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Preface

Welcome to the two-volume edition of the proceedings of the 33rd International
Conference on Database and Expert Systems Applications (DEXA 2022). After a break
of two years due to the COVID-19 pandemic situation, which forced us to use online
formats, we were happy that we could finally meet in person in Vienna, Austria, during
August 22–24, 2022. The wide variety of the topics, as well as the depth of the presented
research, revealed, that sound research in the field of database and expert systems
applicationswas not at all shut downby the pandemic. The papers accepted and presented
at DEXA 2022, which are collated in these two volumes of proceedings, are an impres-
sive collection of the research and development performed during the challenging recent
times.

This year, the DEXA Program Committee accepted 43 full papers and 20 short
papers, leading to an acceptance rate of 35%. The total number of submissions was
comparable with recent DEXA editions, and we are proud to see again that the DEXA
community is global as we received contributions from all around the world (Europe,
America, Asia, Africa, Oceania). Our Program Committee performed more than 500
reviews, which not only serve the purpose of quality control for the conference but also
contained valuable feedback and insights for the authors. We would like to sincerely
thank our Program Committee members for their rigorous and critical, and at the same
time motivating, reviews of DEXA 2022 submissions.

As is the tradition of DEXA conference series, all accepted papers were published
in Lecture Notes in Computer Science (LNCS) and made available by Springer. Authors
of selected papers presented at the conference will be invited to submit substantially
extended versions of their conference papers for publication in special issues of two
international journals: Knowledge and Information Systems (KAIS) and Transactions
of Large Scale Data and Knowledge Centered Systems (TLDKS), both published by
Springer. The submitted extended versions will undergo a further review process.

DEXA 2022 covered a wide range of relevant topics: (i) big data management
and analytics, (ii) consistency, integrity, and quality of data, (iii) constraint modeling
and processing, (iv) database federation and integration, interoperability, and multi-
databases, (v) data and information semantics, (vi) data integration, metadata man-
agement, and interoperability, (vii) data structures and data management algorithms,
(viii) graph databases, (ix) incomplete and uncertain data, (x) information retrieval,
(xi) statistical and scientific databases, (xii) temporal, spatial, and high dimensional
databases, (xiii) query processing and transaction management, (xiv) visual data analyt-
ics, data mining, and knowledge discovery, (xv) WWW and databases, as well as web
services.

Wewould like to express our gratitude to the distinguished keynote speakers for their
presented leading edge topics:
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• Ricardo Baeza-Yates, Institute for Experiential AI, Northeastern University, USA
• SabrinaKirrane, Institute for Information Systems andNewMedia, ViennaUniversity
of Economics and Business, Austria

• Philippe Cudré-Mauroux, University of Fribourg, Switzerland

DEXA 2022 also featured six international workshops that focused the attention on
a variety of specific topics:

• The 2nd International Workshop on AI System Engineering: Math, Modelling and
Software (AISys 2022);

• The 1st International Workshop on Applied Research, Technology Transfer and
Knowledge Exchange in Software and Data Science (ARTE 2022);

• The 1st International Workshop on Distributed Ledgers and Related Technologies
(DLRT 2022);

• The 6th International Workshop on Cyber-Security and Functional Safety in Cyber-
Physical Systems (IWCFS 2022);

• The 4th International Workshop on Machine Learning and Knowledge Graphs
(MLKgraphs 2022);

• The 2nd International Workshop on Time Ordered Data (ProTime 2022).

Like the success of every conference, DEXA’s success is also built on the continuous
and generous support of its participants and contributors and their perpetual and sustained
efforts. Our sincere thanks go to the loyal and dedicated authors, distinguished Program
Committee members, session chairs, organizing and steering committee members, and
student volunteers who worked hard to ensure the continuity and the high quality of
DEXA 2022.

We would also like to express our thanks to all institutions actively supporting this
event, namely

• Software Competence Center Hagenberg (SCCH), Austria;
• Institute of Telecooperation, Johannes Kepler University Linz (JKU), Austria;
• Web Applications Society (@WAS);
• Austria Society for Artificial Intelligence (ASAI), Austria;
• Vienna University of Economics and Business (WU), Austria; and
• Austrian Blockchain Center (ABC Research), Austria.

We hope you enjoyed the DEXA 2022 conference: not only as an opportunity to
present your own work to the DEXA community but also as an opportunity to meet new
peers and foster and enlarge your network. We are looking forward to seeing you again
next year!

August 2022 Christine Strauss
Alfredo Cuzzocrea
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Responsible AI

Ricardo Baeza-Yates

Institute for Experiential AI @ Northeastern University

Abstract. In the first part we cover five current specific problems that
motivate the needs of responsible AI: (1) discrimination (e.g., facial
recognition, justice, sharing economy, language models); (2) phrenol-
ogy (e.g., biometric based predictions); (3) unfair digital commerce (e.g.,
exposure and popularity bias); (4) stupid models (e.g., minimal adversar-
ial AI) and (5) indiscriminate use of computing resources (e.g., large
language models). These examples do have a personal bias but set the
context for the second part where we address four challenges: (1) too
many principles (e.g., principles vs. techniques), (2) cultural differences;
(3) regulation and (4) our cognitive biases. We finish discussing what we
can do to address these challenges in the near future to be able to develop
responsible AI.



Following the Rules: From Policies to Norms

Sabrina Kirrane

Institute for Information Systems and New Media @ Vienna University
of Economics and Business

Abstract. Since its inception, the world wide web has evolved from
a medium for information dissemination, to a general information and
communication technology that supports economic and societal interac-
tion and collaboration across the globe. Existing web-based applications
range from e-commerce and e-government services, to various media
and social networking platforms, many of whom incorporate software
agents, such as bots and digital assistants. However, the original semantic
web vision, whereby machine-readable web data could be automatically
actioned upon by intelligent software web agents, has yet to be realized.
In this talk, we will show how rules, in the form of policies and norms,
can be used to specify a variety of data usage constraints (access policies,
licenses, privacy preferences, regulatory constraints), in a manner that
supports automated enforcement or compliance checking. Additionally,
we discuss how, when taken together, policies, preferences, and norms
can be used to afford humans more control and transparency with respect
to individual and collaborating agents. Finally, we will highlight several
open challenges and opportunities.
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Abstract. Knowledge graphs are widely used as auxiliary informa-
tion to improve the performance in recommender systems. This enables
items to be aligned with knowledge entities and provides additional item
attributes to facilitate learning interactions between users and items.
However, the lack of user connections in the knowledge graph may
degrade the profiling of user preferences, especially for explicit user
behaviors. Furthermore, learning knowledge graph embeddings is not
entirely consistent with recommendation tasks due to different objec-
tives. To solve the aforementioned problems, we extract knowledge enti-
ties from users’ explicit reviews and propose a multi-task framework to
jointly learn propagating features on the knowledge graph for movie rec-
ommendations. The review-based heterogeneous graph can provide sub-
stantial information for learning user preferences. In the proposed frame-
work, we use an attention-based multi-hop propagation mechanism to
take users and movies as center nodes and extend their attributes along
with the connections of the knowledge graph by recursively calculat-
ing the different contributions of their neighbors. We use two real-world
datasets to show the effectiveness of our proposed model in comparison
with state-of-the-art baselines. Additionally, we investigate two aspects
of the proposed model in extended ablation studies.

Keywords: Multi-task learning · Knowledge graph · Review-based
recommendation · Personalized recommender systems

1 Introduction

Knowledge graphs (KGs) contain a large number of item attributes, which are
widely used as auxiliary information to improve recommendation performance.
One of the most commonly-used practices is aligning items with knowledge enti-
ties in a KG, which enables to explore item attributions along with the connec-
tions of the entities [1–5,22].

The key point of KG-based recommender systems (RSs) is how to profile
user preferences on the basis of the KG. Existing works profile user preferences
by first integrating user behaviors into the graph and then designing an effective
method to learn user preferences along with the connections in the graph [6–8].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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There are recent famous books adapted into movies like Eragon, which is better
than The Seeker adaptation, another one is The Chronicles of Narnia: The lion...

 8/10

Martin Scorsese is working with a subject that suits him to a tee. Daniel Day-
Lewis acts up a storm and is certainly something to see as Bill "The Butcher," ...

 6/10

Fig. 1. Illustration of movie reviews with knowledge mentions. The bold words are
knowledge mentions aligned with entities in the KG.

To handle the interactions between users and items, they treat the interactions
as KG edges, and define the built heterogeneous graph as a collaborative KG
[3]. Existing KG-based recommendation methods are roughly classified into two
types: path-based and embedding-based.

Path-based methods explore paths between users and items to learn the
multiple hops information as user preferences for enhancing recommendation
performances. They usually treat KG-based recommendation tasks as multi-
hop reasoning problems [2,9] or define meta-paths to extract specific patterns
between users and items to improve recommendation accuracy [10]. Embedding-
based methods represent users and items as entity embeddings by using current
KG embedding (KGE) algorithms, such as TransE [12] and TransR [13]. The
user preferences of these works are depicted by the linked neighbors of users in
the graph.

Although these methods can improve the corresponding recommendation
performances, they also have several deficiencies. First, they usually integrate
the user-item implicit interactions (e.g., clicks and browses) directly into the
graph, which is unsuitable for explicit user behaviors (e.g., ratings and reviews).
Second, all user neighbors in the graph are items, which is insufficient to pro-
file user preferences based on explicit behaviors. Third, although KGs have their
benefits in learning user preferences on the basis of the connections on the graph,
directly using entity embeddings for recommendation tasks results unnecessary
losses in accuracy.

User reviews are widely used as auxiliary information in RSs and have been
successfully applied to improve recommendation performance [23,24]. Existing
review-based RSs usually extract topics or semantic embeddings from reviews
as features to profile user preferences for recommendation [14,24]. However none
consider the substantial knowledge information contained in reviews [23–25].
Figure 1 shows two movie reviews from users with knowledge mentions aligned
with KGs. We can see that movie reviews contain substantial knowledge men-
tions corresponding to knowledge entities.

To address the limitations represented by the current KG-based works, and
inspired by the success applying reviews to RSs, we propose a novel recom-
mendation framework, jointly learning propagation features on the KG (JPKG),
which can learn multi-hop propagation features as user preferences on the basis
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of explicit review behaviors of users for movies. The review entities extracted
from reviews based on KGs can be considered as neighbors of users/movies in
the graph to assist in profiling user preferences and movie properties. On the
basis of the review entities, we first construct a review-based heterogeneous KG,
as shown in Fig. 2. To fully exploit user preferences on the graph, we then intro-
duce an attention-based multi-hop propagation mechanism that updates a node
embedding of a user/movie on the basis of the different contributions of its neigh-
bors. To bridge the differences between the knowledge embedding learning and
recommendation, we adopt a multi-task learning framework to jointly learn the
propagation feature on the KG to predict movie ratings.

The contributions of our work are summarized as follows:

– We built a review-based heterogeneous KG to address the lack of user con-
nections, which considers the movie-related entities and contains users’ con-
nections to their review entities.

– We designed a multi-task framework to jointly learn multi-hop features of
user/movies, which can recursively learn the different contributions of neigh-
bors to users/movies.

– We conducted experiments on two public datasets, demonstrating the effec-
tiveness of JPKG, especially on sparse datasets.

2 Methodology

2.1 Problem Formulation

In this paper, we focus on generating propagating links through the jointly learn-
ing of a recommendation task and KG linking task to recommend a movie
to a user. Let U = {u1, u2, ..., u|U |} and M = {m1,m2, ...,m|M |} denote the
user set containing |U | users and the movie set containing |M | movies, respec-
tively. The user-movie rating matrix Y ∈ R

|U |×|M | is defined in accordance with
the rating behaviors from users to movies, and the element yui,mj

is a rating
value given from user ui to movie mj . In addition, the heterogeneous graph
G = (V, E) is comprised of heterogeneous nodes and undirected edges, where V
consists of users, movies, and review entities, and E is the set of edges connecting
users/movies and review entities. Here, we use S = {s1, s2, ...} to represent the
set of review entities in the graph G, and V = U ∪ M ∪ S. We use A to denote
the adjacency matrix of the graph G, where Ai,j = 1 if (i, j) ∈ E and Ai,j = 0
otherwise.

Given the user-movie rating matrix Y and the heterogeneous graph G, we
aim to predict the ratings between users and movies that have not interacted
before.

2.2 Heterogeneous Graph Construction

We construct a heterogeneous graph containing users, movies, and their corre-
sponding review entities. For review entities, we adopt the entity linking method
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Users

Movies

Review
entities

Fig. 2. Example of a review-based heterogeneous KG. Solid lines denote the real con-
nections in the build graph, and dashed lines denote the interactions between users and
movies. Grey circles denote similar users and movies discovered through connections
to review entities.

[11] to find entities of reviews and each entity as a node in the heterogeneous
graph. In review-based RSs, users and items can be represented by their corre-
sponding reviews information [14,15]. Therefore, both users and movies can be
linked with their review entities, as shown in Fig. 2. In the figure, we can see
that since both u1 and u2 are linked to s1 and s2, and u2 has watched movie
m1, we can recommend m1 to user u1 on the basis of the similar preferences
of u1 and u2. Moreover, the multi-hop propagation mechanism can capture the
connectivity lines u1 → s1 → m1 and u1 → s2 → m1 in the graph, and the lines
reflect the relationship between user u1 and movie m1. Similarly, we can also
recommend m2 to u3 because of the similar properties of m2 and m3 and the
link propagation u3 → s3 → m2.

2.3 The Proposed Framework

We designed a multi-task learning framework as shown in Fig. 3, which jointly
learns the graph link prediction task and rating prediction task to predict the
accurate ratings. The proposed framework consists of a graph attention learning
module, multi-hop propagation module, and mutual learning module. The graph
attention learning module computes the weights of edges in the graph by con-
sidering the contributions of review entities to their connected users/movies. We
use lines with different thicknesses to represent different attention values, and
the larger the value, the thicker the line. The multi-hop propagation module
recursively propagates the node embeddings from their neighbors on the basis of
the weighted KG. The mutual learning module seamlessly combines the graph
link prediction task and the recommendation task to provide accurate ratings.

Graph Attention Learning Module. Given the heterogeneous graph G, we
represent the nodes in the graph as vectors by using a graph embedding layer.
For a node of user ui in the graph, the corresponding d-dimensional embedding
can be represented by eui

∈ R
d. Similarly, we use emj

∈ R
d to represent the

embedding of a movie mj in the graph. For a review entity sr, we use sr ∈ R
d

to represent its embedding vector.
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Mutual Learning Module

 Multi-hop Propagation
Module

Multi-hop propagation of

Multi-hop propagation of

Graph
Attention

...

...

Mutual learning

ID embedding

Embedding
lookup

...

...

... ...

Concatenate
ID embedding

 Graph Attention 
Learning Module

Fig. 3. Proposed JPKG framework.

We adopt the attention mechanism to learn the contributions of review enti-
ties to users/movies in the heterogeneous graph. The input of this module is
the graph embeddings generated by mapping one-hot vectors through a fully-
connected neural network. Given an embedding vector eui

of user ui, and the
embedding vector sr of the r-th review entity linked with user ui, the attention
values between the user node and its neighbor can be calculated through this
module. Specifically, the query vector of eui

can be formulated as follows:

qui
= ReLU(Wqeui

), (1)

where Wq ∈ R
l×d is a matrix to project the user node from the d-dimension

entity space into the l-dimension query space, and ReLU(·) [18] is a rectified
linear unit.

ksr = ReLU(Wksr), (2)

where Wk ∈ R
l×d is a matrix to transform the review entity into the key-space.

On the basis of the two aforementioned equations, we compute the attention
score between user ui and its linked review entity sr as follows:

a(ui, sr) = qT
ui
ksr . (3)

We normalize the attention scores of all the neighbors corresponding to the
user ui by using the softmax function:

a(ui, sr) =
exp(a(ui, sr))∑

sr′∈Nui
exp(a(ui, sr′))

, (4)

where Nui
is the set of review entities linked to user ui.
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We compute the hidden representation of user ui on the basis of its neighbors:

hui
=

∑

sr∈Nui

a(ui, sr)sr, (5)

where hui
∈ R

d. The hidden representation of sr can be calculated as follows:

hsr = ReLU(Wsr), (6)

where W ∈ R
l×d is the matrix for projecting the review entity sr into the same

hidden space with hui
.

The probability of a link between the user ui and a review entity sr can be
computed as follows:

p(ui, sr) = σ(hT
ui
hsr ), (7)

where σ(·) is the sigmoid function. Similarly, the probability of the link con-
necting movie j and review entity sr can be calculated by the aforementioned
Eqs. (1)–(7), denoted by p(mj , sr).

We update weight matrices in this module by optimizing the cross-entropy
loss function as follows:

LG = LGU + LGM , (8)

where LGU and LGM are the loss functions for user-centric and movie-centric
link prediction, respectively, and each of them can be formulated as:

LGU = −∑
(ui,sr)∈G Aui,sr log p(ui, sr) + (1 − Aui,sr ) log(1 − p(ui, sr))

LGM = −∑
(mj ,sr)∈G Amj ,sr log p(mj , sr) + (1 − Amj ,sr ) log(1 − p(mj , sr))

,

(9)
where the symbol A·,· denotes a value in the adjacency matrix.

Multi-hop Propagation Module. To compute the effect of multi-hop neigh-
bors on a user/movie, we recursively propagate the embeddings along the
connecting lines centered on the user/movie. Taking m1 → s1 → u1 and
m1 → s2 → u1 as an example, in the one-hop propagation, movie m1 and
user u1 take s1 and s2 as their attributes to enrich the representations, and in
the two-hop propagation, m1 and u1 use the embedding information of each
other to further enrich their feature representations.

Considering a user ui in the graph, we use Nui
to denote a set of neighbors

centered around user ui. The neighbor embeddings of user ui can be represented
by eNui

, and

eNui
=

∑

sr∈Nui

a(ui, sr)sr, (10)

where a(ui, sr) denotes the attention weights from a review entity sr linked to
user ui, indicating the contribution from sr to ui.

We leverage the method proposed in [3] to aggregate the embeddings of
users/movies and their neighbor embeddings. Given the embedding eui

of user ui
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and its neighbor embeddings eNui
, the aggregation operation can be formulated

as:

f = LeakyReLU(W1(eui
+ eNui

)) + LeakyReLU(W2(eui
� eNui

)), (11)

where W1, W2 ∈ R
d×d are the trainable matrices, and � indicates the element-

wise product.
For the multi-hop propagation, we recursively propagate information from

multi-hop distances to users/movies by stacking multiple aggregation layers. In
the t-th aggregation layer, the embedding of ui can be defined as:

etui
= f(et−1

ui
, et−1

Nui
), (12)

where the embedding of Nui
in the (t − 1)-th aggregation layer is calculated as

follows,
et−1

Nui
=

∑

sr∈Nui

a(ui, sr)st−1
r , (13)

where st−1
r is the embedding of review entity sr generated from the previous

propagation layers. Similarly, the multi-hop propagation embedding of mj is
represented as etmj

. Note that when t = 0, vectors e0ui
= hui

and e0mj
= hmj

.
For user ui and movie mj , the corresponding outputs generated by (t + 1)

aggregation layers can be gathered by {e0ui
, e1ui

, ..., etui
} and {e0mj

, e1mj
, ..., etmj

},
respectively.

Mutual Learning Module. In this module, we jointly learn the propagation
embedding and the corresponding ID embedding of each user and movie to
complete the information exchange from two different kinds of latent features.

We describe the mutual learning operation by introducing multiple interac-
tion layers between the ID embedding ui ∈ R

d of user ui and the corresponding
t-hop propagation embeddings {e0ui

, e1ui
, ..., etui

}. In the n-th mutual learning
layer, we build d × d pairwise interactions between them as follows:

Cn = ui

(
enui

)� =

⎡

⎣
ui1e

n
ui1

· · · ul
ide

n
ui1

. . . · · ·
ui1e

n
uid

· · · uide
n
uid

⎤

⎦ , (14)

where Cn ∈ R
d×d is the interaction matrix of ui and enui

in the n-th layer, and
n ≤ (t + 1). The ID embedding of ui in the n-th layer is generated as follows:

un
i = Cnwue + (Cn)�weu + b (15)

where the vectors wue ∈ R
d and weu ∈ R

d denote the trainable projection
weights for mapping Cn to the ID embedding space, and b ∈ R

d is the trainable
bias.

We concatenate (t + 1) ID embeddings corresponding to ui as one vector,
and then compute the final representation of ui by using a linear projection:

ûi = W′concatenate(u1
i ,u

2
i , ...,u

n
i , ...), (16)
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where W′ ∈ R
d×(t+1)∗d is the trainable projection matrix. Similarly, the embed-

ding of movie mj can be represented as m̂j . The final ratings of user ui to movie
mj is calculated as:

ŷuimj
= û�

i m̂j . (17)

Optimization. To optimize the proposed model, the entire loss function is
defined as follows:

L = LG + LRS + LREG

= λ1LG +
∑

ui∈U,mj∈M

J (
ŷui,mj

, yui,mj

)
+ λ2‖W‖22, (18)

where LG is the loss function of the graph link prediction task defined in Eq. 8,
LRS is the loss function of the rating prediction task, and LREG is the regular-
ization term. The symbol J (∗) denotes the mean square error (MSE) function.
We use λ1 and λ2 as the learning rate parameters to balance the loss.

3 Experiments

3.1 Datasets

We evaluated our model on two publicly available real-world movie datasets:
IMDb and Amazon-movie.

– IMDb dataset. The dataset was published by a related work JMARS [16],
which includes ratings and reviews information from users to movies, and the
ratings are in the range of [0, 10].

– Amazon-movie dataset. This dataset belongs to the “Amazon product
data”1, which has been widely used to evaluate review rating prediction works
[14,17]. The ratings from users to movies are in the range of [0, 5].

To analyze the impacts of different sparse data on recommendation perfor-
mances, we filtered each dataset into eight different core versions ranging from
3-core to 10-core on the basis of the minimum number of reviews from users.
For example, 3-core means each user has at least three reviews in the dataset.
We removed the duplicate edges in each graph. The statistics of datasets are
illustrated in Table 1.

3.2 Experimental Settings

Baselines. To evaluate the effectiveness of the proposed model, we chose three
highly-relevant state-of-the-art works: rating-based matrix factorization meth-
ods, review-based neural networks, and knowledge-based mutual learning meth-
ods as our baselines.

1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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Table 1. Statistics of the two datasets with different sparsities

Dataset 3-core 4-core 5-core 6-core 7-core 8-core 9-core 10-core

IMDb # users 1,833 1,648 1,504 1,393 1,318 1,237 1,160 1,095

# movies 4,663 4,663 4,663 4,663 4,663 4,663 4,663 4,663

# ratings 126K 125K 125K 124K 124K 123K 123K 122K

# review entities 69K 69K 68K 68K 68K 68K 68K 68K

# nodes 76K 75K 75K 75K 74K 74K 74K 74K

# edges 1,008K 1,004K 1,000K 999K 995K 992K 988K 984K

Amazon-movie # users 158K 123K 93K 68K 53K 43K 35K 29K

# movies 59K 59K 58K 58K 58K 57K 57K 56K

# ratings 1,448K 1,343K 1,223K 1,101K 1,009K 936K 876K 825K

#review entities 190K 189K 187K 185K 182K 180K 178K 176K

# nodes 408K 371K 340K 312K 294K 281K 271K 263K

# edges 6,248K 6,058K 5,810K 5,471K 5,211K 4,992K 4,802K 4,641K

– Probabilistic matrix factorization (PMF). PMF is a matrix factorization
model that learns the latent representations of users and items from a rating
matrix to provide accurate recommendations [19].

– Generalized matrix factorization (GMF). GMF is a generalized version of
matrix factorization (MF) [20] that uses a nonlinear layer to project the latent
vectors of users and items into the same space, and models the interactions
between users and items on the basis of their projected vectors [21].

– Multi-task feature learning for KG enhanced recommendation (MKR). This
method treats items as head entities of the KG and learns latent vectors of
items by mutual learning between an RS task and KGE task [22].

– Deep cooperative neural networks (DeepCoNN). DeepCoNN is a review-based
neural network that adopts a convolution-based parallel structure framework
to extract the latent representations of users and items from their correspond-
ing reviews [23].

– Transformational neural networks (TransNets). This method is also a review-
based neural network inspired by DeepCoNN that introduces a transform
layer in a parallel neural network to transform reviews of users and items
into the same representation space for recommendation [24].

Evaluation Metric. To measure the performances of all the tested models, we
adopt root-mean-square error (RMSE) as the evaluation metric. Given a ground
truth rating yui,mj

rated by user ui for movie mj and its corresponding predicted
rating ŷui,mj

, the RMSE is calculated as:

RMSE =
√

1
N

∑

ui,mj

(
ŷui,mj

− yui,mj

)2
, (19)

where N indicates the number of user ratings for movies.
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Table 2. Overall performance comparison. Best results are highlighted in bold.

3-core 4-core 5-core 6-core 7-core 8-core 9-core 10-core

IMDb PMF 1.837 1.812 1.812 1.84 1.767 1.789 1.77 1.758

GMF 1.848 1.826 1.826 1.862 1.782 1.809 1.789 1.771

MKR 1.827 1.819 1.804 1.818 1.806 1.806 1.806 1.802

DeepCoNN 1.813 1.815 1.778 1.809 1.774 1.751 1.787 1.776

TransNets 1.814 1.816 1.763 1.793 1.777 1.75 1.775 1.766

JPKG 1.772 1.775 1.773 1.762 1.763 1.746 1.736 1.748

Amazon-movie PMF 1.131 1.088 1.081 1.072 1.084 1.085 1.092 1.097

GMF 1.175 1.172 1.172 1.167 1.160 1.160 1.154 1.148

MKR 1.100 1.097 1.088 1.082 1.072 1.069 1.066 1.060

DeepCoNN 1.045 1.034 1.024 1.026 1.018 1.017 1.020 1.016

TransNets 1.047 1.042 1.030 1.041 1.022 1.023 1.014 1.021

JPKG 1.031 1.029 1.021 1.018 1.011 1.006 1.001 0.997

Parameter Settings. We randomly selected 80%, 10%, and 10% of samples
as the training, validation, and test sets, respectively. We set the learning rates
of the recommendation task and graph linking prediction task to 2.0 × 10−4

and 8.0 × 10−6, respectively. The values of λ1 and λ2 were fixed to 0.04 and
1.0 × 10−6, respectively. The number of propagation layers in the multi-hop
propagation module was set to 3. The dimensions of both ID embeddings and
graph node embeddings were set to 16. The batch size in the training processes
for the recommendation task and graph link prediction task were set to 64 and
1024, respectively. The training interval was set to 4, which means that we
repeatedly train recommendation task 4 times before training the graph link
prediction task once in each epoch.

3.3 Experimental Results

We report the experimental results of our proposed model and those of the
baselines datasets with various sparsities in Table 2. We can see that the proposed
JPKG outperforms the other models in most cases. In particular, it achieves the
best performance on the Amazon-movie dataset with all the sparsities and on
the IMDb dataset except the 5-core sparsity. In general, review-based methods
perform better than rating-based methods, indicating that review information
can reflect user preferences and item properties that do not exist in ratings.
Moreover, as the data becomes denser, the improvement of the review-based
method becomes smaller. However, the improvements of RMSEs for our method
on both the IMDb and Amazon-movie datasets with various sparsities remains at
about 2% and 9%, respectively, which demonstrates that our proposed method
is effective for sparse datasets and maintains its effectiveness consistently as the
datasets become denser.
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Table 3. RMSE results of ablation study.

IMDb Amazon-movie

3-core 10-core 3-core 10-core

JPKG-ML 1.811 1.783 1.042 1.018

JPKG-PF 1.787 1.769 1.040 1.017

JPKG-attn 1.777 1.753 1.037 1.004

JPKG 1.772 1.748 1.031 0.997

3.4 Ablation Study

To investigate the effectiveness of the three modules in our work, we report the
experimental results from two perspectives based on ablation studies: recom-
mendation accuracy and convergence.

For the ablation methods, we first disabled the mutual learning layers and
aggregated the multi-hop propagation features directly as the final representa-
tions of users/movies, termed JPKG-ML. We then disabled the multi-hop propa-
gation module and jointly learned the attention-based node representations and
ID embeddings to predict ratings, termed JPKG-PF. Finally, we disabled the
attention mechanism on the graph and treated the contributions of all neighbors
of a node as the same, termed JPKG-attn.

Recommendation Accuracy. Table 3 shows the RMSE results of the abla-
tion methods and JPKG on the IMDb and Amazon-movie datasets with the
3-core and 10-core sparsities, respectively. We can see that disabling any of the
three key modules degrades the performance of the model. We can also see that
JPKG-ML underperforms other methods, which indicates the mutual learning
module plays a more important role than the other two modules. This finding also
reveals an empirical fact that directly using graph embeddings for recommenda-
tion may introduce noise and mislead the final recommendation. Furthermore,
JPKG-attn performs better than JPKG-PF, which verifies that removing the
multi-hop propagation module can have a more significant effect than removing
the attention module on recommendation results. One possible reason is that
learning multi-hop propagation features can substantially improve the quality of
representation learning.

Convergence. We investigated the influences of the key modules on our model
by observing the convergence of ablation methods on the IMDb and Amazon-
movie datasets, and the results are presented in Fig. 4. We reported the RMSE
results on the validation data by varying the training epochs to illustrate the
convergence. Note that we adopted the early-stopping strategy to obtain the
final experimental results. We can see that the convergence speed of JPKG is
faster than those of JPKG-attn, JPKG-ML, and JPKG-PF. Moreover, JPKG can
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Fig. 4. Convergence comparisons on the two datasets among three ablation models
and JPKG.

reach a smaller value than the other three ablation methods on the two datasets.
Note that JPKG-PF needs more epochs for the convergence, which means that
adopting multi-hop propagation can enable us to speed up the convergence. We
can also see that JPKG-ML cannot converge to a relatively small loss on the
two datasets. The aforementioned results illustrate the necessity of the three key
modules in our model.

4 Conclusion

In this paper, we proposed JPKG, a multi-task framework that jointly learns
multi-hop propagation features on a KG for movie recommendations. JPKG
overcomes the limitation of insufficient user connections in current KG-based
recommendations by integrating review entities, users, and movies into a het-
erogeneous graph. The attention learning module and multi-hop propagation
module of JPKG achieve attention-based multi-hop propagation feature learning
by recursively calculating the different contributions of neighbors on the graph.
The mutual learning module of JPKG combines the entity embeddings learned
from the two aforementioned modules to help provide more accurate recommen-
dations. The experimental results on two real-world datasets demonstrate the
effectiveness of our proposed model.

For future work, we will focus on providing explainable recommendations on
the basis of the current work. Furthermore, we will explore other methods that
can enhance the user preference mining ability on KGs.
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Abstract. Large neural language models are steadily contributing state-of-the-
art performance to question answering and other natural language and informa-
tion processing tasks. These models are expensive to train. We propose to evaluate
whether such pre-trained models can benefit from the addition of explicit linguis-
tics information without requiring retraining from scratch.

We present a linguistics-informed question answering approach that extends
and fine-tunes a pre-trained transformer-based neural language model with sym-
bolic knowledge encoded with a heterogeneous graph transformer. We illustrate
the approach by the addition of syntactic information in the form of dependency
and constituency graphic structures connecting tokens and virtual vertices.

A comparative empirical performance evaluation with BERT as its baseline
and with Stanford Question Answering Dataset demonstrates the competitive-
ness of the proposed approach. We argue, in conclusion and in the light of further
results of preliminary experiments, that the approach is extensible to further lin-
guistics information including semantics and pragmatics.

Keywords: Question answering · Transformer · Graph neural network

1 Introduction

Question answering [2] is a field within natural language processing [16] that stud-
ies the design and implementation of algorithms, tools, and systems for the automatic
answering of questions in natural language. Among the many types of question answer-
ing [1], this work focuses on extractive question answering. Extractive question answer-
ing refers to the task of, given a question and a passage, selecting from the passage a
text span corresponding to the answer to the question.

Large language models such as Bidirectional Encoder Representations from Trans-
formers (BERT) [4] brought competitive performance to many natural language pro-
cessing tasks, including question answering [20]. Although these models are obviously
able to learn relevant linguistic information [7], Kuncoro et al. show that BERT benefits
from the addition of syntactic information for various structured prediction tasks [19].

Consider the question “What kind of economy did northern California start to grow
in the 2000s?” from Stanford Question Answering Dataset (SQuAD) [26]. The part of
the passage in which the answer is located reads “[...] due to a stronger tech-oriented
economy”. The answer, according to SQuAD, is “tech-oriented” (it could also be “a
tech-oriented economy” or “a stronger tech-oriented economy”). However, BERT is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

C. Strauss et al. (Eds.): DEXA 2022, LNCS 13426, pp. 17–31, 2022.
https://doi.org/10.1007/978-3-031-12423-5_2
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Fig. 1. Examples of syntactic graphic structures.

unable to find an answer. A dependency analysis of the sentence, represented by the
dependency graph in Fig. 1a, reveals that the word “tech-oriented” is an adverb modifier
of “economy”. This dependency is relevant to the question of the form “What kind of
[...]”. Dependencies encode important information specifying grammatical functions
between a dependent, here (tech-oriented), and its head, here (economy) [15].

Consider the other question “Along with road vehicles, locomotives and ships, on
what vehicles were steam engines used during the Industrial Revolution?”, also from
SQuAD. The part of the passage in which the answer is located reads “[...] Steam
engines can be said to have been the moving force behind the Industrial Revolution
and saw widespread commercial use driving machinery in factories, mills and mines;
powering pumping stations; and propelling transport appliances such as railway loco-
motives, ships, steamboats and road vehicles. [...]”. The answer is “steamboats”. BERT
finds a redundant answer “propelling transport appliances such as railway locomotives,
ships, steamboats”. However, a constituency analysis, represented by the constituency
tree in Fig. 1b, clearly indicates “railway locomotives”, “ships”, “streamboats”, and
“road vehicles” are coordinated noun phrases.

Generally, the integration of statistical machine learning with symbolic knowledge
and reasoning “opens relevant possibilities towards richer intelligent systems” remark
the authors of [6] arguing for a principled integration of machine learning and reason-
ing. Nevertheless, most existing neural language models are still plundering the bene-
fits of statistical learning before they attempt to explicitly exploit old-fashion symbolic
knowledge of the linguistic structures.

While the success of transformer-based neural language models is attributed to the
self-attention mechanism [33] that they implement, the question arises whether the
adjunction of a focused attention mechanism guided by structures representing sym-
bolic linguistic information [21], such as dependency graphs and constituency trees,
can further improve the performance of neural language models.

Therefore we devise, present and evaluate a linguistics-informed question answer-
ing approach that extends a pre-trained transformer-based neural language model with
linguistic graphic structures encoded with a heterogeneous graph transformer [13]. The
integration is relatively seamless because both models work in the space of embed-
dings, albeit not necessarily just embeddings of tokens but also of words and other
linguistic units. The transformer-based neural language model is fine-tuned and the
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heterogeneous graph neural network is trained to compute and aggregate the embed-
dings under the constraints of the graphic structures [40].

We instantiate and evaluate the approach for the cases of the addition of syntactic
information, in the form of dependency and constituency graphic structures connecting
tokens and virtual vertices, for extractive question answering.

We refer to the resulting model as syntax-informed neural network with heteroge-
neous graph transformer (SyHGT), for dependencies (SyHGT-D) and constituencies
(SyHGT-C). For the sake of simplicity, SyHGT is presented, discussed and evaluated
here for extractive question answering.

Overall, there are three main contributions in this work: (1) present a syntax-
informed approach via heterogeneous graph transformer for question answering; (2)
propose to integrate virtual vertices that can be any linguistic symbolic for incorporat-
ing prior linguistic knowledge; (3) empirically evaluate our approach on SQuAD2.0 and
it gains 1.22 and 0.98 improvement over the baseline in terms of EM and F1 metrices.

2 Related Work

Early question answering systems used syntactic analysis and rule-based approaches
[8]. Later systems utilised heavy feature engineering [29]. Advancements in computer
hardware then paved the way for neural models which require little feature engineering.

Language models learn the probability of a sequence of words. Neural language
models are often used as encoders to obtain word embeddings. Since BERT, a neural
language model, successfully executed on 11 natural language processing tasks, ques-
tion answering has been dominated by large models built upon it [20].

Jawahar et al. probed BERT’s layers, and found that lower layers captured surface
features, middle layers captured syntactic features, and upper layers captured semantic
features [14]. The upper layers were found to model the long-distance dependencies,
making them crucial to performance in downstream tasks. However, it was also found
that syntactic information is diluted in these upper layers. Kuncoro et al. extended BERT
to take into account syntactic information by modifying its pre-training objective [19].
Using another syntactic language model as a learning signal, they added what they
termed ‘syntactic bias’ to BERT.

Vashishth et al. used dependency trees and graph convolutional networks to learn
syntax-based embeddings that encode functional similarity instead of traditional topical
similarity [31]. The syntax-based embeddings were found to encode information com-
plementary to ELMo [25] embeddings that only relied on sequential context. Zhang et
al. proposed syntax-guided network (SG-Net), a question answering model that used
dependency trees as explicit syntactic constraints for a self-attention layer [39]. SG-
NET was effective especially with longer questions as it could select vital parts. The
syntax-guided attention considered syntactic information that is complementary to tra-
ditional attention mechanisms. Syntax guidance provided more accurate attentive sig-
nals and reduced the impact of noise in long sentences.

For question answering, graph neural networks have found success in multi-hop
reasoning [3,30] on the WikiHop data set [35]. Graph neural networks operate directly
on graphs and can capture dependencies between vertices.
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Fig. 2. The diagram of our proposed approach. There are two major components, graph cre-
ation, as well as graph processing and answer prediction. The green vertices are token vertices,
including the dashed green vertices (virtual lexeme vertices). The dashed blue vertices in the
constituency graph are virtual constituent vertices. The dashed arrows are morphology edges.
The straight arrows are dependency edges or constituency edges. The dotted edges in the con-
stituency graph are part-of-speech edges. (Color figure online)

This work shows the utility of syntax and graph neural networks in learning better
representations. In our approach, we bolster the pre-trained BERT model with addi-
tional syntactic information. In the same vein as the approach by Mao et al. [22], we
bridge old rule-based systems and new neural models by integrating symbolic knowl-
edge into statistical machine learning. This is done by explicitly incorporating the syn-
tactic information, namely constituencies and dependencies, into a question answering
model, which is made possible by inserting a heterogeneous graph transformer into the
question answering pipeline. This keeps our approach rooted linguistically, instead of
solely relying on pre-trained language models that are not explainable. Unlike vanilla
graph neural networks, a heterogeneous graph transformer can deal with a heteroge-
neous graph where multiple types of vertices associated with different relations exist.
To the best of our knowledge, integrating the syntax information and heterogeneous
graph transformers for extractive question answering has not yet been explored.

3 Methodology

In a standard neural language model applied to extractive question answering, the ques-
tion and passage are encoded together, then passed through a linear layer that outputs
the probabilities for each token to be the start and end of the answer span.

We propose SyHGT, a linguistics-informed architecture. We need to create, repre-
sent, and process linguistic graphic structures connecting the language model embed-
dings of the tokens of the question and passage. In the cases of syntactic informa-
tion about dependencies and constituencies, the graphic structures are created by a
parser. The result for a question-passage pair is a graph of embedded vectors of the
tokens. This non-Euclidean graph structure cannot be used directly by the neural lan-
guage model. However, the insertion of a heterogeneous graph transformer layer to
the question answering pipeline allows us a relatively straightforward implementation
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combining both the statistical and symbolic information. By inserting the graph neu-
ral network between the neural language model and the output layer, we can process the
graph before making a prediction. Figure 2 depicts, SyHGT, the proposed approach, with
its two main components: graph creation and graph processing and answer predication.

3.1 Graph Creation Module

Both passage and question are parsed and encoded. The encoder produces embeddings
for each token that correspond to the graph vertices. The syntax graphic structures
define the graph vertices and edges. Respectively, we create a constituency graph and
a dependency tree. The obtained graphs are the input to the following heterogeneous
graph transformer. Note that the tokeniser of the neural language model may not align
with the tokeniser of the parser, be it for dependencies or for constituencies, which most
likely considers lexemes rather than morphemes. The graph heterogeneous graph neural
network model easily alleviates this issue by the introduction of intermediary vertices
aggregating tokens into lexemes, where needed.

Encoder. SyHGT requires a neural language model as its initial encoder which pro-
duces embedding vectors for the text. The Bidirectional Encoder Representations from
Transformers (BERT), see Vaswani et al. [32] and Devlin et al. [4], is used for imple-
mentation and performance evaluation in this paper.

The question q and passage p are concatenated with the appropriate BERT-specific
special tokens to form the sequence: [CLS] q [SEP] p [SEP]. The sequence is fed into
BERT to obtain the token embeddings T = t1, ..., tn, which are the hidden states of the
input sequence at the last layer, where n is the number of tokens.

Dependency Graph. Dependency is the notion that linguistic units, lexemes, e.g.,
words, are connected to each other by directed links. In a dependency structure, every lex-
ical vertex is dependent on at one other lexical vertex or is the head of a dependency. The
structure is therefore a directed graph, with vertices representing lexical elements and
edges representing dependency relations [24]. Dependency parsing produces a depen-
dency graph of a sentence. The dependency graphs are then processed to obtain the depen-
dency relations. Each sentence in the question and passage is parsed individually.

Since most BERT implementations leverage the WordPiece tokenizer [36], which
may split words into sub-words, i.e. ad hoc morphemes, we add, in such a case, a virtual
lexeme vertex on top of the sub-word tokens to represent the original word, so that the
graph construction happens at the correct level.

The edges in the dependency graph are grouped into two categories morphology
edges and dependency edges. Morphology edges connect token vertices corresponding
to sub-words to virtual lexeme vertices. Dependency edges connect the head vertex and
the dependent vertex of a recognized dependency relation. There is one type of edge for
each type of dependency relation.

Constituency Graph. Constituency analysis iteratively decomposes sentences into
constituent or sub-phrases, which are clauses, phrases, and words. These constituents
belong to one of several categories such as noun phrase (NP), verb phrase (VP) as well
as parts of speech. Explicitly, given an input sentence, constituency analysis builds a
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tree, in which leaves or terminal vertices correspond to input words and the internal or
non-terminal vertices are constituents.

The vertices in the constituency tree are grouped into three categories, token ver-
tices, lexeme vertices, and constituent vertices. Token vertices correspond to common
tokens. Lexeme vertices represent lexemes that need to be recomposed from the token
vertices of their sub-words. Constituent vertices represent constituents. Inner nodes and
the root of the constituency tree are virtual, lexeme or constituency, vertices.

The edges in the constituency tree are grouped into three categories, morphology
edges, part-of-speech edges, and constituent edges. Morphology edges connect token
vertices corresponding to subwords to lexeme vertices. Part-of-speech edges connect
the part-of-speech vertices to lexemes vertices. Constituency edges connect low-level
constituents to high-level constituents.

3.2 Graph Processing and Answer Prediction

The heterogeneous graph transformer takes the constructed graphs as input and passes
its outputs to the linear layer. The output from the linear layer consists of two numbers
for each vertex; one number denotes the probability of the vertex being the start of the
answer span, and the other of the vertex being the end. The final predicted start position
and end position of span is determined by the respective maximum scores.

Heterogeneous Graph Transformer. Graph neural networks, proposed by the authors
of [28], are neural models that capture the dependence of graphs via message passing
following the edges between the vertices in a graph [37,40]. Specifically, the target for
a graph neural network layer is to yield a contextualized representations for each vertex
via aggregating the information from its surrounding vertices. By stacking multiple
layers, the obtained representations of the vertices can be fed into downstream tasks,
such as vertex classification, graph classification, link prediction, etc.

Recent years have witnessed the emerging success of graph neural networks
(GNNs) for modeling structured data. However, most GNNs are designed for homo-
geneous graphs, in which all vertices and edges belong to the same types, making them
infeasible to represent heterogeneous structures [13]. Relational Graph Convolutional
Network (R-GCN) first proposed relation-specific transformation in the message pass-
ing steps to deal with various relations [23]. Subsequently, several works focused on
dealing with the heterogeneous graph [34,38]. Inspired by the architecture design of
Transformer [33], Hu et al. [13] presented the Heterogeneous Graph Transformer that
incorporates the self-attention mechanism in a general graph neural network structure
that can deal with a heterogeneous graph.

Given a heterogeneous graph G = (V,E), each vertex v ∈ V and each edge e ∈ E
are associated with their type c ∈ C and r ∈ R. The process in one heterogeneous graph
transformer layer can be decomposed into three steps: heterogeneous mutual attention
calculation, heterogeneous message passing, as well as target-specific aggregation.

Heterogeneous Mutual Attention Calculation. For a source vertex s of type cs and a
target vertex t of type ct connected by an edge e = (s, t) of type re, we first calculate
a query vector Qt and a key vector Ks, with the output from previous heterogeneous
graph transformer layer, by two vertex type-specific linear projections WQ

ct and WK
cs ,
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Qt = WQ
ct h

(l−1)
t , (1)

Ks = WK
cs h(l−1)

s , (2)

here h
(l−1)
s and h

(l−1)
t denote the representations of vertex s and vertex t by the (l−1)-

th heterogeneous transformer layer, separately.
Then, we calculate a similarity score by taking the dot product of Qt with Ks as

shown in Equation (3). An edge type-specific linear projection WA
re is utilised in case

that there are multiple types of edges between a same vertex type pair, while μ is a
predefined vector indicating the general significance of each edge type. The obtained
score is normalised by the square root of the dimension of key vector dKs

. After the
scores for all neighbors of t have been computed, a softmax function is applied to yield
the normalised attention weights At for neighbor aggregation,

At = softmax
∀s∈Nt

(
μKsW

A
reQ

T
t√

dKs

). (3)

Heterogeneous Message Passing. Parallel to the mutual attention calculation, the rep-
resentation of source vertex s from previous heterogeneous graph transformer layer
h
(l−1)
s , is fed into another linear projection WM

cs to produce a message vector Ms,

Ms = WM
cs h(l−1)

s WM
re , (4)

here we add another projection WM
re to incorporate the edge dependency.

Target-Specific Aggregation. With the attention weights At and message vector Ms

yielded by previous steps, we aggregate the information from all the neighbors to t,

h
(l)
t = σ(WC

ct

∑

s∈Nt

AtMs) + h
(l−1)
t , (5)

where WC
ct is another linear projection mapping the aggregated representation back to

t’s type-specific feature space, followed by a non-linear activation operation. By con-
ducting the residual connection operation [11], a highly contextualized representation
h
(l)
t for the target vertex t by the current l-th heterogeneous graph transformer layer is

produced that can be fed into the following module for downstream tasks.

Answer Prediction. After propagation by the heterogeneous graph transformer layers,
the produced representations for the vertices corresponding to common tokens h are
passed to the linear layers with the learned parameters Ws,We and bias bs, be,

ys = softmax(Wsh + bs), (6)

ye = softmax(Weh + be). (7)

The two probability distributions ys and ye indicate the probability of each vertex being
the start or end of the answer span separately.

We compute the cross entropy loss as our training objective,

L = −(y′
s log ys + y′

e log ye), (8)

where y′
s and y′

e are the ground truth start position and end position of the answer.
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4 Experiments and Discussions

We empirically evaluate the effectiveness of our proposed approach with version 2.0 of
the Stanford Question Answering Dataset (SQuAD 2.0) [27].

4.1 Setup

The base encoder is a pre-trained BERT language model, in its public Pytorch imple-
mentation from the Transformers1 library. We keep their default settings with a max-
imum input length of 384. We initialise the weights with the saved models available
from Hugging Face2. We then fine-tune the weights during training. We use the stan-
dard BERT base model (cased), also known as bert-base-cased, model. To build the
heterogeneous graph transformer, we use the pytorch-geometric library.3

In the dependency graph, the embeddings of the initial tokens are obtained from
the pre-trained language model. The embeddings for the virtual lexeme tokens are ini-
tialised with the mean of the embeddings of their corresponding sub-words. The depen-
dency graph edges are obtained from dependency parsing with the method of [5]. Their
embeddings are initialised randomly according to the type of dependency.

In the constituency tree, similarly to the dependency tree, the embeddings of the
initial tokens are obtained from the pre-trained language model and the embeddings for
the virtual lexeme tokens are initialised with the mean of the embeddings of their cor-
responding sub-words. The constituent vertices are obtained from constituency parsing
with the method of [18]. The embeddings of the virtual vertices and of the edges are
initialised randomly according to their category.

The training uses AdamW optimizer [17] and a learning rate of 2e−5. We stack 2
heterogeneous graph transformer layers with 4 attention heads in each. The model is
trained with a mini-batch size of 32 for 7 epochs. The code will be available on Github.

Training and testing use SQuAD 2.0, a data set of questions collected on a set of
Wikipedia articles. The answer to every question is a text span or the question might be
unanswerable. It contains around 130k training and 12k development examples.

4.2 Evaluation

Metrics. We use the following two metrics for the performance evaluation. F1 mea-
sures the normalised average overlap between the prediction and ground-truth answer.
Exact match (EM) evaluates whether the prediction exactly matches the ground-truth.

Overall Experimental Results. The overall experimental results are shown in Table 1.
We compare the performance of the pre-trained BERT alone, of SyHGT with a depen-
dency graph and BERT, and of SyHGT with a constituency tree and BERT. The results
are presented in Table 1, in which the three models are refered to as BERT, SyGHT-D
(BERT), and SyGHT-C (BERT), respectively. We observe a slight improvement of 0.77
EM and 0.46 F1 of SyGHT-C over the BERT baseline and a more significant improve-
ment of 1.22 EM and 0.97 F1 of SyGHT-D over the BERT baseline.

1 github.com/huggingface/transformers.
2 huggingface.co/.
3 github.com/rusty1s/pytorch geometric.

http://github.com/huggingface/transformers
https://huggingface.co/
http://github.com/rusty1s/pytorch_geometric
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Table 1. Overall comparative empirical performance with SQuAD2.0.

Method F1 EM

BERT 75.41 71.78

SyHGT-C (BERT) 75.87 72.55

SyHGT-D (BERT) 76.38 73.00

Microanalysis

Dependency Graph. We examine the dependencies4 involved in question-answer pairs
for which SyGHT-D and BERT alone find different answers. Each example shows the
question (Q), the paragraph (P) as well as the BERT and SyHGT-D answers.

Examples 1 and 2, along with the corresponding dependency graphs, showcase the
inferred utility of dependencies.

In Example 1, BERT predicts a long and incorrect span whereas SyHGT-D,
informed by the dependency graph, recognises that ‘formal’, as an adjectival modi-
fier (amod) of ‘imperialism’, is the correct answer. In Example 2, the dependency tree
shows that the phrase ‘to the West’ is connected to ‘Switzerland’ through a preposi-
tion (prep) as an object of preposition (pobj), while ‘Liechtenstein’ is a conjunct (conj).
SyHGT-D uses the dependencies to correctly identify that ‘to the West’ is not a separate
element from ‘Switzerland’, and that ‘Liechtenstein’ is the answer.

Overall, we report that several specific dependencies, in particular prep, pobj, dobj,
nsubj, conj, cc seem to allow SyHGT-D to predict corresponding linguistically sound
answers, albeit sometimes at the expense of the more general answer. SyHGT-D seems
to be parsimonious.

Constituency Graph. We examine the constituencies5 involved in question-answer pairs
for which SyGHT-C and BERT alone find different answers. Each example shows the
question (Q), the paragraph (P) as well as the BERT and SyHGT-C answers.

4 The descriptions of the dependencies can be found in downloads.cs.stanford.edu/
nlp/software/dependencies manual.pdf.

5 The descriptions of the dependencies can be found in http://surdeanu.cs.arizona.edu//mihai/
teaching/ista555-fall13/readings/PennTreebankConstituents.html.

http://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
http://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
http://surdeanu.cs.arizona.edu//mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
http://surdeanu.cs.arizona.edu//mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
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Examples 3 to 6, along with the corresponding constituency trees, showcase the
inferred utility of constituencies.

In Example 3, the question asks for one clinical pharmacist’s duty where the answer
is one of ‘creating a comprehensive drug therapy plan for patient-specific problems’,
‘identifying goals of therapy’, ‘reviewing ...’. BERT is not able to distinguish different
duties based on the syntax structure and thus gives all the duties in the passage. How-
ever, the constituency tree helps distinguish the three duties. Hence, with the constituen-
cies, SyHGT-C can provide a correct answer. In Example 4, BERT predicts ‘southern
China to Daidu in the north. BERT confuses the coordinated prepositional phrases (PP)
‘from southern China’ and ‘to Daidu in the north’. With the constituency tree, SyHGT-
C can understand that ‘Kublai expanded’ from the start location ‘southern China’ to the
end location ‘Daidu in the north’ and predict the correct answer. The passage in Exam-
ple 5 is difficult to understand as it contains long and complex clauses. BERT fails
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to understand this sentence. The constituency tree clarifies that ‘State of the Planet’
belongs to ‘Science Magazine’ leading to the correct answer. Example 6 further illus-
trates that SyHGT-C can give more accurate answers that exactly match the ground-
truth benefited from integrating the constituency information.

4.3 LingHGT, SemHGT, PragHGT: Towards Linguistics-Informed Language
Models

Linguistics structures are numerous and, more often than not, amenable to a graph
representation. Such structures exist not only for many aspects of syntax but also for
semantics and pragmatics. The architecture we discussed applies to other linguistic
graphic structures. Preliminary experiments with BERT and SQuAD seem to confirm
the versatility and effectiveness of the model and its realisation for linguistics in general,
LingHGT, and for semantics, SemHGT, and pragmatics, PragHGT, in particular.

We are conducting preliminary experiments of the utilisation of an entity-
relationship graph SQuAD for semantics- and pragmatics-informed question answer-
ing. We used the spaCy library [12]6 for named entity recognition and the Open-
NRE [9]7 for relationship extraction. The model is pre-trained on the the Wiki80 data
set that is derived from FewRel and covers 80 relations [10]8. We extract entities and
relationships from the questions and passages for semantic information and we augment
questions with contextual information about the questioner for pragmatic information.
In the following, we look at examples where BERT incorporating semantics information
can answer correctly while the original BERT cannot. In Example 7, the relevant rela-
tion identified is ‘child’ between the entity ‘Lupe Mayorga’ (PERSON), and the entity
‘Aken’ (PERSON). In Example 8 the relevant relation identified is ‘member of political
party’ between the entity ‘Annabel Goldie’ (PERSON), and the entity ‘Conservatives’
(NORP).

We are exploring the opportunity and the applications of a pragmatics-informed
language model. The following example is simulated in order to illustrate the targetted
behaviour of a pragmatics-informed version of the proposed model.

Example 9
P: The IPCC receives funding through the IPCC Trust Fund, established in 1989 by the

United Nations Environment Programme (UNEP) and the World Meteorological Organization

6 https://spacy.io/.
7 https://github.com/thunlp/OpenNRE.
8 https://github.com/thunlp/FewRel.

https://spacy.io/
https://github.com/thunlp/OpenNRE
https://github.com/thunlp/FewRel


28 F. Zhu et al.

(WMO), Costs of the Secretary and of housing the secretariat are provided by the WMO, while
UNEP meets the cost of the Depute Secretary.

Q (asked by the Secretary): Who funds my secretariat?
PraHGT: the World Meteorological Organization
Q (asked by the Deputy Secretary): Who funds my secretariat?
PraHGT: the United Nations Environment Programme

In Example 9, PraHGT should leverage its knowledge of the classes of the entities
‘The United Nations Environment Programme’ and ‘the World Meteorological Orga-
nization’, namely ‘ORG - organization’, ‘Secretary’ and ‘Deputy Secretary’, ‘PER -
person’, and the relationships connecting them directly or via other entities to the ques-
tioner to produce correct answers. The spaCy named-entity recogniser does not have a
class ‘Job Title’ for ‘Secretary’ and ‘Deputy Secretary’. The custom class needs to be
added. The reader notices that a morphology informed tokenisation is also needed in
order to guarantee the proper association of ‘secretariat’ with ‘Secretary’, and to under-
stand the typographical error (original to SQuaD2.0) in ‘Depute’ (instead of ‘Deputy’.)

In general we believe that LingHGT is a blueprint for the implementation of
linguistics-informed models on top of the existing powerful pre-trained neural language
models, wherever the linguistics information can be represented as a graph.

5 Conclusion

This paper presented a syntax-informed question answering model. The approach com-
bines the statistical knowledge of neural language model with the symbolic information
contained in linguistic graphic structures such as dependencies graphs and constituency
trees. The seamless integration is realised by the means of a heterogeneous graph trans-
former added to a pre-trained transformer-based neural language model. The models
therefore combines the self-attention mechanism of the transformer-based neural lan-
guage model with a focused attention guided by graphic structures representing linguis-
tics information in a heterogeneous graph transformer model.

An empirical performance evaluation of the proposed approach in comparison to the
neural language model alone for question answering with SQuAD2.0 shows improve-
ment. An initial microanalysis of the results suggest that the proposed model makes
more focused predictions thanks to its awareness of syntax. Several examples, for which
the proposed approach does not find the correct answer, even suggest that a better syntax
parser could be key to addressing the shortcomings.

Preliminary results for LingHGT, SemHGT, and PragHGT confirm the versatility
and effectiveness of linguistics-informed language models and give a blueprint for the
implementation of incorporating the linguistics information as a graph into the powerful
transformed-based language models.
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Abstract. Enterprise knowledge graphs are increasingly adopted in
industrial settings to integrate heterogeneous systems and data land-
scapes. Manufacturing systems can benefit from knowledge graphs as
they contribute towards implementing visions of interconnected, decen-
tralized and flexible smart manufacturing systems. Process knowledge
is a key perspective which has so far attracted limited attention in this
context, despite its usefulness for capturing the context in which data
are generated. Such knowledge is commonly expressed in diagrammatic
languages and the resulting models can not readily be used in knowl-
edge graph construction. We propose BPMN2KG to address this prob-
lem. BPMN2KG is a transformation tool from BPMN2.0 process models
into knowledge graphs. Thereby BPMN2KG creates a frame for process-
centric data integration and analysis with this transformation. We moti-
vate and evaluate our transformation tool with a real-world industrial
use case focused on quality management in plastic injection molding
for the automotive sector. We use BPMN2KG for process-centric inte-
gration of dispersed production systems data that results in an inte-
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Fig. 1. Motivation: Dispersed data and unknown dependencies across the automation
hierarchy (ERP, MES), data stores (DS), and production system components (I4.0
component).

1 Introduction

Relating domain and process knowledge to disparate and heterogeneous data
is a challenge in most enterprise settings, which is particularly pronounced in
the data-rich context of Cyber-physical Production Systems (CPPSs). Such sys-
tems currently drive a paradigm shift in manufacturing that is alluded to as
the fourth industrial revolution and associated with the term Industry 4.0 (I4.0)
[20]. This fundamental shift in industry is inherently driven by data [22] and
characterized by requirements for flexible, networked, and self-configurable pro-
cesses [32]. Consequently, data and process landscapes are expanding rapidly in
smart manufacturing, but they typically remain disparate and fragmented (i)
across information systems and data stores [15], (ii) between office and shop
floor environments, and (iii) across business functions. Figure 1 illustrates this
disconnect between various information systems across the automation hierar-
chy, data stores, and production system components. This disconnect raises the
following challenges,

C1 Integration across multiple organizational, functional, and temporal levels
of granularity,

C2 Contextualization of raw sensor data with higher-level operational informa-
tion and quality requirements, and

C3 Linking and aggregation of decisions and goals on the production and oper-
ational levels to higher-level business goals.

KGs – which are characterized by a flexible schema, decentralized archi-
tecture, and ability to support data and knowledge integration – provide a
promising foundation for such challenges. To integrate the fragmented process
and data landscape through KGs, however, it is necessary to consider the pro-
cess context. To address these challenges we therefore propose a combination
of (i) Business Process Modeling, which was proposed as a method to tackle
fragmentation challenges in manufacturing [1] and (ii) KG modeling based on
Semantic Web (SW) standards, which have recently shown promising results
in I4.0 applications [7,26,29]. We specifically propose BPMN2KG1 as a tool
1 BPMN2KG is available at https://short.wu.ac.at/BPMN2KG.

https://short.wu.ac.at/BPMN2KG
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to automatically transform business process models in Business Process Model
and Notation (BPMN) 2.0 [25] into a KG representation in RDF, based on and
extending an existing ontology for process representation [5]. The transforma-
tion tool currently supports 33 BPMN 2.0 elements, including the most used
ones according to [33].

Our motivation stems from multiple industrial applications within the H2020
Teaming.ai project2. The real-world scenario we selected to illustrate and vali-
date our approach in this paper focuses on quality management and optimization
of injection molding processes in the automotive industry. This use case illus-
trates how the proposed approach combines heterogeneous manufacturing data
and process landscapes by integrating domain-specific and semantic abstrac-
tion models. BPMN2KG contributes towards using untapped process knowledge
for integration initiatives using process graph modeling. It facilitates integrated
querying of manufacturing data and process knowledge with SW methods and
tools. This creates the ability to easily link data across sources and with manufac-
turing domain knowledge and provides a foundation for process-centric enterprise
KG construction in I4.0 and beyond.

The remainder of the paper is structured as follows: Sect. 2 provides an intro-
duction to process knowledge representation and knowledge graphs; Sect. 3 intro-
duces the problem by means of a real-world quality management focused use case
in an industrial setting; Sect. 4 introduces BPMN2KG and covers requirements,
architecture, and implementation details; and Sect. 5 shows the results of the
questions raised by our quality management focused use-case. Section 6 details
related work. Finally, the paper concludes with remarks on BPMN2KG for our
use case in Sect. 7.

2 Background

Process knowledge representation in Industry 4.0. A business process is a
sequence of events, activities, and decision points that involve a number of actors
and objects and leads to an outcome that is of value to at least one customer. It
is typically represented in graphical models [19]. In recent years, BPMN 2.0 [25]
has become a de-facto standard for modeling business processes, and it has also
attracted increasing attention in the manufacturing domain [2,4]. It provides a
wide range of graphical syntax elements that allow to describe process aspects
in semantically well-defined terms, in various complexities, and for different use
cases. eXtensible Markup Language (XML) is commonly used as a data for-
mat for BPMN. Due to space constraints, we do not discuss individual BPMN
elements here; the full specification can be found in [25].

Knowledge Graphs. A KG is ”a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose
edges represent relations between these entities.” [18]. Initially developed in the

2 http://teamingai-project.eu.

http://teamingai-project.eu
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Triple Specification

Graph Notation

Turtle representation

subject
IRI or blank node

predicate
IRI

object
IRI, literal, or blank node

teamingAI:Activity_10ruka0 bbo:ManualTask
rdfs:subClassOf

teamingAI:Activity_10ruka0 rdfs:subClassOf bbo:ManualTask ;
bbo:name "Set machine to auto mode" .

"Set machine to auto mode"
bbo:name

Fig. 2. RDF triple [13] (top) example in graph notation (middle) and turtle represen-
tation (bottom).

context of the Semantic Web (SW), KGs have today seen widespread adoption
in web technology companies such as Microsoft, Google, Facebook, IBM [24],
and Apple [23], where they provide an infrastructure to support services such as
search, recommendations, and automation. KGs rely on graph data models such
as labeled property graphs or directed edge-labelled graphs [18].

For modeling KGs, Resource Description Framework (RDF) [13] is a widely
used language recommended by the World Wide Web Consortium (W3C). KGs
in RDF are formed from triples, each of which consists of a subject, a predicate,
and an object. Figure 2 illustrates two triples in RDFs from our motivating use
case - the two triples belong to the first task of our mass production process.
The first triple encodes the statement “Activity 10ruka0 is a subclass of
bbo:ManualTask”, and the second “Activity 10ruka0 has the bbo name of
Set machine to auto mode”. In graph notation, IRIs and blank nodes are
represented with an ellipse and literals with a rectangle.

BPMN-based Ontology (BBO) [5] is an ontology to represent business processes
modeled in BPMN 2.0 in a KG. An ontology is necessary as it for example
allows us to sub-class it’s concepts, or use their properties. We see this in the
example above from Fig. 2, where we the define the thing that is identified by
the Universal Resource Identifier teamingAI:Activity 10ruka0 as a sub-class of
bbo:ManualTask, and use the property bbo:name to give the Universal Resource
Identifier (URI) a name. In addition to standard BPMN elements, BBO also
provides some non-standard elements, such as a description in which manufac-
turing facility the process should be executed. We will use BBO as a basis and
extend it with additional BPMN elements that are not covered in BBO.
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3 Industrial Use Case

Our research into process knowledge graphs is motivated by three real-world
industrial use cases in the context of the H2020 project Teaming.ai, which aims
to develop a Human-AI Teaming Platform for Maintaining and Evolving AI
Systems in Manufacturing. The machine-interpretable representation of process
knowledge is crucial both for data integration and the human-centered collabo-
ration of human and AI agents in I4.0 scenarios.

In this paper, we focus on a use case provided by a major supplier in the
automotive industry specializing in plastic injection moulding. The production
of plastic parts requires multiple processes, each defined in a separate process
model: (i) First, the production material – the plastic granules – is prepared,
which involves inspecting its quality. If quality is approved, the granules are
fed to the manufacturing machine, otherwise, the material supplier is informed.
(ii) Next, the manufacturing machine is configured by setting various machine
parameters. These settings are then tested by producing a trial part and inspect-
ing its quality. If the quality of the part is not satisfactory, the machine parame-
ters are further readjusted, and another trial part is produced. This is continued
until the quality meets the requirements. (iii) Finally, mass production starts
with the determined machine parameter settings.

These processes are linked directly and indirectly through shared objects
and data flows. They are also linked to other processes not considered in our use
case scenario, such as mold engineering and setup, logistics processes, inventory
handling, or order handling.

Figure 3 depicts the mass production process in BPMN 2.0. Figure 3a defines
the start of the mass production and Fig. 3b illustrates the production process
itself, together with the quality inspection of the produced part, as a sub-process.
This sub-process is repeated for each unit produced until a stopping event is
received or an error occurs.

The mass production process starts with the production of a part using an
injection molding machine. During this step, a wealth of machine log data are
generated and stored in a database. In our use case scenario, this log data will
be used to populate a KG. Next, the quality of the part is checked by means of
an automatic Visual Quality Inspections (VQIs) system. If this VQI system is
not confident about its result (determined by a confidence threshold), a human-
based manual inspection takes place. The result of both checks are again stored
in a database. The quality of the part then determines the next activity. If the
quality is ok, additional information about the part, e.g., part id, is persisted,
and the part is handed over to packaging. If the quality is not ok, the next
step depends on whether or not it is a recurring defect. In case of a recurring
defect, mass production stops and a reconfiguration of the machine parameters
is requested. For non-recurring defects, the part is scrapped and the next part
is produced.

To produce in high volume, the company uses several manufacturing
machines. Not all of these machines are of the same type, produce the same
quality, and do not have the same capabilities or parameters. Moreover, some
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Fig. 3. Mass production process of plastic parts industrial use case in BPMN 2.0.

production parts require unique treatments, for example a special finishing, and
for some parts, automated VQI is not feasible.

Thus, a wide range of specialized variants of the discussed processes are
used by the company, resulting in an extensive process landscape with many
different process models. In addition, the execution of these processes creates
vast amounts of data, including parameter and sensor data from the injec-
tion machines, energy and water sensor data, quality inspection data, and part
information for each part produced. These persisted data are used for differ-
ent purposes, for example in the design of new production process models and
products/molds, to optimize the production process by analyzing the quality
inspection results, or when performing the machine parameter setup.

A key challenge in this context is the fragmented nature of the data pro-
duced, which are not contextualized or linked to process knowledge. This makes
it difficult to answer common questions such as:

(Q1) Across process models, which activities store data in or consume data from
the various data stores?

(Q2) Which production processes include a quality control activity (of any
kind)?

(Q3) What are the observed defect rates per defect type, across all production
variants, for manual versus automatic visual quality inspection?
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(Q4) What are the machine log data for produced units that exhibit a particular
type of defect in manual or automated quality inspection?

Some of these questions require only information from a single data source,
whereas others require combined knowledge derived from data stored in multiple
systems and process models. The integrated querying capabilities across process
models, data sources, and domain knowledge enabled by the KG-based approach
is particularly beneficial in these latter cases.

4 BPMN2KG Tool

In the following, we summarize the requirements we elicited from our indus-
trial use cases (Sect. 4.1), outline the KG construction with BPMN2KG on a
schematic level (Sect. 4.2), and finally discuss implementation aspects (Sect. 4.3).

4.1 Requirements

Informed by the use case introduced in Sect. 3 as well as other use cases in
the manufacturing domain as part of the Teaming.ai project, we collected the
following set of requirements for business process model and KG integration in
several rounds of workshops with domain experts:

(R1) Flexible semantic data model and schema: Supporting integration
of process knowledge with domain knowledge and data requires a flexible
model that can express relations between resource, process, and data ele-
ments. The tool shall not extend existing process modeling tools to encode
explicit semantics into BPMN models, but rather impose semantics on the
schema level through KG construction, curation, and completion techniques.

(R2) Automated model transformation: BPMN2KG shall automatically
transform any valid BPMN model into a KG representation. All core as well as
the most widely used other BPMN elements shall be supported. We will base
the choice of these elements on studies such as [33], which found that only 20%
of BPMN syntax elements are regularly used in their sample. In particular,
the syntax elements to be supported are, in descending order of popularity,
task, sequence flow, start event, end event, gateway, parallel gateway, data-
based eXclusive OR (XOR) gateway, pool, and lane.

(R3) Rich process-oriented querying across functional areas, heterogeneous
data sources, model and instance data and the process hierarchy. This necessi-
tates both navigational queries, e.g., to express precedence patterns along the
sequence flows, and graph-pattern based queries, e.g., to search for specific
matches such as the use of particular data across administrative, support,
and production-level processes (cf. the motivating questions Q1-Q4).

(R4) Modularity and extensibility: Whereas the prototype shall support
basic transformation of the process structure of any valid BPMN 2.0 model,
it should be modular and extensible through custom mappings. Due to this
extensibility, the tool shall also be universally applicable beyond the manu-
facturing domain.
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4.2 Process Knowledge Graph Construction

BPMN2KG constructs a KG from BPMN models, transforming multiple isolated
models into a uniform representation that can be queried, linked to background
knowledge, and integrated with instance data in a single, integrated graph. We
call this KG a process knowledge graph, as it contains explicit process knowl-
edge. The tool thereby makes this knowledge accessible for other systems via
widely used standards. Figure 4 illustrates this concept by means of our mass
production process (top). The red and green rectangles relate the graphical ele-
ments to their XML (middle) representation and show how these elements –
after the transformation with BPMN2KG – are represented in RDF (bottom).
Let us consider the first task of the process (green rectangle), which is the man-
ual task “Set machine to auto mode” marked with a hand in the upper left
corner. This task is represented in XML with the bpmn:manualTask tag, and
has the two attributes id and name with values “Activity 1e93nvu” and “Set
machine to auto mode”. BPMN2KG transforms these two attributes into the
two triples (tai:Activity 1e93nvu rdfs:subClassOf bbo:ManualTask) and
(Activity 1e93nvu bbo:name “Set machine to auto mode”@en). We use
unit-tests to verify the correctness of such transformations.

To transform BPMN models into a knowledge graph representation, we use
RDF Mapping Language (RML) as a declarative mapping language. Declarative
software languages enable a higher level of abstraction – consider for example
the Structured Query Language (SQL), another declarative language, where we
define data structures without worrying about their physical realization, and
queries without worrying about their procedural execution. RML allows for a
similar abstraction for the relationship of heterogeneous data structures to RDF.
RML by definition is a “a generic mapping language, based on and extending”
the Relational data base to Resource description framework Mapping Language
(R2RML) standard [12]. R2RML is a W3C recommendation [14], but is spe-
cialized for ”relational databases to RDF datasets” [14]. To transform BPMN
into a KG representation, we use RML to define a relation from XML to RDF
for each XML element. RML uses XPath [10] to create logical sources that are
mapped to one or more RDF triples. For the mapping to BBO, this results in
23 rr:TriplesMap definitions3.

Supported BPMN Elements. A study that analyzed 120 BPMN diagrams found
that only 20% of BPMN syntax elements are regularly used in their sample [33].
These syntax elements are, in descending order of popularity, task, sequence
flow, start event, end event, gateway, parallel gateway, data-based XOR gateway,
pool, and lane. Based on this observation, we decided that the first version of
the tool has to support these syntactic elements. Unfortunately, BBO [5] does
not include classes for pools and lanes. For this reason, we extended BBO into
Business process model and notation Based Ontology Extension (BBOExt). In
addition to pools and lanes, this extension supports message flows, association,
3 https://short.wu.ac.at/BPMN2BBO, https://short.wu.ac.at/BPMN2BBOExt, and

https://short.wu.ac.at/BPMN2BBOExtANDBBO.

https://short.wu.ac.at/BPMN2BBO
https://short.wu.ac.at/BPMN2BBOExt
https://short.wu.ac.at/BPMN2BBOExtANDBBO
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....
<bpmn:process id="Process_1y9drs8" isExecutable="true">

<bpmn:startEvent id="StartEvent_1" name="Start mass production">
<bpmn:outgoing>Flow_0g2g94n</bpmn:outgoing>
<bpmn:messageEventDefinition id="MessageEventDefinition_1wg11d2" />

</bpmn:startEvent>
<bpmn:sequenceFlow id="Flow_1vqtsnx" sourceRef="Activity_1tpkjbl" targetRef="Event_1rsbkj5" />

    <bpmn:manualTask id="Activity_1e93nvu" name="Set machine to auto mode">
<bpmn:incoming>Flow_0g2g94n</bpmn:incoming>
<bpmn:outgoing>Flow_16kkdtp</bpmn:outgoing>

</bpmn:manualTask>
    ....

<bpmn:serviceTask id="Activity_1tpkjbl" name="Stop mass production">
<bpmn:incoming>Flow_17o6lp6</bpmn:incoming>
<bpmn:outgoing>Flow_1vqtsnx</bpmn:outgoing>

    <bpmn:sequenceFlow id="Flow_0g2g94n" sourceRef="StartEvent_1" targetRef="Activity_1e93nvu" />
    </bpmn:serviceTask>

<bpmn:endEvent id="Event_1rsbkj5">
<bpmn:incoming>Flow_1vqtsnx</bpmn:incoming>

</bpmn:endEvent>
</bpmn:process>

  ....

<https://www.teamingai-project.eu/kg/process/qualityInspection/Event_0tmf0k5>
rdfs:label "start event"@en;
rdfs:subClassOf bbo:StartEvent;
bbo:has_targetRef <https://www.teamingai-project.eu/kg/process/qualityInspection/Flow_11xjpil>;
bbo:name "Start mass production";
teamingAI:belongsToProcess <https://www.teamingai-project.eu/kg/process/qualityInspection/Process_1g7oqr4> .

<https://www.teamingai-project.eu/kg/process/qualityInspection/Flow_11xjpil>
rdfs:subClassOf bbo:sequenceFlow;
bbo:has_sourceRef <https://www.teamingai-project.eu/kg/process/qualityInspection/Event_0tmf0k5>;
bbo:has_targetRef <https://www.teamingai-project.eu/kg/process/qualityInspection/Activity_10ruka0>;
teamingAI:belongsToProcess <https://www.teamingai-project.eu/kg/process/qualityInspection/Process_1g7oqr4> .

<https://www.teamingai-project.eu/kg/process/qualityInspection/Activity_10ruka0>
rdfs:label "manual task"@en;
rdfs:subClassOf bbo:ManualTask;
bbo:name "Set machine to auto mode";
teamingAI:belongsToProcess <https://www.teamingai-project.eu/kg/process/qualityInspection/Process_1g7oqr4> .

....

