
Chapter 7
Rotorcraft Control Systems

Rafael Morales

Abstract This chapter provides an overview of flight control systems for rotorcraft
at an introductory level. There exist many rotorcraft configurations, however, we will
focus our attention on conventional helicopters to provide a fundamental understand-
ing. We will cover standard and advanced control design methods to design and val-
idate flight control algorithms for both stability augmentation and autopilot systems.
We will touch on some essential elements of feedback control theory before showing
how thedesignmethods are implemented.Akey characteristic of the discusseddesign
methods is that they are suitable for multivariable systems, which offer advantages
for minimising key helicopter dynamic couplings. The control design methods also
offer improved robustness properties leading to flight envelope protection character-
istics. We will cover key metrics to assess the robustness and performance properties
of the flight control laws from a control theory approach. These control laws form
the basis for the assessment of the flight control laws in terms of handling qualities.

Nomenclature

BIBO Bounded-Input Bounded-Output
LQR Linear Quadratic Regulator
LTI Linear Time-Invariant
MIMO Multiple-Input Multiple-Output
PID Proportional-Integral-Derivative
SISO Single-Input Single-Output
A, B,C, D Matrix coefficients of state-space representations
F Output feedback gain matrix
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H State feedback gain matrix
I Identity matrix with adequate dimensions
G Plant
K Compensator
G(s) Plant transfer function
K (s) Controller transfer function
S(s) Sensitivity transfer function
T (s) Co-sensitivity transfer function
wp(s) Sensitivity weight
wK S(s) Control actions weight
wT (s) Co-sensitivity weight
kp, ki , kD, N PID controller parameters
S∗
o , M,ω∗

S Sensitivity weight parameters
ω∗

T , NT , γT Co-sensitivity weight parameters
wK S Control actions constant parameter
j Imaginary unit
l Number of outputs
m Number of inputs
n Number of states
s Laplace variable
t Time (s)
T Transpose operator
c(t) Command or reference signal
e(t) Error signal
n(t) Noise signal
u(t) Control actions
x(t) State vector signal
y(t) Output signal
σ(.) Largest singular value
σ(.) Lowest singular value
ω frequency variable (rad/s)
ωS Sensitivity bandwidth (rad/s)
ωT Co-sensitivity bandwidth (rad/s)
‖.‖∞ Infinity norm

7.1 Feedback Control

In the context of engineering systems, the fundamental objective of feedback control
is to regulate flight variables of interest and de-sensitise the rotorcraft dynamics to
key parameter variations (e.g. changes in centre of gravity, aerodynamic coefficients,
etc.). Regulation of key aircraft flight variables (attitude and velocities) are related
to pilot command tracking and alleviation of gust perturbations as well. There are
three main characteristics when looking at the design of flight control systems:
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• Stabilisation: This property is concerned with the ability to stabilise the dynam-
ics of the rotorcraft. A primary role of using feedback in flight control systems is
to stabilise rotorcraft flight dynamics and/or improve the original rotorcraft tran-
sient response. This is one of the main roles of the subsystem known as stability
augmentation.

• Performance: The performance of the flight control systems is measured with
respect to the ability to track pilot command signals and provide disturbance
rejection capabilities. These two properties can be assessed separately. There are
a number of key metrics developed to assess the quality of the performance, both
in the time- and the frequency-domain. This is one of the main roles of the flight
control subsystem known as autopilot or autonomous system.

• Robustness: This property is concerned with the ability of the control algorithm to
maintain stability and certain level of performance despite variations on the rotor-
craft aeromechanics. In control theory, this property is further split into robust
stability and robust performance but we will consider only robust stability in this
chapter to simplify the discussions [1]. Although robust stability might not get
much attention inflight dynamics textbooks, robust stability is of paramount impor-
tance to flight control because of its impact on the airworthiness and certification
requirements of the aircraft.

The afore-mentioned characteristics provide great benefits in terms of pilot work
load alleviation, which in turn also has an impact on improving the safety of opera-
tions. Given significant progress in the areas of Artificial Intelligence and Machine
Learning methods [2], there has been an increased interest recently to apply these
methods to replace keypilot tasks, such as obstacle avoidance and trajectory planning.
In the aerospace community these properties are referred as autonomy. Autonomy
algorithms are outside the scope of this chapter but note that their performance is
strongly dependent on the performance and reliability of the flight control systems
we discuss in this chapter.

The afore-mentioned qualities are achieved in flight control systems using feed-
back loops, with the elementary representation shown in Fig. 7.1. This feedback loop
shows the special interconnection of two systems:G represents the system to control
and the controller K . The flight variables of interest are collected in the vector signal
y(t). Measurements of the output signal is represented by ym(t) after the presence of
measurement noise n(t) has been included. The difference between commands c(t)
and the measured control signal ym(t) is then fed into a compensator K or algorithm
to process or dictate the various control signals represented by u(t) to perform the
control task. In this diagram note that the signal d(t) accounts for external distur-
bances, which for autopilot applications, accounts for gusts disturbances typically.

Flight control systems exploit the benefits of feedback and use a nested config-
uration for stability augmentation and pilot command tracking tasks, see Fig. 7.2.
The inner feedback loop, known as stability augmentation, is included to provide
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Fig. 7.1 Feedback interconnection

Fig. 7.2 Standard architecture for flight control systems

improved flight dynamics. These are required for instance if the lateral and longitu-
dinal dynamics of the original aircraft are either unstable or provide poor transient
response (low-dampedmodes and/or slow responses). Improving the flight dynamics
of the rotorcraft facilitates the design and enables achieving a desired performance
for pilot command tracking purposes. This is the main purpose of this outer loop con-
trol system, also known as the autopilot system. The performance is assessed mainly
in terms of tracking and disturbance rejection capabilities, which are connected to
handling quality requirements.

