> Chan .

eq [ a := v ] a{0} = v .

eq [ a := v ] a{s(n)} = a{n} .

ceq [ a := v ] b{n} = b{n} if a =/= b .

eq [ shiftup a ] a{n} = a{s(n)} .

ceq [ shiftup a ] b{n} = b{n} if a =/= b .

eq [ lift a S ] a{0} = a{0} .

eq [ lift a S ] a{s(n)} = [ shiftup a ] S a{n} .

ceq [ lift a S ] b{n} = [ shiftup a ] S b{n} if a =/= b .

Equipped with these elements, we adapt to the sπ syntax the equations asso-
ciated to the explicit substitutions for the process terms as follows:

op __ : Subst Trm -> Trm [prec 3] .

op subst-aux : Subst Choiceset -> Choiceset .

eq S nil = nil .

eq S (new [x y] P) = new [x y] ([lift x S] [lift y S] P) .

eq S (q a(y) . P ) = q (S a)(y) . ([lift y S] P) .

eq S (a < b > . P) = (S a) < (S b) > . (S P) .

ceq S (a < v > . P) = (S a) < v > . (S P) if v == True or v == False .

ceq S (if v then P else Q fi) = if v then (S P) else (S Q) fi

if v == True or v == False .

eq S (a >> {CH}) = (S a) >> { subst-aux(S, CH) } .

eq S (a << x . P) = (S a) << x . (S P) .

eq S (P | Q) = (S P) | (S Q) .

eq subst-aux(S, empty) = empty .

eq subst-aux(S, (x : P) CH) = (x : (S P)) subst-aux(S, CH) .
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In each equation, we deal with a specific production rule for process terms. In
each process, the substitution S is applied in each variable and each subprocess
as expected. Particularly, a lift substitution is performed over x, y and S to skip
the index 0 and perform the substitution in the remaining indices for the scope
restriction operator. In this way, the substitution S has the expected effect.

Structural Congruence. To represent the rules in Fig. 1, we exploit the Maude
equational attributes assoc, comm, and id to declare the associative, commuta-
tive, and identity axioms for parallel composition, with process nil acting as
its identity. This suffices to cover the rules on the two first lines of Fig. 1. The
remaining rules are explicitly declared as equations below:

eq new[x y] nil = nil .

ceq P | new[x y] Q = new [x y] (Q | [shiftup x] [shiftup y] P)

if P =/= nil /\ Q =/= nil /\ CS := freevars(P) /\

x{0} in CS and y{0} in CS .

eq if True then P else Q fi = P .

eq if False then P else Q fi = Q .

ceq P | new[x y] Q = new [x y] (Q | [shiftup x] P)

if P =/= nil /\ Q =/= nil /\ CS := freevars(P) /\

x{0} in CS and not y{0} in CS .

ceq P | new[x y] Q = new [x y] (Q | [shiftup y] P)

if P =/= nil /\ Q =/= nil /\ CS := freevars(P) /\

not x{0} in CS and y{0} in CS .

ceq P | new[x y] Q = new [x y] (Q | P)

if P =/= nil /\ Q =/= nil /\ CS := freevars(P) /\

not x{0} in CS /\ not y{0} in CS .

Scope extrusion is represented through four equations corresponding to the four
cases in the presence of x, y in the free variables of process P. Function freevars
stands for the Maude implementation for function fv over processes.

Operational Semantics. Combined, the Maude rewriting rules, the equational
attributes, and the explicit equations associated to variables of sort Trm can
appropriately express the reduction semantics of sπ and manipulate terms in
a compositional fashion. A process is reduced to a simpler equivalent form by
virtue of the equational theory; a process is rewritten as long as it satisfies the
structure required for a rule wherever the process is located. As a consequence,
subprocesses are also rewritten and we do not need to explicitly represent the
contextual rules ([R-Par] and [R-Res]).

A process is converted into standard form using the explicit congruence
rules. This way, the scope of every unguarded occurrence of the new operator is
extended to the top level.

Process interaction in sπ can only occur through co-variables and therefore
processes that are involved must be underneath a scope restriction over such
co-variables. Nonetheless, since in the standard form the order of the unguarded
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ocurrences of the new operator is irrelevant, it would be necessary to explicitly
look for the processes that are enabled to interact, which would affect the effi-
ciency of the rewriting specification. To counter this, we include an auxiliary
operator, dubbed new*, which declares a list of pairs of new co-variables, rather
than just a single pair. This is equivalent to using nested new operators, i.e., the
term new* [x1 y1 x2 y2 ... xn yn] P is equivalent to the term

new [x1 y1] new [x2 y2] ... new [xn yn] P.

We declare the constructor for the sort QidSet with the equational attribute
comm to impose that the order among the pairs of new co-variables is not dis-
tinguished. In this way, whatever they are the process to interact, these will be
underneath a scope restriction new* and the interaction will be enabled.

sorts QidPair QidSet . subsort QidPair < QidSet .

op __ : Qid Qid -> QidPair [ctor] .

op mt : -> QidSet [ctor] .

op __ : QidSet QidSet -> QidSet [ctor comm assoc id: mt] .

op new* [_] _ : QidSet Trm -> Trm [ctor] .

Given a process P , let us write �P � to denote its representation in Maude.
A reduction rule P −→ Q can be associated to a rewriting rule l : �P � => �Q�.
The reduction rules can be stated as follows:

crl [FLAT] : P => P’ if P’ := flatten(P) /\ P =/= P’ .

rl [LINCOM] : new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | R .

rl [UNCOM] : new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R .

rl [CASE] : new* [(x y) nl] (x{N} << w . P) |

(y{N} >> { (w : Q) CH }) | R => new* [(x y) nl] P | Q | R .

Rule FLAT normalizes the whole process. In this sense, additional to the implicit
rewriting performed by the equations associated to the congruence rules, the
nested new declarations are stated as a flat declaration new*. We use an auxiliary
operation flatten, which is defined as follows:

op flatten : Trm -> Trm .

eq flatten(new [x y] P) = flatten(new* [x y] P) .

eq flatten(new* [nl] new [x y] P) = flatten(new* [nl x y] P) .

eq flatten(new* [nl] new* [nl’] P) = flatten(new* [nl nl’] P) .

eq flatten(P) = P [owise] .

Rules LINCOM, UNCOM and CASE correspond to the specification of the reduction
rules related to synchronization in the calculus semantics (see Fig. 2). In these
rules, nl stands for the additional co-variables being declared. As expected, Rules
LINCOM, and UNCOM perform a substitution of the variable z for the value v.

We include also some equations which capture natural equivalences for pro-
cesses involving the auxiliary operator new*.
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eq new* [nl] nil = nil .

eq new* [x y nl] y{N} < v > . P | q x{N}(z) . Q | R =

new* [y x nl] y{N} < v > . P | q x{N}(z) . Q | R .

eq new* [x y nl] (y{N} << w . P) | (x{N} >> { CH }) | R =

new* [y x nl] (y{N} << w . P) | (x{N} >> { CH }) | R .

Given a pair x y of co-variables, we assume that the first action of x is an
output or a selection and the first action y is an input or a branching. The last
two equations swap x and y when this is not the case, to enable the execution
of the rewriting rules.

Our rewriting specification enables us to directly execute a possible sequence
of reductions over a process using the Maude command ‘rew’. In this way, we
can obtain a stable (final) reachable process, which cannot reduce further. More-
over, we can use the reachability command ‘search’ to: (i) perform all possible
sequence of reductions of a process and obtain every possible stable process and
(ii) check whether a process that fits some pattern is reachable or if a specific pro-
cess is reachable. In Sect. 4, we leverage commands ‘search’ and ‘modelCheck’
to detect deadlocked sπ processes.

Specification Correctness. The transition system associated to our rewrite theory
in Maude can be shown to coincide with the reduction semantics in Sect. 2. This
operational correspondence result is detailed in [8].

4 Algorithmic Type Checking for sπ

4.1 Type Syntax

We present a Maude implementation of the algorithmic type checking given
in [13]. The type system considers typing contexts, denoted Γ , which associate
each variable to a specific type, denoted T . Typing contexts and types are defined
inductively as follows:

Γ :: = ∅ | Γ, x : T q :: = lin | un

p :: = ?T.T | !T.T | &{li : Ti}i∈I | ⊕ {li : Ti}i∈I

T :: = bool | end | q p | a | μa.T

where q stands for qualifiers and p stands for pretypes. Moreover, x denotes a
variable, each li denotes a label and a denotes a general variable. For simplicity,
we assume a single basic type for values (bool). Each variable is associated to
a (session) type, which represents its intended protocol. In the above grammar,
these types correspond to qualified pretypes. The pretype ?T1.T2 (resp. !T1.T2) is
assigned to a variable that first receives (resp. sends) a value of type T1 and then
proceeds to type T2. The pretype &{li : Ti}i∈I (resp. ⊕{li : Ti}i∈I) is assigned
to a variable that can offer (resp. select) li options and continues with type Ti

depending on the label selected. The type end (empty sequence) denotes the
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type of a variable where no interaction can occur. Recursive types can express
infinite sequences of actions; in the type μa.T , a corresponds to a type variable
that must occur guarded in T .

We encode session types in Maude by associating the non-terminals context,
qualifiers, pretypes, and types to sorts Context, Qualifier, Pretype, and Type.

sorts Pretype Type Context ChoiceT ChoiceTset .

subsort ChoiceT < ChoiceTset .

op ?_._ : Type Type -> Pretype . op !_._ : Type Type -> Pretype .

op +{_} : ChoiceTset -> Pretype . op &{_} : ChoiceTset -> Pretype .

ops bool end : -> Type . op __ : Qualifier Pretype -> Type .

op u [_] _ : Qid Type -> Type . op var : Qid -> Type .

ops nil invalid-context : -> Context .

op _:_ : Value Type -> Context .

op _,_ : Context Context -> Context [ctor assoc comm id: nil] .

op _:_ : Qid Type -> ChoiceT . op empty : -> ChoiceTset .

op __ : ChoiceTset ChoiceTset -> ChoiceTset [assoc comm id: empty] .

Each production rule is given as a specific constructor. In particular, con-
structors +{_} and &{_} represent the pretypes ⊕{li : Ti}i∈I and &{li : Ti}i∈I ,
respectively. The pairs of labels li and subtypes Ti are defined as instances of the
sort ChoiceTset. The recursive type μa.T is given as the constructor u [_] _
and the type variables are given as the constructor var. Typing contexts are
defined as expected. An empty context is denoted as nil whereas a single con-
text is associated to the constructor _:_. General contexts are provided by the
constructor _,_, which is annotated with the equational attributes assoc, comm
and id since the order is irrelevant in typing contexts and the construction is
associative. Finally, we added a constant invalid-context to be used in the
type checking to denote a typing error.

4.2 Algorithmic Type Checking

We follow the algorithmic type checking proposed in [13]. This type system
enables to type check the sπ processes from Sect. 2, with a minor caveat: algo-
rithmic type checking uses processes in which the restriction operator has a
corresponding type annotation, i.e., it uses (νxy : T )P instead of (νxy)P . Con-
sequently, we add a constructor for the sort Trm in the Maude specification:

op new[__:_]_ : Qid Qid Type Trm -> Trm [ctor prec 28] .

Following [13], we implement the type checking algorithm by relying on some
auxiliary functions for type duality (i.e., compatibility), type equality, and con-
text update and difference, among others. They are implemented by means of
functions and equations in Maude. The details of the Maude implementation
for type duality (function dual), context update (function +), and the context
difference (function \) can be found in [8].
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Γ true : bool;Γ [A-True] Γ1, x : lin p, Γ2 x : lin p; (Γ1, Γ2) [A-LinVar]

Γ false : bool;Γ [A-False]
un(T )

Γ1, x : T, Γ2 x : T ; (Γ1, x : T, Γ2)
[A-UnVar]

Fig. 3. Typing rules for values, Γ � v : T ; Γ

Algorithmic type checking is expressed by sequents of the form Γ1 � v : T ;Γ2

(for values) and Γ1 � P : Γ2;L (for processes). These sequents have an input-
output reading: sequent Γ1 � v : T ;Γ2 denotes an algorithm that takes Γ1 and
v as input and returns T and Γ2 as output; similarly, sequent Γ1 � P : Γ2;L
denotes an algorithm that takes Γ1 and P as input and produces Γ2 and L as
output. While Γ2 is a residual context, the set L collects linear variables occurring
in subject position. Intuitively, L tracks the linear variables that are used in P to
prevent that they are used again in another process. Both algorithms are given
by means of typing rules, which we specify in Maude as an equational theory.

Figure 3 shows the typing rules for values, which correspond to the rules
in [13]. The rules for boolean values [A-True] and [A-False] produce as results
the type bool and the input context Γ remains unaltered. There are two rules for
a variable x: if x has a linear type lin p then the entry x : lin p is removed from
the returned context (Rule [A-LinVar]); otherwise, if x is unrestricted then the
entry x : T is kept in the returned context (Rule [A-UnVar]). The algorithm for
type checking of values is then implemented as a function type-value, which is
defined as follows:

op type-value : Context Value -> TupleTypeContext .

eq type-value(C, True) = [C bool] . ---[A-TRUE]

eq type-value(C, False) = [C bool] . ---[A-FALSE]

ceq type-value(((a : T), C), a) = [((a : T), C) unfold(T)] ---[A-UNVAR]

if unrestricted(T) .

eq type-value(((a : lin p), C), a) = [C (lin p)] . ---[A-LINVAR]

eq type-value(((a : u [x] T), C), a) =

type-value(((a : unfold(u [x] T)), C), a) . ---[A-LINVAR]

eq type-value(C, v) = ill-typed [owise] .