<https://www.teamingai-project.eu/kg/process/qualityInspection/Activity_0vusblm>
rdfs:label "service task"@en;
rdfs:subClassOf bbo:ServiceTask;
bbo:name "Stop mass production";
teamingAI:belongsToProcess <https://www.teamingai-project.eu/kg/process/qualityInspection/Process_1g7oqr4> .

<https://www.teamingai-project.eu/kg/process/qualityInspection/Flow_0ehreyx>
rdfs:subClassOf bbo:sequenceFlow;
bbo:has_sourceRef <https://www.teamingai-project.eu/kg/process/qualityInspection/Activity_0vusblm>;
bbo:has_targetRef <https://www.teamingai-project.eu/kg/process/qualityInspection/Event_16s0ktx>;
teamingAI:belongsToProcess <https://www.teamingai-project.eu/kg/process/qualityInspection/Process_1g7oqr4> .

<https://www.teamingai-project.eu/kg/process/qualityInspection/Event_16s0ktx> rdfs:comment
rdfs:label "end event"@en;
rdfs:subClassOf bbo:EndEvent;
teamingAI:belongsToProcess <https://www.teamingai-project.eu/kg/process/qualityInspection/Process_1g7oqr4> .
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Fig. 4. Mapping example for excerpts of mass production process.

text annotation, data object, data object reference, data output association, data
input association, and data store reference.

4.3 Implementation

Command Line Tool. Business Process Model and Notation to Knowledge
Graph (BPMN2KG) (See footnote 1) is implemented as a command line tool
in Python4 with five arguments, two of them are required: --bpmn-input

4 https://www.python.org/.

https://git.ai.wu.ac.at/teaming-ai/business-process-management-to-knowledge-graph
https://git.ai.wu.ac.at/teaming-ai/business-process-management-to-knowledge-graph
https://www.python.org/
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(the BPMN file or a directory) and --kg-output (the RDF file that the KG
should be saved to or a directory where files should be saved to) that point
BPMN2KG to the two files needed for the transformation. The other three
arguments let the user choose the ontology (--ontology), the subject’s URI
template (--uri-template), and the serialization format of the output file
(--serialization-format).

Benefits. The software layer on top of the RML adds a number of convenient
features. First, the user can specify a folder instead of only a single file at a
time for the transformation. Second, the URI templates need to be set only
once and do not need to be manually exchanged each time. Third, it allows
the user to easily change the target ontology. And finally, it encapsulates the
complexity of RML into simple command line calls. As an engine for the RML
transformations, we decided to use RMLMapper5 as it offers a command line as
well as a library interface which enables us to change to a different architecture
in the future without changing the technology behind the transformation. We
can for example change from Python to Java without replacing the engine. And
finally, BPMN2KG can be integrated with any BPMN2.0 (which we follow)
compliant software.

5 Application Scenarios

In this section, we focus on the use case introduced in Sect. 3, which tackles qual-
ity management and analytic challenges in plastic injection moulding. Specifi-
cally, we transform the graphical knowledge on the processes involved in pro-
duction setup, execution, and quality control – which are captured in several
BPMN models – into a KG representation. We enrich the KG with information
about the manufacturing machines used by the various process activities and
the involved resources and validate the capability to contextualize data in a KG
with the transformed process knowledge.

Next, we illustrate how the resulting KG supports sensor data contextualiza-
tion and analysis in quality management - addressing the previously identified
requirements in Sect. 4.1 via the examples queries introduced in Sect. 3. See
Appendix A for the queries pertaining (Q1) to (Q3), their results, and the link
to all queries - including (Q4) and the full syntax.

(Q1) Data Flow Analysis. A common challenge in complex production systems
– as well as information systems more generally – is the proliferation of hetero-
geneous systems and dispersed data stores. The lack of a (at least high-level)
overview of data flows makes it difficult to trace data provenance as well as
to understand the complex interdependencies that exist between various pro-
cess activities, systems, and data stores. Modeling data flows in BPMN using

5 RMLMapper: https://github.com/RMLio/rmlmapper-java with commit 54bf875.

https://github.com/RMLio/rmlmapper-java
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data store and data association elements is helpful to document such relation-
ships, but the resulting process models can not be readily queried and connec-
tions across process models are not visible. The integrated KG produced by
BPMN2KG can help to untangle data flows and dependencies in large process
landscape.

Specifically, example query (Q1) illustrates how the KG can support inte-
grated querying of data flows from and to data stores. The query retrieves all
data associations between activities and data stores (cf. Fig. 5) and indicates the
direction of the flow. The result shows, for instance, that the activity “Check
if it is a reappearing defect” consumes data from the data store “Manual qual-
ity checking result”, while the activity “Check quality manually” writes to it.
The graph-based structure also provides a foundation for more complex object-
centric analyses of data flows across process models and highlights how the KG
can contribute towards mapping the process and data landscapes.

(Q2) Cross-Model Activity Querying. Process knowledge becomes even more use-
ful once the model elements are associated with semantic concepts. For instance,
abstraction hierarchies across activities allow for efficient querying. In our use
case, for instance, automated and manual quality inspection activities are all
subclasses of tai:QualityManagementActivity. Therefore, it is possible to use the
domain knowledge captured in the activity model in the queries. (Q2) selects all
activities that are sub classes of tai:QualityManagementActivity and return their
IDs, the name of the activity, and the ids of their respective processes (cf. ??).
The result shows four activities related to quality management in three different
processes.

(Q3) Comparing Detection Rates of Manual and Automated Quality Inspection.
Beyond interlinking process models and associating them with domain knowl-
edge, the process KG can also link process models to instance data such as quality
inspection results. In our use case, which focuses on quality management, this
can be used to investigate observed defects by defect type, for different types of
quality inspection activities, and across process variants. The query in ??, for
example, aggregates the observed cases for different defect types across processes
and groups them by task type and defect type. Note here how we use BPMN2KG
to contextualize quality management data with respect to process knowledge.
(Q4) Retrieving Machine Log Data for Defects. As a final illustrative application
scenario, the process KG references instance-level machine log data and makes it
available for process-oriented querying6. This makes it possible to contextualize
and retrieve sensor readings when diagnosing quality issues. For instance, the
SPARQL query and result for (Q4) retrieves the machine log data for produced
units with a particular type of defect in manual or automated quality inspection.
The query in particular retrieves all defect parts with their product ID, product
name, part ID, and stroke measurements for cushion, plasticisation, and transfer.

6 You can find the query (Q4) at https://short.wu.ac.at/DEXA2022-Q4.

https://short.wu.ac.at/DEXA2022-Q4
https://short.wu.ac.at/DEXA2022-Q4
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6 Related Work

Various KG applications within business process management have been devel-
oped in the literature, including KGs as a means to support process modeling
[11], process model querying [27], and event log generation [8]. In this paper, we
present a transformation tool for process models into a KG representation, with
a focus on the integration with raw data and domain knowledge.

Reference [9] proposes a modeling language that combines process and
domain knowledge. The approach set up a hybrid knowledge base derived from
diagrammatic models, semantically lifted legacy data and open geospatial data.
The specification is done manually. The proposed vision is similar to BPMN2KG,
as it also aims to create an integrated semantic data fabric for process model
contents and contextual data. However, the focus is not on any particular busi-
ness process modeling language and the authors do not provide a mechanism
to transform these models into a KG representation. They instead propose to
integrate the semantic model into a customised BPMN front end.

Motivated by cost reduction through the reuse of data from legacy systems,
[21] propose an approach for the transformation of BPMN models into OWL2
ontologies. Similar to [5], this work does not provide automatic integration of
process and domain knowledge in a single representation.

In a similar domain as the one tackled in this paper, [30] models industrial
business processes for querying and retrieval using OWL and SWRL. This also
results in a semantic representation of business process models; key differences
are the more limited set of transformed BPMN elements (they do not include
data sources) and the use of OWL as a representation formalism. Furthermore,
the paper does not address the integration of production systems data.

Reference [28] aimed to semantically annotate process models at design time.
This is accomplished in a four step process. Similarly to our work, they also
map, for example, an activity in a process model to an entity in a KG. How-
ever, this approach is based on Event-driven Process Chains (EPCs) [31] rather
than BPMN. Another major difference is the execution of the four-step pro-
cess at design-time. Our approach does not focus on assistance during modeling,
but transforms models for integration and contextualization at execution time.
Hence, their work is complementary to ours.

Similar to our work, [16] construct a KG for CPPS. They focus on KG
construction from multiple design perspectives to achieve integration among
these. However, this introduces uncertainty as different design perspectives might
model the same construct differently, or leave it out completely. This is different
to our work since we have no uncertainty as we have one perspective, the process
perspective. Their work is hence complementary to ours.

7 Conclusions

In this paper, we introduce BPMN2KG to integrate process knowledge, domain
knowledge, and dispersed data into a KG representation. We motivate the need



44 S. Bachhofner et al.

for the approach by challenges that arise in the context of an I4.0 use case –
which requires flexible processes, has a large process variety, and has to cope with
increased “datafication” of the shop floor. BPMN2KG eases (i) the integration
across multiple views and granularity levels using data stores (C1), (ii) the
contextualization by adding process context to data (C2), and (iii) the linking
and aggregation of production and operational levels (C3) - which we illustrate
by the example of a plastic injection molding and quality management use case.

Our automatic transformation can further replace a manual semantic anno-
tation of process models, which is generally not feasible in the face of large
process landscapes [11]. Additionally, we provide the means to answer complex
questions that require the combined knowledge of lower-level shop floor data and
higher-level process information. Our work also contributes towards the vision of
a process-centric, or at least a process knowledge informed enterprise KG. This
is linked to the concept of layered KGs for CPPS presented in [6], where a KG
has different domain views (for example process engineering and quality control)
and layers based on Reference Architectural Model Industrie 4.0 (RAMI 4.0),
which are decoupled I4.0 layers. And finally, as a minor contribution, we open
source the RML rules which map BPMN models to the ontologies in our public
repository, which means they can be used freely by anyone.

In future work, we plan to build upon and extend the current transformation
tool. First, in the present paper we assume that the process logs and the machine
logs are available in triple format. For the former, we are indeed already working
on an accompanying transformation tool for XES7. This software tool will be
used alongside BPMN2KG in a software system called Teaming.AI [17]. Beyond,
we evaluate the usefulness of other target process ontologies, such as BPMN [3],
and an extension that allows for a transformation from the KG to a BPMN XML
model.

Acknowledgement. This work has also received funding from the Teaming.AI
project in the European Union’s Horizon 2020 research and innovation program under
grant agreement No 95740.

A SPARQL Queries and Results

Due to space constraints, we deleted all prefix statements in the following queries
and completely exclude (Q2), (Q3), and (Q4) – you can find all queries with
the full syntax and the results at https://short.wu.ac.at/DEXA2022.

7 https://git.ai.wu.ac.at/teaming-ai/extensible-event-stream-to-knowledge-graph.

https://short.wu.ac.at/DEXA2022
https://git.ai.wu.ac.at/teaming-ai/extensible-event-stream-to-knowledge-graph
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Fig. 5. SPARQL query and result for (Q1) showing data flows between activities and
data stores.
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Abstract. Recently, knowledge embedding on knowledge Graph (KG)
has drawn increasing attention from both academia and industry for
its concise rationale and promising prospects. However, performances of
existing knowledge embedding methods are mostly either far from satisfac-
tory, or exhibits weakness for generalization. In this work, a context-aware
knowledge embedding model (CAKE) has been proposed for applications
like knowledge completion and link prediction. We model the generative
process of KG formation based on latent Dirichlet allocation and hierar-
chical Dirichlet process, where the latent semantic structure of knowledge
elements is learned as contexts. Contextual information, i.e. the context-
specific probability distribution over elements, is thereafter leveraged in a
translation-based embedding model. Essentially, we develop loss function
in a probabilistic style to approximately realize the “attention” mechanism
in our model. In this work, the learned embeddings of entities and relations
are applied to link prediction and triple classification in experiments and
our model shows the best performance compared with multiple baselines.

Keywords: Knowledge graph embedding · Information system ·
Latent Dirichlet allocation · Hierarchical Dirichlet process

1 Introduction

Knowledge graph (KG), proven to be a powerful tool leading to intelligent appli-
cations at semantic-level, organizes facts in real world into an highly interactive,
machine-readable and triplet-based network [5]. Knowledge graph regularizes a
generalizable paradigm, or rather, a standard protocol, to unambiguously describe
facts extracted from the real world. In this sense, construction of ontology performs
an objective depiction of cognitions towards world and law of causation.

Knowledge embedding, a genre of methods that show the most promising
prospects in solving knowledge sparsity and grit of a specific domain in KG,
which is also known as other methodological branches that applies the idea of
“vectorization” to make machine-readable the data carrying semantic informa-
tion. Similar applications include word embeddings [9,12] and graph (network)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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embeddings [3,4,16]. A variety of tactics have been presented to learn robust
knowledge embedding, among which attention mechanism shows good potentials
to improve the embedding accuracy: only part of the attributes of an entity are
usable information for inferring a new knowledge. TransR [10] initially proposed
such observation and hypothesis, while TransA [13] first explicitly formulated
attention mechanism in the scenario of knowledge graph, using a ontology-level
prejudgement as well as a relation-specific filtering skill to select only usable
components in the latent space.

However, several drawbacks require our further attention, some of which
may come from the existing attention mechanism. Existing methods that allow
for attention mechanism tend to solely model relation-level attention, hypothe-
sizing only relations carry multiple semantic components that discriminatively
support inference in face of different entity pairs. But entities also carry such
indicative information (e.g., entity RogerFederer works as a hint to place higher
possibility to the relations related to Tennis) and can help with knowledge infer-
ence. TransG [20] uses Chinese Restaurant Process (CRP) to model infinitely
many semantic components carried by relations, thus regarding relation seman-
tics a probability distribution over latent components. In this work, we parallel
extend the intuition to entities, assuming that entities and relations in knowl-
edge graph probabilistically associate with a set of semantic components shared
by all knowledge elements. We deem that the semantic components are con-
sistent with factual domains for logically sound knowledge graphs; in case of
ambiguity, we refer to such objects as contexts in this work, since they essen-
tially interact with observable elements in role of contextual information. On
the other hand, relation-specific attention mechanism overlooks meso-level con-
straints that should have been exerted on elements’ embedding learning. In other
words, relations exhibit internal structures w.r.t. their attention properties: com-
pared with the relation assassinate, citeThePaper is more likely to co-occur with
the relation coauthorWith and help with relevant inference.

In this paper, we utilize a hierarchical feedback structure to exert atten-
tions on elements. We do not explicitly set parameters for attention learning but
depend on contextual projections (Fig. 1) as well as probability-based penalty,
so that trivial parameters are avoided while attention mechanism is aware under
context and element. We formulate this work as a knowledge embedding model
for applications like knowledge completion and link prediction, the latter of
which is an experimental metrics in this paper. Overall framework of our work
is shown in Fig. 1. We use latent Dirichlet allocation and hierarchical Dirichlet
process, respectively, to model the generative process of a general knowledge
graph, through which the latent semantic structure of knowledge elements is
learned as contexts. Contextual information, i.e. the context-specific probability
distribution over elements is thereafter leveraged in a translation-based embed-
ding model. The learned embeddings of entities and relations are applied to link
prediction and triple classification.

The contributions of this work are presented as follows: (1) We establish
a context-aware model that develops loss function in a probabilistic style to
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approximately realize the “attention” layer. We claim that although the method
belongs to no rigorously defined attention mechanism, it equivalently serves the
model by discriminatively treating semantic information carried by knowledge
elements. (2) The model automatically determines the probability of a triplet
showing up in a specific context and thereby decides whether to utilize the corre-
sponding contextual information for embedding learning and inference. (3) The
proposed knowledge embedding model learns knowledge representations based
on contextual information since contexts are learned a priori and the joint prob-
ability of a given triplet automatically adjust the loss distribution over different
contexts. Our method shows the best performance in extensive experiments com-
pared with multiple baselines.

The rest of this paper is organized as follows. In Sect. 2, related work is
enumerated. Section 3 systematically introduces our proposed context-aware
knowledge embedding (CAKE) model from two aspects: context-learning and
embedding-learning. In Sect. 4, we conduct extensive experiments, showing and
analyzing the results in link prediction and triple classification. We also discusses
necessary details in engineering and cast insights into the embedding problem
in this section. In Sect. 5, we conclude our work and future direction.
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Fig. 1. Overall framework to develop context-aware knowledge embedding model from
general knowledge graph

2 Related Work

Existing methods on knowledge embedding are chronologically enumerated and
analyzed in this section. Since the proposed CAKE model is a translation-based
embedding model (also the most mainstream model family), we mainly review
previous studies along the branch while introduce other methods selectively.

TransE [1]. TransE is a canonical and easy-to-train model, modeling rela-
tionships by interpreting them as translations operating on the low-dimensional
embeddings of the entities. In TransH [19] model, Wang et al. presented
improvement solutions aiming at the aforementioned weakness of TransE. A
relation-specific hyperplane is introduced so that the translation rule is relaxed to
allow for a geometric flexibility. TransR [10] defines entity embeddings in entity
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space but projects them into relation space and exerts translation rules after-
wards. Relation-specific mapping matrix Mr is introduced to the model so that
entity pairs are projected first before any further translation. The loss function
in TransR inherit the basic translation rule formulated by TransE. CTransR
[10] holds the view that a single embedding for each relation can be under-
representative in response to various entity pairs that exhibit heterogeneity. For
each relation r, entity pairs (h, t) are clustered so that the pairs in the same group
emphasize similar semantic components of r. Ji et al. proposed TranSparse [6]
based on the archetype of TransR, and the novelty of TranSparse consists in
that a sparsity-aware transfer matrix Mr(θr) is defined for each relation to map
entities into the semantic space w.r.t. relations er

h = Mr(θr)eh, er
t = Mr(θr)et ,

where θr is calculated to measure the degree of sparsity w.r.t. relation r; only a
hyperparameter θmin is required in the sparsity calculation. TransA [7]. Jia et
al. presented this work essentially to improve the robustness and generalization
ability of translation-based knowledge embedding models. TransA aims to find
the optimal loss function so that the model is locally and structurally adaptive
to multiple (or open-domain) knowledge bases. TransAt [13] initially formu-
lates attention mechanism in the scenario of knowledge graph. It emphasizes
the observation that only part of an entity’s attribute information is factually
utilized in knowledge inference, and thus such information should discrimina-
tively contribute to the embedding learning of knowledge elements. RDF2Vec
[15] is an unsupervised technique that can create task-agnostic numerical repre-
sentations of the nodes in a knowledge graph by extending successful language
modelling techniques.

Some recently emerging methods make attempts to develop neural net-
work frameworks based on general embedding models to solve ranking prob-
lems induced by knowledge completion. HOLE [11] deploys circular correla-
tion to develop associative memory to create compositional representations of
knowledge elements. ProjE [14] formulates the task into a ranking problem and
develops the framework conjugating a combination layer and projection layer.
Loss function is defined in point-wise and list-wise style respectively. CrossE
[21] explicitly simulates crossover interactions between knowledge elements and
learns interaction-specific embeddings for entities and relations in the model.
Another genre of studies seek to gain information from temporal and spatial
factors based on the observation that facts only holds true within a timespan
(or took place at a specific moment if the relation is instant). Jiang et al. [8]
take into account the temporal priority between two facts w.r.t. a head entity
and assumes that embedding of a previous relation associated to the entity can
transform into a temporally subsequent one via a transition matrix. They first
consider temporal factor in knowledge embedding, but failed to explicitly lever-
age temporal knowledge. HyTE [2] points out the drawback and proposes a
novel model where discretized timestamps are depicted by hyperplanes in the
semantic space. Projections of (embeddings of) head, relation and tail onto the
hyperplane are trained to obey the translation rule.
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3 Context-Aware Knowledge Embedding (CAKE)

This section introduces our context-aware knowledge embedding models and the
methods our models based on. First we introduce LDA-based and HDP-based
context learning methods. Then we develop the context-aware embedding models
by deriving its loss function and negative sampling algorithms. We will give the
optimization in the end.

Algorithm 1: Generative Process of LDA-based Context Learning

1 foreach context zk do

2 draw parameter vector θε
k from Dirichlet prior with parameter αε ∈ R

|ε|;
3 draw parameter vector θR

k from Dirichlet prior with parameter αR ∈ R
|R|;

4 foreach subgraph Gi, draw a context distribution φi ∼ Dir(β) do
5 foreach entity blank (denoted by eij ) in Gi do
6 draw a context w.r.t. the entity as zij ∼ Multi(φi);
7 draw an entity e ∼ Multi(θε

zij
);

8 foreach relation blank (denoted by rij ) in Gi do
9 draw a context w.r.t. the relation as zij ∼ Multi(φi);

10 draw an relation r ∼ Multi(θε
zij

);

3.1 LDA-Based Context Learning

Latent Dirichlet Allocation, known as a generative probabilistic model for col-
lections of discrete data, leverages a three-layer hierarchical Bayesian framework
to model the formation of internally-structured data such as corpus and human
populations (with haplotype). Teh et al. [17] refers to the corresponding inference
problem as Grouped Clustering Problems (GCP). The problem is formulated as:
given a fully observable knowledge graph Gi, with a specified context number K
and the prior distribution parameters α and β, we aim to learn the parameters
of the multinomial distributions and w.r.t. both entities and relations.

A reasonable generative process of an arbitrary subgraph Gi from knowledge
graph entails estimate of conditional probability such as p(r|h) and p(t|h, r).
However, the introduction of such probability term breaks the conjugate struc-
ture between the Dirichlet prior and the multinomial distribution in both the
scenarios of subgraph-context and context-element (i.e., relations and entities);
without an intractable posterior, we can not carry out Gibbs sampling and
update parameters. Therefore, we relax the conditions of generative process and
treat entities and relations respectively, with two separate sets of LDA frame-
works. The relaxation follows the “bag of word” simplification in LDA, HDP and
other models in family. We deem the generative process of an arbitrary bunch
of subgraphs Gi from knowledge graph G in Algorithm 1.
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3.2 HDP-Based Context Learning

Dirichlet process (DP) is in a sense an infinitely dimensional generalization of
Dirichlet distribution, normally specified by a base distribution G and a con-
centration parameter α. The formal mathematical definition of DP is as follows.
Given a measurable set Ω, a base probability distribution G0 and a positive real
number α, if for any measurable finite partition of Ω (denoted by (Ai, A2, . . . ,
An)) it holds that (G(A1), . . . , G(An)) ∼ Dir(αG0(A1), . . . , αG0(An)) Specifi-
cally, Dir(·) represents Dirichlet distribution. Then, G ∼ DP (G0, α), that is, G
is subject to the Dirichlet process with base distribution G0 and concentration
parameter α.

Dirichlet Process theoretically suffices to formulate a mixture model with
latently structured data. However, since base probability distribution G0 can
only be explicitly defined by a continuous distribution (e.g., Gaussian distribu-
tion) and G|G0 ∼ DP (G0, α) is, on the other hand, discrete due to its definition
over a finite partition of the measurable set. It causes the probability of each
draw sharing probability atoms to be zero; in other words, the generative pro-
cess following the DP with continuous base distribution G0 do construct grouped
data, but data cannot be shared across groups. G0 is supposed to be discrete, so
that probability atoms can be shared across all groups. To obtain a discrete G0,
another priori layer is added and we draw G0 from DP (G,α) where G can be a
continuous distribution. In this way, G0 remains the base distribution shared by
all groups, with finite, repeatable atoms to choose from. We use the term object
to refer to the probability atom for convenience. Objects can be substantialized
as topic and context. The whole generative process is then governed by the con-
tinuous base distribution G and a set of concentration parameters αi

I . After a
discrete base distribution G0 is drawn, for each observation unit (e.g., a docu-
ment), we draw the parameter θij and further draw a realization according to the
distribution characterized by θk. In terms of interpretation, HDP allows for the
sharing of objects, and shows the property that “some objects are more likely to
co-occur in an observation unit than other combinations”. In the case with doc-
ument generation, a topic related to pop music tends to co-occur with the topic
related to entertainment, and it is hard to imagine it shows up with computer
architecture in the same documents. Such tendency mathematically refers to a
probability distribution, and HDP manages to capture the mechanism compared
with a flat DP.

Generative Process of HDP. We use the application of HDP to topic learn-
ing for better description of its generative process. Note that a distribution Gi is
drawn for each document and a probability distribution over topics is drawn via
this step. Similar to the metaphor proposed for DP, a Chinese Restaurant Fran-
chise (CRF) Process is also proposed to figuratively illuminate the generative
process from the perspective of conditional probability. Interpretations based on
conditional probability integrate out G, G0 and Gi that cannot be explicitly rep-
resented and explained, so that the generative process is more understandable.
CRF process assumes that there are multiple Chinese restaurants sharing the
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same menu. For each observation unit, we focus on the “enter” events within
one corresponding restaurant.

HDP-Based Context Learning. Similar to LDA-based context learning
model, HDP-based context learning problem can be formulated as: given a fully
observable knowledge graph G, a continuous base distribution G and hierarchical
concentration parameters α and α0, we aim to learn the context number acti-
vated by observed elements in G as well as the multinomial distribution param-
eters θ characterizing the aforementioned contexts. Algorithmic description has
been summarized as Algorithm 2.

3.3 Context-Aware Knowledge Embedding

We define a semantic hyperplane for each context and characterize the cth con-
text with its normal vector, denoted by ωc. We inherit the form and nota-
tion of triplets as (h, r, t) where h, r and t represent the head entity, relation
and the tail entity, respectively. To enable knowledge entities to own mul-
tiple interpretations in various contexts, we denote the projections of head
h, relation r and tail t onto the hyperplane corresponding to context c by
Pc(eh) = eh −(ω�

c eh)ωc, Pc(er) = er −(ω�
c er)ωc, Pc(et) = et −(ω�

c et)ωc. Similar
to TransR, we deem that the projection operation provides a semantic reflection
of the knowledge element, through which the distribution over latent seman-
tic space is altered. We then exert the classic translation rule on the semantic
reflections of the original embeddings. The scoring function takes the form as
d(eh + er, et) = ||Pc(eh) + Pc(er) − Pc(et)||2l2 Note that such distance (or score)
not only measures the validity of a given triplet, but also describes conformity
of the given triple belonging to a specified context. Although the mechanism is
not rigorously defined as attention, this layer equivalently serves model by selec-
tively filtering information. The model automatically determine the probability
of a triplet showing up in a specific context and thereby decide whether utilize
the corresponding contextual information for embedding learning and inference.
Contexts are learned a priori and the joint probability of a given triplet automat-
ically adjust the loss distribution over different contexts. To effectively leverage
the associations between knowledge elements and contexts, we add probabilistic
components into the modified loss function.

The result of LDA-and-HDP-based context learning is the probability dis-
tribution of contexts over all knowledge elements. For context c, we denote its
probability distribution over entity as Fε

c (ε), where the superscript ε indicates
the element type. Similarly, we denote the probability distribution over relation
as FR

c (r). As contexts are learned with a “word-of-bag” model, we deem that
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Algorithm 2: Generative Process of HDP-based Context Learning

1 Generate parameters θR
ij and θε

ij (probability distribution over relations and
entities, respectively) for infinitely many courses on the franchise menu;

2 foreach i-th restaurant do
3 foreach the j-th entity-customer enters and chooses k-th table subject to

the distribution
tij |ti1, . . . , tij−1, α0 ∼ ∑

k

nε
ik+nR

ik∑
t′ nε

jz′+nR
jk′+α0

δk + α0∑
t′ nε

jz′+nε
jk′+α0

δknew do

4 if k-th table has been chosen by previous customers then
5 adopts the context zij assigned to it;

6 if a new table is chosen then
7 choose a course zij from the menu subject to the distribution

zij |t11, . . . , zij−1, α ∼
∑

k

mε
z+mR

z∑
z′ mε

jz′+mR
jk′+α

δz + α∑
z′ mε

jz′+mR
jk′+α0

δznew ;

8 Draw an entity subject to the multinomial distribution with parameter
θε

ij , that is e|θε
ij ∼ Multi(θε

ij);

9 foreach the j-th relation-customer enters and chooses kth table subject to
the distribution
tij |ti1, . . . , tij−1, α0 ∼ ∑

k

nε
ik+nR

ik∑
t′ nε

jz′+nR
jk′+α0

δk + α0∑
t′ nε

jz′+nε
jk′+α0

δknew do

10 if k-th table has been chosen by previous customers then
11 adopts the context zij assigned to it;

12 if a new table is chosen then
13 choose a course zij from the menu subject to the distribution

zij |t11, . . . , zij−1, α ∼
∑

k

mε
z+mR

z∑
z′ mε

jz′+mR
jk′+α

δz + α∑
z′ mε

jz′+mR
jk′+α0

δznew ;

14 Draw an entity subject to the multinomial distribution with parameter

θR
ij , that is r|θR

ij ∼ Multi(θR
ij );

the probability of an entity belonging to a context and that of a relation is inde-
pendent. Thus, the joint probability of a triplet (h, r, t) emerging in context c
can be calculated by

P (h, r, t|c) = P (h|c) × P (r|c) × P (t|c)
= F ε

c (h) × FR
c (r) × F ε

c (t)

For convenience, we use the notation pc(h, r, t) to represent the joint probability
calculated above. We now discuss the interpretation of the joint probability of a
given triplet with regard to context c. If pc(h, r, t) is relatively large, then entity
h, t and relation r are highly likely to co-occur in context c; this intuitively
indicates that the fact determined by this triplet is more likely to make sense
and have practical interpretations.
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We use the joint probability as a weight parameter for positive triplets. In
this way, the triplets that are more semantically reasonable can be highlighted
in the training process, enhancing the coherence of the corresponding context.
For a negative triplet (h, r, t′), a large pc(h, r, t′) value indicates that the three
elements are semantically related in the context c but the fact does not hold
true. In contrast, a small pc(h, r, t′) means neither the elements are semantically
linked, nor the fact is real. Since the latter case deserves a greater penalty, we
adopt (κ−pc(h, r, t′)) as the penalty weight of negative triplets. With a constant
margin γ inherited from classic frameworks, the loss function can be developed
into

L =
∑

c∈C

∑

(h,r,t)∈D+

∑

(h′,r,t′)∈D−
[pc(h, r, t) × d(eh + er, et)

− (κ − pc(h′, r′, t′)) × d(eh′ + er′ , et′) + γ]+ ,

where [·]+ represents the positive part of the inner terms and κ is a hyperparam-
eter to scale the penalty degree. D+ and D− represent two respective sample
sets which given in following field. The loss function preferentially encourages
the positive facts that are semantically coherent in some context, and strongly
punishes the negative triplets that neither semantically make sense nor represent
valid facts.

For a valid triplet (h, r, t), researchers expect eh + er gets as close to et as
possible [1]. It is also reasonable to expect that for invalid (or corrupted) triplets
(h, r, t′) we have eh + er gets as far as possible from et′ . Hereby, a margin-based
loss is developed in the form

L =
∑

(h,r,t)∈D+

∑

(h′,r,t′)∈D−
[γ + d(eh + er, et) − d(eh′ + er, et′)]+ ,

where D+ and D− represent positive and negative (corrupted) sample set respec-
tively; the former includes all valid facts provided by the knowledge graph, while
the latter is an artificially constructed invalid sample set where fake triplets are
manually created by corrupting and then knocking together elements from valid
ones. Negative sampling algorithms are thereby developed according to the con-
struction process. Then, we will mathematically represent the components of
corrupted set D− as following.

We use margin-based methods to construct a negative (invalid) sample set
corresponding to the positive (valid) ones so that the training results are more
satisfactory. In this case, negative samples are drawn parallel to positive ones
so that the translation can be exclusively accurate, that is, Pc(eh) + Pc(er) gets
close to Pc(et) and stays far away from other tail entities when (h, r, t) is a valid
triplet. We adopt the same way of construction for negative sample set as in
TransE:

D− ={(h, r, t′)|t′ ∈ ε, (h, r, t) ∈ D+, (h, r, t′) /∈ D+}
∪ {(h′, r, t)|h′ ∈ ε, (h, r, t) ∈ D+, (h′, r, t) /∈ D+}

Considering optimization, the loss function of CAKE can be optimized with
stochastic gradient descent (SGD) by calculating the gradients and selecting a
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proper learning rate. Entity embedding, relation embedding and normal vectors
of each hyperplane associated to contexts need to be learned through the training
process. We manually calculate the gradient formula for reproductability. The
detailed update functions are shown in Appendix.

4 Experimental Evaluation

This section describes the experimental protocol, metrics and experimental
results of our method (CAKE) as well as four baselines (TransE, TransH, TransR,
TransAt). We conduct extensive experiments for two tasks, link prediction and
triplet classification, on two datasets, Freebase and AceKG. We show the exper-
imental results in the last subsection of this part, and present sufficient analysis
based on observations and complementary tests.

4.1 Experiment Protocol

Following [13], we evaluate the performance of proposed CAKE on two tasks,
link prediction and triplet classification.

We conducted experiments on both the Freebase and the AceKG subset for
link prediction with metrics Hit@10 and Mean Rank and for triplet classification
with metrics F1-score. For all the 5 methods, we experiment with margin value
as {1, 2, 3, 4, 5, 6} and the learning rate of {0.001, 0.005, 0.01} respectively. For
our method CAKE, we apply the hyperparameter κ as values from {1, 1.5, 2, 3},
and set context number as {10, 20, 30} for LDA-based CAKE. Latent dimension
number was set as {50, 100, 200} respectively. We uniformly used batches with
the size of 150 and trained each model for 2000 epoch for convergence.

4.2 Experiment Settings

Datasets. Freebase and AceKG [18] datasets are utilized in experiments, the
former of which is known as an endeavor of general knowledge graph while the
latter is an academy- oriented one, containing authors, papers, citation relation-
ships and academic fields. We briefly introduce them as follows. For experiments,
We extracted a tractable subset of Freebase with 24, 624 entities, 351 relations
and 194, 328 facts; and a small subset of AceKG containing 30, 752 entities, 7
relations and 146, 917 facts.

Baselines. We use representative graph embedding models, TransE [1],
TransH [20], TransR [10] and TransAt [13] as baselines in this work to testify
the effectiveness of our proposed model CAKE.

Metrics. For three link prediction settings, we use Hits@10 and Mean Rank,
and for triplet classification, we use F1-score to validate models’ effectiveness.
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4.3 Experimental Results

(a) Mean Rank comparison
on Freebase

(b) Mean Rank comparison
on AceKG

(c) Hits@10 comparison on
Freebase

(d) Hits@10 comparison on
AceKG

Fig. 2. Mean rank and Hits@10 comparison in task of link prediction

Link Prediction. We summarize the experimental results of link prediction
in Table 1 and Fig. 2. As is shown, LDA-based CAKE model and HDP-based
CAKE model exhibit the best performances among all tested methods, reach-
ing the Mean Rank of 311 and 254 for the tasks of head and tail prediction
respectively on Freebase dataset; the metrics are even better for AceKG, reach-
ing 287 and 231 respectively. The most classic but basic method, TransE, shows
the worst performance. TransH exhibits better performance than TransE due to
the compatibility of special relation properties such as one-to-many, many-to-
one and reflexive relations. TransR receives better performance compared with
TransH due to its more flexible mapping rule: independent semantic spaces are
set for entities and relations respectively, and thus semantic information can be
inter-dimensionally manipulated in the training process. The consideration of
attention layer over knowledge graph effectively improves the learning result.

Performances of the experimented methods show a similar tendency on
Hits@10. HDP-based CAKE reaches nearly as good performance as LDA-based
CAKE model on this metric in general; specifically, the former exceeds the latter
on head prediction Hits@10 on Freebase dataset, since HDP framework learns
latent contexts in a more faithful way to practice for general knowledge graph,
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Table 1. Mean Rank and Hits@10 comparison in link prediction

Dataset Freebase AceKG

Metric Mean Rank Hits@10(%) Mean Rank Hits@10(%)

Head Tail Head Tail Head Tail Head Tail

TransE [1] 558 429 66.1 69.3 523 401 69.4 71.7

TransH [20] 429 361 70.4 73.8 402 339 72.4 75.6

TransR [10] 408 383 72.3 73.3 387 336 74.8 76.0

TransAt [13] 352 299 74.7 77.0 314 281 76.1 79.6

LDA-CAKE 311 254 76.2 79.5 287 231 78.8 80.7

HDP-CAKE 326 278 76.8 78.9 295 267 78.3 79.9

and the coherence better assists the inverse-translation inference in head entity
prediction. For AceKG, however, contextual structure is more easy to a priori
estimated by human, and thus LDA-based framework suffices to excellently cap-
ture the semantic coherence, making the LDA-based CAKE model the champion
on this metric with AceKG data.

Fig. 3. F1-score comparison in task of triplet classification

Triplet Classification. The experimental for triplet classification is shown in
Table 2 and Fig. 3. As is explained, we use F1-score as metric of bi-classification
task. Generally, classification results on AceKG surpass those on Freebase since
data of the latter exhibits less heterogentity compared to a general knowledge
graph; we say the latter dataset is more semantically dense (only 7 relations are
involved in the subset we use). As is shown by Table 2 and Fig. 3,
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Table 2. F1-score Comparison in Triplet
Classification

Dataset Freebase AceKG

TransE [1] 0.742 0.761

TransH [20] 0.758 0.779

TransR [10] 0.746 0.772

TransAt [1] 0.794 0.818

LDA-CAKE 0.814 0.840

HDP-CAKE 0.826 0.837

CAKE model exhibits the optimal
performance among all compared meth-
ods. Specifically, HDP-based CAKE
model exceeds LDA-based one on
the dataset of Freebase due to more
severe semantic heterogeneity of gen-
eral knowledge graphs; with regard
to AceKG, the results are quite the
opposite. TransR, however, exhibits rel-
atively worse performance compared
with TransH in the task of triplet classi-
fication; inter-dimensional mappings of
semantic components provide flexibility at the expense of larger parameter set
and more uncertainty, which makes the bi-classification threshold (θr) learning
a relatively hard task due to the non-linearity.

5 Conclusion

In this work, we establish a context-aware model that develops loss function
in a probabilistic style to approximately realize the “attention” layer. We claim
that although the method belongs to no rigorously defined attention mechanism,
it equivalently serves the model by discriminatively treating semantic informa-
tion carried by knowledge elements. Superiority of our proposed model should
be noted: (1) The model automatically determines the probability of a triplet
showing up in a specific context and thereby decide whether utilize the corre-
sponding contextual information for embedding learning and inference. (2) The
model learns knowledge representations based on contextual information since
contexts are learned a priori and the joint probability of a given triplet auto-
matically adjust the loss distribution over different contexts. We conduct exten-
sive experiments to compare the proposed CAKE with representative knowledge
embedding models on two datasets and the results testify the effectiveness and
superiority of our proposed model. In future, We aim to capture more real world
semantics and in turn serve the relevant applications.
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A Appendix: Optimization of CAKE

For entity ε, the gradient of its embedding is

1
2

∂L
∂el

ε

=
∑

c∈C

∑

(h,r,t)∈D+

∑

(h′,r′,t′)∈D−

L∑

l′=1

(wl
cw

l′
c − 1){pc(h, r, t)

× [el′
h − el′

t − ω�
c (eh − et)ωl′

c + P l′
c (er)] × (It=ε

− Ih=ε) − (κ − pc(h′, r′, t′)) × [el′
h′ − el′

t′

− ω�
c (eh′ − el′)ωl′

c + P l′
c (er′)] × (It′=ε−Ih′=ε

)}
For relation π, the gradient of its embedding is

1
2

∂L
∂el

π

=
∑

c∈C

∑

(h,r,t)∈D+

∑

(h′,r′,t′)∈D−

L∑

l′=1

wl
cw

l′
c × {Ir=π

× pc(h, r, t) × [P l′
c (eh) + el′

r − (ω�
c er)ωl′

r

− P l′
c (et)] − Ir′=π × (κ − pc(h′, r′, t′))

× [P l′
c (eh′ + el′

r′ − (ω�
c er′)ωl′

r′ − P l′
c )]}

For context δ, the gradient of its normal vector is

1
2

∂L
∂el

π

=
∑

c∈C

∑

(h,r,t)∈D+

∑

(h′,r′,t′)∈D−

L∑

l′=1

(el
t − el

h − el
r) × {Ic=δ

× pc(h, r, t) × (ωl′
c + Il=l′ × ωl

c) × [el′
h + el′

r − el′
t

− ω�
c (eh + er + et)ωl′

c ] − Ic′=ε × (κ − p′
c(h

′, r′, t′))

× (ωl′
c′ + Il=l′ × ωl

c′) × [el′
h + el′

r − el′
t

− ω�
c′ (eh + er + et)ωl′

c′ ]}
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Abstract. Background: Recent years are seeing a growing impetus
in the semantification of scholarly knowledge at the fine-grained level
of scientific entities in knowledge graphs. The Open Research Knowl-
edge Graph (ORKG, orkg.org) represents an important step in this
direction, with thousands of scholarly contributions as structured, fine-
grained, machine-readable data. There is a need, however, to engender
change in traditional community practices of recording contributions as
unstructured, non-machine-readable text. For this in turn, there is a
strong need for AI tools designed for scientists that permit easy and
accurate semantification of their scholarly contributions. We present one
such tool, ORKG-assays. Implementation: ORKG-assays is a freely
available AI micro-service in ORKG written in Python designed to assist
scientists obtain semantified bioassays as a set of triples. It uses an AI-
based clustering algorithm which on gold-standard evaluations over 900
bioassays with 5,514 unique property-value pairs for 103 predicates shows
competitive performance. Results and Discussion: As a result, seman-
tified assay collections can be surveyed on the ORKG platform via tabu-
lation or chart-based visualizations of key property values of the chemi-
cals and compounds offering smart knowledge access to biochemists and
pharmaceutical researchers in the advancement of drug development.
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1 Introduction

The Open Research Knowledge Graph (ORKG) [3] digital library addresses
scholarly content digitalization as a distributed, decentralized, and collabo-
rative scholarly knowledge creation process that can be powered with auto-
mated semantification modules via a continuous, ongoing development cycle of
autonomously maintained AI micro-services. To this end, this paper presents
ORKG-assays an AI-based semantification micro-service trained on structured
data based on the Bioassay ontology (BAO), and fitted in the ORKG for the
rapid assimiliation of digitalized biological assays (bioassays). While ORKG-
assays will be the first Life Science domain supported by an automated seman-
tification micro-service in the ORKG, to our knowledge, it fosters the devel-
opment of the first end-to-end bioassay digitalization workflow in the overall
scholarly community as well.

The ORKG-assays micro-service workflow involves four steps. 1) Query-
ing a bioassay depositor for their unstructured or semi-structured assays. Com-
monly, bioassays raw data are obtained via the PubChem depository [12] – a
major depositor of bioassays from various research institutes. 2) Semantifying
the assay via the ORKG-assays AI clustering model. 3) Linking the depositor-
provided assay cross-references to their scientific articles. And, 4) integrating the
bioassay semantic graph in the ORKG. Programmed in Python, ORKG-assays
provides web-based and programmatic tools for semantifying bioassay texts. The
semantified bioassay once entered in the ORKG is editable via user-friendly fron-
tend interfaces, is surveyable via tabulations [11] or 2-D chart visualizations, and
is queryable for various scientific semantic ORKG relationships. The ORKG-
assays AI clustering method demonstrates high semantification performance
F1 scores above 80% and has been chosen after diverse methodological tests
including the state-of-the-art, bidirectional transformer-based SciBERT model
discussed in prior work [1].

Summing up, ORKG-assays offers a highly accurate and pragmatic seman-
tification model alleviating unrealistic expectations on scientists to semantify
their bioassays from scratch, by instead offering them a mere curatorial role
of the automatic annotations. The pace with which novel bioassays are being
submitted suggests that we have only begun to explore the scope of possible
assay formats and technologies to interrogate complex biological systems. Thus
this data domain, specifically, promises long-standing future application discov-
ery many of which remain potentially untapped. Furthermore, inspired by the
method we demonstrate, by drastically reducing the time required to seman-
tify data for other scholarly domains as well, digitalization can be realistically
advocated to become a standard part of the publication process.

2 Bioassay Digitalization in the ORKG

ORKG-assays will now be discussed as its implementation w.r.t. the KG Lifecy-
cle requirements consisting of the graph creation, hosting, curation, and deploy-
ment modules. The ORKG-assays micro-service belongs in an early stage of
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graph creation, i.e. when generating the graph itself. Thus, while the graph cre-
ation module handling the normalization of variously formatted graph data is
beyond the scope of ORKG-assays, it addresses extracting the assay texts from
heterogeneous bioassay depositories each with different file formats, generating
a BAO-based structured graph. The end-to-end ORKG-assays semantification
pipeline in a micro-service is discussed below.

Data Preparation. This step relies on public access availability to an assay depos-
itory’s querying mechanism. PubChem, reported to have over 1 million assays
[8], is queryable via its public REST API for its bioassays where some assays have
depositor-provided cross-references to scientific articles in PubMed. Depending
on the depositor, the data could be returned in JSON, XML, or CSV. We imple-
mented a specific pipeline for “The Scripps Research Molecular Screening Cen-
ter” which returned JSON query responses. It reported nearly 1,600 bioassays.
However, to prepare the data, the bioassay description-specific sections had to
be located in its JSON response file and the text then extracted. The text was
merged from two separate parts, viz. assay overview and assay protocol sum-
mary. We noted that this parsing heuristic can be applied to most depositor
responses, although there maybe some exceptions.

Automated Clustering-Based Semantification. Traditionally, AI-based scholarly
KG construction is addressed by the recognition of entities and relations in
scientific articles as sequence labeling and classification objectives [5–7,9,10].
We instead address the problem of bioassay semantification with a clustering
objective. We choose clustering from our corpus observations that bioassays with
similar text descriptions are semantified with similar sets of logical statements.
Thus, the bioassays could be clustered based on their text descriptions and each
cluster could be collectively semantified by the labels of the trained cluster.
Indeed while entity and relation classification are sound strategies, they would
be unnecessarily more complex and time-consuming methods for the problem at
hand. We refer the reader to our prior work [2] which contrasts a classification
versus a clustering objective for bioassay semantification.

The final semantification function in ORKG-assays was arrived at by an
experimental process. This entailed testing two different vectorizations, i.e. TF-
IDF and SciBERT [4], for the bioassay text to find the optimal representation
for clustering by K-means with the elbow optimization strategy to find the
best K value. While the TF-IDF vector is fitted on a training collection of
assays, the SciBERT embeddings are directly queried for their pretrained 768
dimensional vectors. The results are shown in Table 1. We see that the direct
TF-IDF vectorization on bioassay text outperforms the scholarly-articles-based
pretrained SciBERT at 0.83 F1 vs. 0.77 F1 with fewer clusters (450 vs. 550).

Building the Knowledge Graph. We leverage the ORKG to convert our struc-
tured annotations to a KG. The assay’s article’s PubMED metadata is first
fetched, following which the digitalized bioassay is added in the form of research
contributions of the paper via the ORKG KG building functions.



66 J. D’Souza et al.

Table 1. Semantification results by K-means clustering of vectorized bioassays

# Clusters (K) tf-idf SciBERT

P R F1 P R F1

400 0.80 0.85 0.82 0.72 0.79 0.75

450 0.81 0.85 0.83 0.74 0.79 0.76

500 0.82 0.85 0.83 0.75 0.78 0.76

550 0.82 0.84 0.83 0.75 0.78 0.77

600 0.83 0.84 0.83 0.77 0.78 0.77

Fig. 1. ORKG frontend screens for user curation of an automatically semantified bioas-
say.

Data Workflows. 1. Add Paper Wizard. In the ORKG Frontend, as shown
in Fig. 1, the user can add an assay by clicking the ‘Add Bioassay’ button. The
assay gets automatically semantified with the result on a screen with checkboxes
enabling accept or reject user interactions. On clicking ‘Insert Data,’ all selected
statements and the user provenance form the ORKG. 2. Bulk Import via
REST API. To ingest the data in bulk, iterative calls to the ORKG REST API
with article metadata and structured bioassay as contributions encapsulated in
a JSON object can be made. This process is depicted in Figs. 2 and 3.
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Business logic

Domain model

Neo4j

Triple statementsRetrieve
unstructured

text

Semi-automated
Bioassay

semantification service

{ REST:API }

ORKG front-end

View paper in
ORKG

ORKG back-end

BAO ontology

ORKG ontology

Fig. 2. End-to-end ORKG-assays semantification pipeline which practically realizes
the digitalization of digitized data involving data sources, data retrieval, an annotation
service, and resulting triple statements.

"description": {
"Currently there are no small

molecule tools to investigate the
biological functions of apelin and its
receptor. Apelin is the endogenous peptide
ligand for the G-protein  coupled receptor
(GPCR) APJ (angiotensin II receptor-like
1, AGTRL-1 and APLNR)." },

JSON Data including source article metadata and structured bioassay data

{ "labels": {
    "DNA construct": "Expressing the Apelin receptor",
    "assay measurement type": "endpoint assay",
    "has assay control": [
      "negative control",
      "positive control"
    ],
    "has assay footprint": "1536 well plate",
    "has assay format": "cell-based format",   

Structured/Semantified bioassay 

Semantification

{ "paper": {
"title": "In vitro screening of a FDA approved
chemical library reveals potential inhibitors of
SARS-CoV-2 replication"

 "authors": [{"label": "Franck Touret"}],
"contributions": [ {

 "name": "Contribution 1",
 "values": {

"Has assay footprint": [{"label": "1536 well
plate"},

... ],
 "researchField": "Virology" } }

Structured Bioassay description in the ORKG Frontend

ORKG Entry

Bioassay unstructured text description
Metadata
Retrieval

Fig. 3. Conversion of an unstructured Bioassay to its equivalent digitalized represen-
tation and finally presented in the ORKG frontend (https://tinyurl.com/orkg-assay).

3 Conclusion

We presented ORKG-assays—an end-to-end digitalization workflow of unstruc-
tured descriptions of bioassays within a next-generation digital library, the
ORKG. Its supplementary information is released online https://github.com/jd-
coderepos/bioassays-ie. The hybrid design of ORKG-assays complementarily
integrates automated and manual semantification methods since pure machine
learning on its own tends to be insufficiently accurate and expecting scientists
to find the time to semantify their assays from scratch is unrealistic.

Bioassays being highly diverse are clearly a non-trivial semantification
domain posing challenges to standardizing and integrating the data with the
goal to maximize their scientific and ultimately their public health impact as
the assay screening results are carried forward into drug development pro-
grams with intelligent machine assistance. The current coronavirus pandemic

https://tinyurl.com/orkg-assay
https://github.com/jd-coderepos/bioassays-ie
https://github.com/jd-coderepos/bioassays-ie
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situation sheds critical light on advancing the drug development research life-
cycle for which bioassays are crucial, offering credence to our domain choice for
semantification research. In this respect, the ORKG will not serve as a mere
mirror of other Bioassay depositories, but will itself be a unique application of a
highly-structured science-wide knowledge graph of scholarly contributions which
incoporates semantified bioassays as well.
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Abstract. The advancement in artificial intelligence (AI) techniques
has given rise to the success rate recorded in the field of Non-Intrusive
Load Monitoring (NILM). The development of robust AI and machine
learning algorithms based on deep learning architecture has enabled
accurate extraction of individual appliance load signature from aggre-
gated energy data. However, the success rate of NILM algorithm in disag-
gregating individual appliance load signature in smart grid data violates
the privacy of the individual household lifestyle. This paper investigates
the performance of Sequence-to-Sequence (Seq2Seq) deep learning NILM
algorithm in predicting the load signature of appliances. Furthermore, we
define a new notion of disclosure risk to understand the risk associated
with individual appliances in aggregated signals. Two publicly available
energy disaggregation datasets have been considered. We simulate three
inference attack scenarios to better ascertain the risk of publishing raw
energy data. In addition, we investigate three activation extraction meth-
ods for appliance event detection. The results show that the disclosure
risk associated with releasing smart grid data in their original form is on
the high side. Therefore, future privacy protection mechanisms should
devise efficient methods to reduce this risk.

Keywords: Smart grid data · Non-intrusive load monitoring · Energy
disaggregation · Data privacy · Disclosure risk

1 Introduction

The significant development in artificial intelligence, Internet-of-things, smart
meter and smart grid solutions have contributed to the realization of smart sus-
tainable cities [1]. Part of the goals of sustainable cities include appropriate use
of available resources, energy conservation and improving the well-being of the
societies [2]. Energy conservation focuses on efficient use of energy resources
to achieve sustainability and self-reliance in energy management. Energy con-
servation requires monitoring and controlling of energy usage with the aim of
optimizing energy demand to reduce energy consumption [3]. There have been
immense research efforts in developing methodologies to address energy demands
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[2,4]. Hence, communicating with consumers to provide demand-response ser-
vices based on their fine-grained energy consumption can help in reducing energy
wastage. One methodology to achieve this goal is Non-intrusive load monitoring
(NILM).

NILM or energy disaggregation is the task of separating a building’s aggre-
gated load consumption into constituent energy demands by the individual appli-
ances [5]. NILM provides a smart solution to the problem of electrical energy
monitoring of households at the appliance level. This method guarantees a real-
time feedback by analyzing the aggregated power data measured by smart meter
and extracting the information about the consumption of individual electrical
devices. The goal of NILM is to provide real-time feedback about energy con-
sumption to consumers, to detect faults and events, and to encourage energy-
saving behaviours [6].

Majorly, NILM research domain involves the development of classification
and regression algorithms to predict appliance state and load consumption
respectively. The classification results of the NILM algorithms help to ascertain
when a particular appliance is in use during the day. Several techniques have
been studied to extract appliance activations from appliance data for the pur-
pose of developing classification models. For instance, Laviron et al. [7] proposed
three activation extraction techniques: Cartesio, ValmA and SimBA, to extract
appliance signatures. Kelly et al. [8] proposed activation time extraction (ATE)
algorithm which was specifically tuned on UK-DALE NILM dataset. Desai et
al. [9] proposed Variance-Sensitive Thresholding (VST), which aims to improve
over the Middle-Point Thresholding (MPT) method [6]. Event data obtained
after applying a particular activation extraction method can be used to build a
machine learning classifier. Regression models on the other hand take an aggre-
gated household consumption data and produce the individual appliance load
signatures [5,8,10]. Both classification and regression NILM models have shown
significant performance over the years.

However, despite the benefits offered by NILM system, the ability to infer
individual load signature from an aggregated consumption has posed a pri-
vacy issue in the domain of smart grid data publishing. Fine-grained electric-
ity consumption data has been characterized with privacy-sensitive consumer
behaviours, which are capable of revealing general habits and lifestyles of house-
holds [11,12]. Information obtained through appliance-level inferencing and anal-
ysis is useful to third parties like marketers, law enforcement, and criminals. For
instance, cases of attacks on smart grid infrastructure which lead to electricity
blackout have been reported in Ukraine in 2015, 2016 and January 2017 where
hackers were able to shutdown the energy system that supply heat and light to
millions of households. This may have occurred as a result of privacy violation
and security breach that may emanate from a specific household [13,14].

In addition, most of the existing smart grid datasets in NILM domain are
accompanied with meta-data, which provide some background information about
the data collection procedures. These information can be explored by attackers
as an external knowledge and along with the knowledge inferred from NILM to
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reveal the identity of individual households. Consequently, sharing of fine-grained
electricity usage data in its original form has higher probability of revealing indi-
vidual household lifestyles as attackers may want to deduce the type of appliance
that is in use at any given time. Therefore, it is important to hide the individ-
ual appliance signatures from the protected datasets to be published by the
utility company. This requirement creates a major challenge to existing privacy
protection mechanisms for smart grid data. Existing protection mechanisms for
smart grid data, such as data anonymization [13,15–19] and differential privacy
[18,20] pay less attention to obfuscation of individual appliance signature in the
aggregated masked data.

In this paper, we evaluate the disclosure risk associated with publishing raw
smart grid data. We adapt Seq2Seq deep learning NILM algorithm to detect
the signature of individual appliance in the aggregated signal. Additionally, we
subject the individual predictive appliance load to three activation methods:
ATE, MPT and VST to confirm the efficacy of the algorithm in correctly pre-
dicting the state of each appliance from their load signatures. Furthermore, we
simulate three inference attack scenarios and empirically compute the disclo-
sure risk probability for individual appliances. This helps us to concretize a new
risk measure that is termed disaggregation risk. Therefore, our paper makes
the first attempt to reveal this type of disclosure risk. Two publicly available
NILM datasets for energy disaggregation have been considered. The findings
from this study provide new insight for future privacy preserving mechanisms in
the domain of smart grid data publishing.

The remaining parts of this paper are organized as follows: Sect. 2 presents
related work in energy disaggregation and privacy preserving mechanisms for
smart grid data. Section 3 focuses on the proposed approach for disclosure risk
assessment. Section 4 highlights the experimental settings for the different attack
scenarios. Section 5 discusses the results obtained from the different experiments
and finally Sect. 6 concludes the paper and highlights feature research directions.

2 Related Work

2.1 Non-intrusive Load Monitoring

The field of NILM started with the noticeable work of [21], which centered on
clustering analysis for appliance identification and load disaggregation based
on the steady state and transient state features extracted from the aggregated
energy. The goal of NILM is to monitor events and load consumed at appliance
level from aggregated energy using a NILM device and a single smart meter.
Due to the challenges of sub-metering every appliances in a building for load
monitoring and demand-response services, NILM device can process the mea-
sured aggregated energy from the smart meter for event detection and energy
disaggregation of individual appliances.

Recently, deep learning architectures have been proposed which allows an
automatic extraction of salient features from the aggregated power signal. Deep
learning algorithms have shown comparable performance over the algorithms
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that relied on the conventional feature extraction methods [8,22]. Kelly et al. [8]
adapted deep learning architectures such as Recurrent Neural Networks (RNNs)
and Denoising Autoencoders (dAE) to extract appliance level energy consump-
tion from aggregated signal. dAE was used to reconstruct the target appliance
signal while treating the aggregated signal as noisy input. These algorithms have
been shown to outperform the earlier NILM algorithms that relied on the con-
ventional feature extraction methods such as Combinatorial Optimization (CO)
and Factorial Hidden Markov Model (FHMM) on significant number of appli-
ances. Long short term memory (LSTM) deep learning architecture have also
been experimented for appliance signal reconstruction [2]. Sequence-to-Sequence
(Seq2Seq) and Sequence-to-point (Seq2Point) deep learning architectures have
been studied in [8,10]. There have been extensive progress in the field of deep
learning for NILM domain. The reader is referred to a recent review published
in [2]. Nevertheless, despite the progress recorded in NILM domain, the ability
to disaggregate the signature of individual appliances from the aggregated sig-
nal has been characterized with privacy issues. This reveals the lifestyle of the
individual households in the smart grid data.

2.2 Privacy Preserving Data Publishing in Smart Grid

In the domain of privacy preserving smart grid data publishing, several tech-
niques have been studied ranging from data anonymization using Battery-based
Load Hiding (BLH) [15], data anonymization using k-anonymity [16,17,19], Gen-
erative Adversarial Network (GAN) and additive correlated noise [23,24] and
differential privacy (DP) [18,20] among others.

BLH aims to install a rechargeable battery at the consumer end, which can be
charged or discharged to make the electricity meter incapable of precisely obtain-
ing the consumption data of electric appliances while also hiding the appliance
actual energy consumption. This masking method is mainly theoretic and its
empirical validation for real-world application is still a major concern [15]. K-
anonymity [25] is a condition that protected data need to satisfy to guarantee
the privacy of the individual in the masked data. The goal of k-anonymity is
to ensure that each individual in a protected data cannot be identified within a
set of k individuals. [16,17] adopted k-ward microaggregation algorithm, which
is one of the algorithms that satisfied k-anonymity to protect smart grid and
building occupancy data. Thouvenot et al. [19] investigated the performance of
microaggregation algorithm for time series data. Other privacy protection meth-
ods, such as random noise, data permutation, data transformation, time slicing,
differential privacy and scope aggregation were discussed.

One of the benefits of GAN is its ability to model the uncertainties of original
data and based on this model new data are generated. Two deep neural networks
are usually trained; one to capture the distribution of the data and the other
to estimate the probability that the input originates from the real data. This
approach is promising to protect energy consumption data, however, its capa-
bility to prevent disclosure risk attacks is missing in the literature. Differential
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privacy has become a de-facto mechanism for privacy preserving which guaran-
teed ε−DP for every individual record in the protected data. [18,20] proposed
DP mechanisms to protect smart grid data. However, none of the existing stud-
ies in the literature has attempted to reduce the disclosure risk that may occur
due to inference attack on aggregated signals. These studies made an implicit
assumption regarding the protection method used and therefore did not focus on
testing the possibility of inferring useful knowledge which could assist attackers
in linking individual households in the protected data.

3 Proposed Method for Disclosure Risk Assessment

Figure 1 shows the proposed framework for disclosure risk assessment. The frame-
work consists of several stages with the goal of assessing the extent to which
Seq2Seq disaggregation algorithm can predict the status and load signatures
of individual appliances. Aggregated signal and individual appliance load data
were used to train Seq2Seq algorithm. The trained model was applied to disag-
gregate unseen aggregated signal. The disaggregated individual appliance loads
were subjected to three activation extraction methods. These methods were used
to ascertain the efficacy of the NILM algorithm in detecting both the state
(ON/OFF) and load signature of individual appliance. This approach provides
three possible advantages. First, it allows us to investigate the performance of
NILM algorithm for load disaggregation and event detection. Second, it helps us
to quantify a disclosure risk measure which reveals appliance-level disaggregation
risk particularly for smart grid data. Lastly, the disaggregated appliance loads
can be used by future privacy preserving model to develop efficient mechanisms
that can hide each appliance signature taking into consideration utility-privacy
trade-off.

Fig. 1. Proposed framework for disclosure risk assessment

NILM system takes an aggregated energy consumption and predicts the load
of each appliance. The aggregated power Pt at time t is the sum over all appli-
ances loads as given in Eq. (1):

Pt =
L∑

�=1

P (�)
t + εt (1)
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where L is the total number of appliances in the building, P
(�)
t is the power

of appliance � at time t, and εt is the unidentified residual load. This residual
load is usually characterized as noise. There are two types of noise in this case:
structured and unstructured noise. The noise introduced at the appliance sub-
meter is called structured noise which comes from appliances that were not sub-
metered. The noise at the mains meter (i.e. aggregate meter) is called unstruc-
tured noise. To predict appliance loads from the aggregated signal, this study
selected Seq2Seq deep learning algorithm based on its performance as reported
in the literature [5,10]. The deep learning model has the tendency of extracting
internal representational features of the signature of each appliance from the
aggregated data.

To simulate the disclosure risk attacks, this paper considered three inference
attack scenarios. The first scenario is an inference attack simulation on the same
household in the same dataset. Second scenario is an inference attack on different
households in the same dataset and lastly, the third scenario is an inference
attack on different households in different datasets.

3.1 Appliance Selection

This study focused on two categories of appliances: Type I and Type II. An
appliance with two states of operation (ON/OFF) is categorized as Type I.
These include appliances such as kettle, toaster, light bulb, lamps, microwave
etc. They consume energy only during the ON state. Multi-state appliances or
finite state machines are Type II appliances that have finite number of operating
states which may be executed repeatedly. State transitions can be detected using
rising/falling edges of power consumption over a period of time. Appliances such
as refrigerator, stove burner, dish washer and washing machine are the popular
examples for multi-state/Type II appliances. The categories Type I and Type
II contain most of the devices used in households. We selected five appliances
which belong to Type I and II categories to investigate the ability of NILM
algorithm in detecting the signatures of the appliances. These appliances are
washing machine, fridge, dish washer, microwave and kettle. Additionally, we
selected these appliances because they were used in at least two buildings in the
two datasets that we considered in this study. This enables us to simulate the
three inference attacks scenarios briefly discussed in Sect. 3.

3.2 Seq2Seq Disaggregation Algorithm

Seq2Seq NILM algorithm [8,10] is based on a deep learning architecture with
different Convolutional Neural Networks (CNNs) layers. The algorithm maps
aggregated input sequence to its corresponding target appliance sequence. Sup-
pose Fs is a neural network that maps the input sequence with sliding windows
Yt:t+W−1 corresponding to the aggregated mains power to the corresponding
windows Xt:t+W−1 of the target appliance power load sequence. The regression
is then defined as Xt:t+W−1 = Fs(Yt:t+W−1, θs) + ε, where ε is W-dimensional
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Gaussian random noise and θs are the parameters of the neural network Fs.
Figure 2 shows the adapted Seq2Seq learning architecture in this study. It is
important to mention that between CNN layer 4 and 5, there is a Dropout layer
with dropout probability of 0.2. This was also used between CNN layer 5 and
the fully connected layer and between the fully connected layer and the output
layer. The output from CNN layer 5 was flatten before the fully connected layer
was applied.

Fig. 2. Seq2Seq NILM deep learning architecture

3.3 Event Detection

After training a Seq2Seq algorithm to output the target appliance load, we sub-
jected this result to event detection algorithms to extract the appliance state sig-
nature. A majority of event detection algorithms in the literature are threshold-
based. They define threshold values to determine when a typical appliance is
switched ON or OFF. In this study, we employed Middle-Point Thresholding
(MPT), Variance-Sensitive Thresholding (VST) and Activation Time Extrac-
tion (ATE) for this purpose. Given the ON power threshold λ(�) for each appli-
ance that is obtained from a particular threshold method, the ON state of the
appliance � at time t can be obtained as.

s(�)t = I (P (�)
t ≥ λ(�)) (2)

where s(�)t is the ON state of appliance � at time t if the condition is satisfied.
I is a function that maps the boolean result to ON or OFF state of appliance
�. P

(�)
t is the power of appliance � at time t. The three threshold methods are

briefly discussed in the subsequent sections.

3.4 Middle-Point Thresholding

Given the power consumption of the training data from individual appliance, the
MPT method [6] applies a clustering technique to split the training data into
two clusters and considers the centroid of each cluster. In this study, we applied
K-means algorithm for this purpose. The two centroids from the clustering are
denoted as m

(�)
0 for OFF state and m

(�)
1 for ON state. Therefore, the event

detection threshold for MPT is fixed between these two values and it is given as,

λ(�) =
m

(�)
0 + m

(�)
1

2
(3)
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3.5 Variance-Sensitive Thresholding

Variance-Sensitive Thresholding (VST) extends MPT approach by incorporating
standard deviation σ

(�)
k for the data points in each cluster such that,

d =
σ
(�)
0

σ
(�)
0 + σ

(�)
1

λ(�) = (1 − d)m(�)
0 + dm

(�)
1 (4)

The purpose of this extension, for the case when σ1 > σ0, is to ensure that
the points in Class 1 (ON state) that are farther away from the centroid m1

are not misclassified. This forces the threshold to shift toward m0. However,
when σ0 = σ1, VST becomes MPT approach. Since substituting σ0 for σ1 when
calculating d will cause the value of d to be 0.5, hence, Eq. (4) becomes Eq. (3).

3.6 Activation Time Extraction

MPT and VST approaches only consider data from the distribution of power
measurements to fix the threshold for a specific appliance. It often happens that
due to noise in the smart meters, some measurements during short time intervals
are either absent while the device is operating, or produce abnormal peaks during
the OFF state (especially for multi-state appliances). Based on this, [8] proposed
the ATE algorithm, which was tuned specifically for UK-DALE dataset. ATE
considered both power threshold and time threshold as defined for each appliance
in [8].

3.7 Disaggregation Risk

We define a new measure of disclosure risk which is termed disaggregation risk.
This disclosure risk is particularly associated with smart grid data and we claim
that privacy preserving mechanisms should minimize this risk for smart grid
data publishing.

Definition 1 (Disaggregation risk). We define disaggregation risk as the prob-
ability that NILM algorithm predicts the load signature of appliance � and its
corresponding ON events from the aggregated signal.

We formalize disaggregation risk using Eq. (5).

DR(�) = TP (�)/(TP (�) + FN (�)) (5)

where TP (�) is the number of correctly predicted ON state of appliance �, FN (�)

is the number of ON state of appliance � that was mistakenly predicted as OFF
state and DR(�) is the disaggregation risk for appliance � which takes a value in
the interval [0,1]. The higher the value of DR, the higher the disclosure risk.

Equation (5) fits conveniently in our case of disclosure risk as NILM energy
disaggregation is characterized as being a highly class imbalance problem. Since
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we are interested in whether or not an attacker can successfully predict the
operating period of the appliance of interest, we formalized this disclosure risk
to evaluate the performance of Seq2Seq algorithm based on this requirement.

4 Experimental Setup

In this study, all experiments have been conducted using Python programming
language. We used NILMTK and NILMTK-Contrib API [5] for energy disag-
gregation. Experiments were performed on a Dell Laptop with GeForce GTX
1050 Ti with Max-Q Design GPU, CUDA version 11.2 and Intel(R) CoreTM i9-
8950H CPU @2.90 GHz 1TB HDD 32 GB RAM. Batch size of 32 and 50 epochs
were used for Seq2Seq algorithm. Both aggregated and appliance data were re-
sampled to a period of 1 min (60 s). Two widely used NILM datasets: UK-DALE
and REFIT were investigated.

4.1 Datasets

As stated in Sect. 4, this study considered two publicly available and widely
used NILM datasets: UK-DALE [26] and REFIT [27]. UK-DALE is made up
of 5 households. Each appliance sub-meters in UK-DALE recorded aggregate
apparent mains power sampled at every 6 s. Household 1, 2 and 5 also recorded
both active and reactive mains power every second. REFIT dataset has a total
of 20 households with both aggregate and appliance level data sampled at 8 s
intervals. As stated in Sect. 4, both aggregated and appliance data were re-
sampled to a period of 1min during training and testing of the model. We applied
the same sampling frequency when learning the threshold values for MPT and
VST methods from the appliance data. This is to ensure that both mains and
appliance-level signals are properly aligned.

4.2 Training and Testing Period

To simulate the three inference attacks scenarios briefly discussed in Sect. 3,
three different experimental settings have been adopted. For the first inference
attack scenario, household 2 with active mains and appliance power were used.
The training period is between 20/05/2013 and 20/09/2013 while the testing
period is between 21/09/2013 and 10/10/2013. Similarly, household 2 in REFIT
dataset was used based on active mains and appliance power. The training
period is between 17/09/2013 and 17/01/2014 while the testing period is between
01/03/2014 and 01/04/2014. For the second inference attack scenario, household
2 was used to train the model and the model was tested on household 1. The
training period is between 20/05/2013 and 20/09/2013 while the testing period is
between 21/09/2013 and 10/10/2013 for UK-DALE. For REFIT dataset, house-
hold 2 was used for training the model and the model was tested on household
5. The training period is between 17/09/2013 and 17/01/2014 while the testing
period is between 01/03/2014 and 01/04/2014. Lastly, for the third inference
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attack scenario, a model was trained with household 2 in UK-DALE dataset
and tested on household 2 in REFIT dataset. The training period is between
20/05/2013 and 20/09/2013 while the testing period is between 01/03/2014 and
01/04/2014.

4.3 Threshold Computation

As stated in Sect. 3.3, ATE threshold was fixed by [8] for UK-DALE dataset
based on a thorough investigation of appliance energy consumption rate. In
this study, we retained these settings for both UK-DALE and REFIT for ATE
method as we needed to test the efficacy of this approach across different
datasets. Therefore, for MPT and VST methods, we computed the ON power
threshold values from the individual appliance data. Table 1 shows the detail of
these threshold for the two datasets.

Table 1. ON power threshold in Watt computed for the two datasets

Appliance UK-DALE REFIT

ATE MPT VST ATE MPT VST

Washing machine 20.0 864.49 219.8 20.0 1028.20 592.29

Fridge 50.0 47.85 18.73 50.0 44.73 3.85

Dish washer 10.0 1054.8 146.22 10.0 1100.99 669.62

Microwave 200.0 562.56 72.30 200.0 555.67 67.51

Kettle 2000.0 1059.66 117.34 2000.0 1359.92 241.59

5 Results and Discussion

This section presents the disclosure risk results associated with each appliance.
As stated in Sect. 3, three inference attack scenarios were considered in this
study. The findings from this study will help future research in privacy preserving
smart grid data publishing to prevent inference attack on smart grid data, which
may reveal some background information about individual household lifestyles.
The results presented show the efficacy of Seq2Seq disaggregation algorithm in
predicting the appliance load signature and the status of each appliance at the
different timestamps.

5.1 Inference Attack on the Same Building

Table 2 shows that the disclosure risk associated with individual appliance is
on the high side as Seq2Seq algorithm was able to predict the signature of the
devices. The disaggregation risk for each threshold method is very close, which
shows that these methods are capable of revealing the ON power event of the
individual appliance. However, the algorithms faced a challenge to accurately
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predict the positive event in the case of microwave on REFIT dataset for this
scenario. Nevertheless, the probability of disaggregating individual appliance by
NILM algorithm when attacker has a trained model on the same household is
particularly on the high side.

Table 2. Disaggregation risk for each appliance in the two datasets based on attack
scenario 1

Appliance Disaggregation risk - UK-DALE Disaggregation risk - REFIT

ATE MPT VST ATE MPT VST

Washing machine 0.87 0.48 0.62 0.56 0.44 0.70

Fridge 0.96 0.96 0.99 0.75 0.80 0.99

Dish washer 0.98 0.98 1.00 0.93 0.64 0.81

Microwave 0.83 0.62 0.89 0.00 0.00 0.00

Kettle 0.90 0.95 0.99 0.41 0.55 0.72

5.2 Inference Attack on Different Buildings in the Same Dataset

The disclosure risk results of inference attack on different buildings in the same
dataset are shown in Table 3. We observed that the disclosure risk of washing
machine and microwave dropped when compared with the first scenario. This is
as a result of the different sources of the training and testing data as regards
the household consumption patterns. We observed that the results of the thresh-
old methods are close. However, the probability of predicting the signature of
the individual appliance is noticeable and this poses risk to the privacy of the
individual households.

Table 3. Disaggregation risk for each appliance in the two datasets based on attack
scenario 2

Appliance Disaggregation risk - UK-DALE Disaggregation risk - REFIT

ATE MPT VST ATE MPT VST

Washing machine 0.26 0.13 0.15 0.41 0.01 0.10

Fridge 0.88 0.89 0.99 0.55 0.64 0.99

Dish washer 0.93 0.70 1.00 0.92 0.10 0.44

Microwave 0.40 0.19 0.57 0.00 0.00 0.03

Kettle 0.51 0.73 0.85 0.36 0.56 0.77

5.3 Inference Attack on Different Buildings from Different Datasets

Table 4 shows the disclosure risk associated with each appliance when Seq2Seq
algorithm was trained on UK-DALE data and prediction was done with REFIT
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data. We observed high success rate (except in the case of washing machine)
of the NILM algorithm in this scenario despite the difference in the datasets
used for the training and testing. Surprisingly, microwave signature in REFIT
was successfully disaggregated when a model trained on UK-DALE was used
during the inference attack simulation. VST method successfully disaggregated
microwave signature with 61% disclosure risk, which gives better performance
than the other methods for this appliance. This behaviour shows how successful
attacks can be launched by simply using a pre-trained model from one dataset
to reveal the behaviour of appliances in another dataset. This result further
confirms the ability of energy disaggregation algorithm in revealing the load
consumption patterns of individual appliance. Again, this finding poses a privacy
issue on smart grid data publishing. In this scenario, VST outperformed other
threshold methods.