7.2 Flight Dynamic Models for Rotorcraft Flight Control
Design

Rotorcraft flight dynamics obtained fromfirst principles are complex (high-order and
nonlinear) and inmost cases not suitable for standard control system designmethods.
For this reason, available models, which are usually obtained following first principle
models [3], need to be approximated to a linear form to facilitate the design of the
flight control algorithms. These linear representations are only valid for very spe-
cific points of the flight envelope and obtained at trimmed (equilibrium) conditions.
Linear models hence provide a local description of the aircraft behaviour around
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a chosen equilibrium position. For instance, for conventional helicopter, the main
flight conditions are hover, vertical motion, longitudinal and lateral flight, trimmed
at different airspeeds. Multiple linearisation is required to obtain a simplified and
comprehensive, yet meaningful, picture of the rotorcraft behaviour.

Simplified rotorcraft flight dynamics models are expressed as a Linear-Time-
Invariant (LTI) system. LTI systems can be represented as either a transfer function
matrix, typically denoted as G(s), or alternatively, as a state-space representation

G ∼
{
x(t) = Ax(t) + Bu(t), x(0) ∈ R

n

y(t) = Cx(t) + Du(t)
(7.1)

The coefficient n denotes the number of states required to represent the rotorcraft
flight dynamics and represents also the dimension of the vector signal (in column
form) x(t). The number of available measured outputs is l and represents also the
dimension of the output signal y(t). The number of control inputs to operate the rotor-
craft ismwhich is also the dimension of the vector signal u(t). Thematrix coefficients
of the model are constant and their dimensions are A ∈ R

n×n, B ∈ R
n×m,C ∈ R

l×n

and D ∈ R
l×m . Typically, y(t) contains a subset of the signals in x(t) and hence

l < n and D = 0.
A very important relation that connects the transfer function and state-variable

representations is
G(s) = C(s I − A)−1B + D (7.2)

A key concept in control theory on whether a state-space representation is totally
equivalent to the transfer function matrix representation shown above is associated
with more fundamental concepts known as controllability and observability. To sim-
plify the discussions in this chapter, we will assume that any obtained flight dynamic
model represented in state-space form is both controllable and observable. This
assumption also applies for the representation of the controller K . For more infor-
mation on these concepts, refer to [1].

Another important concept associated with LTI systems is stability. Stability of
LTI systems can be considered from two points of views - the quality of the free
and forced response. Stability of the free response (zero inputs) is considered for
non-zero initial conditions and analysed via state-space representations typically.
Loosely speaking, we say the free response is stable if the state vector (and hence
the output) remain finite at all times and converge to zero. This stability notion is
known as asymptotic stability. On the other hand, stability of the forced response
(zero initial conditions) is considered via transfer function representations. Loosely
speaking, we say that the forced response is stable if finite input signals leads to
finite output signals. This stability concept is referred to as Bounded-Input Bounded-
Output (BIBO) stability. Asymptotic stability is obtained if the eigenvalues of the
matrix A have negative real part. For transfer functions, BIBO stability is obtained if
all the roots of the denominator of the matrix G(s) have negative real part. For LTI
representations which are controllable and observable, the roots of the denominator
ofG(s) are the same as the eigenvalues of the state matrix A. Therefore we can claim



180 R. Morales

Table 7.1 Typical state-vector and control elements in conventional helicopters

State Description

θ(t) Pitch attitude

φ(t) Roll attitude

p(t) Pitch rate

q(t) Roll rate

r(t) Yaw rate

vx (t) Longitudinal or forward velocity component

vy(t) Lateral velocity component

vz(t) Vertical velocity component

Table 7.2 Control inputs in conventional helicopters

Control input Description

ucol (t) Main rotor collective

ulong(t) Longitudinal cyclic

ulat (t) Lateral cyclic

utail (t) Tail-rotor collective

that these two stability notions are equivalent in the sense that the same condition
must hold to ensure both types of stability. These stability conditions are necessary
and sufficient meaning that if they are not satisfied, then the LTI system do not meet
the definitions of asymptotic and BIBO stability [4].

Typically for conventional helicopters, the state vector contains the signals shown
in Table7.1 and the control inputs are shown in Table7.2. Note that the adopted
notation for the linear velocities is different from the more standard notation found
on flight dynamics textbooks to avoid confusion with the notation implemented to
represent signals in the feedback loop.

Rotorcraft flight dynamics are usually separated into longitudinal and lateral
dynamics when performing dynamic stability analysis and flight control design [3,
5]. Longitudinal dynamics consider the pitch and vertical motion of the rotorcraft,
while lateral dynamics are concerned with the yaw or directional motion and the
rolling behaviour. This separation might not be valid for all rotorcraft configurations
and hence a more comprehensive multivariable model that models cross-couplings
between these two dynamics would be required to design a more effective flight
control system at minimising undesired couplings.
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7.3 Stability, Robustness and Performance of Feedback
Control Systems

7.3.1 Feedback Stability

The primary property to assess in any feedback control system is its stability. To
simplify the discussions, we will assume that both the compensator K and the plant
G can be represented by LTI elements reliably. Feedback stability refers to the values
of the signal at any location in the feedback loop remaining finite in the presence of
finite exogenous signals (c(t), d(t), n(t)). For this reason it is necessary to look at
various transfer functions obtained from all possible pairs of inputs and outputs in
the feedback loop. A sufficient and necessary condition for stability of the feedback
loop is simplified by testing for stability of the following transfer functions

(I + K (s)G(s))−1 (7.3)

K (s)(I + G(s)K (s))−1 (7.4)

G(s)(I + K (s)G(s))−1 (7.5)

(I + G(s)K (s))−1 (7.6)

Refer to [1] for more details. A more elaborate and general condition for feedback
stability can also be found in [6], which is expressed in terms of state-space repre-
sentations for G and K . Feedback systems with this property are called internally
stable and this stability test should be verified before performing any performance
assessment of the flight control system.

