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Abstract. With the emergence of new paradigms in data management
and processing like Cloud services, the Internet of Things (IoT), and
NoSQL, there is a growing trend for distributing data across multiple
platforms and using the technologies most suited for each case according
to criteria such as performance and cost. But it also raises new challenges
and needs, like understanding the sources, the transformations, and the
processes made on the data to infer their quality and reliability. Data
provenance becomes particularly relevant in such a context.

This paper presents a solution to deal with why- and how-provenance
queries on distributed data sources and different database paradigms.
The proposed solution does not require any change to the query execution
engine. It uses pure SQL with annotations and an algorithm to build data
provenance information from the result obtained by the query. We also
present experimental evaluation results obtained using an open-source
logical integration tool.

Keywords: Provenance - Data provenance - Databases * Distributed
systems

1 Introduction

Data management and processing have been changing over the past years. Sev-
eral factors have made data increasingly distributed, including the emergence of
the Cloud, smart devices, and the Internet of Things (IoT). Also, the rise of open
data and data science attracted experts in several domains who became inter-
ested in data manipulation and processing, knowledge extraction, and results
sharing. This context leads to issues regarding the quality, veracity, complete-
ness, and correctness of data sources, thus increasing the need to understand
where data comes from, whether the source is trustworthy, and the transfor-
mations made on data. Data provenance is metadata information (annotations)
about data origin and transformations made on data and helps solve such issues.

Although there exists a standard (PROV [15], a W3C recommendation) for
describing this information in terms of agents, entities, activities, and their rela-
tionships, an important research topic is how to disclose provenance information
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in database queries, i.e., to know where query results come from and how they
were computed.

Some solutions with different approaches allow obtaining data provenance
information from database queries, but all are in centralized environments or
specific database management systems. The data provenance issue becomes even
more essential in distributed database environments in which several (and pos-
sibly heterogeneous) databases are accessed to answer a single user’s query.

This paper discusses issues and challenges involving data provenance in dis-
tributed and heterogeneous databases. It presents a solution for how- and why-
provenance that does not need to make changes to the database engine nor use
system-specific functions and procedures. Hence, our solution can build prove-
nance information for the results of a query independently of the data source type
(e.g., file, and relational database and NoSQL databases), which is an important
feature when dealing with distributed and heterogeneous data sources.

The following section presents some background and related work. Section 3
discusses data provenance in distributed environments and then describes the
proposed solution. Then, Sect. 4 presents results from an experimental evalua-
tion. Finally, Sect. 5 concludes the paper and describes future work.

2 Background and Related Work

This section presents some background on building the provenance of the results
of database queries (data provenance) and the problems that arise when working
with distributed databases. It also reviews existing related works.

2.1 Data Provenance

In [11], the authors proposed four types of provenance, divided hierarchically:
provenance meta-data, information system provenance, workflow provenance,
and data provenance. Data provenance aims to collect the provenance informa-
tion from queries over a database. Due to the fact dealing with databases with
specific schemas and because the provenance can be at the tuple level, this type
of provenance has requirements that do not appear in other types of provenance.

The three most common types of data provenance are why-, how- and where-
provenance [4,5,10]. With the increased interest and research in data provenance,
other categories have been proposed, such as Why-not-provenance [2,11] and
Which-provenance [10] and perhaps more might follow. The focus of this paper
is on why- and how-provenance.

Why-Provenance — Collects all the inputs that contributed to a query result
[3-5,10]. The technique to collect why-provenance information is called Wit-
nesses basis. It is a set of tuples that contribute to a particular result. These
tuples are called witnesses of the production of the resulting tuple.

Based on the definition in [3,5], given a database I, a query @ over I and a
tuple ¢ in Q(I), an instance of I’ C I is a witness for ¢ if t € Q(I’). This can be
denoted as: Why(Q,I,t) ={I' CI|t € Q(I')}
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Orderspt
sname dest vehicle |provtoken
LisboaStore Porto Train tk3
LisboaStore | Braga Truck tk4
PortoStore Braga Train tk5
PortoStore Madrid Airplane tk6

Fig. 1. An example of a table with orders.