Function type-value produces an instance of the sort TupleTypeContext. This
sort groups a context and a type or a set of variables and it has only one con-
structor [_ _]. The equations related to the typing of boolean values arise as
expected, according to the corresponding typing rule. In those cases, a tuple
that contains the unmodified context and the type bool is produced. For unre-
stricted variables, given that some types are infinite then, before the update,
the unrestricted types are unfolded (cf. the unfold operation). Unfolding is the
mechanism defined in [13] to deal with infinite types: If a type T is a recursive
type μa.U then the substitution U [μa.U/a] is performed. Otherwise, the type T
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Γ 0 : Γ ; ∅ Γ1 P : Γ2;L1 Γ2 ÷ L1 Q : Γ3;L2

Γ1 P | Q : Γ3;L2
[A-Inact] [A-Par]

Γ1, x : T, y : T P : Γ2;L
Γ1 (νxy : T ) P : Γ2 ÷ {x, y};L\{x, y} [A-Res]

Γ1 v : q bool;Γ2 Γ2 P : Γ3;L Γ2 Q : Γ3;L
Γ1 if v then P else Q : Γ3;L

[A-If]

Γ1 x : q!T.U ; Γ2 Γ2 v : T ;Γ3 Γ3 + x : U P : Γ4;L
Γ1 xv.P : Γ4;L ∪ (if q = lin then {x} else ∅) [A-Out]

Γ1 x : q2?T.U ;Γ2 (Γ2, y : T ) + x : U P : Γ3;L q1 = un ⇒ L\{y} = ∅
Γ1 q1x(y).P : Γ3 ÷ {y};L\{y} ∪ (if q2 = lin then {x} else ∅) [A-In]

Γ1 x : q&{li : Ti}i∈I ;Γ2 Γ2 + x : Ti Pi : Γ3;Li ∀i∈I,j∈I Li\{x} = Lj\{x}
Γ1 x {li : Pi}i∈I : Γ3;L ∪ (if q = lin then {x} else ∅)

[A-Branch]

Γ1 x : q ⊕ {li : Ti}i∈I ;Γ2 Γ2 + x : Tj P : Γ3;L j ∈ I

Γ1 x j .P : Γ3;L ∪ (if q = lin then {x} else ∅) [A-Sel]

Fig. 4. Typing Rules for Processes, Γ � P : Γ ; L

remains unaltered. For linear variables, we also unfold the type when necessary
and the linear type is returned and removed from the context.

Figure 4 shows some of the typing rules for sπ processes; they largely corre-
spond to the rules in [13].

Rule [A-Inact] proceeds as expected. Process 0 is well-typed and the typ-
ing context Γ remains unaltered and the set of linear variables is empty.
Rule [A-Par] handles parallel composition: to check a process P | Q over a
context Γ1, the type of P is checked and the resulting context Γ2 is used to
type-check process Q, making sure that the linear variables used for P are first
removed by using the context difference function (Γ2 ÷ L1). This ensures that
free linear variables are used only once. The output of the algorithm for Q (con-
text Γ3 and set L2) then corresponds to the ouput of the entire process P | Q.
Rule [A-Res] type-checks a process (νxy : T )P in a context Γ1: it first checks
the type of sub-process P in the context Γ1 extended with the association of
variables x, y to the type T and its dual type, denoted T . It is expected that if
type T (T ) is linear then it should not be in the resulting context Γ2; otherwise,
if type T (T ) is unrestricted then it will appear in Γ2. We require that variables
x, y are deleted from the residual context (Γ2 ÷ {x, y}) and from the set L of
linear variables.

Rule [A-If] verifies that type of value v is bool in the context Γ1, and requires
that the typecheck of P and Q in the context Γ2 generate the same residual con-
text Γ3 and the same set L, since both processes should use the same linear
variables. Rule [A-Out] handles output processes: it uses the incoming context
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Γ1 to check the type of x, which should be of the form q!T.U . Then, it checks
that the type of v in the residual context Γ2 is T . The type of the continuation
P is checked in a new context Γ3 extended with the association of x and the con-
tinuation type U . The rule enforces that types q!T.U and U must be equivalent
when x is unrestricted (i.e., q = un). The rule returns a context Γ4 and a set of
variables L joined with x, if linear. Rule [A-In] presents some minor modifica-
tions with respect to the one in [13]. We require that in the case of replication
there are no (free) subjects on linear variables in process P except possibly the
input variable y. Other than this, this rule is similar to Rule [A-Out].

Rule [A-Sel] looks the type of x in the incoming context Γ1. This type must
be of the form q ⊕ {li : Ti}i∈I . Subsequently, the continuation P is type-checked
under the resulting context Γ2 updated with a new assumption for x, which is
associated to a type Tj . In this way, when q = un we must have ⊕{li : Ti}i∈I =
Tj . This rule produces as result the context Γ3 and the set of linear variables L is
augmented with x if linear. Context Γ3 and set L also corresponds to the output
of the type checking of process P . Finally, we have Rule [A-Branch], which
has some minor modifications with respect to the rule in [13]. More precisely,
this rule has been changed to require that the sets of (free) subjects on linear
variables Li only differ in the input variable y. The additional details of this rule
is quite similar to Rule [A-Sel].

As an example of type checking, if T = lin !bool.lin ?bool.end then we can
establish the following sequent:

a : bool � (νx1y1 : T )(lin y1(v).y1v.0 | x1a.lin x1(z).0) : (a : bool); {x1, y1}
The algorithm for type-checking processes is implemented as a function

type-term that receives an instance of the sort Context and an instance of
the sort Trm. Moreover, it produces an instance of the sort TupleTypeContext
that groups the resulting typing context and the set L of linear variables that
were collected during type-checking. Each rule is implemented by an equation:

op type-term : Context Trm -> TupleTypeContext .

eq type-term(C, nil) = [C mt] . --- [A-INACT]

ceq type-term(C, P | Q) = [C2 L2] --- [A-PAR]

if [C1 L1] := type-term(C, P) /\

[C2 L2] := type-term(C1 / L1, Q) .

ceq type-term(C, new [x y : T] P) = --- [A-RES]

[(C1 / (x{0} y{0})) remove(remove(L1, x{0}), y{0})]

if [C1 L1] := type-term((C, (x{0} : T), (y{0} : dual(T))), P) .

ceq type-term(C, if v then P else Q fi) = [C2 L1] --- [A-IF]

if [C1 bool] := type-value(C, v) /\

[C2 L1] := type-term(C1, P) /\ [C2 L1] := type-term(C1, Q) .

ceq type-term(C, a < v > . P) = --- [A-OUT]

[C3 (if q == lin then (L1 a) else L1 fi)]

if [C1 (q ! T . U)] := type-value(C, a) /\

[C2 T’] := type-value(C1, v) /\ /\ equal(T, T’)

[C3 L1] := type-term((C2 + a : U), P) .

ceq type-term(C, un a(y) . P) = [(C2 / y{0}) mt] --- [A-IN]
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if [C1 (un ? T . U)] := type-value(C, a) /\

[C2 L] := type-term((C1, (y{0} : T)) + a : U, P) /\

remove(L, y{0}) == mt .

ceq type-term(C, lin a(y) . P) = --- [A-IN]

[(C2 / y{0}) (remove(L, y{0})

(if q == lin then a else mt fi))]

if [C1 (q ? T . U)] := type-value(C, a) /\

[C2 L] := type-term((C1, (y{0} : T)) + a : U, P) .

ceq type-term(C, a>>{CH}) = check-branch(C1, a, CH, CHT,q) ---[A-BRANCH]

if [C1 (q & { CHT })] := type-value(C, a) .

ceq type-term(C, a << x . P) = ---[A-SEL]

[C2 (if q == lin then (L1 a) else L1 fi)]

if [C1 (q + { (x : T) CHT })] := type-value(C, a) /\

[C2 L1] := type-term((C1 + a : T), P) .

eq type-term(C, P) = ill-typed [owise] .

When type checking is successful, function type-term produces an outgo-
ing type context and a set of variables. Those elements are grouped using the
constructor [_,_], which is associated to the sort TupleTypeContext. We use a
Maude comment to annotate each equation with the corespondent typing rule.
The correspondence is quite intuitive; we highlight some important details. An
empty set of variables is represented with the constant mt. We remark that the
operator / stands for the context difference operation that removes some vari-
ables of a type context, whereas operator ‘remove’ drops a variable of a variable
set. In the equation for Rule [A-Out], we do not use the same variable T in
the type associated to variable a and the type associated to value v as it would
be expected, since the types are possibly infinite and there are many possible
representations for the same infinite type. Instead, we use another variable T’
and we check that T and T’ are equivalent, using function equal.

We divide Rule [A-In] in two different equations for linear and unrestricted
inputs. In the linear case, it is possible that the type of the subject a is linear or
unrestricted; when the variable is linear it must be included in the returned set
of linear variables. In the unrestricted case, the type of subject a is required to be
unrestricted inasmuch as the attempt to use a linear variable in an unrestricted
fashion must be rejected. Moreover, we require that the only free linear variable
used in process P is y{0} (condition remove(L, y{0}) == mt).

4.3 Type Soundness

Vasconcelos [13] established that the type system for sπ is sound : a closed,
well-typed process is guaranteed to have a well-defined behavior according to
the ascribed protocols and the reduction semantics of the calculus. Also, the
algorithmic type checking, as implemented in this section, is proven correct.
With these elements in mind, we can integrate both the rewriting specification
of the operational semantics and the implementation of the algorithmic type
checking. This way, we only execute well-typed processes. For this purpose, we
use two auxiliary functions well-typed and erase. The former checks whether
a process does not have typing errors:
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op well-typed : Trm -> Bool .

eq well-typed(P) = (type-term(nil, P) =/= ill-typed) .

Function well-typed applies the algorithm for type checking type-term over
a process P and returns true when type-checking is successful, i.e. when the
result is not ill-typed. Function erase proceeds inductively on the structure
of a process; when it reaches an annotated subprocess ‘new [x y : T] P’, it
removes the annotation to produce ‘new [x y] P’—see [8] for details.

Correspondingly, we extend our specification of the reduction semantics to
enable the execution of annotated processes, i.e., processes that use the operator
(νxy : T )P instead of the operator (νxy)P :

rl [TYPED] : new [x y : T] P => if well-typed(new [x y : T] P)

then erase(new [x y] P) else ill-typed-process fi .

We check whether process new [x y : T] P is well-typed; if so, we rewrite it as
an equivalent process in which each occurrence of new [x y : T] is replaced by
new [x y] through the function erase. Otherwise, process new [x y : T] P is
rewritten as ill-typed-process, a constant that denotes that the process has
a typing error and cannot be executed.

5 Lock and Deadlock Detection in Maude

Although the type system for sπ given in [13] enables us to statically detect pro-
cesses whose variables are used according to their ascribed protocols (expressed
as session types), there are processes that are well-typed but that exhibit
unwanted behaviors, in particular deadlocks. For example, consider the process

P = x3true.x1true.y2false.0 | lin y3(z).lin x2(w).lin y1(t).0

Process P is well-typed in a context x1 : lin !bool.end, y1 : lin ?bool.end,
x2 : lin ?bool.end, y2 : lin !bool.end, x3 : lin !bool.end, y3 : lin ?bool.end. Then,
process (νx1y1x2y2x3y3)P can reduce but becomes deadlocked after such a syn-
chronization, due to a circular dependency on variables x1, y1, x2, y2.

5.1 Definitions

Here we characterize deadlocks in sπ and we show how to use the rewrite specifi-
cation of the operational semantics and the Maude tools for detecting processes
with deadlocks. We follow the formulation of deadlock and lock freedom given
by Padovani [6], which uses the notion of pending communication. We start by
defining the reduction contexts C:

C :: = [ ] | (C | P ) | (νxy)C
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The notion of pending communication in a process P with respect to variables
x, y is defined with the following auxiliary predicates:

in(x, P ) def⇐⇒ P ≡ C[lin x(y).Q] ∧ x 
∈ bv(C)

in∗(x, P ) def⇐⇒ P ≡ C[un x(y).Q] ∧ x 
∈ bv(C)

out(x, P ) def⇐⇒ P ≡ C[xv.Q] ∧ x 
∈ bv(C)

sync(x, y, P ) def⇐⇒ (in(x, P ) ∨ in∗(x, P )) ∧ out(y, P )

wait(x, y, P ) def⇐⇒ (in(x, P ) ∨ out(y, P )) ∧ ¬sync(x, y, P )

where we assume the extension of function bv(.) to reduction contexts. Intu-
itively, the first three predicates express the existence of a pending communica-
tion on a variable x. More in details:

– Predicate in(x, P ) holds if x is free in P and there is a subprocess of P
that is able to make a linear input on x. Predicate in∗(x, P ) is its analog for
unrestricted inputs.

– Predicate out(x, P ) holds if x is free in P and a subprocess of P is waiting to
send a value v.

– Predicate sync(x, y, P ) denotes a pending input on x for which a synchroniza-
tion on y is immediately possible.

– Predicate wait(x, y, P ) denotes a pending input/output for which a synchro-
nization on x, y is not immediately possible.

Let us write −→∗ to denote the reflexive, transitive closure of −→. Also, write
P � if there is no Q such that P −→ Q. With these elements, we may now
characterize the deadlock and lock freedom properties. We say process P is

– deadlock free if for every Q such that P −→∗ (νx1y1)(νx2y2) . . . (νxnyn)Q �

it holds that ¬wait(xi, yi, Q) for every xi.
– lock free if for every Q such that P −→∗ (νx1y1)(νx2y2) . . . (νxnyn)Q and

wait(xi, yi, Q) there exists R such that Q −→∗ R and sync(xi, yi, R) hold.

This way, a process is deadlock free if there are not stable states with pending
inputs or outputs; a process is lock free if it is able to eventually perform a
synchronization in any pending input or output.

We can use Maude to verify deadlock freedom and lock freedom for typed
processes. Indeed, we can use the reachability tool search and the LTL model
checker modelCheck. We first represent the previous predicates over process
terms as functions in Maude over instances of the sorts Trm and Chan:

ops in out in* : Chan Trm -> Bool .

ops sync wait : Chan Chan Trm -> Bool .

op wait-aux : QidSet Trm -> Bool .

eq in(a, lin a(x) . Q | R) = true .

eq in(a, P) = false [owise] .

eq in*(a, un a(x) . Q | R) = true .

eq in*(a, P) = false [owise] .
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eq out(a, a < v > . Q | R) = true .

eq out(a, P) = false [owise] .

eq sync(a, b, P) = (in(a, P) or in*(a, P)) and out(b, P) .

eq wait(a, b, P) = (in(a, P) or out(b, P)) and not sync(a, b, P) .

eq wait-aux(mt, P) = false .

eq wait-aux((x y) nl, P) = wait(x{0}, y{0}, P) or

wait(y{0}, x{0}, P) or wait-aux(nl, P) .