7.3.2 Feedback Robustness

Stability alone is not enough in rotorcraft control system design mainly because
LTI models can only capture the dynamics of the rotorcraft up to some extent and
rotorcraft dynamics are also subject to variations. For this reason, we are interested
in determining somehow how tolerant the feedback loop is to certain variations in
the flight control system. There are two main metrics that are widely used for this
purpose - they are the Gain Margin (GM) and Phase Margin (PM). These metrics
are derived from the well-known Nyquist Stability Criterion [4] but these metrics
are applicable only to single-input single-output feedback systems, i.e., when both
G and K have one input and one output and both are stable in most cases.

GM accounts for gain variations in G typically and this metric indicates how
much the gain can be increased before the feedback loop become unstable. A typical
design requirement for feedback systems is

GM ≥ 2 (7.7)
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The PM is associated instead with time delays expressed in the form of phase-lag.
Delays are expected to occur in the communication channel between the controller
and any actuators primarily and latency from on-board sensors. The PM indicates
how much phase lag can exist before the system becomes unstable. A typical design
requirement is

PM ≥ 30◦ (7.8)

GM and PM are not always reliable since they account for individual changes in
gain and delays, but not combined or simultaneous variations. For this reason a less
known and very useful criterion is provided in terms of a metric known as the peak
sensitivity. The Sensitivity transfer function S(s) of the feedback loop is defined as

S(s) = (I + G(s)K (s))−1 (7.9)

Loosely speaking, the largest gain of this sensitivity when evaluated in the frequency
domain is indicated by

‖S‖∞ = max
ω

|S( jω)|,∀ω (7.10)

This value is also known as the H-infinity norm of the Sensitivity. The reasons for
this particular notation is outside the scope of this manuscript, however, for those
interestedReaders, they can refer to themathematical field of FunctionalAnalysis [7].
A typical robustness condition in terms of the peak sensitivity is

‖S‖∞ ≤ 2 (7.11)

For multivariable systems, a metric for robustness can be obtained from the mul-
tivariable Nyquist criterion. Note that the stability condition of the closed-loop can
be expressed in the frequency domain as follows

det(I + G( jω)K ( jω)) �= 0,∀ω (7.12)

and for stable G(s) and K (s). This means that the plot of det(I + G( jω)K ( jω))

must not enclose the origin to ensure stability. The robustness metric can then be
obtained by making sure the plot do not pass too close to the origin of the complex
plane. A similar metric derived from the peak sensitivity mentioned above could be
established by making sure the closest point to the origin is larger than 0.5

|det(I + G( jω)K ( jω))| ≥ 0.5,∀ω (7.13)

Clearly the more the above conditions are exceeded, the more robust the flight
control system is. However, the conflicting nature between performance and robust-
ness is well-know in feedback systems and the task of the control design engineer
is to achieve a desired trade-off. For practical flight control systems where the feed-
back loops are SISO, it is recommended to use the three aforementioned metrics
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(GM, PM and ‖S‖∞) whenever applicable. The metrics can be easily calculated
with commercial software such as Matlab.

7.3.3 Performance Assessment: Time-domain

A pragmatic approach to evaluate the performance of the control system system
is by simulating the responses to step command and disturbance signals and in the
presence ofwhite noise. This approach is particularly important to assess the transient
characteristics of the flight control system. For LTI feedback systems, the analysis can
be done separately due to the superposition principle that governsLTI systems but this
is not the case if the controller is implemented on more comprehensive nonlinear
models. When considering step responses, there are well known metrics, such as
overshoot, rise time, steady-state error and settling time, that should be used when
assessing such responses [4]. These metrics are introduced usually to inspect the
tracking characteristics of control systems in most textbooks but they can be applied
also to assess the disturbance rejection characteristics of the control system [4].

Apart from step signals, the control system should be tested against all possible
signal forms according to the considered application. The performance assessment
should also include the effects of measurement noise which is usually simulated by
using white noise signals in n(t). Also, any time-domain simulations should inspect
the control signalu(t) tomake sure it complieswith actuators operational capabilities.
All these aspects are very important and they all should be tested in any simulation
campaign very carefully and extensively. Themore comprehensive the assessment of
the control system is under simulation environments, the more confidence is gained
before the system is tried on practical implementations.