For instance, consider the table in Fig.1 representing orders. The field
“sname” is the supplier name, “dest” is the destination, “vehicle” is the type of
vehicle, and the tuple identifier is called “provtoken”.

Ql :Wdesto-dest:“Braga” ( 7Ts7wxrne7destO"ﬂderspt > erhicle7destOTder5pt)

The Why-provenance is the set of tuples with all the possible combinations,
without duplicates. The result of Q1 is displayed in Table1 and shows that the
witnesses of “Braga” are tk4 and tk5 alone or the conjugation of both.

Table 1. Result of Q1

dest | why how
Braga | {tk4}, {tk4,tk5}, {tk5} | (tkd @ tkd) ® (tk4d ® tk5) ® (tkb ® tkd) & (tk5 ® tk5)

How-Provenance — Explains how the inputs contributed to the result and
is obtained using algebraic identities and polynomials (semirings) [3-5,9,10,16].
Each tuple must also have an annotation called prove token.

A semiring is defined as (K, 0,1, ®, ®) where K is a set of data elements that
will be annotated using the constants 0 and 1. Given a query @ if the tuple ¢
contributes to the output result is annotated with 1, otherwise is annotated with
0. The binary operators @, ® are used as alternative & and as joint ®.

Different types of semirings can be used to achieve different answers. For how-
provenance the universal semiring or how-semiring (N[X],0,1,®, ®) is used. As
stated in [9], unions are associative and commutative operations and are rep-
resented by @. The joins also have those two properties, but they are also dis-
tributive over unions and they represented by ®. The projections and selections
are also commutative among themselves.

Hence regarding the result present in Tablel about How-Provenance,
“Braga” is obtained by the conjugation of tk4 with itself (join), or (union)
by the conjugation of tk5 with itself (join), or (union) by the conjugation of tk4
and tk5 (join) or (union) by the conjugation of tk5 and tk4.

Regarding the joins properties, more specifically, the distributive property
of the results in Table1 can also be simplified to: (tk4 @ tk5) @ (tk4d @ tk5). In
[16] it is proposed to use m-semirings with the operator monus (©) to be able
to give the provenance for non-monotone queries.
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2.2 Distributed Databases

While Multi-Model databases allow having different types of models (e.g., graph,
key-value, and documents) in the same Database Management System (DBMS)
[13], Polystore databases are built on the top of multiple storage engines that
are integrated and enable to query multiple data sources using different models
and paradigms [7].

Using distributed query engines (e.g., Presto [18]), users may query over dis-
tributed and heterogeneous databases using standard SQL language. The query
engines act as mediators between the querying interface and the underlying sys-
tems, but they do not deal with distribution transparency, i.e., the location of
each data structure (e.g., table) must be included in the query. This forces users
to have deep knowledge about the different data sources and their schemas.

Distribution transparency can be achieved by logical data integration. It
commonly comprises a high-level global model, i.e., a Global Conceptual Schema
(GCS), and Local Conceptual Schemas (LCS), which represent the physically dis-
tributed data [21]. The GCS stores the information about how to link global and
local entities. There are no Extract-Transform-Load (ETL) methods. Queries are
written considering the global entities, thus hiding distribution complexity from
the end-users. This approach is especially useful in scenarios where the users
need data to always be up to date.

But the logical integration requires the mapping between global and local
entities. One global entity may match a single entity of a specific data source
(local entity). But a single logical global entity may map to two or more local
entities (i.e., partitioning). In horizontal partitioning, a global entity maps to
two or more local entities (i.e., partitions) storing distinct instances of conceptu-
ally related data. For example, a global entity representing customers’ data can
map to two local entities, one storing data about customers from Europe and
another storing data about customers from America. Thus, the global entity is
the union of the local partitions. In vertical partitioning, a global entity maps
to two or more local entities (i.e., partitions), and each partition stores distinct
features (attributes) of the global entity. Thus, to retrieve all the attributes of a
global entity instance (e.g., tuple), one should join data from two or more local
entities (i.e., vertical partitions). For example, a global entity representing cus-
tomers’ information can map to two local entities at distinct sources, one storing
customers’ mailing addresses and another storing customers’ billing data.

