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Abstract. In this paper, local error estimates for hierarchical co-
simulation approaches are presented. In hierarchical structures, sys-
tems with stronger dependencies on one another, which frequently occur
in large-scale cyber-physical systems, may be combined in further co-
simulations on one or more lower levels. This allows the selection of indi-
vidual synchronization times for subsystems in these co-simulations. The
estimates presented in this paper show that with this approach, no addi-
tional errors compared to traditional co-simulation are to be expected:
on the contrary, results from the simulation of a benchmark example
show that in case of sensible selection of lower-level couplings, accuracy
and stability may even be increased as error propagation slows down.
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1 Introduction

Hierarchical structures are no novelty in modeling and simulation in general,
confer for example the Discrete Event System Specification (DEVS [19]) or par-
titioned integration methods [6,7,12,14]. However, hierarchical co-simulation as
explained in the following is scarcely found in the literature. Although several
frameworks and standards do not prohibit further co-simulations within a co-
simulation, and some authors acknowledge the possibility of nested co-simulation
[16,17], hierarchical co-simulation has, to the best of our knowledge, not been
investigated with regard to error estimates up to now. Compared to hierarchical
partitioned multirate schemes, subsystems may still be implemented in individ-
ually suitable simulation tools in a hierarchical co-simulation approach.

The idea of the introduction of further co-simulation levels is illustrated in
Fig. 1. Such further division and nesting of co-simulations can be motivated by
highly diverse time constants or other subsystem properties that require closer
interaction between certain subsystems. In a traditional co-simulation approach,
this could enforce a rather small macro step and thus, synchronization of all
subsystems and consequently high computation time. With the introduction of
further levels, more closely dependent subsystems may communicate with a small
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Fig. 1. Schematic depiction of a hierarchical co-simulation approach. Coordination
takes place on several levels by one top-level co-simulation that manages the commu-
nication between subsystems and further co-simulations. These may again coordinate
subsystems and co-simulations on lower levels [9].

macro step on a lower-level co-simulation while exchanging values with all other
systems on a distinctly larger upper-level macro step, thus increasing accuracy
without drastically slowing down the whole simulation.

A typical application example with these properties would be a manufac-
turing process where machines have to exchange data rather frequently with
logistics while only from time to time transferring their waste heat data to a
slow varying, thermal room model. This, in turn, has to be synchronized with
an HVAC simulation controlling the room temperature. The latter would not
require any communication with machines or logistic devices themselves, let
alone evaluation and data exchange at the same, considerably small, time steps.
Holistic simulation of urban energy systems likewise intrinsically brings along
several different levels of consideration: households, factories, traffic, network,
and power plants can each prove complex enough to be addressed by individual
co-simulations, which then have to communicate in order to portray the overall
system.

In the following, investigations on convergence of the proposed method are
presented, starting with estimates on the consistency error for traditional, single-
level co-simulation, extending them to hierarchically structured approaches and
presenting error studies that illustrate the improvement in accuracy. Investiga-
tions on zero-stability and numerical stability, which are essential in addition to
consistency to guarantee convergence in case of coupled DAE systems or ODEs
with multi-step integration algorithms, are found in [8,9]. There it is shown that
stability issues can be tackled by introducing another layer of communication
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instead of having to decrease the overall communication step size, thus providing
an innovative method for stabilization.

2 Consistency

It has been shown in the literature that local error control is a valid method to
bound the global co-simulation error (see f.i. [1,4,20]). This justifies investigating
the consistency error, i.e. the error of the method in one step, in a co-simulation.
For this aim we need to start by calling to mind some background information
on numerics of differential equations.

In the following, we consider a uniquely solvable ordinary differential equation
initial value problem

ẋxx = f(t,xxx), xxx(t0) = xxx0 (1)

with Lipschitz continuous right side f with respect to xxx.
For a given approximation xxxtn+h of xxx at time tn+h by a numerical integration

method with step size h, the consistency error is defined as the error of the
method in one step and therefore, calculated by

E(tn,xxxn, h) = xxx(tn + h) − xxxtn+h (2)

for given initial values xxx(tn) = xxxn. A method is called consistent if

lim
h→0

(E(tn,xxxn, h)
h

)
= 000 (3)

for every choice of tn,xxxn. A method is called consistent of order p if there exists
a constant C > 0 with ∥∥∥∥E(tn,xxxn, h)

h

∥∥∥∥ ≤ C · hp. (4)

Since the consistency error is a measure for the local error of a method, state
values are taken to be exact for all previous points in time.