7.3.4 Performance Assessment: Frequency-Domain

The performance of feedback control systems should also be assessed in the fre-
quency domain because the information is richer and more comprehensive than in
the time-domain. Assessment in the frequency domain is particularly important to
assess the performance at steady-state. For this purpose, note that the feedback loop
depicted in Fig. 7.1 can be described by the following relations

y(s) = T (s)c(s) + S(s)d(s) + T (s)n(s) (7.14)

e(s) = c(s) − y(s) = −S(s)c(s) + S(s)d(s) − T (s)n(s) (7.15)

u(s) = K (s)S(s)(c(s) − d(s) − n(s)) (7.16)
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Note that the above expressions are expressed in terms of two especial transfer func-
tions: (i) the Sensitivity S(s) defined in (7.9) and (ii) the Complementary Sensitivity
or co-sensitivity T (s) defined as follows

T (s) = G(s)K (s)(I + G(s)K (s))−1 (7.17)

The response of the output to command signals and noise is determined by T (s)
and hence this is the transfer function to assess for pilot command tracking tasks if
perturbations are not significant. On the other hand, the effect of external disturbances
on the output and the error signal is captured by the Sensitivity transfer function S(s).
The response of the control actions u(t) due to the presence command, perturbations
and noise are dictated by K (s)S(s). Therefore these three transfer functions play a
key a role in the performance of the flight control system and all of them should be
assessed very carefully when validating any control strategy.

The more general way to assess the performance is by inspecting the singular
values [8] of the transfer functions in the frequency domain. σ(S( jω)) denotes the
singular value of the complexmatrix S( jω). A similar notation follows for σ(T ( jω))

and σ(K ( jω)S( jω)). The smallest and largest singular values are denoted by σ(.)

and σ(.), respectively. The singular value plot for a transfer function matrix plots the
singular values across all frequencies. This plot can be obtained with the commercial
softwareMatlab using the command sigma. There are key parameters flight control
design engineers should take into account when assessing the performance in the
frequency domain. We bring our attention to the following metrics:

Sensitivity bandwidth. This parameter is denoted by ωS and it is expressed in
rad/s usually. Thismetric is obtained by the frequency at which the largest singular
value of S( jω) crosses -3 dB from below

σ(S( jωS)) = 1√
2

≈ 0.707

This metric can be considered as the closed-loop bandwidth, and it provides a
metric of the largest frequency component in the disturbance signal d(t) for which
satisfactory attenuation is achieved. This is also the largest frequency at which the
error signal c(t) − y(t) is reduced satisfactorily. It is therefore expected that for
any disturbance containing frequency elements above this value, the disturbance
rejection and the error between the command signal and the controlled variable
become poor.

Peak Sensitivity. Recall that this metric ‖S‖∞ was already introduced earlier as a
robustness parameter for SISO systems. For MIMO system, the peak sensitivity
becomes the maximum of the largest singular value of the Sensitivity across all
frequencies

‖S‖∞ = max
ω

σ(S( jω)) (7.18)
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This metric represents a measurement of the worst-case gain when performing
disturbance rejection. Clearly, we would like to have this value as low as possible.

Sensitivity Low-frequency Gain. This metric represents the worst gain expected
when providing disturbance rejection to constant signals and we will denote it as

S0 = σ(S( j0)) (7.19)

In flight control examples, this metric would be related to the the capabilities of
the flight control system to reject constant gusts.Wewould like to design the flight
control system to achieve as low a value as possible of S0.

Co-sensitivity bandwidth. This parameter is denoted by ωT and is defined when
the lowest singular value of T ( jω) crosses -3 dB from above

σ(T ( jωT )) = 1√
2

≈ 0.707 (7.20)

This metric indicates themaximum frequency component in the command signals
for which satisfactory tracking is achieved. Note that this metric is only concerned
with tracking of the amplitude for command signals, but does not incorporate
information about the quality of phase tracking. For this reason this definition of
bandwidth can be misleading. For example, consider the SISO case where the
singular value becomes |T ( jω)|. We can have a metric of bandwidth obtained
at |T ( jωT )| ≈ −3 dB, but on the other hand having a poor phase tracking (for
instance ∠T ( jωT ) ≥ 30◦). In this case the tracking of the harmonic command
signalwouldbepoor becauseof the noticeable phase differencebetween theoutput
and command signals, and a more reliable bandwidth metric would have a much
lower value than the bandwidth measurement provided by the above definition.

7.4 Control Design for Flight Control

There exist a plethora of control design methods with particular benefits depending
on the requirements of the application. We will discuss in this section a selected
combination of conventional and more recent design methods given the benefits they
bring to the design of both stability augmentation and autopilot systems in flight
control system design.

7.4.1 Stability Augmentation

The main purpose of control design for stability augmentation is the improvement
of the rotorcraft dynamics by the use of feedback. Rotorcraft dynamic are adjusted
depending on the desired degree of rotorcraft stability. A common approach is to
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use feedback to relocate key rotorcraft modes into desired locations, thus improving
their transient characteristics by typically making them more stable, (negative real
part being larger in absolute value), reducing the damping (reducing their imaginary
part or making their locations closer to the real axis) and stabilising unstable modes
(moving these poles into the left-half side of the complex plane). Two common
strategies for these two goals are Root Locus and Pole Placement [4]. While Root
Locus is particularly useful for SISO control system design, Pole Placement is more
general and suitable for MIMO systems.

