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Abstract. Designing a Model Predictive Control system requires an
accurate analysis of the interplay among three main components: the
plant, the control algorithm, and the processor where the algorithm is
executed. A main objective of this analysis is determining if the con-
troller running on the chosen hardware meets the time requirements and
response time of the plant. The constraints, in turn, should be met with
a satisfactory tradeoff between algorithm complexity and processor per-
formance. To carry out these analyses for an autonomous vehicle control,
this paper proposes to leverage parallel co-simulation between the plant,
the model predictive controller and the processor.

Keywords: Model predictive control · Co-simulation · Autonomous
vehicles

1 Introduction

Control algorithms based on model predictive control (MPC) are increasingly
being employed in embedded systems with high-performance requirements and
stringent constraints, such as automotive applications. MPC relies on the avail-
ability of a mathematical model of the controlled plant, used at each sampling
period to evaluate a prediction of the plant’s future behaviour over a given times-
pan (the prediction horizon) and choose optimal values for the control variables,
to be applied at the next sampling period [13].

Designing an MPC system for embedded applications requires an accurate
analysis of the interplay among three main components: the plant, the control
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algorithm, and the processor where the algorithm is executed. With the model-
based design approach, the analysis exploits the results of the simulations. In
particular, a detailed simulation of the processing architecture executing the
control software is needed, given the role of processor performance in meeting
real-time constraints. This is a typical situation where co-simulation provides
substantial support to developers who need to model subsystems from different
areas of expertise: algorithms, processor architecture and plant physics.

This work presents an approach to enable the analysis of MPC systems
through co-simulation. To this end, an open source library for MPC algorithm,
GRAMPC [10], has been extended with the implementation of a standard inter-
face for co-simulation, FMI (Functional Mock-up Interface) [5]. The MPC algo-
rithm contains a prediction model of the plant that is distinct from the actual
model. This allows the analysis of the controller under a variation of the actual
model parameters. The approach also encompasses MPC performance analysis,
thanks to the use of the VPSim [7] virtual prototyping tool for complex elec-
tronic Systems-on-Chip (SoC) from the SESAM framework [26], which supports
FMI co-simulation.

The application of the proposed approach is shown in a case study from
autonomous vehicle control, where the plant, the model predictive controller, and
the processor are simulated in parallel. The plant is an autonomous car that must
reach a destination along a road with a given geometry, avoiding obstacles. The
vehicle is simulated with a standard kinematic model implemented in C with the
GRAMPC framework, adapting an example from the GRAMPC distribution.
The processor architecture is an ARMv8 multi-core processor, simulated in the
VPSim framework. The metrics used to analyse different co-simulation runs are
the difference of the actual trajectory from the reference one and the execution
time of the GRAMPC algorithm, that should be less than the co-simulation step.

The paper is organised as follows: Sect. 2 introduces a selection of related
works; background on MPC and the GRAMPC library is briefly reported in
Sect. 3; Sect. 4 illustrates the proposed approach for multi-model simulation of
automotive systems, while Sect. 5 shows the application to a case study from
autonomous driving; finally, Sect. 6 contains conclusions and further work.

2 Related Work

Among the many works available to readers looking for an extensive background
on wheeled vehicles dynamics, we may cite [14]. More specifically, Yurtsever
et al. [28] provide a survey on recent work about autonomous driving. Also the
literature on model predictive control offers many fundamental texts, e.g. [13].

In model-driven development, co-simulation [11] can be applied in the anal-
ysis of complex cyber-physical systems that integrate a high-level control algo-
rithm with pre-existing closed implementations of lower-level plant dynamics.

Lee et al. [17] report on the co-simulation of an MPC-controlled heating, ven-
tilation and air-conditioning plant, using an ad-hoc Python-based infrastructure
to connect a building simulator with a Matlab controller. Similar ad-hoc solu-
tions have been proposed in several works, e.g., von Wissel et al. [27], who use
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Simulink S-functions to connect a powertrain model developed on the Siemens
LMS Amesim simulator with an MPC controller developed in the Honeywell
OnRAMP environment. Using S-functions to couple a Simulink model to differ-
ent simulators is a common technique, used, e.g., in [4], where a Simulink model
of a human heart was coupled to an executable formal model of a pacemaker.