Remark 1. In case they are not directly needed in the following calculations, the
initial values tn,xxxn will be omitted in the notation of E to simplify the notation.

Important for the error estimates following below are Gronwall’s Lemma (The-
orem 1) and “the fundamental lemma” (Theorem2).

Theorem 1. (Gronwall’s Lemma [15]). Let the real function m(t) be con-
tinuous in J := [0, a], and let

m(t) ≤ α + β

∫ t

0

m(τ)dτ in J with β > 0

then
m(t) ≤ αeβt in J.
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Theorem 2. (The “fundamental lemma” [10]). Supposing that xxx(t) is a
solution of the system of differential Eqs. 1 with f Lipschitz continuous in the
second argument with Lipschitz constant L, and vvv(t) an approximate solution
fulfilling

‖v̇vv(t) − f(t, vvv(t))‖ ≤ ε,

then, for t ≥ t0, we have the error estimate

‖xxx(t) − vvv(t)‖ ≤ ‖xxx(t0) − vvv(t0)‖ eL(t−t0) +
ε

L

(
eL(t−t0) − 1

)
.

Remark 2. If vvv is also an exact solution of ẋxx = f(t,xxx), from Theorem 2 follows

‖xxx(t) − vvv(t)‖ ≤ ‖xxx(t0) − vvv(t0)‖ eL(t−t0),

which directly implies that in case of the same initial values, vvv is identical to xxx.

2.1 Consistency in Co-simulation

To investigate consistency in co-simulation, we consider a system of N coupled
ODEs given as follows1:

ẋxxi(t) = fff i(xxxi,uuui, t), xxxi(t0) = xxxi
0 (5a)

with i = I, . . . , N , xxxi ∈ R
ni
x , uuui ∈ R

ni
u , and

uuui = LLLixxx =
[
LLLi,I . . . LLLi,i−1 0 LLLi,i+1 . . . LLLi,N

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xxxI

...
xxxi−1

xxxi

xxxi+1

...
xxxN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5b)

with LLLi,j ∈ R
ni
u×nj

x ∀i, j ∈ {I, . . . , N} and the elements of LLLi,j being equal
to zero or one, thus describing the output-input dependencies between the indi-
vidual subsystems. Thereby, we assume again a unique solution and Lipschitz
continuous right-side functions fff i in the first and second argument.

In the following, investigations on convergence of traditional co-simulation
analogously as given by Knorr [11]2 are presented and extended on hierarchical
1 Notation with elements of G := {I, II, . . .} is used to avoid confusion with exponents

and allow easy identification of subsystems. In arithmetic operations where elements
of G and N are mingled, these are to be understood as operations between elements
of N by assigning every element of G its image under the bijection that uniquely
assigns the i-th element of G the i-th element of N.

2 The investigations in [11] are restricted to two participating subsystems where the
larger micro step size is also taken as macro step size. Following this strategy, we
allow an arbitrary number of participating subsystems and macro step size H with
the possibility of H > hi for all subsystem solver step sizes hi in this work.
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approaches in Sect. 2.2. We start by considering the i-th subsystem of (5). In
case of a multirate co-simulation, values uuui have to be extrapolated in between
two synchronization time steps and will be named ũ̃ũui. Depending on the order qi

of the chosen extrapolation method,
∥∥uuui(tn + h) − ũ̃ũui(tn + h)

∥∥ ≤ Chqi+1 with a
constant C > 0 holds for a step of size h > 0 assuming ũ̃ũui(tn) = uuui(tn). Further,
xxxi(t) will denote the exact solution of (5a) and x̃̃x̃xi(t) the exact solution of

ẋxxi(t) = fff i(xxxi, ũ̃ũui, t), xxxi(t0) = xxxi
0. (6)

The approximated solution of (6) at tn,k will be named x̃̃x̃xn,k.
To begin with, we regard the error E i(tn,k,xxxn,k, hi) of the i-th subsystem in

one micro step hi at tn,k, where n is the current macro step and k the current
micro step, counted anew for each macro interval. Thus tn+1 := tn+1,0 = tn,mi

=
tn +mi ·hi = tn +H in case of mi micro steps per macro step, hence mi denoting
the multirate factor of subsystem i in case of fixed, equidistant micro steps which
are integer divisors of the (also fixed) macro step size H, which we will assume
w.l.o.g.3 in the following calculations.