Above, we use function wait-aux to determine if a group of pairs of co-
variables contains a pair for which there is a pending communication.

The deadlock freedom property imposes that there should be no stable states
in which there are pending communications. Consequently, we can use the Maude
command search as follows to determine whether a process is deadlock free:

search init =>!

new* [nl:QidSet] P:Trm such that wait-aux(nl:QidSet, P:Trm) .

where init denotes for the process to be checked. We recall that the search
command with the arrow =>! looks for final (stable) states. In this way, init is
deadlock free if the search returns no solution.

For the lock freedom property, we can not use the reachability tool since
this property requires the checking some intermediate states. Consequently, we
represent the lock freedom property as an LTL formula and use the built-in
LTL model checker in Maude. Below, we define the Maude predicates psync and
pwait that we will use in the LTL model checker:

ops pwait psync : Chan Chan -> Prop [ctor] .

eq new* [(x y) nl] P |= pwait(x{0}, y{0}) =

wait(x{0}, y{0}, P) or wait(y{0}, x{0}, P) .

eq new* [(x y) nl] P |= psync(x{0}, y{0}) =

sync(x{0}, y{0}, P) or sync(y{0}, x{0}, P) .

In the predicates psync and pwait, we use normalized processes, i.e., pro-
cesses where the nested scope restrictions are flattened in an equivalent process
that uses the operator new*. This assumption simplifies the definitions. Both
psync and pwait predicates use the functions in, in*, out, sync, and wait as
expected according to the definition.

The Kripke structure that is generated for Maude will use such normalized
process term as states. The Maude predicates pwait and psync hold with respect
to a pair of dual variables if there is a pending communication and there is a
synchronization in the process associated to a state. The lock freedom property
imposes for each variable that if in any state there is a pending communication
then eventually there will be a synchronization. Formalizing the lock freedom
property requires to check each possible subject. For that reason, the LTL for-
mula associated to this property depends on the variables being used in the
process. We define a function build-lock-formula that takes the used vari-
ables and builds the corresponding LTL formula as follows:
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op build-lock-formula : QidSet -> Formula .

eq build-lock-formula(mt) = True .

eq build-lock-formula((x y) nl) =

[] (<> pwait(x{0}, y{0}) -> <> psync(x{0}, y{0})) /\

build-lock-formula(nl) .

This way, the resulting LTL formula corresponds to the conjunction of subformu-
las associated to each dual variable. The model checker can be used as follows:

red modelCheck(init, build-lock-formula(vars)) .

where init stands for the process term and vars stands for a set of pairs of co-
variables. If the init is lock-free then the invocation of modelCheck will produce
true. Otherwise, the invocation will show a counterexample with a sequence of
rules that produces a state where the formula is not fulfilled.

5.2 Examples

We give a couple of examples of well-typed processes in sπ, with different lock-
and deadlock-freedom properties. (See [8] for additional examples.)

P1 = (νx1y1)(νx2y2)(νx3y3)(x3true.x1true.y1false.0 | lin y3(z).liny2(x).linx2(w).0)

P2 = (νx1y1)(νx2y2)(νab)(x1b.0 | atrue.0 | un y1(z).x2z.0 | un y2(w).x1w.0)

Process P1 is a simple process that reduces to a deadlock immediately after
a synchronization on the co-variables x3, y3. Process P2 represents an infinite
process where the variable b is repeatedly shared through communications on
x1, y1, x2, y2. The process is a not lock-free: b is never used to synchronize with
its co-variable a. Figure 5 gives the Maude terms associated to these processes.

ops P1 P2 P3 P4 P5 : -> Trm .

eq P1 = new* [(’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’)]

(’x3’{0} < True > . ’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil) .

eq P2 = new* [(’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’)]

(’x1’{0} < ’b’{0} > . nil | ’a’{0} < True > . nil |

un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |

un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil ) .

Fig. 5. Processes in Maude
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We analyze P1 using Maude by executing:

search P1 =>! new* [nl:QidSet] P:Trm

such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P1,

build-lock-formula((’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’))) .

We obtain the following results, which confirm that P1 is not deadlock free and
not lock free:

search in TEST : P1 =>! new*[nl:QidSet]P:Trm

such that wait-aux(nl:QidSet, P:Trm) = true .

Solution 1 (state 1)

nl:QidSet --> (’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’

P:Trm --> ’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil

No more solutions.

result ModelCheckResult: counterexample(

{new*[(’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’]

’x3’{0} < True > . ’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil,

’LINCOM},

{new*[(’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’]

’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil,

deadlock})

Consider now a similar execution for process P2:

search P2 =>! new* [nl:QidSet] P:Trm

such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P2, build-lock-formula((’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’))) .

We obtain the following results, which confirm that P2 is an infinite process
that is deadlock free but not lock free:

search in TEST : P2 =>! new*[nl:QidSet]P:Trm

such that wait-aux(nl:QidSet, P:Trm) = true .

No solution.

result ModelCheckResult: counterexample(nil,

{new*[(’a’ ’b’) (’x1’ ’y1’) ’x2’ ’y2’]

’a’{0} < True > . nil | ’x1’{0} < ’b’{0} > . nil |

un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |

un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil, ’UNCOM}
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{new*[(’a’ ’b’) (’x1’ ’y1’) ’x2’ ’y2’]

’a’{0} < True > . nil | ’x2’{0} < ’b’{0} > . nil |

un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |

un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil, ’UNCOM})

6 Closing Remarks

In this paper, we have reported on an executable specification in Maude of
the operational semantics and the associated algorithmic type-checking of sπ,
a session-typed π-calculus proposed by Vasconcelos in [13]. We integrated both
specifications closely following his formulation. To our knowledge, ours is the
first Maude implementation of a session-typed process language. Because typing
in [13] does not exclude deadlocks, we leverage built-in tools in Maude and exe-
cutable specifications to detect well-typed dead-locked processes. In our view,
these developments establish a promising starting point to the automated anal-
ysis of message-passing concurrency specifications.

As future work, we intend to adapt our equational theories to leverage the
confluence checker tool available in Maude. We also plan to extend our executable
specifications to perform behavioral analysis of the processes that implement
multiparty session types, in the spirit of [10]. Likewise, we aim to explore the
automated analysis of communication correctness of an extension of sπ with
higher-order process communication, in which values can be abstractions (func-
tions from names to processes) [4]. Finally, we plan to consider connections
between our executable implementations and type systems derived from the
Curry-Howard correspondence between session types and linear logic [1,16].
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Abstract. Maude-NPA is a symbolic model checker for analyzing cryp-
tographic protocols in the Dolev-Yao strand space model modulo an
equational theory defining the cryptographic operations, which starts
from an attack state to find counterexamples by performing a backward
narrowing reachability analysis. Although Maude-NPA is a powerful ana-
lyzer, its running performance can be improved by taking advantage of
parallel and/or distributed computing when dealing with non-trivial pro-
tocols in which the state space is huge. This paper describes a parallel
version of Maude-NPA and a tool that supports it. We report on some
experiments of various kinds of protocols that demonstrate that the tool
can increase the running performance of Maude-NPA by 30% on average
for most non-trivial case studies in which the number of states located
at each layer is considerably large.
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decades to provide information security, such as confidentiality and authenti-
cation, in an insecure network. The design of cryptographic protocols, such as
authentication protocols, is difficult, error-prone, and hard to detect flaws [13].
Many protocols contain flaws even a long time after they were published. For
example, Lowe found an attack on the Needham-Schroeder public key authen-
tication protocol after seventeen years [27,33]. Therefore, it is important to
have automated tools to verify the properties of cryptographic protocols. There
are several tools dedicated to security protocol analysis, such as Athena [34],
ProVerif [6], OFMC [5], Avispa [1], Scyther [10], TAMARIN [28], Maude-
NPA [16], and Verifpal [22]. Most analyzers based on model checking suffer
from the notorious state space explosion problem, which prevents some model
checking experiments from being carried out. Another challenge is to increase
the running performance of model checking. One promising approach to this
challenge is to parallelize model checking, which can make best use of multicore
architectures.

Maude-NPA is a powerful symbolic model checker for analyzing crypto-
graphic protocols modulo an equational theory that uses the Dolev-Yao strand
space model [12,18], which is capable of intercepting, modifying, and injecting
messages to impersonate other protocol principals by intruders. Maude-NPA
uses a backward narrowing reachability analysis, which starts from a final inse-
cure state, an attack state, to determine whether or not it is reachable from an
initial state, which has no further backward steps. If that is the case, the initial
state is a counterexample. The advantage of Maude-NPA is that it supports an
unbounded session model and different equational theories; as a counterpart,
these theories often lead to a bigger state space that requires more time to con-
duct model checking. Although some techniques were devised to reduce the state
space, such as grammar-based techniques, giving priority to input messages in
strands, early detection of inconsistent states (never reaching an initial state),
a relation of transition subsumption (to discard transitions and states already
being processed in another part of the search space), and the super lazy intruder
(to delay the generation of substitution instances as much as possible) [14,15],
the state space explosion problem is inevitable in some cases. Therefore, improv-
ing the running performance of Maude-NPA to some extent is worth doing. We
are aware that Maude-NPA basically uses a breadth-first search (BFS) to explore
the state space. Given a set of states in layer l, for each state in the set, we can
perform independently the backward narrowing to obtain its successor states in
layer l + 1, which opens an opportunity for parallelization so as to improve the
running performance of Maude-NPA (time challenge). Note that an attack state
is located at layer 0 and all states that reach the attack state by one-step state
transition are located at layer 1.

In the present paper, we describe a parallel version of Maude-NPA and a tool
that supports it, where successor states are generated in parallel at each layer.
Basically, we transform the breadth-first search in Maude-NPA into a parallel
breadth-first search without altering the number or form of the states in the state
space. If the number of states located at each layer is considerably large, our tool
can effectively improve the running performance of Maude-NPA. The tool has
been built in Maude [8] as an implementation language, which is one direct
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successor language of OBJ3 [19], an algebraic specification language, and based
on rewriting logic [31] as its theoretical foundation. Maude-NPA is written in
Maude, which supports adequate parallel facilities, making it possible to develop
parallel tools, such as Parallel L + 1-DCA2L2MC [11], which is a new technique
to mitigate the state explosion for leads-to model checking. Therefore, the use
of Maude for the parallel development of Maude-NPA without extra conversion
is superior to other programming languages. The architecture of the tool is a
master-worker model where one master and multiple workers are involved. The
tool uses a shared cache maintained by the master and a local cache maintained
by each worker to avoid making unnecessary duplications of jobs. The tool uses
a set of jobs and a queue of worker identifiers to distribute (or assign) jobs to
workers in a well-balanced way. The present paper also reports on some case
studies on various kinds of protocols that demonstrate that the tool can increase
the running performance of Maude-NPA by 30% on average for most non-trivial
case studies. The support tool is available at the webpage.1

The rest of the paper is organized as follows. Section 2 mentions some pre-
liminaries in which narrowing is described. Section 3 describes the overview of
Maude-NPA. Section 4 describes a parallel version of Maude-NPA and a tool
that supports it. Section 5 reports on some experimental results. Section 6 men-
tions some existing work. Finally, Sect. 7 concludes the paper together with some
future directions.

2 Preliminaries

We follow the classical notation and terminology from [21] for term rewriting
and from [29,30] for rewriting logic and order-sorted notions. We assume an
order-sorted signature Σ with a finite poset of sorts (S,≤) and a finite number of
function symbols. We furthermore assume that: (i) each connected component in
the poset ordering has a top sort, and for each s ∈ S we denote by [s] the top sort
in the component of s; and (ii) for each operator declaration f : s1× . . .×sn → s
in Σ , there is also a declaration f : [s1]× . . .× [sn] → [s]. We assume an S-sorted
family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite.
TΣ (X )s is the set of terms of sort s, and TΣ ,s is the set of ground terms of
sort s. We write TΣ (X ) and TΣ for the corresponding term algebras. The set
of positions of a term t is written Pos(t), and the set of non-variable positions
PosΣ (t). The root of a term is Λ. The subterm of t at position p is t|p and
t[u]p is the term obtained from t by replacing t|p with u. A substitution σ is a
sorted mapping from a finite subset of X , written Dom(σ), to TΣ (X ). The set
of variables introduced by σ is Ran(σ). The identity function substitution is id.
Substitutions are homomorphically extended to TΣ (X ). The restriction of σ to
a set of variables V is σ|V .

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ (X )s for some
sort s ∈ S. Given Σ and a set E of Σ -equations such that TΣ ,s �= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
1 https://github.com/canhminhdo/parallel-maude-npa.

https://github.com/canhminhdo/parallel-maude-npa
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t, t′ ∈ TΣ (X ) (see [30]). We assume that TΣ ,s �= ∅ for every sort s. The E-
subsumption order on terms TΣ (X )s, written t �E t′ (meaning that t′ is more
general than t), holds if ∃σ : t =E σ(t′). The E-renaming equivalence on term
TΣ (X )s, written t ≈E t′, holds if t �E t′ and t′ �E t. An E-unifier for two
terms t, t′ ∈ TΣ(X) is a substitution σ such that σ(t) =E σ(t′). A complete set
of E-unifiers of two terms t, t′ is written CSUE(t = t′). We say CSUE(t = t′) is
finitary if it contains a finite number of E-unifiers. This notion can be extended
to multiple pairs of two terms, written CSUE(t1 = t′1 ∧ . . . ∧ tn = t′n).

A rewrite rule is an oriented pair l → r, where l /∈ X and l, r ∈ TΣ (X )s
for some sorts s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ ,E ,R) with Σ an order-sorted signature, E a set of Σ -equations, and R
a set of rewrite rules. A topmost rewrite theory is a rewrite theory such that for
each l → r ∈ R, l, r ∈ TΣ (X )State for a top sort State, r /∈ X , and no operator in
Σ has State as an argument sort. The rewriting relation →R on TΣ (X ) is t

p→R t′

(or →R) if p ∈ PosΣ (t), l → r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p for some σ. The
relation →R/E on TΣ (X ) is =E ;→R; =E . Note that →R/E on TΣ (X ) induces
a relation →R/E on TΣ/E (X ) by [t]E →R/E [t′]E if and only if t →R/E t′. [t]E
is the equivalence class of term t with respect to =E . When R = (Σ ,E ,R) is
a topmost rewrite theory we can safely restrict ourselves [32] to the rewriting
relation →R,E on TΣ (X ), where t

Λ−→R,E t′ (or →R,E) if l → r ∈ R, t =E σ(l),
and t′ = σ(r). Note that →R,E on TΣ (X ) induces a relation →R,E on TΣ/E (X )
by [t]E →R,E [t′]E if and only if ∃w ∈ TΣ (X ) such that t →R,E w and w =E t′.