The Functional Mockup Interface 2.0 [5] is a de facto standard for co-
simulation, and INTO-CPS [16] is an integrated tool chain for model-based
design based on FMI.

An FMI infrastructure based on the TISC co-simulation platform was pre-
sented by Gräber et al. [12]. In their work, FMUs simulate the plant, an opti-
mizer, and a system estimator. The plant can be modeled with different tools,
the optimizer is built with the MUSCOD-II software package using a direct mul-
tiple shooting method. A vapor compression cycle is discussed as an application
example. An FMI-based infrastructure was used by Ceusters et al. [6], who gen-
erate an FMU from a Modelica simulator of multi-energy systems, and use it
to communicate with a Python-based environment that models two alternative
controllers, one based on MPC and one on reinforcement learning. Another FMI-
based framework for co-simulation of human-machine interfaces was presented
in [21]. Co-simulation has been paired with formal methods to validate and verify
control systems of various kinds [2,3], including robot vehicles [9,20].

In the automotive field, the interaction between multi-physics modelling/sim-
ulation environments and embedded software development environments has
been addressed by many works. Recently, the eFMI (FMI for embedded sys-
tems) standard has been proposed as a result of the EMPHYSIS (Embedded
systems with physical models in the production code software) project [19].

3 Model Predictive Control and the GRAMPC
Framework

This section introduces a very succint description of the concept of model pre-
dictive control and of the GRAMPC framework [10] for the simulation of MPC
systems.

3.1 Model Predictive Control

A model predictive control system iteratively solves an Optimal Control Problem
(OCP) of the following form [10], where t ∈ [0, T ] is the MPC-internal time
coordinate and T is the prediction horizon:
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min
u

J(u, xk) = V (x(T )) +
∫ T

0

l(x, u, τ)dτ (1)

Mẋ = f(x, u, tk + τ) (2)

x(0) = xk (3)
x(τ) ∈ [xmin, xmax] (4)
x(T ) ∈ Ωβ (5)
u(τ) ∈ [umin, umax] , (6)

where (1) is the cost functional, which depends on the time evolution of the
control variables’ vector u and of the sampled state variables’ vector xk. The
first term (V (x(T ))) of the cost functional represents the terminal cost associ-
ated with the final state at the end of the prediction horizon, while the second
term represents the integral cost computed over the whole trajectory over the
prediction horizon. The system dynamics are expressed by (2), where the mass
matrix M defines the inertial properties of the system, and tk = t0 + kΔt, with
0 < Δt < T , is the k-th sampling instant.

The state of the system at the beginning of the k-th control interval is given
by (3). The remaining relations express constraints on the state and the control
inputs. In particular, Ωβ is the set of states such that the terminal cost is less
than or equal to β. This constraint is typically used to ensure stability.

The controller computes the trajectory of control variables that minimizes
(1), and its first segment of simulated length Δt is applied as a plant input
during the actual (real-time) control period [tk, tk+1).

A common form for the cost functional uses quadratic norms of the form

V (x) = ‖x − xdes‖2P (7)

l(x, u) = ‖x − xdes‖2Q + ‖u − udes‖2R , (8)

where (xdes, udes) is the desired set-point and the norms are weighted by
the positive (semi-)definite matrices P , Q and R, defined according to the
application.

3.2 The GRAMPC Framework

The GRAMPC (Gradient-Based MPC) framework supports simulation of non-
linear systems under MPC by providing a highly configurable optimization algo-
rithm. Users must supply a model of the plant to be simulated, by coding a set
of C-language functions implementing well-defined, yet flexible interfaces. Users
also set options and parameters to customize the optimization and simulation
algorithms. In particular, a user may choose one of a set of available solvers for
the optimizer.
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The optimization algorithm implements an augmented Lagrangian method,
based on the gradient-descent paradigm, also exploited in other adaptive [8]
and learning [15] control techniques for modern mechatronic systems. Such an
algorithm, at each iteration, requires the evaluation of the plant’s dynamics (for
the prediction), of the cost functional, of their partial derivatives w.r.t. state and
control variables, and of the constraint relations. As mentioned above, all these
computations are specified by the user with C functions. For example, function
ffct computes the plant dynamics, Vfct and lfct compute the terminal and
integral cost, respectively, dldx computes the gradient of the integral cost w.r.t.
the state variables, and hfct checks the inequality constraints.