Starting with the consistency of the integration of every subsystem for one
micro step, we will deduce consistency of the integration of every subsystem for
one macro step and further of the co-simulation.

Lemma 1 (Consistency error for one micro step). Let pi denote the
consistency order of the original method and qi the order of extrapolation for
input values uuui. Then

∥∥∥∥E i(tn,k,xxxn,k, hi)
hi

∥∥∥∥ = O
(
h
min{pi,qi+1}
i

)
. (7)

Proof. Considering exact values at tn,k, per definition
∥∥E i(tn,k,xxxn,k, hi)

∥∥ =
∥∥xxxi(tn,k + hi) − x̃̃x̃xi

n,k+1

∥∥ =
∥∥xxxi(tn,k+1) − x̃̃x̃xi

n,k+1

∥∥ (8)

with the notation described above. Adding and subtracting x̃̃x̃x(tn,k+1) gives

∥∥E i(tn,k,xxxn,k, hi)
∥∥

triangle
inequ.

≤ ∥∥xxxi(tn,k+1) − x̃̃x̃xi(tn,k+1)
∥∥ +

∥∥x̃̃x̃xi(tn,k+1) − x̃̃x̃xi
n,k+1

∥∥︸ ︷︷ ︸
≤Ci,1·hpi+1

i

.

(9)

The second term of (9) is the difference of the exact to the approximated solution
of the modified system (6) and is therefore bounded by Ci,1 ·hpi+1

i for a constant
Ci,1 > 0 and with pi being the order of the numerical integration method given
for system i.
3 All considerations can be performed analogously for unequally distanced grids with

hi taken as upper bound of all hij with ij ∈ {1, . . . , min} and min the number
of micro steps of subsystem i in the n-th macro step. However, as this would only
lead to more complex notation, we will restrict the step sizes as described above for
reasons of clarity.
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To provide an estimate for the first term in (9), we use the assumption
that xxx(t) and x̃̃x̃x(t) are the exact solutions of (5a) and (6), respectively, and can
therefore be replaced by the integral over their derivatives (since they fulfill
conditions like uniqueness, continuity, and differentiability by definition):

∥∥xxxi(tn,k+1) − x̃̃x̃x(tn,k+1)
∥∥ =

∥∥∥∥∥
∫ tn,k+1

tn,k

(
f i(xxxi,uuui, τ) − f(x̃̃x̃xi, ũ̃ũui, τ)

)
dτ

∥∥∥∥∥
≤

∫ tn,k+1

tn,k

∥∥f i(xxxi,uuui, τ) − f(x̃̃x̃xi, ũ̃ũui, τ)
∥∥ dτ

(10)

Adding and subtracting f(x̃̃x̃xi,uuui, τ) gives with the triangle inequality

(10) ≤
tn,k+1∫

tn,k

∥∥∥f i(xxxi,uuui, τ) − f(x̃̃x̃xi,uuui, τ)
∥∥∥ dτ +

tn,k+1∫

tn,k

∥∥∥f i(x̃̃x̃xi,uuui, τ) − f(x̃̃x̃xi, ũ̃ũui, τ)
∥∥∥ dτ

Lipschitz

≤
tn,k+1∫
tn,k

Lfi,x

∥∥xxxi − x̃̃x̃xi
∥∥ dτ +

tn,k+1∫
tn,k

Lfi,u

∥∥uuui − ũ̃ũui
∥∥︸ ︷︷ ︸

≤Ci,2·hqi+1
i

dτ

︸ ︷︷ ︸
≤Lfi,u·Ci,2·hqi+2

i

(11)

with Lipschitz constants Lfi,x and Lfi,u of f i with respect to xxx and uuu, respec-
tively, and qi denoting the order of the extrapolation method for the approxi-
mation of ũ̃ũui. Declaring Ci,3 := Lfi,u · Ci,2 and mmm(t) :=