Table 4. Disaggregation risk for each appliance in the two datasets based on attack
scenario 3

Appliance Disaggregation risk - UK-DALE and REFIT

ATE MPT VST

Washing machine 0.12 0.01 0.04

Fridge 0.81 0.83 0.99

Dish washer 0.99 0.83 0.99

Microwave 0.44 0.22 0.61

Kettle 0.54 0.73 0.87

6 Conclusion

The results presented in this paper confirmed the ability of NILM algorithm to
predict appliance loads signatures from an aggregated signal. The deep learn-
ing algorithm (Seq2Seq) and the threshold methods investigated have shown
promising results in load disaggregation and event detection for the appliances.
The success rates of the algorithms investigated in this study create challenges
for future privacy preserving mechanism for smart grid data. The ability to hide
appliance signatures from the aggregated signal would apparently improve the
privacy of the smart grid data before publishing. Inference attack on energy data
can be minimized by designing an effective privacy preserving method to counter
energy disaggregation risk.
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Abstract. The growing volumes of data that appear on multiple dis-
tributed platforms raise the question of how to compose data meshes
that can be published and/or shared safely amongst multiple cooperat-
ing parties. Data meshes are composed of subsets (or whole sets) of data
repositories that are owned by autonomous parties. This raises new chal-
lenges in terms of guaranteeing privacy across various data mesh com-
positions. In this paper, we present a survey of the issues that emerge
in guaranteeing the privacy of distributed mesh data. We discuss the
limitations of existing solutions in handling personal data privacy with
respect to meshed data. Finally, we postulate that identifying personal
data in such datasets must be handled with a performance efficient algo-
rithm that can determine (on-the-fly), potential linkages across various
data repositories, that could be exploited to subvert privacy.

1 Introduction

Dealing with mesh data from the privacy perspective is important in the IT
industry. In fact, data meshes are in reality, a special case of distributed data
repositories where the data exist in a flexible ecosystem but with clear user-
ownership properties. Unlike standard relational database management systems,
a central authority is absent and is instead replaced by separate authorities that
co-exist in a “mutually exclusive and collectively exhaustive” environment. That
is, data mesh instances can interact with each other and share data across differ-
ent domains. For instance, an online marketing platform shares data with bank-
ing platforms and shopping regulatory services to validate a purchase request
from a given customer. In essence, the goal is that there should be no centralised
communication orchestrator required under this paradigm to guarantee data pri-
vacy across the different domains. While each database instance allows flexibility
nuances, they adhere to overarching architecture principles and guarantees ser-
vice level agreements to each other through data contracts (illustrated in Fig. 1).
This paradigm of data meshes can be referred to as micro-service architecture
in software engineering, where each service is encapsulated and isolated to allow
more flexibility.

Problem Statement. Distributing private information and fragmenting their
identifiers significantly impede their tracing and discovery. This may sound good
in the first moment, but it exacerbates privacy work to protect the same. To
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Strauss et al. (Eds.): DEXA 2022, LNCS 13426, pp. 85–102, 2022.
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Fig. 1. Illustration of data meshes within an organisation

adhere to a high ethical standard and be compliant with most legislation like
GDPR, HIPAA or CCPA, personally identifiable information (PII) even being
distributed, must be protected, deleted upon request, and held secure. To do this,
their existence and location must be known, even in a fragmented environment.
Despite that individual data points might not initially be considered a privacy
risk, their combination can be. Such attribute combinations are known as quasi-
identifiers (QID). Traditional use cases of QID discovery imply static datasets
with a standard relational database model, where standard metrics have to be
addressed. In (data) mesh environments, there might be no, or only dynami-
cally changing relational models. With the absence of any centralised layer that
can identify, classify, label and alienate PII data records, differential privacy
mechanisms by nature cannot help and a different solution is needed.

Contribution. In this work, we review, discuss and analyse the privacy impli-
cation of data mesh environments. We consolidate and systematise the state-
of-the-art of related privacy work to do so. Based on this systematisation of
knowledge (SoK), this work derives privacy fallacies in data mesh settings. Fur-
ther, it discusses why practically the right of deletion, and other privacy actions
are difficult to realise. We then offer experiments on implications for the search of
privacy-compromising quasi-identifiers as vanishing points for de-anonymisation
activities through comparing data mesh vs traditional RDBMS setups.

Outline. The rest of the paper is structured in the following manner: We
assemble, consolidate and systematise latest related work in Sect. 2. This
includes research on syntactic data anonymisation in Subsect. 2.3, semantic data
anonymisation and differential privacy in Subsect. 2.4, unique column combina-
tions in Subsect. 2.5, high-dimensional data anonymisation in Subsect. 2.6, quasi-
identifier discovery in Subsect. 2.7, as well as data mesh databases in Subsect. 2.1
and privacy in data mesh environments in Subsect. 2.2. Section 3 then offers a
characterisation of data meshes and quasi-identifiers in their context. Section 4
contributes experiments on discovering quasi-identifiers to avoid private data
exposure in data mesh environments. Section 5 finally concludes our results and
suggests avenues for future work.
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2 State-of-the-Art

Data mesh databases are not a completely new research field, and have been
addressed partially in the fields of peer-to-peer databases, distributed databases,
data mesh topologies, syntactic-, semantic data anonymisation, high-dimensional
data anonymisation and quasi-identifier discovery. The following subsections will
summarise the most recent and extraordinary related work.

2.1 Data Mesh Databases

Back in 1997, Beall et al. reviewed systems for a general-purpose mesh database
based on a hierarchy of topological entities [7]. Their hierarchical analysis for
topology concluded that the hierarchic representation does not add a significant
amount of extra storage to a mesh database. Rather, this representation can
easily be extended to represent non-manifold models properly. In 2001, Gribble
et al. published work on peer-to-peer systems and their behaviour towards the
semantics of data [30]. Further, Gribble et al. highlight that P2P databases
have unique challenges like the data placement problem where it is necessary to
figure out how to distribute data and work so database queries can run at a low
cost under resource and bandwidth constraints. As an outlook, new architectural
designs are mentioned promising to help P2P databases to implement distributed
query answering systems that are more scalable, reliable, and performant.

On a different venue, the mappings between peer-to-peer (P2P) databases
are typically described to be local with no global schema accordingly to Bern-
stein et al. [57]. Also, the configurations and mappings between peers are highly
dynamic that require semi-automatic solutions. In their work, Bernstein et al.
presents Local Relational Model (LRM) as an architecture that can help resolve
these issues for modern P2P databases. Franconi et al. [26] proposed a new
model for P2P databases where nodes can request data from another node and
use the third node for evaluation, but there can be no complex queries across
the entire network. In contrast to standard first-order semantics, Franconi et
al.’s new model captures the intended semantics of P2P systems. The model
also halts the propagation of inconsistencies from node to node, so the database
remains consistent, even if some of the nodes have inconsistent data. Remacle
et al. [64] offered work on an Algorithm Oriented Mesh Database (AOMD) to
manage mesh databases. Due to storage and algorithmic complexity, it is not
possible to maintain complete graphs of data meshes according to Remacle et al.
[64]. AOMD uses dynamic mesh representation to decrease computer memory
use and increase algorithmic efficiency. It results in a light and efficient software
implementation for mesh databases. Eunyoung Seegyoung Seol presented in his
PhD thesis a mesh that is a piece-wise decomposition of the space/time domain
where used by numerical simulation procedures [68]. Flexible distributed mesh
database (FMDB) capable of shaping its representation based on the applica-
tion’s specific needs. FMDB embedded in SCOREC simulation packages effec-
tively supporting automated adaptive analyses. Further, Seol et al. [67] published
work on flexible distributed Mesh database (FMDB), that is a partition model
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and a distributed mesh management system. Seol et al. model has been used
to efficiently support parallel automated adaptive analysis processes. The inte-
gration of mesh technology with the unified theory of acceptance and use of
technology (UTAUT) can help businesses with analytics and technology adop-
tion accordingly to Shirazi et al. [69]. Customised UTAUT models for mesh app,
service, and conversational systems adoption that add motivation, innovation,
privacy, and AI problem solving to traditional UTAUT can lead to intelligent
mesh technology [69]. Rodŕıguez-Gianolli et al. [65] presented a hyperion proto-
type that demonstrates the possibility of using Peer-to-Peer (P2P) computing
to share data. In their prototype, each peer includes a database with its own
schema. The peers can join and leave the network independently. In a Hyperion
P2P Database Network, the peer nodes share data by clustering into interest
groups and pairing up using acquaintance links. The P2P Layer handles the
peer-to-peer data sharing, while the Local Database Layer handles traditional
database functions [65].

A P2P database system (PDBS) is a collection of autonomous databases that
communicate with each other in a peer-to-peer fashion. Bonifati et al. [63] elabo-
rated on how PDBS can borrow ideas from distributed database systems (DDBS)
and multi-database systems (MDBS). For that purpose, Bonifati et al. compared
past distributed database systems to PDBS, emphasising the database-centric
and P2P-centric features of PDBS [63]. On the same note, Masud et al. inves-
tigated transaction processing in a peer-to-peer database network [47]. Their
work looked into the problems around the consistent execution of concurrent
transactions. Masud et al. also proposed solutions like Merged Transactions and
OTM-based propagation to guarantee consistent performance [47].

Various venues broach the issue of data mesh environments, their technical
realisation and implication towards distributed datasets. Yet, the fragmentation
of data records into distributed databases and the consequences to overarch-
ing, traditional central tasks like security and privacy themes remains mostly
unresolved.

2.2 Privacy in Mesh Networking

A few privacy questions have been discussed in the context of mesh networks and
mesh structures. Wu et al. illustrated privacy attacks on mesh network based
on the open medium property of wireless channel [77]. Traditional anonymous
routing algorithm cannot be directly applied to Mesh network. In their paper,
Wu et al. designed a private routing algorithm that used “Onion”, i.e., layered
encryption, to hide routing information [77]. Ganesh et al. proposed a strategy
that applies self-organising maps (SOM) algorithm separately in each distributed
dataset relative to database horizontal partitions [28]. In the sequence, these
representative subsets are sent to a central site, which performs a fusion of
partial results and applies K-means algorithms.

While research has been done on privacy in mesh networks, their findings and
concepts are not easily transferable to data mesh environments. Data mesh is a
special case of databases, while mesh networks originate from network topologies.
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A similar paradigm but different application context. As open problems remain
the question of how to find distributed describing attributes forming personally
identifiable information (PII), how data deletion or data lineage can be realised
in fragmented landscapes.

2.3 Syntactic Data Anonymisation

Randomisation [33,45], generalisation [27,72], suppression [27,72], and pertur-
bation [45] are among the data transformation methods used in syntactic data
anonymisation. Generalisation restructures the content of a dataset by changing
its values according to a pre-defined term replacement taxonomy, whereas sup-
pression simply erases data. As one travels up the ladder in a hierarchy-based
taxonomy, each value gradually loses its uniqueness.

The k-anonymity Family. One of the first and best-known is k-anonymity,
limiting distinguishability by classifying each tuple in the data set with at least
k − 1 identical data records. Sweeney claims that the k − 1 closest neighbors
are chosen based on similar descriptive features and enforced via generalisation
and suppression [72]. The pattern of generalisation is to aggregate data values
through a pre-defined hierarchy, such as combining the individual year 2021
into a year range of 2020–2025. Suppression, on the other hand, fully removes
the selected data value. The generalisation toolset appears to be sensitive to
attacks based on homogeneity and background knowledge [46]. To mitigate this,
l-diversity takes the granularity of sensitive data representations into account,
ensuring a factor of l diversity for each quasi-identifier within a particular equiv-
alence class (usually a size of k). By evaluating the relative distributions of
sensitive values in specific equivalence classes and throughout the entire dataset,
t-closeness as an extension handles skewness and background knowledge attacks
[42]. k-anonymity is also a privacy metric denoted k-map. If every combination
of attribute values for quasi-identifiers appears at least k times in a dataset, it
meets the k-map constraint [72]. To protect against symmetric assaults, Nergiz
et al. [54] presented δ-presence, which builds on both k-anonymity and k-map.
δ-min and δ-max are hidden in the δ-parameter. These two characteristics deal
with the fact that no one is present.

Data Transformation Techniques. To support data transformation, the prior
anonymisation techniques and their modifications used generalisation and sup-
pression [27,49]. This is useful for theoretical demonstrations, but it quickly
reaches its limits when dealing with larger datasets. Syntactic data anonymi-
sation methods like k-anonymity [72], l-diversity [46], and t-closeness [42] are
NP-hard, as Meyerson et al. [49] and Bayardo et al. [29] have shown. Because of
their iterative and incremental character, the dependent generalisation methods
are NP-hard in and of themselves. Applying generalisation and suppression to
high dimensional data results in considerable information loss, rendering the data
worthless for data analytics, according to Aggrawal et al. [4]. This is especially
true because generalisation’s runtime grows exponentially for several descriptive
attributes, making it unfeasible. As a result, suppression persists and obliterates
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attribute values, resulting in significant information loss. Given the algorithm’s
complexity, all variations can only employ heuristics like k-optimise [6] to get
improved approximations to perfect privacy, not perfect privacy [5].

Perturbation has been proposed as a viable alternative to generalisation [45].
The alternation of the real value to the nearest similar findable value is referred
to as perturbation. This includes the effect of introducing an aggregated value
or employing a close-by value so that just one value needs to be modified rather
than numerous ones to form clusters. Finding such a value can take longer in
certain cases due to iteratively rechecking the newly produced value(s), which
negatively influences performance.

Optimal k-anonymity has been demonstrated to be an NP-hard task [5,49].
Due to their algorithmic nature, applying generalisation and suppression strate-
gies to high-dimensional data results in a substantial level of information loss,
leaving the data essentially unusable for data analytics. Tassa et al. [74] recom-
mend using k -concealment to reduce the information loss caused by generalising
database entries. However, in the case of high-dimensional application fields,
both contributions degrade the NP-hardness. Fredj et al. [27] provided an in-
depth review, categorisation, and advice for selecting generalisation algorithms.

The problem of ensuring k-anonymity with either optimal or holistic tech-
niques to syntactic data anonymisation has been demonstrated to be an NP-hard
task [49]. Heuristics can only be used to achieve better approximations to per-
fect privacy, not perfect privacy, in all types of k-anonymity algorithms [5]. As a
result, scaling, particularly generalisation and perturbation in high-dimensional
data, produces an impractical runtime [58,62] and a large level of information
loss, rendering the data worthless for data analytics. With the help of GPU
acceleration [61], it has been proven to shift the time complexity amplitude as
runtime explosion from smaller n < 20 to larger n < 150 for 2n, yet the nature
of the growth remains.

2.4 Semantic Data Anonymisation and Differential Privacy

Semantic data anonymisation approaches sum up the statistical distributions of
data values and the semantic meanings drawn from linking (defining patterns)
between data points in an attempt to re-define privacy not just as a process
of syntactically transforming datasets but also to consider both the statisti-
cal distributions of data values and the semantic meanings drawn from linking
(defining patterns) between data points. The data veracity is tampered with by
deleting significant ties between the data and an individual. Noise injection, per-
mutation, or statistical shifting are commonly used to achieve this [19,33,44].
These algorithms are also known as differential privacy, and their statistical
approaches are highly optimised for pre-defined use cases and mass data pro-
cessing. In differential privacy, for example, this is accomplished by deciding how
many noise injections to add to the output dataset at query runtime to assure
anonymity in each situation [18]. Further, Dwork et al. extend their work with
a vast introduction into the algorithmic foundations of differential privacy [22].
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Individual contributions to differential privacy include the use of the exponen-
tial mechanism to expose statistical information about a dataset while concealing
the private specifics of individual data items [48]. By applying controlled ran-
dom distribution sensitive noise additions, the Laplace method for perturbation
facilitates statistical shifting in differential privacy [20,38]. Because both sen-
sitive attributes and quasi-identifiers are evaluated on a per-row basis during
anonymisation [41], the discretised version [44] is known as a matrix mechanism.
Because these anonymisation are done at runtime and on a case-by-case basis,
the anonymisation processing is deferred until query runtime, increasing the risk
of data leakage [36]. Leoni introduced “non-interactive” differential privacy [40]
by performing statistical adjustments a priori to user searches. Another diffi-
culty with differential privacy is that it is computationally infeasible to apply
differential privacy to huge datasets (impractical). Dwork et al. shows that dif-
ferential privacy is likewise NP-hard [21]. Experts are still debating whether
approximation differential privacy algorithms provide adequate privacy assur-
ances. An arbitrary family of attribute sets could be used to link a single data
record back to its owner in certain conditions [24]. Abadi et al. offered the appli-
cation of incorporating differential privacy into the deep learning context [1].
Even the US Census Bureau plans to adopt differential privacy accordingly to
John Abowd [3]. But as Lee et al. have highlighted, the concept of differential
privacy received considerable attention in the literature, yet little discussion is
available on how to apply it in practice [39].

These revelations lead to an unsolved issue. Due to their complexity,
anonymising a large dataset using either approximate procedures that may leave
data inferences that can be exploited to de-anonymize people or precise coun-
terparts results in exponentially growing runtime.

Randomisation techniques have gained increased attention as a result of the
issues surrounding syntactic data anonymisation [33,45]. This semantic data
anonymisation technique aims to re-define privacy as a process of considering
both statistical distributions of data values and semantic meanings extracted
from linking (defining patterns) between data points, rather than simply as a
process of syntactically altering datasets. Dwork et al. [23] provide an in-depth
survey of past work, in addition to the previous description of relatively recent
contributions. Dankbar et al. have provided a comprehensive overview of the
current literature on unequal privacy. They also pointed out some important
general constraints, such as the theoretical character of the privacy parameter,
which limits the ability to quantify the level of anonymity that would be guaran-
teed to patients [14]. Ji et al. explored the relationship between machine learning
and differential privacy [34]. To illustrate both its strong guarantees and limi-
tations, Li et al. focus on empirical accuracy performances of algorithms and
semantic implications of differential privacy [43].

Semantic data anonymisation methods, such as differential privacy, have
been demonstrated to be NP-hard for big datasets [21]. Given their runtime
and use case-specific nature, they are computationally infeasible (impractical
performance-wise) when applied to large high-dimensional data.
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2.5 Unique Column Combinations

Unique column combinations (UCC) are attribute combinations that generate a
unique identifier for the given dataset in data profiling (table). Discovering these
unique column combinations (UCC) is a major scientific challenge.

Abedjan et al. [2] compiled and formalised the most recent breakthroughs in
the finding of UCCs in their paper. Heise et al. built on their work by presenting
a scalable discovery of unique column combinations based on parallelisation and
the scale-out concept [32]. Feldmann has done the same thing [25]. Han et al.
build on similar ideas [31] and use Hadoop with its MapReduce technology [15]
to create a distributed computing environment. Papenbrock et al. [56] offered a
comparison of alternative discovery strategies. Papenbrock et al., on the other
hand, proposed a hybrid of quick approximation approaches and efficient vali-
dation procedures for UCCs [56]. Ruiz et al. published a patent recently that
summarised several dataset profiling tools, techniques, and systems, including
efficient UCC finding [66].

The search for UCC may be encapsulated in a cyclical dependence on the
Hitting-Set issue as a family of W[2]-complete problems [9,17], according to
Bläsius et al. [9]. In the worst-case scenario, this implies a super polynomial
runtime, rendering its use to huge, high-dimensional data impracticable for the
time being.

2.6 High-Dimensional Data

Given past advances in syntactic and semantic data anonymisation, more atten-
tion has shifted to hybrid systems that incorporate aspects from the initial syn-
tactic and semantic data anonymisation approaches and provide abstractions
from the raw dataset via aggregations or separations. For example, in attribute
compartmentation [58,62], privacy is ensured by separating attributes that con-
stitute quasi-identifiers using the notion of maximum partial unique column com-
binations (mpUCC) from the data profiling domain (mpUCCs). Quasi-identifiers
are attribute value combinations that uniquely identify persons in a dataset
(QID). By removing those QIDs, the re-identification attack of mixing QIDs
with auxiliary data to draw inferences and extract private information is also
prevented [76]. However, finding quasi-identifiers is difficult.

The enormous number of rows and columns distinguishes high-dimensional
data. While the growing number of rows is seldom a problem, the growing num-
ber of columns can fast cause state-space explosions in enumeration issues [8].
The higher the dataset dimensions, the faster it reaches computational infea-
sibility. As can be seen from the preceding subsections, several disciplinary
approaches for obtaining privacy, such as data profiling and mining, anonymisa-
tion processing, and differential privacy, eventually run into NP-hard difficulties.

In a few cases, high-dimensional data is being anonymized in great detail.
Kohlmayer et al. proposed adaptations based on the Secure Multi-party Comput-
ing (SMC) protocol as a flexible approach on top of k-anonymity, l-diversity, and
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t-closeness, as well as heuristic optimisation, to anonymize distributed and sepa-
rated data silos in the medical field [37]. Mohammed et al. propose LKC-privacy
to achieve privacy in both centralised and distributed scenarios [50], promis-
ing scalability for anonymising large datasets LKC-privacy, however, restricts
the length of quasi-identifier tuples to a pre-determined number of characters
that offers a practical approach but does not guarantee the entire absence of
privacy-violating identifiers in high-dimensions. Other initiatives, such as Zhang
et al. [80], employ a MapReduce approach based on the Hadoop distributed
file system (HDFS) to increase compute capacity. On the other hand, the NP-
hard nature swiftly beats the economic scalability options. Large numbers of
entities defining characteristics (hundreds of attributes) must be handled in a
performance-efficient and privacy-preserving way.

There are two reasons why discriminating between sensitive and non-sensitive
properties is problematic, according to Manolis Terrovitis’ study [75]. First, we
can see that sensitive features are not the main reason for the success of de-
anonymisation assaults (homogeneity, similarity, and background information).
Second, creating an exhaustive collection of sensitive and non-sensitive qualities
is problematic for high-dimensional datasets with distinct patterns that expand
with the amount of data acquired on an individual. Podlesny et al. proposed
modeling the attribute linkage problem for generating privacy-preserving data
silos as a Bayesian network [59,60] to reduce the complexity of the compartmen-
tation problem [58,62]. To train a Bayesian network, exact inference learning
[53] and approximate inference learning [13] have the same NP-hardness. Recent
contributions, however, show that using attribute linkage techniques to com-
press the network enables for performance-scalable data processing even on huge
datasets [60]. Clifton et al. provided a balanced review of outstanding concerns
in both syntactic and semantic data anonymisation methods, as well as its ben-
efits, belongings, and summarised critiques [12]. Clifton et al. point out that the
differences between different syntactic and semantic anonymisation origin mod-
els are less pronounced than previously supposed. Both archetypes, however,
will have problems in large-scale data settings. Differential privacy is frequently
the best empirical privacy for a fixed (empirical) utility level, however syntactic
anonymity models may be preferred for more precise answers.

Regardless of where it came from, data anonymisation is yet to be applied to
large-scale, multi-attribute, high-dimensional datasets in a reasonable amount
of time and with limited resources. Each solution suffers from considerable com-
plexity restrictions for huge quantities of descriptive characteristics (columns),
resulting in massive information loss, calculation demands, and hence runtime,
or privacy guarantees through approximation approaches.

2.7 Quasi-Identifier Discovery

Byun et al. addressed the lack of diversity through equivalence classes and their
information-loss by transforming the k-anonymity problem to a k-member clus-
tering problem [11], based on Sweeneys work on the family of k-anonymity tech-
niques [72,73]. While Byun et al. technique uses distance and cost functions
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works for numeric and categorical data, it does not guarantee approximation fac-
tors. For clustering purposes, the projection of quasi-identifier similarity remains
data-specific.

Xiao et al. published anatomy, a novel approach that immediately releases
all quasi-identifiers and sensitive values in two independent tables [78]. This, in
conjunction with grouping operations, should allow for the capture of correlation
while minimising reconstruction error. Zhang et al. investigated the scalability
benefits of horizontal scaling in cloud computing environments, as well as the use
of a quasi-identifier index-based technique to speed up data querying on huge
datasets [79]. Statistical de-anonymisation attacks on high-dimensional datasets
were proven by Narayanan et al. for re-identifying people in the Netflix Prize
dataset with tolerance for certain inaccuracies in the adversary’s prior infor-
mation [51]. Soria-Comas et al. summarised the topic of re-linkage using quasi-
identifiers. They explored data governance issues like user permission, purpose
limitation, transparency, individual rights of access, correction, and deletion.
When deleting specified qualities against extra personally identifiable informa-
tion (PII), Narayanan et al. expounded on the PII fallacy of the HIPAA privacy
law [52], as the eradication of all quasi-identifiers is not assured. Soria-Comas
et al. work also highlighted the need for new privacy models built from the
ground up with big data requirements in mind, such as continuous and vast
data collected from numerous source systems, resulting in multi-attribute and
high-dimensional datasets [70]. Braghin et al. have submitted an optimised quasi-
identifier strategy that uses parallelisation for efficient QID discovery [10], even
though parallelisation is not a novel concept. Braghin et al. study can serve
as a comparative baseline for our research due to its extensive description and
encouraging outcomes.

The discovery of quasi-identifiers summarised as Find-QID problem [61]
remains NP-hard and W[2]-complete [9,61]. Heuristic and greedy approach exist,
they even weaken the exponential implication of the same Find-QID problem, yet
particularly in high-dimensional spaces a lasting solution remains open unless the
W-hierarchy collapses [9]. This assumes an already pre-compiled, static dataset.
Adding now a distributed factor in, like in the case of data meshes, the search
and identification of QIDs become even more complex.

In summary, the community has done a lot of research on peer-to-peer
database, mesh network and anonymisation techniques individually. Yet, to the
best of our understanding, the paradigm of data mesh in databases and its side
effects with, against and towards privacy is largely unexplored. In particular, this
includes the topics around data deletion, quasi-identifier discover and data lin-
eage under the constraint of distributed, highly fragmented data records across
multiple data mesh instances. To emphasis the underlying complexity, we demon-
strate the differences of data mesh to more traditional database approaches in
the experiments of the following Sect. 4.
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3 Data Meshes

To recapitulate on essential terminologies, we briefly summarise the current
understanding and state of data mesh in database and quasi-identifiers in the
same domain. The concept of data mesh centers around the democratisation and
decentralisation of development activities. Instead of a central and predominat-
ing database with strict governance, a distributed setup build the basis of data
meshes. Each data repository is somehow coupled, can have upstream and down-
stream dependencies guaranteed through data contracts defining their usage,
availability, quality and content. This structural paradigm offers flexibility in
its configuration. Still, the same gained flexibility introduces looser governance
challenges like the absence of data lineage, which we will describe in the follow-
ing more profoundly. A similarity can be found in software engineering, where
a trend from monolith- towards microservices as architecture patterns has been
observed [35,55].

Characteristics of a Data Mesh. Given the decoupled nature of data meshes
[16], different data records might be split or even duplicated across multiple data
repositories. Traditionally, each data mesh instance is dedicated to a certain data
domain, with a clear owned business entity and corresponding dependencies,
inputs and outputs objective. While each data mesh instance is somehow autar-
kic, it may directly consume each other. Figure 1 illustrates this setup on a high
level perspective. Data between each instance can be linked through identifiers,
but this is not guaranteed. Such a fractured landscape brings value through its
flexibility. Each data domain can act and scale independently, yet learnings from
different sectors include that the same paradigm re-balances the weight against
arbitrary governance structures. As seen in the healthcare domain, the archetype
of various detached data repositories introduces a challenge for overarching top-
ics like data privacy, common interfaces and standardisation.

In the case of a central place, the same overarching objectives can be eas-
ily monitored, traced and supported like in the case of the implementation of
GDPRs data deletion right. A simple act like deleting personally identifiable
information (PII) sounds trivial, but imagine there are hundreds of data mesh
instances across hundreds of teams and each acts on its own. In various decou-
pled data repositories, tracking down distributed user attributes can only work
with thoroughly conducting data lineage which requires a lot of dedication and
documentation work for each development team as cross-linkages may be possi-
ble. Figure 2 depicts such perspective, where each domain holds a subset of user
data. Each subset individually may not look concerning from a privacy perspec-
tive, but joining these through existing identifiers they can become concerning.

Quasi-identifiers in a Data Mesh. Quasi-identifiers (QID) are attribute com-
binations that jointly form identifiers while independently might seem unsuspi-
cious. A quasi-identifier does not have to identify all individuals, but serves at
least one individual to be exposed and cause harm to their privacy. Formally,
QIDs are defined as
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Definition 1. Quasi-identifier
Let F = {f1, ..., fn} be a set of all features and B := P(F ) = {B1, ..., Bk}
its power set, i.e. the set of all possible feature combinations. A set of selected
features Bi ∈ B is called a quasi-identifier, if Bi identifies at least one entity
uniquely and all features fj ∈ Bi are not standalone identifiers.

To make this tangible, the readers attention is pointed towards Fig. 2 one more
time. Here, one can see that Domain A holds a ZIP code information, Domain B
age and gender and both are linked through the Call Center ID. Further, Domain
D holds analytical results like the disease prediction or medical adherence. When
following all identifiers, one can easily build a data profile including age, gender,
ZIP code, disease prediction and medical adherence without touching the Domain
C. Now, as Sweeney et al. showed that 87% of the entire population are identifiable
through the combination of age, gender and zip [71], an attacker may infer disease
prediction and medical adherence to those 87%.

Call Center

Call_Center_ID

ZIP

Medical drug Subscription

Marketing

Marketing_ID

Call_Center_ID

Age

Gender

Purchase_History

User_ID

Call_Center_ID

Name

Analytics

Marketing_ID

Disease Prediction

Medical Adherence

Fig. 2. Indirect linkage of quasi-identifiers in a data mesh

4 Experiments

To fortify the novolum that the data mesh paradigm creates towards data pri-
vacy topics, we will build on the prior knowledge and characteristic summary and
outline through a series of experiments the same theses and raised challenges.
For that purpose, we leverage a semi-synthetic dataset and state-of-the-art hard-
ware to compare different database archetypes and their runtime implications
on finding PII compromising quasi-identifiers.

Hardware. Our examination runs on a GPU-accelerated high-performance com-
pute cluster, housing 64 vCPU cores (E5-4650), 240 GB RAM, and 8x NVIDIA
GeForce 3060 with 3584 CUDA cores each and a combined Tensor performance
of 816 Tensor TFLOPs. GPU-related experiments’ execution environment will
be restricted to one dedicated CPU core and a single, dedicated Tesla V100
GPU.

Dataset. For the purpose of evaluation, a semi-synthetic health dataset has been
compiled based on publicly available contributions, previous work and publica-
tions. The dataset consists of genomic data, fake but consistent names, addresses,
SSN, passwords and telephone numbers, as well as medical records randomly
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(a) .. in traditional RDBMS to a data mesh (b) in different data mesh settings

Fig. 3. Projected runtime growth of discovered QID over increasing columns.

assigned but adhering to known statistical distributions. For transparency, the
full dataset can be downloaded from github.com1.

Evaluation. To demonstrate the differences in time complexity when different
database archetypes are being introduced, these experiments build on Sweeney’s
k-anonymity approach of finding quasi-identifiers [73]. A GPU-accelerated search
schema without heuristics purely based on groupby and count statements devel-
oped by Podlesny et al. [61] is being utilised in the following. Figure 3a delineates
the runtime growth for discovering the quasi-identifiers. The Y-axis represents
the execution time to find all QIDs in an exact manner (not heuristic) while
the x-axis the increasing number of describing attributes being stored in the
associated database archetype. The different database archetypes of traditional
central RDBMS and data mesh are clearly visible. Both runtime portray an
exponential increase, while the growth of the data mesh answers to a higher
factor (see Fig. 3a). While both, a traditional central RDBMS and a data mesh
can be scaled horizontally and vertically in number of nodes and hardware used,
the data mesh suffers a fragmentation of describing data attributes that can
form quasi-identifiers. This fragmentation needs to be first compensated which
essentially answers to more network I/O and therefore longer processing time.
The larger the fragmentation, the higher the network I/O and the longer the
compute.

Following the same line of thoughts, Fig. 3b depicts the evolution of the same
metrics over different data mesh sizes. The data mesh size answers to the number
of instances involved with equally distributed data attributes, starting from two
and increasing. Given the nature of the search, the complexity is exponential
already. Yet, two things stand out. First, the more data mesh instances exist
with equivalent data distribution, the sooner runtime increases due to the higher
degree of fragmentation and therefore, more data shifting and joining is required.
Second, the more data meshes exist, the earlier one experiences an uncontrolled
explosion of execution time as, given the hardware constraint, the capacities of
main memory and GPU memory are exceeded.

1 https://github.com/jaSunny/synthetic genome data.

https://github.com/jaSunny/synthetic_genome_data
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5 Conclusion and Future Directions

The previous sections offered a systematisation of knowledge and clarified charac-
teristics of data mesh and how quasi-identifiers potentially exposing PII. Further,
the summarised state-of-the-art delineates gaps for privacy and anonymisation
concepts in distributed data mesh environments. To demonstrate the unique-
ness and scalability of this problem, we have offered a variety of experiments to
discover quasi-identifier exposing PII in a traditional RDBMS setup and com-
pared these metrics against same algorithms running in a data mesh setup. The
increase of complexity and runtime is clearly visible.

Based on this understanding, we formulate the open distributed Quasi-
identifiers problem: To find usage of PII data within a data mesh, elements
of one quasi-identifiers (QIDs) might be distributed and linked across more than
one database instance. To find these distributed QIDs, all describing attribute
combination of any length that can be cross-linked through arbitrary identifiers
need to be considered. Due to its distributed nature, this represents a special
case of the W[2]-complete Find-QID problem [61].
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Abstract. With the emergence of new paradigms in data management
and processing like Cloud services, the Internet of Things (IoT), and
NoSQL, there is a growing trend for distributing data across multiple
platforms and using the technologies most suited for each case according
to criteria such as performance and cost. But it also raises new challenges
and needs, like understanding the sources, the transformations, and the
processes made on the data to infer their quality and reliability. Data
provenance becomes particularly relevant in such a context.

This paper presents a solution to deal with why- and how-provenance
queries on distributed data sources and different database paradigms.
The proposed solution does not require any change to the query execution
engine. It uses pure SQL with annotations and an algorithm to build data
provenance information from the result obtained by the query. We also
present experimental evaluation results obtained using an open-source
logical integration tool.

Keywords: Provenance · Data provenance · Databases · Distributed
systems

1 Introduction

Data management and processing have been changing over the past years. Sev-
eral factors have made data increasingly distributed, including the emergence of
the Cloud, smart devices, and the Internet of Things (IoT). Also, the rise of open
data and data science attracted experts in several domains who became inter-
ested in data manipulation and processing, knowledge extraction, and results
sharing. This context leads to issues regarding the quality, veracity, complete-
ness, and correctness of data sources, thus increasing the need to understand
where data comes from, whether the source is trustworthy, and the transfor-
mations made on data. Data provenance is metadata information (annotations)
about data origin and transformations made on data and helps solve such issues.

Although there exists a standard (PROV [15], a W3C recommendation) for
describing this information in terms of agents, entities, activities, and their rela-
tionships, an important research topic is how to disclose provenance information
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in database queries, i.e., to know where query results come from and how they
were computed.

Some solutions with different approaches allow obtaining data provenance
information from database queries, but all are in centralized environments or
specific database management systems. The data provenance issue becomes even
more essential in distributed database environments in which several (and pos-
sibly heterogeneous) databases are accessed to answer a single user’s query.

This paper discusses issues and challenges involving data provenance in dis-
tributed and heterogeneous databases. It presents a solution for how- and why-
provenance that does not need to make changes to the database engine nor use
system-specific functions and procedures. Hence, our solution can build prove-
nance information for the results of a query independently of the data source type
(e.g., file, and relational database and NoSQL databases), which is an important
feature when dealing with distributed and heterogeneous data sources.

The following section presents some background and related work. Section 3
discusses data provenance in distributed environments and then describes the
proposed solution. Then, Sect. 4 presents results from an experimental evalua-
tion. Finally, Sect. 5 concludes the paper and describes future work.

2 Background and Related Work

This section presents some background on building the provenance of the results
of database queries (data provenance) and the problems that arise when working
with distributed databases. It also reviews existing related works.

2.1 Data Provenance

In [11], the authors proposed four types of provenance, divided hierarchically:
provenance meta-data, information system provenance, workflow provenance,
and data provenance. Data provenance aims to collect the provenance informa-
tion from queries over a database. Due to the fact dealing with databases with
specific schemas and because the provenance can be at the tuple level, this type
of provenance has requirements that do not appear in other types of provenance.

The three most common types of data provenance are why-, how- and where-
provenance [4,5,10]. With the increased interest and research in data provenance,
other categories have been proposed, such as Why-not-provenance [2,11] and
Which-provenance [10] and perhaps more might follow. The focus of this paper
is on why- and how-provenance.

Why-Provenance – Collects all the inputs that contributed to a query result
[3–5,10]. The technique to collect why-provenance information is called Wit-
nesses basis. It is a set of tuples that contribute to a particular result. These
tuples are called witnesses of the production of the resulting tuple.

Based on the definition in [3,5], given a database I, a query Q over I and a
tuple t in Q(I), an instance of I ′ ⊆ I is a witness for t if t ∈ Q(I ′). This can be
denoted as: Why(Q, I, t) = {I ′ ⊆ I|t ∈ Q(I ′)}
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Fig. 1. An example of a table with orders.

For instance, consider the table in Fig. 1 representing orders. The field
“sname” is the supplier name, “dest” is the destination, “vehicle” is the type of
vehicle, and the tuple identifier is called “provtoken”.

Q1 :πdestσdest=“Braga′′(πsname,destOrderspt �� πvehicle,destOrderspt)

The Why-provenance is the set of tuples with all the possible combinations,
without duplicates. The result of Q1 is displayed in Table 1 and shows that the
witnesses of “Braga” are tk4 and tk5 alone or the conjugation of both.

Table 1. Result of Q1

dest why how

Braga {tk4}, {tk4,tk5}, {tk5} (tk4 ⊗ tk4) ⊕ (tk4 ⊗ tk5) ⊕ (tk5 ⊗ tk4) ⊕ (tk5 ⊗ tk5)

How-Provenance – Explains how the inputs contributed to the result and
is obtained using algebraic identities and polynomials (semirings) [3–5,9,10,16].
Each tuple must also have an annotation called prove token.

A semiring is defined as (K, 0, 1,⊕,⊗) where K is a set of data elements that
will be annotated using the constants 0 and 1. Given a query Q if the tuple t
contributes to the output result is annotated with 1, otherwise is annotated with
0. The binary operators ⊕,⊗ are used as alternative ⊕ and as joint ⊗.

Different types of semirings can be used to achieve different answers. For how-
provenance the universal semiring or how-semiring (N [X], 0, 1,⊕,⊗) is used. As
stated in [9], unions are associative and commutative operations and are rep-
resented by ⊕. The joins also have those two properties, but they are also dis-
tributive over unions and they represented by ⊗. The projections and selections
are also commutative among themselves.

Hence regarding the result present in Table 1 about How-Provenance,
“Braga” is obtained by the conjugation of tk4 with itself (join), or (union)
by the conjugation of tk5 with itself (join), or (union) by the conjugation of tk4
and tk5 (join) or (union) by the conjugation of tk5 and tk4.

Regarding the joins properties, more specifically, the distributive property
of the results in Table 1 can also be simplified to: (tk4 ⊕ tk5) ⊗ (tk4 ⊕ tk5). In
[16] it is proposed to use m-semirings with the operator monus (�) to be able
to give the provenance for non-monotone queries.
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2.2 Distributed Databases

While Multi-Model databases allow having different types of models (e.g., graph,
key-value, and documents) in the same Database Management System (DBMS)
[13], Polystore databases are built on the top of multiple storage engines that
are integrated and enable to query multiple data sources using different models
and paradigms [7].

Using distributed query engines (e.g., Presto [18]), users may query over dis-
tributed and heterogeneous databases using standard SQL language. The query
engines act as mediators between the querying interface and the underlying sys-
tems, but they do not deal with distribution transparency, i.e., the location of
each data structure (e.g., table) must be included in the query. This forces users
to have deep knowledge about the different data sources and their schemas.

Distribution transparency can be achieved by logical data integration. It
commonly comprises a high-level global model, i.e., a Global Conceptual Schema
(GCS), and Local Conceptual Schemas (LCS), which represent the physically dis-
tributed data [21]. The GCS stores the information about how to link global and
local entities. There are no Extract-Transform-Load (ETL) methods. Queries are
written considering the global entities, thus hiding distribution complexity from
the end-users. This approach is especially useful in scenarios where the users
need data to always be up to date.

But the logical integration requires the mapping between global and local
entities. One global entity may match a single entity of a specific data source
(local entity). But a single logical global entity may map to two or more local
entities (i.e., partitioning). In horizontal partitioning, a global entity maps to
two or more local entities (i.e., partitions) storing distinct instances of conceptu-
ally related data. For example, a global entity representing customers’ data can
map to two local entities, one storing data about customers from Europe and
another storing data about customers from America. Thus, the global entity is
the union of the local partitions. In vertical partitioning, a global entity maps
to two or more local entities (i.e., partitions), and each partition stores distinct
features (attributes) of the global entity. Thus, to retrieve all the attributes of a
global entity instance (e.g., tuple), one should join data from two or more local
entities (i.e., vertical partitions). For example, a global entity representing cus-
tomers’ information can map to two local entities at distinct sources, one storing
customers’ mailing addresses and another storing customers’ billing data.

Figure 2 exemplifies partitioning over the table Orderspt represented in Fig. 1.
In Fig. 2, the table is split into two, one physically stored in Portugal and the
other in Spain. The data in Portugal represent the stores located in Portugal
and the same for Spain. Figure 2 also represents the Stores tables, which contain
the store’s name, localization, and e-mail.

In a distributed database scenario, one must obtain data provenance infor-
mation considering all the data sources involved in the distributed query. Thus
it is not possible to use plugins for a specific database, and in the case of the
use of a mediator, it needs to deal with different types of databases.
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Fig. 2. An example of a distributed environment for stores and orders.

2.3 Related Work

In the literature, there are several works with methods to apply W3C PROV,
most of them in Workflows [12,20]. There are also works to describe Geospatial
datasets in distributed environments [6].

In terms of data provenance there are examples such as ProvSQL [17], Perm
[8], and GProM [1]. These are of solutions to visualize information about where-,
how- and why-provenance and solutions for probabilistic query evaluation.
ProvSQL is a lightweight extension for PostgreSQL that supports several rela-
tional database formalisms, including where-provenance and how-provenance.
GProM approached it with a middleware solution for Oracle, SQLite, and Post-
greSQL, but only in a centralized environment. Perm promotes rewriting the
queries. However, extending these formalisms to distributed environments with
different data sources (e.g., NoSQL and semi-structured) is an open issue.

The transparency in distributed environments integration helps the users to
have a high-level model of the domain. Hence, they do not need to be concerned
about how the data sources are connected and distributed or their heterogeneity.
Nevertheless, users continue to need the information to infer the veracity and
quality of the result, making the use of data provenance essential.

3 Provenance in Distributed Databases

This section shows how to obtain how- and why-provenance in a distributed
databases environment using SQL. In [17], ProvSQL is an extension to Post-
gresSQL that changes the query execution engine. Our approach is non-intrusive
and aims to work independently of the database and without changing the
engine. This improves portability because our solution uses only standard SQL
and not functions or stored procedures coded in languages that depend on
the database management system. Furthermore, nowadays there are distributed
query engines that can create an abstraction layer across data sources of different
paradigms using SQL, our solution can also be used to build data provenance
over distributed and heterogeneous databases (e.g., relational and NoSQL).
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3.1 Architecture

Fig. 3. Architecture and main components.

The architecture of the proposed solution is depicted in Fig. 3. The user sub-
mission interface allows users to write the queries to retrieve data from one or
more databases. It is assumed that the mapping between global entities and
local entities in source databases is known a priori, as discussed in the previous
section. Then, the Query re-writer adds annotations to the query to obtain the
provenance data and submits the request to the source databases through a dis-
tributed query engine. The latter transforms the query into sub-queries that are
sent to be executed in the source databases. The distributed query execution
engine gets query results containing provenance tokens from each data source
and assembles a global query execution result. Then, the engine sends such a
result to the Provenance Information Builder, which builds the provenance sen-
tences and sends them to the user together with the user’s query results.

For instance, considering that a user wants to execute query Q1 in a dis-
tributed environment using the data displayed in Fig. 2, the query would be as
follows.

Q2 :πdestσdest=“Braga′′(πsname,destOrderspt ∪ πsname,destOrdersen) ��

(πvehicle,destOrderspt ∪ πvehicle,destOrdersen)

Despite that the user might only see the global entities, the unions in the
query are required to retrieve the data from the two local data sources. The
provenance information resulting from Q2 is as follows.

Why-Provenance – {{p.orderspt:tk4,p.orderspt:tk5}, {p.orderspt:tk4,p.orderspt:tk8},

{p.orderspt:tk4}, {p.orderspt:tk5}, {p.orderspt:tk5,p.orderspt:tk8}, {p.orderspt:tk8}}
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How-Provenance – (p.orderspt:tk4 ⊗ (p.orderspt:tk5 ⊕ c.ordersen:tk8))

⊕ (p.orderspt:tk4 ⊗ p.orderspt:tk4) ⊕ (p.orderspt:tk5 ⊗ (p.orderspt:tk5 ⊕
c.ordersen:tk8)) ⊕ (p.orderspt:tk5 ⊗ p.orderspt:tk4) ⊕ (c.ordersen:tk8 ⊗
(p.orderspt:tk5 ⊕ c.ordersen:tk8)) ⊕ (c.ordersen:tk8 ⊗ p.orderspt:tk4)

Since we are in a distributed environment, and the data provenance infor-
mation is given with tokens, we add additional information. The format of the
provenance results has three parts separated by dot and colon characters: the
first is the data source (“p” for PostgreSQL and “c” for Cassandra, in the exam-
ple), the second is the table name (orderspt or ordersen) and the third is the
provenance token.

3.2 Annotations

The solution proposed in this work has two premises. First, each data element
(e.g., a token) in a data source must have a unique identifier as shown in [5,10,16].
The annotations can be seen as provenance tokens and they support the witness
basis theory for why-provenance and the semiring theory for how-provenance.

As almost all databases have a function to create Universally Unique Identi-
fiers (UUID), these are a natural choice to be used as provenance tokens. If the
system does not provide UUIDs, it is needed to create a column with a unique
identifier, e.g., a number or a string.

We also assume the existence of a distributed query engine (as shown in
Fig. 3) that supports the standard SQL function Listagg [14] or a similar one.
This function allows to aggregate/concatenate string values from a group of rows
and separate them with a delimiter.

Our approach is to add annotations to user queries to retrieve provenance
information from the data sources together with the query results themselves.
The annotations depend on the operators in the query.

Distinct, Union and Group By – The annotation consists of adding columns to
the user queries. In the case of a distinct clause, as a tuple t in a query result Q(I)
may have several witnesses (I ′ ∈ I), we use the function listagg to aggregate all
the tokens of I ′ into a single value. The tokens are separated using the special
character ;©. The distinct clause must be removed from the query because, as
each tuple has a unique identifier (token), it would prevent the aggregation of
the witnesses i′ of t in a single tuple. The annotation for the operator union is
similar to the distinct clause because there are also no duplicates in the result
of a query, and in the case of a group by, we need to use a different separator,
in this case |©. The different separators will help the algorithm to combine the
tokens properly.

Join – In this case, it is not necessary to use the function listaagg, only add
the tokens columns for the tables involved in the join. If the query is composed
of sub-queries, it is required that the sub-queries have the tokens columns. For
example, if we want to join two unions, we need to apply the union transforma-
tion explained above and add the unions token columns to the join projection.
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The splitters and the columns for the joins will allow the built provenance
information algorithm to interpret it by splitting and joining the columns and
applying the how- and why-provenance methods as defined in the literature. All
the columns with annotations have the name “prov”.

3.3 Build Provenance Information

Algorithm 1 demonstrates how the annotations are processed to obtain how-
and why-provenance. Even though most of the times it is possible to derive why-
from how-provenance, we opted for separate approaches in this solution. This
option was based on [10], where it is demonstrated that the derivation is not
straightforward. Also, if we utilize the m-semiring technique [17], the derivation
becomes even more complex.

Before using the functions HowProvenance and WhyProvenance, the columns
with the annotations are aggregated in an array of arrays, which will be the
input parameter of both functions. As an example, the first column of “prov”
can contain “tk4;tk3 |tk5” and the second column “tk8 |tk9;tk10”, and the array
will have the final result [[“tk4;tk3”, “tk8”], [“tk5”, “tk9;tk10”]]. This avoids the
repeated looping through the annotations columns for each function.

The HowProvenance function starts looping through the input array and
initiates variables “temp” and “paren”. In the second loop if the tokens has the
character “;”, it replaces the character by ⊕ because it means a union or a dis-
tinct. Between the replace function, it adds to the string “temp” the parenthesis
and the ⊗ because the next token is part of a join.

If the character is not present, it adds the token and ⊗ to the string “temp”
for the same reason as above, and the boolean “paren” helps place the parenthesis
in the right place. In lines 12 and 13, the extra characters are removed from
“temp” and added to an array since the second loop ended. The function will
return a string that concatenates all the array positions with ⊕. This last step
uses the ⊕ because the “aggTokens” array is created by splitting the group by
character clause.

To obtain the why-Provenance we need to apply the distributive property
to the how-provenance’s result and apply the rules of witnesses basis. Thus, we
need two nested loops again because the WhyProvenance input parameter is
an array of arrays. In the first iteration of the second loop (lines 28 to 32), we
populate the array “why” with a set for every token obtained from the split by
the character “;”.

In the subsequent iterations, we need to apply the distribution. If the array
“why” length is higher than the length of the split array, for each set in “why”
we add the tokens obtained from the split (lines 34 to 38). Else for each token in
the split, we loop through the “why” array and copy the “why” to a temporary
variable, add to this temporary variable the token in the split and add it to a
temporary array. In the end, “why” will be equal to the temporary array. The
return clause will return a string constructed by the function CheckDoubles that
also removes the possible similar sets.
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Algorithm 1. How- and Why-provenance algorithm
1: function HowProvenance(aggTokens)
2: how ← []
3: for each agt ∈ aggTokens do
4: temp ←′′; paren ← False;
5: for each t ∈ agt do
6: if t ⊂′;′ then
7: temp ← temp +′ (′+t.replace(′;′ ,′ ⊕′)+′)⊗′

8: else
9: if notparen then

10: temp ←′ (′+temp + t +′ ⊗′

11: paren ← True
12: else
13: temp ← temp + t+′)⊗′

14: paren ← False
15: end if
16: end if
17: end for
18: temp ←′ (′+temp.RemoveExtraChars()+′)′

19: how.add(temp)
20: end for
21: return how.join(⊕)
22: end function
23:
24: function WhyProvenance(aggTokens)
25: why ← []
26: for each agt ∈ aggTokens do
27: for i = 0, 1, . . . length(agt) do
28: if i == 0 then
29: for each t ∈ agt[i].split(′;′ ) do
30: tSet ← Set(); tSet.add(t);why.add(tSet)
31: end for
32: else
33: if length(agt[i].split(′;′ )) < lenght(why) then
34: for each wt ∈ why do
35: for each t ∈ agt[i].split(′;′ ) do
36: wt.add(t)
37: end for
38: end for
39: else
40: copyWT ← []
41: for each t ∈ agt[i].split(′;′ ) do
42: for each wt ∈ why do
43: temp ← wt.copy(); temp.add(t); copyWT.add(temp)
44: end for
45: end for
46: why = copyWT
47: end if
48: end if
49: end for
50: end for
51: return CheckDoubles(why)
52: end function

4 Experimental Evaluation

As proof of concept for our solution, we use EasyBDI [19], an open-source pro-
totype for logical integration of distributed databases that provides mapping
functionalities between local and global schemas. EasyBDI has a graphical inter-
face that allows the users to query over the global schemas without writing SQL
commands. The interface provides different frames where the user can drag and
drop entity columns and the operators (e.g., group by) to use on the query.
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When the user executes the query, EasyBDI builds the SQL command based on
the mapping between GCS and LCSs and submmits it to Trino, a distributed
query execution engine. Since the software is open-source, we modified the query
generation module to add the annotation columns when performing the query
build. We also applied the proposed algorithm to the query execution result.

As dataset, we used the tables represented in Fig. 2. PostgreSQL stores the
data about Portugal, and the ones about Spain is in a Cassandra database.
EasyBDI allows the user to identify mapping types. In this case, there is a hor-
izontal mapping (which means that the global entity is horizontally partitioned
through two data sources), i.e., the global entity representing the orders maps to
structures in Cassandra and PostgreSQL. The first example is a distinct query
to obtain all the vehicles used in orders. The executed query is:

SELECT vehicle, listagg(prov, ‘;’) WITHIN GROUP (ORDER
BY vehicle) as prov FROM ( SELECT sname, dest, vehicle,
listagg(provtoken, ‘;’) WITHIN GROUP (ORDER BY sname)
as prov FROM( SELECT sname, dest, vehicle, provtoken FROM post-
gresql.public.orderspt UNION SELECT sname, dest, vehicle, provtoken
FROM cassandra.stkspace.ordersen ) GROUP BY sname, dest, vehi-
cle) GROUP BY vehicle

In the above query, the clauses in bold are the ones we added to the query.
Starting with the sub-query, the local schemas’ union is needed to obtain the
global entity. Since we add “provtoken” to the tables and they might be different,
the union result would be erroneous without the group by clause. Thus, we also
add the group by clause and the listagg function. In the main query, the distinct
clause has been removed, and we used a group by clause again with the column
in the distinct and the listagg to aggregate the tokens. The result obtained is
the following:

For “Airplane”, the provenance is simple. We have only one token as a witness
for the why-provenance and the same token for how-provenance. For “Train” and
“Truck” we have different witnesses, and we can also obtain each row using one
of the tokens. Since in the How-provenance column the tokens are separated by
⊕, we can use one of the tokens only to obtain the rows.

Fig. 4. The result of the distinct query.
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The following query is a join between the stores and orders to obtain the
orders’ destination and the stores’ e-mail responsible for the orders. The unions
are simplified, since they are equal to the last query, just now for the two tables.

SELECT s.email, o.dest, s.prov as prov, o.prov as prov FROM ( –
UNION STORES – ) s, ( – UNION ORDERS –) o WHERE s.name =
o.sname

The unions are again applied to obtain the GCS. We added the annotations’
columns for the tables/view/query involved in the join to the query projection.
The result in Fig. 5 shows that all why-provenance’s tokens are in pairs of wit-
nesses: in order to obtain any row, we need both of the tokens. In contrast with
the query of Fig. 4, now the tokens are separated by ⊗ in how-provenance, each
means that we need a join between both tokens.

Fig. 5. The result of the query with join

The last query example is a group by the previous query applied to “dest”.
Since it is a group by, we need to use the listagg function in the joins’ columns.

SELECT o.dest, listagg(s.prov, ‘|’) WITHIN GROUP (ORDER
BY o.dest) as prov, listagg(p.prov, ‘|’) WITHIN GROUP
(ORDER BY o.dest) as prov FROM ( – UNION STORES – ) s, (
– UNION ORDERS –) o WHERE s.name = o.sname GROUP BY o.dest

Fig. 6. The result of the group by query
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As demonstrated in Fig. 6, some rows now have more than one pair of wit-
nesses for the why-provenance. How-provenance column shows that it is possible
to join different tokens to obtain the rows. In the result of destinations “Braga”
and “Madrid”, we can see that the result can be obtained from the two databases
because both “why” and “how” have tokens from the two sources.

5 Conclusions and Future Work

This work discusses data provenance in distributed environments, which is essen-
tial to infer the data’s veracity and quality.

We present a solution to generate how- and why-provenance using pure SQL
queries with annotations and an algorithm to build the provenance information.
It is a non-intrusive solution that does not require any change to the distributed
query execution engine. Also, it is not specific to any database system or model.
We also present an implementation of our proposals on EasyBDI. It is a log-
ical database integration tool based on which users query entities from global
schemas that abstract the data organization on each data source. There is no
materialization. Distributed query processing and provenance data generation
are done on the fly, without materializations.

In future work, we plan to study how to generate other types of provenance
(e.g., where-provenance) following the same logic used here. Since we are work-
ing with distributed environments, another issue is how to generate provenance
information in contexts where materializations are used for database integration
and analytic processing.
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Abstract. We present in this paper a novel solution for assisting users
in formulating SPARQL queries. The high-level idea is that users write
“semi-formal SPARQL queries”, namely, queries whose structure resem-
bles SPARQL but are not necessarily grounded to the schema of the
underlying Knowledge Base (KB) and require only basic familiarity with
SPARQL. This means that the user-intended query over the KB may
differ from the specified semi-formal query in its structure and query ele-
ments. We design a novel framework that systematically and gradually
refines the query to obtain candidate formal queries that do match the
KB. Crucially, we introduce a formal notion of provenance tracking this
query refinement process, and use the tracked provenance to prompt the
user for fine-grained feedback on parts of the candidate query, guiding
our search. Experiments on a diverse query workload with respect to
both DBpedia and YAGO show the usefulness of our approach.

1 Introduction

A huge body of information is stored in RDF knowledge Bases (KBs) such as
YAGO [33], DBpedia [11] and others. Such KBs can be queried using SPARQL,
the W3C standard query language [32]. Familiarity with the SPARQL syntax,
however, is not sufficient for using it: writing a SPARQL query requires a deep
understanding of the KB content and structure. In turn, in many useful KBs, this
structure is highly complex and contains many irregularities. The KB structure
often further evolves over time, and so even users who are initially familiar with
it may struggle to adapt to such modifications.

To this end, our system SPARQLIt1 (see Fig. 1 for a high-level architecture)
allows users to write a “semi-formal” query (step 0 in the Figure), i.e., a query
whose syntax follows that of SPARQL, but its contents – entities and properties
– do not necessarily match the KB. For example, a user seeking graduates of
Columbia University living in India may write a query with the selection crite-
ria ?x livesIn India. ?x graduatedFrom columbia. When evaluated over YAGO,
the user may discover that the query returns little or no results. The reason
is that in YAGO, livesIn is usually populated with cities rather than coun-
tries and that Columbia is represented as <Columbia University> – but it is

1 The code of SPARQLIt implementation is available at [10].
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Fig. 1. Overall architecture of SPARQLIt

difficult for a user to discover this. To this end, our solution generates candi-
date formal queries, i.e., queries that match the KB. Semi-formal queries are
transformed to candidate formal queries via sequences of operations of two fla-
vors: structural edits (step 1 in Fig. 1), which are proposals for similar, alter-
native structures of semi-formal queries, e.g., replacing ?x livesIn India by ?x

livesIn ?y. ?y isLocatedIn India; and groundings (step 2) where elements of
semi-formal queries are replaced by elements of the KB, e.g., replacing columbia

by <Columbia University>. We detail in Sects. 3–5 the ways in which structural
edits and groundings are generated to yield relevant candidate queries. Candi-
date queries are evaluated over the KB (step 3) so that query results may also
serve to filter candidates (see below).

Crucially, we introduce a formal notion of provenance tracking throughout
the process: we track the sequence of transformations that are performed, leading
from the input semi-formal query to each candidate formal query, as well as
the binding of variables of candidate queries to the KB. Provenance tracking
serves as the basis of procuring fine-grained feedback from the user with respect
to proposed formal queries. Namely, for a candidate formal query, we present
not only the query itself and its example evaluation results, but also the way
in which each element in the candidate query was obtained, i.e., from which
element in the user’s semi-formal query it has been (indirectly) transformed,
if any. This is combined with the provenance of query evaluation (i.e. binding
of formal query variables to KB elements). See bottom pane of Fig. 2 for an
example of presented provenance, in the form of (semi-formal element, formal
element, binding example). Feedback is then procured with respect to each such
piece of provenance: the user may mark “must”, “must not” or “don’t care”. The
user feedback is converted by the Constraints Manager (step 5) to constraints
on proposed queries, which are accumulated and used by the other modules to
prevent the generation of queries that do not comply with user feedback. This
is repeated until the user finds a proposed query satisfactory.
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We have implemented our solution in a prototype system (SPARQLIt) and
examined (Sect. 6) its performance over two large-scale KBs, YAGO [33] and
DBpedia [11], and a standard query benchmark [34]. The experimental results
support the practicality of our approach, requiring only few interactions and a
few seconds to find most of the examined queries.

2 Model

We start with preliminaries on RDF and then introduce our notions of semi-
formal queries and provenance.

RDF Knowledge Bases. An RDF Knowledge Base (KB) can be abstractly viewed
as a set of facts in the form of triples. Let Ent be a domain of entity names (e.g.,
India, University) and Lit be a domain of literals (e.g., 2021). Let Pred be a
domain of predicate names (e.g., livesIn). An RDF knowledge base is a set
of triples of the form (s, p, o) where s ∈ Ent is the subject, p ∈ Pred is the
predicate and o ∈ Ent ∪ Lit is the object. We use element to uniformly refer
to an entity, literal or predicate. We will sometimes represent multiple triples
〈s, p, o〉, 〈s′, p′, o′〉 by the n3 notation s p o. s’ p’ o’.

Formal SPARQL Selection Queries. To query RDF, we use the notion of Basic
Graph Patterns (BGPs). Let Var = {?x, ?y, . . . } be a set of variables. A Triple
Pattern is a member of the set (Ent ∪Var)× (Pred ∪Var)× (Lit ∪Pred ∪Var).
Namely, in a triple pattern, subjects, predicates and objects may be replaced by
variables. A BGP is a set of triple patterns, and its graph view may be obtained
in the same way RDF KBs are encoded as graphs. A formal SPARQL selection
query Q = (GQ, VQ) then consists of a BGP GQ and a set of output variables
VQ, which is a subset of the variables occurring in GQ.

Query Evaluation. Given a formal SPARQL selection query Q = (GQ, VQ) and
an RDF KB G, let ϕ be a mapping of all variables in GQ to RDF terms in
G. Denote by ϕ(GQ) the result of replacing in GQ every variable v by ϕ(v). If
ϕ(GQ) ⊆ G (i.e. all obtained triples are in the KB G) then we say that ϕ is a
binding. Each binding ϕ yields a query answer A = ϕ|VQ

(ϕ restricted to output
variables) and the query result Q(G) is the set of all such answers.

Semi-formal Queries. We now introduce the notion of semi-formal queries, that
have a similar form to that of formal SPARQL queries, but their labels are
not necessarily bound to the corresponding set of names in the KG. Addition-
ally, they may include special temporary placeholder elements from Tempsf =
{??X, ??Y, . . . } to be replaced by any KB term (entity/literal/predicate) when we
transform the query into a formal one (see below). Formally, let Entsf ⊃ Ent ,
Litsf ⊃ Lit, Predsf ⊃ Pred be extended sets of entity, literal and predicate
names, abstractly capturing any element the user may write, including formal
elements. A semi-formal BGP is then a BGP whose triple patterns are elements
of (Entsf ∪ Var ∪{Tempsf }) × (Predsf ∪ Var ∪{Tempsf }) × (Entsf ∪ Litsf ∪
Var ∪{Tempsf }). A semi-formal query Q = (GQ, VQ) consists of a semi-formal
BGP and a distinguished subset VQ of output variables.
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Fig. 2. SPARQLIt User interface

Example 1. Figure 2 is a screenshot of SPARQLIt, where the top-left panel dis-
plays a semi-formal query: its syntax follows that of SPARQL, yet some of its
elements, e.g., columbia, has graduate, do not occur in the queried KB (YAGO).
The top-right panel displays a formal SPARQL query matching YAGO, for which
an example binding is ϕ(?x) =Rajnesh Domalpalli and ϕ(?s2) =Hyderabad.

Provenance Model. We introduce two types of provenance. The first is “stan-
dard”: the provenance of a binding ϕ obtained by evaluating a formal SPARQL
Query Q over a KB G, denoted prov(Q,G,ϕ), is represented as a set of variable-
value pairs of the form (x, v). The provenance of a query answer A ∈ Q(G),
denoted prov(Q,G,A) is then a set of such provenance representations, for all
the bindings of Q in G yielding A. The second type of provenance is novel, and
is geared towards tracking the gradual refinement of queries, as follows.

Definition 1. Given two (formal or semi-formal) BGPs Q and Q′, a prove-
nance expression for a transformation of Q to Q′ is denoted by prov(Q,Q′) =
(P,C): P is a set of pairs (e, e′) where e is either ⊥ or an element of Q and e′

is either ⊥ or an element of Q′, such that (1) (⊥,⊥) ∈ P and (2) each element
of Q and of Q′ appears in exactly one pair. C ∈ N is the transformation cost.

Intuitively, pairs encode “mappings” of individual elements in Q to elements
in Q′; the notation ⊥ is used to mark deletions/insertions of elements.

We will show in the sequel how to attach provenance to concrete trans-
formations, yet we already note that an important property of provenance is
composability: namely, need to be able to combine provenance expressions of a
sequence of refinements to yield a provenance expression for the entire sequence.

Definition 2. Let Q0, Q1, Q2 be three queries, and let prov(Q0, Q1) = (P0, C0)
and prov(Q1, Q2) = (P1, C1). We compose them to provenance prov(Q0, Q2) =
(P2, C2) by P2 = {(e0, e2) | ∃e1 
= ⊥.(e0, e1) ∈ P0 ∧ (e1, e2) ∈ P1}∪ {(⊥, e) |
(⊥, e) ∈ P1} ∪{(e,⊥) | (e,⊥) ∈ P0}. As for cost, C2 = C0 + C1.
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Intuitively, mappings are composed wherever elements occur in Q1; other-
wise, elements are either deleted in Q1 or inserted only in Q2. The provenance
records this insertion/deletion. The cost of transformations is cumulative.

3 Structural Edits

A first type of edits that we apply to semi-formal queries is geared towards
modifying the query structure. Edits are applied to triple patterns, capturing
reordering/deletion/insertion of the following flavors (we note, however, that
our approach is generic and other types of edits may easily be incorporated).
For each edit operation, we also define its provenance (see definition 1), but
keep the costs abstract at this point and discuss concrete cost choices below.

Subject-Object Switching: switch the subject and object of T = 〈s, p, o〉, yielding
T ′ = 〈o, p, s〉. The provenance captures an identity mapping, i.e., its set of pairs
is {(e, e)} for each element e of the (original and result) query.

Element Exclusion: replace the subject/object/predicate of T = 〈s, p, o〉 by a
fresh variable ?x, yielding T ′ = 〈?x, p, o〉 or T ′ = 〈s, ?x, o〉 or T ′ = 〈s, p, ?x〉. The
fresh variable is not in the output and thus can be bound to any element of
the KB. For T ′ = 〈?x, p, o〉 the provenance will include the pairs (s,⊥), (⊥, ?x),
(p, p) and (o, o) and (e, e) for every other element e; the provenance is similarly
defined for T ′ = 〈s, ?x, o〉 or T ′ = 〈s, p, ?x〉. Note that the excluded element
is mapped to ⊥, which means we indeed stop tracking it. Predicate Splitting:
replace T = 〈s, p, o〉 by two triples T ′ = 〈s, p, ?x〉, T ′′ = 〈?x, ??Y, o〉 where ?x

is a fresh variable and ??Y is a fresh placeholder. This stands for replacing a
predicate by a path with two predicates. The provenance includes (s, s), (p, p),
(⊥, ?x), (⊥, ??Y), (o, o), and (e, e) for every other element e.

Example 2. Consider the triple pattern ?x lives In India. If an inverse predi-
cate is used in the KB, a candidate query may be generated by Subject-Object
Switching yielding India lives In ?x. Alternatively, applying Element Exclusion
could yield ?x ?p India or ?x lives In ?y, generalizing the query by placing a
variable that may be bound to any predicate/entity. The provenance includes a
record of the newly added variable ((⊥, {?p) or (⊥, {?y)) and associates the other
nodes and edges with their counterparts in the refined query. Last, the KB may
include information about people living in cities rather than directly in countries.
Applying Predicate Splitting on ?x lives In India would yield the two triple pat-
terns ?x lives In ?s2. ?s2 ??P1 India. The placeholder ??P1∈ Tempsf will be
ultimately replaced in further edit steps by a predicate such as isLocatedIn.

Example 3. Reconsider the semi-formal query in Fig. 2, and consider the appli-
cation of Predicate Splitting to ?x lives In India to ?x lives In ?s2. ?s2 ??P1

India, followed by Subject-Object Switching for columbia has graduate ?x. Com-
posing the two provenance expressions we obtain the pairs (⊥, ?s2) and (⊥, ??P1)
along with pairs (e, e) for e = India, ?x, etc.
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Searching for Structural Edits. We store a frontier of semi-formal queries, ini-
tially including only the input one. Whenever prompted, the Generator applies
to each semi-formal query currently in the frontier, the least costly possible edit.
Two types of pruning are applied to the generation of semi-formal queries. First,
multiple sequences of edit operations may result in the same semi-formal query,
in which case we keep in the frontier only the minimum-cost representative. Sec-
ond, the structural edits generator maintains a cache of semi-formal sub-queries
for which no formal query exists, i.e., they were rejected by other modules (as
described in the sequel). These and queries contained in them are ignored in sub-
sequent steps. The overall minimal-cost candidate is passed on to the Grounding
Generator with its provenance.

Cost. The assignment of cost for each operation may be viewed as a configuration
choice. We have experimented with different cost assignments, and observed
that it generally useful to render a single structural edit operation more costly
than grounding the entire query (i.e. we prefer groundings that use the current
structure, if exist). We thus set the structural edit costs to be greater than C,
which is an upper bound on the grounding cost (see Sect. 4). Specifically, we
have superior optimal results with costs 2C, 100C and 30C for Object-Subject
Switching, Element Exclusion and Predicate Splitting respectively.

4 Grounding Generator

The Grounding Generator gets as input a semi-formal query Q′ and the KB G. It
generates formal queries by replacing entities/predicates in Q′ that do not occur
in G by ones that do. We start by generating a ranked list of groundings for
individual triple patterns in Q and then combine groundings that are consistent
with each other to form a query. We next explain each of the two steps.

Triple Groundings. Given a semi-formal triple pattern t′ we generate a ranked
list of k formal triple patterns t1, ..., tk. These are generated as follows. First,
we represent t as a string s(t) by removing SPARQL syntax (including variables
and placeholders) and performing tokenization. Then we feed s(t) to a black-box
search engine that indexes triples from the KB. The engine returns the top-
k relevant KB triples along with their string representation. We augment these
triples back to triple patterns, plugging into them any variable that has occurred
in t′. Unlike variables, placeholders are not added back to the triple patterns, so
that they are grounded by KB elements.

Example 4. Consider for example the triple pattern ?x lives in India. First,
we remove SPARQL notations and perform an initial tokenization, which yields
“lives in India”. The search engine results includes, e.g., the strings “Aadya
lives in India” and “Aarav lives in Indianapolis”, attached to the KB triples
<Aadya> <livesIn> <India>, <Aarav> <livesIn> <Indianapolis>. Since the origi-
nal triple pattern has ?x as subject, we replace the subject in the KB triples by ?x

and obtain the ranked list ?x <livesIn> <India>, ?x <livesIn> <Indianapolis>.
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Provenance. We define the provenance for groundings in a similar way to that
of refinements. For a semi-formal triple pattern t′ = (s′, p′, o′) and a choice
of formal triple pattern t = (s, p, o) as grounding, we introduce the pairs
(s′, s), (p′, p), (o′, o) to be stored in the provenance. We discuss costs below.
From Grounded Triple Patterns to Formal BGPs. We use the ranked lists of
formal triple patterns obtained for each triple pattern t′ in the semi-formal query,
to yield candidate formal BGPs. We traverse these lists in order, each time
choosing a single candidate triple pattern for each t′ (i.e. we start with the set
of all top-1 triple patterns). For each choice of triples, we check their provenance
for consistency, namely, that no two pairs (x, y), (x, z) such that y 
= z appear
in their provenance. If the set is consistent then the formal triple patterns are
concatenated to form a BGP GQ. Otherwise (or when the Grounding Generator
is prompted for the next query), the process is repeated, with one of the triple
patterns being replaced by the next-best one in the ranked list, and so forth.
Provenance Revisited. Recall that only triple patterns with consistent provenance
expressions were combined. The overall provenance is then defined as follows: its
pairs set is the union of pairs sets in the provenance of all triple patterns; the
cost is the sum of costs stored in these provenance expressions.

From BGPs to Queries. So far, we have generated formal BGPs as candi-
dates, mapping the semi-formal BGP to each of them. Recall that the semi-
formal query Q′ includes a distinguished subset VQ′ of output variables. For
each formal BGP GQ with provenance prov(GQ′ , GQ) = (P,C), the set of
output variables is defined as VQ = {v | (v′, v) ∈ P ∧ v′ ∈ VQ′}. The query
Q = (GQ, VQ) is the obtained candidate, with the carried provenance staying
intact, i.e., prov(Q′, Q) = prov(GQ′ , GQ). We next show how provenance of edits
and groundings may be composed.

Example 5. Following Example 3, we generate candidate groundings for
lives In, India, has graduate, columbia and the placeholder ??P1. A formal query
resulting from one such combination of groundings is shown on the top-right part
of Fig. 2 with its provenance on the bottom: e.g., has graduate has transformed
to <graduatedFrom>, while isLocatedIn is newly added (so it has no counterpart).

Cost. The cost for grounding a triple pattern t to t′ is set based on the string
distance measures between their representative strings s(t), s(t′), generated by
the search engine as explained above. Specifically, we use the Levenshtein edit
distance. An exception is the grounding of placeholders, which has 0 cost by def-
inition. To account for semantic synonyms that are represented by very different
strings, we generate a set of synonyms (using https://www.datamuse.com/api/)
for each string, and take the minimal edit distance between a synonym of s(t)
and a synonym of s(t′). We revisit this design choice in Sect. 6. Last, recall that
our choice of structural edit costs relied on an upper bound C for the grounding
cost; we set C to be the maximal string length of a representative string of an
element in the KB, multiplied by the number of query terms.

https://www.datamuse.com/api/
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5 Procuring Feedback

The Triple Store Manager receives as input a formal SPARQL query Q produced
by the Grounding Generator, and executes it over a black-box triple store (we
have used Apache Jena [4]). The query result may be empty: this is typically an
indication that Q does not match the user intention, and we search for alternative
queries (we revisit this assumption in Sect. 6). If the query result is non-empty,
we choose an example result, and an example binding yielding it. To procure
feedback, we combine the provenance accumulated throughout the process of
generating the candidate query, with the provenance of the example query result.

Definition 3. Let Q′, Q be a semi-formal and formal query respectively and let
prov(Q′, Q) = (P,C). Further let G be a KB, A ∈ Q(G) an answer, ϕ a binding
yielding A and prov(Q,G,ϕ) its provenance. The provenance prov(Q′, Q,G, ϕ) =
(P ′, C) where P ′ = {(e, e′, v) | (e, e′) ∈ P ∧ e′ ∈ Var ∧(e′, v) ∈ prov(Q,G,ϕ)}∪
{(e, e′,⊥) | (e, e′) ∈ P ∧ e′ 
∈ Var ∧(e, e′) 
= (⊥,⊥)}.

The user is then prompted for feedback on each triplet in the provenance,
and may choose one of the following responses for a given triplet (e, e′, v). MUST:
from now on, only formal queries Q for which (e, e′, v) ∈ prov(Q′, Q,G, ϕ′) for
some binding ϕ′ will be proposed. MUST NOT: only formal queries Q for which
(e, e′, v) 
∈ prov(Q,Q′′, G, ϕ′) for all bindings ϕ′ will be proposed. MAYBE: no
restrictions are imposed on the triplet.

Example 6. The rightmost column on the bottom table of Fig. 2 shows variable
bindings for a query output example, e.g., the binding of ?s2 to Hyderabad.
This allows procuring informative feedback for each corresponding provenance
triplet, through the checkboxes to the left. For instance, the user may confirm
that <livesin> is a correct grounding for lives in. This will lead to considering
only queries with (lives in, <livesin>,⊥). In contrast, they may e.g. convey that
the assignment of Rajnesh Domalpalli to ?x is incorrect, leading to pruning any
candidate that includes (?x, ?x, Rajnesh Domalpalli) (using our edit operations,
every variable is always mapped to itself or ⊥). Both positive and negative
feedback significantly narrows the search space of possible queries.