The narrowing relation �R on TΣ (X ) is t
p,σ�R t′ (or σ�R,�R) if p ∈ PosΣ (t),

l → r ∈ R, σ ∈ CSU∅(t|p = l), and t′ = σ(t[r]p). Assuming that E has a finitary
and complete unification algorithm, the narrowing relation �R,E on TΣ (X ) is
t

p,σ�R,E t′ (or σ�R,E ,�R,E) if p ∈ PosΣ (t), l → r ∈ R, σ ∈ CSUE(t|p = l), and
t′ = σ(t[r]p). Note that �R,E on TΣ (X ) induces a relation �R,E on TΣ/E (X )
by [t]E

σ�R,E [t′]E if and only if ∃w ∈ TΣ (X ) : t
σ�R,E w and w =E t′.

3 Maude-NPA

Maude-NPA [16] is a model checker for analyzing cryptographic protocols mod-
ulo equations, which is written in Maude with about 18,000 lines of code. This
section gives an overview of Maude-NPA focusing on those pieces of code that
will be used for parallelization while omitting the rest.

A protocol specification in Maude-NPA is done by overwriting the three pre-
defined modules: PROTOCOL-EXAMPLE-SYMBOLS, PROTOCOL-EXAMPLE-ALGEBRAIC,
and PROTOCOL-SPECIFICATION that specify the syntax of the protocol, which
consist of sorts, subsorts, and operators, the algebraic properties of the operators,
which consist of equational rules (equations) and equational axioms (axioms),
and the actual behaviors of the protocol using the Dolev-Yao strand space
model [12,18], which consists of the intruder strands, regular strands, and attack
states. Maude-NPA starts from an attack state, a final insecure state, to perform
a backward reachability analysis which determines whether or not it is reach-
able from an initial state, which has no further backward steps. If that is the
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case, the initial state is a counterexample. The backward search is performed
by a backward narrowing with a symbolic execution since the attack state is
a term with logical variables. Each backward narrowing step can be regarded
as a state transition, such as sending or receiving a message by principals, or
manipulating a message by intruders. Given a symbolic state, a backward nar-
rowing step is performed to return a previous symbolic state in the protocol. By
that we can obtain all successor states (in the backward sense) from the state. In
Maude-NPA, each state found during the backward analysis is represented by six
sections separated by the symbol || in the following order: (1) state id, (2) set
of current protocol and intruder strands, (3) intruder knowledge, (4) sequence
of messages, (5) ghost list, and (6) never pattern. For instance, the following is a
state found during the backward analysis of the Needham-Schroeder public key
protocol:

< 1 . 9 > (

:: nil ::

[ nil |

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))), nil] &

:: #0:Fresh ::

[ nil,

-(pk(b, #1:NNSet ; a)),

+(pk(a, #1:NNSet ; b * n(b, #0:Fresh))) |

-(pk(b, n(b, #0:Fresh))), nil]

)

||

pk(b, n(b, #0:Fresh)) !inI,

n(b, #0:Fresh) inI,

irr(pk(b, n(b, #0:Fresh)))

||

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

||

nil

||

nil

The state id is a unique id assigned to each state during the backward analysis.
The set of current strands represents the messages that were sent or received in
the past (those messages before the symbol |) and the messages that will be sent
or received in the future (those messages after the symbol |) in each strand. The
strand set also indicates how to advance each strand in the execution process by
partial substitutions for the messages in each strand. The intruder knowledge
represents what messages the intruder knows (symbol inI) or does not know
yet (symbol !inI) at each state. The sequence of messages denotes the actual
sequence of messages communicated to reach the state. The ghost list is extra
information for optimization in the super lazy intruder technique to reduce the
state space. The never pattern is used for authentication attacks.
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We can divide the whole process of Maude-NPA into two main stages. In
the first stage, given a protocol specification P and an equational theory EP ,
Maude-NPA needs to do as follows:

– Extracting the attack state St from the protocol given an attack state id file.
– Building rewrite rules RP against the behavior of the protocol specified in

form of intruder and regular strands along with some pre-defined rewrite rules
in the Maude-NPA specification.

– Generating grammars that represent infinite sets of states unreachable for the
intruder to reduce the state space.

In the second stage, Maude-NPA performs the backward narrowing reachability
analysis from the attack state St using the relation �R−1

P ,EP where R−1
P is the

set of rewrite rules derived from RP by inverting its rewrite rules. Maude-NPA
basically uses the breadth-first search to explore the state space. There are three
main steps needed for the exploration of each layer as follows:

– The first step is to generate all successor states for the next layer given a set
of states in the current layer. This step also consists of almost all techniques
to reduce the state space except for the transition subsumption technique,
which is used in the second step subsequently.

– The second step is to simplify the successor states by the transition subsump-
tion technique for removing states that are subsumed by either other states
in the successor states or visited states (history states).

– Ultimately, the third step will filter out states from the previous step by
using history states to avoid state duplications and rule out initial states as
counterexamples. The cycle continues until a depth bound is reached or no
more states exist for the next layer.

The first step in the second stage actually performs the backward narrowing
just by one step to obtain all successor states from a given set of states in a
layer. The successor states then go through a series of optimization steps, such
as giving priority to input messages in strands, early detection of inconsistent
states, the super lazy intruder, and filtering states by the grammars. We are
aware that this step can be executed independently for each given state from
the set of states, which opens an opportunity for parallelization. Given a set of
states in layer l, for each state in the set, we can perform the backward narrowing
step independently to obtain its successor states in layer l+1. In the next section,
we will describe a parallel version of Maude-NPA in which the successor states
are generated in parallel for each layer. Note that such reduction techniques are
also included in this step and the parallel version does not alter the number or
form of the states in the state space. If the number of states located at each layer
is considerably large, our tool can effectively improve the running performance
of Maude-NPA.

In addition, the second step in the second stage plays an important role to
reduce the state space in Maude-NPA, which may transform an infinite-state
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system into a finite one [17], and this is also time-consuming. Basically, it per-
forms two series of transition subsumption tasks, also called the implication step
throughout this paper. Firstly, for each state in the successor states obtained in
the first step of the stage it will be checked whether or not the state is subsumed
(implied) by another state in the successor states. If that is the case, the state
is ignored. We only keep states which cannot be subsumed by other states after
this process. Secondly, each state will be checked whether or not the state is
subsumed (implied) by a state in history states again. If that is the case, the
state is ignored. Otherwise, the state is stored. We plan to parallelize the whole
process of this step in the near future as one piece of our future work.

4 Parallel Maude-NPA and Its Tool Support

The support tool is implemented in Maude to conveniently extend the implemen-
tation of what is developed in Maude-NPA. We use object-based programming
that can model an object-based system, where objects can communicate to each
other via message passing. In addition, Maude also supports communicating
with external objects by using sockets so that objects inside an object-based
system can interact with different objects inside another object-based system.
We adopt such functionalities to make a parallel version of Maude-NPA based
on a master-worker model, which is described in this section.

As mentioned above, we parallelize the backward narrowing step in Maude-
NPA. We use a master-worker model to make a parallel version of Maude-NPA.
In our tool, a master maintains a shared cache that is a set of states (history
states), while each worker also maintains a local cache that is a set of states,
which contains all states explored by the worker. Use of the shared cache prevents
jobs that have been processed from being assigned to workers, while use of the
local caches prevents jobs that have been processed from being made by workers.
The very initial job is made by the master, while all the other jobs are made by
workers and basically sent to the master. Jobs are assigned to workers by the
master unless the jobs have been tackled.

There are two kinds of messages exchanged by the master and workers: job
and getJob. A job message is in the form of a state. A job message is sent to a
worker by the master, distributing (or assigning) a job to the worker. Meanwhile,
a job message is sent to the master by a worker, delivering a job made by the
worker to the master. A getJob message is sent to the master by a worker, asking
the master to assign a job to the worker. In Maude, we can send data over sockets
provided that the data must be a string. The getJob message is just literally a
string “getJob,” while the job message is in the form of the state described in
Sect. 3 in which the state will be transformed into a string before sending at the
sender side and be restored to the original state from the string at the receiver
side. The following functions written in Maude are used to do the transformation
and restoration.
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op qidListToString : QidList -> String .

op qidListToString : QidList String -> String .

eq qidListToString(QIL) = qidListToString(QIL, "") .

eq qidListToString(nil, S) = S .

eq qidListToString(Q QIL, S) = qidListToString(QIL, S + string(Q) + " ") .

op stringToQidList : String -> QidList .

op stringToQidList : String QidList -> QidList .

eq stringToQidList(S) = stringToQidList(S, nil) .

eq stringToQidList("", QIL) = QIL .

eq stringToQidList(S, QIL) = QIL qid(S) [owise] .

ceq stringToQidList(S, QIL) = stringToQidList(S’’, QIL qid(S’) )

if N := find(S, " ", 0)

/\ S’ := substr(S, 0, N)

/\ S’’ := substr(S, N + 1, length(S)) .

op state2string : IdSystemSet -> String .

eq state2string(State) = qidListToString(

metaPrettyPrint(SM, upTerm(State), none)) .

op string2state : String -> IdSystemSet .

eq string2state(S) = downTerm(getTerm(

metaParse(SM, stringToQidList(S), ’IdSystemSet)), errIdSystemSet) .

where State and SM are Maude variables of Module and IdSystemSet sorts,
respectively. The function string2state is used to transform a state into a
string by doing the following order: (1) convert the state to its meta represen-
tation by using the function upTerm, (2) convert the meta representation of the
state to a list of quoted identifiers that presents the string of tokens, and (3) con-
vert the list of quoted identifiers to a string by the function qidListToString.
The function string2state is used to restore the state from the string by doing
the following order: (1) convert the string to a list of quoted identifiers by the
function stringToQidList, (2) parse the list of quoted identifiers in the module
SM by the function metaParse, (3) get the term, the meta representation of the
state, from the output of the function metaParse by the function getTerm, and
(4) convert the meta representation of the state to the original state by the func-
tion downTerm. Note that some essential functions, such as upTerm, downTerm,
getTerm, metaPrettyPrint, metaParse, are built-in in Maude, while the two
functions qidListToString and stringToQidList are defined above.

The master is in charge of collecting all successor states (jobs) from workers,
then performing the implication step to remove implied states, checking state
duplications with history states, ruling out initial states as counterexamples, and
distributing (or assigning) unprocessed jobs to workers. Besides, the master can
stop the tool whenever counterexamples are found or there are no unprocessed
jobs left or a depth bound is reached. Meanwhile, each worker is responsible
for processing a job, a state, assigned to it by the master. A worker generates
all successor states reachable from the state by the backward narrowing and
checks them with its local cache to avoid explored states. The worker may then
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Algorithm 1. Job Scheduling by a Master
input : P – a protocol specification

Id – an attack state id in the protocol specification
F – a filter
BStep – the maximum number of backward steps
N – a number of workers

output: empty or counterexamples

1 (workers, jobs, next, history) ← (empty, empty, empty, empty);
2 (M,GS, IS) ← initialize(P, Id,BStep, F );
3 jobs ← {IS}; history ← {IS};
4 while True do
5 for k ← 1 to N do
6 if DATA ← recv(workerk) then
7 if DATA = getJob then
8 enqueue(workers, workerk);
9 else

10 (IS) ← DATA;
11 next ← insert(next, IS);

12 while not isEmpty(workers) and not isEmpty(jobs) do
13 worker ← dequeue(workers);
14 IS ← dequeue(jobs);
15 send(worker, IS);

16 if isEmpty(jobs) and size(workers) = N then
17 if not isEmpty(next) then
18 IST ← simplifyByImplication(F, history, next);
19 (INIT , IST ′) ← filterWithHistoryAndInit(M,history, IST );
20 (jobs, next,BStep) ← (IST ′, empty,BStep − 1);
21 history ← insert(history, IST ′);
22 if not isEmpty(INIT) then
23 closeConnection();
24 return INIT ;

25 if BStep = 0 or isEmpty(jobs) then
26 closeConnection();
27 return empty ;

construct new jobs and send them to the master as job messages. At last, when
a worker has completed a job, the worker requests a new job by sending a getJob
message to the master. The master uses a set of states and a queue of worker
identifiers to distribute jobs to workers so that job distribution can be well-
balanced, which means that all workers are processing jobs all the time except
the beginning, the implication step, and ending of the backward narrowing.

Algorithm 1 shows the pseudo-code for job scheduling conducted by the mas-
ter. workers is a queue data structure that contains worker identifiers, which are
requesting jobs. jobs, history, and next are set data structures. jobs contains
jobs (states) that are distributed to workers, while next contains all possible next
jobs (successor states) of the next layer. history contains all states explored at
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the moment. Initially, workers is set to the empty queue, while jobs, next, and
jobs are set to the empty set at line 1. In the first stage, Maude-NPA needs to
build rewrite rules RP in form of a module, an attack state, and grammars from
a protocol specification P. The module is used to perform the backward reacha-
bility analysis, the attack state is used as the beginning state, and the grammars
are used to remove unreachable states for intruders. This stage is proceeded by
initialize function at line 2 with P, Id , BStep, and F parameters that are a
protocol specification, the id of an attack state in the specification, the maximum
number of backward steps, and a filter which is +parallel as default denoting
the parallelization mode, respectively. The result of the function is deconstructed
and stored in M, GS, and IS, which stand for the module, the grammar, and the
attack state, respectively. jobs and history are updated to contain only the
attack state at line 3.