∥∥xxxi(t) − x̃̃x̃xi(t)
∥∥, above

estimates can be summarized as

mmm(tn,k+1) ≤
tn,k+1∫
tn,k

Lfi,x

∥∥xxxi − x̃̃x̃xi
∥∥ dτ + Ci,3 · hqi+2

i . (12)

Now we can apply the Lemma of Gronwall (Theorem 1) to mmm with α = Ci,3 ·hqi+2
i

and β = Lfi,x and obtain

mmm(tn,k+1) ≤ Ci,3 · hqi+2
i · eLfi,x·

hi︷ ︸︸ ︷
(tn,k+1 − tn,k)︸ ︷︷ ︸

=
∞∑

j=0

(L
fi,x

·hi)
j

j!

= O
(
hqi+2

i

)
(13)

and therefore∥∥∥∥E i(tn,k,xxxn,k, hi)
hi

∥∥∥∥
(9),(13)

≤ Ci,1 · hpi

i + O
(
hqi+1

i

)
= O

(
h
min{pi,qi+1}
i

)
. (14)

��
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This shows that while consistency is maintained in co-simulation, the order may
be reduced if the extrapolation order is chosen too low. Constant extrapolation,
for example, only maintains the order of integration methods of order one. For
higher-order methods, the order is reduced but the method remains consistent
(as

∥∥∥Ei(tn,k,xxxn,k,hi)
hi

∥∥∥ still converges to zero, but only linearly). However, higher
order extrapolation can also lead to increased stability issues, which is shown
for example in [2].

Lemma 2 (Consistency error per subsystem for one macro step). With
the notations above ∥∥∥∥E i(tn,xxxn,H)

H

∥∥∥∥ = O
(
Hmin{pi,qi+1}

)
. (15)

Proof. To extend the considerations for one micro step to one macro step, we
will employ the method of “Lady Windermere’s Fan”, which is shown f.i. in
[10,11]. The main idea of this approach is to describe the error of the approximate
solution after an interval – in our case, a macro step – by the analytical solutions
at every point of a refined mesh – in our case, every micro step – assuming an
exact value at the beginning of the considered interval. This is illustrated for a
one-dimensional problem in Fig. 2.

Fig. 2. “Lady Windermere’s Fan”: exact solutions at every time step of the numerical
integration algorithm are used to describe the error of the approximate solution in one
macro step (after [11]).

Let wwwi
n,k(t), k = 0, . . . mi denote the exact solution of system (6) but for the

initial values wwwi
n,k(tn,k) = x̃̃x̃xn,k, implying wwwi

n,0(t) = xxxi(t) ∀t > tn since we assume
exact values at tn,0. Then we can write
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∥∥E i(tn,xxxn,H)
∥∥ =

∥∥xxxi(tn+1) − x̃̃x̃xi
n+1

∥∥ =
∥∥xxxi(tn,mi

) − x̃̃x̃xi
n,mi

∥∥ (16)

≤
mi−1∑
k=0

∥∥wwwi
n,k(tn,mi

) − wwwi
n,k+1(tn,mi

)
∥∥ . (17)

Since wwwi
n,k are solutions to the same system with different initial values, we can

apply Theorem 2 know that every summand of (17) is bounded by

∥∥wwwi
n,k(tn,k+1) − wwwi

n,k+1(tn,k+1)
∥∥ · eLfi,x·

(mi−k−1)hi︷ ︸︸ ︷
(tn,mi

− tn,k+1) (18)

⇒ ∥∥E i(tn,xxxn,H)
∥∥ ≤

mi−1∑
k=0

∥∥wwwi
n,k(tn,k+1) − wwwi

n,k+1(tn,k+1)
∥∥ · eLfi,x·(mi−k−1)hi

www
i
n,k(tn,k)=x̃̃x̃xn,k

=
mi−1∑
k=0

∥∥wwwi
n,k(tn,k+1) − x̃̃x̃xi

n,k+1

∥∥ · eLfi,x·(mi−k−1)hi .