Stability augmentation can be achieved typically by feeding the attitude rates and
using these measurements for pole placement. The method relies on manipulation of
the state-space description and makes full use of appropriate computational tools. Its
real application is limited by the assumption that reliable measurements or estima-
tions of the state-variables are available. The unaugmented or open-loop rotorcraft
dynamics are expressed in the standard state-representation (7.1). The pole reloca-
tion is implemented by means of a full-state feedback law expressed in the form of
a linear combination of the states

u(t) = v(t) − Hx(t) (7.21)

The feedback gain matrix H ∈ R
m×n determines the location of the closed-loop and

is the parameter to choose. The new input signal v(t) is the input to the augmented
system and is the new input used later on for the autopilot design task. The above
control law leads to the following closed-loop or augmented state-space representa-
tion

ẋ(t) = (A − BH)x(t) + Bv(t) (7.22)

y(t) = (C − DH)x(t) + Dv(t) (7.23)

There exist computational tools such as Matlab (see command place) whereby
the user provides the values of A, B and the desired closed-loop pole locations
in vector form so the eigenvalues of the closed-loop matrix A − BH match the
desired modes. The command will return the numerical values of H . There are
certain requirements on A and B for the strategy to work, such as the pair A and
B being a controllable pair, the number of closed-loop poles must be the same as n
and no re-located eigenvalue should have a multiplicity greater than the number of
inputs [1].

In many rotorcraft applications the output signal y(t) is a subset of the elements in
x(t), leading to a zero matrix D. The pole placement approach can be implemented
via Output feedback in these cases in a simple form. Note the control law becomes
instead

u(t) = v(t) − Fy(t) (7.24)

leading to the following closed-loop description
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ẋ(t) = (A − BH)x(t) + Bv(t) (7.25)

y(t) = Cx(t) (7.26)

with
H = FC (7.27)

The pole placement can be implemented by using the original matrices A, B and
specifying the desired closed-loop locations to obtain H as explained earlier. The
gain matrix F can be obtained as follows

F = HC† (7.28)

whereby C† = CT (CCT )−1 represents the pseudo-inverse of C .

7.4.2 Autopilot System

Recall the outer-loop of the flight control system provides autopilot characteristics
enabling the pilot to execute certainmanoeuvres under automatic control. The autopi-
lot system controls the rotorcraft motion via the regulation of the rotorcraft attitude.
Even basic automation capabilitiesmight look limited comparedwithmore advanced
autonomy algorithms, yet autopilot systems reduce pilot workload significantly. A
common approach to tune SISO control systems is Proportional-Integral-Derivative
(PID) control for the tracking of the attitude. The control law followingPIDprinciples
is implemented in practice typically as

K (s) = kp + ki
s

+ kds

Ns + 1
(7.29)

The controller parameters are kp, ki , kd and N . The controller in this case will pro-
vide the actions in terms of the new control input v(t) introduced by the stability
augmentation system.

A design approach suitable to rotorcraft flight control when dynamic couplings
are significant and can not be addressed by the stability augmentation system are
based on state-space methods and the more recent Robust Control methods. A popu-
lar approach known as Linear Quadratic Regulator (LQR) could be implemented to
handle the challenges caused by the multivariable control design problem. However,
these controllers rely on accurate estimation or measurements of the states (not only
the attitude angles) and these controllers are criticised for a lack of robustness [9].
We explore a more recent design strategy which are based on the principle of shap-
ing key closed-loop transfer functions to achieve a desired level of robustness and
performance. The particular design approach that we will consider is covered under
the umbrella of Robust Control methods, which are also known asH∞ control. The
design methodologies rely on advanced optimisation algorithms to obtain the control
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laws but the design procedures of the controllers are rather transparent to the design
engineer without the need to know the intricacies of the optimisation routines.

Mixed-Sensitivity Robust Control aims to shape the frequency response of three
key transfer functions: the Sensivity S(s), the Co-Sensitivity T (s) and K (s)S(s)
which accounts for the control actions. The principles are based on using transfer
function weights to dictate the desired shape.

Recall that the lower the values of σ(S( jω)), the better characteristics in terms
of disturbance rejection and error reduction. It is therefore natural to indicate the
desired shape of the Sensitivity by setting an upper bound on desired vales across
frequencies. Mathematically, we can express this as

σ(S( jω)) < |wp( jω)|−1, ∀ω (7.30)

The inverse on the transfer function on the right hand side is introduced for mathe-
matical convenience, andwp(s) in this case is considered as a SISO transfer function
to facilitate the discussions. The above inequality can be equivalently expressed in
terms of a weighted Sensitivity

‖wpS‖∞ < 1 (7.31)

A common choice for wp(s) provides large gain inside the desired control band-
width to demand low sensitvity gains

wp(s) = s/M + ω∗
S

s + S∗
0ω

∗
S

(7.32)

The parameters could be chosen for instance to prescribe design requirements, such
as

S∗
0 ≤ Desired worst-case steady-state error

M ≤ Desired worst-case disturbance rejection gain

ω∗
S ≥ Desired minimum bandwidth (rad/s)

The condition to shape the frequency response for the control actions transfer
function K (s)S(s) is as follows

‖wK SK S‖∞ < 1 (7.33)

Inmany cases, a simple constantweight can be chosen to determine the desired largest
control actions given largest amplitude values of the exogenous signals (c(t), d(t)
and n(t)). For instance, in the SISO case and considering only the effects of command
signals, the weight can be chosen as

ū ≤ w−1
K Sc̄ (7.34)
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with ū and c̄ representing the desired largest absolute control input amplitude and
the expected largest command amplitude value, respectively. Note that the above
inequality holds only for steady-state values and hence the constraint on the control
input at every time instant is not guaranteed but it can be used as an initial choosing
value for wK S .