6 Experiments

We have implemented our solution in a prototype called SPARQLIt. The proto-
type is implemented in .Net, using Blazor [8] for its front-end, Elasticsearch [17]
for the Search Engine (used for groundings) and Apache Jena [4] for the Triple
Store. All experiments were run on Intel i7-core processors with 32GB of RAM.

As Knowledge Bases, we have used YAGO [33] English facts (approx. 160M
triples) and DBPedia [11]. Since the notion of semi-formal queries is novel, to
our knowledge, no existing benchmarks are available. To this end, we have con-
structed benchmarks based on the first 50 NL questions in the training set of
QALD-9 [34]. Their translation to gold formal queries w.r.t. DBpedia is given
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Fig. 3. Overall performance for DBPedia and YAGO

in [34], and we have formulated the gold queries w.r.t. YAGO; we have stripped
aggregation to obtain selection queries, see [10]. We have then constructed two
benchmarks of semi-formal queries: (1) QALD Translated is based on manual
translation that is oblivious to the terminology used in the KBs, e.g., “Who is the
tallest player of the Atlanta Falcons?” is translated to the semi-formal selection
query ?x type AtlantaFalcons. ?x height ?y (see [10]); (2) QALD Cross-KB
uses the formal query for YAGO as a semi-formal query to be evaluated with
respect to DBPedia, and vice versa. Intuitively, QALD Translated and QALD
Cross-KB are used to simulate users who are unfamiliar with none of the KBs
and users who are familiar with one KB and wish to use the other, respectively
(user feedback is simulated using the underlying, hidden, formal query). Finally,
we have generated a synthetic benchmark, where we have varied different aspects
of the query structure, to examine their effect on our solutions.

As solution baselines we have used the NL-to-SPARQL query engine gAn-
swer [22], which achieved the best results in the QALD-9 Challenge [34], as
well as multiple variants of our solution: (1) With-Empty. A variant that does
not prune queries with empty results; (2) No-Syn. This variant does not use
synonyms for distance computation, unlike our standard implementation (see
Sect. 4); (3) Top-50. By default, we configure the Search Engine to return the
top-100 results, whereas in this variant it is configured to return only 50.

Our evaluation metrics are the number of user interactions, i.e., the number
of executions of step 4 in Fig. 1; and the total response time, i.e., the total
computation time of proposed queries, throughout the interactive session.
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Table 1. Percent of successfully found QALD queries

SPARQLIt+
QALD Translated

SPARQLIt+
QALD Cross-KB

With-Empty+
QALD Translated

gAnswer+
QALD-9

DBpedia 78% 81% 64% 36%

YAGO 84% 81% 64% –

Fig. 4. Time segmentation for SPARQLIt

We next summarize our experimental results.
Overall Performance. In Figs. 3a and 3b, we show the cumulative percentage
of formal queries successfully found by the different solutions, for the QALD
Translated workload and DBpedia, with different bounds on the number of user
interactions and total computation time. For both metrics, SPARQLIt exhibited
the best results. In particular, interacting once with the user is already sufficient
to outperform gAnswer, and to successfully find 52% of the queries; with up to 3
interactions this percentage increases to 62%; and with up to 10 interactions (and
up to 23 s total time) this percentage increases to 68%. All restricted variants
perform worse than SPARQLIt in terms of the number of interactions, showing
the effect of our design choices. Figures 3c and 3d show results for the same
experiment over the YAGO KB. We exclude gAnswer here since it is tailored for
DBpedia. SPARQLIt achieves the best results in both metrics; With-Empty is
significantly worse, indicating that the design choice of discarding queries that
yield empty results is effective. We summarize the success rates of SPARQLIt
using up to 50 interactions in Table 1 and contrast them with With-Empty and
gAnswer (columns 1, 3 and 4 respectively).

We have executed the above experiments using the QALD Cross-KB work-
load (where YAGO queries are used as semi-formal queries over DBpedia and
vice versa). The trends were similar: with one interaction, we have successfully
found 44% of the queries in both KBs; using up to 3 interactions we found 53%
(resp., 56%) of the queries in DBpedia (resp., YAGO); and using up to 10 inter-
actions we found 67% (resp., 65%) of the DBpedia (resp., YAGO) queries. We
summarize the success rates with up to 50 interactions in Table 1 (second col-
umn). Overall, SPARQLIt had a high success rate and has succeeded in finding
formal queries for the same semi-formal input over different KBs, as well as in
finding the same formal query starting from different semi-formal queries.
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Fig. 5. KBs correlation (each point denotes a QALD query)

Fig. 6. Response time vs. number of Subject-Object Switches.

Component Breakdown. Figure 4 shows a breakdown of the total computation
time to (1) the Search Engine; (2) Triple Store and (3) all other components. The
Triple Store and Search Engine are indeed responsible for a large fraction of the
overall execution time (median 93% and 86% of the total time, respectively for
YAGO and DBpedia); among the two, the time incurred by the Search Engine is
typically higher: many query candidates are typically pruned and do not reach
the Triple Store Manager. In contrast, when the overall response time is slower,
we observe that it is mainly due to high latency Triple Store queries.

Effect of the KB. Figures 5a and 5b examine the effect of the KB on the difficulty
of finding the target query. They show for each query the needed number of inter-
actions (resp., total response time) for DBpedia (x-axis) vs. YAGO (y-axis). The
graphs show relatively weak correlation (Pearson correlation coefficient is∼0.6
for both graphs), given that DBpedia and YAGO have many common informa-
tion sources (most notably, Wikipedia). This serves as evidence that the specifics
of the KB structure are indeed essential when writing formal queries.

Synthetic Queries. Figure 6 shows the response time of SPARQLIt for represen-
tative synthetic queries. Queries include 8 triple patterns structured as chains
(subsequent triple patterns share a single variable) or stars (all triple patterns
share a single variable), and we vary the number of edits needed to obtain the
correct formal query. The response time grows roughly linearly, although the
space of relevant structures grows exponentially with the number of edits. This
demonstrates the effectiveness of our approach in pruning irrelevant sub-queries.
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7 Related Work

Many lines of research study solutions that assist users in query formula-
tion. In particular, there is a large body of work on NL interfaces over KBs
(e.g., [13,15,22,36,40]) or databases (e.g., [7,23,26,27,31]). Compared to the
NL approach, our solution requires users to provide a more structured spec-
ification, yet leverages this structure for an improved interactive process (see
Sect. 6). Another approach is that of Keyword Search over a KG (e.g., [20,25]);
here again a major challenge is recovering from a situation where no suitable
query was found, i.e., how to make the process interactive. Other works focus
on autocompletion of SPARQL queries (e.g., [16,29,39]); these lines of work are
complementary to ours: auto-completion tools may be adapted to our frame-
work. Another relevant line of work focuses on similarity search, studying means
of finding, for a given initial query, similar queries that return additional results
(e.g., [18,28,30,37,41]. In particular, Zheng et al. [41] studied semantic similarity
search for SPARQL, and introduced an edit distance notion for RDF graphs. The
edit operations that we consider are different, since we do not require a formal
query as input. Instead, we use measures based on syntactic similarity and string
similarity. In Query-by-example, queries are reverse-engineered based on posi-
tive/negative result examples provided by the user (e.g., [1,2,5,9,12,14,24,38]).
This method can be effective when the users search typed instances for which
they can easily provide positive and negative examples, but is challenging to
use when the query includes non-categorical predicates, which are typically very
sparse and heterogeneous, and when users cannot provide sufficient examples.
Finally, Faceted (navigational) Search enables users to refine their search options
by navigating (drilling) down, and has been studied in the context of RDF query-
ing (e.g., [6,19,21,35]). A challenge for interaction in this context arises when the
browsed query parts may not match the other intended parts of the user query.
If the user performs a sequence of drilling-down steps leading to a “dead-end”,
it is unclear which steps should be modified and how. Finally, the SPARQLIt
system prototype was demonstrated in [3].

8 Conclusion

We have introduced a novel framework that assists users in querying RDF KBs.
Users write queries that may not match the KB in contents and structure, and
are given proposals for queries that do. Leveraging provenance, the framework
procures fine-grained feedback on the proposed queries, guiding the translation.
In future research, we will extend our Structural Edits operators as well as the
fragment of SPARQL we have focused on, to account, e.g., for aggregation.
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Abstract. Anonymisation is a strategy often employed when sharing
and exchanging data that contains personal and sensitive information,
to avoid possible record identification or inference. Besides the actual
attributes contained within a dataset, also certain other aspects might
reveal information on the data subjects. One example of this is the struc-
ture within a graph, i.e. the connection between nodes. These might allow
to re-identify a specific person, e.g. by knowledge of the number of con-
nections for some individuals within the dataset.

Thus, anonymisation of the structure is an important aspect of achiev-
ing privacy. In this paper, we therefore present an algorithm that extends
upon the current state of the art by considering multiple types of con-
nections (relations) between nodes.

Keywords: Graph structure anonymisation · Multiple relational types

1 Introduction

The amount of data collected is ever increasing, and data represented as graphs,
e.g. social networks or processes e.g. in the knowledge work domain [5], are no
exception. Several interesting data analysis tasks utilise such graphs, which rep-
resent connections between individuals, organisations, and other entities. As this
data is highly personal, data protection becomes an important aspect. Histor-
ically, tabular data was among the first types to be addressed, with methods
such as k-anonymity or differential privacy being developed.

In graphs, besides the values within nodes, which could be treated in a
similar manner as tabular data, also the structural information encoded in
the connections (edges) is of concern. Depending on the background knowl-
edge of an attacker, it might be possible to re-identify individuals based on
this structure alone, e.g. especially those individuals that have unusual patterns
of connections [6]. Thus, recent years have also shown an increase in works
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addressing structural anonymisation, such as adaptations of the concept of k-
anonymity [2,7], and combinations of node and structure anonymisation, in var-
ious types of graphs [1,8,9].

In this paper, we specifically expand on previous approaches for achieving
structural anonymity for graphs with multiple types of edge connections. While
most existing works consider homogeneous graphs, i.e. with only one type (e.g.
foaf:knows), in a heterogeneous graph, nodes can be linked by varying types
of connections. Heterogeneity complicates structure anonymisation, as attacks
may take advantage of this addition information. Based on the ideas from [3],
our goal is to develop a method to anonymise heterogeneous Resource Descrip-
tion Framework (RDF)1 graphs. The idea developed in [3] is that the one-hop
neighbourhood of any resource to be anonymised should be indistinguishable
from the one-hop neighbourhood of at least k-1 other resources. For that pur-
pose, they developed a greedy heterogeneous graph modification algorithm for a
simplified RDF graph which includes only 4 types of semantic connections. How-
ever, although the general guidelines of the algorithm are stated in pseudo code,
no implementation is publicly available. Based on their approach, our contribu-
tions in this work consist of (i) an extension to the approach of [3] to increase
flexibility and usability of the anonymisation method, and (ii) an open-source
implementation in Python2.

2 K-RDF-Neighbourhood Anonymisation with Multiple
Edge Types

In this section, we describe our method and extensions of the anonymisation
method [3]. Since the focus of our method is to anonymise heterogeneous RDF
graphs, we first present the formal definition of a heterogeneous graph by [4]:

Definition 1. A heterogeneous graph is defined as a directed graph G = (V , E,
A, Δ) where each node ν ∈ V and each edge ε ∈ E are associated with their type
mapping functions θ(ν) : V → A and ω(ε) : E → Δ, respectively.

In the following, we describe our method on an example heterogeneous RDF
graph utilising FOAF3, with vertices of type foaf:Person, representing people,
edges of type foaf:knows, representing relations between individuals, and edges of
type foaf:CurrentProject, indicating projects an individual is working on. Other
edges primarily serve to describe properties, such as foaf:Age, or foaf:Name,
while custom:has disease is an example of a custom property outside the FOAF
specification. Following the procedure of [10] and [3], we will demonstrate the
anonymisation on the one-hop neighbourhood of foaf:Person resources4.

1 https://www.w3.org/RDF/.
2 https://github.com/sbaresearch/graph-anonymisation.
3 http://www.foaf-project.org/.
4 Note that apart from reducing computational complexity, it is logical to target indi-
viduals, since it is the most common setting when facing ananonymisation task.

https://www.w3.org/RDF/
https://github.com/sbaresearch/graph-anonymisation
http://www.foaf-project.org/
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Our method initially gets a list of connection types to consider for structure
anonymisation, all other attributes will be removed5. Edge connections in the
one-hop-neighbourhood of any node ν of a target graph can be classified into
three different categories, depending on the type of information they describe:

– Attribute connections: edges connecting a node (e.g. foaf:Person) to a
descriptive characteristic of this individual which is stored as a Literal.

– Unidirectional connections: directed edges connecting a node to other
entities (e.g. foaf:Person to a project via foaf:CurrentProject).

– Bidirectional connections: edges symmetrically connecting nodes (e.g.
foaf:Person via foaf:knows).

Definition 2. A heterogeneous RDF graph is said to be k-anonymous if
there are at least k identical one-hop-neighbourhoods in the target graph for each
node ν ∈ N . We consider that two attributes of the one-hop-neighbourhood of a
pair of nodes x and y, are identical if they are generalised to the same level. We
consider two unidirectional connections of the one-hop-neighbourhood of a pair
of nodes x and y to be identical if they point exactly to the same resources. We
consider the bidirectional connections of the one-hop neighbourhood of a pair of
nodes x and y to be identical if their one-hop-neighbourhoods are isomorphic.

In order to fulfil the anonymisation criteria defined above, we rely on three
different algorithms (similar to [3]):

The Neighbourhood Code Extraction Algorithm compares one-hop-neighbour-
hoods of target nodes (e.g. foaf:Person) across the target graph. For this pur-
pose, we encode the node neighbourhood information into a more efficient data
structure than the raw RDF graph. We chose a hashtable due to its low indexing
complexity (O(n)). Depending on the type of edge connection, the information
contained in the one-hop-neighbourhood of a node ν is stored in a different way:

– Attribute connections: the attributes of each individual are stored as key
value pairs (i.e., foaf:Age “40”).

– Unidirectional connections: the resources to which each unidirectional
connection of an individual points to are stored in a list. The type of connec-
tion is the key (i.e., foaf:CurrentProject) and the list of resources is the value
associated with it (i.e., [“Project1”, “Project3”, “Project7”]).

– Bidirectional connections: Multiple isomorphic tests have to be conducted
for each bidirectional connection. At this time, no polynomial time algorithm
for the general isomorphic problem [10] is known. In our approach, we utilise
the same string representation of the edges as proposed in [3] and based on
[10]. The main idea is to encode the information of each sub-graph Gbidii

created by considering only one type of bidirectional connection across the
one-hop-neighbourhood of a node ν, so that the one-hop-neighbourhood of

5 Node value anonymisation, if necessary, is a pre-requisite step and not covered by
our structure anonymisation method.
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two foaf:Person nodes can be considered isomorphic in terms of that type of
bidirectional connections if the generated codes are identical in structure. The
way this encoding is constructed consists of finding the minimum depth-first
search (DFS) tree of each component and concatenating it in a list where all
these minimum trees are stored. We simplify the search of the minimum DFS
tree by dynamically discarding candidate paths. In the worst case scenario in
which all the DFS trees in the subgraph fulfil the criteria, one of the paths is
taken randomly and the encoding algorithm becomes O(n!) which is the same
complexity as the original algorithm proposed by [3]. Following the guidelines
of [3], we call the dictionary encoding the one-hop-neighbourhood of a node
ν the Full Neighbourhood Code of ν (FNHCv).

Dissimilarity Computation Algorithm. To compute the dissimilarity between
each of the nodes, we use the information stored in the Full Neighbourhood
Code hashtable. The dissimilarity between the one-hop-neighbourhood of two
nodes x and y is the weighted sum of the dissimilarity of each connection in that
neighbourhood:

sim(FNHCx, FNHCy) =
N∑

i=0

αi ∗ simi(FNHCxi
, FNHCyi

) (1)

where N is the set of connection types present in the one-hop-neighbourhood, αi

is the weight of the dissimilarity of attribute i (simi) to the total dissimilarity
between the nodes x and y. There are three types of dissimilarity functions, one
for each type of edge connection described above:

– Dissimilarity of attribute connections is the normalised distance of two
attributes xi and yi given a defined hierarchy tree. It ranges between 0 (iden-
tical) and 1 (reached highest level of hierarchy).

– Dissimilarity of unidirectional connections between two nodes x and
y, given a set of Literals to which they point, is defined as the number of
connections of that type to be deleted so that two nodes x and y are connected
to exactly the same Literals or resources.

– Dissimilarity of bidirectional connections between a node x and another
node y, given the one-hop-neighbourhood, is determined by the amount of
edges one needs to delete so that one-hop-neighbourhoods of both nodes are
identical (isomorphic).

To compute the complete dissimilarity between two nodes x and y, one needs
to calculate the similarity of each of the connections using the corresponding
methods explained above and apply the weighted sum provided in Eq. (1).

The Graph Modification Algorithm is also based on the ideas presented by [3]
with some modifications to improve scalability. The main goal of this algorithm
is to transform the one-hop-neighbourhood of a group of k given nodes, so that
the anonymisation criteria is fulfilled for all of them. We refer to this group of
nodes as anonymised neighbourhoods or equivalent classes.
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– For the generalisation of attribute connections, the attributes of each
of the k nodes are generalised to the lowest level’s possible common value in
the hierarchy tree provided.

– When generalising unidirectional connections, one should remove the
necessary edges, so that each of the k nodes are connected exactly to the same
Literals and resources via those unidirectional connections. We follow the idea
of only deleting edges to avoid introducing false information (added edges) in
the graph. In addition, as pointed out by [3], the approach of deleting edges
fits with the open world assumption which suggests that missing statements
can also be true.

– The generalisation of bidirectional connections is the most complex
one. As for unidirectional connections, it relies on the same type of calcula-
tions used when computing dissimilarity. That means, for each node in the
neighbourhood of size k, one should delete all the necessary edges so that the
one-hop-neighbourhood of each of them is isomorphic in terms of each of the
bidirectional connections. With our method, it is enough to take one of the
nodes as reference and perform a pairwise comparisons to every other node
twice (double-pass). At every comparison, the one-hop-neighbourhood of the
reference node and the other node under comparison are updated via edge
deletion so that they are isomorphic. The idea is that after the first pass,
the reference one-hop-neighbourhood takes the minimum isomorphic repre-
sentation and in the second round, this structure is acquired by all the other
nodes.

We would like to point out two of the major challenges that arise when
anonymising bidirectional connections. First, when deleting edges during the
described double pass, the edges of other one-hop-neighbourhoods may be affected
as well, and this can lead to more edge deletions than necessary and hence, addi-
tional information loss. To avoid this issue, we only store which edges to delete
during the double pass, but they are only deleted when the algorithm has finished.
Edge deletion may still cause some additional edges to be deleted in the neighbour-
hood, and therefore, they might not be isomorphic anymore. However, since the
calculation of which edges to delete ensures that they are actually isomorphic in
the first place, deleting additional edges of the structure of each of the one-hop-
neighbourhoods does not reveal any additional information, and we can still con-
sider them isomorphic in terms of the anonymisation goal.

Secondly, deleting edges may affect the one-hop-neighbourhood of other
nodes that are not in the same neighbourhood as the k target nodes: (i) The
one-hop-neighbourhood of non-anonymised nodes is affected – then, one needs
to simply update the one-hop-neighbourhood or (ii) this affects the one-hop-
neighbourhood of anonymised nodes, then this is the exact same situation as
in 1).

Due to these improvements, our method is able to deal with larger graphs
than the earlier approach by [3]. Furthermore, the consideration of the outlined
challenges leads to reduced information loss.
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3 Conclusions

Anonymisation of graph data differs from relational data as also the structure
of graphs can be utilize by an attacker to perform e.g. a re-identification attack.

In this paper, we have thus presented an algorithm for anonymising the
structure of graphs. We extended previous work by allowing on the one hand
heterogeneous graph structures with multiple types of edges, and on the other
hand also scaled up the algorithm.

Future work will focus on evaluating our approach in diverse settings against
benchmark datasets, and measure the effect of the anonymisation on utility.
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Abstract. A divergent design index is a tuning method that employs replication
to specialize the index configuration of each replica in a replicated database for a
subset of a workload tominimize the total processing cost of the workload. Studies
show that this tuning method improves the workload performance in comparison
with the case that all replicas have the same index configuration. Current divergent
design algorithms do not have any mechanism to learn about the effectiveness of
the recommended index sets. Moreover, they solely rely on the query optimizer’s
cost estimation, which can be inaccurate.

To tackle these problems, we introduce a new divergent index advisor, DINA,
that learns the goodness of the workload partitioning among replicas and the effi-
ciency of their index configurations by employing aDeepReinforcement Learning
(DRL) algorithm. The DRL agent explores various possible workload partitions
and learns the benefit of their index configurations via performance observation.
We conduct experiments using the TPC-H and TPC-DS database benchmarks to
evaluate the performance of DINA. The experiments show that DINA yields better
query execution time than the existing algorithms.

Keywords: Learned divergent index advisor · Deep reinforcement learning ·
Replicated database

1 Introduction

Divergent design index tuning extends the index selection problem (ISP) for a single node
[2, 9, 15, 16, 21, 23, 25] to the index selection for a replicated databasewhere the database
is replicated on multiple nodes, each of which is called a replica [8, 24]. Thus, similar
to the ISP, the goal is to minimize the processing cost of the workload. Unlike ISP for a
single node, it utilizes the replication feature to create a set of index configurations such
that each index configuration is specialized for a subset of the workload. To achieve this
goal, it divides a workload among the replicas and recommends an index configuration
for each subset on each replica in a way that minimizes the processing cost of the entire
workload. The specialization helps deriving the indexes that are specifically needed for
the queries in each subset of the workload; hence the query processing costs are reduced
compared to the case where one index configuration is recommended for the whole
workload.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Similar to ISP [7], divergent index tuning is an NP-hard method [8]. Therefore,
heuristic and optimization approaches [8, 24] have been proposed to solve it. Current
divergent index advisors suffer from two major problems. One problem is that they
have no mechanism to learn about the goodness of the workload partitioning and their
index configurations. Suppose the divergent advisor partitions the workload such that
the derived indexes impact their benefit negatively, or the recommended indexes cause a
performance regression. Because these advisors do not have anyway to receive feedback
on their decision, they might choose the same workload partitioning or the same set of
indexes on a subsequent cycle. The second problem is that these techniques solely rely
on the query optimizer, which is not flawless due to statistical errors [10]. To address the
former problem,weproposedDRLindex [30, 31]which employed aDeepReinforcement
Learning (DRL) algorithm to select index configurations for a cluster database. In these
works, we formulate index selection for multiple nodes as a DRL problem and define the
core components such as the agent and the environment. The critical part of DRL is an
appropriate reward function. We propose a reward function that considers the estimated
processing cost of the workload and the load-skew factor. DRLindex [31] shows that
DRL is a promising solution for divergent index selection, but it solely relies on the query
optimizer. To address this gap, we extend our work and present DRL Divergent Index
Advisor (DINA), a learned divergent index advisor. Similar to [8, 24], DINA exploits
the data replication when recommending index configurations for a replicated database,
and it is capable to refine its decision as proposed in [30, 31]. The contributions of this
work include the following:

• Toavoid the possible query cost estimation errors due to using aqueryoptimizer,DINA
employs two training phases. It learns the efficiency of various possible workload
partitions and their index configurations by creating the indexes and observing the
real execution times.

• DINA is able to exploit multi-column indexes and unlike DRLindex is not limited to
single-column indexes.

• We present an experimental performance study using the TPC-H and TPC-DS bench-
marks to compare our proposed algorithm with the existing divergent index advisors
[8, 24]. The results demonstrate the efficiency of our algorithm.

The remainder of the paper is organized as follows: Sect. 2 introduces the related
work; Sect. 3 describes the architecture and the components of the proposed index
advisor; Sect. 4 presents the experimental results evaluating the performance of the
advisor; and Sect. 5 concludes the paper and discusses future research directions.

2 Related Work

Index tuning algorithms have been studied since the ’70s and different index advisors
have been proposed based on the workload characteristics and databases. These index
advisors either apply heuristic, optimization, or machine learning methods. An index
advisor for a single node [2, 9, 15, 16, 21, 23, 25, 26] recommends one index configuration
for the workload to minimize the processing cost of the workload. Divergent design
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index advisors [8, 24] introduce the idea of utilizing the replication to create several
index configurations such that each index configuration is recommended for a subset
of a workload. DivDesign [8] is a heuristic algorithm; it divides the workload among
nodes, recommends an index configuration for each subset of theworkload, and computes
the estimated processing cost of each query on each replica using the what-if tool [5].
Then, it redistributes queries among replicas based on the estimated processing cost. The
algorithm stops when the subset of the workload stays unchanged. RITA [24] formulates
the divergent design problem as a Binary Integer Program (BIP) and uses existing linear-
optimization software to solve the BIP. RITA uses INUM, a fast what-if tool [22] to
estimate the cost of the workload. Unlike a What-if tool [5], INUM is not implemented
in all databases which makes the application of RITA limited. The main drawbacks
of heuristic and optimization methods are that they do not have mechanisms to learn
from their mistakes, and they rely solely on the query optimizer, which might lead to
a performance regression [10]. To overcome these issues, learned index advisors have
emerged. In [3], the authors proposed a cost model that can learn using reinforcement
learning and evaluated the learned cost model in index selection problem. Lift [25]
proposed a learned index advisor for a document database and investigated the impact
of using the demonstration data in reducing the training time of the model. Other learned
index advisors such as SMARTIX [21], DBA bandits [23], OpenGauss [16], and DRL-
based index advisor [15] apply different reinforcement algorithms in the process of
learning an index set. These techniques are proposed for a single node and do not consider
replication and how to distribute queries among nodes. DINA employs replication and
decides how to divide queries of the workload among the nodes and selects an index
configuration for each node. It can choose index sets with two main goals: minimizing
the processing cost of the workload and avoiding skewed load among nodes.

3 DRL Divergent Index Selection Framework

We design a divergent index advisor called DRL Divergent Index Advisor (DINA) that
divides queries among nodes and selects a set of index configurations for the replicas
of a replicated database. Finding an optimal combination among all possible partitions
of the query workload and combinations of candidate indexes is the critical factor of a
divergent index advisor. We employ a DRL algorithm to equip our advisor to search this
large search space efficiently. DRL has been successful in searching large search spaces
in database areas such as knob tuning [17, 32], query optimization [14, 19], partitioning
[11, 12], and Indexing [15, 16, 21, 23, 25]. DRL explores the search area efficiently;
that is, it does not just greedily grab the first best-founded solution. Instead, it explores
other choices to find a possible better solution. We assume that the database is fully
replicated in all the nodes. Hence, each query can be processed by any replica and there
is no need to move data among nodes. Throughout this paper, node and replica are used
interchangeably.
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Fig. 1. The architecture of DINA

Figure 1 depicts the components of DINA and the steps of the workflow in numbers.
First, DINA invokes the Workload Forecaster [18] to predict the coming workload. This
module receives the workload and provides a set of query templates, the queries of
those templates, and the total number of queries per template for the coming workload.
A query template is a representative of a group of query instances that have the same
format but may have different parameter values. For example, Select * from T1 where
T1.att1 > # is a query template in which the value of # can change in different queries.
Throughout this paper, a template means a query template unless otherwise mentioned.
The detail of the forecaster can be found in [18]. Second, the Pre-processing module
receives the workload information. It determines a set of candidate indexes (CIS) for
the templates in the workload. After identifying the candidate indexes, it keeps track
of which candidate index(es) appear in the plan of each template. Also, it stores the
benefit of the candidate indexes for related query templates either positive or negative in
aWorkloadMatrix (see Sect. 3.1). The Divergent Index Selection module formulates the
index selection problem for the replicated database as a DRL problem (see Sect. 3.2).
It distributes the query templates among the replicas and recommends a set of index
configurations. This module, first, interacts with the cost estimation module and then the
execution engine. The Cost Estimation module returns the estimated processing cost of
the query (see Sect. 3.3). The Execution Engine runs a query and returns its execution
time. In the following, we explain each of these modules in detail.
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3.1 Pre-processing Module

This module receives query templates, queries, and the number of queries per query
template. Then, it extracts the characteristics of the workload to generate a workload
matrix. In the following,we describe the candidate index selectionmethod, the frequency
vector, and the workload matrix, respectively.

The candidate index selectionmethod chooses a subset of all possible indexes (single
or multi-columns) that reduces the execution time of the queries of at least one query
template. As queries in each query template can benefit from similar indexes [26], the
method processes the query templates instead of each query. To speed up, we call one of
the existing index advisors to get all possible indexes for each query templatewithout any
space budget limitation and make sure that those indexes are used in the execution plan
of at least one template. Here, we keep track of which candidate index appears in the plan
of which template. Then, we process the impact of these candidate indexes. To calculate
the impact of each candidate index, first, we execute all the queries in the workload
without indexes. Then, we call the agent to start exploring the action space which is
the set of candidate indexes. This exploration is to extract the required information for
the learning step. The agent creates indexes and executes those queries that have the
common columns with the created candidate index. Next, it computes the impact of the
candidate index for the corresponding queries by dividing the execution time of the query
before creating the index by the execution time of the query after the index creation. We
end up with the impact of each candidate index for the corresponding query templates.
Finally, we put all this information together and create a workload matrix, which shows
the average estimated impact of each candidate index on the queries of a template. The
workload matrix is a matrix of size qt × m, where qt is the number of templates in the
workload and m is the number of candidate indexes.

3.2 DRL Divergent Index Selection Module

This module explains how DINA selects index configurations using DRL. First, we
explain DRL and how it works briefly. Then, we describe each DRL component in our
design in detail.

Deep Reinforcement Learning
Reinforcement Learning (RL) has an agent and an environment that interacts together
[27]. The agent is the learner part of RLwhichmakes a sequence of decisions to optimize
an objective such as maximizing a score in a game. The environment is defined by its
component including a set of actions A, a set of states S, and a reward function. At
each timestep, the agent selects an action ai for a state si, and receives a reward value
rwi that evaluates the taken action. The selected action ai is applied to the environment
and its state changes from a current state si to a next state si+1. A policy π guides an
agent on which action to take at each state. The quality of a policy is quantified by a
value function that associates an expected cumulative discounted reward to each state.
Here, the discounted reward is the value of the reward multiplied by a parameter called
discounted rate 0 ≤ γ ≤ 1. The value of the discount rate implies the impact of the
future rewards, which are estimated. The objective of the agent is to find the optimal
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policy that governs the agent to maximize the expected cumulative discounted reward
known as a return in the long term.

Q-learning [27] is an algorithm to solve RL. At each time step t, the Q-function
approximates the value of each action using the following equation:

Q(st, at) = Q(st, at) + α[rwt+1 + γmaxat+1Q(st+1, at+1) − Q(st, at)] (1)

where, Q(st, at) is the Q-value for state st and action at , α is a learning rate, rw is the
reward value, γ is a discount rate, and maxat+1Q(st+1, at+1) is the maximum value of
estimated future returns for the next state.

Deep Q-learning (DQN) [20] is a Q-learning approach that utilizes a neural network
Qθ (s, a)with weights θ in the learning process of its agent. The neural network helps the
DRL-agent to predict the values of actions. Weights in the neural networks are updated
by Gradient Decent or ADAM on the loss.

Environment. This component defines the state and action space of the problem and
returns a reward value for each action. First, it depicts the states of the replicas according
to their index configurations. Second, it identifies possible actions for each state that the
agent can choose, i.e., the query templates for distribution and their candidate indexes
that can be indexed on each replica. Third, it interacts with the databases in the replicated
database to apply the taken actions by the agent -either simulating the index or creating
it depending on the training phase-. Finally, it returns the reward value to the agent. The
reward value is computed by the reward function, which has two objectives: minimizing
both the processing cost of the workload and the load-skew. The reward value is a
weighted sum of these two objectives. To compute this reward based on the training
phase, the environment interacts either with the Cost Estimation (see Sect. 3.3) or the
Execution Engine which executes queries and returns the execution time of the queries.

State Representation. The states of the environment should reflect the impact of the
selected actions by the agent. Therefore, the state is the current index configurations of
the replicas. We represent the current index configurations of the replicas by a matrix of
size r ×m, where r is the number of replicas and m is the number of candidate indexes,
and we call it the state matrix. An entry [i, j] in the state matrix is set to 1 if a candidate
index j ∈ [1,m] has been chosen to be an index for a replica i ∈ [1, r] and otherwise, it
is set to 0.

Set of Actions. The actions include selecting a query template to be executed on a
specific replica and creating a proper index for that query.

Reward Function. In our design, we pursue two main objectives: (a) minimizing the
processing cost of the workload (in the pre-training phase) and the execution time of the
workload (in the re-training phase), and (b) reducing the load skew among the replicas.
Thus, we want the agent to learn two points. First, the index configurations should be
selected to minimize the estimated processing cost or execution time of the workload.
Second, the index configurations should be selected such that the workload distributes
among nodes as evenly as possible to prevent the overload/underload conditions on
replicas. To achieve these two goals, we define a reward function that consists of the
following two parts:
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• Workload processing cost: a scalar reward is given with respect to the improvement
in the estimated processing cost or execution time of the workload in the presence of
the recommended index configurations.

• Workload Skew: a reward value is assigned based on the total workload skew among
replicas. The less the workload skew, the higher the reward.

In the following, we describe how to measure the reward of each objective.

Workload Processing Cost. The agent should select a set of index configurations for
replicas such that the total estimated processing cost of the workload is minimized. To
obtain the minimum processing cost, each query must be processed by a replica that has
the best index configuration, that is, a replica which minimizes the processing cost of
the query. The routing table identifies that replica.

First, we compute the estimated processing cost of the workload using the following
equation:

TotalCost(W ,M ∪ T) =
∑

q∈QT
∑

R∈[1,r] cost(q, IR) (2)

where q is a query of a query template in the workload, and IR is the index configuration
of the replica to which the query is routed. The reward is computed using the following
Eq. (3):

reward(T) = TotalCost(W ,M − {T}) − TotalCost(W ,M ∪ T)

TotalCost(W ,M − {T}) (3)

where (W ,M − {T}) denotes the estimated processing cost of the workload when T is
not materialized.

Workload-Skew. Wewant to minimize the workload skew among the replicas when rec-
ommending index configurations.We define workload skew as a considerable difference
between the amounts of the workload that each replica processes. For instance, suppose
in a database cluster with three nodes, the first node is completely idle, the second node
processes a small part of the workload, while the third node is almost overloaded by
processing the large portion of the workload. We want to avoid these unbalanced situa-
tions. The ideal case is to have the workload distributed evenly among all replicas; thus,
the workload skew is zero. It is almost impossible to achieve zero skew; but we want
to decrease it as much as possible. The goal is to create index configurations for the
replicas in a way that not only minimizes the workload processing cost but also balances
the workloads among the replicas as much as possible.

To compute the workload-skew, first, we compute the amount of workload that each
replica should process in the best case, i.e., when the workload is evenly distributed
among the replicas, as follows:

workload(R)bestcase = TotalCost(W,T)

r
(4)
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Second, we calculate the amount of the workload that each replica R with the index
configuration IR should process:

workload(R)real =
∑

q
∧

R
cost(q, IR) (5)

where q
∧

R means the queries that are processed on replica R. Third, we compute the
workload skew on each replica as follows:

workloadskew(R) = |Workload(R)real − Workload(R)bestcase|
Workload(R)bestcase

(6)

In Eq. (6), the value of the workload-skew (R) either greater or less than zero implies
that the replica suffers from over skew or under skew, respectively. We want to reduce
these cases. The value of zero shows there is no skew on a replica, which is the desirable
case. After finding the amount of the workload skew on each replica, we calculate the
sum of the workload-skew values of the replicas. Finally, the reward of the workload
skew is computed in Eq. (7):

reward(S) = 1∑
R∈r workload_skew(R)

(7)

Final Reward. Eventually, the reward is a weighted sum of reward(T) and reward(S)

as follows:

reward = α × reward(T) + β × reward(S) (8)

In Eq. (8), α and β are obtained by trial and error and their values define a trade-off
between cost reduction and load-balancing.

DRL-Agent. In our case, because of a large search space, the agent uses a neural network
to predict the value of each action at each state. In the following, we explain the training
process of the agent, which has two phases: pre-training and re-training.

Pre-training Phase. In this phase,we train the agent as described inAlgorithm1 (Fig. 2).
The learning process is episodic (line 3) [27]. Each episode consists of a specific number
of time steps which in our case defines the maximum time that the agent can spend on
selecting index configurations. An episode starts with an initial state s0 where there is no
index configuration on any replica (line 4) and ends when all queries are divided among
replicas, or space budget limit reaches on all replicas, or after the time steps end.

At each time step, the agent receives the state vector st and applies the ε-greedy
policy [27] to choose an action at (line 7–8). Based on this policy, a random action is
chosen with the probability 0 < ε < 1. An action selects a template to be processed on
a specific replica and chooses an index(es) for that template depending on the available
space budget on a replica. Then, it simulates the virtual index(es) on that replica and
updates the state vector to show the new state st+1 of the existing indexes on the replicas
(line 9). Next, the reward rwt of the selected index(es) is computed as explained in
Reward Function Section.
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Fig. 2. DINA pre-training algorithm

The pre-training phase uses the query optimizer to estimate the estimated processing
cost of the workload. A set flag shows the end of the episode (line 11–13). The agent’s
experiences (st, at, rwt, st+1) are stored in the memory (line 14), and a mini batch of
experiences is randomly sampled from the memory (line 16) to train the agent (line
17). Over time that agent learns about actions, the value of ε is gradually decreased
by multiplying ε to a factor called epsilon decay (line 19). At the end of this training
phase, the agent is trained to find the best query distribution and index configurations
for replicas for the forecasted workload.

Re-training Phase. In the previous phase, we avoid creating actual indexes and rely
on the query optimizer for cost estimation. As we know, the estimates of the query
optimizer are not completely reliable [10]. Therefore, in this phase, we re-train themodel
by creating the indexes and measuring the execution time of the queries. Consequently,
the reward is computed using the execution time, which means that the query estimated
cost is replaced by the actual query execution time in Eqs. (2) and (3).

3.3 The Cost Estimation Module

This module receives the queries and the recommended index configuration for a replica
as inputs. Then, it estimates the processing cost of the queries using a “What-if” tool
[5]. Since each node has a query optimizer, the cost estimation can be done in parallel
on all replicas.
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4 Experimental Results

We conduct experiments to evaluate the effectiveness of DINA in comparison with the
two existing automatic approaches. In this section, we describe the experimental setup
and discuss the results of the experiments.

4.1 Experimental Setup

Benchmarks. We use the TPC-H [28] and TPC-DS [29] database benchmarks. The
former consists of 8 tables and 22 templates, and the latter includes 24 tables and 99
templates. TPC-DS is more complicated and diverse in comparison with TPC-H. For
both the benchmarks, we load 10GB databases and generate the related query workloads
using the provided query generator.

Experimental Setups. DINA is written in Python and employs Keras [13] and Tensor-
flow [1] to create a neural network. The neural network is the function approximator
with three hidden layers, each with 64 neurons. It uses ReLU [4] as the activation func-
tion in hidden layers and a Linear function in the output layer. Training is performed
using ADAM. The hyperparameter values are 0.001 for learning rate, 0.99 discount rate,
100000 replay buffer size, and 32 minibatch size. We use the free version of IBM DB2
Express-C V11.1 for a DBMS in our experiments.

We create clusters consisting of two to five nodes in the Clemson cluster of Cloudlab
[6]. Each node is equipped with two Intel E5-2660 v2 10-core, 128 GB of DDR4 and a
10 Gbps interconnect.

Baseline. We compare our work with two existing index advisors DivDesign [8] and
RITA [24] which are proposed for replicated databases and described in Sect. 2 “Related
Work”. Similar to [8], we run DivDesign five times and report the best result. We report
the performance of each algorithm when each query is processed by the replica that has
the best index configuration for that query.

Experimental Parameters. The dynamic parameters in our experiments are the space
index budget B and number of replicas N. B is tested with the values of 2 GB, 4 GB,
6 GB, 8 GB, and 10 GB, while N is tested with the values of 1, 2, 3, 4, and 5 nodes.

Performance Metrics. We compare the performance of DINAwith the baselines using
the averaged total execution time of all queries for three runs for the set of index
configurations recommended by DINA and the baselines.

Results. First, we compare the performance of DINA-cost trained by using the esti-
mated processing costs provided by the query optimizer and DINA-exe trained using the
execution time of the queries in the workload with the baselines for both benchmarks.
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a. TPC-H                                                       b. TPC-DS        

Fig. 3. (a) Performance of DINA vs Baselines for TPC-H benchmark; (b) Performance of DINA
vs baselines for TPC-DS for varying index space budget and N = 3.

Figure 3(a) depicts the comparison of DINA and baselines when the number of nodes
is 3 and we vary the space budget. RITA and DIVDesign (DIV) did not select a proper
index for queries of a specific query template in the workload which results in a very
high execution time. Therefore, we report the results of these algorithms whenever the
execution time was under 15,000 s. For those cases that are not depicted, the averaged
execution time was above 88,000 s. Overall, for this experiment, RITA did not perform
well as it did not recommend good index configurations for the workload. In all cases,
DINA-exe shows the best results among all the algorithms. For instance, when the space
budget is 4 GB, DINA-exe can utilize the aggregate index space budget on nodes 28%
and 32% better than DINA-cost and DIVDesign, respectively. In addition, DINA-cost
can utilize the aggregate index space budget either as good as DIVDesign or better. As
the index space budget increases, the performance of DIVDesign and DINA-cost get
closer to that of DINA-exe, thus it might make sense to train the agent using query
execution time when the index space budgets are low and use other algorithm for when
the index space budgets are high.

Figure 3(b) shows the same experiments for TPC-DS. Here, we just report the result
of DINA-exe because it has better performance than DINA-cost.

DINA-exe has the best performance in comparison with the baselines, which means
it can find better partitions for the query workloads and recommend better index config-
urations. For lower index space budgets (2 GB–6 GB), on average DINA-exe improves
the performance 50% and 75% compared to RITA and DIVDesign, respectively. RITA
and DIVDesign have lower performance for higher index space budgets. The main rea-
son is that, as the index space budget increases, they recommend more indexes for the
workload.

In Fig. 4, we evaluated the performance of the studied algorithms when we varied
the number of nodes and keep the index space budget fixed at 2 GB. DINA yields the
best query execution time in all cases except for the case when the number of nodes is
5. Overall, on average, DINA performs 66% and 32% better than DivDesign and RITA,
respectively.
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Fig. 4. Performance of DINA vs Baselines for TPC-DS benchmark for varying number of nodes
and space budget = 2 GB

5 Conclusion and Future Research

In this paper, we introduced a new divergent index advisor called DINA that derives
index configurations for replicas in a replicated database using Deep Reinforcement
Learning (DRL). DINA is able to use feedback of its previous execution during the
learning process to make better future decisions. A version of DNA called DNA-Exe
does not rely on query estimation cost, which often is not accurate, provided by the
query optimizer. The experiments using the TPC-H and TPC-DS benchmarks show that
DINA performs better than the existing divergent index advisors especially when the
index space budget is low.

In the future, we will extend this work for dynamic workloads, and evaluate the
solution for more workloads that include updates. Moreover, we want to extend the
work to cloud databases and consider features such as multi-tenancy and service-level
agreements (SLAs). Also, we look for amore efficient reinforcement learning algorithm,
which can converge faster.
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Abstract. Crowdsourcing is a distributed problem solving model that
encompasses many types of tasks, and from a machine learning perspec-
tive, the development of crowdsourcing provides a new way to obtain
manually labeled data with the advantages of lower annotation costs and
faster annotation speed very recently, especially in the field of computer
vision for image classification and segmentation. Therefore, it is neces-
sary to investigate how to combine machine learning algorithms with
crowdsourcing effectively and cost-effectively. In this paper, we propose
a deep active learning (AL) framework by combining active learning
strategies, CNN models and real datasets, to test the effectiveness of the
active learning strategies through multiple scenario comparisons. Exper-
iment results demonstrate the effectiveness of our framework in reducing
the data annotation burden. Moreover, Our findings suggest that the
strength is often observed in the case of relatively large data scale.

Keywords: Crowdsourcing · Active learning · Image classification ·
Image segmentation · Deep learning

1 Introduction

Crowdsourcing is the process of completing particular tasks by recruiting crowd
workers, breaking down big tasks into smaller and simpler subtasks, allocating
subtasks to workers operating in parallel, and recalling the results [5]. Supervised
machine learning often requires large amounts of manually labeled data to train
and evaluate models, such as image annotation in the field of computer vision,
pattern recognition, and linguistic annotations for natural language processing
[4,20,30]. In recent years, crowdsourcing access to manually labeled data has
gained widespread attention in the machine learning community and become a
popular paradigm to generate a substantial quantity of superior quality data for
training and evaluating models because of its advantages of lower cost and faster
speed. Therefore, crowdsourcing has become increasingly significant in machine
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learning domain. However, crowdsourcing greatly depends on human workers
for manual data labeling, which is often time-consuming and labor-intensive
[34,35]. In this context, it is crucial to study how to combine machine learning
algorithms with crowdsourcing effectively and cost-effectively while maintaining
model performance.

Fig. 1. Deep active learning framework by combining active learning strategie and
CNN models for crowdsourcing-enhanced image classification and segmentation.

Selecting the most informative samples relevant to the research question is a
common approach for reducing the burden of data annotation in crowdsourcing
services. Accordingly, since the objective of adopting active learning algorithms
in the supervised machine learning community intends to obtain greater accu-
racy with less manually labeled data, it would be suitable to incorporate various
active learning strategies in crowdsourcing services [11,34]. For instance, Zhao et
al. (2020) [35] integrated several active learning strategies (e.g., Entropy, Least
Confidence, Kullback-Leibler Divergence, and Vote Entropy) into the crowd-
sourcing environment. Wang et al. (2017) [31] confirmed that active learning
facilitated a significant reduction of human annotation in deep image classifi-
cation based on Convolutional Neural Networks (CNNs) by comparing different
informative sample selection criteria. Yet, there is a possibility for active learning
strategies to perform differently according to the models and datasets utilized,
which is rarely considered in the improvement of crowdsourcing-enhanced data
annotation via active learning.

Correspondingly, the focus of this study is to combine crowdsourced data
annotation with active learning in an effective and cost-efficient manner. The
primary objective is to investigate the efficacy of active learning strategies in
the context of improving crowdsourcing services used in image classification and
segmentation and attempts to propose a general deep active learning framework
for crowdsourcing-enhanced image classification and segmentation tasks (Fig. 1).
To this end, this study defines multiple scenarios by combining different active
learning strategies (i.e., Bayesian Active Learning by Disagreement, Core-set,
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Maximum Entropy, Least Confidence, Minimum Margin and random strategy),
CNN models (i.e., Resnet and DeepLabV3+) and real datasets (i.e., CIFAR-10,
CIFAR-100, WHU satellite and aerial imagery dataset). The main contributions
of this paper can be summarized as follows:

– In the context of CNN-based image classification and segmentation, active
learning strategies reduce the burden of data annotation compared to random
sampling, which could be incorporated in the process of upgrading crowd-
sourcing services;

– It also demonstrates that the efficacy of active learning strategies varies in
different scenarios, with the performance of active learning approaching that
of random sampling when the size of the initial annotation set is small.

The rest of the paper is organized as follows: Sect. 2 illustrates the state-
of-the-art usage of active learning in the reduction of data annotation burden
and the combination of active learning and crowdsourcing. Section 3 presents
active learning strategies, CNN models, and datasets utilized for implementing
multi-scenario comparisons. Section 4 shows the details of the experiments and
the corresponding results. Section 5 presents conclusions and perspectives.

2 Related Work

Active learning aims to optimize the performance of the model by labeling the
smallest number of samples, while minimizing the cost of labeling [7,17]. Con-
ventional machine learning requires relatively few labeled samples, thus scholars
have paid little attention to active learning. Recently, with the expansion of the
Internet, huge amounts of unlabeled data have appeared, particularly in infor-
mation extraction, medical images, speech recognition, etc., and obtaining a con-
siderable quantity of high-quality labeled datasets require significant human and
financial resources. Therefore, active learning has steadily received due attention.
In terms of application scenarios, active learning can be classified into member-
ship query synthesis, stream-based selective sampling, and pool-based active
learning [22]. When it comes to selecting the most informative sample, there
are seven primary active learning query strategies [22,26]: uncertainty sampling
[10,23,26,27], query-by-committee [3,27], expected model change [27], expected
error reduction [12,18], variance reduction [9,24,27], density-weighted methods
[1,6,25,27,32] and hybrid query strategies [1,28,33,36]. Some important meth-
ods that deserve our attention, such as least confident, margin sampling, entropy,
vote entropy, average Kullback-Leibler divergence, deep Bayesian active learning,
etc., are summarized in Table 1.
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Table 1. Active learning query strategies.

Related work AL query strategies

Uncertainty
sampling

Query-
by-
committee

Expected
model
change

Expected
error
reduction

Variance
reduction

Density-
weighted
methods

Hybrid
query
strategies

- Least confident
- Margin sampling
- Entropy

- Vote entropy
- Average
kullback-leibler
divergence

- Decision-theoretic
approach
- Expected gradient
length

- Decision-
theoretic approach

- Inverse matrix - Core-set
- Batch
query size

- Deep bayesian
- RankCGAN

Culotta et al. 2005 [10] �
Scheffer et al. 2001 [23] �
Settles et al. 2008 [27] � � � � �
Burbidge et al. 2007 [3] �
Moskovitch et al. 2007 [18] �
Guo et al. 2008 [12] �
Cover et al. 2006 [9] �
Schein et al. 2007 [24] �
Xu et al. 2007 [32] �
Jordan et al. 2019 [1] � �
Sener et al. 2018 [25] �
Chitta et al. 2019 [6] �
Shui et al. 2019 [28] �
Yin et al. 2017 [33] �
Zhdanov et al. 2019 [36] �

Some research has combined crowdsourcing and active learning, focusing pri-
marily on the issue of crowdsourced data labelling. Due to the high cost of hiring
expert workers, researchers wish to replace expert workers with crowdsourced
labour for data annotation. The authors of [16] proposed a novel method based
on the active cross-query learning strategy, which allows every worker, rather
than domain experts, to label a portion of the selected query data. [2] presented
an innovative cooperative scheme based on active learning and crowdsourcing,
designed to offer a solution for the cold start issue, i.e. initialising the classifi-
cation of a set of unlabeled large-scale data sets. Calpric, an automated clas-
sification tool developed by [21] using active learning and crowdsourcing, can
perform annotation with the same level of accuracy as skilled human annota-
tors while minimising labelling costs. To improve the accuracy of integrated
labels, [29] proposed a novel active learning framework that takes workers’ con-
fidence information into account. [8] proposed two classification methods based
on crowdsourcing and active learning and evaluated their suitability. However,
the existing research does not consider the impact of different data sample sizes
and models on the outcomes, nor does it compare the differences between active
learning strategies. This provides research inspiration.

3 Proposed Method

3.1 Notation

We list the symbols used throughout the paper in Table 2.
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Table 2. List of symbols.

Symbol Definition

r The serial number of rounds

j The serial number of random initial labeled sets

i The serial number of samples

k The number of selected samples in every round

NLr The number of labeled data in the round r

NUr The number of unlabeled data in the round r

Lj
r = {(xi, yi)}NLr

i=1 The labeled set in the group j and round r

U j
r = {(xi, yi)}NLr

i=1 The unlabeled set in the group j and round r

Φr The trained model in the round r

Ψθ(·, ·, ·) The selection function with parameter θ, such as Min-Margin

Pθ(yb | xa) The probability that sample xa belongs to label yb

3.2 Neural Networks for Image Tasks

ConvNets are increasingly identified as commodities in the computer vision sec-
tor. Numerous efforts have been directed at enhancing the original architecture
to realize improved precision. This study uses ResNet and DeepLabV3+.

ResNets introduces a residual connection which can change the output f(x),

h (x) = f (x) + x (1)

where x is input.
Then it can address the degradation issue. Rather than expecting that few

stacked layers straightforwardly map to a chosen underlying mapping, the app-
roach in this study explicitly allow the stacked layers map to a residual mapping.
Since the level of difficulty to optimize the original is higher than optimizing the
residual mapping, in the event of an optimal identity mapping, it would be easier
to push the residual to zero than fitting an identity mapping through origin lay-
ers. Feedforward neural networks comprising “residual connections” can conduct
identity mapping, adding the outputs to the stacked layers’ outputs, while do
not add computational complexity or additional parameters.

DeepLabV3+ is one of the top performing networks in image segmentation.
It encodes multi-view information by DeepLabV3, and makes use of the corre-
sponding low-level features when decoding. DeepLabV3 benefits from the combi-
nation of atrous spatial pyramid pooling (ASPP) with different rates of dilation
convolution,
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i.e.

y [i] =
K∑

k=1

x [i + r · k] w [k] (2)

where x is input data, w = (w1, · · · , wk, · · · wK) ∈ R
K is the kernel and r is

the flexible rate, respectively . By controlling the rate parameter r, one can
arbitrarily control the receptive fields of the convolution layer.

Therefore, it both increases the resolution of final feature map and deals
with the multi-scale objects. We choose pretrained MobileNetV2 as the back-
bone of DeepLabV3. MobileNetV2 is a lightweight Deep Convolutional Neural
Networks (DCNNs). It replaces the standard convolution with Depthwise separa-
ble convolution to accelerate the computations. Residual blocks are also applied
in MobileNetV2.

3.3 Active Learning

We first have an initial labeled data set L0
0 = {(xi, yi)}NL0

i=1 , a large candidate set
of unlabeled data U0

0 = {xi}NU0
i=1 , a training active learning model Φ0 that is based

on pool. Then we evaluate xi ∈ U0 and sample k (size of budget) instances, which
are labeled by a master using sampling function Ψθ

(
L0
0, U

0
0 , Φ0

)
. We extend L0

0

to L1
0 labeled set by adding the selected samples which have oracle-annotated

labels. The generated L1
0 set is utilized to retrain model Φ. Repeat the above

sample annotation training loop until the sampling budget is exhausted or the
training has converged.

In this paper, we evaluate multiple different sampling functions: Least Con-
fidence, Min-Margin, Max-Entropy, Bayesian Active Learning by Disagreement,
Core-set, etc.

Least Confidence. The examples are sorted in descending order in this method
by the probability of not predicting the most confident sequence from the model:

x∗ = arg max
i

(1 − Pθ(yi | x)) (3)

Min-Margin. Multiple models are trained on stratified bootstrap samples of
the labeled training set. Then candidate examples are selected, which have the
smallest margin among all the bootstrapped models [14]:

margin(h, x) = h (x; ŷ1(x)) − h (x; ŷ2(x)) (4)

where ŷ1(x) and ŷ2(x) are the first two highest scoring classes under the estimator
h: ŷ1(x) = arg maxg h(x; g) and ŷ2(x) = arg maxg,g �=ŷ1(x) h(x; g).

This method includes two hyper-parameters: the number of bootstrapped
predictor κ and the fraction β of bootstrap sample size, which are consistent in
our experiments.
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Max-Entropy. Entropy is a measurable physical property that is associated
with disorder, randomness, or uncertainty. Greater entropy indicates that the
uncertainty of the system is very large. Thus, we select the samples with large
entropy as the annotation data [13].

x∗ = argmaxx −
∑

i

Pθ (yi | x) · ln Pθ (yi | x) (5)

Bayesian Active Learning by Disagreement (BALD). In BALD, we use
dropout layers and Monte Carlo dropout (MC dropout) to train the model Φ
and approximate the sampling from posterior, respectively.

In this paper, pool points are expected to maximize information acquired
about the parameters θ of model, in other words, maximize mutual information
between estimations and model posterior.

I [y, θ | x] = H [y | x] − Ep(θ)[H[y | x, θ]] (6)

where H[y | x, θ] is the entropy of predicted y given parameters θ. However, some
parameters produce disagreeing estimations with high certainty. We should point
to points that have high variance in the softmax layer of input. Correspondingly,
the highest probability of each random forward pass of the model is assigned to
a different category.

Core-Set. Core-set method exploits data points’ geometry and selects samples
which can contain all data points. Essentially, this algorithm would like to seek
some of points, i.e., cover points, which minimizes the distance between each
data point and its corresponding nearest cover points.

min
s1:|s1≤b|

max
i

min
j∈s1∪s0

Δ (xi, xj) (7)

where xi is point in the dataset and xj is its nearest cover point.

4 Performance Evaluation

In this section, the paper validates effective crowdsourcing image processing via
active learning from two perspectives: image classification and image segmenta-
tion. The training procedure of active learning method is summarized in Algo-
rithm1. All methods are implemented in PyTorch 1.8 with Python 3.8 based on
Pycls library1 [19], which are trained on single GPU NVIDIA 2070S with 8G
memory.

4.1 Crowdsourcing Image Classification via Active Learning

Datasets Description. We use two public datasets, including CIFAR10 and
CIFAR100, which are labeled subsets of the 80 million tiny images dataset and
were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton [15] (Table 3).
1 https://github.com/acl21/deep-active-learning-pytorch.

https://github.com/acl21/deep-active-learning-pytorch
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Algorithm 1: Fine-tuned active learning method.
Input:

Unlabeled set U0
0 = {xi}NU0

i=1 ;

Labeled set L0
0 = {(xi, yi)}NL0

i=1 ;
Pre-trained CNN model Φ0;
Selection function Ψθ;
Selection ratio α;
Output:
Labeled candidates L;
Fine-tuned CNN model Φr at round r;

1 repeat
2 for r = 1, 2, ... do
3 Cr ← selected k samples from U by selection function Ψθ;
4 p ← Φr(Cr);

5 a ← mean(p)
{

a = 1
k

∑k
i=1 pi

}
;

6 if a > 0.5 then
7 Sr ← top α percent of the samples of Cr;

8 L ← L ∪ Sr;
9 U ← U \ Cr;

10 Retrain the model Φr using the updated L set;

11 until model performance is satisfactory ;

CIFAR10. CIFAR10 dataset is a part of the 80 million small images datasets.
The CIFAR10 dataset includes 60000 32 × 32 colored images, which are labeled
into 10 completely mutually exclusive classes, with 6000 images per class. These
10 classes mainly describe the main objects in the image, such as automobile,
bird, airplane, cat, dog, frog, deer, horse, truck, or ship. Especially, there are no
overlaps between the automobile class and the truck class. The CIFAR10 dataset
has 50000 training samples and 10000 test samples.

CIFAR100. CIFAR100 dataset is quite similar to CIFAR-10, except it has 100
classes containing 600 images each. There are 500 training images and 100 test-
ing images per class. These 100 classes in CIFAR100 dataset are classified into 20
superclasses. Each image has two label information at the same time: the “fine”
label is accurate classification information, and the “coarse” label is rough super-
classes classification information. For example, superclass fish contains aquarium
fish class, flatfish class, ray class, shark class and trout class.

Experimental Setup. We use ResNets in our experiments and the optimizer
we use is SGD with exponential decay, in which learning rate starts at 0.025
and decay rate is set to 0.0003. The momentum and gamma factor are set to
0.9 and 0.1 respectively. We pre-process input by random horizontal flip and
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Table 3. Performance comparisons of different AL strategies on CIFAR10 and
CIFAR100. The bold value marks the best one in each model.

Dataset Model Active learning strategies Accuracy (%)

CIFAR10 Resnet18 Max Entropy 91.55

Least Confidence 91.74

Min Margin 91.46

BALD 91.08

Coreset 91.13

Random 89.67

Resnet50 Max Entropy 91.65

Least Confidence 91.71

Min Margin 91.20

BALD 91.88

Coreset 91.68

Random 83.65

CIFAR100 Resnet18 Max Entropy 55.35

Least Confidence 54.20

Min Margin 54.68

BALD 54.78

Coreset 54.76

Random 54.27

Resnet50 Max Entropy 54.85

Least Confidence 54.90

Min Margin 54.56

BALD 54.48

Coreset 54.10

Random 53.75

normalization, where p = 0.5 and the input is divided by 255. In training process,
the batch size is set to be 96. We train 200 epochs of the base classifier on labeled
set. For iterations of active learning, the best model is fine-tuned (selected by
the accuracy of validation set), where the maximum number of iterations is set
to 5. Note that we evaluate the model on validation set every 2 period epochs.

Performance Comparison. We first make comparison of different active
learning methods against random method. As shown in Fig. 2, our experiments
indicate that compared to random method, AL methods achieve remarkable clas-
sification accuracy in CIFAR10 dataset. For example, it achieves best accuracy of
91.74% in Resnet18 when integrated with Least Confidence method and 91.88%
in Resnet50 when integrated with Bayesian Active Learning by Disagreement
(BALD), which has improved by 2.07% and 8.23% compared to random method
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Fig. 2. Performance comparisons of different AL strategies on CIFAR10 dataset. There
is no discernible difference between different AL strategies.

Fig. 3. Performance comparisons of different AL strategies on CIFAR100 dataset. AL
strategies have little effect in the case of small data scale.

respectively. Notably, relatively poor accuracy is achieved in CIFAR100 dataset
(as shown in Fig. 3), it is because that there is more samples of each class in
CIFAR10, which promotes the model training.

4.2 Crowdsourcing Image Segmentation via Active Learning

Datasets Description. Regarding image segmentation, we use two public
satellite datasets, the WHU satellite dataset and aerial imagery dataset, from
the New Zealand Land Information Services website2.

WHU Satellite Dataset. The WHU satellite dataset (East Asia) consists of
17388 images from cities in East Asia and cover 29085 buildings with 512 × 512
cells with a spatial resolution of 2.7 m per pixel. Among them 21556 buildings
are separated for training and the rest 7529 buildings are used for testing.

WHU Aerial Imagery Dataset. The WHU aerial imageries consist of 8189
images from New Zealand cities and cover over 187000 buildings with 512 × 512
cells with a spatial resolution of 0.3 m per pixel. The ready-to-use samples are

2 https://www.linz.govt.nz/.

https://www.linz.govt.nz/
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divided into three parts: a training set (130500 buildings), a validation set (14500
buildings) and a test set (42000 buildings).

Experimental Setup. We use DeepLabV3+ for image segmentation experi-
ment. About hyper-parameter setup, similar to the previous experiments, the
optimizer is SGD with exponential decay. In training process, the batch size,
epoch and learning rate are set to be 64, 100 and 0.1 respectively. For iterations
of active learning, the maximum number of iterations is set to be 19. Meanwhile,
both the active start size and active selection size are set to be 5%. We computed
the mean intersection over union (mIoU) to evaluate the performance of models
in each iteration of each experiment. They were computed as follows:

mIoU =
1

k + 1

k∑

i=0

pii∑k
j=0 pij +

∑k
j=0(pji − pii)

(8)

where k is the total number of classes (k = 2 in this study). pii and pij represent
the total numbers of pixels belonging to true pixel class i that are predicted to
belong to i and j, respectively.

Performance Comparison. As shown in Fig. 4, the experimental results of
segmentation on two datasets also indicate that AL strategies is better than
random method, while the differences between different AL strategies are not
obvious. These results also suggest that there should be enough samples when
using AL strategies for segmentation problem (Table 4).

Table 4. Performance comparisons of different active learning strategies on WHU
satellite and WHU aerial imagery dataset against random method. Convergence is
reached after 18 iterations. The bold value marks the best one in each model.

Dataset Model Active learning strategies MIoU (%)

WHU satellite dataset DeepLabV3+ Max Entropy 83.30

Min Margin 83.16

MCdropout 83.45

Random 82.65

WHU aerial imagery dataset DeepLabV3+ Max Entropy 93.85

Min Margin 93.90

MCdropout 93.78

Random 93.05

4.3 Analysis and Discussion

Variance in Different Labeled Data. Since the labeled data is incomplete in
real-world, we explore the change of variance in classification and segmentation
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Fig. 4. Performance comparisons of different AL strategies on WHU satellite and
WHU aerial imagery dataset. There is no discernible difference between different AL
strategies.

accuracy with different initial labeled data. As shown in Fig. 2, Fig. 3, and Fig. 4,
we can summarize the following points:

– To sum up, the test accuracy increases with the increase of initial labeled
data, proving that AL strategies performs better than random method, while
there is no discernible difference between different AL strategies;

– AL strategies have little effect in the case of small data scale and do not even
beat the random strategy well, as can be derived from the experiments on
CIFAR100.

5 Conclusions and Perspectives

Creating training data has increasingly been a critical bottleneck in machine
learning. By selecting the most informative instances for labelling, active learn-
ing allows an efficient approach to creating training data. Meanwhile, crowd-
sourcing, as a distributed problem-solving method, is economically feasible for
data labelling. In this paper, active learning has been applied to improve the data
labelling task of the crowdsourcing system via the use of different strategies such
as Max Entropy, Least Confidence, Min Margin, etc. to study the effectiveness of
active learning algorithms in reducing the burdens of data labelling. Finally, we
conducted comparative experiments on image classification and segmentation on
four real datasets, demonstrating the effectiveness of the proposed framework,
and emphasising that it works better when the data size is relatively large.
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8. Cósta, J., Silva, C., Antunes, M., Ribeiro, B.: On using crowdsourcing and active
learning to improve classification performance. In: 11th International Conference
on Intelligent Systems Design and Applications, ISDA 2011, Córdoba, Spain, 22–24
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Abstract. Algorithmic trading, due to its inherent nature, is a difficult
problem to tackle; there are too many variables involved in the real-
world which makes it almost impossible to have reliable algorithms for
automated stock trading. The lack of reliable labelled data that considers
physical and physiological factors that dictate the ups and downs of the
market, has hindered the supervised learning attempts for dependable
predictions. To learn a good policy for trading, we formulate an approach
using reinforcement learning which uses traditional time series stock price
data and combines it with news headline sentiments, while leveraging
knowledge graphs for exploiting news about implicit relationships.

Keywords: Reinforcement learning · Trading · Stock price prediction ·
Sentiment analysis · Knowledge graph · Natural Language Processing

1 Introduction

Machine learning is mainly about building predictive models from data. When
the data are time series, models can also forecast sequences or outcomes. Predict-
ing how the stock market will perform is an application where people have nat-
urally attempted machine learning but it turned out to be very difficult because
involved in the prediction are many factors, some rational and some appear-
ing irrational. Machine learning has been used in the financial market since the
1980s [3], trying to predict future returns of financial assets using supervised
learning such as artificial neural networks [2], support vector machines [14] or
even decision trees [21]; but so far, there has been only limited success. There
are multiple causes for this. For instance, in supervised machine learning, we
usually have labelled datasets with balanced class distributions. When it comes
to the stock market, there is no such labelled data for when someone should have
bought/sold their holdings. This leads credence to the problem being fit for the
reinforcement learning framework [26], a behavioral-based learning paradigm
relying on trial and error and supplemented with a reward mechanism. Rein-
forcement learning has the ability to generate this missing labelling once we
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define a proper reward signal. But there are still other issues in this context
which are specific to stock markets. They are prone to very frequent changes
and often these changes cannot be inferred from the historical trend alone. They
are affected by real-world factors such as political, social and even environmen-
tal factors. For instance, an earthquake destroying a data-center could result in
stock prices dropping for a company; a new legislation about trade can posi-
tively impact the value of a company. Noise to signal ratio is very high in such
conditions and it becomes difficult to learn anything meaningful under such cir-
cumstances. Such environments can be modelled as Partially Observable Markov
Decision Processes (POMDPs) [31], where the agent only has limited visibility
of all environmental conditions. A POMDP models an agent decision process in
which it is assumed that the system dynamics are determined by a discrete time
stochastic control process, but the agent cannot directly observe the underly-
ing state [13]. Our contribution is the use of sentiment analysis done on news
related to a traded company and its services in conjunction with a reinforcement
learning algorithm to learn an appropriate policy to trade stocks of the given
company. To find the relevant news title on-which to apply sentiment analysis,
we use a traversal of a knowledge graph.

After highlighting the related work in Sect. 2, we present our approach in
Sect. 3 combining news headlines and their sentiment after finding their relation
with the relevant stock hinging on a knowledge graph, and finally learning a
good policy for buying and selling using Reinforcement Learning. As a proof
of concept, we present an empirical evaluation using the stocks of Microsoft,
Amazon and Tesla between 2014 and 2018 in Sect. 4. Section 5 highlights the
analysis of the observed results. Finally, we present perspective on future work.

2 Related Work

There have been many approaches in the past which try to model traditional
time series approaches for stock price prediction [12,23,28]. The main idea in
these approaches is to predict the stock price at the next time step given the
past trend. This prediction is then fed to a classifier which tries to predict the
final buy/sell/hold action. Most modern deep learning techniques try to use
some form of recurrent networks to model the sequential trend in the data.
The authors of [4] used LSTMs with great success to make predictions in the
Chinese stock market. Approaches integrating some form of event data has been
explored as well to some extent. For instance, the authors of [16] used manually
extracted features from news headlines to integrate event information and spliced
them with several other economic indicators according to prior knowledge and
combined them together as the input to neural networks.

An alternative approach is to use Reinforcement Learning. Fischer shows in
a comprehensive survey on the use of RL in financial markets that there are
many attempted approaches but the problem is far from being solved [7]. From
a reinforcement learning (RL) perspective, [27] proposed an Adaptive Network
Fuzzy Inference System (ANFIS) supplemented by the use of RL as a non-
arbitrage algorithmic trading system. The authors in [5] use a deep learning



Algorithmic Trading with Deep Reinforcement Learning 169

component which automatically senses the changing market dynamics for feature
learning and these features are used as input to an RL module which learns to
make trading decisions. [10] explored the use of actor-critic methods for stock
trading and serves as one of the primary motivations behind our research.

Furthermore, public opinion can often provide valuable indication as to how
a company might be posed to perform in the market. Attempts have been made
previously to directly classify each comment on a stock trading forum as a indi-
cator of a buy/sell/hold decision [25]. Rather than use text data in its entirety as
a variable to make decisions, the general sentiment of the text can be extracted
as a score [22] and combined with other related data.

Our approach in a way tries to take the best of these methods and extend
them into a single dynamic system paired with knowledge graphs. We extract
sentiments from event information and use knowledge graphs to detect implicit
relationships between event information and a given traded company. We then
combine this information with the time series stock data, and allow our agent to
learn an optimal policy using deep reinforcement learning. We also take advan-
tage of more recent RL techniques such as the DQN (Deep Q-Learning) intro-
duced by [20]. This approach of combining knowledge graph driven sentiment
data with deep RL is our novel proposal and has not been explored in any
literature we surveyed.

3 Proposed Approach

Our approach combines concepts from a few different domains; hence, we give a
short overview of each of them and connect how they are used in our approach.

3.1 Reinforcement Learning

The typical reinforcement learning setting involves an agent and an environment
loop (Fig. 1a), where the agent interacts with the environment via some action
and then it receives back some observation from the environment which tells it
how the environment has/has not changed as an effect of that action. Such a
sequence of action-observations is known as an episode; which terminates when
a failure condition is met or the goal is achieved. In most cases, this observation
contains a human designed reward(rt), which gives the agent some indication as
to how good or bad that action(at) might have been. Reward designing is an
active area of research itself, but for simple cases we can just assign the reward to
be 1 in case of successful completion of the task, and 0 for all other interactions.
Also the information from the observation can be used to maintain some sense of
a state(st), which is akin to the agents perception of the world. This continuous
back and forth interaction between the agent and the environment with the
sole purpose of trying to maximise the return (sum of rewards over an entire
episode) makes the agent learn an optimal behaviour in the given environment
for a particular task.



170 A. Nan et al.

Fig. 1. (a) Partially Observable Markov Decision Process [6]; (b) Training score vs the
number of episodes for the agent with sentiment information.

In some cases, the agent only has limited visibility of the environment.
Such scenarios are modelled as a Partially Observable Markov Decision Pro-
cess (POMDP) [17]. In these cases, the agent maintains its perception of the
world via observations which are mappings from the underlying true environ-
mental state. For instance, in case of a stock trading agent, the environment is
the stock market and the actions are buying, selling, or holding. Since the agent
does not have a perfect idea of everything that is going on in the world, the
POMDP of the real world is represented by features of the state such as stock
prices, sentiments, historical trend, etc.

Q-learning. is a model free reinforcement learning algorithm. Given an envi-
ronment, the agent tries to learn a policy which maximises the total reward it
gets from the environment at the end of an episode (a sequence of interactions).
For instance, in our problem setting, an episode during training would be the
sequence of interactions the agent makes with the stock market starting from
January 1, 2014 and ending on December 31, 2017. The agent would try to learn
a behaviour which maximises the value of its portfolio at the end date.

The intuition behind Q-learning is that the agent tries to learn the utility
of being in a certain state and taking a particular action in that state and then
following the behavioural policy learnt so far till the end of the episode (called
the action value of that state). So, Q-learning tries to learn the action value
of every state and action. It does this by exploring and exploiting at the same
time. For instance, a trading agent starts on Day 1 and it has two options: Buy
and Sell. It takes the Buy option (say arbitrarily) the first time it experiences
Day 1 and receives a reward of 10 units. For optimal performance, the agent
will usually follow the best possible option available to it. Usually ; because if it
always followed the best option that it thinks is available to it, it will not learn
the value of taking the other options available to it in that state. For instance,
in the above example, Sell could have led to a reward of 20, but it would have
never known this if it always took the Buy option after it first experienced Day
1 with a Buy action. This dilemma is known as the exploration and exploitation
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trade-off. A naive, yet effective way of solving this is to always take the ”greedy”
option, except also act randomly a small percentage of the time, say with a
probability of 0.1. This is known as the ε-greedy approach with ε = 0.1. This
finally brings us to the Q-learning equation, which updates the action values of
each state and action pair.

Q(St, at) ← Q(St, at) + α[Rt+1 + γ max
a

Q(St+1, a) − Q(St, at)]

Function Approximation. A shortcoming of the above mentioned Q-learning
methodology is the obvious fact that it relies on the idea of a distinct state. What
this means is that the Q-learning update can only be applied to an environment
where each state(st) can be distinctly labelled. This would mean we would have
to maintain a huge table of every possible state and action combination that
can be encountered and their action values. This does not generalize very well
and is not tractable for real world problems. For instance, given today’s state of
the world to a stock trading agent, it might make some decision and learn from
it, but it is very unlikely that the exact same conditions will ever be presented
to it again. The solution to this is to use a function approximator, which given
the current environmental observation and the chosen action maps them to an
action value. The parameters of the approximator can then be updated similar to
supervised learning once we have observed the actual reward. In our experiments,
we use an artificial neural network for function approximation.

For large state spaces since optimizing artificial neural networks via just
back-propagation becomes unstable so we adapt the modifications to a Deep
Q-Network (DQN) as presented by [20]. These modifications include gradient
clipping, experience replay and using a Q-network which periodically updates
an independent target network.

3.2 Sentiment Analysis

Sentiment analysis is an automated process to annotate text predicted to be
expressing a positive or negative opinion. Also known as opinion mining, sen-
timent analysis categorizes text into typically two classes positive vs. negative,
and often a third class: neutral. Discovering the polarity of a text is often used to
analyze product or service reviews, like restaurants, movies, electronics, etc. but
also other written text like blog posts, memos, etc. There are two main types of
sentiment analysis approaches, namely lexicon-based using a dictionary of words
with their polarities; and machine learning based which build a predictive model
using a labelled train dataset [30].

Each sentence or sequence of sentences in a language in general, has a positive
or a negative connotation associated with it; sometimes neutral. A news headline,
the full news article itself, or even this paper, typically express an opinion to
some degree. Natural Language Processing techniques are used to extract such
connotations in an automated manner [9]. Once extracted, it can serve as a
vital data point for applications such as in marketing to understand customers’
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opinion, as mentioned above. In our case we would like to use sentiment analysis
to assess whether a news headline is favorable or admonitory to the company
for which we are trading stocks.