The implementation of the optimization and simulation algorithm maintains
a structure (grampc) that contains all the information of the problem at hand
(including the current state of the plant, the values of the command variables,
the time). A function named grampc run takes the grampc structure as an input
and executes a step of the MPC algorithm, updating grampc.

In order to execute a simulation, a user writes a source file with the functions
modeling the system (ffct etc.) and a file with a main program where param-
eters and options are initialized. Then, a loop starts, invoking grampc run at
each iteration. The resulting values of control and state variables can be further
processed and printed out.

Figure 1 summarises how a simulation is built on top of the GRAMPC frame-
work. The framework is composed of a library providing the implementations of
the core MPC functions, and the declarations of the interfaces to be implemented
by the user, who provides the problem formulation in two source files, one with
the prediction plant model and the other with the initialization and the main
loop. It may be observed that, in the GRAMPC framework, it is not possible to
simulate the controlled plant and the controller separately, since the controlled
plant model coincides with the prediction plant model used in the controller.

4 Proposed Approach

This work is based on the idea of embedding a GRAMPC model into an
FMU written in C where the time advancing function fmi2DoStep invokes the
grampc run function. The control values updated in grampc are forwarded as
FMI output variables and the current state stored in grampc is overwritten by
the FMI input variables as shown in Fig. 2. This is achieved by exploiting a pre-
existent FMU generator such as [18] or [22] to create the basic FMU structure
that should be compiled together with the whole GRAMPC library source files
and the two GRAMPC files of the system at hand.

The file with the model of the plant does not require changes, while the
file with the implementation of the algorithm requires some minor changes: the
initialization of the GRAMPC parameters should be wrapped into a function
that will be invoked by the FMU initialization function fmi2SetupExperiment,
while the code for executing the MPC algorithm should be wrapped in a function
that will be invoked by the fmi2DoStep function. Finally, the values stored in
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Fig. 1. GRAMPC library schema.

the grampc structure should be linked to the buffers where the FMU variables
are stored.

Fig. 2. Interaction between Master and GRAMPC.

4.1 Advantages of GRAMPC as an FMU

The benefits deriving from the proposed approach are related to the general
advantages of an FMI based co-simulation, i.e., the possibility of easily coupling
the GRAMPC controller with other tools such as Simulink or OpenModelica for
the controlled plant component. In particular, the GRAMPC FMU may require
a simple model for the predicted trajectory, while a more complex and accurate
model can be created for the controlled plant in another FMU, using tools that
fit the problem domain. Moreover, the time required to run a co-simulation can
be easily reduced by exploiting a simple numerical integration solver (e.g., a
Euler solver) in the GRAMPC FMU while a more accurate and computation
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demanding solver (e.g., Runge-Kutta) is only used in the plant FMU, which
is the one that computes the actual evolution of the system. Thanks to the
proposed approach it is also possible to run tests of the GRAMPC controller
by exploiting existing features such as the Simulink white noise generator block
for sensor errors, or the INTO-CPS Design Space Exploration (DSE) for the
analysis of the behaviour with small parametric variations.

4.2 Advantages of Hardware Platform Modelling Within VPSim

Complementary to separating GRAMPC into a standalone FMU, being able
to model the grampc run execution on a real hardware is a key to assess per-
formance bottlenecks of the control strategy. This is made possible thanks to
the VPSim [7] SoC virtual prototyping capabilities. It was developed with the
purpose of accelerating the software/hardware co-validation in the early stages
of the design development. VPSim makes it easy to model and emulate various
hardware architectures. At the same time, the user can simply test and debug
complete software stacks on these emulated architectures. Furthermore, VPSim
is distinguished by its ability to host third-party subsystems using many stan-
dard and non-standard interfaces. In particular, it fully supports the FMI stan-
dard [24]. Therefore, it can interface easily with other modelling tools and simu-
lators within an FMI-based co-simulation. From the user view, FMI in VPSim is
exposed as a proxy component that must be connected to a compatible hardware
communication interface, such as CAN bus or I2C slave. In addition, VPSim
proposes a user-friendly method for automatic generation of the virtual plat-
form FMU, based on a high-level description of the hardware/software platform.
Figure 3 shows the general architecture of an FMI co-simulation involving an
FMU with a GRAMPC model executed on a processor emulated with VPSim.
The deployment of GRAMPC on a simulated architecture with VPSim enables
(i) evaluating the behavior of grampc run on the target hardware architecture,
(ii) identifying the best hardware support for the control code, and (iii) devising
software improvement strategies such as parallel implementation.