For each workerk, whenever the master receives DATA from workerk, where
DATA is one of the two kinds of messages described above, it checks whether
DATA is getJob, meaning that the worker is requesting a job. If so, workerk is
enqueued to workers so that a job can be assigned to workerk subsequently.
When DATA is a job that has been made and sent from workerk, the master
deconstructs DATA into a state IS at line 10 and then inserts it to the set of
successor states next at line 11. Note that if the state already exists in the set,
it is ignored. Otherwise, it is added to the set. The code fragment at lines 12–
15 checks whether workers and jobs are not empty. If that is the case, the
master dequeues workers and jobs to obtain a job and a worker identifier and
assigns the job to the worker by sending a job message to the worker. The code
fragment at lines 16–27 checks whether there are neither unprocessed jobs left
nor jobs being processed by workers. If that is the case, the master continuously
checks if next is not empty. If that is the case, we need to process all successor
states next before moving to explore the next layer. Firstly, the successor states
in next are simplified with the implication step by simplifyByImplication
function at line 18 in which states implied by other states in either next or
history are ignored. The output is a new set of states IST that is filtered by
using history states history and rule out initial states as counterexamples by
filterWithHistoryAndInit function at line 19. Ultimately, the final successor
states IST’ and initial states INIT are obtained. We assign jobs to IST’, reset
next to empty, and decrease BStep by one. Note that if BStep is unbounded, it
is unchanged regardless of the subtraction. history is also updated by inserting
IST’ at line 21. If INIT contains some initial states, we close all connections and
return INIT as counterexamples at lines 22–24. After preparing jobs for the next
layer, if either BStep is 0 or jobs is empty, the tool terminates and returns empty
meaning that there is no counterexample up to the depth BStep given at the
beginning. Note that the three functions initialize, simplifyByImplication,
and filterWithHistoryAndInit are based on existing functions provided in
Maude-NPA.

Algorithm 2 shows the pseudo-code for job handling conducted by workers.
Each worker maintains a set of states history to avoid sending explored states
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Algorithm 2. Job Handling by Workers
input : P – a protocol specification

Id – an attack state id in the protocol specification
F – a filter
BStep – the maximum number of backward steps
N – a number of workers

1 (M,GS, IS) ← initialize(P, Id ,BStep,F );
2 history ← {IS};
3 send(server, getJob);
4 while isOpen() do
5 if DATA ← recv(server) then
6 IS ← DATA;
7 IST ← nextBackNarrowForParallel(M,GS, F, IS);
8 IST ′ ← filterWithHistory(M,history, IST );
9 history ← insert(history, IST ′);

10 forall the IS′ ∈ IST ′ do
11 JOB ← IS′;
12 send(server, JOB);

13 send(server, getJob);

by the worker to the master. Initially, we need to call initialize function at
line 1 as the same mentioned above for the master. history is initially set to
contain only the attack state IS at line 2. Each worker starts the job handling
by sending a getJob message to the master to request a job at line 3. While
the connection is open, whenever a worker receives DATA from the master, which
must be a job, the worker deconstructs it into the state IS at line 6. Given M,
GS, F, and IS, nextBackNarrowForParallel function performs the backward
narrowing step to obtain successor states reachable from IS at line 7, which is
the main task that the worker needs to do. IST is then filtered with the local
cache history by using filterStateWithHistory function, which returns a
new set of states IST’ at line 8. history is then updated by inserting IST’ at
line 9. For each state in IST’, we produce a new job and send it to the master
at lines 10–12. We intend to send each job one by one to the master because it
achieves the best running performance in our experiments. Once all jobs are sent
to the master, the worker sends a getJob message to request a job. Note that
the workers terminate if and only if the master closes all connections. The two
functions initialize and filterWithHistory are based on existing functions
provided in Maude-NPA.

5 Experiments

We have used a MacPro computer that carries a 2.5 GHz microprocessor with 28
cores and 1.5 TB memory to conduct experiments. We use Maude-NPA and the
parallel version of Maude-NPA in our case studies. The tool and the case studies
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for the experiments are publicly available at the webpage in the Footnote 1.
Besides, the original source code of the cases studies and more protocols are
listed at the webpage.2

We have conducted experiments on various kinds of protocols to confirm the
usefulness of our parallel version of Maude-NPA such as Symmetric Key Proto-
cols, Homomorphism Protocols, Exclusive OR Protocols, API Protocols, PKCS
Protocols, Choice Protocols, and Distance-Bounding Protocols. The experimen-
tal data are shown in Tables 1–2. The first, second, and third columns denote
the name of the protocols, the attack state id used in protocol specifications,
and the depth bound, respectively. The fourth and fifth columns denote the ver-
ification time excluding the time taken to generate the grammars for protocols
when conducting model checking with Maude-NPA and Parallel Maude-NPA,
respectively. In a row, the bold value is either in the fourth column or the fifth
column denoting the corresponding winning tool. The sixth column denotes the
percentage of improvement when using Parallel Maude-NPA. If the value is a
positive number, namely X, it means that the parallel Maude-NPA is X% faster
than Maude-NPA. Conversely, if the value is a negative number, namely −X, it
means that Maude-NPA is X% faster than the parallel Maude-NPA. The last
column denotes the average number of states at each layer for each worker to
handle, respectively. Furthermore, we inspect the number of states located at
each layer for each protocol shown in Appendix A. Model checking experiments
terminate as soon as counterexamples are found or the depth bound is reached.

The tool uses sockets to communicate between the master and the workers
so that we can flexibly choose to use a shared-memory machine or a distributed
environment. For all experiments, we use a master and eight workers with a
shared-memory machine, the MacPro computer. The experimental data says that
for simple case studies (24 experiments) in which the verification time is less than
40 s, Maude-NPA is obviously faster than the parallel Maude-NPA because the
number of states located at each layer is very small and the verification time is so
short that the cost of communication between the master and workers becomes
burdensome. However, the parallel Maude-NPA still can finish in a reasonably
short amount of time. For non-trivial case studies (35 experiments) in which
the number of states located at each depth is larger, the parallel Maude-NPA
has a very good performance that is 30% faster than Maude-NPA on average,
demonstrating its potential. For the Diffie Hellman protocol, the percentage of
improvement can be up to 49%. The average number of states at each layer for
a worker is measured to let us know how busy the worker is, which reflects the
number of states located at each layer. The more busy workers are and the deeper
the depth bound is, the more benefit we may gain from the use of parallelization.

We select three protocols whose verification time is the largest among all
protocols to conduct extra experiments with different numbers of workers used
in our tool. The experimental data are shown in Table 3. The sixth column
shows the number of workers used in the experiments. We can see that the
average number of states at each layer for a worker is subject to the number of

2 http://personales.upv.es/sanesro/Maude-NPA Protocols/index.html.

http://personales.upv.es/sanesro/Maude-NPA_Protocols/index.html
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Table 1. Results of Maude-NPA and Parallel Maude-NPA

Protocol Attack
State

Depth Maude-NPA
(seconds)

Parallel
Maude-NPA
(seconds)

P(%) States/
Layer/
Worker

1. Symmetric Key Protocols

Amended Needham Schroeder 0 7 4588.61 2821.933 39 11.11

Carlsen Secret Key Initiator 0 5 224.175 148.732 34 3.73

Denning Sacco 0 11 35.243 33.986 4 0.43

Diffie Hellman

0 11 284.211 158.882 44 1.56

1 12 286.663 145.412 49 1.45

2 13 35.371 21.48 39 0.32

ISO-5 Pass Authentication 0 5 101.649 64.306 37 2.1

Kao-Chow RA 0 4 52.235 32.904 37 2

Kao-Chow RAHK 0 4 4.027 12.151 -67 0.19

Kao-Chow RAT 0 4 114.414 77.463 32 1.94

Otway-Rees 0 4 72.516 44.91 38 2.16

Secret 06 0 2 1.732 4.874 -64 0.38

Secret 07 0 4 2.589 6.662 -61 0.28

Wide Mouthed Frog 0 3 16.11 15.563 3 1.92

Woo and Lam Authentication 0 4 1.371 5.83 -76 0.28

Yahalom 0 4 45.216 28.838 36 1.91

2. Homomorphism Protocols

Needham Schroeder Lowe ECB 0 7 73.869 54.355 26 1.11

3. Exclusive OR Protocols

Needham Schroeder Lowe XOR 0 8 10.22 14.771 -31 0.31

SK3 0 3 4.162 10.171 -59 0.17

TMN ltv-F-tmn-asy 0 5 157.442 110.264 30 0.88

WIRED ltv-C-wep-asy 0 5 14.392 21.335 -33 0.15

WIRED ltv-C-wep-variant 0 5 15.571 22.781 -32 0.15

4. API Protocols

YubiKey

0 9 3.487 10.551 -67 0.17

1 7 93824.875 65294.633 30 5.13

21 8 341.529 228.15 33 0.8

3 7 13092.864 10208.363 22 3

YubiHSM attack(d) 0 9 843.388 598.361 29 2.38

workers used in the experiments. When the average number of states at each
layer for a worker is high, we have a chance to increase the number of workers to
improve the running performance of our tool for the first two protocols, Amended
Needham Schroeder and YukiKey. Up to a certain point, the more workers are
used, the less busy workers are and the more burden the master needs to handle
and communicate with workers that may not improve the running performance
and even become worse as in the third case study, TLS attack. In addition,
as mentioned above we parallelize only the first step in the second stage, but
not the second step in the second stage. Hence, there is a limitation point for
improvement of the first step by parallelization. Even if the number of workers
is increased, it will not improve the running performance and may make the
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Table 2. Results of Maude-NPA and Parallel Maude-NPA

Protocol Attack
State

Depth Maude-NPA
(seconds)

Parallel
Maude-NPA
(seconds)

P(%) States/
Layer/
Worker

5. PKCS Protocols

PKCS11 a1-noComp 0 4 24.815 21.489 13 0.81

PKCS11 a2-noComp 0 6 69.532 46.842 33 0.75

PKCS11 a3-noComp 0 6 296.424 201.218 32 1.6

PKCS11 a4-noComp 0 7 62.886 45.154 28 0.88

PKCS11 a5-noComp 0 9 382.498 271.263 29 1.82

6. Choice Protocols

encryption mode

0 4 3.164 8.634 -63 0.28

1 4 8.587 9.855 -13 0.78

2 10 67.941 43.627 36 1.1

3 11 136.958 88.037 36 1.61

rock paper scissors

0 9 125.615 76.972 39 1.81

1 1 0.389 4.602 -92 0.13

2 2 1.003 4.285 -77 0.38

TLS regular 0 3 6.727 15.02 -55 0.17

TLS attack 0 11 8695.211 6925.944 20 3.15

7. Distance-Bounding Protocols

brands chaum
1 4 6.236 8.817 -29 0.25

2 6 16.186 16.088 1 0.29

CRCS
1 9 766.746 515.919 33 0.75

2 8 121.77 101.815 16 0.42

H&K
1 5 16.792 14.108 16 0.35

2 2 1.174 4.388 -73 0.13

MAD
1 9 175.382 126.641 28 0.67

2 6 967.156 693.66 28 2.42

Meadows v1-DH
1 4 1.646 6.281 -74 0.13

2 8 32.153 35.344 -9 0.28

Meadows v2-DH
1 4 1.694 6.396 -74 0.13

2 3 2.464 5.858 -58 0.17

Munilla
1 7 186.24 96.735 48 1.45

2 4 6.279 9.017 -30 0.19

Swiss Knife
1 4 6.69 9.384 -29 0.25

2 4 26.862 24.539 9 0.38

TREAD
1 4 6.444 8.962 -28 0.25

2 4 5.166 8.236 -37 0.25

master busier to handle many workers at the same time. Note that there are no
workers handling jobs when the second step is performed. Hence, it is significant
to parallelize the second step as one piece of our future work.

In summary, the parallel version of Maude-NPA can improve the running
performance of Maude-NPA effectively when dealing with most non-trivial case
studies in which the number of states located at each layer is considerably large.
The more states located at each layer and the deeper the search space is, the
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Table 3. Parallel Maude-NPA with various numbers of workers

Protocol Attack
State

Depth Maude-NPA
(seconds)

#Workers Parallel
Maude-NPA
(seconds)

P(%) States/
Layer/
Worker

Amended Needham Schroeder 0 7 4588.61

8 2821.933 39 11.11

16 2651.974 42 5.55

24 2646.479 42 3.7

32 2622.72 43 2.78

40 2627.64 43 2.22

YubiKey 1 7 93824.875

8 65294.633 30 5.13

16 61365.349 35 2.56

24 60937.287 35 1.71

32 59652.934 36 1.28

40 60083.891 36 1.03

TLS attack 0 11 8695.211

8 6997.392 20 3.15

16 6960.781 20 1.57

24 7193.625 17 1.05

32 7220.197 17 0.79

40 7586.980 13 0.63

more improvement may be obtained by parallelization. For simple case studies,
whose verification time is very small, for example, less than 40 s in our case
studies, we do not need to use the parallel version of Maude-NPA, although we
still can use it to obtain a reasonable result. We can see that the verification
time for simple case studies is very small and so the use of the parallel version
of Maude-NPA is not much different compared with Maude-NPA. Hence, it is
sufficient to use solely the tool in the present paper for cryptographic protocol
analysis with Maude-NPA.

6 Related Work

Our work is very close to parallel Breadth-first search algorithms. There are
various parallel BFS algorithms that have been intensively studied [2,7,25,26,
35]. Some of these algorithms work efficiently compared to the classical serial
BFS algorithm [9, Section 22.2]. PBFS [26] uses a multiset data structure called
a bag instead of a queue (FIFO). The bag supports insertion essentially as fast
as FIFO and can be split and combined efficiently. In addition, for efficient
implementation, PBFS contains a benign race condition in their algorithm and
uses a bag reducer that allows updating concurrently to a shared variable or
data structure at the same time. A bag is a collection of pennants in which each
pennant is a tree of 2k nodes, where k is a non-negative integer. Each node in
this tree contains two pointers to denote its left and right children. The bag is a
crucial data structure in PBFS that is implemented efficiently in C++, while we
use a set data structure that can be defined in Maude. Both Maude-NPA and
Parallel Maude-NPA are written in Maude, a specification language, which is not
flexible to adapt various data structures able to be implemented efficiently in the
low-level, however, the idea to parallelize BFS is shared. Furthermore, we have
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demonstrated that the breadth-first search in Maude-NPA can be reasonably
parallelized.