As
∥∥∥wwwi

n,k(tn,k+1) − xxxi
n,k+1

∥∥∥ is the error in one micro step, according to Lemma 1

we can estimate this term with O(hmin{pi+1,qi+2}
i ). Therefore

∥∥E i(tn,xxxn,H)
∥∥ ≤O

(
h
min{pi+1,qi+2}
i

) mi−1∑
k=0

eLfi,x·(mi−k−1)hi (19)

≤O
(
h
min{pi+1,qi+2}
i

)
· mi · eLfi,x·(mi−1)hi (20)

hi=H/mi= O
((

H

mi

)min{pi+1,qi+2})
· mi · e

Lfi,x·mi−1
mi

H (21)

= O
(
Hmin{pi+1,qi+2}

)
(22)

⇒ (15). ��
Corollary 1 (Consistency error of co-simulation). With the notations
above, consistency of the co-simulation in one macro step can be determined by

∥∥∥∥E(tn,xxxn,H)
H

∥∥∥∥ = O
(

H
min

i=I,...,N
{pi,qi+1}

)
, (23)

whereby

min
i=I,...,N

{pi, qi + 1} := min
i=I,...,N

{min{pi, qi + 1}} = min{ min
i=I,...,N

{pi}, min
i=I,...,N

{qi + 1}}.

Proof. Since xxx(t) is given as concatenation of all xxxi(t), i = I, . . . , N , the approx-
imation of the overall system at a synchronization point tn+1 corresponds to the
concatenation of the approximations of the states of the N individual subsys-
tems. With this, we can simply infer
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‖E(tn,xxxn,H)‖ = ‖xxx(tn+1) − x̃̃x̃xn+1‖ ≤
N∑

i=0

∥∥xxxi(tn+1) − x̃̃x̃xi
n+1

∥∥ (24)

≤ N · O
(
H

min
i=1...N

{pi+1,qi+2})
= O

(
H

min
i=1...N

{pi+1,qi+2})
(25)

with the estimates from Lemma 2. (23) follows directly by division by H. ��
These estimates show that while overall consistency is maintained in the co-
simulation of ODE systems, the convergence order may be reduced in case
of lower-order extrapolation of input values. Higher order extrapolation, while
enhancing the order of consistency of the coupled method (bounded by the order
of the original integration method), can also lead to increased stability issues,
as shown f.i. in [1,2]. For DAEs that are only coupled via differential variables,
the implicit function theorem (see e.g. [18]) implies that locally, an equivalent
ODE system can be found for which above considerations also apply. In case of
coupling via algebraic variables, similar estimates (in the sense of dependence
on extrapolation orders) are given e.g. in [3,5].

2.2 Consistency in Hierarchical Co-simulation

Now we want to extend above investigations to co-simulation on several levels of
hierarchy. From the estimates for traditional co-simulation, which only depend
on the error introduced by extrapolation of external input values, we can already
expect that this property is not affected by the method used in the respective
other subsystems or the time steps and further synchronizations happening there
in-between. For detailed estimation, we will first consider the simplest case where
hierarchical co-simulation can be applied: Three subsystems of which w.l.o.g.
Systems II and III are co-simulated on the lowest level and this co-simulation
communicates again on the topmost level with the simulation of System I, as
illustrated in Fig. 3.

Fig. 3. Illustration of hierarchical co-simulation of three systems on two levels. Co-
simulation CS1 coordinates System I and System ÎI, i.e. co-simulation CS2, which
manages the communication between systems II and III.

The co-simulation between Systems II and III will be called CS2 hence-
forth, and the corresponding system seen from the perspective of the upper level
System ÎI. The top-level co-simulation (CS1) macro step will be denoted H1
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and the second-level co-simulation macro step H2. For CS1, we start with the
error in one macro step H1 of System I, for which we obtain from Lemma 2

∥∥∥∥EI(H1)
H1

∥∥∥∥ = O
(
H

min{pI ,qI+1}
1

)
. (26)

For System ÎI, we start by applying Corollary 1 to CS2, which yields for one
step of size H2 ∥∥∥∥∥

E ÎI(H2)
H2

∥∥∥∥∥ = O
(

H
min

i=II,III
{pi,qi+1}

2

)
. (27)

To estimate the error in one macro step H1, we can repeat the strategy from the
proof of Lemma 2 with M2 describing the quotient of H1 and H2 and obtain

