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Abstract. Several graph summarization approaches aggregate dense
sub-graphs into super-nodes leading to a compact summary of the input
graph. The main issue for these approaches is how to achieve a high com-
pression rate while retaining as much information as possible about the
original graph structure within the summary. These approaches neces-
sarily involve an algorithm to mine dense structures in the graph such as
quasi-clique enumeration algorithms. In this paper, we focus on improv-
ing these mining algorithms for the specific task of graph summarization.
We first introduce a new pre-processing technique to speed up this min-
ing step. Then, we extend existing quasi-clique enumeration algorithms
with this filtering technique and apply them to graph summarization.
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1 Background

Nowadays, several large-scale systems such as social networks or the link struc-
ture of the World Wide Web involve graphs with millions and even billions of
nodes and edges [3]. The analysis of such graphs can prove to be very difficult
given the huge amount of information contained in them. The goal of graph sum-
marization (or graph compression) is to provide, given an input graph, a smaller
summary [5]. Depending of the situation, this summary can assume different
roles. Either it exists uniquely to save storage space and can be decompressed to
obtain the original graph with or without loss of information, or it can be used
directly to obtain information on the input graph such as paths, neighbourhoods
and clusters. When summarizing a graph, one can focus on the optimisation of
the size of the summary introducing a size threshold [1,5] or an information loss
threshold [8]. Others adapt the summary so as to optimise some kind of queries
[1,4].
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Even if these summarization methods perform well in term of execution time
and compression rate, they do not retain all the information available in the
input graph, especially the dense components which are mainly cliques, and
quasi-cliques which are essential in the analysis of many real life networks. This
motivated several graph summarization approaches based on dense subgraph
mining [8,10]. These methods aggregate dense subgraphs into supernodes and
keep track of all non-edges inside the supernode as correcting edges, to ensure
lossless compression and allow the reconstruction of the original graph.

In this paper, we focus on enhancing the enumeration of dense subgraphs,
and more precisely quasi-cliques, for the purpose of graph summarization. We
first introduce a new pruning technique which allows an important speed up of
quasi-clique enumeration algorithms. Then, we describe how to adapt the search
for quasi-cliques to graph summarization by solving best suited relaxations of
the Quasi-Clique Enumeration Problem.

The remainder of this document is organised as follows. Section 2 gives formal
definitions of the concepts used in the paper. Section 3 introduces the new prun-
ing technique and presents a relaxation of the quasi-clique enumeration problem.
Section 4 compares the performances of the different quasi-clique mining schemes
and their application to dense subgraph based summarization.

2 Preliminaries

In this paper all graphs are simple, undirected and consist of two sets: the vertex
set V and the edge set E formed by pairs of V . Given G = (V,E) a clique of
G is a subset C of V such that the vertices in C are pairwise adjacent. We use
the following definition for quasi-cliques which are a generalization of cliques to
other dense subgraphs.

Definition 1 (γ-quasi-clique). Given G = (V,E), and γ ∈ [0, 1], a subset of
vertices Q ⊆ V is called a γ-quasi-clique if for all v ∈ V , dQ(v) ≥ γ(|Q| − 1),
where NQ(v) represents the neighbours of v in Q and dQ(v) = |NQ(v)|.
Definition 2 (Quasi-Clique Enumeration Problem). Given G = (V,E), a
density threshold γ ∈ [0, 1] and a size threshold m, the Quasi-Clique Enumera-
tion Problem (QCE) consists of finding all maximal γ-quasi-cliques in G of size
greater than m.

QCE is well known to be difficult (the associated decision problem being
NP-hard [2]), and have already been studied a lot trough several aspects. We
focus on the exhaustive enumeration and its most classic method: the Quick algo-
rithm [7] which performs a depth-first exploration of the solution space tree and
it prunes the branches which cannot lead to a new solution. During the search,
the algorithm keeps in memory X the current subset and a set cand formed
by vertices outside X which are the next candidates to add to X. The pruning
occurs according to these sets and several rules, and actually corresponds to the
removal of vertices from cand. These rules are mostly based on the diameter and
the degree threshold of quasi-cliques. For example, with γ > 0.5 the diameter of
a γ-quasi-clique is at most 2.
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3 Contributions

3.1 A New Pruning Technique

While the Quick algorithm is efficient in the general case, it is not hard to point
out cases where it is not. One can, for instance, take the example depicted in
Fig. 1. The pruning rules of the Quick algorithm are based only on the vertices
and their degree, hence, in the case where each vertex is contained in a quasi-
clique, the pruning techniques cannot be properly applied and the algorithm
proceeds to the exploration of almost the whole solution space tree.

Fig. 1. Example of the inefficiency of the Quick algorithm.

In order to handle these cases, we introduce a new technique based on sets of
vertices. According to Definition 1, each vertex v in a quasi-clique Y has at least
�γ(|Y |−1)� neighbours in Y . This property motivates the following pruning rule
(see Algorithm 1): given the density and size threshold γ and m, if {u, v} ∈ E is
such that u and v share strictly less than 2�γ(m − 1)� − m common neighbours
then we can remove {u, v} from E.