5 Case Study

The specific case study concerns the autonomous driving of a vehicle modelled
for simplicity by kinematics laws through the GRAMPC library. The problem
addressed is to follow a sinusoidal trajectory that follows the carriageway, avoid-
ing some obstacles (modelled as circular areas). Figure 4 shows a possible tra-
jectory of a car avoiding an obstacle (red circle).

The case study is taken from an example available in the GRAMPC distri-
bution. Obviously, in a realistic case, the MPC control algorithm, which is a
low-level control, will have to be integrated with the vision and decision system
for the waypoints to be reached at each iteration. This information is assumed
to be given as input to the system statically, at the beginning of the simulation,
and the vision system will not be considered.
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Fig. 3. The architecture for a co-simulation with VPSim FMU.

Fig. 4. Example of a trajectory.

5.1 Vehicle Model

The model used for the case study is the kinematic bicycle model of the vehicle
shown in Fig. 5, adapted from [23]. This model, commonly used in the field of
MPC, approximates a four-wheel vehicle by replacing the two wheels of each
axle with one wheel on the longitudinal axis.

The kinematic behaviour of the model is described by the following equations,
where the control command inputs are the acceleration a (m/s2) and the front
wheel steering angle δ (rad).

ẋ = V cos(ψ + β(δ)) (9)
ẏ = V sin(ψ + β(δ)) (10)

V̇ = a (11)

ψ̇ =
V

lr + lf
cos (β(δ)) tan (δ) (12)

Angle β is the slip angle at the centre of gravity G and it is described by
Eq. (13), where lr and lf are the distances from G of the rear and front wheel,
respectively.

β(δ) = arctan
(

tan(δ)
lr

lr + lf

)
(13)
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Fig. 5. Kinematic bicycle model of the vehicle, redrawn from [23].

5.2 Simulink Model of the Plant

Equations (9), (10), (11), (12), and (13) have been implemented with the
Simulink model shown in Fig. 6, using the base blocks of the Simulink trigonom-
etry library. The Simulink model comprises four integrators to output the actual
values of the variables. The initial state of these integrators corresponds to the
initial values of the plant’s state variables.

The Simulink environment generates an FMU whose model parameters (such
as lr, lf , and the initial state) can be set in the INTO-CPS co-simulation envi-
ronment. The Simulink environment also chooses the ode45 variable step size
and the default parameters for the explicit Runge-Kutta integrator.

5.3 Vehicle and Controller in GRAMPC

The model of the vehicle in GRAMPC is shown in Listing 1.1 and matches the
equations shown in Sect. 5.1, using the notation of C. The same model is used
to solve the optimisation problem and for executing a self-contained simulation
in the framework. Listing 1.2 shows the four optimisation constraints:

1 double beta = ATAN(param [18]* TAN(u[0])/(param [18]+

param [19]));

2 out [0] = COS(x[2]+ beta)*x[3];

3 out [1] = SIN(x[2]+ beta)*x[3];

4 out [2] = x[3]* COS(beta)*TAN(u[0])/(param [18]+ param

[19]);

5 out [3] = u[1];

Listing 1.1. Implementation of the vehicle model in GRAMPC.

– out[0] on line 1 represents the constraint for obstacle avoidance and is rep-
resented by a circle of radius 1 located at (50, −0.2) in the XY plane.
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Fig. 6. Simulink model of the plant. Parameter L equals lr + lf .

– out[1] on line 2 and out[2] on line 3 are the constraints representing the
edges of the road, represented by two sinusoids,

– out[3] on line 4 represents the speed limit that the vehicle must respect.

1 out [0] = (2 - POW2(-50 + x[0]) - POW2(( 0.2 + x[1]))

);

2 out [1] = -x[1] + 4*SIN(2 * pi * 0.01 * x[0]) -1.5;

3 out [2] = x[1] - 4*SIN(2 * pi * 0.01 * x[0]) -4.5;

4 out [3] = x[3] - 40;

Listing 1.2. Definition of the constraints in GRAMPC.