The same principles can be applied to shape the co-sensitivity T (s) via a perfor-
mance weight wT (s)

‖wT T ‖∞ < 1 (7.35)

Typically the weight offer large gain outside the bandwidth region to ensure good
noise attenuation and also to provide good robustness characteristics [1] . A weight
that meets these specifications has the following structure

wT (s) = γT
s + ω∗

T

s + NTω∗
T

(7.36)

with

ω∗
T ≥ Maximum frequency at which dynamic model is considered reliable

NT > 1

γT ≥ Amount of relative uncertainty at high frequencies

In many applications, the control design are based on shaping the frequency
responses of S(s) and K (s)S(s) only, providing very good design results. The con-
trol Engineer can use computational tools such as those found in the Robust Control
Toolbox in Matlab to be able to obtain the controllers which satisfy one or more
of the above specification requirements. The Matlab command to perform mixed-
sensitivity control design is mixsyn. There are many more mathematical details
which are not discussed in this chapter around this control design philosophy but
the Reader is referred to [1] for a comprehensive source on robust control meth-
ods. The main appeal of the above methods in comparison with more traditional
approaches, such as PID, is that there is a more transparent relation between the con-
troller parameters, performance and robustness specifications and a desired trade-off.
We will demonstrate the aforementioned design strategies with a numerical example
shown in the next section.

7.5 Rotorcraft Flight Control System Design—Numerical
Example

For this example, we will use the helicopter model found in Matlab under the title
“Multi-loop controller of a helicopter”. This example uses an eight-state helicopter
model at the hovering trim condition. The model is presented in state-space form,
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with the state vector having the same signals shown in Table7.1 arranged as follows

x(t) = [vx (t), vz(t), q(t), θ(t), vy(t), p(t), φ(t), r(t)]T (7.37)

In this example, the linear velocity are expressed in m/s. Attitude angles and rates
are expressed in deg and deg/s, respectively. The control inputs in this example are
the longitudinal and lateral cyclic, as well as the tail rotor

u(t) = [ulong(t), ulat (t), utail(t)]T (7.38)

The command signals are expressed in degrees. The values of the state-space model
are as follows

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[r ] − 0.0191 0.0170 0.3839 −9.7924 −0.0008 −0.3371 0 0
0.0136 −0.2994 0.0237 −0.5859 −0.0017 −0.0257 0.5374 0
0.0405 −0.0026 −1.8394 0 0.0024 0.5281 0 −0.0015

0 0 0.9985 0 0 0 0 0.0549
0.0010 −0.0017 −0.3381 0.0322 −0.0349 −0.4032 9.7777 0.1168
0.0130 0 −3.047 0 −0.229 −10.6199 0 −0.0333

0 0 −0.0033 0 0 1 0 0.0598
0.0020 0.0060 −0.5412 0 0.0039 −1.8554 0 −0.3487

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[r ] − 10.3456 1.0793 0
−0.7293 0.0755 0
27.0900 −4.7239 −0.1857

0 0 0
−1.0820 −10.3713 4.7239
−27.2884 −156.4425 −1.0690

0 0 0
−4.8969 −27.9728 −12.9304

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,C =

⎡
⎢⎢⎢⎢⎣

[r ]0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ , D = 05×3

The implementation of the flight control system is shown in Fig. 7.3. Note that
both systems implement the same stability augmentation but simulates two different
autopilot designs: PID and the Robust Control referred as H-infinity. The original
example includes roll-off filters with cut-off at 40 rad/s to partially limit the con-
trol bandwidth and safeguard against neglected high-frequency rotor dynamics. To
facilitate the control design discussions, these low-pass filters are neglected in the
control design discussed below. The low-pass filters are required mostly for practical
implementations and their presence is expected to not make much difference at the
control design stage. Finally, we have modified the simulations by adding output
disturbance signals at the output to assess the disturbance rejection capabilities of
the system.
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Fig. 7.3 Simulink simulation diagram

7.5.1 Stability Augmentation

Examining the eigenvalues of A, we can observe that the pair 0.0544 ± j0.4415 is
not stable. In addition the pair −0.0746 ± j0.4077 is poorly damped hence leading
to the requirement of implementing first stability augmentation to improve over
these two undesirable characteristics. This Matlab example is designed to locate the
closed-loop dynamic modes at the following locations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−24.4645
−16.3686 + j3.8325
−16.3686 − j3.8325

−14.4513
−2.7069
−0.3002
−0.0113
−0.0131

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.39)

with the purpose to speed up the response (larger real parts), stabilise the unstable pair
(closed-loop poles with negative real parts) and reduce damping (poles with no or
small imaginary component relative to its real part), see Fig. 7.4. This example uses
the following gain matrix when the stability augmentation system is implemented as
Output Feedback
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Fig. 7.4 Poles of rotorcraft dynamics and the augmented stability system.

F =
⎡
⎣[r ]10.8486 −1.7702 0.0093 1.1523 −0.1259

−1.1653 −0.1922 0.0193 −0.1281 −0.0715
−5.7960 2.1839 −1.0498 −0.5245 0.3714

⎤
⎦ (7.40)

Alternatively, if the scheme is implemented as State Feedback, the corresponding
matrix H becomes

H = FC =
⎡
⎣[r ]0 0 0.5906 1.5030 0 0.0279 −0.0992 0.0350

0 0 −0.0750 −0.3683 0 −0.1330 −1.5900 0.0094
0 0 0.0325 0.0138 0 0.0588 −0.0169 −1.9820

⎤
⎦(7.41)

The frequency response of the original dynamics and the augmented system are
shown in Fig. 7.5. The singular values at each frequency represent the gain variation
of the stability augmentation and an additional benefit we observe is that we obtain
a lower gain variation especially in the bandwidth region (frequencies less than
10 rad/s). This would facilitate the design of the autopilot system, especially in terms
of decoupling the steady-state behaviour.