Consequently, in our case, each news headline is posited to be either positive,
negative or neutral from the perspective of the company we are considering
trading stocks for. Positive sentiments can predict a general upturn in stock
prices for a company, and similarly negative sentiments can possibly indicate
a downturn [8,24]. While sentiments can be directly extracted from any text
corpus (news headlines in this case), a lot more implicit information can be
obtained by pairing knowledge graphs with this approach.

3.3 Knowledge Graphs

Lexical thesauri and ontologies are databases of terms interconnected with
semantic relationships. Some examples include WordNet1 for English terms and
the Unified Medical Language System (UMLS)2 for terms in the medical domain.
They are often represented in a graph with entities and relationships. A knowl-
edge base or a knowledge graph, are more complex graphs where the entities
are not simple terms but a composite of knowledge. Some examples include
DBpedia3 or Google Knowledge Graph, which we use in this work.

The Google Knowledge Graph was specifically created to enhance the results
of a Google search. Traditionally a Web search used to be limited to string
matching keywords in an entire corpora to a given query. However, since enti-
ties in the real world are linked to each other and this link can be expressed in
different ways, simple string matching is not adequate for an intelligent search.
This interconnection is characterized in the knowledge graph which represents a
graph-like data structure where each node is an entity and the edges between the
nodes indicate the relationships between them. For instance, a naive search for
“Bill Gates” using simple string matching would not bring up Microsoft. How-
ever, with a knowledge graph, since “Bill Gates”, being the principal founder of
Microsoft, he is a very relevant node close to the ”Microsoft” node in a knowledge
graph and hence, “Microsoft” would be brought up as a relevant search result.
This way entities which are related to a company, but not explicitly mentioned in
the news headline, can be identified as potential factors impacting stock prices.
In our case, headlines covering Excel, Windows, Azure, Steve Ballmer, or Satya
Nadella, or other entities connected to Microsoft in the knowledge graph, would
be passed to the sentiment analysis and their polarity exploited in the learning
algorithm.

1 https://wordnet.princeton.edu/.
2 https://www.nlm.nih.gov/research/umls/.
3 https://wiki.dbpedia.org/.

https://wordnet.princeton.edu/
https://www.nlm.nih.gov/research/umls/
https://wiki.dbpedia.org/
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4 Empirical Evaluation

4.1 Data

Stock Data: We used stock data from the Yahoo Finance API4 dated from
January 1, 2014 to December 31, 2017 for our training environment. The data for
the test period is from January 1, 2018 to December 31, 2018. In our experiment,
for both training and testing cases we used Microsoft Corporation’s (MSFT),
Amazon.com Inc. (AMZN) and Tesla Inc. (TSLA) stock data. - i.e., we trained
our agent to trade theses stocks.

Sentiment Data: For news information, we scraped historical news headlines
from the Reuters Twitter account5 using a python scraper [29]. The time period
of the news headlines corresponds exactly to the stock data, i.e., training data
from January 1, 2014 to December 31, 2017 and testing data from January 1,
2018 to December 31, 2018.

Next, for each news headline we remove stopwords and tokenize it. Each token
is then checked for the existence of an Organization node relationship with the
specific company of interest (Microsoft Corporation in our example case) in a
knowledge graph within a pre-specified distance. In our experiment we chose a
distance measure of 5. Selecting a walk-length longer than this resulted in too
much noise, and any shorter meant there would be very few implicit relationships
found. This value was tuned empirically on the basis of some manual experiments
we performed. For our experiments, we used the Google Knowledge Graph6.
Once we find that any token in a headline is within this pre-specified distance of
our organization (example: Microsoft), by extension we deem the entire headline
as relevant to the organization in consideration. This is a naive approach, but
allows us to make better use of news data that might not be directly linked to
Microsoft, but might have indirect consequences. For instance, a news headline
talking about Azure, which is Microsoft’s cloud service offering, would not get
identified as a news affecting MSFT stock prices, but by using a knowledge
graph, we can uncover this implicit relationship.

Once we have headlines relevant to Microsoft, we use an ensemble sentiment
analyser for sentiment classification. Since some headlines proved to be tricky
to classify correctly by any single available sentiment classifier, we tried this
approach of using an ensemble comprising of IBM Watson [11], TextBlob [1]
and NLTK [18]. We classify each news headline as positive and negative news
and use the classification from the classifiers above, choosing whichever one has
the highest confidence. If there are multiple headlines on the same day, we use the
majority of the sentiment score from all headlines for that day leading to a net
+1 if majority is positive sentiment and −1 if majority is negative sentiment. An
example positive headline dated 2016-07-14 can read: “Microsoft wins landmark
appeal over seizure of foreign emails.”, while an example of a headline expressing
4 https://finance.yahoo.com/quote/MSFT/history/.
5 https://twitter.com/reuters.
6 https://developers.google.com/knowledge-graph/.

https://finance.yahoo.com/quote/MSFT/history/
https://twitter.com/reuters
https://developers.google.com/knowledge-graph/
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a negative sentiment dated 2015-12-31 is “Former employees say Microsoft didn’t
tell victims about hacking.”

4.2 MDP Formulation

Episode: A single episode consists of the agent interacting with the stock trading
environment once per day starting from January 1, 2014 and lasts until Decem-
ber 31, 2017 (for the training period). The agent explores different policies and
improves its existing policy as more and more episodes elapse.

State: Our current environment describes each state using 6 variables:

1. Current amount of money the agent has;
2. Current number of stocks the agent has;
3. Opening stock price on today’s date;
4. Difference between today’s opening price and average opening price of last

5 d’ window;
5. Difference between today’s opening price and average opening price of last

50 d’ window;
6. Average sentiment towards the company for today’s date.

While (1) (2) (3) are values necessary for maintaining the state of the agent (4)
and (5) were added to give it some indication of the trend in the stock prices. (4)
provides the trend over a short time window (5 days), while (5) provides the trend
information over a longer time window (50 days). (6) provides the sentiment
information calculated as described in the previous section. In short, relevance
of headlines are assessed with a knowledge graph. The sentiment expressed in
the relevant pieces are used in (6). Figure 2 shows the entire workflow for the
construction of the agent’s state before it goes into the DQN.

Fig. 2. Construction of agent’s state
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Action Space: The agent, our stock trading bot, interacts with this environ-
ment on a per day basis. It has the option to take three actions:
(1). Buy a stock; (2). Sell a stock; (3). Do nothing/hold.

Rewards: The intuition behind rewards is to provide a feedback signal to the
agent to allow it to learn which actions are good/bad based on when they were
taken. So, in our case, a net increase in portfolio at the end of the trading period
should lead to a positive reward, while a net loss would lead to a negative reward.
So, our initial attempts focused on this reward scheme where the agent’s reward
was the net profit/loss after 3 years (2014–2017). But, this reward signal proved
too sparse to train on, since the agent got just one single reward after 3 years of
activity and it is difficult for it to know which action taken when (over 3 years)
contributed to the final reward. The agent just learnt to “Do nothing”, since as
the result of a general increasing trend in the MSFT stock price, it led to a small
net increase in the portfolio and this was a local optima for the agent which it
could not move out of due to the sparse reward signals.

Finally, after plenty of experimentation with the reward scheme, we arrived at
one where it was rewarded for not just making a profit, but also for buying/selling
on a day to day basis. If on any given day, it decided to Buy or Sell, it was given
a reward of +1 for making a profit and −1 for making a loss. It was given a small
negative reward of −0.1 for “Doing nothing” to discourage it from being passive
for extended periods. A reward of −10 was given if it ran out of money, but still
had stocks. A reward of −100 was given in case it went completely bankrupt
with 0 stocks in hand and no money to buy a single stock.

Deep Q-Network (DQN) Architecture: The DQN used two identical neural
networks (Q-network and target network) each with 3 hidden layers for function
approximation. Each hidden layer had a size of 64 units and used ReLU acti-
vation. The input layer had 6 input nodes corresponding to each state feature.
The output layer had 3 nodes corresponding to the action space. The experience
replay buffer size was restricted to a size of 1000.

Training: The DQN was trained with mini-batch gradient descent using Adam
[15] on the Huber loss. During training the agent started off with $1000 USD and
10 MSFT, AMZN or TSLA shares on January 1, 2014 and interacted with the
environment till December 31, 2017. The agent in the form of a DQN is trained
over 2000 epochs.

Figure 1 presents how the return (sum of rewards for all actions taken as
specified by the reward scheme). The agent initially starts with a large negative
value (representing a high loss portfolio) and then gradually converges towards
a better policy (which possibly yields profits) as more training episodes elapse.

5 Results and Analysis

The primary hypothesis of this work was that providing sentiment information
to the agent on a daily basis would add to its performance ceiling and it would be
able to make more profit via trading. Therefore, we compare both approaches,
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i.e., an agent with sentiment data provided and another agent without any sen-
timent data provided. We evaluate both on our test data set, which spans from
January 1, 2018 to December 31, 2018. If sentiments do add any additional value
to the environment, it should be able to make more profit.

Table 1. Sharpe Ratios for different approaches

Agent Sharpe ratio MSFT Sharpe ratio AMZN Sharpe ratio TSLA

Random policy −2.249 −1.894 −2.113

Without sentiment −1.357 1.487 0.926

With sentiment 2.432 2.212 1.874

5.1 Training Data Analysis

Before looking at the performance on the test data, we also analyse the perfor-
mance of both models on the training data as well. Figure 3 shows this compar-
ative analysis. The Baseline Portfolio Value is the starting portfolio value of the
agent (i.e., the net value of 1000$ and 10 stocks on starting day). The Random
Policy is an agent which takes random actions (Buy, Sell, Hold) on each inter-
action. As expected, a random policy agent goes broke soon enough and makes
no profit. The agent with no sentiment input, does learn a policy good enough
to make profit, but nowhere near good enough as compared to the agent which
had sentiment input.

Figure 3 shows the same trend with the same training done on data about
Microsoft, Amazon and Tesla stocks,. We can distinctly see that the learned
policy using sentiment from news headlines outperforms the policy that only
considers stock data.

5.2 Test Data Analysis

For Microsoft, during the test period, the stock prices at the beginning start
quite a bit higher (approx. $85 in January 2018) as compared to the training
period start (approx. $40 in January 2014). Despite this, the MSFT agent (Fig. 3)
learned a policy good enough to generate profit, both with and without sentiment
data. However, in general, it was not able to generalize to the test data as
well as we saw during training, and its profits dropped. But still, the agent
with sentiment information ends up making more profit than the agent without
sentiment data. Similar trends are present for both the other stocks as well.

5.3 Sharpe Ratio

The Sharpe ratio is another measure that is often used in trading as a means of
evaluating the risk adjusted return on investment. It can be used as a metric to
evaluate the performance of different trading strategies. It is calculated as the
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expected return of a portfolio minus the risk-free rate of return, divided by the
standard deviation of the portfolio investment. In modern portfolio theory [19],
a Sharpe ratio of 1 is considered decent. About 2 or higher is very good and 3
is considered excellent. Table 1 presents this data for our agents’ policies.

Fig. 3. Performance (Total portfolio value) of different agents for different
stocks: MSFT, AMZN and TSLA (Left column: Train data - period (January
1, 2014 to December 31, 2017; Right column: Test data - period (January 1, 2018 to
December 31, 2018.)

The result for the random policy is as expected. It learns a terrible policy
and its Sharpe ratio is the least good among all three approaches. Surprisingly,
the agent without sentiment data learns a pretty poor policy as well (albeit still
better than the random policy), despite making profits. On closer analysis, it
turns out that the MSFT stock had a general upward trend already and due
to this reason a not-so-good policy could also produce profits, despite making
sub-optimal decisions as indicated by the Sharpe ratio. Finally, we come to the
agent which learnt a trading policy along with the sentiment data. Not only did
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it procure the highest profits as stated earlier, but also its decision making was
very good as evidenced by its Sharpe ratio of 2.4 for MSFT, 2.2 for AMZN, and
close to 2 for TSLA.

6 Discussion and Conclusion

Much of the information about the real environment has been left out in this
effort since we wanted to work from the ground up, looking just at how the
sentiment data adds to the analysis. The daily closing price and the volume of
data being traded for the last day or for the last “x-day” window (e.g., 5-day,
50-day windows) could add further information to the environment as well.

Furthermore, instead of explicitly extracting the last “x-day” window opening
price, we could use a Recurrent Neural Network (RNN) for the network to retain
on some historical trend information intrinsically. Initial experiments with an
RNN proved difficult to optimize for the network, possibly due to noise in the
data as well as probably not having the right hyper-parameters. This version
of the network with RNNs took particularly long to train and was difficult to
analyse because there was no way to extract what was happening in the hidden
state of the network, so we took an alternative approach of explicitly providing
it the last 5 and 50 day average opening price.

Also, our stock trading bot was limited to buying/selling a single stock per
day, which very likely limits the amount of profit it could make. Making the
agents action space 2-dimensional where the second dimension specifies the num-
ber of stocks bought/sold should be an easy way to remedy this. We tried an
initial attempt at giving it the ability to trade with 1 stock or 5 stock per day,
but the state space became much larger and coming up with a reward scheme
that worked for this problem as well proved to be quite challenging.

In the real world, trading takes place at much higher frequencies than at an
intra-day frequency; extending this to a much finer granular level with data on
a second-by-second or minute-by-minute basis should be straightforward with
our current framework. Also our work focuses on using stock data of a single
company, but it can easily be extended to use stock data from multiple entities.

Also, in the knowledge graph we kept the relationship distance threshold
quite limited so as to restrain the noise added to the data in terms of news
headlines. Provided with a knowledge graph which has weighted nodes, which
tell if there is a positive or negative relationship between the entity in question
and the company stocks are being traded for, we can potentially exploit much
longer distance relationships and in a much more accurate manner.

We present an approach of extracting implicit relationships between entities
from news headlines via knowledge graphs and exploiting sentiment analysis,
positive or negative, on these headlines, and then using this information, train
a reinforcement learning agent. The trained reinforcement learning agent can
perform better in terms of profits incurred as compared to an agent which does
not have this additional information on headline sentiments. The whole pipeline
as such is a novel approach and the empirical study demonstrates its validity.
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Abstract. Coreset selection, which aims to select a subset of the most
informative training samples, is a long-standing learning problem that
can benefit many downstream tasks such as data-efficient learning, con-
tinual learning, neural architecture search, active learning, etc. How-
ever, many existing coreset selection methods are not designed for
deep learning, which may have high complexity and poor generaliza-
tion performance. In addition, the recently proposed methods are eval-
uated on models, datasets, and settings of different complexities. To
advance the research of coreset selection in deep learning, we contribute
a comprehensive code library (The code is available in https://github.
com/PatrickZH/DeepCore.), namely DeepCore, and provide an empirical
study on popular coreset selection methods on CIFAR10 and ImageNet
datasets. Extensive experiments on CIFAR10 and ImageNet datasets
verify that, although various methods have advantages in certain exper-
iment settings, random selection is still a strong baseline.

Keywords: Coreset selection · Data-efficient learning · Deep learning

1 Introduction

Deep learning has shown unprecedented success in many research areas such as
computer vision, etc. As it evolves, not only neural networks but also the training
datasets are becoming increasingly larger, which requires massive memory and
computation to achieve the state-of-the-art. One promising technique to reduce
the computational cost is coreset selection [20,21,32,38] that aims to select a
small subset of the most informative training samples S from a given large
training dataset T . The models trained on the coreset are supposed to have
close generalization performance to those trained on the original training set.

Coreset selection has been widely studied since the era of traditional machine
learning, whose research generally focuses on how to approximate the distribu-
tion of the whole dataset with a subset, for example, they assume that data are
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from a mixture of Gaussians in a given metric space [3,4,7,13,52]. However, for
those classic coreset selection methods proposed for traditional machine learning
tasks, their effectiveness in deep learning is doubtful, due to the high compu-
tational complexity and fixed data representations. Recently, the research of
coreset selection for deep learning tasks emerges [21,38,49]. The newly devel-
oped coreset selection methods are evaluated in different settings in terms of
models, datasets, tasks, and selection fractions, resulting in their performances
hardly being compared fairly.

We focus our studies on image classification tasks. To address the above
problems, in this paper, we provide an exhaustive empirical study on popular
coreset selection methods in the same settings. We contribute a comprehensive
code library, namely DeepCore, for advancing the research of coreset selection in
deep learning. Specifically, we re-implement 12 popular coreset selection methods
in a unified framework based on PyTorch [37]. These methods are compared in
settings of various selection fractions from 0.1% to 90% on CIFAR10 [25] and
ImageNet-1K [39] datasets. Besides the reported results in the paper, our library
supports popular deep neural architectures, image classification datasets and
coreset selection settings.

2 Review of Coreset Selection Methods

In this section, we first formulate the problem of coreset selection. Then, brief
surveys of methods and applications of coreset selection are provided respec-
tively.

2.1 Problem Statement

In a learning task, we are given a large training set T = {(xi, yi)}|T |
i=1, where

xi ∈ X is the input, yi ∈ Y is the ground-truth label of xi, where X and Y
denote the input and output spaces, respectively. Coreset selection aims to find
the most informative subset S ⊂ T with the constraint |S| < |T |, so that the
model θS trained on S has close generalization performance to the model θT

trained on the whole training set T .

2.2 Survey: Methodologies

Geometry Based Methods. It is assumed that data points close to each
other in the feature space tend to have similar properties. Therefore, geometry
based methods [1,7,41,46] try to remove those data points providing redundant
information then the left data points form a coreset S where |S| � |T |.
Herding. The Herding method selects data points based on the distance
between the coreset center and original dataset center in the feature space. The
algorithm incrementally and greedily adds one sample each time into the coreset
that can minimize distance between two centers [7,52].

k-Center Greedy. This method tries to solves the minimax facility location
problem [12], ı.e. selecting k samples as S from the full dataset T such that the
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largest distance between a data point in T \S and its closest data point in S is
minimized:

min
S⊂T

max
xi∈T \S

min
xj∈S

D(xi,xj), (1)

where D(·, ·) is the distance function. The problem is NP-hard, and a greedy
approximation known as k-Center Greedy has been proposed in [41]. k-
Center Greedy has been successfully extended to a wide range of applications,
for instance, active learning [1,41] and efficient GAN training [46].

Uncertainty Based Methods. Samples with lower confidence may have a
greater impact on model optimization than those with higher confidence, and
should therefore be included in the coreset. The following are commonly used
metrics of sample uncertainty given a certain classifier and training epoch,
namely Least Confidence, Entropy and Margin [9], where C is the number
of classes. We select samples in descending order of the scores:

sleast confidence(x) =1 − max
i=1,...,C

P (ŷ = i|x)

sentropy(x) = −
C∑

i=1

P (ŷ = i|x) log P (ŷ = i|x)

smargin(x) =1 − min
y �=ŷ

(P (ŷ|x) − P (y|x)).

(2)

Error/Loss Based Methods. In a dataset, training samples are more impor-
tant if they contribute more to the error or loss when training neural networks.
Importance can be measured by the loss or gradient of each sample or its influ-
ence on other samples’ prediction during model training. Those samples with
the largest importance are selected as the coreset.

Forgetting Events. Toneva et al. [49] count how many times the forgetting
happens during the training, i.e. the misclassification of a sample in the current
epoch after having been correctly classified in the previous epoch, formally acct

i >
acct+1

i , where acct
i indicates the correctness (True or False) of the prediction of

sample i at epoch t. The number of forgetting reveals intrinsic properties of the
training data, allowing for the removal of unforgettable examples with minimal
performance drop.

GraNd and EL2N Scores. The GraNd score [38] of sample (x, y) at epoch t
is defined as

χt(x, y) � Eθt
||∇θt

�(x, y;θt)||2. (3)

It measures the average contribution from each sample to the decline of the
training loss at early epoch t across several different independent runs. The
score calculated at early training stages, e.g. after a few epochs, works well, thus
this method requires less computational cost. An approximation of the GraNd
score is also provided, named EL2N score, which measures the norm of error
vector:

χ∗
t (x, y) � Eθt

||p(θt,x) − y||2. (4)



184 C. Guo et al.

Importance Sampling. In importance sampling (or adaptive sampling), we
define s(x, y) is the upper-bounded (worst-case) contribution to the total loss
function from the data point (x, y), aka sensitivity score. It can be formulated
as:

s(x, y) = max
θ∈θ

�(x, y;θ)∑
(x′,y′)∈T �(x′, y′;θ)

, (5)

where �(x, y) is a non-negative cost function with parameter θ ∈ θ. For each data
point in T , the probability of being selected is set as p(x, y) = s(x,y)∑

(x ,y)∈T s(x,y) .

The coreset S is constructed based on the probabilities [3,34]. Similar ideas
are proposed in Black box learners [10] and Jtt [30], where wrongly classified
samples will be upweighted or their sampling probability will be increased.

Decision Boundary Based Methods. Since data points distributed near the
decision boundary are hard to separate, those data points closest to the decision
boundary can also be used as the coreset.

Adversarial DeepFool. While exact distance to the decision boundary is
inaccessible, Ducoffe and Precioso [11] seek the approximation of these distances
in the input space X . By giving perturbations to samples until the predictive
labels of samples are changed, those data points require the smallest adversarial
perturbation are closest to the decision boundary.

Contrastive Active Learning. To find data points near the decision bound-
ary, Contrastive Active Learning (Cal) [31] selects samples whose predictive
likelihood diverges the most from their neighbors to construct the coreset.

Gradient Matching Based Methods. Deep models are usually trained using
(stochastic) gradient descent algorithm. Therefore, we expect that the gradients
produced by the full training dataset

∑
(x,y)∈T ∇θ�(x, y;θ) can be replaced by

the (weighted) gradients produced by a subset
∑

(x,y)∈S wx∇θ�(x, y;θ) with
minimal difference:

min
w,S

D(
1

|T |
∑

(x,y)∈T
∇θ�(x, y;θ),

1
|w|1

∑

(x,y)∈S
wx∇θ�(x, y;θ))

s.t. S ⊂ T , wx ≥ 0,

(6)

where w is the subset weight vector, |w|1 is the sum of the absolute values and
D(·, ·) measures the distance between two gradients.

Craig. Mirzasoleiman et al. [32] try to find an optimal coreset that approxi-
mates the full dataset gradients under a maximum error ε by converting gradient
matching problem to the maximization of a monotone submodular function F
and then use greedy approach to optimize F .

GradMatch. Compared to Craig, the GradMatch [20] method is able to
achieve the same error ε of the gradient matching but with a smaller subset.
GradMatch introduces a squared l2 regularization term over the weight vector
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w with coefficient λ to discourage assigning large weights to individual samples.
To solve the optimization problem, it presents a greedy algorithm – Orthogo-
nal Matching Pursuit, which can guarantee 1 − exp( −λ

λ+k∇2
max

) error with the
constraint |S| ≤ k, k is a preset constant.

Bilevel Optimization Based Methods. Coreset selection can be posed as a
bilevel optimization problem. Existing studies usually consider the selection of
subset (optimization of samples S or selection weights w) as the outer objec-
tive and the optimization of model parameters θ on S as the inner objective.
Representative methods include cardinality-constrained bilevel optimization [5]
for continual learning, Retrieve for semi-supervised learning (SSL) [22], and
Glister [21] for supervised learning and active learning.

Retrieve. The Retrieve method [22] discusses the scenario of SSL under
bilevel optimization, where we have both a labeled set T and an unlabled set P.
The bilevel optimization problem in Retrieve is formulated as

w∗ = arg min
w

∑

(x,y)∈T
�s(x, y; arg min

θ
(

∑

(x,y)∈T
�s(x, y;θ) + λ

∑

x∈P
wx�u(x;θ))),

(7)
where �s is the labeled-data loss, e.g. cross-entropy and �u is the unlabeled-
data loss for SSL, e.g. consistency-regularization loss. λ is the regularization
coefficient.

Glister. To guarantee the robustness, Glister [21] introduces a validation set
V on the outer optimization and the log-likelihood �� in the bilevel optimization:

S∗ = arg max
S⊂T

∑

(x,y)∈V
��(x, y; arg max

θ

∑

(x,y)∈S
��(x, y;θ)). (8)

Submodularity Based Methods. Submodular functions [17] are set functions
f : 2V → R, which return a real value for any U ⊂ V. f is a submodular function,
if for A ⊂ B ⊂ V and ∀x ∈ V\B:

f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B). (9)

Submodular functions naturally measure the diversity and information, thus can
be a powerful tool for coreset selection by maximizing them. Many functions obey
the above definition, e.g.Graph Cut (GC), Facility Location (FL), Log Deter-
minant [16], etc. For maximizing submodular functions under cardinality con-
straint, greedy algorithms have been proved to have a bounded approximation
factor of 1 − 1

e [35].

Fass. Wei et al. [51] discuss the connection between likelihood functions and
submodularity, proving that under a cardinality constraint, maximizing likeli-
hood function is equivalent to maximization of submodular functions for Näıve
Bayes or Nearest Neighbor classifier, naturally providing a powerful tool for
coreset selection. By introducing submodularity into Naive Bayes and Nearest
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Neighbor, they propose a novel framework for active learning namely Filtered
Active Submodular Selection (Fass).

Prism. Kaushal et al. [19] develop Prism, a submodular method for targeted
subset selection, which is a learning scenario similar to active learning. In targeted
subset selection, a subset S will be selected to be labeled from a large unlabeled
set P, with additional requirement that S has to be aligned with the targeted
set T of specific user intent.

Similar. Kothawade et al. [24] introduce Similar, a unified framework of sub-
modular methods that successfully extends submodularity to broader settings
which may involve rare classes, redundancy, out-of-distribution data, etc.

Proxy Based Methods. Many coreset selection methods require to train mod-
els on the whole dataset for calculating features or some metrics for one or many
times. To reduce this training cost, Selection via Proxy methods [9,40] are
proposed, which train a lighter or shallower version of the target models as proxy
models. Specifically, they create proxy models by reducing hidden layers, nar-
rowing dimensions, or cutting down training epochs. Then, coresets are selected
more efficiently on these proxy models.

2.3 Survey: Applications

Data-efficient Learning. The basic application of coreset selection is to enable
efficient machine learning [20,32,38,49]. Training models on coresets can reduce
the training cost while preserving testing performance. Especially, in Neural
Architecture Search (NAS) [44], thousands to millions deep models have to be
trained and then evaluated on the same dataset. Coreset can be used as a proxy
dataset to efficiently train and evaluate candidates [9,40], which significantly
reduces computational cost.

Continual Learning. Coreset selection is also a key technique to construct
memory for continual learning or incremental learning [2,5,55], in order to relieve
the catastrophic forgetting problem. In the popular continual learning setting,
a memory buffer is maintained to store informative training samples from pre-
vious tasks for rehearsal in future tasks. It is proven that continual learning
performance heavily relies on the quality of memory, i.e. coreset [23].

Active Learning. Active learning [42,43] aims to achieve better performance
with the minimal query cost by selecting informative samples from the unlabeled
pool P to label. Thus, it can be posed as a coreset selection problem [11,24,31,
41,51].

Besides the above, coreset selection is studied and successfully applied in
many other machine learning problems, such as robust learning against noise [22,
24,33], clustering [3,4,47], semi-supervised learning [6,22], unsupervised learning
[18], efficient GAN training [46], regression tasks [8,34] etc.
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3 DeepCore Library

In the literature, coreset selection methods have been proposed and tested in
different experiment settings in terms of dataset, model architecture, coreset
size, augmentation, training strategy, etc. This may lead to unfair comparisons
between different methods and unconvincing conclusions. For instance, some
methods may have only been evaluated on MNIST with shallow models, while
others are tested on the challenging ImageNet dataset with deep neural networks.
Even though tested on the same dataset, different works are likely to use different
training strategies and data augmentations which significantly affect the perfor-
mance. Furthermore, it causes future researchers inconvenience in identifying
and improving the state-of-the-art.

Therefore, we develop DeepCore, an extensive and extendable code library, for
coreset selection in deep learning, reproducing dozens of popular and advanced
coreset selection methods and enabling a fair comparison of different methods
in the same experimental settings. DeepCore is highly modular, allowing to add
new architectures, datasets, methods and learning scenarios easily. We build
DeepCore on PyTorch [37].

Coreset Methods. We list the methods that have been re-implemented in
DeepCore according to the categories in 2.2, they are 1) geometry based meth-
ods Contextual Diversity (CD) [1], Herding [52] and k-Center Greedy
[41]; 2) uncertainty based methods Least Confidence, Entropy and Margin
[9]; 3) error/loss based methods Forgetting [49] and GraNd [38]; 4) decision
boundary based methods Cal [31] and DeepFool [11]; 5) gradient matching
based methods Craig [32] and GradMatch [20]; 6) bilevel optimization meth-
ods Glister [21]; and 7) submodularity based methods with Graph Cut (GC)
and Facility Location (FL) functions [16]. We also have Random selection
as the baseline.

Datasets. We provide the experiment results on CIFAR10 [25] and ImageNet-
1K [39] in this paper. Besides, our DeepCore has provided the interface for
other popular computer vision datasets, namely MNIST [29], QMNIST [54],
FashionMNIST [53], SVHN [36], CIFAR100 [25] and TinyImageNet [27].

Network Architectures. We provide the code of popular architectures, namely
MLP, LeNet [28], AlexNet [26], VGG [45], Inception-v3 [48], ResNet [14],
WideResNet [56] and MobileNet-v3 [15].

4 Experiment Results

In this section, we use our DeepCore to evaluate different coreset selection
methods in multiple learning settings on CIFAR10 and ImageNet-1K datasets.
ResNet-18 is used as the default architecture in all experiments.
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Table 1. Coreset selection performances on CIFAR10. We train randomly initialized
ResNet-18 on the coresets of CIFAR10 produced by different methods and then test
on the real testing set.

Fraction 0.1% 0.5% 1% 5% 10% 20% 30% 40% 50% 60% 90% 100%

Random 21.0 ± 0.3 30.8 ± 0.6 36.7 ± 1.7 64.5 ± 1.1 75.7 ± 2.0 87.1 ± 0.5 90.2 ± 0.3 92.1 ± 0.1 93.3 ± 0.2 94.0 ± 0.2 95.2 ± 0.1 95.6 ± 0.1

CD [1] 15.8 ± 1.2 20.5 ± 0.7 23.6 ± 1.9 38.1 ± 2.2 58.8 ± 2.0 81.3 ± 2.5 90.8 ± 0.5 93.3 ± 0.4 94.3 ± 0.2 94.6 ± 0.6 95.4 ± 0.1 95.6 ± 0.1

Herding [52] 20.2 ± 2.3 27.3 ± 1.5 34.8 ± 3.3 51.0 ± 3.1 63.5 ± 3.4 74.1 ± 2.5 80.1 ± 2.2 85.2 ± 0.9 88.0 ± 1.1 89.8 ± 0.9 94.6 ± 0.4 95.6 ± 0.1

k-Center greedy
[41]

18.5 ± 0.3 26.8 ± 1.2 31.1 ± 1.2 51.4 ± 2.1 75.8 ± 2.4 87.0 ± 0.3 90.9 ± 0.4 92.8 ± 0.1 93.9 ± 0.2 94.1 ± 0.1 95.4 ± 0.1 95.6 ± 0.1

Least
confidence [9]

14.2 ± 0.9 17.2 ± 1.8 19.8 ± 2.2 36.2 ± 1.9 57.6 ± 3.1 81.9 ± 2.2 90.3 ± 0.4 93.1 ± 0.5 94.5 ± 0.1 94.7 ± 0.1 95.5 ± 0.1 95.6 ± 0.1

Entropy [9] 14.6 ± 2.2 17.5 ± 1.3 21.1 ± 1.3 35.3 ± 3.0 57.6 ± 2.8 81.9 ± 0.4 89.8 ± 1.6 93.2 ± 0.2 94.4 ± 0.3 95.0 ± 0.1 95.4 ± 0.1 95.6 ± 0.1

Margin [9] 17.2 ± 1.1 21.7 ± 1.6 28.2 ± 1.0 43.4 ± 3.3 59.9 ± 2.9 81.7 ± 3.2 90.9 ± 0.4 93.0 ± 0.2 94.3 ± 0.3 94.8 ± 0.3 95.5 ± 0.1 95.6 ± 0.1

Forgetting [49] 21.4 ± 0.5 29.8 ± 1.0 35.2 ± 1.6 52.1 ± 2.2 67.0 ± 1.5 86.6 ± 0.6 91.7 ± 0.3 93.5 ± 0.2 94.1 ± 0.1 94.6 ± 0.2 95.3 ± 0.1 95.6 ± 0.1

GraNd [38] 17.7 ± 1.0 24.0 ± 1.1 26.7 ± 1.3 39.8 ± 2.3 52.7 ± 1.9 78.2 ± 2.9 91.2 ± 0.7 93.7 ± 0.3 94.6 ± 0.1 95.0 ± 0.2 95.5 ± 0.2 95.6 ± 0.1

Cal [31] 22.7 ± 2.7 33.1 ± 2.3 37.8 ± 2.0 60.0 ± 1.4 71.8 ± 1.0 80.9 ± 1.1 86.0 ± 1.9 87.5 ± 0.8 89.4 ± 0.6 91.6 ± 0.9 94.7 ± 0.3 95.6 ± 0.1

DeepFool [11] 17.6 ± 0.4 22.4 ± 0.8 27.6 ± 2.2 42.6 ± 3.5 60.8 ± 2.5 83.0 ± 2.3 90.0 ± 0.7 93.1 ± 0.2 94.1 ± 0.1 94.8 ± 0.2 95.5 ± 0.1 95.6 ± 0.1

Craig [32] 22.5 ± 1.2 27.0 ± 0.7 31.7 ± 1.1 45.2 ± 2.9 60.2 ± 4.4 79.6 ± 3.1 88.4 ± 0.5 90.8 ± 1.4 93.3 ± 0.6 94.2 ± 0.2 95.5 ± 0.1 95.6 ± 0.1

GradMatch [20] 17.4 ± 1.7 25.6 ± 2.6 30.8 ± 1.0 47.2 ± 0.7 61.5 ± 2.4 79.9 ± 2.6 87.4 ± 2.0 90.4 ± 1.5 92.9 ± 0.6 93.2 ± 1.0 93.7 ± 0.5 95.6 ± 0.1

Glister [21] 19.5 ± 2.1 27.5 ± 1.4 32.9 ± 2.4 50.7 ± 1.5 66.3 ± 3.5 84.8 ± 0.9 90.9 ± 0.3 93.0 ± 0.2 94.0 ± 0.3 94.8 ± 0.2 95.6 ± 0.2 95.6 ± 0.1

FL [16] 22.3 ± 2.0 31.6 ± 0.6 38.9 ± 1.4 60.8 ± 2.5 74.7 ± 1.3 85.6 ± 1.9 91.4 ± 0.4 93.2 ± 0.3 93.9 ± 0.2 94.5 ± 0.3 95.5 ± 0.2 95.6 ± 0.1

GC [16] 24.3 ± 1.5 34.9 ± 2.3 42.8 ± 1.3 65.7 ± 1.2 76.6 ± 1.5 84.0 ± 0.5 87.8 ± 0.4 90.6 ± 0.3 93.2 ± 0.3 94.4 ± 0.3 95.4 ± 0.1 95.6 ± 0.1

4.1 CIFAR10 Results

For CIFAR10 experiments, we use SGD as the optimizer with batch size 128,
initial learning rate 0.1, Cosine decay scheduler, momentum 0.9, weight decay
5 × 10−4 and 200 training epochs. We select subsets with fractions of 0.1%,
0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 90% of the whole training set
respectively. The training on the whole dataset can be considered as the upper-
bound. For data augmentation, we apply random crop with 4-pixel padding and
random flipping on the 32× 32 training images.

For some methods, the gradient, prediction probability, or feature vector of
each sample is required to implement sample selection. For a fair comparison, we
use the ResNet-18 models trained on the whole dataset for 10 epochs to extract
above-mentioned metrics. When gradient vector ∇θ�(x, y; θ) is required, we use
the gradients of the parameters in the final fully-connected layer as suggested
in many previous studies [20,21,32]. This allows gradient vectors to be easily
obtained without back-propagation throughout the whole network. While Deep-
Core supports both balanced and imbalance sample selection, experiments in
this paper all adopt balanced selection, namely, the same number of samples are
selected for every class.

Table 1 shows the detailed results of different methods on CIFAR10, and
Fig. 1 depicts the performance curves. The mean and standard deviation is calcu-
lated with 5 random seeds. Good experimental results come from the submodular
function based methods, in both small and large learning setting. Especially in
small fractions of 0.1%–1%, the advantage of submodular function based meth-
ods is obvious. Graph Cut (GC) is more prominent among them, and achieves
the best results when selecting 0.1% to 10% of the training data. In particu-
lar, Graph Cut outperforms the other methods by more than 5% in the testing
accuracy when 50 samples are selected per class, i.e. 1% of the whole train-
ing set. Cal also shows superiority in small fractions between 0.1%–5%, with
performance comparable to Facility Location (FL). However, its superiority dis-
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Fig. 1. Coreset selection performances in curves on CIFAR10. We train randomly ini-
tialized ResNet-18 on the coresets of CIFAR10 produced by different methods and then
test on the real testing set. Detailed numbers are provided in Table 1.

appears when the coreset size increases, especially when selecting more than
30% training data. Except the above methods, all other methods fail to out-
perform the random sampling baseline in small settings between 0.1% and 1%.
Forgetting method outperforms others in 30%-fraction setting. Between 40%
and 60%, GraNd and uncertainty score based methods stand out. In all frac-
tion settings, GradMatch and Herding barely beat the random sampling. For
GradMatch, the experiment setting in the original paper is adaptive sampling,
where subsets iteratively updated along with network training. Here, for a fair
comparison, coresets are selected and then fixed for all training epochs. Herding
is originally designed for fixed representations from a mixture of Gaussians, thus
its performance heavily depends on the embedding function. Note that the above
findings are based on one hyper-parameter setting, the findings may change if
hyper-parameters change. For example, Herding may have better performances
if the model for feature extraction is fully trained. We study the influence of some
hyper-parameters later.

4.2 ImageNet Results

For ImageNet, we train ResNet-18 models on coresets with batch size 256 for 200
epochs. The training images are randomly cropped and then resized to 224×224.
The left-right flipping with the probability of 0.5 is also implemented. Other
experimental settings and hyper-parameters are consistent with CIFAR10 exper-
iments. Due to the long running time of DeepFool on ImageNet, its results are
not provided. For k-Center Greedy and Contextual Diversity, here we
do not provide the results when only 1 sample is selected from each class (i.e.
fraction of 0.1%), because their first sample is drawn randomly from each class
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Table 2. Coreset selection performances on ImageNet-1K. We train randomly initial-
ized ResNet-18 on the coresets of ImageNet produced by different methods and then
test on the real testing set.

0.1% 0.5% 1% 5% 10% 30% 100%

Random 0.76 ± 0.01 3.78 ± 0.14 8.85 ± 0.46 40.09 ± 0.21 52.10 ± 0.22 64.11 ± 0.05 69.52 ± 0.45

CD – 1.18 ± 0.06 2.16 ± 0.18 25.82 ± 2.02 43.84 ± 0.12 62.13 ± 0.45 69.52 ± 0.45

Herding 0.34 ± 0.01 1.70 ± 0.13 4.17 ± 0.26 17.41 ± 0.34 28.06 ± 0.05 48.58 ± 0.49 69.52 ± 0.45

k-center greedy – 1.57 ± 0.09 2.96 ± 0.24 27.36 ± 0.08 44.84 ± 1.03 62.12 ± 0.46 69.52 ± 0.45

Least confidence 0.29 ± 0.04 1.03 ± 0.25 2.05 ± 0.38 27.05 ± 3.25 44.47 ± 1.42 61.80 ± 0.33 69.52 ± 0.45

Entropy 0.31 ± 0.02 1.01 ± 0.17 2.26 ± 0.30 28.21 ± 2.83 44.68 ± 1.54 61.82 ± 0.31 69.52 ± 0.45

Margin 0.47 ± 0.02 1.99 ± 0.29 4.73 ± 0.64 35.99 ± 1.67 50.29 ± 0.92 63.62 ± 0.15 69.52 ± 0.45

Forgetting 0.76 ± 0.01 4.69 ± 0.17 14.02 ± 0.13 47.64 ± 0.03 55.12 ± 0.13 62.49 ± 0.11 69.52 ± 0.45

GraNd 1.04 ± 0.04 7.02 ± 0.05 18.10 ± 0.22 43.53 ± 0.19 49.92 ± 0.21 57.98 ± 0.17 69.52 ± 0.45

Cal 1.29 ± 0.09 7.50 ± 0.26 15.94 ± 1.30 38.32 ± 0.78 46.49 ± 0.29 58.31 ± 0.32 69.52 ± 0.45

Craig 1.13 ± 0.08 5.44 ± 0.52 9.40 ± 1.69 32.30 ± 1.24 38.77 ± 0.56 44.89 ± 3.72 69.52 ± 0.45

GradMatch 0.93 ± 0.04 5.20 ± 0.22 12.28 ± 0.49 40.16 ± 2.28 45.91 ± 1.73 52.69 ± 2.16 69.52 ± 0.45

Glister 0.98 ± 0.06 5.91 ± 0.42 14.87 ± 0.14 44.95 ± 0.28 52.04 ± 1.18 60.26 ± 0.28 69.52 ± 0.45

FL 1.23 ± 0.03 5.78 ± 0.08 12.72 ± 0.21 40.85 ± 1.25 51.05 ± 0.59 63.14 ± 0.03 69.52 ± 0.45

GC 1.21 ± 0.09 7.66 ± 0.43 16.43 ± 0.53 42.23 ± 0.60 50.53 ± 0.42 63.22 ± 0.26 69.52 ± 0.45

as initialization. Hence, they are identical to Random baseline for fraction 0.1%
on ImageNet. We run all experiments for 3 times with random seeds.

Experiment results are given in Table 2. The results show that error based
methods, Forgetting and GraNd, generally have better performance on Ima-
geNet. Especially, Forgetting overwhelms Random when fewer than 10% data
are selected as the coreset. However, none of methods will outperform Random
when the coreset size is large, i.e. 30% data. Random is still a strong and stable
baseline. The same to that on CIFAR10, these findings on ImageNet may vary
for different hyper-parameters.

4.3 Cross-architecture Generalization

We conduct cross-architecture experiments to examine whether methods with
good performance are model-agnostic, i.e., whether coresets perform well when
being selected on one architecture and then tested on other architectures. We do
experiments on four representative methods (Forgetting, Glister, GraNd
andGraphCut) with four representative architectures (VGG-16 [45], Inception-
v3 [48], ResNet-18 [14] and WideResNet-16-8 [56]) under two selection fractions
(1% and 10%). All other unspecified settings are the same to those in Sec. 4.1. In
Tab. 3, the rows represent models used to obtain coresets, and the columns indi-
cate models on which coresets are evaluated. We can see submodular selection with
Graph Cut provides stably good testing results, regardless of which model archi-
tecture is used to perform the selection. However, GraNd shows preference of the
model on which gradient norms are computed. Coresets obtained on Inception-v3
generally have the best performance, while those obtained on ResNet-18 are the
worst. The possible reason is that the ranking of gradient norm is sensitive to the
architecture. The architecture used to implement selection also has obvious influ-
ence on Glister and Forgetting methods.
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4.4 Sensitiveness to Pre-trained Models

As previously mentioned, some coreset selection methods rely on a pre-trained
model to obtain metrics, e.g. feature, gradient and loss, for selecting samples.
This experiment explores the influence of the pre-trained models, which are
pre-trained for different epochs, on the final coreset performance. Similar to
Sect. 4.3, four representative methods (Forgetting, Glister, GraNd and
Graph Cut) and two selection fractions (1% and 10%) are tested in this exper-
iment. Except for different pre-training epochs, all other settings and hyper-
parameters are consistent with those in Sect. 4.1. We report our results in Table 4.
For Forgetting, good results can be achieved with models pre-trained for only
2 epochs, i.e. selecting samples based on whether the first forgetting event occurs
on each sample. Spending more epochs in calculating forgetting events does not
lead to improvements. The forgetting events can only be counted for more than
2 training epochs, thus no results are provided for Forgetting in epoch 0 and
1. GraNd also performs best with models pre-trained for 2 epochs. The results
indicate that it is not necessary to pre-train a model for too many epochs to
obtain the metrics.

Table 3. Cross-architecture generalization performance (%) of four representative
methods (Forgetting, GraNd, Glister and Graph Cut). The coreset is selected
based on one (row) architecture and then evaluated on another (column) architecture.

C\T VGG-16 Inception-v3 ResNet-18 WRN-16-8 VGG-16 Inception-v3 ResNet-18 WRN-16-8

Random 1% 10%

Random Selection 15.36 ± 2.03 32.98 ± 1.20 36.74 ± 1.69 45.77 ± 1.17 78.03 ± 0.92 76.01 ± 0.82 75.72 ± 2.02 82.72 ± 0.54

Forgetting 1% 10%

VGG-16 17.56 ± 3.42 31.37 ± 0.63 35.07 ± 1.38 40.30 ± 1.94 72.71 ± 2.26 70.68 ± 1.85 71.53 ± 0.42 80.71 ± 1.11

Inception-v3 21.81 ± 3.04 33.27 ± 1.70 36.94 ± 1.28 41.52 ± 1.71 72.94 ± 0.63 71.15 ± 2.84 70.40 ± 2.09 81.51 ± 0.95

ResNet18 22.81 ± 3.46 32.64 ± 1.33 35.20 ± 1.59 39.45 ± 0.62 70.87 ± 1.27 66.87 ± 1.82 66.99 ± 1.48 79.19 ± 0.38

WRN-16-8 20.53 ± 3.49 28.46 ± 1.48 31.79 ± 1.11 35.92 ± 1.97 67.68 ± 1.37 64.38 ± 1.82 65.59 ± 2.03 75.59 ± 1.09

GraNd 1% 10%

VGG-16 18.61 ± 3.84 29.78 ± 0.90 33.77 ± 0.87 38.07 ± 1.75 69.74 ± 1.48 65.90 ± 1.88 65.45 ± 1.33 76.63 ± 0.74

Inception-v3 15.94 ± 2.50 31.46 ± 0.98 34.73 ± 1.04 40.16 ± 1.83 73.51 ± 0.75 70.52 ± 3.15 70.07 ± 2.91 79.62 ± 1.27

ResNet18 14.42 ± 3.10 25.91 ± 1.59 26.69 ± 1.30 30.40 ± 0.75 61.05 ± 1.91 58.48 ± 3.95 52.73 ± 1.86 70.96 ± 1.14

WRN-16-8 14.59 ± 4.03 28.68 ± 1.43 32.30 ± 1.87 35.88 ± 3.18 61.49 ± 1.81 57.19 ± 2.42 57.82 ± 2.27 69.19 ± 1.92

Glister 1% 10%

VGG-16 14.5 ± 3.86 31.08 ± 2.30 34.10 ± 1.71 39.45 ± 2.55 71.71 ± 1.83 70.23 ± 1.78 69.31 ± 2.19 77.74 ± 0.68

Inception-v3 19.74 ± 4.01 32.05 ± 1.12 35.52 ± 2.09 41.24 ± 1.39 73.15 ± 1.94 71.32 ± 1.77 71.03 ± 1.39 78.57 ± 1.45

ResNet-18 15.16 ± 4.47 30.41 ± 2.08 32.93 ± 2.36 37.64 ± 1.83 67.37 ± 2.48 66.34 ± 2.18 66.26 ± 3.47 75.36 ± 1.52

WRN-16-8 14.16 ± 4.15 28.39 ± 2.50 32.83 ± 0.98 37.05 ± 2.72 70.70 ± 2.40 64.25 ± 2.53 66.88 ± 2.97 75.07 ± 2.96

Graph Cut 1% 10%

VGG-16 27.47 ± 4.00 37.38 ± 2.09 43.02 ± 1.30 51.80 ± 0.82 77.91 ± 0.71 76.64 ± 1.25 78.66 ± 0.55 81.06 ± 0.78

Inception-v3 25.00 ± 3.91 37.26 ± 1.23 42.06 ± 0.69 51.67 ± 1.20 75.15 ± 1.09 73.69 ± 1.42 75.49 ± 0.91 78.33 ± 0.40

ResNet-18 29.01 ± 3.63 37.54 ± 0.62 42.78 ± 1.30 51.50 ± 1.37 75.29 ± 1.05 73.94 ± 1.11 76.65 ± 1.48 79.13 ± 0.75

WRN-16-8 22.64 ± 3.82 37.71 ± 1.73 40.78 ± 1.79 53.02 ± 1.80 76.64 ± 0.92 75.84 ± 0.84 77.19 ± 1.14 80.77 ± 0.30

5 Extended Related Work

An alternative way to reduce training set size is dataset condensation (or distil-
lation) [50,57,58]. Instead of selecting subsets, it learns to synthesize informative
training samples that can be more informative than real samples in the original
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Table 4. Sensitiveness to pre-trained models. Performance (%) of different methods
using pre-trained models with varying pre-training epochs.

Pre-train Epochs 0 1 2 5 10 15 20 50 100 150 200

1%

Forgetting – – 36.06 ± 0.65 36.81 ± 1.82 35.20 ± 1.59 32.96 ± 1.20 32.22 ± 1.01 24.23 ± 0.64 20.41 ± 0.91 19.84 ± 0.56 19.47 ± 0.30

GraNd 28.17 ± 0.20 31.05 ± 1.36 31.24 ± 2.36 29.70 ± 1.02 26.69 ± 1.30 26.11 ± 1.46 26.39 ± 0.89 26.81 ± 1.97 26.52 ± 1.10 26.08 ± 0.65 27.17 ± 1.84

Glister 27.63 ± 0.85 33.97 ± 2.68 33.31 ± 1.08 32.93 ± 1.51 32.93 ± 2.36 32.28 ± 2.09 31.15 ± 2.24 31.46 ± 1.56 32.89 ± 1.24 33.37 ± 1.91 34.06 ± 2.17

Graph Cut 33.61 ± 1.40 43.15 ± 1.31 43.00 ± 0.76 44.33 ± 1.55 42.78 ± 1.30 41.33 ± 2.01 41.30 ± 2.80 42.23 ± 1.72 40.46 ± 0.93 41.74 ± 1.46 40.53 ± 2.27

10%

Forgetting – – 72.62 ± 2.79 72.72 ± 1.44 66.99 ± 1.48 60.87 ± 1.92 54.62 ± 2.48 44.10 ± 1.21 42.29 ± 1.01 41.97 ± 0.70 41.99 ± 1.02

GraNd 62.54 ± 2.15 63.15 ± 1.99 71.34 ± 1.82 67.97 ± 1.86 52.73 ± 1.86 64.76 ± 1.83 65.20 ± 1.21 66.33 ± 2.29 57.21 ± 1.75 58.36 ± 1.49 65.34 ± 0.55

Glister 59.35 ± 2.31 60.83 ± 3.18 68.79 ± 1.15 68.81 ± 2.75 66.26 ± 3.47 61.99 ± 3.05 68.03 ± 1.72 65.05 ± 1.66 66.26 ± 2.92 68.16 ± 2.78 68.16 ± 3.03

Graph Cut 63.39 ± 1.54 62.52 ± 1.02 68.26 ± 1.11 72.91 ± 1.13 76.65 ± 1.48 77.06 ± 1.09 68.73 ± 0.87 77.48 ± 0.51 76.66 ± 1.64 76.16 ± 2.14 76.33 ± 1.52

training set. Although remarkable progress has been achieved in this research
area, it is still challenging to apply dataset condensation on large-scale and
high-resolution datasets, e.g. ImageNet-1K, due to the expensive and difficult
optimization.

6 Conclusion

In this work, we contribute a comprehensive code library – DeepCore for coreset
selection in deep learning, where we re-implement dozens of state-of-the-art core-
set selection methods on popular datasets and network architectures. Our code
library enables a convenient and fair comparison of methods in various learn-
ing settings. Extensive experiments on CIFAR10 and ImageNet datasets verify
that, although various methods have advantages in certain experiment settings,
random selection is still a strong baseline.

Acknowledgment. This research was supported by Public Health & Disease Con-
trol and Prevention, Major Innovation & Planning Interdisciplinary Platform for the
“Double-First Class” Initiative, Renmin University of China (No. 2022PDPC), fund for
building world-class universities (disciplines) of Renmin University of China. Project
No. KYGJA2022001. This research was supported by Public Computing Cloud, Ren-
min University of China.

References

1. Agarwal, S., Arora, H., Anand, S., Arora, C.: Contextual diversity for active learn-
ing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS,
vol. 12361, pp. 137–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58517-4 9

2. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for
online continual learning. Adv. Neural. Inf. Process. Syst. 32, 11816–11825 (2019)

3. Bachem, O., Lucic, M., Krause, A.: Coresets for nonparametric estimation-the case
of dp-means. In: ICML, PMLR, pp. 209–217 (2015)

4. Bateni, M., Bhaskara, A., Lattanzi, S., Mirrokni, V.S.: Distributed balanced clus-
tering via mapping coresets. In: NIPS, pp. 2591–2599 (2014)

https://doi.org/10.1007/978-3-030-58517-4_9
https://doi.org/10.1007/978-3-030-58517-4_9


DeepCore: A Comprehensive Library for Coreset Selection in Deep Learning 193

5. Borsos, Z., Mutny, M., Krause, A.: Coresets via bilevel optimization for continual
learning and streaming. In: Advances in Neural Information Processing Systems,
vol. 33 (2020)

6. Borsos, Z., Tagliasacchi, M., Krause, A.: Semi-supervised batch active learning via
bilevel optimization. In: ICASSP 2021, pp. 3495–3499. IEEE (2021)

7. Chen, Y., Welling, M., Smola, A.: Super-samples from kernel herding. In: The
Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelli-
gence (2010)

8. Chhaya, R., Dasgupta, A., Shit, S.: On coresets for regularized regression. In:
International Conference on Machine Learning, PMLR, pp. 1866–1876 (2020)

9. Coleman, C., et al.: Selection via proxy: efficient data selection for deep learning.
In: ICLR (2019)

10. Dasgupta, S., Hsu, D., Poulis, S., Zhu, X.: Teaching a black-box learner. In: ICML,
PMLR (2019)

11. Ducoffe, M., Precioso, F.: Adversarial active learning for deep networks: a margin
based approach (2018). arXiv preprint arXiv:1802.09841

12. Farahani, R.Z., Hekmatfar, M.: Facility location: concepts, models, algorithms and
case studies (2009)

13. Feldman, D., Faulkner, M., Krause, A.: Scalable training of mixture models via
coresets. In: NIPS, Citeseer, pp. 2142–2150 (2011)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

15. Howard, A., et al.: Searching for mobilenetv3 (2019). http://arxiv.org/abs/1905.
02244

16. Iyer, R., Khargoankar, N., Bilmes, J., Asanani, H.: Submodular combinatorial
information measures with applications in machine learning. In: Algorithmic Learn-
ing Theory, pp. 722–754. PMLR (2021)

17. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and
submodular knapsack constraints. In: Advances in Neural Information Processing
Systems, vol. 26 (2013)

18. Ju, J., Jung, H., Oh, Y., Kim, J.: Extending contrastive learning to unsupervised
coreset selection (2021). arXiv preprint arXiv:2103.03574

19. Kaushal, V., Kothawade, S., Ramakrishnan, G., Bilmes, J., Iyer, R.: Prism: A
unified framework of parameterized submodular information measures for targeted
data subset selection and summarization (2021). arXiv preprint arXiv:2103.00128

20. Killamsetty, K., Durga, S., Ramakrishnan, G., De, A., Iyer, R.: Grad-match: gra-
dient matching based data subset selection for efficient deep model training. In:
ICML, pp. 5464–5474 (2021)

21. Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., Iyer, R.: Glister: general-
ization based data subset selection for efficient and robust learning. In: Proceedings
of the AAAI Conference on Artificial Intelligence (2021)

22. Killamsetty, K., Zhao, X., Chen, F., Iyer, R.: Retrieve: Coreset selection for efficient
and robust semi-supervised learning (2021). arXiv preprint arXiv:2106.07760

23. Knoblauch, J., Husain, H., Diethe, T.: Optimal continual learning has perfect mem-
ory and is np-hard. In: International Conference on Machine Learning, PMLR, pp.
5327–5337 (2020)

24. Kothawade, S., Beck, N., Killamsetty, K., Iyer, R.: Similar: Submodular informa-
tion measures based active learning in realistic scenarios (2021). arXiv preprint
arXiv:2107.00717

http://arxiv.org/abs/1802.09841
http://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1905.02244
http://arxiv.org/abs/2103.03574
http://arxiv.org/abs/2103.00128
http://arxiv.org/abs/2106.07760
http://arxiv.org/abs/2107.00717


194 C. Guo et al.

25. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran
Associates, Inc. (2012)

27. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3
(2015)

28. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

29. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

30. Liu, E.Z., et al.: Just train twice: Improving group robustness without training
group information. In: ICML, pp. 6781–6792 (2021)

31. Margatina, K., Vernikos, G., Barrault, L., Aletras, N.: Active learning by acquiring
contrastive examples (2021). arXiv preprint arXiv:2109.03764

32. Mirzasoleiman, B., Bilmes, J., Leskovec, J.: Coresets for data-efficient training of
machine learning models. In: ICML, PMLR (2020)

33. Mirzasoleiman, B., Cao, K., Leskovec, J.: Coresets for robust training of deep
neural networks against noisy labels (2020)

34. Munteanu, A., Schwiegelshohn, C., Sohler, C., Woodruff, D.P.: On coresets for
logistic regression. In: NeurIPS (2018)

35. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)

36. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

37. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

38. Paul, M., Ganguli, S., Dziugaite, G.K.: Deep learning on a data diet: finding impor-
tant examples early in training (2021). arXiv preprint arXiv:2107.07075

39. Russakovsky, O., et al.: ImageNet Large Scale Visual Recognition Challenge. In:
IJCV (2015)

40. Sachdeva, N., Wu, C.J., McAuley, J.: Svp-cf: selection via proxy for collaborative
filtering data (2021). arXiv preprint arXiv:2107.04984 (2021)

41. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set
approach. In: ICLR (2018)

42. Settles, B.: Active learning literature survey (2009)
43. Settles, B.: From theories to queries: Active learning in practice. In: Active Learn-

ing and Experimental Design Workshop in Conjunction with AISTATS 2010,
JMLR Workshop and Conference Proceedings, pp. 1–18 (2011)

44. Shim, J.h., Kong, K., Kang, S.J.: Core-set sampling for efficient neural architecture
search (2021). arXiv preprint arXiv:2107.06869

45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint arXiv:1409.1556

46. Sinha, S., Zhang, H., Goyal, A., Bengio, Y., Larochelle, H., Odena, A.: Small-gan:
Speeding up gan training using core-sets. In: ICML, PMLR (2020)

47. Sohler, C., Woodruff, D.P.: Strong coresets for k-median and subspace approxima-
tion: goodbye dimension. In: 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 802–813. IEEE (2018)

http://arxiv.org/abs/2109.03764
http://arxiv.org/abs/2107.07075
http://arxiv.org/abs/2107.04984
http://arxiv.org/abs/2107.06869
http://arxiv.org/abs/1409.1556


DeepCore: A Comprehensive Library for Coreset Selection in Deep Learning 195

48. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

49. Toneva, M., Sordoni, A., des Combes, R.T., Trischler, A., Bengio, Y., Gordon, G.J.:
An empirical study of example forgetting during deep neural network learning. In:
ICLR (2018)

50. Wang, T., Zhu, J.Y., Torralba, A., Efros, A.A.: Dataset distillation (2018). arXiv
preprint arXiv:1811.10959

51. Wei, K., Iyer, R., Bilmes, J.: Submodularity in data subset selection and active
learning. In: International Conference on Machine Learning, PMLR (2015)

52. Welling, M.: Herding dynamical weights to learn. In: Proceedings of the 26th
Annual International Conference on Machine Learning, pp. 1121–1128 (2009)

53. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms (2017). arXiv preprint arXiv:1708.07747

54. Yadav, C., Bottou, L.: Cold case: The lost mnist digits. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

55. Yoon, J., Madaan, D., Yang, E., Hwang, S.J.: Online coreset selection for rehearsal-
based continual learning (2021). arXiv preprint arXiv:2106.01085

56. Zagoruyko, S., Komodakis, N.: Wide residual networks (2016). arXiv preprint
arXiv:1605.07146

57. Zhao, B., Bilen, H.: Dataset condensation with differentiable siamese augmenta-
tion. In: International Conference on Machine Learning (2021)

58. Zhao, B., Mopuri, K.R., Bilen, H.: Dataset condensation with gradient match-
ing. In: International Conference on Learning Representations (2021). https://
openreview.net/forum?id=mSAKhLYLSsl

http://arxiv.org/abs/1811.10959
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/2106.01085
http://arxiv.org/abs/1605.07146
https://openreview.net/forum?id=mSAKhLYLSsl
https://openreview.net/forum?id=mSAKhLYLSsl


Context Iterative Learning
for Aspect-Level Sentiment Classification

Wenting Yu(B), Xiaoye Wang, Peng Yang, Yingyuan Xiao, and Jinsong Wang

Tianjin University of Technology, Tianjin, China
ywthelium@163.com, jiaoliu456@163.com, 29139475@qq.com,

{yyxiao,jswang}@tjut.edu.cn

Abstract. Aspect-based sentiment analysis is to predict the sentiment
polarity of different aspects of a sentence. Many irrelevant words are
mistaken for opinion words in long sentences. According to extensive
research, irrelevant words are far removed from the central words. This
paper proposes a solution: First, we design the Context Iterative Learn-
ing network (CILN). Context attention module (CAM) is proposed,
which employs Context Features Dynamic Mask (CDM) to cover words
far from the center word and Context Features Dynamic Weighted
(CDW) to reduce the weight of words far away. The calculation of CAM
is done alternately to reduce the influence of distant irrelevant words.
Finally, the obtained feature sequences are linked with the global sen-
tence sequence. The Accuracy and Macro-F1 indicators obtained from
the experiments based on benchmark datasets demonstrate the efficacy
of the proposed method.

Keywords: Aspect-based sentiment analysis · Feature extraction ·
Distribution reduction

1 Introduction

Aspect-based sentiment analysis (ABSA) is a text classification task, which
divides the sentiment polarity of content into positive, neutral and negative [2].

The attention mechanism is now a crucial model in solving sentiment analysis
tasks [9]. However, the attention mechanism does not always accurately predict
aspect polarity [1]. Attention mechanisms can neither capture position infor-
mation between words nor learn the relationship between sequence information
and words in a sentence. Existing ABSA models mainly enhance aspect repre-
sentation learning, such as MetNet [6]. MetNet may learn disturbing information
together. This paper proposes a CAM module built on the CDM/CDW block
and multi-head attention. A more accurate aspect-context feature representa-
tion is extracted through multiple iterations of CAM by reducing the influence
of irrelevant words on sentiment prediction.

We propose the Context Iterative Learning Network (CILN). It is inspired
by MemNet [8], AEN-Bert [7] and LCF-Bert [11]. First, we enter the context
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Strauss et al. (Eds.): DEXA 2022, LNCS 13426, pp. 196–202, 2022.
https://doi.org/10.1007/978-3-031-12423-5_15
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sequences and aspect terms sequences so that both sequences can traverse mul-
tiple CAMs at the same time. The CDM and CDW modules are used alternately
in each CAM. The CDM module is used in the first CAM module. The CDW
module is used in the following CAM module. After the multi-layer CAM, the
new aspect-context sequence merge with the global sequence.

The main contributions are as follows: We design the CILN, which extracts
contextual features by iteration and enhances the attention of aspect terms.
The CAM module is designed, and the CDM and CDW modules are used in
combination with the multi-head attention mechanism to reduce the influence
of irrelevant words on aspect prediction.

2 Related Work

Deep learning is primarily used for sentiment analysis now. AOA [5] is an
attention-over-attention neural network for aspect-oriented sentiment classi-
fication. LCF-BERT [11] is an aspect-based sentiment classification mecha-
nism based on Multi-head Self-Attention (MHSA)-local context focus (LCF).
Zhang [12] uses a graph convolutional network to extract sentence features, and
uses graph convolution to investigate the influence of the dependency tree. MET-
Net [6] designs a hierarchical structure that iteratively enhances the representa-
tion of aspects and contexts.

3 Context Attention Modules (CAM)

CAM is illustrated in Fig. 1. The input sequence is divided into two data streams.
In the first data stream, context sequences are passed through Intra-multi-headed
attention mechanism (Intra-MHA), position-wise feed-forward networks (PFFN)
and CDM in turn. In the second data stream, context sequences and aspect
terms sequences are passed through Inter-multi-headed attention mechanism
(Inter-MHA) and PFFN in turn. And ⊕ denotes the multi-headed attention
mechanism(MHA) that connects two data streams information. CAM is per-
formed iteratively, and the CDM/CDW in each CAM is performed alternately.
The purpose of alternate execution is to avoid extracting a single context feature.

3.1 Intra-Multi-Headed Attention Mechanism (Intra-MHA)
and Inter-Multi-Headed Attention Mechanism (Inter-MHA)

Inter-MHA [7] is a multi-headed attention calculation that takes into account
context and aspect terms. The context sequences and the aspect sequences are
learned together to solve the long dependency problem. The formula for Inter-
MHA is as follows: hj = Multihead-Attention

(
vci , vaj

)
[7]. Where vaj

is the
aspect sequence vector, vci is the context sequence vector.

Intra-MHA [7] learns important features from different heads and can selec-
tively emphasize the sentence’s relatively important features. Intra-MHA is
expressed as: hi = Multihead-Attention (vci , vci) [7].
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Fig. 1. Structure of Context Iterative Learning Network (CILN)

3.2 Context Features Dynamic Mask/Context Features Dynamic
Weighted (CDM/CDW)

In CAM, the semantic relative distance(SRD) determines the CDM’s conceal-
ment range and the range of dynamic weight reduction. The SRD is the word
distance between the context word tokens and the specific aspect terms.

CDM [11] uses the specific aspect terms as the center and the SRD as the
radius to calculate the next attention mechanism for words that are within the
SRD distance, and irrelevant words that are masked. The input local context
matrix is V l. CDM based on certain SRD threshold α is expressed as: V m

i ={
O, SRD > α
E, SRD ≤ α

. Where O represents zero vector, and E represents one vector.

m represents CDM. The mask matrix is multiplied with the local context matrix
output in the last step: V M = [V m

1 , V m
2 , . . . , V m

i ] · V l.
CDW [11] takes the aspect terms as the center and SRD as the radius

to reduce the weight of words outside the SRD distance. The input con-
text matrix is V l. CDW based on certain SRD threshold α is expressed as:

V w
i =

{
E − SRDi−α

N · E,SRD > α
E,SRD ≤ α

, V W = [V w
1 , V w

2 , . . . , V w
i ] ·V l. Where SRDi

the i-th SRD distance, N is the length of the sentence. w represents CDM.

3.3 Position-Wise Feed-Forward Networks (PFFN)
and Aspect-Context Representation Output

PFFN transforms the information from the previous step and provides rich fea-
ture representations. PFFN is made up of two layers of Feed Forward Neural Net-
works (FFNNs). The input of PFFN is expressed as sc. PFFN can be expressed
as: PFFNc = Relu (Wc1 × sc + bc1) Wc2+bc2. Where Wc1 and Wc2 are trainable
weights of two FFNNs. bc1 and bc2 are learnable biases of two FFNNs.
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V
W/M
i is the context vector processed by the CDM/CDW, and Pc is the

aspect terms vector after the PFFN. The specific aspect-context is expressed
as: hca

i = Multihead-Attention
(
V

W/M
i , Pc

)
. The MHA here also has its own

independent parameters. We input the obtained hca
i into the next CAM.

4 Context Iterative Learning Network (CILN)

We send the comment sentence into Bert to convert the words into vectors (The
context sequence is Vc = {vcl , vc2 , . . . , vct}. The aspect term sequence is Va =
{va1 , va2 , . . . , vcm}. The global sequence is Vg = {vg1 , vg2 , vg3 , . . . , vgn

}.) in Fig. 1.
Then the converted context sequences and aspect terms sequences are fed into
the CAM. After several iterations the aspect-context sequence will be obtained.
The representation is expressed jointly with the global sequences (⊕ indicates a
connection operation), and finally the resulting final representation is classified
into sentiment polarities. 3 represents three kinds of sentiment polorities.

4.1 Pooling Layer and Training

We connect CAM’s output with the global sequences as t = [hca
n , Vg]. Where hca

n

is the aspect-context representation after several CAM Iterations. Finally, we
input the final representation into the softmax layer for sentiment classification.
The softmax classification can be expressed as: Y = softmax(t) = exp f(t)

∑3
x=1 exp f(t)

,
f(t) = Ws × t + bs. Where Ws and bs are learnable weights and biases.

The objective optimization function of this paper is the cross-entropy loss
with L2 regularization, and the function is defined as: L(θ) = −∑3

i=1 ŷx log yx +
λ

∑
θ∈Θ θ2. Where yx is the one-hot vector. λ is the parameter of L2 regulariza-

tion, and θ is the parameter set of the model in this paper.

5 Experiment

5.1 Datasets and Experimental Settings

To better evaluate the model in this paper. We use three benchmark datasets:
SemEval2014 Task 4 (14Rest and 14Lap) and ACL Twitter dataset (Twitter) [4].
The datasets have been adopted by the models proposed by the majority of
researchers and are the most frequently used datasets in ABSA.

Most of the hyperparameters follow the common hyperparameter settings for
sentiment analysis tasks. The learning rate is set to 2 × 10−5, and the hidden
dimensions and the embedding dimensions are set to 768. The dropout rate is
set to 0.1, the L2 regularization is set to 1×10−5, and the batch size is set to 16.
A total of 12 epochs were trained. The performance of the model is evaluated
by using accuracy and macro F1 indicators.
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Table 1. Experimental results (%). This article uses “–” to indicate unrecorded exper-
imental results. All experimental results are the results of rerunning on our equipment.

Model Laptop Restaurant Twitter

ACC F1 ACC F1 ACC F1

MemNet 67.08 59.12 78.04 65.63 70.24 67.78

RAM 66.73 57.43 75.18 57.48 67.34 63.76

AOA 63.17 49.43 73.12 53.17 65.61 61.47

Aen-Bert 78.06 74.93 80.45 69.35 72.54 71.05

LCF-Bert 79.00 74.60 83.93 74.68 73.55 72.65

MCRF-SA 75.43 71.78 80.71 70.28 – –

MetNet 76.18 71.83 79.11 67.84 66.76 63.52

BiGCN 74.92 71.76 79.37 68.56 73.55 71.79

Our 79.78 76.44 84.91 78.87 75.43 74.14

−w/o CAM 78.68 73.82 83.48 74.49 72.69 71.48

+1 CAM 79.78 75.01 84.29 77.36 72.11 70.01

+2 CAM 79.78 76.44 84.91 78.87 75.43 74.14

+3 CAM 78.68 74.94 84.20 77.55 74.13 73.34

+4 CAM 78.53 75.31 83.93 76.44 72.83 72.17

+5 CAM 78.53 74.50 84.02 75.84 72.98 72.10

5.2 Baseline and Result

To comprehensively evaluate our method, this paper compares the proposed
method with the model baselines: MemNet (2016) [8], RAM (2017) [3], AOA
(2018) [5], Aen-Bert (2019) [7], LCF-BERT (2019) [11], MCRF-SA (2020) [10],
MetNet (2020) [6], BiGCN (2020) [13].

The results that our model with 2 layers of CAM outperforms all baselines in
Table 1. Twitter’s performance is not as good as that of other datasets. Because
Twitter has irregular grammatical expressions and many misspellings, which
leads to poor performance on Twitter compared to the other two datasets. The
accuracy of our model is 12.70% higher than MemNet on the laptop dataset,
6.87% on the Restaurant, and 5.17% on the Twitter. LCF-BERT is the second
best performing. The accuracy of our model on the Laptop, Restaurant, and
Twitter increased by 0.78%, 0.98%, and 1.88%. We believe that our model out-
performs LCF because LCF only uses CDW/CDM once. Whereas we iteratively
use CAM and alternate CDM/CDW for each CAM, enriching context feature
extraction and resulting in higher ACC and F1 scores.

To explore the application effect of CAM in this model, ablation experiments
are carried out on the basis of the best CAM superimposing two layers, including
CAM resection. “−w/o” stands for delete a module. The experimental results
clearly show that CAM ablation will affect the performance, which shows CAM
is helpful to improve the ABSA.
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As shown in Table 1, different numbers (from +1 to +5) of CAM layers are
tried. The results of 2 layers are the best. First of all, the effect of CAM increases
as the number of layers increases. When the number of layers is increased after
the model effect has been brought to the best number of layers, the effect grad-
ually decreases and unstable results appear. The model proposed in this paper
only models the context feature layer directly related to the specific word in
each CAM. Thereby increasing the number of CAM layers can improve ABSA
performance. Adding more layers, model is overfitting and the result decreases.

6 Conclusion

We propose the CILN to improve the impact of irrelevant words on ABSA.
To obtain a better representation, we employ a hierarchical structure CAM to
iteratively learn aspects and contexts. The results demonstrate that CILN is
useful for ABSA.
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Abstract. Traffic congestion is of utmost importance for modern soci-
eties due to population and economic growth. Thus, it contributes to envi-
ronmental problems like increasing greenhouse gas emissions and noise
pollution. Traffic signal control plays a vital role in improving traffic flow
in urban networks. Hence, optimizing cycle timing at many intersections
is paramount to reducing congestion and increasing sustainability. In this
paper, we introduce an alternative to conventional traffic signal control,
namely EcoLight, that provides significant improvements in noise levels,
CO2 emissions, and fuel consumption, resulting from the incorporation of
future noise predictions. A Sequence to Sequence Long Short TermMemory
(SeqtoSeq-LSTM) prediction model, combined with a deep reinforcement
learning algorithm, allows the system to achieve higher efficiency than its
competitors based on real-world data from Helsinki, Finland.

Keywords: CO2 emissions · Congestion · Fuel consumption ·
Reinforcement learning · SUMO Simulation · Traffic signal control ·
Urban noise

1 Introduction

Traffic congestion levels have been rising precipitously in the last few years due
to an imbalance between the rise in travel demand and the availability of trans-
portation services. According to [18], the cost of congestion in cities such as
Stuttgart and Paris is around 2% of their GDP. The general rule is that cities
should develop strategies based on their visions and goals to reduce congestion.
Implementation of new infrastructure is often slow and costly. Therefore, urban
planners and policymakers are interested in making existing infrastructure more
efficient [16]. One of the proposed hypotheses is that “An improved traffic light
system will lead to better traffic management and, therefore, more peaceful urban
areas” [1]. Hence, optimizing cycle timing at intersections can potentially con-
tribute significantly to reducing congestion and improving environmental qual-
ity at the same time. Real-time control of traffic signals plays a vital role in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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reducing congestion by responding in real-time to several factors, including con-
stantly changing traffic network dynamics. Moreover, the rapid increase in trans-
port requirements has brought challenges to the sustainable development of our
society concerning emissions and energy consumption induced by traffic. The
European Environment Agency (EEA) reports that road traffic noise continues
to be the primary contributor to noise pollution. Around 100 million people are
exposed to road traffic noise above 55 decibels (dB) in the 33 member countries of
the EEA. Among them, 32 million (about one-third) are subjected to extremely
high levels of noise exceeding 65 dB [8]. Furthermore, according to the World
Health Organization (WHO), exposure to loud noise causes high blood pressure,
hearing loss, heart disease, sleep disturbances, and stress. Hence, measuring road
traffic noise is a good indicator of traffic congestion intensity.

Numerous traffic signal control solutions have been used and proposed to
overcome the traffic congestion issue. Worthy of mentioning, integrated Arduino
in cameras with machine learning (e.g., object detection deep learning algo-
rithms), and genetic algorithms for traffic signal timing optimization to help
experts manage congestion. Recently, researchers have begun investigating rein-
forcement learning (RL) techniques for controlling traffic signals. These tech-
niques appear to be more effective than traditional transportation methods. Its
main advantage is that it learns how to take real-time action by observing the
environment’s reaction to previous actions.