1 State* tick(State* st) {

2 grampc ->sol ->xnext [0] = (typeRNum)st->x;

3 grampc ->sol ->xnext [1] = (typeRNum)st->y;

4 grampc ->sol ->xnext [3] = (typeRNum)st->V;

5 grampc ->sol ->xnext [2] = (typeRNum)st->psi;

6 grampc_setparam_real_vector(grampc ,"x0",grampc ->sol ->

xnext);

7 grampc_run(grampc);

8 t = t + grampc ->param ->dt;

9 st->a = grampc ->sol ->unext [1];

10 st->delta = grampc ->sol ->unext [0];

11 }

Listing 1.3. Algorithm evolution in GRAMPC.

Listing 1.3 shows the custom function tick, called by the master every co-
simulation step through the fmi2Dostep function: lines 3–7 move the values
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received from the controlled plant to grampc; lines 9–10 invoke the execution
of grampc and increase the time variable by dt; lines 12–13 save the newly
generated commands. The co-simulation architecture is shown in Fig. 7, with
the INTO-CPS Co-simulation Orchestration Engine (COE) playing the role of
the FMI master algorithm.

Fig. 7. Co-simulation architecture of the case study.

5.4 Hardware Platform with VPSim

VPSim can simulate a large variety of architectures using both its integrated
models and external model providers such as QEMU [1], ARM fast models, or
open virtual platforms. In the context of this paper, as shown in Fig. 3, VPSim
emulates a quad-core ARMv8 64-bit processor architecture using QEMU. Each
core has private L1 & L2 caches. All the cores share four slices of LLC banks,
which are connected to the NoC and peripheral devices. The platform runs a
Linux OS which executes the GRAMPC algorithm. A CAN controller model
provides FMI interfaces and makes it possible to receive and transmit control
I/O data to and from the grampc run application that uses the SocketCAN
API [25] to retrieve them, as would be the case on real hardware.

It must be stated that a real-time OS could be supported by the proposed
methodology. It would be required for industrial development and validation to
ensure the periodic scheduling of the grampc run function. Yet, using a standard
Linux - executing a single application triggered by CAN events - is relevant for
the exploration of the control strategy while accounting for potential execution
performance bottlenecks. Indeed, if grampc run executes in less time than the
period of CAN messages, it is then periodically executed. Otherwise, it will fail
to process all incoming messages and meet its deadlines, as would be the case
when considering an RTOS.

5.5 Results

The GRAMPC framework uses a single model as the prediction model, needed
for MPC optimization, and as the controlled plant model. While this choice
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Table 1. Parameter values.

Parameter Value

δmin −0.5 rad

δmax +0.5 rad

amin −11.2 m/s2

amax +5.34 m/s2

Front track lf 1.670 m

Rear track lr 1.394 m

Time horizon 1 s

MPC solver Euler

is often convenient, it may be the case that an embedded application must
use a prediction model simplified with respect to the controlled plant model.
In such cases, co-simulation makes it possible to use two distinct models. As
a preliminary step towards the co-simulation of distinct models, in this work
it has been checked that co-simulation does not introduce significant deviations
from the case of GRAMPC simulation with a single model. In order to verify the
consistency between the two simulation methods, the same mathematical vehicle
model has been implemented in C for the prediction model, and in Simulink for
the plant model. The results of co-simulations are consistent with the results of
self-contained simulations in GRAMPC, producing a difference less than 1 mm.

This section reports results of co-simulations in case of the decoupling of the
two models, making the co-simulated system more realistic with respect to the
GRAMPC self-contained one. The main parameters of the analyzed scenarios
are shown in Table 1.

Nominal Co-simulation Results. The vehicle starts at the position (0,0)
and must follow the sinusoidal trajectory avoiding the obstacle at (50, −0.2).
Figure 8 shows a run with a fixed step size of 0.001 s and an end time of 20 s.

Fig. 8. Results of a co-simulation run.
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The maximum computation time of the GRAMPC algorithm is less than
a millisecond and the simulation time is 50 s on an Intel® Core™ i7-7700
CPU @ 3.60 GHz × 8. The choice of the Euler solver inside the MPC model,
together with the GRAMPC setup, leads to a computation time less than the co-
simulation step-size, which guarantees a realtime-like throughput. Notoriously,
the Euler solver is computationally less demanding than other solvers.