7.5.2 Autopilot System

In this section we compare two design approaches discussed in Sect. 7.5.2: the
conventional PID control which is provided in the Matlab demo and the Robust
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Fig. 7.5 Frequency response of rotorcraft dynamics and the augmented stability system

control design. The PID Control provided in Matlab does not have derivative part
(kD = N = 0) and the transfer functions are

Pitch: 2.08
s + 1.050

Roll: − 1.35
s − 0.105

Yaw rate: − 2.21
s + 0.131

For more information on the tuning of these parameters, refer to the Matlab demo.
Note from the Simulation diagram in Fig. 7.3 that the implementation of the PID

controller is SISO, hence it is not able to compensate for any couplings in the sys-
tem. For this main reason we explore the design using the Mixed-Sensitivity design
approach to explore if we can get a control design which offer better performance in
terms of faster responses, comparable robustness and decoupling.

To achieve decoupling to step commands, we introduce first a pre-compensator
based on the dc-gain of the stability augmentation system. Denote the transfer func-
tion of the stability augmentation system as

Ĝ(s) = Ĉ(s I − (A − BFĈ))−1B (7.42)

where Ĉ is obtained by extracting the first three rows rows of the matrix C so
the output signal in this case becomes ŷ(t) = [θ(t), φ(t), r(t)]T . Introducing a pre-
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Fig. 7.6 Autopilot sensitivity

compensator Ĝ( j0)−1 would allow decoupling provided Ĝ( j0)−1 exists. In this
example this inverse exists because

Ĝ( j0) =
⎡
⎣ 0.1547 −0.0633 −0.0017

−0.0767 −0.1566 −0.0030
−0.1318 −0.8922 −0.5065

⎤
⎦ (7.43)

is nonsingular. Therefore we can performmixed-sensitivity design but for the system
Ĝ( j0)−1Ĝ(s) and thus achieve decoupling of step command signals. We perform
mixed-sensitivity control design by shaping the sensitivity transfer function and
introducing mild restrictions on the control actions. After some iterations, we choose
the performance weight parameters for wp(s) as follows:

M = 2 (7.44)

S∗
0 = 2 × 10−2 (7.45)

ω∗
S = 1.5 rad/s (7.46)

We choose the control input weight wK S = 0.15 because the maximum step com-
mand amplitude c̄ is assumed to be around 5 and we assume enough control input
authority such that ū ≤ 33 ≈ 0.15−1 × 5 for every control input at steady-state.
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Fig. 7.7 Autopilot control actions
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Fig. 7.8 Autopilot co-sensitivity
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Fig. 7.9 Autopilot robustness

The results are first examined in the frequency domain as shown in Figs. 7.6, 7.7,
7.8 and 7.9:

• Inspecting the sensitivities S(s) in Fig. 7.6, it is clear the PID controller performs
poorly when providing disturbance rejection to step signals and low frequencies
disturbances. For some combination of disturbance amplitudes and phases, the
sensitivity can provide very good results but in some other directions the largest
singular value is significantly high hence not securing a good disturbance rejection
in all directions and actually not being acceptable in practice. On the contrary, the
H-infinity controller provides an excellent sensitivity shape and we can see very
small variations between the largest and lowest singular values across all frequen-
cies, ensuring excellent disturbance rejection capabilities regardless of amplitude
and phase combinations in the disturbance signals. The design upper bound is
satisfied at all frequencies and the bandwidth achieved is ωS ≈ 2.4 rad/s, sug-
gesting sufficiently fast responses and exceeding the design requirement set by
ω∗

S . The sensitivity peak is just above 1 suggesting that worst-case performance
does not amplify the disturbance signal significantly at the frequency where the
peak occurs. Finally, the singular values of the sensitivity at low frequencies are
around 0.01 (−40 dB), exceeding the initial design requirement of S∗

0 . This very
low gain at low frequencies translates in achieving integral action effectively, in
other words, total attenuation to step disturbances.

• The H-infinity controller offer significantly lower control input energy when com-
paring the gain of K S in the low-frequency region between the two approaches,
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Fig. 7.10 Pitch tracking and regulation

see Fig. 7.7. Large gains to particular directions can lead to extremely large control
actions with the PID controller which could not meet actuator or real operation
requirements. TheH-infinity does not actuallymeet the initial upper bound require-
ment for a range of low frequencies so further time-domain simulations would
need to be implemented to assess whether these control actions are effectively
acceptable or not, and if not, further tuning would be required.

• The co-sensitivity frequency response shown in Fig. 7.8 achieved by both con-
trollers are very good and quite similar. Both designs are excellent in the sense
that there is not much difference between the lowest and largest singular values in
the bandwidth region of operation, with the gains being very flat and practically 1.
The H-infinity controller appears to offer a better co-sensitivity bandwidth around
2.5 rad/s, instead of 0.79 rad/s offered by the PID control scheme.