One major issue of most RL-based traffic signal control approaches is that
the setting considers, in each phase, only mobility and current traffic conditions
when designing the next control strategy. We elaborate on these two character-
istics by integrating two novel aspects into the RL techniques: (i) Sustainability :
is achieved by incorporating noise as an environmental input feature; and (ii)
Proactivity : is achieved by predicting future levels of noise so that the model
is better prepared to make decisions based on current observations as well as
future noise predictions. Therefore, in this paper, we propose a new eco-friendly
RL-based traffic signal control model driven by urban noise traffic prediction,
namely EcoLight. Our proposed approach reduces traffic congestion by reduc-
ing noise levels, CO2 emissions, and fuel consumption. By and large, the main
contributions of EcoLight are as follows:

– At the noise prediction stage, we take advantage of the sequence to sequence
architecture and propose splitting the time-series noise traffic data into fixed-
sized sequences, where the size is determined based on an analysis of road
network traffic behavior. Our method includes building a stacked layers archi-
tecture based on LSTM to extract temporal dependencies from noise data.
Then, by using the past noise sequences as input, we would return a future
traffic noise sequence.

– At the traffic signal control stage, we heavily rely on a deep reinforcement
learning control model that takes as an input traffic-related information, i.e.,
the queue length, average waiting time, the phase, number of vehicles, and
the vehicles’ position at an intersection, besides the traffic noise estimation
to predict the upcoming traffic signal action.
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– We run our simulation experiments on a publicly available dataset of a road
intersection collected in Helsinki, Finland. The harvested evaluation crite-
ria (noise levels, CO2 emissions, and fuel consumption) outperform those
obtained by the pioneering ones in the literature.

The rest of this paper proceeds as follows. In Sect. 2, we scrutinize the related
work that paid attention to both traffic noise prediction and traffic signal control
approaches. As an introduction to traffic signal control, Sect. 3 introduces key
notions that will simplify the understanding of our research goal. Section 4 thor-
oughly describes the proposed EcoLight approach. In the penultimate section,
we present the experimental evaluation and discuss the proposed model’s per-
formance against its competitors. The final section includes a conclusion and
recommendations for future research.

2 Related Work

Modern societies nowadays are characterized by a great deal of noise. In addi-
tion to being a nuisance, it can also negatively impact the environment and
human health. While evidence of noise’s harmful effects is increasing, spatial
understanding of its distribution is limited. This section introduces, first, brief
overview noise prediction methods for traffic congestion enhancement, followed
by methods for traffic signal control.

2.1 Noise Prediction

Noise pollution from road traffic is the most prevalent source of outdoor ambient
noise in Europe. Different prediction models may produce different noise levels
depending on traffic noise’s location and emission sources. At present, very little
research focuses on developing models that help determine the effects of traffic
noise on society. Worth mentioning, Staab et al. [20] used a land-use regression
(LUR) model and context-aware feature engineering to construct a geostatistical
model mapping approach to represent the arrangement of sources and the sur-
rounding environment. In this article, the authors deal with small communities
that have not been adequately mapped in Europe. To improve traffic noise mod-
eling, another solution was proposed by Ahmed et al. [2] that developed a deep
neural network-based optimization approach that integrated the wrapper for the
feature-subset selection (WFS) method. Using this method, weekday noise maps
are created for different times of the day, such as mornings, afternoons, evenings,
and nights. Khan et al. [10] conducted a comparison study between three dif-
ferent noise estimation models used throughout Europe. In this study, the main
focus was to explore potential patterns in the performance of the models for spe-
cific configuration types. Based on vehicular traffic volume, percentage of heavy
vehicles, and vehicles’ average speed, a neuro-fuzzy inference system that identi-
fies at what noise level the traffic (Leq dBA) will be detected has been proposed
by Singh et al. [19]. Comparing it with conventional soft-computing techniques
validates its suitability for planning mitigation measures for both new and exist-
ing roads. Finally, Zhang et al. [29] examined the accuracy of different machine
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learning recurrent architectures for predicting traffic noise using real-life traffic
data with multiple variables. According to the study, using a multivariate bidi-
rectional GRU model (Gated Recurrent Unit) with a many-to-many architecture
achieved the best computation efficiency and accuracy.

The noise generated by traffic is a complex phenomenon. In modeling traffic
noise, large and high-dimensional data are gathered. In this case, deep recur-
rent learning architectures are the best tools for analyzing large datasets and
discovering nonlinear relationships.

2.2 Traffic Signal Control

Traffic signal control is an integral part of an intelligent transportation sys-
tem that improves traffic efficiency. However, some challenges accompany these
systems, such as protecting against high roadside cameras, keeping malicious
vehicles from getting in, and preventing single points of failure. Literature has
examined several traffic signal control systems to cope with those challenges.
Two different approaches have been developed: a fixed-time (rule-based) strat-
egy and a traffic-responsive strategy [13].

As part of a fixed-time strategy, several signal plans (e.g., from 8:00 to 10:00
am) are predetermined based on historical traffic flow data. Thus, a traffic signal
is periodically changed per the predetermined signal plans. Worth mentioning,
Le et al. [12] proposed a decentralized traffic signal control using a Back-pressure
scheme for urban roads networks, which has received widespread recognition as
a method for achieving an optimal throughput control policy in data networks.
They concluded that the proposed scheme of fixed cycle times and cyclic phases
stabilizes the traffic for any possible transportation demand. However, since such
traditional transportation systems do not work in real-time, they can only be
used when the demand is relatively stable within each time interval.

By using current traffic information, the traffic-responsive strategy overcomes
the above limitation. In this strategy, the major challenge is forecasting incom-
ing vehicles or traffic status. Bravo et al. [5] proposed a city-wide traffic control
management program that assists traffic managers in making decisions, namely
HITUL. Utilizing meta-heuristic algorithms and nature-inspired techniques, the
HITUL system uses different technologies to gather data and optimize traffic sig-
nal priorities using existing traffic information. Various reinforcement-learning
methods have recently been proposed to improve the traffic signal control and
achieved better results than traditional transportation methods. Worth men-
tioning, IntelliLight [24], an RL-based method with an extended phase-sensitive
gate that provides an overall measure of traffic signal control performance based
on factors such as the waiting time and the number of vehicles at intersections.
Presslight [22] is another RL-based method that uses the current phase, the
number of vehicles on outgoing lanes, and the number of vehicles on incoming
lanes as the state, and uses the Max-pressure (MP) as the reward for achieving
coordination between neighbors. Colight [23] utilizes graph attentional networks
to facilitate communication. In this case, it uses the attention mechanism to rep-
resent neighboring information to achieve the goal of cooperative traffic signal
control.
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Table 1. Representative traffic signal control methods.

Citation Method Simulator Road net. (#
inters.)

Evaluation

[12] Back-pressure scheme SUMO Real (2) Avg. travel time

[5] Meta-heuristic algorithm SUMO Real (961) Emissions, Waiting time

[24] RL with extended

phase-sensitive gate

SUMO Synthetic (1), Reward, Queue Length,

Real (24) Delay, Duration

[22] RL with MP-based
reward

CityFlow Sythetic (1), Avg. travel time

Real (3, 5, 16)

[23] RL with graph
attentional networks

CityFlow Real (196) Avg. travel time

[25] RL trained with
Demonstrations

CityFlow Real (1) Travel time

[15] RL with object detection Pygame Synthetic (1) Avg. waiting time

[3] Queue-length responsive Real env Real (1) Avg. waiting time

[7] RL-FRAP with MP
coordination

CityFlow Real (2510) Avg. travel time,

Throughput

[26] RL-FRAP with MAML CityFlow Real (1) Travel time

[28] MUMOMAML with
clustering for Parameter
initialization

CityFlow Real (1, 5, 16) Avg. travel time

DemoLight [25] learns a stochastic policy (demonstrations) that maps states
to an action probability distribution based on a generated analogy between
agents and humans. FRAP [30] is a reinforcement learning-based method
designed to learn the inherent logic of the traffic signal control problem, called
phase competition. The advantage of this method is that it combines similar
transactions irrespective of the intersection structure or local traffic conditions.

ThousandLight [7] is one of the most recent works that has been tested on
the real-road network with 2510 traffic signals. By leveraging the ’pressure’ con-
cept, they developed RL-FRAP-based agents capable of signal coordination at a
regional level. Furthermore, the authors demonstrated that individual agents
can achieve implicit coordination through reward design, thereby decreasing
dimensionality. Another RL-FRAP with model-agnostic meta-learning (MAML)
is proposed in [26]. This model is able to transfer knowledge between different
intersections by focusing on action spaces and state spaces instead of traffic flow,
for example, training an agent at a four-way intersection and testing it at a five-
way intersection. To improve the generalization ability of traffic signal control
models, [28] proposed a meta-RL framework called GeneraLight. GeneraLight
enhances generalization performance by combining flow clustering parameters
initialization with multi-modal MAML (MUMOMAML). Table 1 summarizes
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the comparison of factors that influence the evaluation of traffic signal con-
trol strategies: method, simulation environment, road network, and evaluation
metrics. Recent studies have shown promising results when using reinforcement
learning techniques for traffic signal control. However, the use of these techniques
relies only on the current traffic conditions. Therefore, through our approach, we
contribute several novel sustainable and proactive aspects to this line of research.

3 Formalization of the Problem

This section introduces the fundamental notions used to formalize the traffic
signal control problem.

A road network consists of several junctions indexed by J . Each junction
j ∈ J consists of a number of in-roads, Rj . Note that the Rj are mutually
disjoint, and denote R = ∪j∈JRj . Multi-lane roads with different turns, such
as left- or right-turn-only lanes, are represented by multiple in-roads. Therefore,
in-roads may model one or more lanes of traffic flow. A junction may serve
different combinations of in-roads at the same time. It refers to service phases
when several in-roads are maintained simultaneously. For a junction j, a service
phase can be represented as a vector σ = (σr, r ∈ j), where σr is the rate at
which cars at j can be serviced by the in-road r. Specifically, σr > 0 if the in-road
r is green during phase σ, or σr = 0 otherwise. Accordingly, at each time step
t, the system has to determine how much time it will spend serving each phase
in Sj over the next interval, with the constraint that each phase must last for
some non-zero length of time. Where Sj denotes the set of phases at junction j.

4 EcoLight Approach

Deep reinforcement learning has proven to be a promising method for control-
ling traffic signal. By extending the previously proposed reinforcement learning
solutions, we improve the robustness of the traffic signal control system by using
future traffic noise predictions. Our proposed traffic signal control driven by noise
prediction, namely EcoLight, takes advantage of all traffic features along with the
predicted amount of future generated noise. Integrating these sustainable and
proactive aspects into our deep RL Q-network will enhance its decision-making
capabilities and raise the green awareness of the city’s stakeholders. Figure 1
illustrates the final approach framework.

4.1 Traffic Noise Prediction

A time series is an ordered sequence of numerical observations collected and
stored at regular intervals over time. It characterizes by its “Frequency” (the
time separating two consecutive data points). Time-series data must be defined
clearly and with equal frequency. The time intervals we most often deal with for
traffic-related data are 1, 5, 10 to 60 min. According to the sequence-to-sequence
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Fig. 1. EcoLight general framework.

architecture that we adopt in our algorithm, predicting hourly traffic noise would
grant the input and output data as follows:

Past hour
topredict−−−−−−→ Future hour

[x(1,1), x(1,2), . . . , x(1,s)]
topredict−−−−−−→ [y(2,1), y(2,2), . . . , y(2,s)]

[x(2,1), x(2,2), . . . , x(2,s)]
topredict−−−−−−→ [y(3,1), y(3,2), . . . , y(3,s)]

. . .
topredict−−−−−−→ . . .

where x(hour,observation) and y(hour,observation) denote the past and future noise,
respectively. And s represents the number of noise observations in one hour.
Our approach embraces the Sequence to Sequence architecture to pre-process
the time-series noise data. After splitting the time-series traffic data into fixed-
sized sequences, we leverage an LSTM-based architecture to predict traffic noise
of a future specific period (e.g., hourly, daily, etc.). Effectively it pinpoints long-
term temporal dependencies accurately. We train and update the model using the
back-propagation algorithm as an optimizer and a loss function to minimize the
prediction error. Finally, we evaluate the model’s predicted sequences, comparing
them with the actual traffic noise ones using the prevalent evaluation metrics.

4.2 Traffic Signal Control

A reinforcement learning model consists of online and offline stages. A traffic
state can be defined as a combination of five features: queue length, waiting
time, number of vehicles, the vehicles’ positions, and the phase. As soon as the
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prediction algorithm has been executed, the noise prediction will be explored
as a state input to the model. Then, we use the reward to describe how much
that action a has improved the traffic. In summary, the EcoLight approach is
described as follows:
1. Offline stage: the traffic was allowed to flow through the system according
to a fixed timetable to train the model and collect data samples.
2. Online stage: at every time interval Δt, the traffic signal agent will observe
the state s from the environment and take action a according to ε-greedy strategy
combining exploration (random action with probability ε) and exploitation (the
estimation of the potential reward of doing this action given the state s).
3. Memorization: the agent will observe the environment and get the reward
r from it. Then, the tuple (state, action, reward) will be stored in memory.
4. Network update: after several timestamps, the network will be updated
according to the logs in the memory.

Algorithm 1 summarizes the steps of the reinforcement learning approach.

Algorithm 1. EcoLight: Traffic signal control
Require: predicted roads noise: predictions output; Simulation.
Ensure: CO2, Noise, Fuel consumption
1: Initialize action-value function Q
2: Initialize updated Q′

3: Prnoise extracted from predicted roads noise
4: Initialize experience memory M
5: Initialize the Agent to interact with the environment
6: ε ← setting new Epsilon
7: for (i=0; i < N; i++) do
8: while simulation not terminated do
9: Observe state s

10: s ←(Q leng, W time, N V eh, Pos veh, Prnoise)
11: With probability ε select action at

12: Choose QV alues(M), action a
13: Observe reward r, next state s+
14: Store transition(s,a,r,s+) in M
15: end while
16: if UpdateTime then
17: Update(network)
18: Reset Q′ ← Q
19: end if
20: end for
21: Noise, CO2, Fuel consumption ← Evaluation(Simulation)
22: return Noise, CO2, Fuel consumption

5 Experimental Evaluation

This section describes our experimental setup and evaluation process for com-
paring our EcoLight approach to pioneering baselines using real-world data.
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5.1 Dataset

Experiments on real-world data are needed to determine EcoLight ’s efficiency
against the pioneering baselines. The Helsinki Region InfoShare [9] provided
us with a complete database of urban traffic noise in Helsinki. The provided
dataset is composed of several shapefiles [14], which present a storage format
for geographic data between November 2011 and January 2012. These files can
contain lines, points, polylines, and polygons representing different map features.
Therefore, we performed a data transformation process to extract the complete
traffic information, such as road names and noise values. The applied process
can be resumed in these four steps: (i) convert the Helsinki OpenStreet map to
shapefile (Fig. 2); (ii) project the noise file on the shapefile; (iii) using QGIS3,
run the intersection tool to extract the full dataset noise and roads details; and
finally (iv) export the intersection results to .csv file to be used for the noise
prediction model.

Fig. 2. Conversion of the Helsinki OpenStreet map to shapefile.

5.2 Experimental Setups

Our experiments carried out under the configuration of Ubuntu 18.04.3 LTS
(CPU: Intel Xeon Processor (Skylake) × 8, RAM: 16Go), in which Python (3.7)
and Keras (2.3.1) with the simulator SUMO [21] have been installed.

Prediction Settings. We adopt the use of a fully connected network of an
LSTM Tanh activation layer with the size of 40 units and output layer Sigmoid
activation layer for the prediction task. The Adam optimizer [11], as well as mean
squared error (MSE) as the loss function, are used to fine tune the training model
within 100 epochs for the three considered dataset splits according to the period
of the day (Morning, Evening, and Night).

Simulation Settings. “Lonnrotinkatu” is the intersection in Helsinki that is
chosen to create a network in SUMO. First, the simulation presents the environ-
ment, including the state. Then the EcoLight model, according to that state,
will predict the action of the lights then get its reward (as depicted in Fig.
3). Table 2 presents the parameters setting of the model and reward coefficient
hence the simulation. We found out that the action time interval Δt has minimal
influence on the performance of our model as long as Δt is between 5 to 25 s.
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5.3 Baseline Methods for Comparison

To accurately validate the performance of our proposed EcoLight approach,
we led a comparison with the existing traffic signal control baseline methods;
the Deep RL-based IntelliLight [24], a Max-green-based algorithm Priority-
driven Enhanced Traffic Signal Scheduling Algorithm PETSSA [17], and the
defaults fixed-time-based traffic signal control model in the SUMO simulator
with no intervention BASIC. For the sake of a fair comparison, we tested all
the baseline methods using the same datasets.

5.4 Evaluation

Noise Prediction: The prediction performance of our model compared to
a time-series forecasting baseline are evaluated using the mean squared error
(MSE) and the mean absolute error (MAE) defined respectively by (1) and (2).

Table 2. Simulation settings.

Parameter Value

Model update interval 300 s

Action time interval Δt 5 s

γ for future reward 0.80

ε for exploration 0.05

Sample size 300

Memory length 1000
Fig. 3. Simulation process.

MSE =
1
J

J∑

j=1

(nj − n̂j)2 (1) MAE =
1
J

J∑

j=1

|nj − n̂j | (2)

where J is the size of the tested junctions, nj is the ground-truth junction’s
noise, and n̂j is the predicted noise level yield by the model of the j-th junction.

Traffic Signal Control: Traffic poses a significant burden on society through its
environmental impact, including air and noise pollution and the consumption of
nonrenewable materials. With the use of SUMO, we can measure the generated
pollution and the fuel consumption by using different models and interfaces.
Among the information that can be obtained are: (i) Trip information: sum
of pollutants emitted/fuel consumed by a single vehicle; (ii) Lane emissions:
pollutants emitted and fuel consumed at a lane, aggregated over time; and (iii)
Lane noise: noise generated along a lane, accumulated over a period of time.

Therefore, the traffic signal control performance evaluation of our approach
against the pioneering ones is based on the emitted noise, CO2 emissions, and
fuel consumption of each model on the considered dataset.
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5.5 Results and Discussion

Table 3 glances the noise prediction performance of our SeqtoSeq-LSTM app-
roach versus the AutoRegressive Integrated Moving Average (ARIMA)
[4] non-parametric model using both mentioned evaluation metrics for each
period of the day. This baseline combines the advantages of both autoregressive
and moving average models in stationary random sequence analysis. In prac-
tice, most time-series aren’t stationary. ARIMA overcomes this limitation by
introducing a differencing process [27]. A good look at our results underscores
that our model sharply outperforms ARIMA in predicting future noise with
high improvement percentages for both morning and night periods of the day.
Notwithstanding, the ARIMA model gives a slightly similar performance to
our proposed model for the evening period of the day. In the sequel, we evaluate
the effectiveness of our EcoLight traffic signal control in response to several
environmental and economic factors.

Table 3. Noise prediction performance.

Model MAE MSE

Evaluation Morning Evening Night Morning Evening Night

ARIMA 65.89 2.31 72.94 4439.42 11.24 5537.93

SeqtoSeq-LSTM 1.15 1.07 1.62 6.94 6.39 10.27

Effectiveness over Traffic Noise. From the achieved results (Table 4), the
BASIC shows the worst performance on the considered intersection as it is based
on a fixed-timing strategy that does not adapt according to current and poten-
tial future situation of the traffic. The results underscore that the PETSSA
model reduces better the noise level for both lanes of the fourth in-road of the
intersection. Figure 4(a) depicts the improvement percentages of IntelliLight,
PETSSA, and EcoLight models compared to the BASIC logic strategy. Over-
all, our proposed approach outperforms all the baselines for the produced noise
at the considered intersection.

Table 4. Produced noise performance.

Model Lane11 Lane12 Lane21 Lane22 Lane31 Lane32 Lane41 Lane42

Basic 70.38 69.38 72.86 69.54 68.91 71.57 70.25 70.55

PETSSA 70.20 67.99 72.80 68.28 67.88 70.38 67.24 68.50

IntelliLight 70.09 67.95 72.94 67.92 68.53 70.37 68.02 69.00

EcoLight 68.77 67.90 72.62 67.08 67.52 68.09 69.82 68.92
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Fig. 4. Reduction vs. BASIC.

Effectiveness over CO2 Emission. According to our approach, significant
reductions in CO2 are recorded for the majority of lanes compared to the other
baselines (Fig. 4(b)). Although EcoLight isn’t the best for some lanes, its per-
formance is barely worse than the best achieved by the IntelliLight (Table 5).
As depicted in Fig. 4(b), the improve rates of IntelliLight, PETSSA, and
EcoLight models are comparable to those of the BASIC.

Table 5. Produced CO2 emission performance.

Model Lane11 Lane12 Lane21 Lane22 Lane31 Lane32 Lane41 Lane42

BASIC 74, 579, 545.10 19, 333, 168.50 145, 881, 252.44 16, 540, 482.62 49, 821, 628.05 78, 431, 824.14 18, 681, 756.18 26, 546, 180.90

PETSSA 73, 854, 895.81 18,137,521.04 143, 853, 266.32 15, 721, 922.60 48, 154, 074.55 75, 249, 215.03 17, 950, 045.97 24, 612, 349.73

IntelliLight 73, 954, 895.81 18,137,521.04 142, 853, 266.32 15,521,922.60 49, 254, 074.55 75, 249, 215.03 17,850,045.97 22,712,349.73

EcoLight 62,053,611.60 18, 692, 031.10 106,341,550.52 15, 628, 314.04 41,154,824.82 58,907,941.13 18, 167, 102.88 22, 801, 416.51

Effectiveness over Fuel Consumption. A comparison of the improvement
percentages of fuel consumption by IntelliLight, PETSSA, and EcoLight
models to that of BASIC logic is shown in Fig. 4(c). PETSSA performs the
same as BASIC with no improvement in terms of fuel consumption. We notice
that the IntelliLight model gives a significant power reduction in two differ-
ent lanes on the considered intersection (as shown in Table 6). While operating
EcoLight, vehicular fuel consumption can be reduced by more than 50%.

Table 6. Produced fuel consumption performance.

Model Lane11 Lane12 Lane21 Lane22 Lane31 Lane32 Lane41 Lane42

BASIC 32, 925.02 9, 759.01 105, 496.35 3, 357.92 20, 427.88 55, 544.55 5, 723.92 74, 821.11

PETSSA 32, 925.02 9, 759.01 105, 496.35 3, 357.92 20, 427.88 55, 544.55 5, 723.92 74, 821.11

IntelliLight 32, 157.82 10, 171.84 90, 043.45 3,303.29 20, 325.73 38, 920.39 5,498.10 58, 134.54

EcoLight 26,675.58 8,034.87 45,713.41 6, 717.90 17,691.55 25,323.00 7, 809.22 9,801.32
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6 Conclusion

In this paper, we introduced an eco-friendly traffic signal control driven by urban
noise prediction, namely EcoLight. We address the traffic signal control problem
using a well-designed deep reinforcement learning approach that integrates future
noise predictions. We conduct our experiments on Helsinki’s geographical data.
The yielded results provide evidence for the reliability and sustainability of the
use of future noise predictions. Indeed, carried out experiments underscore the
incapacity of the baselines to perform better in terms of noise, CO2 emissions,
and fuel consumption compared to our EcoLight approach.

We point out a critical future direction to make EcoLight more relevant to
the real world. The EcoLight is designed and tested to consider a simplified case
of one intersection in Helsinki, whereas real-world network design is significantly
more complex. Multiple intersections have been addressed by combining several
reinforcement learning agents at a limited number of intersections. Meanwhile,
sales of electric cars jumped 43% to more than 3.2 million of 370 different car
models in 2020 [6]. This type of vehicles tend to be environmentally friendly and
provide less noise. Future work will seek to improve the reduction by proposing
a hybrid approach that enhances our EcoLight with traffic-related features pre-
diction other than noise, combined with the PETSSA method to benefit from
the Max-green strategy to reduce delay times, thereby limiting congestion levels.
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trial (H2020, grant No 952410) and Estonian Research Council (PRG1573).
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Abstract. Faults are inevitable in a complex online service system.
Compared with the textual incident records, the knowledge graph pro-
vides an abstract and formal representation for the empirical knowl-
edge of how fluctuations, especially faults, propagate. Recent works uti-
lize causality discovery tools to construct the graph for automatic trou-
bleshooting but neglect its correctness.

In this work, we focus on structure discovery of the fluctuation propa-
gation graph among time series. We conduct an empirical study and find
that the existing methods either miss a large proportion of relations or
discover almost a complete graph. Thus, we propose a relation recom-
mendation framework named FPG-Miner based on active learning. The
experiment shows that operators’ feedback can make a mining method
to recommend the correct relations earlier, accelerating the trustwor-
thy application of intelligent algorithms like automatic troubleshooting.
Moreover, we propose a novel classification-based approach named CAR
to speed up relation discovery. For example, when discovering 20% cor-
rect relations, our approach shortens 2.3–42.2% of the verification quota
compared with the baseline approaches.

Keywords: Fluctuation propagation graph · Causal discovery · Active
learning · Online service systems

1 Introduction

Faults are inevitable in complex online service systems. Currently, operators
summarize how they locate the root cause in the form of text for each con-
crete fault, e.g., the troubleshooting guide [12]. However, it can be hard to utilize
the text for automated troubleshooting. In contrast, a fluctuation propagation
graph (FPG) is an abstract and formal representation of the empirical knowl-
edge towards automatic troubleshooting. An FPG describes how fluctuations,
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Fig. 1. Part of the FPG with four monitoring metrics for an Oracle database. Above
each metric name presents the time series at the same period. Time (horizontal axis)
is shown in minutes.

including faults, propagate among monitoring variables. In literature, the con-
cept of FPG has already been used in many works, e.g., locating root causes
automatically [1,17,19,30,32], discovering alert correlation [29], and handling
alert storms [37].

A time series is a chronological sequence of values for the same metric. Time
series can be easily understood for operators and is the most widely available
data for operation work. Meanwhile, many previous works convert logs and alerts
into time series for analysis and visualization [9,18]. Thus, this work focuses on
structure discovery of the FPG among time series.

Figure 1 shows a real scenario of the FPG for the Oracle database, collected
from our collaboration with the database administrators (DBAs). The Oracle
database exposes plenty of metrics, measuring resource usage, counting events,
timing duration of each task, and recording any other status of a database
instance [23]. The performance of a database degrades significantly when the
Average Active Session (AAS) is too high. Some events may contribute to the
high AAS, such as 1) “log file sync”, i.e., the database writer process waits for the
log file to synchronize with the database, and 2) “enq: TX - index contention”,
i.e., a transaction waits for an index used by another transaction. “enq: TX -
index contention” can be the consequence of high workload, indicated by the
number of executes per second (EPS) of SQL commands. Thus, certain perfor-
mance degradation may result from propagation from high EPS to high AAS,
shown as the dashed path in Fig. 1.

There are mainly two ways to construct an FPG in the literature. Some works
construct the graph manually [30,33]. Expert operators reach a consensus on the
graph based on their domain knowledge. Many recent works have attempted to
learn the graph from monitoring data [1,4,6,17,19,31,32], neglecting its correct-
ness. For example, the PC algorithm [13] is widely used [1,4,17,31].

FPG construction faces two main challenges. The first challenge comes
from the lack of effective tools for unsupervised mining. Our empirical
study (Sect. 3) shows that using existing mining methods for FPG is unsatisfac-
tory. Meanwhile, a graph-based algorithm may fail to achieve its goal, e.g., it
fails to locate the root cause. In such an out-of-the-loop situation [8], a trust-
worthy FPG can still provide basic situation awareness for operators. The sec-
ond challenge is that relation verification requires extensive domain
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knowledge and significant efforts from the operators. Thus, we need a
relation recommendation system to help operators build the domain knowledge
of fluctuation propagation.

We propose a framework named FPG-Miner based on active learning, com-
bining data mining with domain knowledge. FPG-Miner recommends relations
to operators and learns from the feedback for better recommendations, accumu-
lating the verified relations.

Moreover, we propose a novel approach, CAR, to implement FPG-Miner .
CAR partitions the time series into small windows and capture the correlation
between every two metrics in each window. The temporary correlation provides
the basis for statistical features. Further, CAR takes XGBoost [5] as a supervised
classifier to recommend unverified relations, utilizing accumulated feedback.

We alter several methods in our empirical study for FPG-Miner as base-
line approaches. In the experiment, we simulate operators’ feedback to com-
pare different approaches based on two real-world datasets. The result validates
that FPG-Miner can enhance mining performance. Moreover, CAR outperforms
baseline approaches.

We conclude our contributions as follows.

1. We conduct an empirical study to evaluate the gap, neglected in the literature,
between a mined FPG and the ground truth. The existing methods either miss
a large proportion of relations or discover almost a complete graph on two
real-world datasets.

2. Due to the gap mentioned above, we design an FPG construction framework
named FPG-Miner to accelerate relation discovery by active learning.

3. We propose CAR, a novel implementation for FPG-Miner based on XGBoost.
The experiment shows that CAR speeds up relation discovery.

2 Related Work

Causal Discovery. We consider FPG construction as a causal discovery prob-
lem. Many causal discovery methods have been proposed [7,13,14,20,35,38].
Besides synthetic datasets, some works also use real-world datasets from other
fields for evaluation, such as biology [38] and geography [25]. Readers can find
thorough discussion in the recent survey [10]. To obtain a more rational causal
graph for online service system operations, CauseInfer [4] enforces TCP latency
as the common descendant of other metrics in the same service.

Active Learning. The intuition behind active learning is that the learner can
perform better with less labeled data if it can choose what to learn [27]. We
borrow the idea from active learning to discover correct relations as early as
possible. A basic active learning strategy is to learn from the most relevant data
points [26]. However, this strategy suffers from learning those that an active
learning model already knows. A natural solution is to learn from the most
uncertain data points, named uncertainty sampling [15]. Readers can find more
information on active learning from the survey [27] and the recent tutorial [3].
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Graph for Troubleshooting. There are similar concepts to the FPG in litera-
ture. The diagnosis graph [33] is named by its functionality for troubleshooting.
In contrast, the attributed graph [32] emphasizes the origin of service dependency
and deployment location. Some works use the causal(ity) graph [1,4,19,21] or
the impact graph [31] according to the property of fluctuation propagation. The
service dependency graph is also an FPG [16] but more coarse than the graph
among metrics discussed in this work.

3 Empirical Study of Mining Methods

In this section, we compare different mining methods empirically. Following is
the research question.

RQ1 How do existing mining methods perform among monitoring metrics?

3.1 Experimental Setup

Dataset. We adopt two datasets in this work. The metrics in each dataset make
up a directed graph with relations as the edges. A positive sample refers to a
relation in the ground truth graph. In both datasets, the reverse relation of a
positive sample is not in the graph, i.e., it is a negative sample.

The Oracle database dataset (DOD) comes from a top global commercial
banking system with many services. Each service utilizes two exclusive Oracle
database instances for data management. We choose one database instance with
a real workload for the empirical study before digging into the data.

DOD includes 51 kinds of metrics. Each time series contains 1040 data points
with an interval of 6 min. We invited DBAs of the target system to label the
relations according to their expert knowledge. They labeled 490 relations that
are part of the ground truth. Among those labeled relations, 210 are positive,
such as the relation between “log file sync” and “AAS” in Sect. 1. On the other
hand, both directions of the rest 280 labeled relations are negative.

The telecommunication network dataset (DTN ) is publicly available,
collected from real telecommunication networks [11]. DTN contains the time
series for 55 kinds of anonymous variables, which count the numbers of different
alarms in 10 min. The underlying causal relations are provided according to
expert experience, among which 563 are positive. The original dataset covers
more than five months. We filter in four weeks in our experiment as the whole
dataset takes too long for some mining methods to finish. Each time series in
the final dataset contains 4032 data points.

Mining Methods. We adopt four representative groups of methods to explore
the mining performance to obtain the FPG, as shown in Table 1. An intuitive
group of methods for constructing the FPG among metrics is correlation analysis.
Causality considers confounders to rule out spurious relations [22], which suits
the FPG better than correlation. As a result, we compare three groups of causal
discovery methods as suggested by a recent survey [10]: constraint-based, score-
based, and FCM (Functional Causal Model) based.
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Table 1. Comparison among existing mining methods

Group Methods

Correlation Pearson correlation (Pearson-r and Pearson-p),
Cross-Correlation (CC ) [29], CoFlux [29]

Constraint-based PC (PC-gauss [13] and PC-RCIT [28]), PCTS [19]
(PCTS-PCMCI [25] and PCTS-PCMCI+ [24])

Score-based GES [7]

FCM-based NOTEARS [38], NRI [14], TCDF [20]

Evaluation Metrics. We adopt the classical Precision, Recall, and F1-score
metrics to evaluate the performance of each method. In terms of efficiency, we
record the execution time, denoted as Time Cost. Denote the ground truth graph
as GG = <V,EG> and the mined graph as GM = <V,EM>, where V is the set
of variables and EG (EM ) is a set of directed edges among V . The output of each
method contains four parts: True Positives (TP = |EG ∩ EM |), True Negatives,
False Positives (FP = |EM \ EG|), and False Negatives (FN = |EG \ EM |).
Precision, Recall, and F1-score are further calculated by Eq. (1). As for the
DOD, we cast TP, FP, and FN on the labeled edges EL in evaluation, i.e.,
TP ′ = |EL ∩ EG ∩ EM |, FP ′ = |EL ∩ EM \ EG|, and FN ′ = |EL ∩ EG \ EM |.

Precision = TP/(TP + FP ) (1a)
Recall = TP/(TP + FN) (1b)

F1-score = 2 × Precison × Recall/(Precision + Recall) (1c)

3.2 Results

The experiment is conducted on an Ubuntu server with 22 cores, 57 GB memory,
x86-64 architecture. Only the implementation of NRI and TCDF is compatible
with GPU. Thus, we conduct the whole experiment with the CPU only for a fair
comparison of execution time.

Each method in the experiment suffers from either a low precision or low
discovery ability on both datasets, as shown in Table 2. Existing methods fail to
achieve a precision higher than 0.5 on both datasets. Meanwhile, the methods
with the highest precision have intolerably low discovery ability. On the other
hand, a longer execution time cannot guarantee better performance.

One reason for the bad performance is the lack of domain knowledge dur-
ing the mining process. For example, the relation between “enq: TX - index
contention” and EPS in Fig. 1 is not linear, i.e., there are no wait events until
the workload achieves a certain high volume. As a result, methods with linear
models such as NOTEARS [38] cannot handle the relations well. As for the deep
learning models like NRI [14], it is hard to localize their “bugs” [34,36].
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Table 2. Comparison among existing mining methods

Method DOD DTN

Precision Recall F1-score Time Cost Precision Recall F1-score Time Cost

Pearson-r 0.206 0.348 0.259 <1 s 0.500 0.007 0.014 <1 s

Pearson-p 0.214 0.890 0.345 <1 s 0.236 0.416 0.301 <1 s

CC [29] 0.225 0.638 0.333 <1 s 0.417 0.009 0.017 5 s

CoFlux [29] 0.142 0.095 0.114 0:01:35 0.184 0.535 0.274 0:05:30

PC-gauss [13] 0.203 0.062 0.095 ∼1 s 0.262 0.066 0.105 15 s

PC-RCIT [13,28] 0.133 0.019 0.033 0:32:41 0.300 0.027 0.049 1:12:43

PCTS-PCMCI [19,25] 0.217 0.952 0.353 0:03:18 0.228 0.496 0.312 0:12:32

PCTS-PCMCI+ [19,24] 0.235 0.243 0.239 0:23:40 0.229 0.410 0.294 3:16:24

GES [7] 0.248 0.257 0.252 ∼1 s 0.213 0.105 0.140 ∼1 s

NOTEARS [38] 0.127 0.090 0.106 1:39:22 0.309 0.030 0.055 0:06:25

NRI [14] 0.213 0.252 0.231 >1 day 0.277 0.346 0.308 >4 d

TCDF [20] 0.333 0.010 0.019 0:03:14 0.357 0.027 0.050 0:04:41

Algorithm 1. Mine the FPG with active learning
1: procedure Mine(data, n) � n is the number of recommendations per iteration
2: relations ← ∅
3: miner ← train(data)
4: repeat
5: candidates ← miner.recommend(n)
6: for all relation ∈ candidates do
7: if Operators confirm relation then
8: relations ← relations ∪ {relation}
9: miner.learn(data, relations)

10: until Stopping criteria is satisfied
11: return relations

In contrast, experienced operators can tell a relation from a spurious one
based on their rich domain knowledge. In the discussion on the labels of DOD,
DBAs refer to historical troubleshooting cases, advice from Oracle customer
support, and other information in memory as proof. Thus, we propose to bring
operators’ feedback (missing knowledge in the data) into the mining procedure.

4 FPG-Miner : Mine with Active Learning

We propose a framework named FPG-Miner to mine the FPG among time series
with domain knowledge, as described in Algorithm1. The framework integrates
three core steps—training, recommendation, and learning—into a whole process
called a miner. For each recommendation A → B (A and B stand for metrics), a
miner expects one of the following three feedback from the operators: 1) A → B
is correct (and B → A is a negative sample), 2) A → B is reversed, i.e., B → A is
positive, and 3) both A → B and B → A are negative. The miner will learn from
the feedback and recommend new relations. Verification can cost a lot of time.
Hence, the recommendation procedure contains multiple iterations to achieve an
incremental application of verified relations.
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In the rest of this section, we will first explain the rationale behind this
general active learning framework (Sect. 4.1). After that, we provide a novel
implementation for the training step (Sect. 4.2).

4.1 Recommendation Framework

Ideally, a miner should recommend correct relations (including reversed ones) in
preference to incorrect ones. The process can stop after operators confront the
first incorrect recommendation. It is hard to achieve such an ideal recommen-
dation process. Each practical miner may mix correct and incorrect relations.
As a result, an incorrect recommendation is insufficient to tell whether we have
discovered all the positive relations. Thus, the process has to continue after the
first incorrect recommendation arises (Line 10 in Algorithm 1).

The natural criterion is that operators have verified all of the relations. Given
the number of metrics N , the number of relations is bounded by N(N − 1)/2.
Thus, the process will terminate after �N(N − 1)/(2n)� iterations, where n is
the number of relations to recommend per iteration.

A miner shall learn from mistakes to avoid new incorrect recommenda-
tions, shortening the overall verification times to discover each positive relation
(Line 9 in Algorithm 1). Inspired by the uncertainty sampling in active learning
research [15,27], recommending uncertain relations may bring more information
to the miner for long-term benefit. A miner is supposed to provide confidence
between 0 and 100% for each relation, encoding the labels of verified ones. Based
on the confidence, we consider the following strategies.

Confidence-First. A miner first recommends the relation with the highest con-
fidence, aiming at filtering out the unimportant or spurious relations.

Uncertainty-First. A miner first recommends the most uncertain relation
to improve itself. A straightforward uncertainty measurement is the distance
between confidence and 50%.

Mixed. The mixed strategy combines the two strategies above. Specifically,
every n = 3 relations that a miner recommends for verification contain two with
the highest confidence and one with the highest uncertainty.

Random. The random strategy is the baseline strategy. It is also applied when
more than one relations share the same highest confidence or uncertainty.

4.2 Continuous Association Rule Classifier

Mining methods used in Sect. 3 are designed for the unsupervised task. We can
alter those methods as miners for FPG-Miner . Moreover, we propose the Con-
tinuous Association Rule (CAR) classifier, as shown in Fig. 2.

Inspired by association rule mining [2], CAR calculates statistical features,
such as supports, for each ordered pair of metrics, i.e., directed relations. As CAR
does not filter out any relations, e.g., based on some thresholds like the minimum
support, all positive relations remain in our consideration. Meanwhile, we design
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Fig. 2. The overview of CAR under the framework of FPG-Miner

Table 3. Features of a directed relation

Feature (A → B) Definition Feature (A → B) Definition

Coverage P (A) Support P (AB)

Consequence coverage P (B) Lift P (AB)/ [P (A)P (B)]

Confidence P (B|A) IR P (A)/P (B)

Reversed confidence P (A|B) KULC [P (B|A) + P (A|B)] /2

a novel approach to calculate features from time series directly, different from
counting transactions in the original association rule mining.

Feature Extraction. The natural fluctuation of time series can be so large
that it conceals causal relations. For example, there are spikes in both the index-
contention event number and the EPS at the 30th minute in Fig. 1. Meanwhile,
the EPS alone has another one at the 42nd minute. The second spike increases
the outlier number of the EPS, having no contribution to the correlation of the
two metrics, but is misleading. The intuition behind CAR is to capture the co-
fluctuation of the causal metric and its effect when the causal one changes large
enough, e.g., the spikes at the 30th minute.

We partition each time series into sliding windows with the size of LE , e.g.,
LE = 10. LE implies how long we assume that the pattern of any time series
is static. In each sliding window, we calculate the Pearson p-value pair-wisely.
Two metrics are taken as correlated in this window if the p-value is less than α,
e.g., α = 0.05. The Support value of every two metrics is the ratio of correlated
windows. We count the ratio of windows correlated with any other metrics as
the Coverage of a given metric. The features in Table 3 are calculated based on
the Support and Coverage. For example, Confidence is defined as the Support
divided by the Coverage, i.e., P (B|A) = P (AB)/P (A).



228 M. Li et al.

Supervised Classification. CAR will recommend relations randomly until
operators have reported both positive and negative labels. Then, we use
XGBoost [5] to classify the unlabeled relations. We take the probabilities
(weighted voting of decision trees) as the final confidence for CAR in the recom-
mendation.

5 Experiment

We compare different miners with the same datasets described in Sect. 3 to
validate our proposed methodology. Following are the research questions.

RQ2 Will a mining method perform better based on active learning than in an
unsupervised manner?

RQ3 How does CAR perform compared with other miners under the framework
of FPG-Miner?

RQ4 Are there some relations more important than other ones?

5.1 Experimental Setup

Miners. We alter PC-gauss, GES, and NRI as miners for comparison, which
represent three kinds of causal discovery methods [10], respectively. We classify
these miners and their variants into three groups.

Static miners recommend relations in the predefined order without learning.
In Algorithm 1, operators may confirm each relation once. Thus, mining with
active learning will find more relations than in an unsupervised manner. We
wrap PC-gauss, GES, and NRI as static miners to compare the two manners
fairly. Moreover, we adopt a random miner with equal probability for related or
not, denoted as Random.

PC and GES provide only binary output, i.e., the existence of a relation.
A binary miner utilizing such a mining method provides confidence of one or
zero. Hence, a binary miner recommends randomly from relations it considers
positive, i.e., the confidence-first strategy.

Probabilistic miners calculate probabilities as confidence, supporting vari-
ous recommendation strategies. NRI can provide voting from time windows as
confidence for each relation. Meanwhile, the XGBoost model of CAR provides
weighted voting from decision trees. The NRI miner tunes its neural network
for two epochs based on existing parameters in each learning step. In contrast,
CAR trains a new classifier with all the available labels. We choose the recom-
mendation strategy for the best performance.

Evaluation Metrics. We simulate Algorithm 1, and miners interact directly
with the ground truth. In each iteration, n = 3 relations are presented to the
mock operators for labeling. The simulation stops when a miner has recom-
mended all the labeled positive relations.
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Table 4. Comparison among miners without/with active learning

Miner Learning DOD DTN

AUC T@k AUC T@k

10% 20% 30% 50% 100% 10% 20% 30% 50% 100%

PC-gauss Without 0.589 47 99 161 291 490 0.639 106 248 407 703 1483

With 0.648 41 102 145 237 489 0.619 112 259 428 746 1485

GES Without 0.690 28 76 125 214 490 0.651 90 223 370 684 1479

With 0.639 46 87 142 244 488 0.636 128 227 401 720 1483

NRI Without 0.589 74 118 175 273 488 0.658 138 291 407 633 1485

With 0.741 53 83 113 192 478 0.731 85 177 285 575 1482

Let C(i) be the number of correct undirected relations among the first i
recommendations. Denote the total number of correct undirected relations with
labels as NC . The ideal series of C(i) is C∗(i), as shown in Eq. (2). Area Under
Curve (AUC) compares C(i) against C∗(i), as shown in Eq. (3). A high AUC
indicates that a miner can learn FPG quickly. T@k is the number of times it takes
a miner to recommend k correct relations, i.e., C(T@k) = k. The lower T@k
indicates that the miner can discover correct relations faster at the beginning.

C∗(i) =
{

i if 1 ≤ i ≤ NC

NC if i > NC
(2)

AUC =
∑NC

i=1 C(i)∑NC

i=1 C∗(i)
(3)

The evaluation metrics in this section are different from those in Sect. 3.
We argue that the operators have to verify each relation in the FPG. As a
result, the verified ones will have a precision of 100%, which becomes trivial
in comparison. Meanwhile, operators have limited time to verify relations. The
recall metric measures the number of relations a miner discovers (k) given a
certain verification quota (q) during the journey to obtain the whole ground
truth, i.e., Recall@q = k/NC . Slightly different from the recall, we measure
the number of verification that a miner uses to discover certain relations, i.e.,
T@k = q, to address the restriction on the verification quota. T@k also implies
the precision of recommendations, i.e., Precision@q = k/T@k.

5.2 Results

Improvement with Active Learning. Table 4 compares active learning and
the corresponding unsupervised manner to answer RQ2. We find that active
learning can enhance some but not all relation mining methods. The NRI miner
is improved by operators’ feedback significantly. In contrast, the GES miner
performs better without operators’ feedback. GES utilizes a score function to
estimate data likelihood given a causal graph. The score function performs dif-
ferently from operators. For example, adding an extra relation (A1 → A32) into
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Table 5. Comparison among miners under the framework of FPG-Miner

Miner DOD DTN

AUC T@k Time Cost AUC T@k Time Cost

10% 20% 30% 50% 100% /iteration 10% 20% 30% 50% 100% /iteration

Random 0.617 45 89 148 269 490 <1 s 0.617 148 276 443 756 1480 <1 s

PC-gauss 0.648 41 102 145 237 489 3 s 0.639 106 248 407 703 1483 <1 s

GES 0.690 28 76 125 214 490 <1 s 0.651 90 223 370 684 1479 <1 s

NRI 0.741 53 83 113 192 478 0:05:02 0.731 85 177 285 575 1482 0:24:11

CAR 0.774 26 59 104 187 477 <1 s 0.792 86 173 269 455 1464 <1 s

Fig. 3. Relative T@k and Precision@q for each miner on both datasets. For the relative
T@k, we hold CAR’s T@k as one

the ground truth graph of DTN can also increase the score. Thus, feedback may
break the intrinsic mechanism of GES. In this way, we will discuss GES as a
static miner in the rest of this section. The performance of the PC-gauss miner
depends on the dataset. We will discuss PC-gauss with operators’ feedback in
DOD while taking PC-gauss as a static miner in DTN .

Overall Results. Table 5 summarizes the miners’ performance to answer RQ3.
Figure 3(a) and Fig. 3(b) show the relative T@k for each miner with CAR’s T@k
as one. For the sake of clarity, we also present Precision@q = k/T@k in Fig. 3(c)
and Fig. 3(d), where q is the verification quota. CAR discovers positive relations
faster than baseline miners on both datasets, enhanced by the feedback from
operators. GES has a low T@10%. However, it falls behind as CAR and NRI
receives much feedback.

Contribution of Feature Extraction. We replace the feature extraction of
CAR to demonstrate its effect, denoting the degraded miner as Association Rule
(AR). Specifically, AR takes data points that are 1.5× of interquartile range
far from the median in the sliding window as outliers. It further calculates the
features in Table 3 based on those outliers. Table 6 shows the comparison between
CAR and AR. The proposed feature extraction shortens T@20% by 26% and
25% on DOD and DTN , respectively.

5.3 Case Study: Root Cause Analysis

We utilize the root cause analysis (RCA) task as a downstream application of
the mined graph to explore RQ4. We adopt MicroCause [19] to localize root
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Table 6. Comparison between CAR and its variant AR

Miner DOD DTN

AUC T@k AUC T@k

10% 20% 30% 50% 100% 10% 20% 30% 50% 100%

CAR 0.774 26 59 104 187 477 0.792 86 173 269 455 1464

AR 0.738 39 80 103 198 489 0.678 123 232 356 573 1484

Fig. 4. As the number of correct relations (k) recommended by CAR increases, the
graph quality changes, indicated by RCA performance (AC@5).

cause metrics. AC@5 refers to the probability that the top 5 results given by
MicroCause include the root cause metrics [19]. We take AC@5 as the quality
indicator of the mined graph. AC@5 is further measured on 99 high AAS faults.

Figure 4 shows that at least 33.8% of the relations seem neither helpful nor
harmful to the RCA task in this case study. After CAR finds 66.2% of the rela-
tions (the dashed line in Fig. 4), the increasing trend of AC@5 stops. We would
conclude that the answer to RQ4 is positive. However, an advanced algorithm
in the future may still need the whole graph to take effect.

6 Conclusion

A fluctuation propagation graph (FPG) is a formal representation of the empir-
ical knowledge towards automatic troubleshooting. This work focuses on struc-
ture discovery of the verified FPG among monitoring metrics. Our first empirical
study shows that the existing methods have poor precision and recall on two real-
world datasets. Thus, we propose a framework named FPG-Miner , combining
operators’ feedback to enhance the discovery ability. As shown in the case study,
some relations are more important than others, strengthening our motivation.
Under the framework of FPG-Miner , we propose a novel classification-based
approach named CAR to speed up relation discovery. The experiment result
confirms that active learning can enhance mining performance. Meanwhile, CAR
recommends correct relations earlier compared with the baseline approaches. We
believe that our methodology can be applied to other domains. However, the
generalizability of our findings shall be examined in future work.
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Abstract. Recent pose-estimation methods enable digitization of
human motion by extracting 3D skeleton sequences from ordinary video
recordings. Such spatio-temporal skeleton representation offers attrac-
tive possibilities for a wide range of applications but, at the same time,
requires effective and efficient content-based access to make the extracted
data reusable. In this paper, we focus on content-based retrieval of pre-
segmented skeleton sequences of human actions to identify the most
similar ones to a query action. We mainly deal with the extraction of
content-preserving action features, which are learned using the triplet-
loss approach in an unsupervised way. Such features are (1) effective
as they achieve a similar retrieval quality as the features learned in a
supervised way, and (2) of a fixed size which enables the application of
indexing structures for efficient retrieval.

Keywords: Human motion data · Skeleton sequences · Action
similarity · Action retrieval · Triplet-loss learning · LSTM

1 Introduction

Human motion can be digitized into a discrete sequence of simplified skeleton
poses, where each pose keeps 2D or 3D space coordinates of important body
joints in a specific time moment. Until recently, such spatio-temporal data were
captured by specialized hardware technologies, so the amount of digitized motion
data was fairly limited. However, recent pose-estimation software methods [4,23]
enable extracting skeleton data from ordinary video recordings, which opens
unprecedented application potential in many domains. For example, in sports
to automatically assess a figure-skating performance without emotions of human
referees; in healthcare to remotely evaluate the progress in rehabilitation exercis-
ing; in smart-cities to detect potential threats like a running group of people, or
in computer animation to find previously-captured animations relevant for build-
ing a new movie scene [3]. All these potential applications require content-based
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processing techniques that perform effectively and efficiently on large datasets
of skeleton sequences.

Current research mainly focuses on content-based processing of pre-
segmented skeleton sequences, called actions, that are perceived as semantically-
indivisible motions with respect to the context of a given application. The most
popular tasks are: recognizing classes of actions [7,9,25], detecting actions in
a stream [6,19,24], or searching for query-relevant subsequences within a long
skeleton sequence [1,16,17]. These tasks often employ query-by-example retrieval
as the underlying operation: given a query action, the objective is to search the
dataset of actions that are the most similar to the query one. The retrieval oper-
ation has to solve two important issues: effectiveness (i.e., the quality of the
retrieved results) and efficiency (i.e., the query response time). In this paper, we
focus on the action-retrieval operation from both points of view.

Related Work

A fundamental prerequisite for skeleton-data retrieval is an ability to determine
the similarity between two actions. The similarity can be numerically calculated
using time-warping functions, like the Dynamic Time Warping (DTW), on the
level of action poses represented by raw joint coordinates [2]. To better reflect
the similarity semantics, content-preserving features are extracted on the level
of whole actions. The features may be manually designed by a domain expert in
a handcrafted way [15]. However, the handcrafted features can hardly represent
more complex dependencies in movement patterns and, therefore, have been
practically abandoned and replaced by deep features that can be automatically
learned using well-trained neural-network models [22]. The network models, like
convolutional (CNN) [9,26], graph-convolutional [12], or long short-term memory
(LSTM) [19] neural networks, are often trained for the classification of actions
into a predefined set of classes. The learned parameters of hidden network layers
can then be utilized to extract the action feature. Such features are typically
represented as fixed-size high-dimensional vectors (e.g., 4,096D features in [17])
and efficiently compared by the Euclidean [17] or Hamming [9] distance functions
to determine the similarity of action pairs.

The deep features are almost exclusively learned in a supervised way, which
requires the set of labeled training actions to be defined in advance. Catego-
rization of such training actions determines the semantics of similarity percep-
tion. However, in scenarios where no semantic labeling is available, unsupervised
approaches are the only possibility. In such cases, auto-encoders [20] or trans-
formers [5] are trained to learn an action embedding (i.e., fixed-size action fea-
ture) by reducing the dimensionality of original action data into the fixed-size
feature and reconstructing the original action from such feature. An alterna-
tive way is to employ the Siamese or triplet-loss learning strategy to learn the
action feature using examples of similar and dissimilar action pairs. To find suit-
able action pairs for training, it is necessary to use additional domain-expert
knowledge or some simple metric that can at least roughly estimate the low-
level action similarity. Based on the recent survey [15], there is a very limited
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number of skeleton-data approaches [1] that extract the action feature using
the triplet-loss strategy in an unsupervised way (sometimes also referred to as
self-supervised way).

The most relevant approach to our work is the application of the triplet-loss
learning strategy in [1]. This approach firstly partitions an original action into
fixed-size segments, extracts the feature for each segment, and determines the
similarity of actions by comparing their corresponding sequences of segment fea-
tures using the expensive Earth mover’s distance. To learn the segment feature,
the positive examples are selected as temporally-close segments belonging to the
same action and negative ones as randomly chosen segments belonging to differ-
ent actions. In this paper, we introduce advanced strategies for selecting positive
and negative examples by employing low-level similarity functions. We extract
the feature on the level of the whole action, which enables orders-of-magnitude
more efficient comparison of actions using the Euclidean distance function, in
comparison with [1]. In addition, we employ a long short-term memory network
as the internal model for triplet-loss learning, which has demonstrated higher
effectiveness for skeleton data [18] than convolutional networks used in [1].

Paper Contributions

In this paper, we focus on action retrieval by proposing a new approach for the
extraction of deep action features in an unsupervised way. The proposed unsu-
pervised approach has much higher applicability than most existing purposely-
trained classifiers that require labeled actions to be defined in advance. We exper-
imentally evaluate the quality of extracted features by achieving high retrieval
effectiveness, which is competitive to the quality of supervised approaches, as well
as high efficiency, which can further be improved by straightforward application
of indexing schemes. The specific paper contributions include: (i) introduction
of the Uniform Time Warping function to efficiently determine low-level simi-
larity of raw-action data (ii) definition of new strategies for selection of positive
and negative actions for triplet-loss feature learning, and (iii) incorporating the
LSTM network into the triplet-loss learning process (in contrast to CNN-based
approaches in [1]).

2 Action Retrieval

In this section, we formally define the problem of action retrieval using k-nearest
neighbor queries. Then, we present the baseline retrieval approach employ-
ing time-warping distance functions for determining the low-level similarity of
actions. Such functions will serve as underlying similarity concepts for the needs
of deep-feature extraction in an unsupervised way (Sect. 3).

2.1 Problem Definition

We represent skeleton data of a single action A as a sequence A = (P1, . . . , Pn)
of n consecutive 3D poses Pi, where the i-th pose Pi ∈ R

j·3 is captured at time
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moment i (1 ≤ i ≤ n) and consists of xyz-coordinates of j tracked joints. In this
paper, we use the body model with j = 31 joints. The retrieval problem is then
defined based on k-nearest neighbor search (kNN) as follows. Having a dataset
A = {A1, . . . , Al} of l actions {A1, . . . , Al} and a query action AQ, the objective
is to search the dataset and finds its k actions (k � l) that are the most similar
to the query AQ:

{A′ ∈ A|k = |A′|,∀A′ ∈ A′,∀Ai ∈ A\A′ : dist(AQ, A
′) ≤ dist(AQ, Ai)}, (1)

where the similarity between the query AQ and any dataset action Ai (1 ≤ i ≤ l)
is quantified by a distance function dist(AQ, Ai).

2.2 Retrieval Process

For simplicity, we implement the retrieval process using the sequential scan app-
roach by comparing the query action against all the dataset actions and select-
ing k most similar as the nearest neighbors. As future work, we outline how the
retrieval process can be simply speed-up by adopting an indexing structure.

To apply the sequential-scan approach, there is a need to define the distance
function dist(). We firstly use the standard Dynamic Time Warping (DTW)
as applied in [14]. However, as later demonstrated in the experiments, this
function does not perfectly align semantically-related skeleton sequences as it
prefers shorter actions with respect to a query. Since this paper works with
well-segmented actions, it is also meaningful to apply a warping function that
uniformly aligns the action poses in the temporal dimension. For this purpose,
we define the Uniform Time Warping (UTW) function which determines the
distance between actions A = (P1, . . . , Pn) and A′ = (P ′

1, . . . , P
′
n′) as:

UTW (A,A′) =

{
1
n · ∑n

i=1 poseDist(Pi, P
′
i·�n′\n�) n ≥ n′

1
n′ · ∑n′

i=1 poseDist(P ′
i , Pi·�n\n′�) n < n′,

(2)

where the distance function poseDist() quantifies the similarity between two
poses based on the sum of the Euclidean distances between their corresponding
joint coordinates. Simply, UTW maps all the poses of a longer action to the
temporally-corresponding poses of a shorter one and computes the average pose
distance of such mappings. In contrast to DTW, such average distance guarantees
that shorter nor longer actions are preferred. The other advantage is linear time
complexity compared to the quadratic time complexity of DTW.

The DTW and UTW functions determine the similarity of actions numeri-
cally and do not take any semantics into account. Moreover, both functions are
hardly indexable since they do not satisfy the triangle-inequality postulate of a
metric space. For these reasons, we learn and extract semantic-preserving action
features in the form of fixed-size vectors that can be efficiently compared by
the Euclidean distance function and thus potentially indexed using any vector-
or metric-space index structure [11]. In the following, we introduce the feature
extraction approach that learns action semantics in an unsupervised way with
the help of both DTW and UTW distance functions.
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3 Learning Action Features

The main paper’s objective is to extract fixed-size features from unlabeled
actions of a variable length. The features should preserve the information con-
tained in the original raw skeleton actions while reducing data dimensional-
ity. For this purpose, we employ the Long Short-Term Memory (LSTM) neural
network, which has already proven to be a successful and lightweight solution
for action recognition in skeleton data in a supervised way [15]. To train the
LSTM network in an unsupervised way, we adopt the triplet-loss learning app-
roach that learns the data semantics by minimizing the distance between similar
examples while maximizing the distance between dissimilar ones. In supervised
approaches [13], the similar and dissimilar examples can be simply determined
based on labels. However, in our scenario, we need to determine such examples
based on the low-level similarity of skeleton data. In the rest of this section, we
describe the principles of triplet-loss learning in combination with LSTM and
introduce several strategies for generating training data from unlabeled actions.

3.1 Triplet-Loss Learning

To train the adopted LSTM network, we use the triplet-loss function to calcu-
late the model error. To compute the loss function value, we extract an action
embedding – a fixed-size high-dimensional vector that reflects the semantics of
the given action in a given time moment, and it will correspond to the desired
action feature after the network is fully trained. The embedding f(A) is extracted
for each action A independently by feeding the action through the LSTM net-
work and taking the content of the last hidden layer as the output. The network
is gradually trained using the provided triplets consisting of an anchor action
A, positive action example AP, and negative action example AN. The positive
action should be similar to the anchor (i.e., dist(A,AP) is “low”) while the
negative action should be dissimilar to the anchor (i.e., dist(A,AN) is “high
enough”). The loss-function value is denoted as loss and formally defined as:

loss(A,AP, AN) = max
(
0, Eucl

(
f(A), f(AP)

) − Eucl
(
f(A), f(AN)

)
+ m

)
,

where Eucl
(
f(A), f(AP)

)
= ||f(A)−f(AP)||2 represents the Euclidean distance

between the action embeddings f(A), f(AP) and m is a margin that should
correspond to a requested distance between the embeddings of the positive and
negative examples. Since the network is learned in a fixed number of iterations
(i.e., epochs), the loss value for each iteration is calculated as the mean value of
losses computed over all the provided triplets. In this paper, we follow the offline
triplet generation approach, which means that the triplets are generated before
the training process and thus remain the same for all the iterations.

Training and Validation Details. The network model is trained using
the provided triplets that are automatically generated from the dataset A of
unlabeled actions according to a given strategy (individual triplet-generation
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Fig. 1. Triplet-loss learning approach with an LSTM-based neural network as the inter-
nal model. The network is used to extract the embeddings f(A), f(AP) and f(AN) for
the positive AP and negative AN example with respect to the given anchor A.

strategies are presented in Sect. 3.2). For each triplet, the anchor, positive,
and negative actions are independently processed by the LSTM network to
extract their embeddings, as graphically illustrated in Fig. 1. Each such action
is processed by feeding its individual poses (P1, . . . , Pn) – in the form of joint-
coordinate vector Pi – into individual LSTM cells. The output of a given cell
is forwarded to the input of the next cell, and the output of the last n-th cell
constitutes the action embedding.

To validate the accuracy of the model trained using the provided triplets, we
follow how the loss value decreases over individual iterations. The loss can be
computed in the same way also for test actions which can also be provided in
the form of triplets. As the loss value is not further improving over individual
iterations, the training can be stopped. In this paper, we also use the hard
stop condition on the number of iterations (set to 100 in all the experiments).
We additionally validate the model accuracy using the 1NN approach with the
knowledge of action labels. In this scenario, the feature embeddings are extracted
independently for each training and test action after each iteration. Then, the
Euclidean distance between a test and each training action is calculated on the
level of their embeddings, and the nearest-neighbor’s label is assigned to the test
action. The accuracy is expressed as the ratio between the number of correctly-
assigned labels and the number of all test actions.

3.2 Triplet Generation Strategies

We create the triplets using different strategies that are mostly based on iden-
tifying positive and negative examples using the low-level similarity function
dist(). In all the cases, the objective is to have the positive example closer to
the anchor than the negative example: dist(A,AP) < dist(A,AN). There are so
many triplets that can be generated using this rule, so we need to select the most
contributing ones, as the network training is sensitive to the triplet selection. To
employ the whole dataset, we generate a fixed number of 5 triplets for each
training action considered as the anchor. To get rough intuition about possible
achievable accuracy, we also consider the supervised triplet-generation strategy
in which the labels of training actions are known.



240 I. Kico et al.

Supervised Triplet Generation Strategy. We first consider the baseline
case where action labels are known, thus each dataset action belongs to exactly
one class. In this case, we want the positive example from the same class (i.e.,
with the same label) as the anchor, while the negative example is from a different
class. In particular, for each anchor A, we randomly select a positive example AP

belonging to the same class as the anchor and a negative example AN belonging
to a different class. By repeating this procedure for the same anchor five times,
we generate 5·l triplets, where l denotes the number of available training actions.

Unsupervised Random Triplet Generation Strategy. If the labels of
actions are not known, the most straightforward way is to generate the triplets
randomly. In particular, for each training action selected as the anchor, one
randomly chosen dataset action is considered as the positive example and one
randomly chosen action as the negative example. We again generate the 5 · l
triplets by repeating this procedure five times for each anchor.

Unsupervised kNN Triplet Generation Strategies. The important idea
for further triplet-generation strategies is to determine the positive and negative
examples based on a low-level similarity function dist(), such as DTW or UTW.
Specifically, for each training action considered as the anchor A, we calculate
the distance dist(A,A′) to each other training action A′ to determine the list of
k-nearest neighbors (kNN), where k ≤ l can even correspond to the number of
training actions (see Eq. 1). Then, the positive example should be selected from
the beginning of the list, while the negative ones from the tail of the list. At
the same time, the following two important issues should be taken into account
during the selection process.

– Some triplet-loss studies in different domains (e.g., in face recognition [13])
suggest the negatives to be more distant from the anchor but not that distant
from the positive. Such “hard” negatives should help the network learn more
complex dependencies.

– The construction of nearest-neighbor lists using low-level similarity functions,
such as DTW or UTW, does not need to perfectly reflect the semantics of a
target application.

Both issues motivate us to take the positive example from the beginning of
the list and the negative one not too far but, at the same time, not too close
to the anchor. For example, assume the dataset of 1,000 training actions, so we
set k = 40 to obtain the list of only 40 nearest neighbors and select the positive
from the first 5 neighbors while the negative is within the range of 20–40NN.

By generating 5 triplets for each training anchor, we simply consider the first
five positives from the nearest-neighbor list. However, we have many possibilities
for the selection of negatives. We propose the following four cases for the given
anchor A and the selected close positive example AP.

1. rnd(range) – the negative is selected randomly as a random action from the
given nearest-neighbor range.
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2. maxP (range) – the negative AN is selected as the action from the given
nearest-neighbor range having the maximum distance to the positive AP,
i.e., {∀A′ ∈ range : dist(AP, AN) ≥ dist(AP, A′)}. The idea is to have the
negative more distant from the positive.

3. minP (range) – orthogonal case to the previous one by selecting the negative
AN from the given range with the minimum distance to the positive AP, i.e.,
{∀A′ ∈ range : dist(AP, AN) ≤ dist(AP, A′)}. This constitutes a “harder”
triplet for learning.

4. maxPminA(range) – the negative AN is selected from the given range with
the maximum distance to the positive AP but, at the same time, with the
minimum distance to the anchor. This constitutes a different form of “harder”
triplet compared to the previous case.

Action-Length Limitation Filtering. One of the problems of low-level sim-
ilarity functions is that they need to deal with the comparison of actions that
may significantly vary in length (e.g., from tens of poses to hundreds of poses).
Although time-warping mechanisms of DTW and UTW partly solve this prob-
lem, some shorter actions can be quantified as more similar to a longer action
than two longer semantically-relevant actions. To avoid selecting actions that
differ much in length, we propose to apply length-limitation filtering. In partic-
ular, when constructing the k-nearest neighbor list, we consider only the actions
having a similar length as the anchor A = (P1, . . . , Pn). We define the thresholds
on minimum tmin and maximum tmax deviation from the anchor, so the action
A′ = (P ′

1, . . . , P
′
n′) is considered to be added into the nearest-neighbor list only if

it satisfies the length restriction: tmin ·n ≤ n′ ≤ tmax ·n. Although the values of
the thresholds depend on a target application, we suggest this setting: tmin ∼ 0.7
and tmax ∼ 1.5 (i.e., the action can be maximally about roughly 50 % shorter or
longer with respect to the anchor).

4 Experimental Evaluation

We evaluate the proposed triplet-generation strategies’ influence on the quality
of extracted action features. The quality is quantified by evaluating kNN queries
and compared with existing supervised and unsupervised approaches.

4.1 Dataset

We adopt the popular HDM05 dataset [10] that provides the HDM05-122 ground
truth [18] with 2, 328 actions divided into 122 classes. Each action is captured
with the 120 frame-per-second rate and consists of 3D positions of 31 joints
estimated in each pose. The actions correspond to daily/exercising activities
and significantly differ in length – 13 frames (0.1 s) and 900 frames (7.5 s) for
the shortest and longest action. We have chosen this challenging dataset as it
provides the highest number of classes to be recognized. As suggested in [8,
18], we also pre-process the dataset by downsampling the actions to 12 Hz and
unifying the skeleton position, orientation, and size in each action pose.
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4.2 Methodology

We evaluate the effectiveness of the proposed feature-learning approach on a
content-based kNN retrieval scenario. We first split the dataset actions into
training and test sets in a balanced way, so each set consists of 1,164 actions.
The unlabeled training actions are used for generating triplets using different
strategies, as described in Sect. 3.2. In particular, we generate 5 different triplets
for each training action considered as the anchor, which results in 5,820 triplets in
total. Each trained model is then used to extract the features (i.e., embeddings)
of all training and test actions as the output of the last hidden LSTM-network
layer. The features are finally used to evaluate kNN retrieval by calculating the
Euclidean distance between the features of a given test action (i.e., query) and
each training action. The accuracy of a single query is computed as the ratio of
the number of nearest neighbors that belong to the same class as the query and
value k ( action labels are used only for evaluation purposes). As there are about
9 actions available for each class on average, we limit k to 10. Overall accuracy
is calculated as a mean value over accuracies of all 1,164 queries.

Training Details. All the experiments were run on a six-core PC with Intel(R)
Core(TM) i7-8700K CPU at 3.70 GHz, 16 GB RAM, with NVIDIA GeForce GTX
1060 6 GB GPU. The proposed approach was implemented using Python 3.7 and
the PyTorch 1.5.1 framework. Each network was trained in 100 iterations using
the Adam optimizer, and the learning rate was set to 0.00001. The size of hidden
LSTM-network layers was fixed to 1,024 dimensions in all the experiments. The
training time took up to 10 h.

4.3 Experimental Results

As a baseline, we evaluate retrieval accuracy of the supervised triplet genera-
tion strategy. For each training anchor action, 5 positives are randomly chosen
from the same class as the anchor, and one negative is randomly selected from
a different class for each anchor-positive pair. This guarantees 100 % data accu-
racy of generated triplets as the positives and negatives are selected based on
the action labels. After training and evaluating the retrieval scenario, retrieval
accuracy achieves 81.96% for k = 1.

Before evaluating any unsupervised approach, we determine retrieval accu-
racy by extracting the action features from the untrained LSTM network (i.e.,
the network with randomly initialized parameters). Achieved 1NN retrieval accu-
racy of ∼47 % is surprisingly high, but this is caused by the fact that the net-
work works only as a “dimensionality-reduction method” which transforms the
original skeleton-data space into a fixed-size feature space. So the objective of
unsupervised approaches is to increase retrieval accuracy from 47 % up to 82 %,
achieved by the supervised approach.

We start to evaluate the unsupervised approaches using the basic random
triplet generation strategy “5 · rnd() rnd()”, where 5 positives are randomly
selected for each anchor (and one random negative for each anchor-positive pair).
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Table 1. 1NN retrieval accuracy based on the unsupervised triplet-loss feature-learning
approach using different triplet-generation strategies. All the strategies generate the
same number of 5,820 triplets, so 1NN retrieval accuracy can be directly compared.
Data accuracy of positive (negative) samples represent the ratio of triplets in which
the positive (negative) sample belongs (does not belong) to the same class as the
anchor. Triplet data accuracy represents the ratio of triplets where both the positive
and negative samples are correctly selected.

Strategy for selection of Data accuracy (%) 1NN retrieval
accuracy (%)Positive Negative Positive Negative Triplet

– 5 · rnd() rnd() 0.85 98.86 0.84 67.87

DTW 1–5NN rnd(20–40NN) 58.14 94.09 54.28 73.80

UTW 1–5NN rnd(20–40NN) 60.96 93.23 56.58 76.29

DTW+LL 1NN 5 · rnd(20–40NN) 76.28 94.34 71.56 82.82

1–5NN rnd(20–40NN) 57.38 93.61 53.06 82.82

20–24NN rnd(80–100NN) 16.75 98.97 16.65 82.82

1–5NN maxPminA(20–40NN) 57.38 86.33 52.82 81.44

1–5NN minP (20–40NN) 57.38 82.75 41.41 83.08

1–5NN maxP (20–40NN) 57.38 88.57 54.87 81.87

UTW+LL 1NN 5 · rnd(20–40NN) 75.00 93.31 70.05 82.99

1–5NN rnd(20–40NN) 55.81 93.73 51.68 83.76

20–24NN rnd(80–100NN) 15.84 98.95 15.74 82.30

1–5NN maxPminA(20–40NN) 55.81 87.26 50.91 81.87

1–5NN minP (20–40NN) 55.81 82.06 39.74 82.73

1–5NN maxP (20–40NN) 55.81 90.03 53.99 82.39

Although this random approach seems to be an extreme baseline, it can surpris-
ingly achieve “reasonable” retrieval accuracy of 67.87 %, as depicted in the first
line of Table 1. It is caused by the fact that there is roughly 50 % probability
that the positive example is semantically more similar to the anchor than the
negative one, which implies that half of the generated triplets will contribute
to the learning process. We further focus on the generation of triplets using the
unsupervised kNN-based strategies, where DTW or UTW are used as low-level
similarity functions for constructing the nearest-neighbor list for each anchor.
Constructing such lists for all the anchors takes tens of hours for DTW, while
only minutes for UTW. We select positives from the 5 nearest neighbors and
“hard” negatives that are not too far from the anchor – so we have decided
to select the negatives from the interval between the 20-th and 40-th nearest
neighbor. When the negative sample is selected randomly from this interval, we
achieve 1NN retrieval accuracy of 73.80 % and 76.29 % (lines 2–3 in Table 1) for
the DTW- and UTW-based nearest-neighbor list, respectively. Such accuracies
are quite high but still not comparable to the supervised baseline.

We further show how important it is to select the positives with a compara-
ble length as the anchor length. By applying the action length limitation (LL)
filtering to select positives, we achieve high 1NN retrieval accuracy of 82.82 %
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Fig. 2. Evolution of 1NN retrieval accuracy in comparison with the decreasing training-
loss value in the first 30 iterations (left). Accuracy of kNN retrieval (for k ∈ [1, 10]) for
the three selected triplet-generation strategies (right).

and 82.99 % for DTW and UTW, respectively (first lines of the DTW+LL and
UTW+LL settings). The length-limitation filtering helps time-warping func-
tions find a better alignment between poses of actions, which even leads to the
accuracy comparable to the supervised approach. Up to now, the negatives are
selected randomly from the interval of 20–40NN. Since we want to avoid random
selection (e.g., due to repeatability of experiments), we evaluate the proposed
strategies for selecting negatives. In particular, for each action from the range of
20–40NN, we calculate its distance to the positive using DTW/UTW and select
such action as the negative based on the following three strategies: minimum
distance to the positive “minP”, maximum distance to the positive “maxP”, or
maximum distance to the positive and at the same time minimum distance to
the anchor “maxPminA”. As depicted in Table 1, the minP strategy achieves
high accuracy of 83.08 % and 82.73 % for DTW+LL and UTW+LL variants.

In general, we can say that retrieval accuracy depends on the accuracy of the
triplets that contribute to feature learning. In the case of harder triplets, where
negatives are closer to the positives and, at the same time, close to the anchor,
we achieve the highest accuracy. The results also indicate that it is sufficient to
select the positive as the action which is more similar to the anchor than the
negative sample, regardless of their real labels (lines starting with 20–24NN for
both variants). For an increasing value of k, accuracy is generally decreasing,
as illustrated for the three selected approaches in Fig. 2 (right). In Fig. 2 (left),
we can see how the training-loss value decreases over individual iterations in
comparison with increasing 1NN retrieval accuracy.

4.4 State-of-the-Art Comparison

As already discussed, we evaluate the quality of action features in two directions:
the ability to preserve the semantic content with respect to a given application
(effectiveness), and the time needed to locate the most similar dataset actions
with respect to the query (efficiency). Therefore, we compare relevant action
feature extractors and action retrieval approaches in both these directions.

The feature extractors need to be separated into the two orthogonal
approaches of supervised and unsupervised learning; the supervised methods
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Table 2. Comparison with the state-of-the-art approaches on the HDM05 dataset.