As shown in Fig. 8, the vehicle follows the trajectory avoiding the obstacle.
The mean error of the actual trajectory against the reference trajectory without
the obstacle is 0.08 m (first row in Table 2) and the maximum absolute error is
0.76 m, both evaluated excluding the area around the obstacle. With respect to
the limits imposed on the constrained optimisation problem, as far as the obsta-
cle avoidance section is concerned, it was verified that the trajectory calculated
by GRAMPC is such that the centre of mass of the vehicle completely avoids the
obstacle. This translates into verifying that the distance between the trajectory
and the centre of the obstacle is always greater than the radius of the circle
that formally defines the obstacle region itself. The closest distance between the
obstacle and the centre of mass of the vehicle is 0.4 m.

Response to Physical Parameter Variation. By exploiting the decoupling
of the model used within GRAMPC and the model used for plant in Simulink
it is possible to run robustness tests against small variations of the physical
parameters of the vehicle under analysis. Table 2 shows the four different scenar-
ios where the parameters lf and lr of the Simulink model have a ±5% deviation
with respect to the nominal values used in the first experiment, reported in the
first row of the table. This variation of the parameters emulates a reasonable
measurement error. It may be stated that the GRAMPC algorithm is robust as
the mean error is scarcely affected by physical changes. Moreover, the maximum
absolute error is not affected by physical variations and therefore it is not shown.

Table 2. Different parameters.

Front track ll (m) Rear track lr (m) Error (m)

1.67 1.394 0.08

1.67 1.464 0.09

1.67 1.324 0.09

1.75 1.394 0.08

1.59 1.394 0.10

Enabling Perturbation Analysis. Figure 10 shows the results of the co-
simulation with a perturbation in the y and ψ values produced by the plant
FMU and consumed by the GRAMPC algorithm. The perturbation has been
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Fig. 9. Simulink model of the plant with AWGN.

implemented with the Simulink AWGN block, which has been applied to the y
coordinate with a variance of 0.1 (10 cm of measurement error) and to angle ψ
with a variance of 0.01 (1◦ of measurement error), obtaining the model in Fig. 9.
As shown in Fig. 10, the vehicle is still capable of avoiding the obstacle but the
error has increased to 0.240 m and the maximum absolute error has increased
to 1.58 m. The framework can be used for perturbation analysis by considering
more cases.

Fig. 10. Results of a co-simulation run with AWGN on sensors.

Co-simulation with VPSim. As a benefit of the proposed approach, it is
possible to generate the FMU that executes the grampc run algorithm on a spe-
cific hardware platform. In the following, we show the nominal co-simulation
in case of GRAMPC executed on top of an ARMv8 quad-core processor emu-
lated with VPSim. With respect to Fig. 7, the FMU generated with VPSim can
replace the GRAMPC FMU. The results, shown in Fig. 11, present a mean error
of 0.262 m, while the vehicle is still able to avoid the obstacle. This increase in
the mean error is consistent with the fact that the average execution time of
grampc run (2.4 ms) is longer than the expected co-simulation stepsize (1 ms).
From this point on, several improvement strategies to the grampc run imple-
mentation could be sought by the designer such as parallelizing the algorithm,
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changing the prediction window or the optimization solver, or even choosing
more appropriate hardware.

Fig. 11. Results of a co-simulation run with VPSim.

6 Conclusions

This paper has shown an approach to enable the analysis of an MPC algorithm
through co-simulations involving relevant aspects of three different domains: (i)
physical laws, defining the evolution of the system, (ii) control algorithm, opti-
mising the response of the system, and (iii) processor architecture imposing con-
straints on the execution time. The proposed approach is based on the strategy of
embedding into an FMU a GRAMPC controller running on a VPSim-simulated
processor to assess the performance of the processor.

The case study has shown some of the possibilities opened by the proposed
approach, such as the response to physical parameter variations or the evaluation
of the impact of processor architecture on the system. Each different analysis can
be extended with knowledge and tools deriving from the respective domain. Users
expert in parallel computation could improve the architecture performances by
optimising the code, users expert in fault tolerance could decrease the impact of
faulty sensors by applying, for example, redundancy in the plant model. Finally,
experts in MPC could be interested in finding the best trade-off between accuracy
and performance. Working all together on the same artefacts, and combining
effort in different fields would lead towards the implementation of optimal and
robust systems.

As further work, in order to get better results in the parallelisation of MPC,
it could be also interesting to investigate the usage of a quite different structure
of the control algorithm allowing a more effective parallelism.
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