In addition to Maude-NPA, there are several cryptographic security analy-
sis tools, such as Athena [34], ProVerif [6], OFMC [5], Avispa [1], Scyther [10],
Verifpal [22], and TAMARIN [28]. Among them, TAMARIN, which is a prover
for the symbolic analysis of security protocols, is the closest to Maude-NPA
that generalizes the backward search used by the Scyther tool to support the
unbounded session model, reasoning modulo equational theories, and modeling
complex control flow and mutable global state. In TAMARIN, protocol spec-
ification is specified in multiset rewriting rules, while property specification is
written in a guarded fragment of first-order logic. Each protocol trace corre-
sponds to a multiset rewriting derivation that is the sequences of the labels of
the applied rules. TAMARIN performs an exhaustive backward search to look
for a trace that does not satisfy the property and returns a counterexample as an
attack. If no rule can be applied anymore and no counterexample is found, then
the protocol satisfies the property. To the best of our knowledge, our tool is the
first attempt to parallelize a dedicated cryptographic security tool, Maude-NPA.
Although, there are many parallel model checking algorithms for LTL [3], such
as DiVinE 3.0 [4], Garakabu2 [23,24], a multicore extension of SPIN [20], and
Parallel L + 1-DCA2L2MC [11].

7 Conclusion

The paper has described a parallel version of Maude-NPA and a tool that sup-
ports it. The tool has been implemented in Maude by using a master-worker
model with socket communication. The paper has also reported on some exper-
iments of various kinds of protocols in which the tool can increase the running
performance of Maude-NPA by 30% on average for most non-trivial case studies
where one master and eight workers are used.

There are several lines of future work as mentioned in the paper. Further-
more, we would like to use the new meta-interpreter feature in Maude rather
than sockets to reduce the time taken in verifying protocols by our tool to some
extent. Meta-interpreters can be run in a separate process to handle jobs inde-
pendently and processes can communicate to each other by using filesystem
objects on the same host instead of sockets with the TCP/IP protocol. For our
experiments, if we increase the number of jobs that will be sent simultaneously
between workers to the master, the running performance becomes worse because
each state in Maude-NPA carries more information after each state transition for
optimizing and tracing back to the initial state from the state and each state is
converted to a string before sending over sockets. Hence, using sockets to convey
considerably large data between workers and the master in Maude is not a good
way. Therefore, the use of processes in a shared memory machine may be better
than sockets in terms of communication cost. Besides, it may be interesting to
consider allocating workers dynamically instead of fixing its number beforehand
as one line of our future work. Finally, we should conduct more case studies and
use various numbers of workers with the tool to demonstrate its usefulness.
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A The Number of States Located at Each Layer

The fourth column in Tables 4–5 shows the number of states located at each
layer starting from depth zero up to the depth bound for each protocol, which
is a list of natural numbers separated by commas. If the last value in the list is
X, it means that there are X states located at the depth bound. Especially, if
X is zero, it means that there is no state for the layer. If the last value in the
list is of the form X + Y , it means that there are X + Y states located at the
depth bound while Y is the number of initial states (counterexamples).

Table 4. The number of states located at each layer

Protocol Attack
State

Depth States located at layers (0, ..., i)

1. Symmetric Key Protocols

Amended Needham Schroeder 0 7 1, 2, 4, 9, 26, 62, 152, 365 + 1

Carlsen Secret Key Initiator 0 5 1, 3, 8, 17, 40, 79 + 1

Denning Sacco 0 11 1, 1, 2, 3, 5, 7, 6, 5, 4, 3, 1, 0

Diffie Hellman

0 11 1, 4, 5, 9, 13, 18, 20, 22, 17, 12, 10, 5 + 1

1 12 1, 6, 10, 11, 16, 20, 20, 21, 13, 9, 6, 3, 1 + 2

2 13 1, 4, 6, 6, 7, 5, 3, 1, 0

ISO-5 Pass Authentication 0 5 1, 4, 4, 12, 23, 39 + 1

Kao-Chow RA 0 4 1, 3, 8, 17, 34 + 1

Kao-Chow RAHK 0 4 1, 1, 1, 2, 1, 0 + 1

Kao-Chow RAT 0 4 1, 2, 4, 14, 40 + 1

Otway-Rees 0 4 1, 2, 6, 15, 44 + 1

Secret 06 0 2 1, 2, 2 + 1

Secret 07 0 4 1, 4, 2, 1, 0 + 1

Wide Mouthed Frog 0 3 1, 5, 13, 26 + 1

Woo and Lam Authentication 0 4 1, 2, 2, 2, 0 + 2

Yahalom 0 4 1, 2, 8, 19, 30 + 1

2. Homomorphism Protocols

Needham Schroeder Lowe ECB 0 7 1, 4, 9, 10, 5, 8, 14, 10 + 1

3. Exclusive OR Protocols

Needham Schroeder Lowe XOR 0 8 1, 1, 2, 3, 3, 3, 2, 2, 2 + 1

SK3 0 3 1, 2, 1, 0

TMN ltv-F-tmn-asy 0 5 1, 4, 7, 8, 8, 6 + 1

WIRED ltv-C-wep-asy 0 5 1, 2, 1, 1, 1, 0

WIRED ltv-C-wep-variant 0 5 1, 2, 1, 1, 1, 0

4. API Protocols

YubiKey

0 9 1, 1, 1, 2, 2, 1, 1, 1, 1, 0 + 1

1 7 1, 4, 4, 9, 21, 88, 160, 0

21 8 1, 4, 7, 16, 14, 2, 2, 5, 0

3 7 1, 4, 4, 6, 18, 55, 80, 0

YubiHSM attack(d) 0 9 1, 1, 2, 3, 4, 7, 13, 24, 40, 75 + 1
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Table 5. The number of states located at each layer

Protocol Attack State Depth States located at layers (0, ..., i)

5. PKCS Protocols

PKCS11 a1-noComp 0 4 1, 3, 5, 7, 9 + 1

PKCS11 a2-noComp 0 6 1, 2, 2, 4, 11, 11, 4 + 1

PKCS11 a3-noComp 0 6 1, 3, 6, 13, 20, 21, 12 + 1

PKCS11 a4-noComp 0 7 1, 3, 7, 10, 10, 8, 6, 3 + 1

PKCS11 a5-noComp 0 9 1, 4, 11, 22, 31, 31, 15, 9, 5, 1 + 1

6. Choice Protocols

encryption mode

0 4 1, 1, 1, 2, 3 + 1

1 4 1, 2, 4, 8, 9 + 1

2 10 1, 4, 9, 12, 15, 16, 13, 10, 6, 2, 0

3 11 1, 4, 10, 18, 22, 24, 21, 18, 14, 8, 2, 0

rock paper scissors

0 9 1, 8, 16, 24, 27, 24, 18, 9, 3, 0

1 1 1, 0

2 2 1, 5, 0

TLS regular 0 3 1, 1, 1, 0 + 1

TLS attack 0 11 1, 4, 7, 10, 14, 18, 20, 24, 29, 35, 46, 69

7. Distance-Bounding Protocols

brands chaum
1 4 1, 2, 3, 2, 0

2 6 1, 3, 4, 3, 1, 1, 0 + 1

CRCS
1 9 1, 3, 8, 16, 26, 35, 28, 14, 4, 0

2 8 1, 3, 3, 3, 6, 6, 3, 1, 0 + 1

H&K
1 5 1, 2, 4, 5, 2, 0

2 2 1, 1, 0

MAD
1 9 1, 3, 7, 10, 10, 8, 5, 3, 1, 0

2 6 1, 5, 10, 14, 18, 27, 40 + 1

Meadows v1-DH
1 4 1, 1, 1, 1, 0

2 8 1, 2, 2, 3, 3, 3, 3, 1, 0

Meadows v2-DH
1 4 1, 1, 1, 1, 0

2 3 1, 1, 1, 0 + 1

Munilla
1 7 1, 4, 7, 12, 22, 25, 10, 0

2 4 1, 2, 2, 1, 0

Swiss Knife
1 4 1, 2, 3, 2, 0

2 4 1, 4, 5, 2, 0

TREAD
1 4 1, 2, 3, 2, 0

2 4 1, 3, 2, 1, 0 + 1
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Abstract. We present a general and efficient programming interface
to Maude from Python and other programming languages. All relevant
Maude entities and operations are exposed in a documented object-
oriented library to facilitate the integration of Maude into external pro-
grams and vice versa. This paper describes the design and implementa-
tion of the library, explains how to use it, and discusses some mature
applications.

1 Introduction

Formal tools are more useful when they can cooperate and interact with the
outside world through simple and well-defined interfaces. In addition to the tra-
ditional command-line interfaces, popular tools like the Z3 [10] and CVC4/5 [3,4]
SMT solvers, the Storm [20] probabilistic model checker, or the Lean [11] theorem
prover are offering programming interfaces to their functionality from languages
like C++ and Python. Some are even conceived as libraries in the first place, like
the Spot [16] platform for LTL and ω-automata. This laudable trend also reaches
mainstream programming languages like C/C++, whose compiler Clang can be
used as a library to inspect the abstract syntax tree of programs and control the
different compilation phases.

Maude [8] is a high-performance logical and semantic framework based on
rewriting logic [27]. Maude programs are collections of modules corresponding to
specifications in this logic, where states are terms in an equational logic that are
transformed by the nondeterministic application of rewrite rules. Rewriting logic
is reflective and Maude provides a universal theory where terms, modules, and
other related concepts are represented as data that can be manipulated within
the language. Several tools for analyzing Maude specifications and application-
specific interactive interfaces have been written using these metaprogramming
features. However, interacting with external tools and visualization is not so easy
within Maude, and the interpreter has occasionally been extended with custom ad
hoc extensions. Examples are the Maude Formal Environment [15], which inter-
acts with external termination provers and libraries, and several analysis and visu-
alization tools of the ELP group at Universitat Politècnica de València [1,2].

Maude is being used behind the scenes by some tools like the Tamarin
prover [26] for security protocol verification, the K semantic framework [28] (until
its fifth version), and the heterogeneous tool set Hets [9], among others. All this
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software includes ad hoc code to run an instance of the Maude interpreter as a
separate process, issue commands to its standard input stream, and parse their
answers. The IMaude agent of the InterOperability Platform (IOP) [25] follows
the same approach to communicate with Maude, but then provides an abstrac-
tion for other user-defined agents of this framework to interact with the language.
IMaude is used by the Pathway Logic Workbench [35], Mobile Maude [7], and
the graphical interface to Maude-NPA [33], among others.

We present here an intuitive programming interface for Python and other pro-
gramming languages that exposes almost all functionality of the Maude inter-
preter and some useful extensions. Moreover, the connection in the opposite
direction, from Maude to the external language, is also supported. Unlike pre-
vious tools, these language bindings are directly linked with the Maude imple-
mentation, so several new possibilities and better performance are expected from
this approach. The library comes with detailed documentation and API refer-
ence, and it has already been used in some relevant projects (see Sect. 6).

Its implementation relies on the Simple Wrapper and Interface Generator
(SWIG) [13], so bindings can be produced for any language supported by this
tool. However, only Python has been extensively tested and enhanced with
language-specific adaptations to provide a more natural interface. The Python
module is available at the Python Package Index (PyPI) and can be installed
with the command pip install maude. Currently, the binding for Java has also
been tested to a lesser degree and the those for other languages must be compiled
from source, for which instructions are available. In the following, we will focus
on the Python flavor of the bindings for simplicity, although most information
can be generalized to other languages.

This paper starts with a quick overview of the library in Sect. 2, which
is further illustrated by a simple example in Sect. 3. Some advanced fea-
tures are introduced in Sect. 4, and the implementation is described in Sect. 5.
Finally, Sects. 6 and 7 mention some applications and complete the discus-
sion on related work in this introduction. More information can be found
at github.com/fadoss/maude-bindings including documentation, examples, the
API reference, and the source code of the library.

2 Overview of the Library

In this section, we describe the design and overall organization of the language
bindings, which coincide for all supported languages. However, we will stick to
the Python instance for simplicity, as explained before.

The maude library exhibits all relevant Maude entities and operations as
objects and methods of the target language. There are classes Term for terms,
Module for modules, Sort for sorts, Symbol for symbols (or operators), Equation
for equations, Substitution for substitutions, and so on. Most commands in
the Maude interpreter are gathered as methods of the Term class, like reduce,
rewrite, search, get_variants, and vu_narrow. Some commands that are not
applied to a singular term like unify are available through the Module class.

https://github.com/fadoss/maude-bindings
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Fig. 1. Some relevant classes and methods in the library.

Operations that are reserved to the metalevel in the Maude interpreter are also
implemented as regular methods, like iterating over the arguments of a term with
arguments, obtaining its least sort with getSort, its root symbol with symbol,
or applying a substitution with instantiate, among others. Figure 1 shows a
selection of the basic classes along with some methods that relate them.

A simple program that reduces the term 2 * 3 with the maude Python pack-
age and prints its result 6 to the terminal would look as follows

import maude
maude.init()
m = maude.getModule(’NAT’)
t = m.parseTerm(’2 * 3’)
t.reduce ()
print(t)

The first two instructions load the maude package and initialize it with the init
function. This must be called before anything else in the library since it sets
up some required resources and loads the Maude prelude. Everything in Maude
takes place within modules, so a Module object is needed to begin with, and it
can be obtained with the getModule or getCurrentModule functions. Typically,
we will then parse a term with the parseTerm method and apply some operations
to it. The Module class also includes several methods for inspecting its contents.

While the library offers enough resources to manipulate terms without resort-
ing to the metalevel, moving through different levels of reflection is natively
supported with the upTerm and downTerm methods of Module. For expressions
in the Maude strategy language, these methods are called upStrategy and
downStrategy. Moreover, a Module object can be obtained from its metarepre-
sentation using the downModule function, while the converse operation can be
achieved by simply reducing an upModule term in the META-LEVEL module.

In the next section, we illustrate the possibilities of the library through an
example, giving further details on how to use it. Other advanced features are
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described in Sect. 4, and more information is available on the home page of the
language bindings.

3 How to Use the Library, Illustrated by an Example

In this section, a toy interactive rewriter is implemented using the maude library,
as an excuse to illustrate its usage and possibilities. Most of this example can be
programmed directly in Maude using reflection, probably in a more verbose and
complex manner, but the same procedures can be used when actual interaction
with the outside world is pursued.