Figure 2 exemplifies partitioning over the table Orderspt represented in Fig. 1.
In Fig. 2, the table is split into two, one physically stored in Portugal and the
other in Spain. The data in Portugal represent the stores located in Portugal
and the same for Spain. Figure 2 also represents the Stores tables, which contain
the store’s name, localization, and e-mail.

In a distributed database scenario, one must obtain data provenance infor-
mation considering all the data sources involved in the distributed query. Thus
it is not possible to use plugins for a specific database, and in the case of the
use of a mediator, it needs to deal with different types of databases.
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Portugal Spain
Storespt Storesen
name city email  |provioken name city email provtoken|
LisboaStore | Lisboa [Is@store.pt t1 MadridStore | Madrid |ms@store.en| tk1

PortoStore Porto |ps@store.pt 2 BarcelonaStore| Barcelona|bs@store.en| tk2

Orderspt Ordersen
sname dest vehicle |provtoken sname dest vehicle |provtoken
LisboaStore | Porto Train tk3 BarcelonaStore| Madrid Truck tk7
LisboaStore | Braga Truck tk4 BarcelonaStore| Braga Train tk8
PortoStore Braga Train tk5 MadridStore |Barcelona Truck tk9
PortoStore Madrid Airplane tk6 MadridStore Bilbao Truck tk10

Fig. 2. An example of a distributed environment for stores and orders.

2.3 Related Work

In the literature, there are several works with methods to apply W3C PROV,
most of them in Workflows [12,20]. There are also works to describe Geospatial
datasets in distributed environments [6].

In terms of data provenance there are examples such as ProvSQL [17], Perm
[8], and GProM [1]. These are of solutions to visualize information about where-,
how- and why-provenance and solutions for probabilistic query evaluation.
ProvSQL is a lightweight extension for PostgreSQL that supports several rela-
tional database formalisms, including where-provenance and how-provenance.
GProM approached it with a middleware solution for Oracle, SQLite, and Post-
greSQL, but only in a centralized environment. Perm promotes rewriting the
queries. However, extending these formalisms to distributed environments with
different data sources (e.g., NoSQL and semi-structured) is an open issue.

The transparency in distributed environments integration helps the users to
have a high-level model of the domain. Hence, they do not need to be concerned
about how the data sources are connected and distributed or their heterogeneity.
Nevertheless, users continue to need the information to infer the veracity and
quality of the result, making the use of data provenance essential.

3 Provenance in Distributed Databases

This section shows how to obtain how- and why-provenance in a distributed
databases environment using SQL. In [17], ProvSQL is an extension to Post-
gresSQL that changes the query execution engine. Our approach is non-intrusive
and aims to work independently of the database and without changing the
engine. This improves portability because our solution uses only standard SQL
and not functions or stored procedures coded in languages that depend on
the database management system. Furthermore, nowadays there are distributed
query engines that can create an abstraction layer across data sources of different
paradigms using SQL, our solution can also be used to build data provenance
over distributed and heterogeneous databases (e.g., relational and NoSQL).
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3.1 Architecture

Distributed Query Engine

1111

Fig. 3. Architecture and main components.

The architecture of the proposed solution is depicted in Fig.3. The user sub-
mission interface allows users to write the queries to retrieve data from one or
more databases. It is assumed that the mapping between global entities and
local entities in source databases is known a priori, as discussed in the previous
section. Then, the Query re-writer adds annotations to the query to obtain the
provenance data and submits the request to the source databases through a dis-
tributed query engine. The latter transforms the query into sub-queries that are
sent to be executed in the source databases. The distributed query execution
engine gets query results containing provenance tokens from each data source
and assembles a global query execution result. Then, the engine sends such a
result to the Provenance Information Builder, which builds the provenance sen-
tences and sends them to the user together with the user’s query results.