∥∥∥∥∥
E ÎI(H1)

H1

∥∥∥∥∥ = O
(

H
min

i=II,III
{pi,qi+1}

1

)
(28)

and further for the top-level co-simulation CS1 with (26), (28) and Corollary 1
∥∥∥∥E(H1)

H1

∥∥∥∥ = O
(

H
min

i=I,II,III
{pi,qi+1}

1

)
(29)

and therefore consistency. The order again depends on the extrapolation and
consistency orders of all subsystems. This can also be concluded for arbitrary
levels of hierarchy and participating subsystems, as Theorem 3 shows.

Theorem 3 (Consistency error of hierarchical co-simulation). In a hier-
archical co-simulation with a total of N participating subsystems, consistency
orders pi, i = I, . . . , N of their corresponding integration algorithms and extrap-
olation orders qi, i = I, . . . , N , the consistency error of the overall co-simulation
with macro step H can be estimated as

∥∥∥∥E(H)
H

∥∥∥∥ = O
(

H
min

i=I,...,N
{pi,qi+1}

)
. (30)

Proof. To begin with, we need to establish comprehensible notation of all consid-
ered systems, co-simulations, and step sizes. For this purpose, all participating
simulations are depicted in a tree structure, see Fig. 4. We will start from the
topmost level, naming the overall co-simulation S1,1. Beneath S1,1, all further
simulations unfold on J levels in total. On every level j ∈ 1, . . . , J + 1 all sim-
ulations – be they co-simulations themselves or “leaf” nodes without further
branching beneath – are numbered from 1 to Kj . This means that on level j, we
find simulations Sj,k with k = 1 . . . Kj . While the ordering of these may be arbi-
trary, this notation is necessary to uniquely identify every co-simulation on every
level in a fairly intelligible notation. Nevertheless, to clarify the belonging to the
respective co-simulation, the sub-simulations of one node, i.e. all Nj,k simulations
coordinated by one co-simulation Sj,k may be identified by SI

j,k, SII
j,k, . . . , S

Nj,k

j,k
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Fig. 4. Illustration of the co-simulation hierarchy in a tree structure.

in addition. This means that the i−th subsimulation of Sj,k may be called Si
j,k

and equals, using the notation on the next level, Sj+1,l for one l ∈ {1, . . . , Kj+1}:

Si
j,k = Sj+1,l for l = i +

k−1∑
m=1

Nj,m (31)

Note that naturally, the sum of all simulations that are co-simulated by sim-
ulations on level j equals the number of simulations on level j + 1 with the
convention that for leaf nodes, Nj,k := 0.

In analogy to above example with three systems co-simulated on two levels,
(30) follows from Lemmata 1, 2 and Corollary 1 when approached bottom-up
with induction: On the deepest level J + 1, we only have leaf nodes. These
systems SJ+1,l, l = 1, . . . ,KJ+1 are integrated with their individual time step
hJ+1,l and are coordinated by a co-simulation on level J . By considering one
of these co-simulations SJ,k with macro step size HJ,k and its sub-simulations
denoted as Si

J,k, i = I, . . . , NJ,k, we know from Lemma 2 that for every Si
J,k, the

error per macro step can be estimated via
∥∥∥∥∥

E i
J,k(HJ,k)

HJ,k

∥∥∥∥∥ = O
(
HJ,k

min{piJ,k
,qiJ,k+1}

)
(32)

with piJ,k denoting the consistency order of the integration method of Si
J,k and

qiJ,k the respective extrapolation order for external input values. With Corollary
1 follows for the consistency order of SJ,k
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∥∥∥∥EJ,k(HJ,k)
HJ,k

∥∥∥∥ = O
(

H
min

i=I,...,NJ,k

{piJ,k
,qiJ,k+1}

J,k

)
. (33)

For every leaf simulation SJ,k on level J with micro step size hJ,k, we obtain an
estimate for the error per micro step with Lemma 1:∥∥∥∥EJ,k(hJ,k)

hJ,k

∥∥∥∥ = O
(
h
min{pJ,k,qJ,k+1}
J,k

)
(34)

As the indexing is unique, we can without confusion with some co-simulation
declare HJ,k := hJ,k and therefore in summary write the estimate for every
simulation – cooperative as well as leaf simulation – on level J as∥∥∥∥EJ,k(HJ,k)

HJ,k

∥∥∥∥ = O
(
H

min{pJ,k,qJ,k+1}
J,k

)
(35)

when for co-simulation nodes, we define pJ,k := min
i=I,...,NJ,k

{piJ,k} and qJ,k :=

min
i=I,...,NJ,k

{qiJ,k}.