Algorithm 1. Pre processing(G, γ,m)
repeat

delete all u ∈ V s.t. d(u) < �γ(m − 1)�
delete all {u, v} ∈ E s.t. |N(u) ∩ N(v)| < 2�γ(m − 1)� − m

until G has not been modified during the last loop

3.2 A Redundancy-Free Graph Summarization Approach

While the Quick algorithm is an effective method to tackle the QCE problem, it
is important to note that this problem is not perfectly suited for graph summa-
rization. Indeed, having access to all quasi-cliques can create redundancy in the
summary and impact the performances. To deal with this issue, we adapt the
concept of visibility, introduced in [9] for cliques, to detect and avoid redundant
quasi-cliques. The visibility of a maximal quasi-clique Q with respect to a set of
maximal quasi-cliques S is a value between 0 and 1 which describes how well Q
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is represented by the quasi-cliques of S. If the visibility is 1 then Q is in S, on
the contrary if the visibility is 0 then Q does not overlap with any quasi-clique
of S.

Definition 3 (Visibility). Given a graph G, γ ∈ [0, 1], Q ∈ Mγ(G), the set
of all maximal γ quasi-cliques of G, and S ⊆ Mγ(G), the S-visibility of Q:
VS(Q), is defined as:

VS(Q) = max
Q′∈S

|Q ∩ Q′|
|Q| .

This leads to a variant of the QCE problem where instead of finding all the quasi-
cliques one only have to ensure that all maximal quasi-cliques have a sufficient
visibility. We propose to use a redundancy-aware quasi-clique mining algorithm
to summarize graphs. This will give direct access to the dense subgraphs in the
summary while avoiding redundant quasi-cliques. This will improve not only
compression rates but also allows to speed up the computation.

To implement this approach, we rely on the following observation. Given a
graph G and two quasi-cliques Q, Q′. If Q and Q′ are very similar (V{Q}(Q′)
is close to 1) then most of the edges in G[Q′] are already covered in G[Q]. On
the contrary if Q and Q′ are very different then G[Q] and G[Q′] do not share
many edges. Hence, to avoid redundancy, after finding the quasi-clique Q one
can remove from G all the edges inside G[Q], thus the quasi-cliques of G similar
to Q become sparse and are skipped by the pruning techniques of the Quick
algorithm. Removing such edges usually does not impact other different quasi-
cliques since these quasi-cliques do not share many edges with Q. This method
depicted in Algorithm 2 outputs a set of quasi-cliques S which covers all edges
contained in quasi-cliques.

Algorithm 2. Redundancy aware(G, γ,m)
run Quick(G, γ, m)

each time a quasi-clique X is found:
remove from G all edges of G[X]

4 Performances

We compare the performances of three different quasi-clique mining algorithms:
the Quick algorithm presented in Sect. 1, Algorithm 2 presented in Sect. 3.2 and
finally a greedy quasi-clique mining algorithm, which serves as a basis of com-
parison. We implemented the three algorithms in Python 3 using a Windows 10
machine with a 2.5 GHz Intel(R) Core (TM) i5 processor and 8 GB RAM. We
tested each algorithm with and without our pre-processing technique, namely
Algorithm 1, on several types of graphs. We present, here, our results on real graphs
from social networks such as Facebook (with 4039 vertices and 88,234 edges), Twit-
ter (with 81,306 vertices and 1,768,149 edges) and Google+ (with 107,614 vertices
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and 13,673,453 edges), from the Stanford large network dataset collection [6]. We
measure not only the runtime of the algorithms but also how well they are suited
to graph summarization. For these experiments, we vary the number of nodes in
the considered graphs from 0 to 1750 by growing subgraphs from the considered
graphs. The obtained results are the average on several experiments.

Fig. 2. Performances of the algorithms on social networks.

Figure 2 presents our results. The left side of the figure presents the impact
of our filtering technique on the Quick algorithm, on three metrics: runtime,
size of the summary and its visibility computed as in Definition 3. The results
prove the utility of our filtering technique with a significant decrease of the
execution time, up to a factor 10 with 1750 nodes, while not impacting the
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compression rates nor the visibility. The right side of Fig. 2 presents a comparison
of the three algorithms, with our filtering technique, on the same metrics. The
results show that even if Algorithm 2 seems efficient regarding execution time
and compression rates, the visibility obtained with this algorithm is worst than
the others dropping around 0.6 while the others stay greater than 0.9. Finally,
the greedy algorithm seems to perform surprisingly well on these graphs, being
highly efficient in time and compression rate while keeping a good visibility.

5 Conclusion

In this paper, we focused on graph summarization using dense subgraphs and
more precisely quasi-cliques. This approach requiring a quasi-clique mining algo-
rithm, we show how to improve the already existing quasi-clique enumeration
algorithms introducing a very effective pre-processing technique. Also, we adapt
and introduce a quasi-clique mining algorithm designed to avoid redundancy
while improving performances both in runtime and compression rate.
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