Our interactive prototype will repeatedly read commands from the terminal
and reply to them. Implementing this kind of interface in Python is easy thanks
to the standard cmd module. We only need to subclass the cmd.Cmd class and
provide a method do_cmdname to handle the command cmdname. Its full source
code is available in the inter.py file of the bindings repository. As already
explained, we should start by importing the library with import maude and
initializing it with maude.init(). The InteractiveRewriter class holding the
implementation of all commands in the interpreter can then be defined1.

import cmd
import maude

class InteractiveRewriter (cmd.Cmd):
# A method will be added here for each command

if __name__ == ’__main__ ’: # entry point

maude.init()
InteractiveRewriter (). cmdloop ()

For the moment, only two attributes are maintained, the current module and
the term being rewritten, as specified in the class constructor.

def __init__(self):
super (). __init__ () # base class constructor

self.module = None # current module

self.term = None # current term

In order to bring modules to our scope, we need a load command to read them
from Maude source files. Thus, we implement a method do_load that essentially
delegates on the load function of the library.

def do_load(self , path):
maude.load(path)
self.module = maude.getCurrentModule ()
print(’The current module is’, self.module)

1 The official documentation of the cmd module and other Python features that may
appear is available at docs.python.org.

https://docs.python.org
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In addition, we set the current module using the getCurrentModule function,
which gives the Module object for the last module that has been entered or
explicitly selected in the file. Its name is printed in the screen by printing the
object itself. However, we may want to select another module, for what we also
provide commands to list the available modules and to select one of them.

def do_list(self , _):
for module in maude.getModules ():

print(module)

def do_select(self , name):
self.module = maude.getModule(name)

For example, assume we have a file foo.maude with the following module.

mod FOO-MODULE is
sorts Foo Bar .
subsort Bar < Foo .

ops a b c : -> Bar [ctor] .
op f : Foo Foo -> Foo [ctor] .
op g : Foo -> Foo [ctor] .

vars X Y : Foo .

rl [swap] : f(X, Y) => f(Y, X) .
rl [next] : a => b .

endm

After running the inter.py script with Python, the following command prompt
will appear, where we can input foo.maude using the load command.

*** Interactive rewriter for Maude ***

IRew > load foo
The current module is FOO -MODULE

Term manipulation. At this point, we need to choose a term to start rewriting.

def do_start(self , text):
self.term = self.module.parseTerm(text)

Issuing the command start t makes t the current term in this session. We are
not taking care about errors, but self.term would be None and error messages
would have been printed if text could not be parsed as a term. For printing the
syntax tree of this term, we can prepare a command tree by writing a method
do_tree as before, which may simply call the following recursive function:
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def print_tree(term , indent=’’):
print(f’{indent }{term.symbol ()} : {term.getSort ()}’)

for argument in term.arguments ():
print_tree(argument , indent + ’ ’)

The print_tree function starts by printing the top symbol of term and its sort
with the appropriate indentation, and then proceeds recursively on the argu-
ments via the arguments method. Notice that strings prefixed by f in Python
are formatted by replacing the expressions between curly brackets with their
values. For example, we can show the syntax tree of f(g(a), b) in FOO-MODULE
by selecting this term with start and calling the tree command.

IRew > start f(g(a), b)
IRew > tree
f : Foo

g : Foo
a : Bar

b : Bar

Standard Commands. One of the most useful commands in Maude is reduce.

def do_reduce(self , _):
nrew = self.term.reduce ()
print(f’Reduced to {self.term} in {nrew} rewrites.’)

Methods like reduce and rewrite modify the term to which they are applied
and return the number of rewrites instead. Since the original term is overwritten,
if desired, it can be copied before with its copy method. Another command with
a straightforward implementation is the strategy-rewriting command srewrite:

def do_srewrite(self , text):
strategy = self.module.parseStrategy(text)
for result , nrew in self.term.srewrite(strategy ):

print(f’{result} in {nrew} rewrites ’)

Methods like srewrite, search, and vu_narrow that may produce multiple
solutions return an iterator and do not alter the original term. As an example,
we apply the strategy swap ; next to the current term with this command:

IRew > srewrite swap ; next
f(b, g(b)) in 2 rewrites

Applying Rules. For our interactive rewriter to honor its name, we should provide
a command step to execute a single rewrite on the current term.

def do_step(self , label ):
results = [] # results of the rewriting step
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for k, (result , subs , ctx , rl) in enumerate(
self.term.apply(label if label else None )):

where = self.print_context(ctx , rl.getLhs ())
results.append(result)

print(f’({k}) {result} by applying {rl} ’
f’on {where} with {subs}’)

self.select_one(results)

The apply method of Term calculates all possible rewrites with any rule labeled
with the given string (or any rule at all if None is given instead). It provides an
iterator over the rewritten terms (result), the matching substitutions (subs)
and contexts (ctx), and the applied rules themselves (rl). Contexts designate a
single position in a term, and we see them here as functions that fill that position
with the given term. In other words, ctx(subs.instantiate(rl.getLhs()) is
the original term, and ctx(subs.instantiate(rl.getRhs()) is result. In this
case, we hide in the print_context method how the context is processed since
we will come back to this soon. Every result is accumulated in a list that is later
passed to another unspecified method select_one that lets the user choose the
next term.

IRew > start f(f(b, c), a)
IRew > step swap
(0) f(a, f(b, c))

by applying rl f(X, Y) => f(Y, X) [label swap] .
on top with X=f(b, c), Y=a

(1) f(f(c, b), a)
by applying rl f(X, Y) => f(Y, X) [label swap] .
on f(@, a) with X=b, Y=c

Select one of the options (0-1):

Matching and Substitutions. In addition to the rules in the module, the inter-
active rewriter may be interested in experimenting with new rules, for what we
add a command inline to apply inline rules.

IRew > start f(g(a), b)
IRew > inline g(X) => c
(0) f(c, b) in f(@, b) with X=a

There is a single option , done.

This command can be implemented by manually matching the left-hand side
of => and replacing it with the right-hand side instantiated with the matching
substitution. The match method of Term is the appropriate resource for this. It
takes a pattern as an argument.
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def do_inline(self , text):
lhs , rhs = text.split(’=>’, maxsplit =1)
lhs = self.module.parseTerm(lhs)
rhs = self.module.parseTerm(rhs)

results = [] # results of inline rewriting

for k, (subs , ctx) in enumerate(self.term.match(lhs ,
maxDepth=maude.UNBOUNDED )):

result = ctx(subs.instantiate(rhs))
where = self.print_context(ctx , lhs)

print(f’({k}) {result} in {where} with {subs}’)
results.append(result)

self.select_one(results)

The first block in the method separates the left- and right-hand sides of the inline
rule and parses them in the current module. Then, lhs is matched against the
current term self.term, obtaining the matching substitution subs and context
ctx. By default, matching is limited to the top symbol without extension, but
minDepth and maxDepth can be set to fix maximum and minimum depths. The
auxiliary method print_context can be defined as follows.

def print_context(self , ctx , lhs):
var_name = f’<<PH >>:{lhs.getSort ()}’
var_term = self.module.parseTerm(var_name)

ctx = ctx(var_term)

return ’top’ if ctx.isVariable () \
else str(ctx). replace(var_name , ’@’)

The context is instantiated with a placeholder variable <<PH>>. If the result is a
variable, matching has happened on top. Otherwise, we replace the placeholder
by the @ sign for aesthetic reasons.

Building Terms and Modules. Once convinced with the new rule, we may want
to add it to the current module with a new command add. Since modules are
immutable in Maude, the library does not provide any direct resource to modify
them, but we can always draw on the metalevel. This requires a more complex
processing that we will carefully explain. Given the command add l => r, suppose
both sides of the rule have been parsed into the variables lhs and rhs, like
in the inline command. To modify the current module at the metalevel, we
should obtain its metarepresentation by evaluating the upModule operator of
the META-LEVEL module at the beginning of our do_add method.

ml = maude.getModule(’META -LEVEL’)
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if self.metamodule is None:
self.metamodule =

ml.parseTerm(f"upModule (’{self.module}, false)")
self.metamodule.reduce ()

The module term is stored in the metamodule attribute of the interpreter for
the next time. Remember that the metarepresentation of a module in Maude is
an operator with a set-like argument for each type of declaration or statement
in it. Hence, we will construct the metarepresentation of the new rule and insert
it in the slot of rule statements. The first ingredient is the operator

op rl_=>_[_]. : Term Term AttrSet -> Rule [ctor] .

for unconditional rules in the universal theory of META-LEVEL. The findSymbol
method of Module allows finding operators in the module by their names and
signatures, given as a sequence of domain kinds and a range kind. These kinds
should be obtained first with the findSort and kind methods.

term_kind = ml.findSort(’Term’).kind()
rule_kind = ml.findSort(’Rule’).kind()
attr_kind = ml.findSort(’Attr’).kind()

rl_symb = ml.findSymbol(’rl_=>_[_].’, (term_kind ,
term_kind , attr_kind), rule_kind)

Now, we only have to fill the gaps with the metarepresentations of lhs and rhs,
and with the constant none for the attribute part of the statement. We parse
this latter constant with the parseTerm as usual, but providing the additional
argument attr_kind to restrict parsing to this kind and avoid ambiguities.

none_attr = ml.parseTerm(’none’, attr_kind)

Finally, Symbol’s makeTerm constructs a term with a given sequence of argu-
ments.

rl_term = rl_symb.makeTerm ((ml.upTerm(lhs),
ml.upTerm(rhs), none_attr ))

Syntactic sugar is provided for invoking the makeTerm method when a Symbol
object is applied as a function, so the previous is equivalent to

rl_term =
rl_symb(ml.upTerm(lhs), ml.upTerm(rhs), none_attr)

Now, rl_term must be inserted into the seventh argument of the metamodule,
which holds the set of rules in system and strategy modules. For simplicity, we
assume that the module is not a functional one. In order to add the rule to this
set, we must build a new term with the union operator __ of RuleSet. The list
of arguments of the metamodule is obtained into the mm_args variable.
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rls_symb = ml.findSymbol(’__’, (rule_kind , rule_kind),
rule_kind)

mm_args = list(self.metamodule.arguments ())
mm_args [7] = rls_symb(mm_args [7], rl_term)

Finally, the module is reassembled with the makeTerm method.

self.metamodule = self.metamodule.symbol ()
.makeTerm(mm_args)

This new metamodule is converted to a Module object with the downModule
function, then assigned to the module attribute of the rewriter.

self.module = maude.downModule(self.metamodule)

Term objects in the library belong to a fixed module and they cannot operate
with entities from other modules, even if related by inclusion. Hence, if a term
was already set, we must reparse it in the new module.

if self.term:
self.term = self.module.parseTerm(str(self.term))

We can check that the new command works by executing the interpreter.

IRew > start a
IRew > add a => c
The rule has been inserted.
IRew > step
(0) b by applying rl a => b [label next] .

on top with empty
(1) c by applying rl a => c . on top with empty

Select one of the options (0-1): 1

Interoperability. To conclude and connect with the interoperability goals of the
library, we will implement a command trs that exports the rules in the module
into the standard TRS format, used by multiple verification tools.

IRew > load foo
IRew > trs
(VAR X:Foo Y:Foo)
(RULES

f(X:Foo , Y:Foo) -> f(Y:Foo , X:Foo)
a -> b

)

Since the format includes a VAR entry specifying the set of variables in the rules,
we must calculate this set with the following straightforward recursive function.
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def find_vars(term , varset ):
if term.isVariable ():

varset.add(term)
else:

for argument in term.arguments ():
find_vars(argument , varset)

This find vars function explores a term recursively accumulating its variables
into the set varset of terms. Terms and most objects in the library can be safely
used in dictionaries, sets, and other data structures since they support equal-
ity comparison and hashing. The implementation of the trs command simply
iterates over the rules printing them. Instead of the default conversion of terms
into strings, we use the prettyPrint method that permits finer control on the
printing format. In particular, a zero argument causes terms to be printed in
prefix form as required by the TRS format. Variables are also printed with an
explicit type annotation.

def do_trs(self , _):
varset = set() # variables in the rules

for rl in self.module.getRules ():
find_vars(rl.getLhs(), varset)
find_vars(rl.getRhs(), varset)

pv = lambda v: f’{v.getVarName ()}:{v.getSort ()}’
print(’(VARS’, ’ ’.join(map(pv , varset)), ’)’)
print(’(RULES ’)

for rl in self.module.getRules ():
lhs , rhs = rl.getLhs(), rl.getRhs ()
print(f’\t{lhs.prettyPrint (0)} -> ’

f’{rhs.prettyPrint (0)}’)

print(’)’)

In the general case, we should also ensure that identifiers respect the grammar
of the TRS format and consider equations and structural axioms. The com-
plete version of this example includes two more commands termination and
confluence that automatically check these properties on the rules using the
AProVE [19] and CSI [36] tools, with the generated TRS specification as input.

4 Advanced Features

This section introduces two features of the library with useful applications and
no direct correspondence in the Maude interpreter.
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4.1 Rewrite Graphs and Model Checking

Exploring the graph of all reachable states and transitions from a given initial
term is useful for debugging, visualizing, and model checking Maude specifica-
tions. We can recursively build this graph in the library using the apply method
or in Maude itself using the descent functions metaSearch or metaXapply, but
this does not work for strategy-controlled models and such a common oper-
ation deserves to be a builtin feature. The language bindings offer two classes
RewriteGraph and StrategyRewriteGraph to explore the rewrite graph of stan-
dard and strategy-controlled models, respectively. States are indexed by natural
numbers starting from zero, the state’s term can be obtained with getStateTerm,
its successors can be enumerated with getNextState, and other methods can be
used to obtain the rule applied in each transition. This makes it easy to program
a search or any other algorithm in Python that directly operates with the graph
produced by Maude.

Moreover, a high-level interface to the Maude LTL model checker [18] and its
extension for strategy-controlled systems [29] is provided through these graphs.
This is more convenient than reducing, as usual, the modelCheck operator of
the MODEL-CHECKER module2. The modelCheck method of both graphs receives
a term of sort Formula and returns a record indicating whether the formula holds
and a counterexample that refutes if it does not. Counterexamples are described
by a cycle and a path to it from the initial state, both given as lists of indices
in the rewrite graph. One of the advantages of this approach is that the same
graph can be used to model check multiple properties, hence saving the work
required for the generation of the model in successive executions. Moreover, we
can further process the graph or the counterexample when model checking has
finished.