In the next step, we will assume this estimate for every simulation on a level
j + 1, j ∈ {1, . . . , J}:∥∥∥∥Ej+1,k(Hj+1,k)

Hj+1,k

∥∥∥∥ = O
(
H

min{pj+1,k,qj+1,k+1}
j+1,k

)
(36)

again with Hj+1,k := hj+1,k if Sj+1,k is a leaf node and for co-simulation nodes
Sj+1,k defining pj+1,k := min

i=I,...,Nj+1,k
{pij+1,k} and qj+1,k := min

i=I,...,Nj+1,k
{qij+1,k}

(using these definitions recursively in case for an i, the associated simulation

Si
j+1,k (= Sj+2,l for l = i +

k−1∑
m=1

Nj+1,m) is again a co-simulation). Based on

that, we consider the simulations on level j. For every leaf node on level j,
Lemma 1 can directly be applied:∥∥∥∥Ej,k(hj,k)

hj,k

∥∥∥∥ = O
(
h
min{pj,k,qj,k+1}
j,k

)
, (37)

which with Hj,k := hj,k can be written∥∥∥∥Ej,k(Hj,k)
Hij,k

∥∥∥∥ = O
(
H

min{pj,k,qj,k+1}
j,k

)
. (38)

For every co-simulation on level j, we can utilize (36) and Corollary 1 to obtain
∥∥∥∥Ej,k(Hj,k)

Hj,k

∥∥∥∥ = O
(

H
min

i=I,...,Nj,k

{pij,k
,qij,k+1}

j,k

)
= O

(
H

min{pj,k,qj,k+1}
j,k

)
(39)

with pj,k := min
i=I,...,Nj,k

{pij,k} and qj,k := min
i=I,...,Nj,k

{qij,k} (recursively, if needed).

Thus, with (38) we have∥∥∥∥Ej,k(Hj,k)
Hj,k

∥∥∥∥ = O
(
H

min{pj,k,qj,k+1}
j,k

)
(40)
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for every cooperative and leaf simulation on level j.
This also holds for the topmost level j = 1, where only one co-simulation

(and, naturally, no leaf node) remains. With H := H1,1 and utilizing the fact

that in this co-simulation, all N =
J∑

j=1

Kj∑
k=1

Nj,k participating leaf simulations and

therefore, the consistency and extrapolation orders of every solution algorithm
are finally considered, we obtain (30). ��

3 Error Studies on a Coupled Three-Mass Oscillator

In the following, we consider an oscillator with three masses divided by force-
displacement decomposition (see [13] for information on the coupling concept),
which is illustrated in Fig. 5. With initial values and parameters given according
to Table 1, we observe an increase of stiffnesses from left to right, which invites
the introduction of another level of hierarchy.

Table 1. Initial values and parameter settings for the benchmark simulation.

x1 x2 x3 v1 = v2 = v3 c1 c12 c23 c3 d1 d12 d23 d3 m1 m2 m3

1 m 2 m 3m 0 m/s 1E−03 N/m 1E−01 N/m 10 N/m 100 N/m 0.1 0.4 1 2 10 kg 10 kg 10 kg

In a traditional co-simulation, Systems SI , SII and SIII would, in general,
all be orchestrated by one algorithm demanding synchronization at the same
time step. In a hierarchical approach, Systems SII and SIII can be combined
in a separate, lower-level co-simulation representing the new system ŜII that is
co-simulated with System SI on the top-level co-simulation.

Fig. 5. Illustration of the hierarchical coupling of a three-mass oscillator.