For instance, considering that a user wants to execute query Q1 in a dis-
tributed environment using the data displayed in Fig. 2, the query would be as
follows.

Q2 ‘TdestOdest=“Braga’’ ( Wsname,destOrderspt U Wsname,destOrdersen) >

( ﬂ'vehicle,destorderspt U 7Tvehicle,destOrde'rsen)

Despite that the user might only see the global entities, the unions in the
query are required to retrieve the data from the two local data sources. The
provenance information resulting from Q2 is as follows.

Why-Provenance — {{p.orderspt:tk4,p.orderspt:tk5}, {p.orderspt:tk4,p.orderspt:tk8},
{p.orderspt:tk4}, {p.orderspt:tk5}, {p.orderspt:tk5,p.orderspt:tk8}, {p.orderspt:tk8}}
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How-Provenance — (p.orderspt:tkd ® (p.orderspt:tkb @ c.ordersen:tk8))
@ (p.orderspt:tkd ® p.orderspt:tkd) @ (p.orderspt:tkb ® (p.orderspt:tks @
c.ordersen:tk8)) & (p.orderspt:tk5 @ p.orderspt:tk4) & (c.ordersen:tk8 ®
(p.orderspt:tk5 @ c.ordersen:tk8)) @ (c.ordersen:tk8 ® p.orderspt:tk4)

Since we are in a distributed environment, and the data provenance infor-
mation is given with tokens, we add additional information. The format of the
provenance results has three parts separated by dot and colon characters: the
first is the data source ( “p” for PostgreSQL and “c” for Cassandra, in the exam-
ple), the second is the table name (orderspt or ordersen) and the third is the
provenance token.

3.2 Annotations

The solution proposed in this work has two premises. First, each data element
(e.g., a token) in a data source must have a unique identifier as shown in [5, 10, 16].
The annotations can be seen as provenance tokens and they support the witness
basis theory for why-provenance and the semiring theory for how-provenance.

As almost all databases have a function to create Universally Unique Identi-
fiers (UUID), these are a natural choice to be used as provenance tokens. If the
system does not provide UUIDs, it is needed to create a column with a unique
identifier, e.g., a number or a string.

We also assume the existence of a distributed query engine (as shown in
Fig.3) that supports the standard SQL function Listagg [14] or a similar one.
This function allows to aggregate/concatenate string values from a group of rows
and separate them with a delimiter.

Our approach is to add annotations to user queries to retrieve provenance
information from the data sources together with the query results themselves.
The annotations depend on the operators in the query.

Distinct, Union and Group By — The annotation consists of adding columns to
the user queries. In the case of a distinct clause, as a tuple ¢ in a query result Q(I)
may have several witnesses (I’ € I), we use the function listagg to aggregate all
the tokens of I’ into a single value. The tokens are separated using the special
character ¢. The distinct clause must be removed from the query because, as
each tuple has a unique identifier (token), it would prevent the aggregation of
the witnesses 7’ of ¢ in a single tuple. The annotation for the operator union is
similar to the distinct clause because there are also no duplicates in the result
of a query, and in the case of a group by, we need to use a different separator,
in this case @. The different separators will help the algorithm to combine the
tokens properly.

Join — In this case, it is not necessary to use the function listaagg, only add
the tokens columns for the tables involved in the join. If the query is composed
of sub-queries, it is required that the sub-queries have the tokens columns. For
example, if we want to join two unions, we need to apply the union transforma-
tion explained above and add the unions token columns to the join projection.
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The splitters and the columns for the joins will allow the built provenance
information algorithm to interpret it by splitting and joining the columns and
applying the how- and why-provenance methods as defined in the literature. All
the columns with annotations have the name “prov”.

3.3 Build Provenance Information

Algorithm 1 demonstrates how the annotations are processed to obtain how-
and why-provenance. Even though most of the times it is possible to derive why-
from how-provenance, we opted for separate approaches in this solution. This
option was based on [10], where it is demonstrated that the derivation is not
straightforward. Also, if we utilize the m-semiring technique [17], the derivation
becomes even more complex.