Learning Approach Acc. (%) Efficiency

Su
pe

rv
is
ed

LSTM classifier [18] 89.86

High

PB-GCN classifier [21] 88.17

1NN on LSTM classifier features + Eucl. [18] 86.42

F-DMT-Net classifier [26] 85.30

CNN classifier [8] 83.33

U
ns

up
er
. 1NN on raw skeleton data + DTW [14] 77.70 Low

1NN on motion words + DTW [14] 77.61 Medium

1NN on triplet-loss LSTM features + Eucl. 83.08 High

generally achieve higher precision, but require labeled training data that limit
their applicability. In Table 2, we compare the accuracy results of both supervised
and unsupervised approaches on the challenging HDM05 dataset. The best result
of 89.86 % is achieved using the purposely-trained LSTM classifier [18] which
does not directly support the retrieval functionality. By employing this trained
classifier to extract the embeddings of actions and evaluating the 1NN retrieval
scenario on such embeddings, accuracy decreases to 86.42 %. Although our app-
roach (last line in bold) is unsupervised, its accuracy of 83.08 % approaches
accuracy of supervised classifiers. Among the unsupervised methods, our app-
roach is the clear winner.

Besides high effectiveness, our approach enables straightforward application
of vector- or metric-based indexing methods as the extracted action features
are represented as fixed-size vectors. Even without any indexing, the Euclidean-
based comparison of action features is orders of magnitude more efficient than
DTW-based alignment methods applied in [14]. In addition, the internal LSTM
model used in the training process allows our approach to simply adjust the size
of the hidden network layer, which enables extracting a requested size of action
features based on the needs of a target application.

5 Conclusions

We have proposed an unsupervised approach for extraction of fixed-size and
content-preserving features from skeleton-data actions. By combining an LSTM
network, triplet-loss learning, and proposed triplet-generation strategies, we can
even achieve similar accuracy as the approaches trained in a supervised way.
In particular, applying time-warping functions with action-length filtering con-
tributes to a more suitable selection of positive and negative samples, where the
negative sample should not be too distant from both the anchor and positive.
The results also indicate that it is sufficient to select the positive sample sim-
ply as the action which is closer to the anchor than the negative, disregarding
their real labels. In addition, the fixed-size nature of extracted features together
with the Euclidean-based comparison open great possibilities for indexing action
features in the future.
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Abstract. With the social networks becoming a major source of infor-
mation in recent years, predicting the popularity of information in social
networks has appeared intriguing to researchers in both academia and
industry. However, existing methods still lack the utilization of external
knowledge features, and are hard to extract the internal knowledge cor-
relation of social information.

In this paper, we propose a knowledge-aware hierarchical attention
network for popularity prediction (KAPP), which integrates the repre-
sentation of the knowledge graph into popularity prediction. We aim
to learn information representation based on temporal point process and
knowledge graphs simultaneously from social content. In information cas-
cading, we design a hierarchical attention mechanism to simulate the
attention of human beings and the influences of users in social networks,
and naturally establish the model structure from knowledge characteris-
tics to popularity prediction.

In All, through attention mechanism for knowledge graph expression
and analogy learning of temporal point process, our work makes an effi-
cient prediction for information in social networks with the deep learning
method. On the real-world data set of Weibo, we evaluate our model with
intensive experiments and metrics, which outperforms previous methods
including traditional approaches and deep learning methods.

1 Introduction

Nowadays, as social networks become a major source of information, online social
platforms, e.g., Twitter, Facebook and so on remarkably facilitate the produc-
tion and delivery of information. There are millions of information produced on
these platforms every day, which makes predicting the popularity of pieces of
information valuable for us to detect popular information in advance. Following
most of the previous research, the popularity of an item is generally measured
by the number of times it has been reposted in this network.
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In the past few years, there have been a series of efforts devoted to the pop-
ularity prediction problem. Borrowing ideas from financial modeling and epi-
demiology, generative approaches [1,7] based on temporal point process were
proposed to characterize and model the process that information diffusing. The
end-to-end deep representation learning methods [4] further improve the per-
formance while fully utilizing the temporal and the content information. Deep-
Hawkes [3] learns the parameters of temporal point process automatically and
achieved high performance. Nonetheless, it only predicts based on the diffusing
paths while ignoring the information content itself. The difficulties of popular-
ity prediction nowadays still fall into the usage and representation of derived
features with reasonability and interpretability.

Knowledge graph (KG) is a kind of knowledge base that stores all kinds
of knowledge with relationships among different entities, which bridges the gap
between human commonsense knowledge and structured network. We aim to
utilize knowledge graph to improve the representation learning of social infor-
mation. At present, most of knowledge graphs tend to use a factual triple in the
form of (head, relation, tail) to express the relation between two entities, which
enables us to learn low-dimensional embeddings of entities without loss of graph
structure.

In this paper, we propose a knowledge-aware hierarchical attention network
for popularity prediction (KAPP). We introduce the knowledge graph to express
the user characteristics with their social information content. Each user is rep-
resented as a sequence of entities that are extracted from their historical tweet
or retweet contents, which makes the model aware of the user preferences and
interests. A hierarchical attention mechanism is introduced to model the user
historical records and the retweet relationship between users individually. This
hierarchical architecture naturally models the preferences and the influence of
different users in information cascades. The KAPP model concurrently inherits
the predictive power of deep learning methods and the high interpretability of
temporal point process and knowledge graph, connecting the traditional feature-
based methods and temporal-based methods. We verify the predictive power of
our model by using it to predict the popularity in the real-world Weibo dataset.
Our contribution of this thesis can be summarized as follows:

(1) Application of knowledge graph: The proposed model applies knowl-
edge graph to characterize the representation of both users and social mes-
sage contents. It bridges the gap between common sense knowledge and
time-series based popularity prediction so that the model is aware of diverse
and interpretable human knowledge.

(2) Attention mechanism for information modeling: We construct a hier-
archical attention network to model the attention distributed on different
knowledge graph entities and different participators in the retweet cascade.
It naturally makes an analogy of temporal point process and expresses the
popular factors of different entities and user influence in the social network
that both will affect the future popularity of messages.
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Fig. 1. The Architectural Overview of the KAPP Model. Each user is represented by
his historical content entities with a transformer layer in Part I. The cascade of a piece
of information is sampled into several retweet paths in Part II, which are transformed
with another attention network and contribute to the final prediction in Part III.

2 Methodology

In this section we will introduce the proposed model for popularity prediction
in detail as illustrated in Fig. 1.

2.1 Knowledge-Aware User Embedding

People are topic-sensitive in social networks as they tend to be interested in
specific topic categories. Based on messages that a user retweeted before an
observation time, it is feasible to distill the user’s interested topics through the
contents of historical social information. First, for a piece of message m, we link
the words with entities in knowledge graph. TransE [2] is applied to learn the
representation of knowledge entities. Then the message m can be denoted as
content(m) = {e1, e2, . . . }. To fully model the characters or interests of users
with contents, we derive the entity representations from the historical records
of users. Formally, we use Mu as the set of retweeted messages of a user u, and
collect all the entities mentioned in past information to indicate the user as the
input of the model:

h′
u =

⋃

m∈Mu

{e|e ∈ content(m)}. (1)

Nevertheless, the number of exposed entities of different users may have large
divergence. Therefore we have to unify the number of entities for all users through
term frequency-inverse document frequency (TF-IDF) [6] to select the most
important entities for the users hu = {e1, e2, . . . , en}
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The importance of different entities is changing dynamically with variant
users. Here self-attention mechanism is applied to learn the importance of each
entity to model the interests of users. We use a Transformer block introduced
in [9] to aggregate the users’ interested entity collections, which results in the
knowledge-aware user representation as:

ui =
n∑

j=1

Transuser(eij), (2)

where the parameters of this function is trained and shared among all the users.

2.2 Attention-Based Retweet Path Encoding

Borrowing the idea from DeepCas [4], representing a cascade graph as a set
of cascade paths is a proper way to model the diffusion of information. We
sample the retweet paths to represent the graph as illustrated in Fig. 1. For an
inputted cascade Ci, we encode the entire retweet path pij for each user ui

j where
0 ≤ j ≤ Ri

T and Ri
T denotes the cascade size before the observation time T .

The path pij is a sequence that describes the entire retweet relationship from the
original user to ui

j .
We still adopt another Transformer layer Transpath(pij) to model the cascade

paths. External position information of the items is injected to make use of the
user order in retweet paths since the attention mechanism does not care about
the relative order as [9]. For each retweet path pij , we use the last states of
Transpath(pij) as the representation of the diffusion path denoted. The represen-
tation ci for the whole cascade Ci is obtained by a sum pooling for all retweet
paths:

ci =
Ri

T∑

j=1

Transpath(pij). (3)

2.3 Prediction with Point Process

Since the observation time can be very long in the real data, we manually split
the time sequence of length T into several disjoint intervals to make the time
information discrete and learnable. The time range [0, T ) is divided into a col-
lection of L equaling subranges {[t0, t1), [t0, t1), . . . , [t0, tL)} through a mapping
function f :

f
(
T − tij

)
= l, if tl−1 ≤ T − tij < tl, (4)

where tij is the time gap from the origin to the j-th retweet event of mi.
Following the DeepHawkes [3], a non-parametric way is used to learn the

time decay effect in Hawkes process directly without handcrafted functions. For
the cascade Ci, the arrival rate of future retweet events can be assembled by
summing up all the observed point process. For each retweet path pij while the
corresponding time is tj , we use the learned path encoding Trans(pij) multiplied
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by the time decay effect λf(T−tij) to represent its embedding after the observation

time to get the representation for the cascade Ci. A MLP layer is used to obtain
the one-dimensional output as:

ΔR̂i
T = MLP

⎛

⎝
Ri

T∑

j=1

λf(T−tij) Trans(pij)

⎞

⎠ . (5)

We take log-transformation to ΔRT to reduce the impacts of outliers and the
objective function to be minimized is:

L =
1
M

M∑

i=1

(
log ΔR̂i

T − log ΔRi
T

)2

. (6)

3 Experiments

3.1 Experiment Setup

To thoroughly evaluate the KAPP model, we simulate it by applying to a real-
world data set, Weibo [13], of popularity prediction. The task is to predict the
future size of the cascades for the messages in Weibo. We use CN-DBpedia [12]
as our knowledge graph, which contains 1575402 entities and 2115915 triple
relations after pre-processing. Following the practice of previous works, we adopt
four metrics to measure the prediction precision: Mean Square Log-Transformed
Error (MSLE) and Median Square Log-Transformed Error (mSLE) used in [3],
Mean Absolute Percentage Error (MAPE) [11], and Wrong Percentage Error
(WroPerc) [8]. When we train the representation of knowledge graph, we choose
TransE [2]. Stochastic gradient descent (SGD) with L2-norm is used to train
both the knowledge graph embeddings and the prediction model.

3.2 Numerical Results

Comparison Among Different Models. The results of comparisons of differ-
ent models are shown in Tables 1 and our model outperforms all the baselines. We
compared with Feature-Based method described in [3], SEISMIC [14], and Deep-
Hawkes [3]. Note that for SEISMIC, due to it lacks the optimization about future
popularity, it does not perform well for cascade prediction and we only use mSLE
as the evaluation metric. The results compared to both feature-based method
and time-based method show that our KAPP model has a good integration
of two aspects. It outperforms end-to-end deep learning method DeepHawkes,
which indicates that the knowledge features we introduce indeed contribute to
precision of social network popularity prediction problem.
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Table 1. Overall performance comparison (the smaller the better)

Method MSLE mSLE MAPE WroPerc

Feature-based 3.475 1.224 1.013 35.7%

SEISMIC – 0.703 – –

DeepHawkes 1.314 0.563 0.292 26.9%

KAPP 1.246 0.564 0.288 25.9%

Table 2. Comparison among variants

Method MSLE mSLE MAPE WroPerc

Original KAPP with
2 heads, 1 block

1.246 0.564 0.288 25.9%

KAPP-GRU 1.251 0.571 0.251 26.1%

KAPP without KG 1.306 0.628 0.291 26.1%

KAPP + TransH 1.285 0.607 0.301 27.1%

KAPP + TransR 1.253 0.571 0.293 25.4%

Analysis of Components. To verify that the attention mechanism contributes
to the prediction results, we replace the Transformer layer in the part of retweet
path encoding with GRU to compare with original model as KAPP-GRU in
Table 2. It evidences that the attention mechanism has ability to model the
short sequence and capture the relatedness between items as well.

To prove that the knowledge graph works, we deploy a ablation model KAPP
without which directly use a randomly initialized learnable vector to represent
users. We also adopts TransH [10] and TransR [5] to learn the representation of
knowledge graph entities. As shown in Table 2, our original model outperforms
all kinds of variants. It proves that the model indeed makes use of the knowledge
graph information since it have a lower error than the model without knowledge
graph. As for the comparison between TransE, TransH, TransR, although the
later two models learned more robust representation of knowledge graph, the
TransE method still achieves slightly better results. One possible reason is that,
the entities embeddings are fed into the prediction model and propagate with a
deep network. Subtle representation is not suitable or needed in such situation.
Hence TransE is chosen as our final version of knowledge graph representation
learning.

4 Conclusion

This paper proposes a knowledge-aware hierarchical attention network for pop-
ularity prediction to predict the incremental popularity of messages in social
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networks. It introduces the knowledge graph to learn the representations of users
based on their historical information at semantic-level, which provides us with
a way to understand the information cascades that which entities or topics pro-
mote the diffusion process. The hierarchical self-attention mechanism naturally
expresses the importance of different entities and users in social network.
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[61872238, 61972254], Shanghai Municipal Science and Technology Major Project
[2021SHZDZX0102] and the ByteDance Research Project [CT20211123001686].

References

1. Bao, P., Shen, H.W., Jin, X., Cheng, X.Q.: Modeling and predicting popular-
ity dynamics of microblogs using Self-excited Hawkes Processes. In: International
Conference on World Wide Web (WWW), pp. 9–10 (2015)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems (NIPS), pp. 2787–2795 (2013)

3. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: DeepHawkes: bridging the
gap between prediction and understanding of information cascades. In: ACM on
Conference on Information and Knowledge Management (CIKM), pp. 1149–1158
(2017)

4. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information
cascades. In: International Conference on World Wide Web (WWW), pp. 577–586
(2017)

5. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI Conference on Artificial Intelligence
(AAAI) (2015)

6. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, Cambridge (2011)

7. Shen, H., Wang, D., Song, C., Barabási, A.L.: Modeling and predicting popular-
ity dynamics via reinforced Poisson processes. In: AAAI Conference on Artificial
Intelligence (AAAI) (2014)

8. Tatar, A., de Amorim, M.D., Fdida, S., Antoniadis, P.: A survey on predicting the
popularity of web content. J. Internet Serv. Appl. 5(1), 1–20 (2014). https://doi.
org/10.1186/s13174-014-0008-y

9. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NIPS), pp. 5998–6008 (2017)

10. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI Conference on Artificial Intelligence (AAAI) (2014)

11. Wu, Q., Yang, C., Zhang, H., Gao, X., Weng, P., Chen, G.: Adversarial training
model unifying feature driven and point process perspectives for event popularity
prediction. In: International Conference on Information and Knowledge Manage-
ment (CIKM), pp. 517–526 (2018)

12. Xu, B., et al.: CN-DBpedia: a never-ending Chinese knowledge extraction system.
In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol.
10351, pp. 428–438. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60045-1 44

https://doi.org/10.1186/s13174-014-0008-y
https://doi.org/10.1186/s13174-014-0008-y
https://doi.org/10.1007/978-3-319-60045-1_44
https://doi.org/10.1007/978-3-319-60045-1_44


Knowledge-Aware Popularity Prediction 255

13. Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling
retweeting behaviors. In: International Joint Conference on Artificial Intelligence
(IJCAI) (2013)

14. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: SEISMIC: a self-
exciting point process model for predicting tweet popularity. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pp.
1513–1522 (2015)



Advanced Machine Learning



A Heterogeneous Network Representation
Learning Approach for Academic Behavior

Prediction

Li Huang and Yan Zhu(B)

Southwest Jiaotong University, Chengdu 611756, China
yzhu@swjtu.edu.cn

Abstract. Predicting authors’ academic behavior (e.g. co-authorship, citation)
based on heterogeneous academic network can help scholars to grasp interesting
research directions and participate in various co-operations. Most of the existing
network representation methods use the structural and content features of nodes,
but have not fully exploited the edges (relationships) between nodes (entities) and
investigated the semantic compatibility of different edge types yet. To solve the
above problems, a heterogeneous network representation learning method (HNE-
ABP) is proposed to improve feature extraction and academic behavior prediction
performance. HNEABP has three strengths: 1) capture rich neighbor informa-
tion via balanced sampling and Skip-Gram, 2) apply knowledge graph embedding
(KGE) technique to learn pairwise node information and to weight the importance
of first-order neighbors, 3) solve the semantic incompatibility of edges based on
KGE. Validation experiments on three academic network datasets show that HNE-
ABP outperforms the popular network representation methods, which gives the
credit to HNEABP for learning richer feature information effectively, so as to
improve the performance of academic behavior prediction.

Keywords: Heterogeneous network representation learning · Link prediction ·
Knowledge graph · Balanced sampling

1 Introduction

In today’s academic society, scientific research activities tend to be diversified, multi-
cooperation, and interdisciplinary. Academic social network has become an important
data resource containing massive academic information. Academic network is classified
as homogeneous and heterogeneous network. A homogeneous network contains only
one type of nodes and one type of edges between nodes. A heterogeneous network con-
tains rich structural and semantic information, such as multiple types of nodes (entities)
and edges (relationships). Figure 1(a) depicts a homogeneous network, while Fig. 1(b)
depicts a heterogeneous one, where three types of nodes (author, paper, venue) and four
types of edges (e.g. publication, collaboration) are shown.

Mining heterogeneous academic networks can discover research trend and scholars’
behavior pattern (e.g. collaboration, citation), or recommend interdisciplinary cooper-
ator, and so on. In this paper, we devote ourselves to extract and represent rich and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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discriminative features from heterogeneous academic networks for efficient academic
behavior prediction. Academic behavior prediction is also called edge/link prediction,
which predicts the author’s future academic behaviors. For example, we predict there
may be an edge between A2 and A3 as new cooperation (demonstrated with a red dotted
line), when A1/A2 and A1/A3 have cooperative relationships (see Fig. 1(b)).

Fig. 1. Academic network

One of the conventional link prediction methods is to determine a possible link
between nodes based on similarity index, such as common neighbor (CN), Adamic
Adar (AA). The shortages are high real-time and imprecise. Another method uses
matrix operations and probability models, which are computationally expensive and
time-consuming.

In some present researches, low-dimensional vector is used effectively to capture
node features in heterogeneous networks and improves the link prediction accuracy.
However, many methods still have not exploited the hidden information of nodes and
edges. Methods like Deepwalk [1] and Node2vec [2] sample neighbors with random
walk, which focuses on the nodes connected by a large number of edges of a certain
type and result in the edges of some minor types are not sampled or less sampled. In
JUST [3] and BHin2vec [4], the unbalanced sampling is solved by a balanced walk, all
node features are learnt in the same representation space, but different edges between the
nodes represent different semantics. In their work, not only the semantic incompatibility
of edges occurs, but also the reinforcement of learning of first-order neighbors is not
considered.

To deal with the above issues simultaneously, we propose a heterogeneous network
representation learningmethod (HNEABP) that combines balanced sampling andknowl-
edge graph embedding technology for academic behavior prediction. The contributions
are as follows.

(a) Two balanced walk algorithms are proposed to sample neighbors of different types
in a balanced manner and extract neighbor information comprehensively.

(b) Node pair information is preserved by using knowledge graph embedding (KGE)
technology. In this way, the learning of first-order neighbor is strengthened.
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(c) Nodes are mapped to different representation spaces with KGEmethod TransR [5],
where we can effectively learn the semantic information of nodes and edges and
solve the problem of semantic incompatibility.

(d) Validation experiments on three datasets show that HNEABP can capture the multi-
order neighbor information and learn richer features than the baseline methods.

The structure of this paper is as follows. The relatedwork is introduced in Sect. 2. The
working mechanism of HNEABP is addressed in detail in Sect. 3. Section 4 discusses
the verification experiments and results. Finally, we conclude the proposed methods and
give future research directions in Sect. 5.

2 Related Work

Recently studies on node representation learning methods in heterogeneous networks
are very active. This paper investigates and analyzes related work on neighbor sampling,
neighbor weighting, and semantic incompatibility.

Neighbor sampling. The number of nodes or edges of different types is not equal
in heterogeneous network. In random walk sampling methods, the larger the amount of
edges of one type is, the greater the sampling probability of their connecting nodes, and
vice versa. Such a sampling technique results in some nodes are learnt repeatedly and
some nodes information is rarely or even never sampled. Unbalanced sampling cannot
extract node feature comprehensively. Therefore, balanced sampling methods are intro-
duced, for example, JUST adds jump and stay strategies in random walks to overcome
the bias rooting in high visible nodes sampling. BHin2vec uses inverse training ratio to
update the walk probability for balanced sampling. However, the different importance
of heterogeneous neighbors and semantic incompatibility of edges are not taken into
account in the above methods.

Neighbor weighting. Every node directly connects with its first-order neighbors,
which influence on the node or mutual relationship is therefore stronger than those from
the second and higher order neighbors. The prediction precision can be improved by
strengthening the importance of first-order neighbor. To this end, Zhao et al. proposed
NSHE [6], which captures neighbor information by using network pattern structure
including the importance of first-order neighbors. Nevertheless, the time complexity is
high and it does not solve the semantic incompatibility of edges.

Semantic incompatibility. Most of the existing methods learn node representation in
the same representation space, but the edges between different nodes represent different
semantics. For example, there is a collaborative relationship between authors and a writ-
ing relationship between authors and papers. Nodes and edges as different objects may
not be represented accurately in a common node space. It is a semantic incompatibility
problem, if edges of different types are all learned in the same representation space.
Recently, approaches on embedding nodes into different representation spaces to solve
semantic incompatibility are proposed, such as PME [7], HEER [8], ASPEM [9], PGRA
[10], and RHINE [11]. In addition, KGE is also studied to solve the problem. TransR
as a KGE approach can correctly learn the features by mapping different nodes of a
KGE triple into different representation spaces. In one space only the same relationship
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(edge) type is specified and learnt. A limitation of TransR is it cannot extract features
from high-order neighbors.

Inspired byBHin2vec andTransR, this paper proposes a node representation learning
method (HNEABP), which solves the following problems simultaneously: 1) Handling
unbalanced sampling through balanced walk to extract as more kinds of feature as
possible. 2) Increasing importance of first-order neighbors in node representation by
KGE technology. 3) Dealing with semantic incompatibility of edges using KGEmethod,
TransR.

3 The Mechanism of HNEABP Approach

The mechanism of HNEABP is shown in Fig. 2, which contains 2 key parts. a) Bal-
anced sampling and Skip-Grammodel for comprehensive learning of neighbor informa-
tion. b) Node pair and semantic information learning based on KGE for enhancing the
importance of the first-order neighbor and solving semantic incompatibility.
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Fig. 2. The mechanism of HNEABP

3.1 Balanced Walk Method Based on Edge Number

(1) Balanced Sampling. BWNE, primary algorithm of HNEABP, calculates the edge
number of different types during the walk and increases the sampling probability
for those nodes connected by the edges which type has the minimum edge number.
BWNE as balanced walk method also contains a part of random walk in order to
avoid the oversampling of those nodes mentioned above. The sampling process can



A Heterogeneous Network Representation Learning Approach 263

not only sample neighbors uniformly, but also enhance the contribution of both
low-order and high-order neighbors to the representation of the target node. Target
node is the node which links with another node will be predicted. BWNE is shown
in Algorithm 1.

Output Sampled node sequence w
initial w[0] nID
for i in 1 to L-1 do:

pr  random(0,1) //pr is a random number
if pr < p { //p probability for bias walk, 1-p probability for random walk

edge_num cal(G) //Calculate edge number of different types: ap:x1, pp:x2,
pv:x3, aa:x4, av:x5
edge_type ψ (min{edge_num}) //Obtain edge type based on the minimum 
number of edges
node_type φ ( [ ]w iv ) //Obtain the type of current node
next_type type(edge_type, node_type) //Determine the next priority sampling 
node type based on the current node type and edge type.
if( [ ]( , )w i jv v E∈  and ( )==next_typejvφ ) // jv is the neighbor of [ ]w iv , the type of jv

is the type of preferential sampling (next_type). 
w[i+1] node ID of jv

else  w[i+1] a random node ID of v w[i]'s neighbor }
else w[i+1] a random node ID of v w[i]'s neighbor 

end for
return w

Among them, ap denotes the number of links between authors and papers, pv denotes
the numbers of links between papers and venues, and so on. φ is node type mapping
function (φ : V → A) and ψ represents edge type mapping function (ψ : E → R). A
and R represent predefined types of node and edge, respectively.

(2) Node Representation Learning Using Skip-GramModel.After having obtained
the sampled node sequence, the features (representation) of nodes will be extracted
using Skip-Gram. Node representation is the low-dimensional vector of a node.
The idea of Skip-Gram is to determine the representation of neighbors by using the
representation of target node. One node acts as either a target node or a neighbor
node. Firstly, a target node Vi is selected from walking sequence w. Vi’s k-window
neighbors are the nodes within a distance of k links (including direct or indirect
neighbors), which is the size of a moving window. The similarity between the
embedding vector of Vi and its neighbors is then computed. Main principle is to
maximize the similarity between Vi and k-window neighbors and minimize the
similarity between Vi and non-neighbors. Non-neighbors are obtained via negative
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sampling as shown in Eq. 1–3.

L1 = −
∑l

i=1

∑k

j=1
(Lp(vw[i+j], vw[i]) +

∑Nm

v0
Ln(v0, vw[i])) (1)

Lp(vs, vt) = log σ(f (vs)
Tf (vt)) (2)

Ln(vs, vt) = log σ(−f (vs)
Tf (vt)) (3)

In Eq. 1–3 L1 represents the walk loss, Nm represents negative samples, and m is the
number of negative samples selected from the node set V randomly. Lp and Ln represent
the losses caused by positive and negative samples respectively, σ is the sigmoid function,
f (vs) and f (vt) represent the representation of source and target node.

3.2 Balanced Walk Method Based on Edge Loss

(1) Improved Balanced Sampling. Although BWNE can conduct a balanced sam-
pling, it is time consuming and its adaptability is rigid to a certain degree, because
the edge number of different types is calculated continually during the walk and
the sampling probability must be adjusted in time according to the dynamic edge
number of the minor types.

BWEL, an improved balanced walk method for HNEABP, is proposed. The key
idea of BWEL is to increase the sampling of those nodes, which are connected by
the edgeswith relatively largewalk losses, instead of increasing the sampling proba-
bility of nodes which are connected by edges with theminimum number. An inverse
training radio is produced by adjacency matrix and loss matrix (LM ∈ A

|A|×|A|).
The walk probability matrix (WPM ∈ A

|A|×|A|) stores the jump probability of each
node type and is updated by generated inverse training radio, then WPM guides the
sampling of the next node. BWEL is shown inAlgorithm 2. Comparedwith BWNE,
BWEL only needs to calculate thewalk loss generated by heterogeneous edges after
each sampling, which reduces the time complexity.
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Algorithm 2 BWEL
Input Heterogeneous Network ( , )G E= , walk length L, start node number nID, WPM
Output Sampled node sequence w
initial w[0] nID 
adjacency_matrix cal_adj(G) //Calculate the adjacency matrix for each node
for i in 1 to L-1 do:

probability  WPM( [ ]( )w ivφ ) //Walk probability between nodes
weight probability * adjacency_matrix( [ ]w iv ) //Calculate the probability of a node 
jumping to the neighbors of different types
next_type max_number(weight) //The node type with the highest jumping proba-
bility is preferentially selected as the neighbor type for the next priority sampling
if( [ ]( , )w i jv v E∈  and ( )==next_typejvφ ) // jv is the neighbor of [ ]w iv , the type of jv is 
the type of preferential sampling (next_type). 

w[i+1] node ID of jv

else w[i+1] a random node ID of [ ]w iv 's neighbor  
end for
return w

(2) Update Strategy for WPM. The WPM is only used for the balanced walk of the
current node, so it is necessary to continuously update theWPMduring the iteration
process to guide balance sampling of all nodes. During the update process, multi-
task learning technique is adopted. Multiple tasks are planned according to the edge
of different types. Taskij is to predict whether a node of type typei connects to node
of type typej. The total loss caused by Taskij is divided into multiple sub-losses and
saved in the loss matrix (LM ∈ A

|A|×|A|). Then we calculate the inverse training
ratio for each task and save it in S[Taskxy]. Finally we use a random walk matrix
(nodes are sampled with an equal probability) constrained by the inverse training
ratio as the node walk probability target to update the WPM to guide the new walk
to sample neighbors. The strategies are shown in Eq. 4–8.

LM [Taskxy] = −
∑l

i=1 (Lp(vw[i+1], vw[i]) + ∑Nm
v0 Ln(v0, vw[i]))

∑l
i=1 (I [Taskxy](vw[i+1], vw[i]) + ∑Nm

v0 I [Taskxy](v0, vw[i]))
(4)

I [Taskxy](vs, vt) =
{
1, if φ(vs) = typex ∧ φ(vt) = typey
0, otherwise

(5)

S[Taskxy] = LM [Taskxy]/
∑|A|

j=0
LM [Taskxj]/

∑|A|
j=0

I [Taskxj] (6)

punixy =
{

1
degree(vx)

if (vx, vy) ∈ E

0 otherwise
(7)

Lstochastic = |WPM − (punixy + δ(S[Taskxy] − 1))|2F (8)

In Eq. 4–8, LM[Taskxy] records the walk losses generated by edges of different
types. I[Taskxy](vs, vt) indicates whether there is an edge between nodes of different
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types. S[Taskxy] is the inverse training radio matrix storing loss ratios for multiple tasks.
Lstochastic denotes an optimization parameter for updating the walk probability matrix
(WPM), which tunes the node walk probability based on the inverse training ratio. punixy
is a random walk probability matrix. δ is the perturbation parameter.

3.3 Node Pair and Semantic Information Learning Based on KGE

In heterogeneous network, many node representation methods specify heterogeneous
nodes in the same representation space for extracting features. However, nodes and
edges of different types have different semantics. The bigger the semantic difference a
node pair has, the more diverse the relationship of the node pair is, thereby the longer
the edge between the two nodes is. For example in Fig. 3(a), Mary likes gardening book
and also the writer Hemingway, but Hemingway did not write any gardening book. The
distance between Hemingway node and gardening book node is very far. During the
training process, it is difficult to simultaneously obtain the similarity between Mary and
the other two nodes, which is semantic incompatibility. Obviously, node representations
obtained by such methods are inaccurate.

Hemingway
(Writer)

Gardening book
(Book)

Mary
(User)

Node Space

h1

h1r1

t1

t1r1
Mr1

Mr1

r1

h2r2

t2r2

r2

h2 t2
Mr2

Mr2Node Space

Edge Space of r1

Edge Space of r2

(a) Example of semantic incompatibility of edge (b) Mapping strategy

Fig. 3. Semantic incompatibility problem and solution

In order to solve the semantic incompatibility, KGEmethod, TransR, is integrated in
HNEABP. TransR can represent each edge as a triple, which contains node embedding
set h, t ∈ R

d and edge embedding set r ∈ R
u. A mapping matrix Mr ∈ R

d×u is applied
to map nodes from node space to the corresponding edge space based on different edge
type r. The mapping method makes the distance between the head node to the tail node
in the edge space as short as possible. By representing the edges of different type in
different spaces, the semantic incompatibility of edges can be eliminated (see Fig. 3(b)).
The margin ranking loss, as shown in Eq. 9–11, is used for computing loss.

hr = hMr, tr = tMr (9)

fr(h, t) = ‖hr + r − tr‖2F (10)
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L2 =
∑

(h,r,t)∈S
∑

(h′,r,t′)∈S ′ max(0, fr(h, t) + γ − fr(h
′, t′)) (11)

where, hr and tr denote the representation of the head and tail node in the representation
space of edge type r. fr(h, t) is score function. L2 is the loss of TransR. γ is a margin.S
and S ′ are the set of correct and incorrect triples, respectively.

3.4 Loss Function

HNEABP uses two loss matrixes, one is used to capture n-order neighbor information by
Skip-Gram (see Sect. 3.1(2)), the other is used by TransR to enhance first-order neighbor
information and semantic features of nodes and edges (see Sect. 3.3).

tLoss = αL1 + βL2 (12)

tLoss is the total loss, where L1 and L2 denote the Skip-Gram loss and TransR loss,
respectively. α and β represent the weight coefficient.

3.5 HNEABP Algorithm

HNEABP-BWNE (Algorithm 3) and HNEABP-BWEL (Algorithm 4) adopt different
balanced walk strategies and node representation techniques.

Algorithm 3 HNEABP-BWNE
Input Heterogeneous network ( , )G E= , embedded dimension d, walk length L, epoch e,
moving window size k, negative sample size m, learning rate l1, triple ( , , )h r t S∈ , margin γ , 
random walk probability p
Output Node embedding matrix Z edge embedding matrix R 
initial | |Z d×∈ V | |R d×∈ R //Define and initialize vectors for nodes and edges
for 1 to e: 

for each node nnID: 
w BWNE(G, L, nnID, p)//Obtain node sampling sequence
L1 Skip-Gram(w, k, m, Z, R)//Extract the features (representation) of nodes
calculate distance score for positive and negative samples with Eq. (9)-(10) 
calculate TransR loss (L2) with Eq. (11) and the total loss (tLoss) with Eq. (12) 
train and minimize tLoss, compute the relevant parameters 

end for  
end for
return Z, R
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Algorithm 4 HNEABP-BWEL
Input Heterogeneous networks ( , )G E= , embedded dimension d , walk length L, epoch
e, moving window size k, negative sample size m, learning rate l1, l2, triple ( , , )h r t S∈ ,
margin γ , WPM
Output Node embedding matrix Z edge embedding matrix R
initial | |Z d×∈ V | | dR ×∈ R , | | | |WPM=[[0,...,0],...,[0,...,0]] ×∈ A A

WPM[ , ] 1 i j for explicit edge
for 1 to e: 

for each node nnID: 
w BWEL(G, L, nnID, WPM)//Obtain node sampling sequence
L1 Skip-Gram(w, k, m, Z, R)//Extract the features (representation) of nodes
calculate distance score for positive and negative samples with Eq. (9)-(10) 
calculate TransR loss (L2) with Eq. (11) and the total loss (tLoss) with Eq. (12) 
train and minimize tLoss, compute the relevant parameters 
compute walk loss and generate loss matrix | | | |LM ×∈ A A using Eq. (4)-(8) 
update WPM and guide the new sampling of neighbors 2 stochasticWPM=WPM- L

WPM
l ∂

∂
end for   

end for
return Z, R

4 Verification Experiment on Node Representation Learning

4.1 Datasets and Baseline Methods

Three academic network datasets, citation network V1, V2 and ACM (ref. to Table 1),
are used in experiments, which are publicly available on the AMiner platform. P-V in
Table 1means the number of edges between paper and venue nodes, and so on. HNEABP
will be compared with six heterogeneous network representation methods.

Table 1. Dataset statistics

Author Paper Venue A-P P-P P-V Time

V1 28646 21044 18 69311 46931 21044 2006–2015

V2 352068 315866 296 762997 59337 315866 1996–2005

ACM 485899 302395 333 957568 60462 302395 2012–2015

(a) Deepwalk [1]: use random walk for sampling and Skip-Gram for node representa-
tion.

(b) Metapath2vec [12]: adopt a specified meta-path pattern for sampling and Skip-
Gram for learning node representation.

(c) JUST [3]: use a strategy by jumping to nodes of the same or different types for
balanced sampling and Skip-Gram for learning node representation.

(d) BHin2vec [4]: apply inverse training ratio to update the walk probability for
balanced sampling and Skip-Gram for learning node representation.



A Heterogeneous Network Representation Learning Approach 269

(e) NSHE [6]: preserve the neighbor information of node pairs and the structure feature
of network patterns for learning node representation.

(f) TransR [5]: map nodes into different semantic spaces based on edges of different
types andmeasure the rationality through distance between nodes in the edge space.

4.2 Experimental Setup and Evaluation Criteria

Three experiments on academic behavior prediction are designed to verify the effec-
tiveness of heterogeneous network representation learning. The default learning rate is
0.001, the epoch is 20, the walk length L is 100, the dimension is 64, andmoving window
size is 7, the α is 1 and the β is 0.7. To ensure the fairness of the experiment, the datasets
V1, V2 and ACM used in all mentioned methods are divided into training set and test set
by a time point, e.g. the V2 data of year 1996–2002 is partitioned into training set and
the part of 2003–2005 belongs to test set. Based on the same reason, the partition time
point for V1 and ACM are 2011 and 2014, respectively. The evaluation indicators are F1
and AUC. The Adam optimizer is used in this paper, since it considers the first-order and
the second-order moment estimation comprehensively. Besides, its parameters updating
process is relatively stable.

4.3 Analysis of Experimental Results

(1) Author’sAcademicBehaviorPrediction.HNEABPand sixothermethods accom-
plish firstly the representation (feature extraction) of nodes and edges from the
datasets shown in Table 1. A logistic regression classifier is then applied to predict
academic behaviors, namely co-authorship (A-P-A), author-paper citation (A-P-P),
and author-venue participation (A-P-V). The prediction performance in terms of
AUC and F1 is shown in Tables 2, 3 and 4.

Table 2. Results of co-authorship prediction (A-P-A)

Algorithm V1 V2 ACM

AUC F1 AUC F1 AUC F1

Deepwalk 0.794 0.272 0.814 0.483 0.821 0.471

Metapath2vec 0.77 0.679 0.745 0.652 0.727 0.649

JUST 0.857 0.415 0.834 0.561 0.795 0.627

BHin2vec 0.783 0.301 0.831 0.503 0.808 0.331

NSHE 0.784 0.60 0.78 0.601 0.794 0.645

TransR 0.854 0.689 0.828 0.589 0.835 0.579

HNEABP (BWNE) 0.853 0.735 0.858 0.639 0.852 0.692

HNEABP (BWEL) 0.862 0.751 0.863 0.658 0.87 0.657
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Table 3. Results of citation prediction (A-P-P)

Algorithm V1 V2 ACM

AUC F1 AUC F1 AUC F1

Deepwalk 0.724 0.433 0.798 0.641 0.834 0.64

Metapath2vec 0.624 0.684 0.742 0.687 0.771 0.701

JUST 0.811 0.703 0.764 0.643 0.74 0.648

BHin2vec 0.871 0.63 0.842 0.636 0.857 0.61

NSHE 0.782 0.671 0.78 0.682 0.821 0.732

TransR 0.841 0.712 0.819 0.696 0.837 0.73

HNEABP (BWNE) 0.854 0.766 0.836 0.697 0.891 0.749

HNEABP (BWEL) 0.861 0.737 0.875 0.709 0.901 0.711

Table 4. Results of participation prediction (A-P-V)

Algorithm V1 V2 ACM

AUC F1 AUC F1 AUC F1

Deepwalk 0.643 0.345 0.866 0.669 0.902 0.801

Metapath2vec 0.627 0.524 0.894 0.725 0.887 0.741

JUST 0.741 0.309 0.813 0.678 0.822 0.693

BHin2vec 0.72 0.001 0.925 0.671 0.97 0.749

NSHE 0.705 0.57 0.683 0.574 0.711 0.612

TransR 0.737 0.574 0.712 0.588 0.773 0.669

HNEABP (BWNE) 0.769 0.592 0.923 0.757 0.969 0.811

HNEABP (BWEL) 0.792 0.623 0.927 0.809 0.976 0.861

The results show that HNEABP can greatly improve the prediction performance,
for example, AUC increases by 0.5%–14.3% and F1 increases by 0.6%–47.9% on the
co-authorship prediction. HNEABP outperforms Deepwalk because Deepwalk applies
unbalanced sampling, while HNEABP samples the node information evenly. HNEABP
is also better than JUST and BHin2vec in terms of the increase of AUC by an average of
5.25% and F1 by an average of 18.05%, although the latter ones use balanced sampling
as well. This is because HNEABP reinforces the importance of first-order neighbors
and effectively learns the semantic knowledge of nodes by mapping nodes to the cor-
responding edge representation space. HNEABP outperforms TransR as it conducts a
balanced walk and obtains the information of mutil-order neighbor nodes effectively.

(2) Rationality of Parameter Setting.Parameter experiments are conducted on dataset
V1. As shown in Fig. 4(a), the prediction performance in terms of the AUC and F1
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is meliorated when we prolong training time from 1 to 20 epochs. The training time
is determined to be 20when F1 peak is reached. The result in Fig. 4(b) demonstrates
the prediction performance reaches the peakwhen k is 7, so that themovingwindow
size k is set as 7. This is because the contribution of the high-order neighbors to the
target node decreases and a lot of noise disturbs the representation learning, when
the neighbor order exceeds 7. In Fig. 4(c), α and β represent weight coefficients for
tuning the learning focus. The purpose of HNEABP is to make the representation
of adjacent nodes similar, and on this base, we strengthen the learning of first-
order neighbors, i.e. β for strengthening first-order neighbors information should
be smaller thanα for capturing n-order neighbor information. The overall prediction
performance gradually increases with the increase of β, and the most of F1 values
stop increasing when β is greater than 0.7. The possible reason is most of features
of first-order neighbors have been obtained at that point. After tuning α is 1 and
β is 0.7. Since different datasets have different data scales and network structures,
parameters need to be set separately based on datasets.

(a) Training times e (b) Moving window size k

(c) Weight coefficient α, β

Fig. 4. Hyper parameters analysis experiments

5 Conclusion

This paper proposes a heterogeneous network representation learning approach, HNE-
ABP, for extracting comprehensive node features and improving academic behavior
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prediction. The key ideas of HNEABP are, a) develop two balanced sampling algo-
rithms for uniformly acquiring positive and negative data samples from neighbor nodes
of different types, b) strengthen the importance of the first-order neighbor and distinguish
the contribution to the target node from the neighbors of different levels during the node
representation (embedding), c) map heterogeneous nodes to the suitable representation
spaces and solve the semantic incompatibility between edges based on KGE, d) extract
structure and semantic features of nodes by learning low-order and high-order neighbor
information comprehensively.

In the future, improving HNEABP by integrating multiple attributes of nodes, such
as content features and community features, and extracting meta-path automatically for
semantic feature learning should be studied. In addition, improving the spatiotemporal
efficiency in heterogeneous network representation learning is also a challenging task.
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Abstract. It is a well-established fact in the retail industry that the
placement of products on the shelves of the retail store has a significant
impact on the revenue of the retailer. Given that customers tend to pur-
chase sets of items together (i.e., itemsets) instead of individual items, it
becomes a necessity to strategically place itemsets on the shelves of the
retail store for improving retailer revenue. Furthermore, in practice, cus-
tomers belong to different market segments based on factors such as pur-
chasing power, demographics and customer behaviour. Existing research
efforts do not address the issue of market segmentation w.r.t. itemset
placement in retail stores. Consequently, they fail to efficiently index,
retrieve and place high-utility itemsets in the retail slots in a market
segmentation aware manner. In this work, we introduce the problem of
market segmentation aware itemset placement for retail stores. Moreover,
we propose a market segmentation aware retail itemset placement frame-
work, which takes high-utility itemsets as input. Our performance evalu-
ation with two real datasets demonstrates that our proposed framework
is indeed effective in improving retailer revenue w.r.t. existing schemes.

Keywords: Retail · Market segmentation · Utility mining · Indexing

1 Introduction

In brick-and-mortar retail stores, retailers seek to improve their revenue by pro-
viding customers with easy access to their desired items. Retail stores typically
comprise multiple shelves (racks), which contain slots for the placement of prod-
ucts. These retail slots are either premium or non-premium. Premium retail slots
include slots which provide high product visibility and accessibility to the con-
sumer. These include slots near the eye or shoulder-level of the customer and
the impulse-buy slots near the checkout counters; other slots are non-premium.

It is a well-established fact that strategic placement of items on the retail
shelves can significantly improve the revenue of the retailer [4,8–10,16,21,23,24].
Additionally, customers tend to purchase a set of items (i.e., itemsets [3,15]) as
opposed to individual items in order to benefit from the convenience of one-stop
shopping. Therefore, there is an opportunity for the retailer to improve its rev-
enue through strategic placement of itemsets in the premium slots. Notably, over
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Strauss et al. (Eds.): DEXA 2022, LNCS 13426, pp. 273–286, 2022.
https://doi.org/10.1007/978-3-031-12423-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12423-5_21&domain=pdf
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the past few decades, medium-to-large sized retail stores have become increas-
ingly popular. Some of these occupy floor space upwards of a million square
feet e.g., New South China Mall (Dongguan, China) and Siam Paragon Mall
(Bangkok, Thailand) [2]. Given such a scale, strategic itemset placement in pre-
mium slots has become even more critical towards improving retailer revenue.
Additionally, brick-and-mortar retail stores face multiple challenges such as find-
ing a property in a good location with sustainable rent for the retail store, intense
competition with online retailers and fluctuating costs of goods and labor.

In practice, customers inherently belong to different market segments based on
factors such as purchasing power, demographics, ethnicity and customer behaviour
[5,6,11,12,17,20,27,31]. In fact, market segmentation is a well-established area
in business marketing and it has been extensively researched in retail as well as
other sectors. Each market segment constitutes customers, whose purchase pref-
erences have a high degree of similarity. For example, if market segments are
based on purchasing power, affluent customers would likely buy expensive high-
end items, middle-class customers would likely prefer medium-priced items and so
on. Observe that if itemsets were to be placed without considering the existence of
market segments, there could be a mismatch between the items that a given cus-
tomer is exposed to and the customer’s market segment [12,20,31]. For example,
poorer customers being exposed to expensive items and affluent customers being
targeted for buying low-end items would likely not result in sales, thereby leading
to lost revenue for the retailer. Notably, in this paper, we define users with different
ranges of purchasing power as different market segments.

Existing works focus on market segmentation [5,6,11,12,17,20,27,31], util-
ity mining [13,29,30] and retail itemset placement [4,7–9,21–24,26]. Notably,
none of the existing works consider the existence of market segments. Hence, we
address the problem of market segmentation aware retail itemset placement for
improving the retailer revenue. We consider the history of user purchase trans-
actions on a finite set of items. Using the high-revenue itemsets extracted from
these transactions as input, the problem is to (a) model the issue of itemset
placement in retail stores based on market segments (b) identify high-revenue
itemsets with consideration for their market segment and (c) place such itemsets
in a given number of premium slots for improving the retailer revenue.

This work introduces the notion of market segmentation aware itemset place-
ment for retail stores. In particular, we propose MATRIX, which is a Market
segmentation Aware Top-Revenue Itemset IndeX for efficiently retrieving high-
revenue itemsets corresponding to different market segments. MATRIX is a
multi-level index, where the ith level corresponds to the top-revenue itemsets (of
size i) belonging to different market segments. Notably, the number of itemsets
stored for a given market segment is kept proportional to the number of trans-
actions corresponding to that market segment in the transactions database. We
also propose MIPs, which is a Market segmentation aware Itemset Placement
Scheme (MIPS), which exploits MATRIX, for improving retailer revenue. MIPS
places high-revenue itemsets from different market segments by reserving pre-
mium slots in proportion to the occurrence of itemsets from each market segment
in the transactions database. Our key contributions are three-fold:
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1. We introduce the problem of market segmentation aware itemset placement
for retail stores.

2. We propose the MATRIX index and the MIPS placement scheme, which
exploits the MATRIX index for efficient retrieval and placement of high-
revenue itemsets in the retail slots.

3. We conduct a performance study with two real datasets to demonstrate that
MIPS is effective in improving retailer revenue w.r.t. existing schemes.

To the best of our knowledge, this is the first work to address market segmen-
tation aware itemset placement in retail stores. The rest of this paper is organized
as follows. Section 2 discusses related works. Section 3 details the problem frame-
work. Section 4 presents MATRIX and MIPS. Section 5 reports the performance
study. We conclude in Sect. 6 with directions for future work.

2 Related Work

Existing works can broadly be categorized into three types, namely (a) market
segmentation approaches (b) utility mining approaches (c) itemset placement
approaches for retail stores. We shall now discuss each of these categories.

Market Segmentation Approaches: The work in [11] proposed a norma-
tive theory of market segmentation as a mathematical model, which considered
a wide gamut of possibilities for segmentation. The work in [31] discussed the
advantages and disadvantages of different types of market segmentation such
as geographic, demographic, psychological and behavioural. Further, the work
in [12] used published data and case-studies to examine the practical imple-
mentation challenges of market segmentation, and provided insights concerning
strategies for successfully implementing market segmentation in practical sce-
narios. Interestingly, the work in [20] reported a case-study conducted using a
sample of 894 retail shoppers belonging to different age-groups in two cities in
Botswana. The goal of the case-study was to identify segments of retail shop-
pers based on factors such as demographics, decision-making styles and overall
satisfaction.

The work in [27] discussed a methodology for market segmentation in con-
junction with competitive analysis in the context of supermarket retailing, and
performed a large-scale study to understand the implications of the methodol-
ogy for supermarket retail chains. Moreover, the work in [17] focused on retail-
customer commitment as a possible criterion for market segmentation and pro-
posed a multi-dimensional structure in this context. Furthermore, the work in
[5] investigated market segmentation in the context of innovations in food retail-
ing and determined the characteristics of market segments arising as a result of
those innovations. A good survey on market segmentation can be found in [6].

Utility Mining Approaches: Utility mining approaches seek to discover high-
utility itemsets (HUIs). The HUI-Miner algorithm [19] employs utility-lists for
storing heuristic information and itemset utility values for retrieving HUIs. The
Utility Pattern Growth (UP-Growth) algorithm [30] uses the Utility Pattern Tree
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(UP-Tree) for identifying HUIs. The work in [28] employs the NVUV-list data
structure to determine itemsets with high average utility values. Further, the
MinFHM algorithm [13] uses pruning techniques for extraction of minimal HUIs
i.e., the most compact itemsets with the high utility values. The CHUI-Miner
algorithm [25] mines closed HUIs without generating candidates. Furthermore,
incremental utility mining has been investigated in [18,32,33].

Itemset Placement Approaches for Retail Stores: The works in [7,9] pro-
posed a framework for indexing and placement of high-utility itemsets when the
physical sizes of the items can vary. Further, the work in [8,24] proposed an app-
roach for placing high-revenue itemsets in slots with varied premiumness. The
works in [22,26] proposed the kUI indexing scheme for facilitating the placement
of diversified high-revenue itemsets. Moreover, the works in [21,23] proposed the
(item) urgency and expiry aware URIP and PEAR itemset placement schemes.
However, these approaches do not consider the issue of market segmentation.

Notably, none of the existing works address the issue of market segmentation
aware itemset placement in retail stores for improving retailer revenue. This lim-
its their applicability in building practical systems for retail itemset placement.

3 Proposed Framework of Itemset Placement Problem

Consider a finite set Υ of m customer transactions, where each transaction T
comprises distinct and non-repetitive items. Each item i in Υ is associated with
a price value ρi, frequency of sales σi and a corresponding market segment Φ.
Further, assume each item i occupies a single slot in the retail store. Given N
premium slots, the problem is to maximize the retailer revenue, while incorpo-
rating information about different market segments.

We now discuss some key terminology and concepts that we shall use in this
paper. We define the net revenue NRi of an item i as the product of its price
value ρi and frequency of sales σi. We compute the frequency of sales of an item
as the number of times it occurs in the transactional dataset. The NRi of an
item is computed as NRi = σi ∗ ρi. Further, we define the net revenue NRz

of itemset z as the product of its frequency of sales σz and the total price of
all items in z. Notably, we compute the frequency of sales of an itemset z as
the number of transactions that comprise all items contained in the itemset. We
compute the NRz of an itemset as NRz = σz ∗ ∑

i∈z ρi.
Let us consider Fig. 1 to further understand the context. Figure 1 provides the

price values and the market segment category for items A to I. It further provides
an illustration for computation of the net revenue and the market segment integer
bitmap for five itemsets. Consistent with our prior discussion, observe that the
net revenue of the itemset {A,D} is (4 + 3) * 6 i.e., 42. Similarly, the net revenue
of the itemset {A,C,G} can be computed as (4 + 6 + 5) * 3 i.e., 45.

In practice, itemsets may contain low-end, mid-end and high-end items.
Observe that while affluent customers can purchase low-priced items, low-end
customers would rarely purchase high-end items. To this end, we assign a market
segment value (Φ) to each item e.g., the value of Φ can be 1, 2 or 3, depending
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Fig. 1. Modeling of market segmentation in itemsets

upon whether the item is a low-end, mid-end or high-end item. Next, for cate-
gorizing itemsets based on market segments, we use a bitmap array, where the
first, second and third positions reflect high-end, mid-end and low-end market
segments respectively. We assign the market segment of an itemset based on the
item with the highest value of Φ (i.e., the item with the highest market segment)
in that itemset, and set the corresponding bit to 1 only for the relevant market
segment of the itemset. Itemsets belonging to the high-end, mid-end and low-end
market segments are modeled as <1, 0, 0>, <0, 1, 0>, and <0, 0, 1> respectively.
In Fig. 1, based on the items with the highest market segmentation value Φ, we
model the integer bitmap for itemsets {A,D} and {B,D,F, I} as <0, 1, 0> and
<0, 0, 1> respectively, as the former contains both mid-end and low-end items,
but the latter contains only low-end items.

In this paper, we assume that we are given a set of high-utility itemsets
(HUIs) as input. Given the history of user purchase transactions on a finite set
of items, HUIs can be generated using any existing high-utility itemset mining
algorithm [13,14,19,29,30]. Further, we consider revenue as a measure of utility.
We use the terms utility and revenue interchangeably throughout the paper.

4 MATRIX and MIPS

This section discusses our proposed MATRIX index and the MIPS placement
scheme. Figure 2 depicts the schematic diagram for our proposed framework.

The MATRIX Index: At the onset, the MATRIX index categorizes item-
sets into different buckets based on the itemset size, i.e., the number of items
contained in the itemset. These buckets correspond to different levels of the
MATRIX index. For example, a bucket comprising itemsets that contain 3 items
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Fig. 2. Schematic diagram for our proposed framework

would constitute level 3 of MATRIX. Next, MATRIX uses the k-means cluster-
ing algorithm to cluster items contained in the input itemsets on the basis of
their price since we use price as a metric to segment customers. Corresponding
to every bucket, i.e., every level of our proposed MATRIX index, we augment
with θ hash buckets, where θ denotes the number of market segments. Figure 3
depicts an illustrative example of our proposed MATRIX index. Observe how
MATRIX sorts and stores itemsets pertaining to different market segments at
different levels on the basis of their net revenue. Notably, an example of how the
computations in Fig. 3 are performed is shown in Fig. 1.

Notably, MATRIX is a market segmentation aware data structure, i.e., it
allocates itemsets to each hash bucket proportional to the percentage of trans-
actions pertaining to each market segment. Recall from our discussion in Sect. 1
how it is possible for high-end consumers to purchase low-priced items, but the
converse is not true. Therefore, hash buckets of higher-end market segments may
also comprise low-priced items. To ensure that items from different market seg-
ments are incorporated into the MATRIX index, we examine the percentage of
transactions pertaining to each market segment. Next, starting with the hash
bucket corresponding to the highest market segment, we allocate itemsets to
various hash buckets in the following manner.

At the onset, we consider λ, i.e., the maximum number of itemsets that
can be incorporated at every level of MATRIX. In proportion to the number
of transactions corresponding to each market segment, we divide λ proportion-
ally by θ to compute the number of itemsets that are to be allocated to each
hash bucket in the index. For instance, if λ = 1000, θ = 3, and the percentage
of high-end, mid-end, and low-end transactions in the transactional database is
20%, 30%, and 50% respectively, we allocate 200 itemsets in the high-end hash
bucket, 300 itemsets in the mid-end hash bucket, and 500 itemsets in the low-end
hash-bucket. Starting with the high-end market segment, we populate the corre-
sponding hash-buckets with itemsets sorted in descending order of NR till they
have been proportionally filled with itemsets associated with the corresponding
market segment. We repeat this process for all levels of MATRIX and across all
market segments until MATRIX has been fully populated.

Algorithm 1 depicts the creation of our proposed MATRIX index. In Algo-
rithm 1, Line 1 categorizes the input itemsets on the basis of their size. Lines
2–4 of the algorithm cluster the items on the basis of their price and scan the
transactions database to compute the percentage of transactions pertaining to
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Fig. 3. Illustrative example of the MATRIX index

each market segment. In Lines 5–7, it computes the market segment bitmap cor-
responding to each itemset, and subsequently sorts them on the basis of their net
revenue. In Lines 8–9, it populates hash buckets corresponding to every market
segment based on the percentage of itemsets that are permissible, by examining
the market segment bitmap corresponding to each itemset.

Algorithm 1: Creation of the MATRIX Index
Input: Set H of high-utility itemsets with item prices, λ: Maximum number of

itemsets at each level, θ number of market segments, Lmax: Highest
itemset size in H

Output: The MATRIX Index
1 Categorize itemsets on the basis of size
2 for itemsets of size 1
3 Cluster itemsets on the basis of price
4 Scan transactional database to compute % of slots for each market segment
5 for itemset-sizes 2 to Lmax

6 Compute the market segment integer bitmap for each itemset based on θ
7 Sort itemsets based on their net revenue
8 for each market segment Φ
9 Populate hash buckets with required % of λ number of itemsets

Our Proposed MIPS Placement Scheme: MIPS exploits our proposed
MATRIX index for placing high-revenue itemsets in the premium slots in a
market segmentation aware manner. MIPS works as follows. First, it scans the
user purchase transactions database to identify the percentage of transactions
associated with different market segments, and accordingly reserves the percent-
age of premium slots that should be allocated for each market segment. Next,



280 R. Mittal et al.

starting with the highest market segment, the MIPS scheme examines the top-
revenue itemset for the high-end segment of the market from level 2 of MATRIX.
It then places the itemset in the premium slots and updates the number of slots
available for placement. MIPS repeats the process for level 3 of the MATRIX
index. Similarly, MIPS extracts the top-revenue high-end itemsets from level 4,
level 5, and so on, and places them in the premium slots reserved for the high-
end market segment, till it reaches the topmost level of the MATRIX index. It
repeats the process for the top-2 highest-revenue itemsets, top-3 highest-revenue
itemsets, and so on, until all high-end slots have been populated.

For mid-end slots, MIPS essentially follows the same process. However, it
does not examine high-end and low-end itemsets for placement in the slots
reserved for mid-end products. Similarly, the MIPS scheme does not consider
mid-end and high-end products while placing itemsets in the slots reserved for
low-end products. The MIPS placement scheme repeats the above process for all
market-segments, and populates the given premium slots of a given retail store.
Algorithm 2 presents the algorithm for our proposed MIPS placement scheme.

Algorithm 2: MIPS Placement Scheme
Input: MATRIX index, total slots TS , θ market segments
Output: Placement of itemsets in the premium slots

1 Compute the % of premium slots corresponding to each market segment
2 while TS ≥ 0
3 for each market segment
4 for itemset size 2 to Lmax in the MATRIX index
5 Retrieve itemset z with the highest net revenue
6 Place itemset z in slots for the corresponding market segment
7 TS = TS - |z|
8 Remove itemset z from the MATRIX index

5 Performance Evaluation

This section reports our performance evaluation. We implemented our pro-
posed placement frameworks using Python 3.8.5 on a 64-bit Intel(R) Pentium(R)
2.20 GHz processor running on Ubuntu 20.04.1 LTS with 4 GB RAM.

We performed our experiments using two real datasets, namely Chainstore
and Fruithut. We obtained these datasets from the SPMF open-source data
mining library [1]. Chainstore is a retail dataset containing 46,086 items and
1,112,949 retail customer purchase transactions from a major grocery retail out-
let in California, USA. Fruithut contains user transactions from a major US
retail outlet that emphasizes on selling fruits and fruit based products. It con-
tains 181,970 transactions and 1265 items. Further, we divided each dataset into
two parts i.e., training set and test set containing 70% and 30% of transactions
respectively. We performed the placement using the training set and evaluated
the performance on the test set.
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Recall that our proposed framework requires a set H of high-utility itemsets
as input. While any existing utility mining approach can be used to generate the
set H, for our experiments, we use the kUI index [22,26] for generating the set
H. Notably, the kUI index is a multi-level index, where each level corresponds
to a specific itemset size. Moreover, at each level of the kUI index, the top-λ
high-revenue itemsets are stored to facilitate quick retrieval of the top-revenue
itemsets of any given itemset size. For our experiments, we implemented the kUI
index with six levels with the value of λ being set to 4000 for each of the levels.
Observe that the kUI index is oblivious to the notion of market segmentation
since it maintains the top-k itemsets only on the basis of revenue.

We assign each itemset in set H to one of the market segments as discussed
in Sect. 3. Recall that we use the k-means clustering algorithm to cluster items
based on their respective prices. Hence, each cluster corresponds to a specific
market segment with a price range. Then, for each itemset z in H, we examine the
price of each item in z, and assign z to the market segment corresponding to the
highest-priced item in z. Table 1 summarizes our performance study parameters.

Table 1. Parameters of the performance evaluation

Parameter Default Variations

Number of market segments (θ) 3 4, 5, 6, 7

Total number of slots (TS) 6000 2000, 4000, 8000, 10000

Our performance metrics include: (a) total revenue (TR) of the retailer for
the test set (b) execution time (ET) for executing the algorithm and placing
itemsets in the premium slots for the training set. In the test phase, we iter-
ate through each transaction t in the test set and add the price of the itemset
to TR if the items (in t) have been placed as itemsets in the slots during the
training phase. Moreover, observe that if an itemset is placed in the high-end
(i.e., high-priced) section of the retail store, it would likely not be purchased by
customers from low-end market segments (although customers from low-end seg-
ments could potentially purchase only some of the cheaper items in that itemset).
Hence, we take a conservative approach by adding the price of a given itemset to
TR only if the purchase transaction and the itemset are both associated with the
same market segment. Notably, in practice, itemsets from different market seg-
ments would typically be placed in different sections of the retail store, thereby
providing further rationale to our conservative approach in computing TR.

Recall from Sect. 2 that existing works are oblivious to the notion of mar-
ket segmentation with regard to itemset placement in retail stores. Hence, for
purposes of meaningful comparison, we design a two-phase reference approach,
which works as follows. In the first phase, the reference approach clusters the
input itemsets based on their size into k clusters, i.e., itemsets of size i belong
to the ith cluster. In the second phase, for values of i ranging from 2 to k, we
randomly select any itemset from ith cluster and place it in the premium slots.
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This process is repeated in a round-robin manner till all the premium slots are
exhausted. We designate this reference approach as the Randmized Market seg-
ment Oblivious (RMO) itemset placement scheme. Observe how RMO equally
prioritizes the input high-utility itemsets of different sizes towards placement,
thereby making it a fairly effective itemset placement approach in itself. Notably,
we do not compare the performance with a brute-force approach because RMO
itself would outperform the brute-force approach.

Effect of Variations in the Total Number of Slots: Figure 4 depicts the
effect of variations in the total number TS of slots. The results in Fig. 4(a)
indicate that TR increases for both RMO and MIPS with an increase in TS .
This is because more itemsets are required to fill up a larger number of slots,
thereby resulting in increased TR. Our proposed MIPS approach exhibits sig-
nificantly higher TR than RMO due to its ability to place itemsets in a market
segment aware and revenue-conscious manner. Recall how MIPS places itemsets
in proportion to the occurrence of itemsets from different market segments in
the transactional database. In contrast, RMO selects high-utility itemsets in a
randomized manner regardless of market segments, and this may possibly result
in low-revenue itemsets being selected for placement in the premium slots.

(a) TR (b) ET

Fig. 4. Effect of variations in the total number of slots (Chainstore)

The results in Fig. 4(b) indicate that ET increases for both RMO and MIPS
with an increase in the total number of slots for the Chainstore dataset. This is
because a higher number of itemsets are required to be examined and processed
for populating a higher number of premium slots. MIPS incurs higher ET than
RMO since it meticulously places high-revenue itemsets in the retail slots in
a market segmentation aware manner. In contrast, the RMO approach places
itemsets in a randomized manner, thereby incurring lower ET. Figures 4(c)–
(d) depict the results for the Fruithut dataset. Observe that the results exhibit
comparable trends; actual values vary due to different dataset sizes (Fig. 5).

Effect of Variations in the Number of Market Segments: Figure 6 depicts
the effect of varying the total number θ of market segments. The results in
Fig. 6(a) indicate that TR remains comparable for both RMO and the MIPS
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(a) TR (b) ET

Fig. 5. Effect of variations in the total number of slots (Fruithut)

placement scheme across different values of θ. TR remains comparable for MIPS
with an increase in θ due to its ability to place high-revenue itemsets correspond-
ing to every market segment, thereby exhibiting consistent performance. RMO
consistently provides lower TR to the retailer than MIPS due its inability to
place high-revenue itemsets in the premium slots for different market segments
(Fig. 7).

(a) TR (b) ET

Fig. 6. Effect of variations in number (θ) of market segments (Chainstore)

Figure 6(b) depicts that ET remains comparable for both the RMO and the
MIPS placement scheme with an increase in θ. This is because the number of
patterns (itemsets) does not change with an increase in θ. Our proposed MIPS
placement scheme incurs more ET than the RMO placement scheme on the
basis of the rationale provided for results in Fig. 4(a). Furthermore, Figs. 6(c)–
(d) depict the results for the Fruithut dataset. Observe that the results exhibit
comparable trends w.r.t. the results in Figs. 6(a)–(b), the variations in the actual
values occurring due to different dataset sizes.
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(a) TR (b) ET

Fig. 7. Effect of variations in number (θ) of market segments (Fruithut)

6 Conclusion

Strategic placement of itemsets in retail stores can significantly impact the rev-
enue of the retailer. While customers inherently belong to different market seg-
ments based on factors such as purchasing power and demographics, existing
works have not addressed market segmentation aware retail itemset placement,
thereby resulting in lost opportunities for improving retailer revenue. Hence, in
this paper, we have introduced the problem of market segmentation aware item-
set placement for retail stores. Furthermore, we have proposed a market segmen-
tation aware retail itemset placement framework, which takes high-utility item-
sets as input. We have also done a performance evaluation with two real datasets
to demonstrate the effectiveness of our proposed framework in improving retailer
revenue w.r.t. existing schemes. In the near future, we plan to investigate the
integration of market segmentation approaches based on user demographics into
our retail itemset placement framework.
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Abstract. In multi-label classification, each sample can be associated
with a set of class labels. When the number of labels grows to the hun-
dreds or even thousands, existing multi-label classification methods often
become computationally inefficient. To this end, dimensionality reduction
strategy is applied to label space via exploiting label correlation informa-
tion, resulting in label embedding and label selection techniques. Com-
pared with a lot of label embedding work, less attention has been paid to
label selection techniques due to its difficulty. Therefore, it is a challeng-
ing task to design more effective label selection techniques for multi-label
classification. Column subset selection is the problem of selecting a small
portion of columns from a large data matrix as one form of interpretable
data summarization. So, the column subset selection problem translates
naturally to this purpose, as it provides simple linear models for low-rank
data reconstruction. Iterative column subset selection is one of the meth-
ods to solve the problem of column subset selection, and this method can
achieve a good result in the problem. In this paper, we first execute iter-
ative column subset selection to select a small portion of columns from a
large label matrix, in the prediction stage, we do some processing on the
recovery matrix. So, a new method of multi-label classifier based on iter-
ative column subset selection is proposed. The new method is tested on
six publicly available datasets with varying numbers of labels. The exper-
imental evaluation shows that the new method works particularly well on
datasets with a large number of labels.

Keywords: Multi-label classification · Iterative column subset
selection · Label selection · Low-rank data reconstruction · Linear
models

1 Introduction

Traditional supervised learning mainly deals with a single-label (binary or multi-
class) classification problem where each instance only has one of predefined
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labels. However, many real-world classification problems involve multiple label
classes. In multi-label classification, each sample can be associated with multi-
ple labels rather than only one label [9,21]. The multi-label classification has
found applications in a number of statistical and machine learning tasks, such
as text categorization [8,16,18], recommendation system [27], image annotation
[5,15,19].

Some approaches have been proposed to address the multi-label classification
problem [23] with many labels. A first attempt is by [12], which projects the n-
dimensional label vector using compressed sensing, and performs training with
the much lower-dimensional projected label vectors. Subsequently, many variants
have been developed along this line, which use different projection mechanisms
including principal component analysis [25], and other singular value decompo-
sition [4,6]. A common characteristic is that they all reduce the possibly large
number of labels to a more manageable set of transformed labels. Yet, a major
limitation is that the transformed labels, though fewer in quantity, may be more
difficult to learn.

The aforementioned label embedding methods have many successful applica-
tions, but their major limitation is that the transformed labels would be lack of
original label real-world meanings [28], at the same time, the transformed labels
is more difficult to learn.

In order to preserve label physical meanings and facilitate learning of the
label, label selection methods are to choose an informative label subset, so that
those unselected labels can be recovered effectively. In ML-CSSP [1], the label
selection is regarded as a column subset selection problem (CSSP) [3], which
is NP-complete question [22] and is solved via a randomized sampling method.
Its advantage is that the recovery way is obtained directly and its disadvantage
is that two high correlated labels are still selected at the same time. In [24],
the authors proposed a special Boolean matrix decomposition (BMD) algorithm
to approximate the original matrix exactly (EBMD), where the left low-rank
matrix is a column subset of original matrix and the right low-rank matrix
comes from a binary correlation matrix of original matrix. In [17], this EBMD
is directly applied to label selection for multi-label classification (MLC-EBMD)
to remove a few uninformative labels. However, when selecting fewer labels,
although this method could be slightly modified to rank those remained labels
using the number of “1” components from each label and its corresponding
recovery vector in descending order, its solution is not optimal in principle. So,
in LS-BaBID [14], the authors remove a few uninformative labels via EBMD
and then delete some less informative labels using sequential backward selection
(SBS) strategy which is widely used in feature selection field, which builds a
novel label selection algorithm based on Boolean interpolative decomposition
(BID) with SBS. In iterative column subset selection (IterFS) [20], this method
starts from a random subset and updates feature selection taking the entirety
of the subset into account, which can yield significantly excellent results. Since
a straightforward implementation of this approach would be very inefficient, the
author derive a series of non-trivial optimizations that make it possible to draw
subsets of tens or hundreds of labels in a few seconds or milliseconds.
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In this paper, we propose to use iterative column subset selection as label
selection method to complete the task of multi-label classification, so as to speed
up the computation and accuracy of multi-label classification task. And in the
prediction stage, we do some processing on the recovery matrix, we change all
the elements smaller than 0 in the Moore-Penrose generalized inverse matrix to
0, and get a surprisingly good result after processing the recovery matrix. As it
turns out in experiments, our proposed method obtains better results than other
methods across a wide range of datasets and performance measures.

The remainder of this paper is organized as follows. First, we give a short
introduction to the algorithms used as a basis for our new approach. Building
on that, the new method, called Multi-label classification using Iteration column
subset selection with relu (ML-ICSSR), is described in detail. Next, performance
measures are introduced. Finally, the new method is compared to and evaluated
against benchmark algorithms across several standard multi-label data sets.

2 Multi-label Classification Using Iteration Column
Subset Selection

The proposed method can be viewed as adding a preprocessing and a postpro-
cessing step to the BR algorithm [2]. Using iteration column subset selection
according to [20], we select k labels from the original label matrix to form a
latent label matrix and a recovery matrix to represent the original label matrix.
Instead of learning models for the actual labels, models are learned for the latent
labels. The final labels are predicted by Boolean matrix multiplication using the
recovery matrix. The advantage of this method is the introduction of a new
level of abstraction, which represents the data in a more compact way than the
original label space.

In the following, we will go into the details of the proposed method. In the
following section, we will recall the underlying iterative column subset selection
method, the training and test phases will also be explained.

2.1 Notation

Now, let’s introduce some notations that will be used in this paper.

– C+ denotes the Moore-Penrose generalized inverse of C.
– Hi

k denotes a diagonal k×k matrix whose entries are all 1, except for element
Hii which is zero.

– For a matrix A and a set R, AR is the submatrix of A comprised by the
columns whose indices are the elements of the set R.

– Ai: is the i-th row and A:i is the i-th column of A.
– Aij is the entry in the i-th row and j-th column of matrix A.
– Given A ∈ R

m×n, A \ i is a m × (n − 1) submatrix of A resulting from the
removal of column i.
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– In our pseudocode, we employ the function uniSampleWithoutReplace-
ment(S,k), which returns a sample of k ∈ N elements drawn uniformly at
random without replacement from the set S.

– In our pseudocode, for a set R and some i ∈ N, if we employ the notation
R[i] we consider the set to be ordered and R[i] to be its i-th element.

– Lowercase bold letters such as f, δ denote vectors. fi is the i-th element of
vector f.

– ei is the i-th vector of the canonical basis of the indicated dimensionality.
– ◦ denotes an element-wise vector multiplication operator.
– Given two matrices A and B, (A|B) is the matrix resulting from appending

the columns of B to A. For example, if A ∈ R
m×n, B ∈ R

m×k, then (A|B) ∈
R

m×(n+k) and consists of the column of both matrices.
– σi(A) denotes the i-th largest singular value of A.

2.2 Iteration Column Subset Selection

Given a matrix A ∈ R
m×n and a positive integer k(k � n) smaller than the

rank of A, let Ak denote the set of m × k matrices comprised of k columns of
A. Find X such that

X = arg min
X∈Ak

∥
∥A − XX+A

∥
∥
F

(1)

where X+ is the Moore-Penrose pseudoinverse of X.
For an input matrix A ∈ R

m×n, let us consider that we want to pick k
columns. First, an initial subset R of k columns is chosen uniformly at random
without replacement, forming a matrix C = AR ∈ R

m×k. Then, we can iterates
until convergence as follows. For i = 1, . . . , k, column i is removed from C,
forming matrix C̃ ∈ R

m×k−1, and is replaced by another column such that the
objective function (1) is minimized over all possible n − k + 1 replacements.
We do not rule out the column we removed. The algorithm will converge when
no single column replacement yields an improvement in the objective function
anymore.

A straightforward implementation of this approach would be very inefficient,
it can be very slow when the values of k and n grow slightly. So, the authors
proposed iterative column subset selection (IterFS) [20], which starts from a
random subset and updates feature selection taking the entirety of the subset
into account, yielding significantly better results than other state-of-the-art algo-
rithms. And the authors derive a series of non-trivial optimizations that make it
possible to draw subsets of tens or hundreds of labels in a few seconds or millisec-
onds. This makes the proposal comparable in speed to some of the most efficient
previous proposals, and even faster in some cases, while producing better results.

We now present a series of non-trivial derivations that enable the design
of Algorithm IterFS. If we have a column subset of A, forming matrix C, the
following theorem [20] provides us with a simple criterion to identify the best
single column to append to matrix C, based on the matrix E = A − CC+A.
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Theorem 1. Let A ∈ R
m×n. For some k ∈ N, k < rank(A) let C ∈ R

m×k be
a matrix comprised of a subset of the columns of A. Let E = A−CC+A. Then

arg min
i

∥
∥A − (C|A:i(C|A:i)+A

∥
∥
F

= arg min
i

∥
∥
∥ETE:i

∥
∥
∥

2

2

‖E:i‖22
(2)

This means that if we have computed matrix E, we can easily find the best
column to add. If we define F = ETE, we can express this criterion as

t = arg max
i∈[1,n]

‖F:i‖22
Fii

(3)

In [10], efficient formulae are given for recomputing ‖F:i‖22 and Fii once a
column has been appended to matrix C. Iterative column subset selection, how-
ever, does not build the column subset incrementally, but it iteratively replaces
each column by another. Therefore, not only does it require to update these
values when a column is added to C, but also when it is removed (or equiv-
alently zeroed out to be replaced by a different one). We now present a series
of derivations that allow us to do this efficiently, involving fast updates of the
Moore-Penrose pseudoinverse inverse.