The underlying equations can be interpreted as coupled Dahlquist equa-
tions, which invites investigations on stability by this example. Case studies
that demonstrate the benefits of a hierarchical versus a traditional co-simulation
approach regarding numerical stability are found in [9]. These include detailed
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Fig. 6. Error (‖.‖2 of all component errors) for the hierarchical and traditional co-
simulation of the test scenario from tstart = 0 s to tend = 25 s depending on macro step
sizes.

tables comprising CPU time and errors for the simulation of the test scenario for
100 s, where we see that even for an upper-level macro step size twice as large
(H1 = 0.2 s) as the one for the traditional co-simulation (H = 0.1 s), the error
can be reduced to less than one seventh if the second-level macro step size is
chosen small enough (H2 = 0.05 s) while the elapsed computation time is barely
increased (from 2.29 s to 2.58 s). Here, on the other hand, we will focus on the
impact of varying macro step sizes on both co-simulation levels.

Since the differing stiffnesses result in slower and faster varying subsystems,
the step sizes for the individual subsystem solvers are chosen accordingly with
hI = 0.005 s, hII = 0.0025 s and hIII = 0.00125 s. Figure 6 shows the overall
error – calculated by ‖.‖2 of the maximum errors of all states – depending on
the macro step sizes H = H1 for the traditional and upper-level co-simulation
in the hierarchical approach, and H2 for the second-level co-simulation in the
hierarchical approach. The duration of all simulations is chosen with 25 s. H2

ranges from 0.025 s over all multiples that are divisors of H1 up to H1/2 (for
H2 = H1, the same results as for the traditional approach would be expected).

On the one hand, we immediately observe a faster ascent and more curvature
for the error in the traditional approach. In addition, the impact of the choice of
H2 is clearly visible and comes out even more clearly in the separate illustration
of the hierarchical approach in Fig. 7.
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Fig. 7. Error (‖.‖2 of all component errors) for the hierarchical co-simulation of the
test scenario from tstart = 0 s to tend = 25 s depending on macro step sizes.

4 Conclusion and Outlook

Above investigations show that consistency is maintained in hierarchical co-
simulation, although it may potentially converge with lower order in comparison
to the corresponding mono-simulation, depending on the extrapolation of exter-
nal inputs. Since this is also the case for traditional co-simulation, no further loss
of the order of consistency is added by the introduction of further hierarchies. On
the contrary, as studies with varying macro step sizes show, error propagation is
slowed down and accuracy increased if subsystems with closer dependencies are
allowed to communicate more frequently while synchronization intervals with
other subsystems can be increased.

Since hierarchical co-simulation is already permitted in certain frameworks
and standards for co-simulation, the presented estimates along with investiga-
tions on stability in [8,9] provide the assertion that the application of hierarchical
methods maintain and may even improve convergence.

Nevertheless, the method offers several aspects for further enhancement.
Instead of parallel, non-iterative coupling algorithms with fixed macro step
size, zero-order extrapolation and Euler integration methods used in the bench-
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mark example from Sect. 3, strategies that are known to improve stability, per-
formance, or accuracy for traditional co-simulation may be utilized in hierar-
chical co-simulation as well. Among these, the utilization of sequential, iter-
ative or adaptive orchestration algorithms, different extrapolation orders and
higher order and/or multistep subsystem solvers remain a topic for future
investigations.
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4. Arnold, M., Hante, S., Köbis, M.A.: Error analysis for co-simulation with force-
displacement coupling. PAMM 14(1), 43–44 (2014). https://doi.org/10.1002/
pamm.201410014

5. Busch, M.: Zur effizienten Kopplung von Simulationsprogrammen. Kassel Univer-
sity Press (2012). https://books.google.at/books?id=0qBpXp-f2gQC

6. Esposito, J., Kumar, V.: Efficient dynamic simulation of robotic systems with
hierarchy. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No. 01CH37164), Seoul, South Korea, vol. 3, pp. 2818–2823.
IEEE (2001). https://doi.org/10.1109/ROBOT.2001.933049

7. Günther, M., Rentrop, P.: Partitioning and multirate strategies in latent electric
circuits. In: Bank, R.E., Gajewski, H., Bulirsch, R., Merten, K. (eds.) Mathematical
Modelling and Simulation of Electrical Circuits and Semiconductor Devices, pp.
33–60. ISNM International Series of Numerical Mathematics, Birkhäuser, Basel
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