Before using the functions HowProvenance and WhyProvenance, the columns
with the annotations are aggregated in an array of arrays, which will be the
input parameter of both functions. As an example, the first column of “prov”
can contain “tk4;tk3|tk5” and the second column “tk8|tk9;tk10”, and the array
will have the final result [[“tk/;tk3”, “tk8”], [“tk5”, “tk9;tk10”]]. This avoids the
repeated looping through the annotations columns for each function.

The HowProvenance function starts looping through the input array and
initiates variables “temp” and “paren”. In the second loop if the tokens has the
character “;”, it replaces the character by @ because it means a union or a dis-
tinct. Between the replace function, it adds to the string “temp” the parenthesis
and the ® because the next token is part of a join.

If the character is not present, it adds the token and ® to the string “temp”
for the same reason as above, and the boolean “paren” helps place the parenthesis
in the right place. In lines 12 and 13, the extra characters are removed from
“temp” and added to an array since the second loop ended. The function will
return a string that concatenates all the array positions with @. This last step
uses the @& because the “aggTokens” array is created by splitting the group by
character clause.

To obtain the why-Provenance we need to apply the distributive property
to the how-provenance’s result and apply the rules of witnesses basis. Thus, we
need two nested loops again because the WhyProvenance input parameter is
an array of arrays. In the first iteration of the second loop (lines 28 to 32), we
populate the array “why” with a set for every token obtained from the split by
the character “;”.

In the subsequent iterations, we need to apply the distribution. If the array
“why” length is higher than the length of the split array, for each set in “why”
we add the tokens obtained from the split (lines 34 to 38). Else for each token in
the split, we loop through the “why” array and copy the “why” to a temporary
variable, add to this temporary variable the token in the split and add it to a
temporary array. In the end, “why” will be equal to the temporary array. The
return clause will return a string constructed by the function CheckDoubles that
also removes the possible similar sets.



Why- and How-Provenance in Distributed Environments 111

Algorithm 1. How- and Why-provenance algorithm

1: function HOWPROVENANCE(aggT okens)
2. how « |
3: for each agt € aggT okens do
4: temp «"'; paren «— False;
5: for each t € agt do
6: if t C’;’ then
7: temp «— temp +' ('+t.replace(’;’ ) ®')+")®’
8: else
9: if notparen then
10: temp ' ("+temp+t+' @
11: paren «— True
12: else
13: temp «— temp + t+)®’
14: paren «— False
15: end if
16: end if
17: end for
18: temp <’ (+temp.RemoveExtraChars()+")’
19: how.add(temp)
20: end for
21: return how.join(®)
22: end function
23:
24: function WHYPROVENANCE(aggT okens)
25: why — |
26: for each agt € aggTokens do
27: for i =0,1,...length(agt) do
28: if ¢ == 0 then
29: for each t € agt[i].split(';’ ) do
30: tSet «— Set();tSet.add(t); why.add(tSet)
31: end for
32: else
33: if length(agt[i].split(’;’)) < lenght(why) then
34: for each wt € why do
35: for each t € agt[i].split(’;’) do
36: wt.add(t)
37: end for
38: end for
39: else
40: copyWT — []
41: for each t € agt[i].split(';’) do
42: for each wt € why do
43: temp — wt.copy(); temp.add(t); copyWT.add(temp)
44: end for
45: end for
46: why = copyWT
47: end if
48: end if
49: end for
50: end for
51: return CheckDoubles(why)
52: end function
4 Experimental Evaluation

As proof of concept for our solution, we use EasyBDI [19], an open-source pro-
totype for logical integration of distributed databases that provides mapping
functionalities between local and global schemas. EasyBDI has a graphical inter-
face that allows the users to query over the global schemas without writing SQL
commands. The interface provides different frames where the user can drag and
drop entity columns and the operators (e.g., group by) to use on the query.
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When the user executes the query, EasyBDI builds the SQL command based on
the mapping between GCS and LCSs and submmits it to Trino, a distributed
query execution engine. Since the software is open-source, we modified the query
generation module to add the annotation columns when performing the query
build. We also applied the proposed algorithm to the query execution result.