4.2 Custom Special Operators

Having overly shown that the maude module lets Python programmers evaluate
Maude code in their programs, the interaction in the opposite direction, calling
Python code from Maude, has not been explored yet.

User-defined and many predefined functions in Maude are specified with
equations, but the prelude also includes some special operators whose behav-
ior is internally defined in the C++ code of the interpreter. Most operations on
the builtin types Nat, Float, Qid, and String, some polymorphic operators like
equality ==, and most descent functions in the META-LEVEL module are exam-
ples of special operators. Moreover, the Maude implementation has occasionally
been extended ad hoc with new special operators, like in the Maude Formal
Environment [15].

2 Even though the strategy language is part of the official releases of Maude [14], the
strategy-aware model checker [29] is not yet, but we have included it in the Maude
build used for this library.
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The language bindings allow declaring custom special operators whose behav-
ior against equational reduction and/or rule rewriting is defined in the target
language. In the Maude side, the operator should be declared first with the
special attribute and its id-hook SpecialHubSymbol option. For instance, the
gamma function that extends the factorial to real (and complex) numbers can
be declared as the following gamma operator within a module.

op gamma : Float -> Float [special (
id-hook SpecialHubSymbol

)] .

On the Python side, we have to define and register the callback that is invoked
when a term with gamma on top is reduced or rewritten. This is done by sub-
classing the maude.Hook class and implementing its run method, and then calling
the functions connectEqHook and/or connectRlHook to register an object of the
class as the handler for the special operator.

class GammaHook(maude.Hook):
def run(self , term , data):

module = term.symbol (). getModule ()
argument , = term.arguments ()

value = math.gamma(float(argument ))
return module.parseTerm(str(value))

The run method receives the term that it should return reduced or rewritten. The
implementation of gamma is directly provided by the math module of the Python
standard library, so in this case we only need to convert the argument and result
from a Maude term to a Python floating-point value and the other way around.
Finally, we install the hook for equational reduction with the connectEqHook
function.

hook = GammaHook ()
maude.connectEqHook(’gamma ’, hook)

After that, when we explicitly or implicitly reduce terms containing gamma in the
library, hook’s run would be executed and we would obtain the desired number.
For instance, if we program and run a REPL that parses and reduces every line
from standard input, we can obtain the following:

Gamma > 1.2 + gamma (6.5)
2.8908527781504438e+2

In the signature of the run method, there is another argument data giving
access to the op-hook and term-hook attributes of the special operator. Suppose
we want to implement a custom predicate that tells whether a number is prime.

op isPrime : Nat -> Bool [special (
term-hook trueTerm (true)
term-hook falseTerm (false)

)] .
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Using the above term hooks for the Boolean constants, we can define its run
method by the expression

data.getTerm(’trueTerm ’ if test_prime(argument)
else ’falseTerm ’)

for some test_prime Python function. While the same can be achieved by pars-
ing the constants with parseTerm, the advantage of hooks is that keep working
even if truth values are renamed, for example to tt and ff, in a module impor-
tation within Maude. Further details are explained in the documentation.

5 Implementation

The language bindings for Maude are implemented on top of the official imple-
mentation of Maude using some additional C++ code and the Simple Wrapper
and Interface Generator (SWIG) [13], as illustrated in Fig. 2. The desired pro-
gramming interface is specified by selecting the classes, functions, and methods
of the Maude implementation and the additional helper code that want to be
exposed in the target language. Several languages like Python, Java, Lua, C#,
Scheme, PHP, and JavaScript are supported, but only Python has been exten-
sively tested and used in our case. From this specification, SWIG generates glue
code in the selected language and in C, and this latter is then compiled into a
binary module for the target language interpreter. This module is linked to the
Maude implementation, which we have compiled as a shared library by adapt-
ing the build process. Indeed, we already did it to integrate Maude as a plugin
for the language-independent model checker LTSmin [30]. Notice that Maude
does not provide an official stable interface and the bindings are using its inter-
nal classes, so the implementation should be adapted on every new release of
Maude. Moreover, instead of using the official Maude implementation as is, the
language bindings are linked with our extension including a model checker for
systems controlled by strategies [29], which does not alter any other aspect of
the Maude implementation.

A large part of the classes and methods of the interface are direct wrappers
to the homonym classes and methods of the Maude implementation, but some
are implemented on purpose to facilitate the interaction. For example, terms are
represented in Maude sometimes as trees and sometimes as nodes in a directed
acyclic graph, but this particularity is hidden to the library user in the uniform
Term class. This type is backed by an auxiliary C++ class EasyTerm that chooses
the appropriate representation and manage the conversion between them. Cus-
tom special operators in Sect. 4.2 are supported by a SpecialHubSymbol subclass
of the Symbol type of the Maude implementation written on purpose to allow
registering C functions as callbacks for the equational reduction and rule rewrite
handling methods of the symbol. The connection with the target language is
based on the directors feature of SWIG and the maude.Hook class, whose run
method implemented in the target language can be called from the registered
callbacks of the special operator.
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Fig. 2. Implementation structure.

When the Python interpreter executes the import maude statement, it loads
the Python script generated by SWIG with the definition of all the classes and
functions of the interface. This Python code loads the binary module that has
been built from the SWIG-produced C code and the helper classes in the mid-
dle part of Fig. 2. This module is linked with the dynamic library libmaude.so
(.dylib in macOS or .dll in Windows) that contains the Maude implementa-
tion. Every object of the library in the target language holds a pointer to an
object living in the Maude implementation, whose methods are invoked when
the equivalent methods of the library are called. However, arguments may need
to be translated in the process, for example, from a Python list to a C++ vector.
This is done by the glue code generated by the interface generator.

5.1 Performance Considerations

Since the language bindings replace text-based interprocess communication by
direct procedure calls and despite the cost of the translations mentioned in the
last paragraph, this approach is expectedly much more efficient than the classi-
cal interaction through the interpreter, especially when the results are frequently
reused. We have executed some small experiments to compare the performance of
reduction using (1) the maude Python library, (2) an I/O interaction that inputs
reduce commands on a running Maude interpreter process and parse their results,
and (3) a socket-based approach that communicates with a Maude-implemented
TCP server that replies with the reduced forms of the terms it receives line by line.
Reducing the constant 0 in the predefined module CONVERSION takes respectively
(1) 3.21 µs, (2) 11.27 µs, and (3) 48.31 µs, so the best results are obtained with
the maude Python library. Moreover, the last two options have been implemented
in the simplest way possible and assuming unrealistic constraints, so production-
ready implementations would likely be more costly.

Performance improvements are more noticeable when reusing the output of
previous operations. For example, consider a toy Maude function fibonacci
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Fig. 3. Time spent in the iterative reduction of fibonnaci by number of iterations.

that expands a given list of integers by appending the sum of two leftmost num-
bers to the left. Repeatedly calling this function on the result of the previous
call takes the amount of time depicted in Fig. 3 (in logarithmic scale) for an
increasing number of iterations. In this experiment, the socket alternative has
been improved to store and reuse the result of the previous call, which is already
done by the bindings out of the box. While the language bindings and the socket
approach show almost a constant execution time per iteration, the I/O alterna-
tive requires Maude to parse the list of integers again and again with a much
higher cost. All these benchmarks are available at the bindings repository.

6 Some Applications

Since the first version of the library was released, almost two years ago, it has
been applied from small quick scripts to more relevant projects. Examples of
the latter are the integration of Maude into a robotic environment and a unified
interface to several external verification tools.

6.1 Integration of Maude into the Robot Operating System

The Robot Operating System (ROS) [12] is a collaborative robotic framework
organized as a collection of nodes that deal with the different robotic tasks
and communicate with each other by message passing. One of its most promi-
nent components is the navigation module. The officially supported languages
for programming ROS nodes are C++ and Python, but in a recent work [24]
Maude has been used for programming an alternative path-planning node and
experimenting with the inclusion of declarative languages in this context. The
maude Python library provides the required connection between the commu-
nication infrastructure of ROS and the actual path-planning algorithm. Even
though random access to the map is enabled by a custom special operator (see
Sect. 4.2), the efficiency of the Maude-based planner is not comparable to the
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existing optimized C++ implementation, but the integration has been used for
the formal verification of the latter. The more abstract Maude implementation
of the navigation algorithm has been formally verified via model checking and
SMT solving, and the correspondence with the official C++ planner has been
established by differential testing with a huge collection of maps and paths.

In the process, the Maude library has been used for automating the evaluation
of test cases, temporal properties, and verification conditions. For this latter case,
we have extended the builtin SMT support in Maude with unsupported theories
like arrays and uninterpreted functions. This extension and the other scripts
using this library are available at [23].

6.2 The Unified Maude Model Checker

The unified Maude model checking tool umaudemc [30] provides a uniform inter-
face to the Maude LTL model checker [18] and several external model checkers
for LTL, CTL, CTL*, and μ-calculus on standard and strategy-controlled Maude
specifications. This interface reads the input data of the model-checking problem,
builds the corresponding Kripke structure, calls the appropriate backend, and
shows the results to the user. Among the supported backends, there are LTSmin,
NuSMV [6], pyModelChecking [5], Spot [16], Spin [21], and a builtin μ-calculus
implementation written in Python. The maude library and the rewrite graphs
discussed in Sect. 4.1 are used to generate the models, evaluate the atomic propo-
sitions, parse the temporal formula, and so on. More recently, we have extended
umaudemc for specifying probabilities on top of Maude specifications, and check-
ing properties and calculating quantitative values by probabilistic model check-
ing using PRISM [22] and Storm [20] or by statistical model checking through
simulation or the MultiVeSta tool [34]. By using external tools, we can efficiently
support more logics and techniques while reducing the maintenance effort.

Moreover, umaudemc provides graphical and web-based interfaces for model
checking, allows postprocessing the counterexamples, and generates visual rep-
resentations of the rewrite graphs in different formats. This tool can also be used
as a library for application-specific model-checking interfaces [31,32].

7 Related Work

As discussed in the introduction, several tools in the verification community
maintain programming interfaces in addition to the traditional command-line
ones, so that they can be used from other tools. Most applications interact-
ing with Maude use ad hoc text-based communication with the interpreter,
and the implementation of Maude has occasionally been extended to interact
with external tools. The IMaude component of the IOP framework [25] is the
closest precedent to this work in this context, since it provides a reusable and
application-agnostic interface between Maude and external programs. However,
our language bindings replace the textual communication with the interpreter
with a more efficient binary connection with its implementation, extend the
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available functionality, simplify the installation process, and can be used from
potentially more programming languages.

On the other hand, Maude itself is being extended for a richer connection
to the outside world. The notion of external objects used for accessing Internet
sockets since Maude 2.0 has been applied to read and write files and standard
streams in 3.0, to external processes in 3.1, and to time and filesystem operations
in 3.2. External tools have also been integrated into Maude 2.7.1 with limited
support for SMT solving via the CVC4 [4] and Yices2 [17] tools.

8 Conclusions

We have introduced a general-purpose efficient programming interface to Maude
from Python and other programming languages. Almost all functionality of the
Maude interpreter is available through these language bindings along with some
useful additions. Moreover, the connection in the opposite direction, calling
external code from Maude, is also available via custom special operators. This
work facilitates the interoperability between Maude and other tools, and tackles
the claim for using Maude from external programs.

As future work, the library can be improved and extended in several direc-
tions, like adding native support for multiple interpreter sessions with separate
databases through the infrastructure of metainterpreters, allowing the construc-
tion and manipulation of modules at the object level, or distributing compiled
versions of the bindings for other languages. Moreover, there is currently no clear
and explicit C/C++ interface, which can be very useful for applications where
performance is a critical matter. Regarding applications, there are many possi-
bilities for the library as we have suggested along the paper, from the elaboration
of interfaces for specific frameworks to the development of more general tools.
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Verification of ROS Navigation using Maude. In: Mart́ı-Oliet, N., (ed.) XX Jor-
nadas de Programación y Lenguajes (PROLE). Sistedes (2021). http://hdl.handle.
net/11705/PROLE/2021/008

25. Mason, I.A., Talcott, C.L.:. IOP: the interoperability platform & IMaude: an inter-
active extension of Maude. In: Mart́ı-Oliet, N. (ed.) Proceedings of the Fifth
International Workshop on Rewriting Logic and Its Applications, WRLA 2004,
Barcelona, Spain, 27–28 March 2004. Electronic Notes in Theoretical Computer
Science, vol. 117, pp. 315–333. Elsevier (2004). https://doi.org/10.1016/j.entcs.
2004.06.016

26. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

27. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992). https://doi.org/10.1016/0304-3975(92)90182-
F

28. Rosu, G., Serbanuta, T.-F.: An overview of the K semantic framework. J. Log.
Algebraic Methods Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.
jlap.2010.03.012

29. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: Model checking strategy-controlled
systems in rewriting logic. Autom. Softw. Eng. 29(1), 1–62 (2021). https://doi.org/
10.1007/s10515-021-00307-9

30. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: Strategies, model checking and
branching-time properties in Maude. J. Log. Algebr. Methods Program. 123,
100700 (2021). https://doi.org/10.1016/j.jlamp.2021.100700

31. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: Metalevel transformation of strate-
gies. J. Log. Algebr. Methods Program. 124, 100728 (2022). https://doi.org/10.
1016/j.jlamp.2021.100728

32. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: Simulating and model checking
membrane systems using strategies in Maude. J. Log. Algebr. Methods Program.
124, 100727 (2022). https://doi.org/10.1016/j.jlamp.2021.100727

33. Santiago, S., Talcott, C.L., Escobar, S., Meadows, C.A., Meseguer, J.: A graphical
user interface for Maude-NPA. In: Lucio, P., Moreno, G., Peña, R., (eds.) Proceed-
ings of the Ninth Spanish Conference on Programming and Languages (PROLE
2009), San Sebastián, Spain, 9–11 September, 2009, volume 258(1) of Electronic
Notes Theory Computer Science, pp. 3–20. Elsevier (2009). https://doi.org/10.
1016/j.entcs.2009.12.002

34. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete
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