• The multivariable Nyquist stability criterion implemented in Fig. 7.9 shows that
both designs are fairly robust in the sense that they are sufficiently far from the
critical point

|det(I + Ĝ( jω)K ( jω))| ≥ 0.5,∀ω (7.47)

Around 9.14 rad/s, the above value for the PID controller is closer 0 than the H-
infinity hence suggesting that the H-infinity offer slightly better robustness char-
acteristics. This design would suggest that both feedback control methods offer a
certain level of tolerance, preserving stable operation in the presence of changes
in the rotorcraft dynamics.
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Fig. 7.11 Roll tracking and regulation
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Fig. 7.12 Yaw rate tracking and regulation
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Fig. 7.13 Lateral cyclic control actions
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Fig. 7.14 Longitudinal cyclic control actions
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Fig. 7.15 Tail rotor collective control actions

We assess now the performance in the time-domain. We show the simulations
to step commands and disturbances in Figs. 7.10, 7.11, 7.12, 7.13, 7.14 and 7.15.
The simulation is performed so a step pitch command with amplitude of 3.16 deg is
introduced at 1 s, followed by a negative roll step command at 5 s and asking the flight
control system to regulate the yaw rate at 0 deg/s throughout the simulation time. To
also assess the disturbance rejection characteristics, we introduce a step disturbance
on the yaw rate at 15 s with an amplitude of 5 deg/s. We observe overall that the
H-infinity controller offer better performance in terms of decoupling among the
rotorcraft axes and achieving faster responses (this was expected from the assessment
in the frequency domain). Inspecting Fig. 7.11 we observe a noticeable roll response
with the PID controller when the pitch command is introduced at 1 s, while the H-
infinity is practically insensitive in this case. The pitch response shown i Fig. 7.10
appears to be largely decoupled to both the yaw rate disturbance and the roll command
references in both controllers.

The worst performance we observe in the simulation is shown in Fig. 7.12. The
disturbance rejection characteristics of the PID controller to step yaw rate distur-
bances is very poor. On the other hand, the H-infinity autopilot system offers an
excellent level of disturbance rejection by keeping the yaw rate close to 0 throughout
the simulation time, clearly outperforming the PID controller. As shown in Figs. 7.13,
7.14 and 7.15, cyclic and tail collective control signals performed by the H-infinity
controller are much larger in magnitude than the PID controller during the transient,
fitting the original control input constraints.
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7.6 Concluding Remarks

We have discussed in this chapter state-of-the-art control design methods and have
applied them to theflight control design problemof a conventional helicopter, demon-
strating key benefits in terms of improved performance, robustness and simpler tun-
ing procedures. We did not discuss implementation implications between classical
control and robust control methods. Typically, robust control laws incur in higher
implementation costs associated with larger memory requirements and additional
computational burden. However, such higher costs are expected to pose no limita-
tions in modern engineering applications given the high processing power of existing
embedded systems. The presentation of the topics in this chapter around the robust
control methods were constructed using a very informal mathematical terminology
to facilitate the introduction of the concepts and focus on the benefits of this control
strategy. For a more comprehensive and detailed treatment on Robust Control the
Reader is referred to the provided references. Finally, we have shown that the con-
trol design always demands an exhaustive assessment both in the frequency domain
and the time domain to have a reliable assessment. For instance, the PID autopi-
lot provided in the Matlab demo could hint at acceptable performance if assessing
only tracking characteristics and no disturbance rejections. This is misleading and
the comprehensive assessment in the frequency domain highlighted the weakness
in decoupling the system and poor disturbance rejection characteristics. Compre-
hensive assessment campaign of the flight control system is necessary to build very
good confidence on the performance and robustness characteristics of the control
design and also for certification purposes. In some applications, the performance
and robustness benefits offered by advanced control design methods might not jus-
tify the additional implementation requirements so it is the task of the flight control
design engineer to overweight these conflicting requirements and choose a strategy
which achieve a desired trade off among the many conflicting requirements.

References

1. Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design, 2nd
edn. Wiley

2. Brunton SL, Krutz N (2019) Data-driven science and engineering. Cambridge University Press
3. Johnson W (2013) Rotorcraft aeromechanics. Cambridge University Press
4. Franklin GF, Powell JD, Emami-Naeini A (2005) Feedback control of dynamic systems, 2nd

edn. Pearson
5. Cook MV (2013) Flight dynamics principles. Elsevier
6. Scherer C Lecture notes on the theory of robust control. Available at https://www.imng.

unistuttgart.de/mst/files/RC.pdf
7. Young N (1988) An introduction to hilbert space. Cambridge University Press
8. Horn RA, Johnson CR (2012) Matrix analysis, 2nd edn. Cambridge University Press
9. Doyle JC (1978) Guaranteed margins for LQG regulators. IEEE Trans Autom Cont 23(4):756–

757

https://www.imng.unistuttgart.de/mst/files/RC.pdf
 27770 50884 a 27770
50884 a
 
https://www.imng.unistuttgart.de/mst/files/RC.pdf
https://www.imng.unistuttgart.de/mst/files/RC.pdf


202 R. Morales

Rafael Morales is at the School of Engineering, University of Leicester, control engineering and
has contributed to rotorcraft control systems.


	7 Rotorcraft Control Systems
	7.1 Feedback Control
	7.2 Flight Dynamic Models for Rotorcraft Flight Control Design
	7.3 Stability, Robustness and Performance of Feedback Control Systems
	7.3.1 Feedback Stability
	7.3.2 Feedback Robustness
	7.3.3 Performance Assessment: Time-domain
	7.3.4 Performance Assessment: Frequency-Domain

	7.4 Control Design for Flight Control
	7.4.1 Stability Augmentation
	7.4.2 Autopilot System

	7.5 Rotorcraft Flight Control System Design—Numerical Example
	7.5.1 Stability Augmentation
	7.5.2 Autopilot System

	7.6 Concluding Remarks
	References