As dataset, we used the tables represented in Fig. 2. PostgreSQL stores the
data about Portugal, and the ones about Spain is in a Cassandra database.
EasyBDI allows the user to identify mapping types. In this case, there is a hor-
izontal mapping (which means that the global entity is horizontally partitioned
through two data sources), i.e., the global entity representing the orders maps to
structures in Cassandra and PostgreSQL. The first example is a distinct query
to obtain all the vehicles used in orders. The executed query is:

SELECT vehicle, listagg(prov, ‘;’) WITHIN GROUP (ORDER
BY vehicle) as prov FROM ( SELECT sname, dest, vehicle,
listagg(provtoken, ‘;’) WITHIN GROUP (ORDER BY sname)
as prov FROM( SELECT sname, dest, vehicle, provtoken FROM post-
gresql.public.orderspt UNION SELECT sname, dest, vehicle, provtoken
FROM cassandra.stkspace.ordersen ) GROUP BY sname, dest, vehi-
cle) GROUP BY vehicle

In the above query, the clauses in bold are the ones we added to the query.
Starting with the sub-query, the local schemas’ union is needed to obtain the
global entity. Since we add “provtoken” to the tables and they might be different,
the union result would be erroneous without the group by clause. Thus, we also
add the group by clause and the listagg function. In the main query, the distinct
clause has been removed, and we used a group by clause again with the column
in the distinct and the listagg to aggregate the tokens. The result obtained is
the following:

For “Airplane”, the provenance is simple. We have only one token as a witness
for the why-provenance and the same token for how-provenance. For “Train” and
“Truck” we have different witnesses, and we can also obtain each row using one
of the tokens. Since in the How-provenance column the tokens are separated by
@, we can use one of the tokens only to obtain the rows.

[ Results k Query Execution Status [ Global Schema Query

vehicle why

1 |Airplane|{{c.ordersen:tk6}}

2 |Truck |{{c.ordersen:tkl0}, {p.orderspt:tk4}, {c.ordersen:tk7}, {c.ordersen:tkS}1}
3 [Train {{p.orderspt:tk3}, {p.orderspt:tkS}, {c.ordersen:tk8}}

[ Results [ Query Execution Status k Global Schema Query

vehicle how

1 |Airplane|{c.ordersen:tk6)

2 |Truck |[{c.ordersen:tk10 & p.orderspt:tk4 & c.ordersen:tk7 & c.ordersen:tk9)
3 |Train  |(p.orderspt:tk3 @ p.orderspt:tkS & c.ordersen:tkg)

Fig. 4. The result of the distinct query.
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The following query is a join between the stores and orders to obtain the
orders’ destination and the stores’ e-mail responsible for the orders. The unions
are simplified, since they are equal to the last query, just now for the two tables.

SELECT s.email, o.dest, s.prov as prov, o.prov as prov FROM ( —
UNION STORES - ) s, ( — UNION ORDERS —-) o WHERE s.name =
o.sname

The unions are again applied to obtain the GCS. We added the annotations’
columns for the tables/view/query involved in the join to the query projection.
The result in Fig. 5 shows that all why-provenance’s tokens are in pairs of wit-
nesses: in order to obtain any row, we need both of the tokens. In contrast with
the query of Fig. 4, now the tokens are separated by ® in how-provenance, each
means that we need a join between both tokens.

fResuIts | Query Execution Status | Global Schema Query |

email dest why how
1 [ls@store.pt |Porto |{{p.storespt:tkl , p.orderspt:tk3}} |(p.storespt:tkl ® p.orderspt:tk3)
2 [ls@store.pt |Braga |{{p.storespt:tkl , p.orderspt:tk4}} |(p.storespt:tkl ® p.orderspt:tk4)
3 |ps@store.pt |Madrid |{{p.storespt:tk2 , p.orderspt:tk6}} |(p.storespt:tk2 @ p.orderspt:tk6)
4 |ps@store.pt |Braga |{{p.storespt:tk2 , p.orderspt:tkS}} |(p.storespt:tk2 ® p.orderspt:tkS)
5 |[ms@store.pt Barcelona |{{c.storesen:tkl , c.ordersen:tk9}} |(c.storesen:tkl ® c.ordersen:tk9)
6 |ms@store.pt |Bilbao |{{c.storesen:tkl , c.ordersen:tk10}} l(c.storesen:tkl ® c.ordersen:tk10)
7 |bs@store.pt |Madrid {{c.storesen:tk2, c.ordersen:tk7}} |(c.storesen:tk2 ® c.ordersen:tk7)
8 |bs@store.pt |Braga {{c.storesen:tk2, c.ordersen:tk8}} |{c.storesen:tk2 ® c.ordersen:tk8)

Fig. 5. The result of the query with join

The last query example is a group by the previous query applied to “dest”.
Since it is a group by, we need to use the listagg function in the joins’ columns.

SELECT o.dest, listagg(s.prov, ‘|’) WITHIN GROUP (ORDER
BY o.dest) as prov, listagg(p.prov, ‘’) WITHIN GROUP
(ORDER BY o.dest) as prov FROM ( — UNION STORES - ) s, (
— UNION ORDERS -) o WHERE s.name = o.sname GROUP BY o.dest

Results | Query Execution Status | Global Schema Query

dest why
1 |Barcelona |{c.storesen:tkl , c.ordersen:tk9}
2 |Bilbao |{c.storesen:tkl , c.ordersen:tk10} i B i i i )
3 |Braga {{c.storesen:tk2, c.ordersen:tk8}, {p.storespt:tkl , p.orderspt:tk4}, {p.storespt:tk2 , p.orderspt:tkS}}
4 |Madrid {{c.storesen:tk2, c.ordersen:tk7}, {p.storespt:tk2, p.orderspt:tk6}}
S |Porto {p.storespt:tkl , p.orderspt:tk3}
dest | how
1 |Barcelona |({c.storesen:tkl & c.ordersen:tk9)
2 |Bilbao (c.storesen:tkl ® c.ordersen:tk10)
3 |Braga ({c.storesen:tk2 @ c.ordersen:tk8) & (p.storespt:tkl ® p.orderspt:tk4) & (p.storespt:tk2 & p.orderspt:tk5)}
4 |Madrid |{{c.storesen:tk2 ® c.ordersen:tk7) @ {p.storespt:tk2 @ p.orderspt:tk6))
5 |Porto |(p.storespt:tkl ® p.orderspt:tk3)

Fig. 6. The result of the group by query
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As demonstrated in Fig. 6, some rows now have more than one pair of wit-
nesses for the why-provenance. How-provenance column shows that it is possible
to join different tokens to obtain the rows. In the result of destinations “Braga”
and “Madrid”, we can see that the result can be obtained from the two databases
because both “why” and “how” have tokens from the two sources.

5 Conclusions and Future Work

This work discusses data provenance in distributed environments, which is essen-
tial to infer the data’s veracity and quality.

We present a solution to generate how- and why-provenance using pure SQL
queries with annotations and an algorithm to build the provenance information.
It is a non-intrusive solution that does not require any change to the distributed
query execution engine. Also, it is not specific to any database system or model.
We also present an implementation of our proposals on EasyBDI. It is a log-
ical database integration tool based on which users query entities from global
schemas that abstract the data organization on each data source. There is no
materialization. Distributed query processing and provenance data generation
are done on the fly, without materializations.

In future work, we plan to study how to generate other types of provenance
(e.g., where-provenance) following the same logic used here. Since we are work-
ing with distributed environments, another issue is how to generate provenance
information in contexts where materializations are used for database integration
and analytic processing.
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