The key of IterFS are the efficient update of the Moore-Penrose pseudoinverse
of C, the subsequent efficient update of the residual matrix E = A−CC+A and
the fast update of the numerator and denominator of to determine the winning
column at each step of the algorithm. Firstly, the following proposition points
out how to update the Moore-Penrose generalized inverse of C.

Proposition 1. Let A ∈ R
m×n. For some k ∈ N, k < rank(A) let C ∈ R

m×k

be a matrix comprised of a subset of the columns of A such that rank(C) = k.
Let C̃ ∈ R

m×k be the matrix resulting from zero-out column i in C (i.e. column
i of C̃ is comprised uniquely of zeros). Let ρ = ((C+)i:)T (the i-th row of C+ as
a column vector). Then

C̃
+

= C+ − ‖ρ‖−2
2 C+ρρT (4)

In addition, the following propositions indicate how to update the residual
matrix E when a column is removed.

Proposition 2. Let C̃ ∈ R
m×k = CHi

k, E = A − CC+A, Ẽ = A − C̃C̃
+
A,

ρ = ((C+)i:)T . Then

Ẽ = E + C:iρ
TA + ‖ρ‖−2

2 C̃C+ρρTA (5)

We now provide efficient formulae to compute (3). We define F = ETE,
F̃ = Ẽ

T
Ẽ and the vectors

f = (‖F:1‖22 , . . . , ‖F:n‖22)
g = (F11, . . . ,Fnn)

f̃ = (
∥
∥
∥F̃:1

∥
∥
∥

2

2
, . . . ,

∥
∥
∥F̃:n

∥
∥
∥

2

2
)

g̃ = (F̃11, . . . , F̃nn)

(6)
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Proposition 3. Let δ = (Ẽ:j)T Ẽ and γ = ETEδ. Then

f̃ = f + ‖δ‖22 (δ ◦ δ)δ−2
j + 2(γ ◦ δ)δ−1

j

g̃ = g + (δ ◦ δ)δ−1
j

(7)

The case of g̃ is trivial, given that

g̃k = Fkk +
δkδk

δj
(8)

The criterion to find the current best column is

t = arg max
i∈[1,n]

f̃i
g̃i

(9)

Equivalent derivations yield the update formulae to use when a column is
chosen and added to the subset:

f = f̃ + ‖δ‖22 (δ ◦ δ)δ−2
j − 2(γ ◦ δ)δ−1

j

g = g̃ − (δ ◦ δ)δ−1
j

(10)

We now give an efficient formula to update C+ once the winning column of
the current iteration is added.

Proposition 4. Let C ∈ R
m×k be the matrix resulting from adding column w

of A to C̃ at position i. Let z = Ẽ:w Then

C+ = C̃
+ − ‖z‖−2

2 (C̃
+
A:wzT − eizT ) (11)

Finally, since in this case we have added a column to the subset, we can
employ the result proved in lemma 2 of [10] to update E.

E = Ẽ − zzT Ẽ ‖z‖−2
2 (12)

where z = Ẽ:w.
As described above, after a series of optimization, we can quickly determine

which column should be used to replace the column in each iteration. So, the
Algorithm IterFS [20] is equivalent to other greedy algorithm but much more effi-
cient. Finally, the above procedure is summarized in Algorithm 2 (see Appendix).

2.3 Building a Recovery Matrix

The Algorithm 1 first selects k(k � n) labels from the dataset, and the label
matrix composed of the selected k labels is used as the latent label of the dataset.
In order to achieve better classification results, in the stage of restoring the low-
dimensional prediction label to the original label space, we do not directly use
X+, but use (13) to deal with X+ first. Then, given a k-dimensional prediction
vector h, a n-dimensional label vector ŷ can be recovered as hTX+A.

(X+)ij =

{

0 , if (X+)ij ≤ 0
(X+)ij , other

(13)
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Algorithm 1. Multi-label classification using Iterative column subset selection
with relu:ML-ICSSR
1: procedure ML-ICSSR
2: R ← ITERFS(A, k)
3: X ← AR

4: X+ ← using (13) deal with X+

5: Train the classifier f(x) from
{
x(n),X(n)

}N

n=1

6: Given a new test point x, obtain its prediction h using f(x)
7: ŷ ← hTX+A
8: return ŷ

9: end procedure

Table 1. Statistics of six experimented multi-label data sets.

Dataset Domain Train Test Features Labels Cardinality Density

Bibtex Text 4880 2515 1836 159 2.402 0.015

Corel5k Image 4500 500 499 374 3.522 0.009

Corel16k-s2 Image 5241 1783 500 164 2.867 0.018

Delicious Text 12920 3185 500 983 19.020 0.019

EUR-Lex Text 17413 1935 5000 201 2.213 0.011

Mediamill Video 30993 12914 120 101 4.376 0.043

2.4 Learning the Model and Prediction

In the training phase, the Algorithm 1 first selects k(k � n) labels from the
dataset. Then, a binary classifier is learned for each of the k labels. In the
prediction stage, we first apply the k learned classifiers on a new test sample to
obtain its k-dimensional prediction vector h. Note from (1) that A � XX+A.
Each row of A (which corresponds to the n labels of a particular sample) can
thus be approximated as the product of the corresponding row in X (which
corresponds to the k selected labels of the same sample) with X+A. So, given a
new test sample x, we can obtain its k-dimensional prediction vector h through
the k learned classifiers. Finally, given a k-dimensional prediction vector h, a
n-dimensional label vector ŷ can be recovered as hTX+A.

3 Experiments

In this section, we experimentally evaluate the proposed ML-ICSSR on six bench-
mark multi-label data sets, via comparing it with five existing methods: ML-
CSSP [1], MLC-BMaD [26], MLC-EBMD [17], LS-BaBID [14] and ML-ICSS [20].
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Fig. 1. Two metrics (at n = 1, 3 and 5) from six methods on Bibtex

Fig. 2. Two metrics (at n = 1, 3 and 5) from six methods on Corel5k

3.1 Six Benchmark Data Sets and Two Evaluation Metrics

For the evaluation process we use six publicly available standard benchmark
multi-label data sets. All of them downloaded from Mulan. Statistics on the
data sets are given in Table 1.
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Fig. 3. Two metrics (at n = 1, 3 and 5) from six methods on Corel16k-s2

Fig. 4. Two metrics (at n = 1, 3 and 5) from six methods on Delicious

To describe the data sets, we provide two typical multi-label statistics. The
first one is cardinality, which is the average number of labels per instance. This
is a good measure of the dependencies between the labels. A cardinality close to
one shows there are almost no dependencies in the labels which are represented
in the data set, as there is only one label on average present in an instance. The
label density is label cardinality divided by the total number of possible labels.
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Fig. 5. Two metrics (at n = 1, 3 and 5) from six methods on EUR-Lex

Fig. 6. Two metrics (at n = 1, 3 and 5) from six methods on Mediamill

This can be considered as the ratio of labels per instance. It is worth noting that
the number of labels is more than 100 for all six data sets and three data sets
belong to text categorization applications.

The traditional multi-label classification evaluation metrics are designed for
low-dimensional label space [11], which are not suitable for large-scale label one
[13]. For instance, the popular Hamming loss, does not prioritize predicting the
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few relevant labels over the millions of irrelevant ones, treats all relevant and
irrelevant labels as being equally important and is biased due to missing ground
truth. In our experiments, we utilize two new evaluation metrics: Precision@k,
and (DisCounted Gain) DCG@k (k = 1, 2, 3 . . . ) [13].

For a testing instance x, its ground label vector is y = [y1, . . . , yi, . . . , yn]T ∈
{0, 1}n and predicted function values ŷ = [ŷ1, . . . , ŷi, . . . , ŷn]T ∈ {0, 1}n, and
then such two metrics are defined as follows:

Precision@k =
1
n

∑

i∈rankk(ŷ)

yi (14)

DCG@k =
1
n

∑

i∈rankk(ŷ)

yi
log2 (i + 1)

(15)

where rankk(ŷ) returns the top k label indexes of ŷ. Finally, their average values
are calculated via averaging them over all testing instances. Additionally, the
higher these two metric values are, the better the label selection techniques
perform.

3.2 Experimental Settings

In our experiments, we evaluate ML-ICSSR and five existing techniques (ML-
CSSP, MLC-BMaD, MLC-EBMD, ML-ICSS and LS-BaBID) via training versus
testing mode. To this end, we choose random forest as our base classifier, in
which the number of trees is set to 100. In order to investigate how the number
of selected labels (i.e., k) would affect classification performance, the dimension
proposition after label reduction (i.e., k/n) is to set as 5% to 50% of the original
label size (n) with the step of 5% [14]. In particular, the threshold for construct-
ing the label association matrix in MLC-BMaD is tuned to be 0.7 for achieving a
satisfactory comparison performance. For two metrics Precision@k and DCG@k,
we set k = 1, 3 and 5.

3.3 Results

At first, we investigate two evaluation metrics (i.e., Precision@k and DCG@k)
as two functions of the different proportions of reduced labels(i.e., k/n), respec-
tively. The experimental results on six data sets in Table 2 are shown in Figs. 1,
2, 3, 4, 5 and 6.

From these six figures, we can find that ML-CSSP and MLC-BMaD are
unstable, and their results fluctuate, while the experimental results of the other
four techniques are almost stable. LS-BaBID can get a better result than MLC-
EBMD, although both algorithms are based on exact Boolean matrix decom-
position, LS-BaBID uses a better method to delete some less informative labels
than MLC-EBMD. At most of label proportions, our ML-ICSSR works best,
compared with five existing methods.
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Table 2. The number of wins for each method and metric across six data sets.

Metric ML-CSSP MLC-BMaD MLC-EBMD LS-BaBID ML-ICSS ML-ICSSR

Precision@1 3 0 2 2 1 52

Precision@3 1 0 0 1 0 58

Precision@5 1 0 0 0 1 58

DCG@1 3 0 2 2 1 52

DCG@3 1 0 0 0 3 56

DCG@5 1 0 0 2 5 52

Total wins 10 0 4 7 11 328

In order to compare the six techniques more accurately, the “win” index in
[7] is used in our comparison, which represents how many times each technique
reaches the best metric values for all datasets and all dimension proportions
of reduced labels, as shown in Table 2. ML-CSSP, MLC-BMaD, MLC-EBMD,
LS-BaBID and ML-ICSS win 10, 0, 4, 7, 11 times, respectively. Our ML-ICSSR
achieves the best values of 328 times for all metrics across six data sets, which
is greatly than the number of wins from the total summation (32) of other four
methods.

In summary, through the above experimental results, it can be concluded
that our proposed method performs the best and can achieve the best results in
multiple evaluation metrics, compared with five existing approaches.

4 Conclusions

The main contribution of this paper is the use of iterative column subset selec-
tion for generating latent labels in the base level step and to substitute them
for the original labels. These latent labels identify and represent dependencies
between the original labels in a compact manner. In the prediction stage, we
do some processing on the recovery label. The experimental evaluation showed
that the new method works particularly well on datasets with a large number of
labels, outperforming most competing methods in that scenario. Still, there is
room for further improvement. In the future work, we can explore using a more
appropriate value as the threshold for modifying the generalized inverse matrix,
rather than all using 0.

Appendix

The following is the detailed process of Iterative column subset selection algo-
rithm.
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Algorithm 2. Iterative column subset selection:ITERFS
1: procedure ITERFS(A, k)
2: R ← uniSampleWithoutReplacement(1 . . . n, k)
3: F ← ETE
4: fi ← ‖F:i‖2

2; gi ← Fii for i = 1 . . . n
5: C ← AR

6: while not converged do
7: for i = 1 . . . k do
8: j ← R[i] � The i-th element in set R
9: C̃ ← CHi

k � Zero out column i

10: C̃
+ ← C+ − ‖ρ‖−2

2 C+ρρT � Prop.1
11: S1 ← C:iρ

TA
12: S2 ← ‖ρ‖−2

2 C̃C+ρρTA

13: Ẽ ← E + S1 + S2 � Prop.2

14: δ ← Ẽ
T
:jẼ; δ ← ETEδ

15: f̃ ← f + ‖δ‖2
2 (δ ◦ δ)δ−2

j + 2(γ ◦ δ)δ−1
j

16: g̃ ← g + (δ ◦ δ)δ−1
j � Prop.3

17: w ← arg maxh
f̃h
g̃h

18: δ ← Ẽ
T
:wẼ; γ ← Ẽ

T
Ẽδ

19: f ← f̃ + ‖δ‖2
2 (δ ◦ δ)δ−2

w − 2(γ ◦ δ)δ−1
w

20: g ← g̃ − (δ ◦ δ)δ−1
w

21: C+ ← C̃
+ − ‖z‖−2

2 (C̃
+
A:wz

T − eiz
T ) � Prop.4

22: E ← Ẽ − zzT Ẽ ‖z‖−2
2

23: checkConvergence()
24: R[i] ← w
25: C ← AR

26: end for
27: end while
28: return R
29: end procedure
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Abstract. Getting visitors to register is a crucial factor in marketing
for online news portals. Current approaches are rule-based by awarding
points for specific actions [3]. Finding efficient rules can be challenging
and depends on the specific task. Registration is generally rare compared
to regular visitors, leading to highly imbalanced data.

We analyze different supervised learning classification algorithms
under consideration of the data imbalance. As case study, we use
anonymized real-world data from an Austrian newspaper outlet contain-
ing the visitor’s session behavior with around 0.1% registrations over all
visits.

We identify an ensemble approach combining the Balanced Random
Forest Classifier and the RUSBoost Classifier correctly identifying 76%
of registrations over five independent data sets.

Keywords: Imbalanced data · Lead scoring · Label prediction

1 Introduction

Lead scoring faces highly imbalanced data sets. We compare different machine
learning classifiers and sampling strategies to the problem to accurately identify
leads, and apply it to real world data. The resulting ensemble classifier can be
used to replace traditional lead scoring done with rule sets.

For news portals and online newspapers, getting website visitors to register
and leave their email addresses and other data is essential for marketing their
content. This can then be used, for example, to send email newsletters, person-
alize banner ads or sell digital subscription models. To optimize the registration
process, it is of great interest to be able to predict whether a website visitor who
has already visited a website several times will become a registered visitor or not.
The process to find website visitors who are most likely to register or submit
other information is commonly known as the lead scoring process. A traditional
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approach to apply lead scoring works rule-based. For example, a user who opens
a mail gets +10 points assigned, or in case a user does not show activity within
ten days, gets −5 points. Several rules can be applied and used for lead scoring.

Rule-based scoring approaches require expert knowledge, and need to be
adapted on a regular basis. This is often infeasible for smaller news agen-
cies. To optimize the registration process a more generic and automatic pro-
cess is needed. Leads could, for example, be predicted using machine learning
approaches, whereby a classifier predicts whether a visitor might convert to a
lead or not. The prediction can then be used to make ad placements dependent
on the prediction. For example, visitors where the model predicts a possible
registration can be targeted with offers to make the visitors leads.

The number of leads in such use cases usually is much smaller than the
number of non-leads since, in most cases, only a few people, out of all website
visitors, finally convert to a lead by signing in on an online platform or by sub-
mitting their telephone number. The huge difference in the number of leads and
non-leads comes along with the problem of highly imbalanced data. Imbalanced
data is a widely discussed issue through various application areas of machine
learning [11,18]. The problem with data imbalance is that most conventional
classifiers result in unsatisfying outputs. Working with imbalanced data lead to
many misclassified samples of the minority class and to a good coverage of the
majority class. Though, most of the time predicting the minority class is more
relevant.

To increase the quality of classification algorithms, ensemble approaches can
be used [23]. These approaches combine several classifiers to create one strong
classifier that outperforms each of them.

In our work, we show algorithms that perform well on a lead prediction task
using data from an online newspaper facing data imbalance. We show the per-
formance of an ensemble approach evaluated on five different test data sets. The
ensemble approach combines the Balanced Random Forest Classifier and the
RUSBoost Classifier which are designed to work well with highly imbalanced
data. We conduct a case study using the data of an Austrian daily online news-
paper.

Comparable online offers with similar tasks have in common with our data
that the data available is highly unbalanced, which needs to be considered for
classification. The unbalanced nature of the classes was also the greatest chal-
lenge of our study and greatly influenced the selection of the model classes.

2 Background

The use of machine learning in digital marketing along the customer journey is
widespread, as a large amount of data is generated and can be used for various
marketing tasks. Artun and Levin [2], as well as Kietzmann et al. [13] give
an overview of machine learning techniques used in marketing, including lead
scoring. Related to our work are all techniques that deal with the prediction for
optimizing the sales funnel, i.e. the process through which companies lead people
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when making a sale. Duncan and Elcan [8] give an overview of modeling sales
funnels. A sale is not made directly in our task, but the targeted registration is
a preliminary stage for the sale of digital subscriptions.

Classification algorithms can predict whether a website visitor is more or less
likely to become a lead based on the visitors’ behavior. Multiple classification
algorithms like Random Forest [4], Logistic Regression [14], or Support Vector
Machine [12] exist.

Many traditional machine learning approaches assume that the target to
predict is almost balanced [10]. In many real-world scenarios the data is not bal-
anced, negatively influencing the prediction quality. Guo et al. [10] write about
the data imbalance problem and actions to handle this issue. They conclude
that they detected some evidence that artificially balancing the classes does not
influence the performance of the classifier’s result. The reason for this is that
some machine learning approaches are sensitive to data imbalance.

Kotsiantis et al. [15] write about methods to handle data imbalance. Ran-
dom under-sampling intends to balance the data by removing samples of the
majority class. On the contrary to under-sampling, over-sampling balances the
class distribution by randomly replicating instances of the minority class.

Algorithms developed for sampling data exist. In [34], a cluster-based sam-
pling strategy using under-sampling to achieve class balance is described. This
approach intends to avoid losing relevant information from the majority class
by replacing a cluster of majority samples with its centroid calculated with the
KMeans algorithm.

Furthermore, machine learning algorithms for handling imbalanced data
exist. A good overview of Random Forest Classifiers and unbalanced data can
be found in [19]. The paper states that the Random Forest approach outper-
forms the SVM, DT, Functions Logistic, Naive Bayes, Adaboost, and Attribute
Selected classifier. In [6]. Chen et al. present two ways to use the Random For-
est for imbalanced data. Weighted Random Forest is one approach that puts
more weight on the less present class than the other. The Balanced Random
Forest Classifier is an approach that uses a down-sampling majority voting in
combination with ensemble learning for the prediction.

Another approach to handle imbalanced data is the RUSBoost algorithms
proposed by Seifert et al. [26]. In their paper, the RUSBoost, Random Under-
Sampling Boosting, and the SMOTEBoost algorithm outperform the AdaBoost,
RUS, and SMOTE approaches. Their evaluation states that RUSBoost should
be preferred over the SMOTEBoost when working with imbalanced data due to
a simpler handling, speediness, and less complexity.

Polikar [22], writes about an ensemble-based system that intends to raise
the prediction quality compared to a single approach. The idea behind ensemble
learning is to train and weight multiple classifiers and to combine them into
one strong classifier [23]. The new classifier consisting of several classifiers, then
makes new predictions.
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3 Collection and Overview of the Data

An Austrian daily newspaper recorded all page views and interactions on their
web portal using a web tracking solution. We linked the data of the individual
sessions to visitor profiles via an anonymous ID assigned by the web tracking
solution. This is only possible for sessions that have given a corresponding cookie
consent. This naturally limits the data quality, as sessions without consent are
analyzed as different profiles. In 24% of sessions no consent is given.

Urban et al. [29] explore the impact of European legal requirements on ad
tracking data. They note a 40% reduction in available tracking data. This implies
that machine learning methods in this domain in the future will have to be able
to work on data sets that value user privacy.

The data recorded contains more than 60 variables. These include, for exam-
ple, the duration of sessions, the total number of recorded events, or the number
of days since the last visit of a visitor. The daily number of sessions created on
the online newspaper website is between 250,000 to 350,000. Figure 1a shows the
daily number of sessions for the period 1 Nov 2020–10 Nov 2020.

Fig. 1. Daily statistics by all visitors for the period 1 Nov 2020–10 Nov 2020.

To use a supervised learning approach, we also need the information of
whether a user has made a conversion or not. In our case study, a registration,
a completed subscription, and the submission of a telephone number represent
a conversion goal. Figure 1b shows that the daily number of conversions in the
evaluated period 1 Nov 2020–10 Nov 2020 is between 45 and 180.

To motivate visitors to register, some articles are only readable by registered
users for the first few hours after publication. As shown by Fig. 1b, there is a
peak in the number of conversions on 7th November. This peak might be the
result of a conducted marketing campaign aiming to motivate the visitors to
register. Information on campaigns is not available in the dataset however.
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The small portion of users registered on the news platform leads to a meager
conversion rate of around 0.1%. Meaning that only 0.1% of the total number of
visitors of the online news paper website made one of the specified goals. The
target used for the prediction is the information of whether a visitor converted to
a lead or not. In this case study, a visitor is called a lead, if she/he achieved one
of the conversion goals. The strong imbalanced between sessions (avg 301,716
per day) and conversions (avg 87 per day) represents the main challenge of our
case study.

4 Data Preprocessing and Feature Extraction

Several preprocessing steps bring the raw data into the required shape to use
it for the model building. A descriptive statistics analysis provide a first basic
understanding of all variables in the data set.

We analyzed and evaluated each of the variables and determined if they are
helpful for the prediction. We took the correlation with the target into consid-
eration.

Since the data contains missing values, we removed variables and samples
where too many values are missing (>0.5). Validity restrictions applied to three
variables remove additional irrelevant users. A restriction applied on variable
location only keeps sessions made in Europe. A restriction on variable medium
ensures that only sessions from specified sources are valid, and another restriction
removes sessions with a duration higher than 30,000 s.

Due to the massive number of users in the data set with varying session counts
from one to over 200, a restriction to filter not relevant users was necessary. We
set the limitation for the number of sessions to three, meaning to keep only users
with at least three recorded sessions. Users with less than three sessions, provide
insufficient information for further processing. This also means that sessions that
did not consent to cookies automatically get removed, as these are all single-
session instances.

After applying the preprocessing steps, 370,074 sessions and 12 variables
remain in the data set, which were reduced to 5 variables by removing features
via feature correlation. The following list shows the five features used for the
prediction of the leads:

mean session unique page views shows the number of unique page views
a user made on average through all sessions. Page views is a metric that
represents the total number of pages loaded during a session.

mean session total time represents the time (in seconds) a user spent on their
sessions on average. Whereby the duration of a session is measured from the
first to the last event that happened within a session.

mean session unique custom events is the average number of custom events
through all sessions of a user. Custom events are interactions made by a single
user within one session such as a button click, page-scroll depth, or newsletter
sign up (signing up to the newsletter is not a registration). If a user clicks on
a button three times within one session, then the event is tracked only once.
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max visitor days since the last session shows the maximum number of days
between the sessions of a user.

mean session total events is the average number of total events of each user
through all sessions.

Fig. 2. Average feature values separated by leads (blue) and non-leads (red) (Color
figure online)

For our use case, a very important aspect when analyzing the features are the
differences in the behavior of users who already converted to a lead and those
who did not convert. In Fig. 2a the two boxplots show that during sessions from
leads (left boxplot) more events are recorded than for sessions from non-leads
(right boxplot). Figure 2b shows that the overall time spent on a session is higher
for leads than for those who have not yet converted to a lead. Figure 2c shows
the characteristics of feature mean session unique custom events. Although, in
Fig. 2c, the median, the lower quantile and the lower whiskers have values of 0
there are some differences in the target visible. In the figure, the upper whiskers,
representing the largest data point excluding any outliers has a value of 0.8 for
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leads and 0.625 for non-leads. This means that the number of custom events of
leads is, for some users, higher than for non-leads. Furthermore, the 75-percentile
has a higher value for leads than for non-leads. Figure 2d shows that most of the
leads have a higher number of unique page views than most of the non-leads. Such
characteristics are essential for machine learning models to learn the behavior of
the users in order to distinguish between leads and non-leads. Feature max visitor
days since the last session is not visualized by a boxplot since, the distribution
of the values of this feature shows numerous zeros which leads to zero values
for the metrics of which boxplots are made up of, which are the median, the
75% and 25% quantiles and the lower and upper whisker values. However, there
are outliers in the data which are essential for the overall result. This feature is
important, since leads, in the data, show a maximum number of days between
the sessions of zero or one. Compared to the leads, there are several non-leads
who have a deviation between the sessions of multiple days.

5 Methods

We evaluated several approaches to create prediction models. First, we applied
the well-known classification approaches Random Forest Classifier and Gener-
alized Linear Model to the data. Due to the imbalance of the target, these
approaches return non-satisfying results with a True Positive Rate (TPR) of 1
and a True Negative Rate (TNR) of 0. After analyzing traditional algorithms,
we evaluated if down-sampling strategies, also called re-sampling approaches,
lead to better results. Therefore, we implemented a self-written down-sampling
strategy using 5 combinations of different portions of leads and non-leads. These
include: (1) 30% leads 70% non-leads, (2) 70% leads 30% non-leads, (3) 50%
leads 50% non-leads, (4) 40% leads 60% non-leads and (5) 60% leads 40% non-
leads. Given that these approaches lead to slightly better, but nevertheless still
not satisfying scores (TPR of around 0.9 and TNR less than 0.35), we evaluated
the cluster-based majority under-sampling strategy described in [34], and an
under-sampling approach using the Edited Nearest Neighbor method explained
in [30]. The cluster-based majority under-sampling strategy under-samples the
data by replacing the original samples by the centroids of the cluster found. The
Edited Nearest Neighbor under-samples the majority class data by removing
samples that differ from the majority of the k nearest neighbors. The cluster-
based under-sampling approach achieves a TPR of 1 and a TNR of around 0.01.
On the contrary to the cluster-based approach, the Nearest Neighbor approach,
achieved TPR of 0.11 and a TNR of 0.84 which are also non-satisfying.

We evaluated machine learning models developed to handle imbalanced data
sets. The Python toolbox, imbalanced-learn, that intend to perform well with
imbalanced data, is described in [16]. Via initial testing we discarded most algo-
rithms known to perform well from literature since they performed poorly on our
data set. We evaluated the performance of the Balanced Random Forest Classi-
fier, as it is an implementation of random forest most applicable to imbalanced
data. In addition we analyzed the RUSBoost Classifier, and the Balanced Bag-
ging Classifier on our data set. The BRF Classifier and the RUSBoost Classifier
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show first promising results compared to all other considered methods. Hence,
we evaluated these two approaches in more detail.

Table 1. Test data sets used for the five experiments conducted in this case study.

Experiment From To Number days

1 15 Nov 2020 24 Nov 2020 10

2 22 Nov 2020 1 Dec 2020 10

3 5 Dec 2020 9 Dec 2020 5

4 6 Dec 2020 13 Dec 2020 8

5 5 Jan 2021 13 Jan 2021 9

For evaluating the two classifiers, we first condut a TrainTestSplit into one
training and five test sets. The training set contains data from 1 Nov 2020–9
Nov 2020. For the test sets, we utilized different days to get a more general
overview of the performance of the classifiers. Users that are already utilized
in the training set are removed from the test sets, which means that the test
sets only contain users that the models have not yet seen. To sum up, our test
data sets vary in the number of days and time and do not include users from the
training set. A random selection of the periods used for the test data sets intends
to avoid possible influences and biases. The number of days in the training set
ranges from five to ten. In total, we evaluated the performance of the algorithms
on five experiments. They constitute all data exports available to us that were
not used for validation. Table 1 gives an overview of the test data.

As shown by the table, experiments 1 and 2 contain the same number of test
days (10 respectively) but differ in the date of recording. Experiments number
2, 3, and 5 vary in the number of days and dates from 5 Dec 2020 to 5 Jan 2021
with 5, 8 and 9 days respectively.

Each of the experiments varies in the number of leads and non-leads included
in the test sets. Table 2, shows this difference by showing the total number of
samples, the number of leads and the number of non-leads in each experiment.

Table 2. Number of samples in the training and the test sets.

Experiment Total number samples Number leads Number non-leads

Training 236054 467 235587

1 214577 203 214374

2 206655 383 206272

3 134020 124 133896

4 214001 366 213635

5 212005 439 211566
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The proportion of leads in the test records vary from 124 to 439. Experiment
3 and 1 have the lowest proportion of leads with 0.09% and Experiment 5 the
highest with 0.21%.

6 Results

We evaluated the Balanced Random Forest Classifier and the RUSBoost Clas-
sifier by testing the models on several data sets. As described in the previous
section, the conducted test sets vary in recording date and the number of days
collected.

For the evaluation we calculated four error metrics and one confusion matrix
[27] for each algorithm and experiment. The confusion matrix gives information
about the results of the evaluated test sets. This matrix is made up of four
essential parts: True Positives (TP), False Positives (FP), False Negatives (FN)
and True Negatives (TN). The TP are the cases in which the model predicts
non-leads, as non-leads. Compared to the TP the FP are the cases where leads
are predicted as non-leads. FN are the cases where non-leads are predicted as
leads and TN represent the cases where leads are predicted as leads.

Table 3a shows the performance of the Balanced Random Forest Classifier of
the different data sets by exhibiting the confusion matrix values.

Table 3. Absolute evaluation values (top) and percentages (bottom) for the different
classifiers on the experiment sets.

Experiment Results

TP FN FP TN

1 116666 97708 22 181

2 118028 88244 48 335

3 79876 54020 15 109

4 129150 84485 50 316

5 128119 83447 55 384

(a) Balanced Random Forest Classifier

Experiment Results

TP FN FP TN

1 185389 28985 133 70

2 162952 43320 168 215

3 108859 25037 48 766

4 173983 39652 164 202

5 168467 43099 178 261

(b) RUSBoost Classifier

Experiment Measures

TPR TNR FNR FPR

1 0.54 0.89 0.46 0.11

2 0.57 0.87 0.43 0.13

3 0.60 0.88 0.40 0.12

4 0.60 0.86 0.40 0.14

5 0.61 0.87 0.39 0.13

(c) Balanced Random Forest Classifier

Experiment Measures

TPR TNR FNR FPR

1 0.86 0.34 0.14 0.66

2 0.79 0.56 0.21 0.44

3 0.81 0.61 0.19 0.39

4 0.81 0.55 0.19 0.45

5 0.80 0.59 0.20 0.41

(d) RUSBoost Classifier

Each test set evaluated with the Balanced Random Forest Classifier achieved
a True Positive score between 0.54 and 0.61 and a True Negative score between
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0.86 and 0.89. The scores show that the percentage of non-leads recognized as
non-leads using the Balanced Random Forest model is between 54% and 61%,
and the portion of leads identified as leads is between 86% and 89%.

Table 3b shows the confusion matrix values of the RUSBoost Classifier
applied to the five test sets. This algorithm results in True Positive scores
between 0.79 and 0.86 and True Negative scores between 0.34 and 0.61. This
states that the percentage of non-leads recognized as non-leads using the RUS-
Boost Classifier is between 79% and 86%, and the portion of leads identified as
leads is between 34% and 61%.

Classification metrics listed in the following give a more detailed insight into
the performance of the two trained classifiers. For the evaluation of the per-
formance of classifiers, multiple metrics such as True Positive Rate (TPR) also
called recall, True Negative Rate (TNR) or inverse recall, Positive Prediction
Value (PPV) also called precision, Negative Prediction Value (NPV) or inverse
precision, False Negative Rate (FNR) or miss rate, or False Positive Rate (FPR)
also called false alarm rate exist [28]. Due to our highly imbalanced data set, the
PPV and NPV result in shallow values either close to zero or close to one. For
example, the conducted experiments lead to PPV values of almost 1.0, mean-
ing that almost 100% of the predicted non-leads were predicted correctly. It is
essential to consider that the percentage of leads compared to the non-leads is
at around 0.1%. Unlike the PPV the NPV shows values close to zero. This is
explained by the few leads and the vast amount of non-leads in the data set. We
are aware that the PPV and NPV are essential metrics for classifiers, though
the other four metrics are more relevant for our specific use case facing the issue
with the imbalanced data.

The TPR represents the portion of positive samples correctly predicted as
positive. The TNR is the counterpart to the TPR, representing the portion
of negative samples that are correctly predicted as negative. FNR is the ratio
between the positive events that are wrongly classified as negative and the total
number of all positive samples. The FPR metric represents the ratio between
the negative events that are wrongly classified as positive and the total number
of all negative samples.

Table 3c shows the achieved classification values for the test sets evaluated
with the Balanced Random Forest Classifier and Table 3d for the test sets eval-
uated with the RUSBoost Classifier. Comparing the two result Tables 3c and
3d, each classifier shows a different strength. Whereby the Balanced Random
Forest Classifier achieves a higher score for TNR than for TPR, the RUSBoost
Classifier achieves a better TPR than a TNR score. When deciding which algo-
rithm to choose, it is essential to consider the purpose of the task. If it is more
critical to predict more leads truly, one should go for the Balanced Random For-
est Classifier. When predicting more non-leads as non-leads is important, then
the RUSBoost Classifier might be the better choice. For example, for a com-
pany that displays online advertisements with the pay-per-view price model, it
is more efficient to use the RUSBoost Classifier. In this case, it is better to show
fewer people the ads than showing too many false positives ads leading to higher
expenditures.
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As it is of great interest that the Balanced Random Forest Classifier and the
RUSBoost Classifier show different strengths regarding TP and TN predictions,
we combined these two classifiers into one ensemble approach.

Our approach connects the classifiers’ predictions, and return only predic-
tions where both models agree (i.e., either both predict non-lead or lead) as
valid outputs. Thus, visitors, where the models disagree, are non-predictable.
Although the number of predictable leads got reduced, the remaining visitors
could be classified more accurately. The percentage of non-predictable non-leads
is on average 24% and the percentage of non-predictable leads is on average
36%, through all experiments. Table 4 shows the results of the applied ensemble
approach. Comparing the classification result scores of the ensemble approach
(Table 4) with the results of the two models evaluated separately (Tables 3c and
3d), an overall improvement is visible.

Table 4. Classification measures for the experiments conducted with the ensemble
approach, outperforming the Balanced Random Forest and RUSBoost Classifiers

Experiment Measures

TPR TNR FNR FPR

1 0.80 0.76 0.20 0.24

2 0.73 0.82 0.27 0.18

3 0.77 0.83 0.23 0.17

4 0.77 0.81 0.23 0.19

5 0.75 0.84 0.25 0.16

7 Related Work

Xie et al. [31] use an Improved Balanced Random Forests Classifier, which is a
combination of the Balanced Random Forest Classifier and the Weighted Ran-
dom Forest Classifier to predict churn. With data from the banking environment,
the method was compared with artificial neural networks [32], decision trees [24],
and class-weighted support vector machines [33], and as in our results, random
forest proved to be a good classification method. Compared to Xie et al. we use an
ensemble approach combining the Balanced Random Forest and the RUSBoost
Classifier, with the RUSBoost classifier being more advantageous on imbalanced
data.

Alshehri et al. [1] address a use case that also models the prediction of digital
content purchasing behavior from website interaction data, the purchase of online
courses by students. RandomForest [17], GradientBoosting [9], AdaBoost [25]
and XGBoost [7] are used here as machine learning methods, and prediction
accuracies between 0.82 and 0.91 are achieved when only the time spent on each
step is used for modelling. They achieved a higher accuracy of 0.83 to 0.95 by
adding the learner’s demographic data. These accuracies are slightly higher than
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the prediction successes we achieved, but in the same order of magnitude. Our
approach does not use demographic data, preserving user privacy. The methods
examined by Alshehri et al. were not applicable to us, as they stated that they
could not cope with the extremely unbalanced data.

In [20], Nyg̊ard and Mezei present a way to apply automated lead scoring
using machine learning approaches. In their study they evaluated four algo-
rithms, the Random Forest Classifier, Decision Tree, Logistic Regression, and
Neural Networks. Additionally, they considered five different ways to aggregate
the time-series data used, whereby one of them is not biased. The non-biased
approach uses all activity data of non-leads and all except the data of the last
activity date, where the purchase happened, for leads. The best model evalu-
ated, for the mentioned aggregation approach, was the Random Forest Classifier.
Nyg̊ard and Mezei do not mention whether the portion of leads and non-leads is
balanced or not. As we have to face the issue with a highly unbalanced number
of leads and non-leads, we can only use methods that can handle data imbalance.

8 Conclusion and Future Work

We show an approach to make the traditional lead scoring process in online
environments more flexible and efficient by using machine learning methods.
The mentioned algorithms lead to satisfying prediction results, correctly identi-
fying 76% of all leads working with imbalanced anonymized data. Having evalu-
ated several approaches to predict leads in highly imbalanced data sets, we can
conclude that the RUSBoost Classifier and the Balanced Random Forest Clas-
sifier lead to good results. Our results show that the Balanced Random Forest
Classifier achieves better scores when truly predicting leads as leads than the
RUSBoost Classifier. Vice versa, the RUSBoost Classifier performs better when
predicting non-leads truly as non-leads.

The best result in our study is achieved by an ensemble approach combining
the RUSBoost Classifier and the Balanced Random Forest Classifier. This app-
roach reaches a True Positive Rate of 0.76, and a True Negative Rate of 0.81
averaged across all experiments, meaning that the portion of non-leads/leads
truly predicted as non-leads/leads are at around 76% to 81%. Although, approx-
imately 24% of the non-leads and 35% of the leads became unpredictable using
the ensemble approach, for our use case it results in the best output.

The approaches provided in this work enable the utilization of highly unbal-
anced data in online environments. As our data is anonymized, this goes on to
show that such results can be achieved even without infringing on the privacy
of online users.

More precise feature analysis and selection would enable more detailed infor-
mation of the website visitors’ behavior to improve the quality of the prediction,
leading to more accurate results. One feature to enhance the classifier’s quality
could be the categorization of articles according to the user’s interests. The idea
behind this feature is that readers who mainly read sports articles behave dif-
ferently from those who are primarily interested in politics. However, to extract
the required information from the website technical changes would be necessary.
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To summarize, this work shows approaches to predict leads in online environ-
ments, especially news portals, where the target is highly imbalanced. Thinking
one step further, to generate value from these results, additional steps such as
integrating the results into a system that automatically supports sales employees
by telling if a user is likely to become a lead or not are required. Furthermore,
a continuous evaluation of the models’ performance enclosed with automatic
retraining would support the application of this approach in a real-world pro-
duction application.

In the future this work could benefit from further steps to deal with the high
data imbalance, such as synthetic minority-class sample generation [5] or other
methods [21], and also take into consideration more time-series related features.
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Abstract. In the context of globalization, the development of local-
ized translation technology for enterprise online documents is crucial for
business promotion. The enterprise online documents are represented by
semi-structured text documents with markup tags, while the mainstream
neural machine translation methods focus on only the plain text trans-
lation. In this research, a Word Alignment based Transformer Model
was proposed for markup language translation. Experiments conducted
on the Salesforce XML English-Chinese datasets, and the result demon-
strated that adding a word alignment model to the translation model
can improve the translation model’s performance in translating text with
makup tags.

Keywords: XML structured documentation · Machine translation ·
Word alignment · Transformer

1 Introduction

In the context of globalization, the development of localized translation technol-
ogy for enterprise online documents is crucial for business promotion. The enter-
prise online documents are represented by semi-structured text documents with
markup tags, while the mainstream neural machine translation methods [7] focus
on only the plain text translation. To fill this gap, a few existing works for markup
language machine translation approaches were developed[1–4]. Joanis et al. cat-
egorized the approaches on this topic into two types of methods [3]. One-stream
methods [2,4] include the markup tags with the plain text to train the transla-
tion model. Two-stream methods [1,3,4] separately translate the plain text and
re-insert the markup tags into the target documents. Joanis et al. [3] utilized
statistical machine translation and designed markup tag transfer rules relying
on word alignment to re-insert the markup tags into the translated document.
Müller et al. ’s approach [4] was based on statistical machine translation and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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compared five variants of re-insertion-rule-based and mask-based approaches.
Hanneman et al. [1] utilized neural machine translation; it spanned and unified
the elements of these previous studies and compared the major markup tag rep-
resentation methods. These works only separately utilized the word alignment
model and translation model. Inspired that the word alignment in markups is
quite related to the translation, we propose an approach that jointly learns
word alignment and translation models with a multi-task loss function so that
these two components can improve each other. We utilize the word alignment
information inside the markups in the training set to train the component of
word alignment model. The proposed approach can improve the performance on
markup tag placement while preserving the performance of machine translation.

2 Methodology

As we discussed above, the major issue for the markup language translation
task is finding the correct positions of tags to be inserted while maintaining the
translation accuracy. Our method is a two-stream method. Our idea is using
Transformer-Align model to jointly learn the word alignment information and
the mapping rule between source and target languages. Using the word alignment
information, the XML tags in the source language are inserted into the target
language to realize the translation of markup language.

Our method is based on Transformer [7]. The attention distribution is gen-
erated by the following formulation, i.e., A = Softmax(Q·KT

√
dk

), where Q, K are
derived from xWq and xWk. Here Wq and Wk are two trainable parameters, and
x denotes the input sequence. In this work, we mainly utilize the distribution A
to obtain the alignment information.

2.1 Transformer-Align with Fast Align Word Alignment Loss

To remedy the aforementioned issue, we replace the vanilla Transformer by
Transformer-Align to jointly model the process of translation and word align-
ment. In order to enhance the alignment effect of Transformer-Align, we uti-
lized the word alignment loss introduced in Transformer-Align, which is derived
from Fast Align. The elaborated loss is formulated as L = Lt + λLa(A),
where Lt denotes the standard NLL translation loss and λ is a hyper-parameter
range in [0,1]. La(A) denotes the alignment loss, which can be represented as
La(A) = − 1

I

∑I
i=1

∑J
j=1 Gp

i,j log(Ai,j), where Gp
i,j denote a 0-1 matrix such that

Gp
i,j = 1 iff Fast Align predictions include the 〈i − j〉 alignment pair else Gp

i,j = 0.

2.2 Transformer-Align with XML Tag Text Alignment Loss

This approach builds on the previous approach by introducing constraints that
are more closely related to the XML markup language. Make the model more
focused on the alignment of text within XML tags, which helps us to precisely
locate the tags in the target language.
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Fig. 1. The chart of Transformer-Align with XML tag text alignment loss

To simplify the relationship, we choose the XML-labeled text instead of the
pure text to generate the word alignments because text within XML tags in both
source and target languages can serve as the gold standard for word alignments
while reducing the complex relationship from fully connected to a sparse one.
Given a XML-labeled source language-target language data pairs {X,Y}, X =
(x1, ..., xn) and Y = (y1, ..., ym), the XML alignment sets ΘXML is formally
defined as, ΘXML = {〈i − j〉 |i ∈ n, j ∈ m}, where n and m are the sequence
length of source language and target language, respectively. 〈i − j〉 denotes the
positional pair between i-th element in the source and j-th element in the target.

Figure 2 depicts the preprocessed procedure of generating the alignment
matrix Hi,j . Our intention is to encourage tokens to concentrate more on other
tokens which belong to the same XML tag. One can achieve this goal by incor-
porating the word alignment information obtained by FastAlign. Here, Θsub

XML

denotes the correct alignments. However, high-quality alignments are hard and
often expensive to attain. The major challenge roots at the poor precision of
Fast Align due to the limited dataset. This may bring noise signal which hinders
the optimization. Also, given that the length of the text within the XML label
is short, we propose a Cartesian-based alignment method to approximate the
“real” alignment information. The core idea is to learn the alignments within
the corresponding source and target XML tags, rather than the entire sequence.

We borrowed the merit of label-smoothing [6] that the gold alignment set
is enlarged according to the Cartesian set. Through Fig. 2(b), we can see that
“Encrypt” is not only aligned with “加密”, but also with “字段”, which belongs
to the same XML tag. Based on the obtained the ΘXML, the joint learning
objective could be formulated as L = Lt +λLXML(A), where Lt still denotes the
standard NLL translation loss and λ is a hyper-parameter range in [0,1] to con-
trol the impact of XML alignment. LXML(A) denotes the newly proposed XML
alignment loss, which takes the similar format of La(A) and is formally repre-
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Fig. 2. A detailed example for the alignment information.

sented as LXML(A) = − 1
I

∑I
i=1

∑J
j=1 Hp

i,j log(Ai,j), where Hp
i,j satisfies Hp

i,j = 1
iff 〈i − j〉 ∈ ΘXML else Hp

i,j = 0. Figure 1 shows the structure of our XML-tag-
based model and demonstrates that we use the XML alignments to assist the
training of the Transformer-Align model.

3 Experiments and Result Discussion

This study uses the public English-Chinese translation datasets with XML tags
provided by Salesforce [2], and the fairseq toolkit published by Facebook [5] was
used as translation model. XML accuracy, matching, BLEU, named entities and
numbers (NE&NUM) [2] were adopted as evaluation metrics.

Table 1 shows the experimental results. We can see that the Transformer (W/
Tag) baseline model delivers the lowest BLEU score, while the Transformer (No
Tag) baseline model behaves worst in terms of XML BLEU score. Besides, all
three models using word alignment achieve consistent XML BLEU improvements
than Transformer (W/ Tag), and the Transformer-Align model based on XML
word alignment loss delivers the best XML BLEU score, which demonstrates the
effectiveness of our method.

To take a further in-depth analysis, we find that the Transformer (No Tag),
as the baseline model, only focuses on the translation of unlabeled text, so its
translation effect is better. However, the Transformer (No Tag) baseline model
has poor predictive ability for unlabeled text. In contrast, the Transformer (W/
Tag) baseline model is trained with XML tags, which improves its ability to gen-
erate XML tags compared to the Transformer (No Tag) model, but the trans-
lation effect is sacrificed to a certain extent. The translation models based on
the word alignment model have basically equivalent translation capabilities to
the Transformer (No Tag) baseline model. The ability to generate XML tags is
improved compared to the Transformer (W/ Tag), which is based on XML word



320 J. An et al.

alignment. Transformer-Align (XML Align Loss) is best at generating XML tags
due to the targeted design of the loss function.

Table 1. Accuracy assessment of experimental results

Model BLEU XML BLEU XML Acc. NE & NUM

Struct Match Precision Recall

Transformer (No Tag) [7] 63.26 32.04 1.0000 0.7410 0.9533 0.9415

Transformer (W/ Tag) [7] 49.26 49.47 0.9905 0.9890 0.6494 0.9014

Fast Align + Transformer [1] 63.26 53.16 0.9895 0.9445 0.9533 0.9415

Transformer-Align (Fast Align Loss) 62.28 52.94 0.9885 0.9450 0.9563 0.9427

Transformer-Align (XML Align Loss) 63.17 54.12 0.9900 0.9470 0.9544 0.9516

Table 2. Translation examples

Case 1 Source Select <uicontrol> Rename</uicontrol> to rename the field’s

visible name

Reference
选择 <uicontrol> 重命名 </uicontrol> ,以对字段的可见名称进行重命

名。

Transformer

(W/ Tag) 选择重命名以重命名字段的可见名称。

Transformer-

Align (XML

Align Loss)

选择<uicontrol> 重命名</uicontrol> 以重命名字段的可见名称。

Case 2 Source From Setup, enter <userinput> Mass Delete Records </userinput>

in the <parmname> Quick Find </parmname> box, then select

<uicontrol> Mass Delete Records </uicontrol> and click the link

for the type of record to delete

Reference
从“设置”中,在 <parmname> 快速查找</parmname> 方框中输入

<userinput> 批量删除记录 </userinput> , 然后选择 <uicontrol>批

量删除记录 </uicontrol> 并单击要删除记录类型的链接。

Transformer

(W/ Tag) 从“设置”中,在 <parmname> 快速查找 </parmname> 方框中输入

<userinput> 批量 </userinput> <uicontrol> 删除记录 , 然后选择批

量删除记录 </uicontrol> , 单击要删除的记录类型的链接。

Transformer-

Align (XML

Align Loss)

从“设置”中,在<parmname> 快速查找 </parmname> 方框中输入

<userinput> 批量删除记录 </userinput> , 然后选择<uicontrol> 批

量删除记录</uicontrol> , 单击要删除记录类型的链接。

Next is the comparison between the accuracy rates of different models in
XML structure prediction, including structure accuracy rate and matching accu-
racy rate.

It shows that there are slight differences between the structural accuracy of
each model, which is very close to 1. As for the matching accuracy, the Trans-
former (No Tag) has a particularly low matching accuracy (considering that since
more than half of the data itself does not have XML tags, even if there is no
prediction effect, the accuracy has a certain basic value, here about 0.74) while
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the Transformer (W/ Tag) delivers the highest matching accuracy. Combined
with the fact that the XML BLEU score of the Transformer (W/ Tag) is lower,
the Transformer (W/ Tag) has a better learning effect on XML structure, but
worse learning effect of the specific insertion position of XML tags.

Finally, we compare the translation effects of different models on NE&NUM.
Except the Transformer (W/ Tag), the precision and recall rates of other mod-
els on NE&NUM almost reach 1.0, which means that even without additional
processing, the model has good translation capability for numbers and entities
that do not need to be translated into the target language. However, the Trans-
former (W/ Tag) has poor translation effect on NE&NUM. Since the model
regards NE&NUM and XML tags as texts that should be copied directly from
the source language and the number of XML tags is large, the model is better
at predicting XML tags and less effective at learning NE&NUM.

Based on the above analysis, the markup language translation model based
on the word alignment model is not inferior to that of the ordinary unlabeled
text translation model. For the markup language, the word alignment model
can better assist the generation of XML tags and obtain good performance on
markup language translation tasks. In experiments combining different word
alignment models and translation models, we found that the Transformer-Align
model based on XML word alignment loss performs best in XML translation.
Table 2 shows the translation examples. Case 1 in Table 2 show that Transformer-
Align + XML Align Loss model performs better for the translation task of tags as
well as text with the tags. While case 2 in Table 2 shows that Transformer-Align
+ XML Align Loss model is better at recognizing NE&NUM.

4 Conclusion

This research demonstrated that adding a word alignment model to the transla-
tion model on with non-markup text can improve the translation model’s perfor-
mance in translating text with makup tags. This paper applies the more classic
Fast Align model and Transformer-Align model in the word alignment. In the
future, other word alignment models such as word alignment generated based
on pre-trained models are worth to try for further improving predictive ability.

Acknowledgment. This research was supported by Public Health & Disease Con-
trol and Prevention, Major Innovation & Planning Interdisciplinary Platform for the
“Double-First Class Initiative, Renmin University of China (No. 2022PDPC), fund for
building world-class universities (disciplines) of Renmin University of China. Project
No. KYGJA2022001. This research was supported by Public Computing Cloud, Ren-
min University of China.



322 J. An et al.

References

1. Hanneman, G., Dinu, G.: How should markup tags be translated? In: Proceedings
of the Fifth Conference on Machine Translation, pp. 1160–1173, November 2020

2. Hashimoto, K., Buschiazzo, R., Bradbury, J., Marshall, T., Socher, R., Xiong, C.:
A high-quality multilingual dataset for structured documentation translation. In:
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research
Papers), pp. 116–127, August 2019

3. Joanis, E., Stewart, D., Larkin, S., Kuhn, R.: Transferring markup tags in statistical
machine translation: a two-stream approach. In: Proceedings of the 2nd Workshop
on Post-editing Technology and Practice, September 2013

4. Müller, M.: Treatment of markup in statistical machine translation. In: Proceedings
of the Third Workshop on Discourse in Machine Translation, pp. 36–46, September
2017

5. Ott, M., et al.: fairseq: a fast, extensible toolkit for sequence modeling. arXiv
preprint arXiv:1904.01038 (2019)

6. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception
architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2818–2826 (2016)

7. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

http://arxiv.org/abs/1904.01038


Detecting Simpson’s Paradox: A Machine
Learning Perspective

Rahul Sharma1(B) , Huseyn Garayev2, Minakshi Kaushik1 ,
Sijo Arakkal Peious1 , Prayag Tiwari3 , and Dirk Draheim1

1 Information Systems Group, Tallinn University of Technology,
Akadeemia tee 15a, 12618 Tallinn, Estonia

{rahul.sharma,minakshi.kaushik,dirk.draheim}@taltech.ee
2 University of Tartu, Tartu, Estonia

hugara@taltech.ee
3 Department of Computer Science, Aalto University, Espoo, Finland

prayag.tiwari@aalto.fi

Abstract. The size of data collected around the world is growing expo-
nentially, and it has become popular as big data. The volume and velocity
of big data are facilitating the transition of machine learning (ML), deep
learning (DL) and artificial intelligence (AI) from research laboratories
to real life. There are numerous other claims made about Big Data. Can
we, however, rely on data blindly? What happens when a dataset used
to train ML models has a hidden statistical paradox? Data, like fossil
fuels, is valuable, but it must be refined carefully for accurate outcomes.
Statistical paradoxes are hard to observe in classical data cleaning and
analysis techniques. Still, they are required to be investigated separately
in training datasets. In this paper, we discuss the impact of Simpson’s
paradox on categorical data and demonstrate its effects on AI and ML
application scenarios. Next, we provide an algorithm to automatically
identify the confounding variable and detect Simpson’s paradox within
categorical datasets. The algorithm experiments on datasets from two
real-world case studies. The outcome of the algorithm uncovers the exis-
tence of the paradox and indicates that Simpson’s paradox is severely
harmful in automatic data analysis, especially in AI, ML and DL.

Keywords: Big data · Artificial intelligence · Deep learning · Machine
learning · Data science · Simpson’s paradox · Explainable AI

1 Introduction

Human decision-making has always relied on data, but with the advancement
of big data technologies, artificial intelligence (AI), data science, machine learn-
ing (ML), and deep learning (DL) have gained significant traction in artificial
decision-making. These techniques are now widely used in medical sciences, social
sciences, and politics, and they substantially impact human life and decisions,
either directly or indirectly. In most AI use cases, ML-based trained artificial

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Strauss et al. (Eds.): DEXA 2022, LNCS 13426, pp. 323–335, 2022.
https://doi.org/10.1007/978-3-031-12423-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12423-5_25&domain=pdf
http://orcid.org/0000-0002-9024-8768
http://orcid.org/0000-0002-6658-1712
http://orcid.org/0000-0002-7858-9463
http://orcid.org/0000-0002-2851-4260
http://orcid.org/0000-0003-3376-7489
https://doi.org/10.1007/978-3-031-12423-5_25


324 R. Sharma et al.

systems are used to provide quick and precise results. Still, in some cases, the
existence of statistical paradox, causal inference and uneven data distribution
can mislead an AI application. Statistical paradoxes are not new to being dis-
cussed in statistics and mathematics. These terms are widely used in statistics
and have been around for over a century. Expert mathematicians and statisti-
cians adequately discussed various statistical paradoxes (e.g., Simpson’s Para-
dox, Berkson’s Paradox, Latent Variables, Law of Unintended Consequences,
Tea Leaf Paradox, etc.) and addressed their severe impacts on classical data
analysis. However, in modern decision support techniques, specifically AI, ML
and DL, causal relationships, data fallacies and statistical paradoxes are not yet
appropriately addressed.

A statistical paradox can exist in a wide variety of data. Kügelgen et al. [33]
recently emphasized the importance of statistical analysis of real data and
demonstrated evidence of Simpson’s paradox in COVID-19 data analysis. They
claim Italy’s overall case fatality rate (CFR) was higher than China’s. However,
in every age group, China had a higher fatality rate than Italy. These obser-
vations raise numerous concerns about data accuracy and analysis. Heather et
al. [20] have addressed the existence of Simpson’s paradox. In psychological sci-
ence, Kievit et al. [17] examined the instances of Simpson’s paradox. In [14],
Kaushik et al. have discussed some measures to find the impact of one numerical
variable on another numerical variable. Alipourfard et al. [2] have discovered
the existence of Simpson’s paradox in social data and behavioural data [3]. The
instances Simpson’s paradox have also been discussed in various data mining
techniques [10,11,13], e.g., association rule mining [1] and numerical association
rule mining [15,16,31]. Therefore, understanding data, especially big data, is
more critical than processing.

Most of the statistical paradoxes are fundamentally linked to various statis-
tical challenges and mathematical logic, including causal inference [22,23], the
ecological fallacy [19,26], Lord’s paradox [32], propensity score matching [27],
suppressor variables [8], conditional independence [9], partial correlations [12],
p-technique [6], mediator variables [21], etc.

In this paper, we concentrate on a specific case of a statistical paradox called
Simpson’s paradox in categorical data and demonstrate its impact with some
real-world case studies. Next, we provide an algorithm to detect Simpson’s para-
dox and identify the confounding variables in categorical values. In statistics, a
confounder is described as a statistic variable that influences both the dependent
and independent variables, resulting in a spurious relationship. The algorithm is
experimented on two datasets to detect confounder and the paradox. The paper
is organized as follows.

In Sect. 2, we discuss Simpson’s Paradox. In Sect. 3, we propose an algo-
rithm for automatically detecting the Simpson’s Paradox in categorical values.
In Sect. 4, two real-life datasets are used to demonstrate the impact of the para-
dox experimentally. Finally, a discussion and conclusion is provided in Sect. 5
and Sect. 6, respectively.
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2 Simpson’s Paradox

In the year 1899, Karl Pearson et al. [24] demonstrated a statistical paradox in
marginal and partial associations between continuous variables. Later in 1903,
Udny Yule [35] explained “the theory of association of attributes in statistics”
and revealed the existence of an association paradox with categorical variables.
In a technical paper published in 1951 [29], Edward H. Simpson described the
phenomenon of reversing results. However, in 1972, Colin R. Blyth coined the
term “Simpsons Paradox” [5]. Therefore, this paradox is known by different
names and is famous as the Yule-Simpson effect, amalgamation paradox, or
reversal paradox [25]. Simpson’s paradox can exist in any dataset irrespective
of its size and type [18]. The paradox demonstrates the importance of having
human experts in the loop during an automatic data analysis.

Table 1. Original Simpson’s example with 2 × 2 contingency table [29]: the type of
association for the entire population (N = 52) reverses at the level of sub-populations
of men and women.

Population N = 52 Men (M)= 20 Women (F) = 32

Success (S) Failure
(¬S)

Success
rate %

Success Failure Success
Rate %

Success Failure Success
rate %

T 20 20 50% 8 5 ≈61% 12 15 ≈44%

¬T 6 6 50% 4 3 ≈57% 2 3 ≈40%

We start the discussion on the paradox by using the original example and
numbers from Simpson’s article [29]. In this example, analysis for medical treat-
ment is demonstrated. Table 1 summarises the effect of the medical treatment
for the entire population (N = 52) as well as for men and women separately in
subgroups. The treatment appears effective for both men and women subgroups
(Men: 61% vs 57% and Women: 44% vs 40%); however, the treatment seems
ineffective at the whole population level.

We can demonstrate the above example via probability theory and con-
ditional probabilities. Let T = treatment, S = success, M = Men and
F = Women then,

P(S | T ) = P(S | ¬T ) (1)

However, the probability for men and women is:

P(S | T,M) > P(S | ¬T,M) (2)

P(S | T, F ) > P(S | ¬T, F ) (3)
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Based on Eq. 1, 2 and 3, one should use the treatment or not? As per the
success rate for the men and women populations, the treatment is a success,
but overall, the treatment is a failure. This reversal of results between groups
population and the total population has been referred to as Simpson’s Paradox.
In statistics, this concept has been discussed widely and named differently by
several authors [24,35].

2.1 Impacts of Simpson’s Paradox

Simpson’s paradox exists in different types of data in different forms. However,
classically it is expressed via 2 × 2 contingency tables. Let a 2 × 2 contingency
table for treatment (T) and success (S) in the ith sub-population is represented
by a four-dimensional vector of real numbers D = (ai, bi, ci, di). Then

Table 2. 2 × 2 Contingency table with sub population groups D1 and D2.

Population D = D1 + D2 Sub-population D1 Sub-population D2

Success (S) Failure (¬S) Success (S) Failure (¬S) Success (S) Failure (¬S)

Treatment (T) a1 + a2 b1 + b2 a1 b1 a2 b2

No-Treat. (¬T ) c1 + c2 d1 + d2 c1 d1 c2 d2

D =
∑N

i=1
Di =

(∑
ai,

∑
bi,

∑
ci,

∑
di

)
(4)

is the aggregate dataset over N sub populations [30]. This can be read as given
in Table 2.

Definition 1. Consider n groups of data such that group i has Ai trials and
0 ≤ XAi

≤ Ai “successes”. Similarly, consider another similar n groups of data
such that group i has Bi trials and 0 ≤ YBi

≤ Bi “successes”. Then, Simpson’s
paradox appear if:

XAi

Ai
≤ YBi

Bi
for all i = 1, 2, . . . , n but

∑n
i=1 XAi∑n
i=1 Ai

≥
∑n

i=1 YBi∑n
i=1 Bi

(5)

We could also flip the inequalities and still have the paradox since A and B
are chosen arbitrarily.

XAi

Ai
≥ YBi

Bi
for all i = 1, 2, . . . , n but

∑n
i=1 XAi∑n
i=1 Ai

≤
∑n

i=1 YBi∑n
i=1 Bi

(6)
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We use the following example to show the working of the Eqs. 5 and 6.

10
20

=
XA1

A1
>

YB1

B1
=

30
70

and
10
50

=
XA2

A2
>

YB2

B2
=

10
60

yet

10 + 10
20 + 50

=
20
70

=
XA1 + XA2

A1 + A2
<

YB1 + YB2

B1 + B2
=

30 + 10
70 + 60

=
40
130

3 Detecting Simpson’s Paradox

Based on the type of trends reversed in various types of data, Simpson’s paradox
cases are explored into two categories: classification, which involves the relative
rates of binary outcomes in two groups, and regression, which involves the sign of
a correlation between two variables [34]. Here, we provide an algorithm to detect
the paradox in the first case, i.e. for categorical values. In the algorithm, the
Pearson correlation index is used to find the relationships between two variables
which allows for measuring the strength of the linear association between two
variables. The output value of the Pearson correlation lies between −1 and 1.
Values greater than 0 imply a positive correlation. The value 1 indicates the exact
positive association, while 0 means no correlation. Values less than 0 suggest a
negative association, and −1 indicates a clear negative association. The Pearson
correlation coefficient is represented by r In Eq. 7. Here, x and y are input
vectors, x̄ and ȳ are means of the variables, respectively.

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(7)

3.1 Algorithm for Detecting the Simpson’s Paradox in Categorical
Data (Relative Rates)

We formally describe the algorithm for detecting the Simpson’s Paradox in linear
trends in Algorithm 1. In the algorithm, the primary step is to convert the values
of the categorical input variables to binary values. The first variable category is
substituted by 0, and the second category is replaced by 1. This conversion allows
the Pearson correlation index function to identify the relationship between cat-
egorical variables or between categorical and numerical (continuous) variables.
We input X - categorical variable by which we condition, X1 - the first category
of variable X, X2 - the second category of variable X, Y - continuous or cate-
gorical variable (with two categories) which is aggregated. Table 3 illustrates the
form of an example dataset before and after the pre-processing step.

Further, the algorithm calculates the correlation index between X and Y
variables with the values of the corresponding columns in the dataset. This way,
we obtain information on the sign of the relationship between the variables. Next,
we traverse the list of remaining categorical variables, calculate the Pearson index
conditioning on each subgroup (category), count the ratio of subgroups where



328 R. Sharma et al.

the correlation index reversed relative to the index in aggregated data and store
the value key pairs in an array. Subsequently, we get the array element where
the value (ratio) is the highest. The maximal value 1 implies the Simpson’s
paradox occurrence with the corresponding key of the array element being the
confounding variable. Cases where the maximal ratio is less than 1 imply the
absence of Simpson’s paradox. However, they are also regarded as a partial
occurrence of the bias and are considered in the further steps. The performance
of the algorithm strongly correlates with the size of the datasets.

Algorithm 1: Identification of Simpson’s Paradox in Relative Rates
Input: A dataset D with categorical variable x and y
Output: a pair of confounding variable and ratio of reversed association
d[x] = Preprocess(d[x]) /*conversion of categorical column to binary */

d[y] = Preprocess(d[y])
aggreg index = Pearson(d[x] , d[y]) /*calculate correlation index between

columns */

indexes = [] /*initialize index array to store key value pairs: the

key is column and value is the number of reversed subgroups */

cols = columns(D) /*initialize array of all columns of D */

foreach column ∈ cols do
if Column Is Not Categorical(column) then

Continue
end
else

subgroups = Categories(column) // get the categories of a column
coefficients = [] // initialize empty array to store the correlation indexes
foreach subgroup ∈ subgroups do

disaggreg index = Pearson( D[x]: where D[column] = subgroup,
D[y]: where D[column] = subgroup) calculate corr. index between
columns for current subgroup

Add index of disaggregated to correlation indexes array
end

end
reversed subgroups = RatioReversedSubgroups(aggreg index, coefficients)

/*calculate ratio of the correlation indexes reversed with

respect to the correlation index for the aggregated data */

Add column, reversed subgroups values into indexes
end
Store the max values of indexes pairs into result
Return result
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Table 3. Illustration of the form of an example dataset before and after the pre-
processing step.

Gender Result

Male Success

Female Success

Male Failure

Gender Result

0 1

1 1

0 0

4 Experiments and Datasets

The Algorithm is implemented in Python on a personal computer with an
Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz, 1800 Mhz, 4 Core(s), 8 Logical
Processor(s), 16 GB RAM and Windows 10× 64 operating system. We evaluate
the algorithm with two real-world case studies with categorical data. The pro-
gramming code, datasets, and other necessary instructions about the algorithms
are available in the GitHub repository [28].

4.1 UC Berkeley Admissions Dataset Fall 1973

UC Berkeley admissions dataset [4] is a classic example of Simpson’s Paradox.
This dataset contained 12,763 graduate applicants (males and females) to UC-
Berkeley in Fall 1973. The dataset was provided by UC-Berkeley researchers to
investigate any possible cases of gender bias in the admissions. In the dataset,
the admission rate for females is less than for males when data is aggregated;
however, when we consider each major separately, female admission rates exceed
the rates for males in most subgroups.

The aggregate data given in Table 4 demonstrate significant bias in favour
of male applicants; however, data from each department given in Table 5 reveals
an opposite story and bias in favour of Female applicants. Figure 1 demonstrate
some hidden patterns in the dataset. As per the graph, it is clear that the overall
number of women applicants is significantly less than the total men applicants.
However, their rejection rate is high as compared to the male applicants. To ana-
lyze these hidden patterns and find the possible existence of Simpson’s paradox
in data, we use the original UC-Berkeley admission dataset having 12763 records
with four attributes: Student id, Gender, Major and Admission.

Table 4. Existence of Simpson’s Paradox: a case study from UC-Berkeley admission
dataset (fall 1973) [4].

Applications Admitted Rejected Admission %

Men 8442 3738 4704 44%

Women 4321 1494 2827 35%
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Table 5. UC-Berkeley admission dataset (fall 1973): Percentage of acceptance rate of
men and women in different departments.

Gender Departments

A B C D E F

Men 62.06% 63.04% 36.92% 33.09% 27.75% 5.90%

Women 82.41% 68% 34.06% 34.93% 23.92% 7.04%

3738

4704

1494

2827

0

1000

2000

3000

4000

5000

Admitted Rejected

A
p
p
li
c
a
ti
o
n
s

Men Women

Fig. 1. Graphical representation of information in the UC-Berkeley admission dataset
demonstrates hidden patterns and unbalanced data distribution.

In the algorithm, Gender attribute is set as X variable and Admission
attribute is set as Y variable. To detect the paradox, the algorithm first cal-
culates the Pearson correlation between Gender and Admission variables. In
the prepossessing step, the values of gender variable, i.e., Female and Male are
categorised by the binary values 1 and 0, similarly, the values of admission vari-
able, i.e., Failure and Success are categorised by the binary values 0 and 1,
respectively. Next, the algorithm traverses the complete list of variables to iden-
tify the possible confounding variable and compute the ratio of the subgroup
reversals. The algorithm returns a confounder and the existence of Simpson’s
paradox in the dataset. As per the computation, the correlation index between
the Gender and Admission variable is negative for “B, F, A, D” majors, whereas
it is positive for the whole population.

4.2 Kidney Stone Treatment Dataset

We use another dataset from a real-world medical case study published by Charig
et al. [7] in “The British Medical Journal” in 1986. In this study, the success rate
of two different types of treatments to remove the large and small size of kidney
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stones are compared. In Table 6, Treatment A entails a classical open surgical
procedure and treatment B entails an advanced closed surgical procedure. For
both small kidney stones and large kidney stones, treatment A, i.e., open surgical
procedures (Success Rate Small Stone Size 93%, Large Stone Size 73%) performs
better than the treatment B (Success Rate: Small Stone Size 87%, Large Stone
Size 69%), However, when the data for both the treatments is combined, the
treatment B (Success Rate: 83%) outperforms the treatment A (Success Rate:
73%). Table 6 demonstrates the success rates of the treatments in detail.

Table 6. Kidney Stone Dataset: Information about the success rate of the treatments
with different sizes of stones. Treatment A outperforms treatment B for large and small
kidney stones, but for both kidney stones together, treatment B exceeds treatment A.

Stone size Treatment (A) = 350 Treatment (B) = 350

Success (S) Failure (F ) Success
rate %

Success (S) Failure (F ) Success
rate %

Small 81 6 ≈93% 234 36 ≈87%

Large 192 71 ≈73% 55 25 ≈69%

Both 273 78 ≈78% 289 61 ≈83%

263

80

50

150

250
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A B

Pa
ti
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Small Large

Fig. 2. Graphical representation of information in the kidney stone dataset demon-
strates the hidden patterns and unbalanced data distribution for treatments A and B.
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Figure 2 demonstrate the graphical representation of the hidden information
in the dataset. As per the graphs, it is a perfect case of uneven distribution
of sample data for both the treatments. Analyzing this dataset with the algo-
rithm returns a confounder and the existence of Simpson’s paradox. As per the
computation, the correlation index between the Treatment A and Treatment B
in groups is opposite to the correlation for both the treatments.

5 Discussion and Future Work

The existence of Simpson’s paradoxes in real-world studies provides a direc-
tion for understanding the impact of causality in artificial decision-making. We
noticed that data mining algorithms used in AI, ML and DL focus mainly on
identifying the correlations in aggregate data rather than identifying the gen-
uine causal relationships between all the data items. Therefore, understanding
statistical paradoxes and evaluating causality in each combination of data items
is an essential step toward fair ML models. In future, we plan to simplify the
impacts of Simpson’s paradox in different types of data (Continuous values) and
address various other statistical paradoxes (e.g., Berkson’s paradox) in datasets.
Further, we intend to develop a simple framework to identify the existence of
statistical paradoxes in various types of data.

6 Conclusion

In AI, ML and DL, dealing with causality and statistical paradoxes is still a chal-
lenging phenomenon. In most AI use cases, ML-based trained artificial systems
are used to provide quick and precise results. Still, in some cases, the existence of
statistical paradox, causal inference and uneven data distribution can easily mis-
lead the outcome of artificial systems. In this paper, we focused on addressing a
specific case of a statistical paradox called Simpson’s paradox in categorical data
and demonstrated its impact with some real-world case studies. We provided an
algorithm to detect Simpson’s paradox and identify the confounding variables
in categorical datasets. This algorithm can be utilized to develop a platform
that unifies most aspects related to detecting a confounding variable, Simpson’s
paradox. The algorithm is evaluated on two real-world case study datasets. The
algorithm performed well in each experiment, and its running time is propor-
tional to the size of a dataset.
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programme” which was supported by the European Union through the European Social
Fund.



Detecting Simpson’s Paradox: A Machine Learning Perspective 333

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of VLDB’1994 - the 20th International Conference on
Very Large Data Bases, pp. 487–499. Morgan Kaufmann (1994)

2. Alipourfard, N., Fennell, P.G., Lerman, K.: Can you trust the trend? Discovering
Simpson’s paradoxes in social data. In: Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining, WSDM 2018, pp. 19–27.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3159652.3159684

3. Alipourfard, N., Fennell, P.G., Lerman, K.: Using Simpson’s paradox to discover
interesting patterns in behavioral data. In: Proceedings of the Twelfth International
AAAI Conference on Web and Social Media. AAAI Publications (2018)

4. Bickel, P.J., Hammel, E.A., O’Connell, J.W.: Sex bias in graduate admissions:
data from Berkeley. Science 187(4175), 398–404 (1975). https://doi.org/10.1126/
science.187.4175.398

5. Blyth, C.R.: On Simpson’s paradox and the sure-thing principle. J. Am. Stat.
Assoc. 67(338), 364–366 (1972)

6. Cattell, R.B.: P-technique factorization and the determination of individual
dynamic structure. J. Clin. Psychol. 8, 5–10 (1952)

7. Charig, C.R., Webb, D.R., Payne, S.R., Wickham, J.E.: Comparison of treatment
of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal
shockwave lithotripsy. BMJ 292(6524), 879–882 (1986). https://doi.org/10.1136/
bmj.292.6524.879

8. Conger, A.J.: A revised definition for suppressor variables: a guide to their identi-
fication and interpretation. Educ. Psychol. Meas. 34(1), 35–46 (1974)

9. Dawid, A.P.: Conditional independence in statistical theory. J. Roy. Stat. Soc.
Ser. B (Methodol.) 41(1), 1–15 (1979). https://doi.org/10.1111/j.2517-6161.1979.
tb01052.x

10. Draheim, D.: DEXA’2019 keynote presentation: future perspectives of associa-
tion rule mining based on partial conditionalization, Linz, Austria, August 2019.
https://doi.org/10.13140/RG.2.2.17763.48163

11. Draheim, D.: Future perspectives of association rule mining based on partial con-
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Abstract. Learned bloom filter (LBF) model has been proposed in
recent work to replace the traditional bloom filter (BF). It can reduce
the needed amount of memory and achieve a relatively low false posi-
tive rate (FPR). However, the LBF did not provide a good solution for
multi-dimensional data, such as spatial data. In this paper, a learned
prefix bloom filter (LPBF) for spatial data is presented, which supports
deletion and expansion and achieves lower FPR and less memory usage
than the classical BF. To our knowledge, this is the first LBF method
for spatial data. Specifically, a Z-order space-filling curve is used to map
the spatial data into one dimension binary code. Then, we only need
to learn the suffixes of the same prefix for the corresponding sub-LBF,
which reduces the learning complexity of LBF. We further use the per-
fect hash table to accelerate the filter and reduce the FPR. Compared
with two traditional BF methods and two state-of-art LBF methods on
real spatial data sets, the proposed LPBF method shows the best per-
formance in reducing FPR, proving that the LPBF method has great
potential on bloom filter for spatial data.

Keywords: Learned bloom filter · Spatial data · Machine learning ·
Z-order curve · Data management

1 Introduction

With the development of big data, huge amounts of geospatial data are generated
from smartphones and wearable devices, which brings huge challenges in query
and storage. Bloom filter (BF) [3], a classical data structure for approximate
membership, can reduce the extra I/Os by checking if the requested data exists.
The standard bloom filter (SBF) uses the k hash function to map each data into
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k bits in the bit array, called k mapped bits [23]. Set the k mapped bits to 1 to
insert an item into the database. Then, we can check if all the k mapped bits
are 1 to judge the presence of the item when querying. However, SBF has two
main drawbacks, that is undeletable and unextendable [23]. Therefore, many
researchers focus on solving these problems with a low FPR.

To support deletion, the Counting Bloom Filter (CBF) [10,19] was designed
to store counters. CBF is usually used in combination with SBF, the former is
placed in slow memory to support deletion but is not expandable, and the latter
is placed in fast memory for fast queries. The Cuckoo Filter [9] was presented to
support both deletable and expandable dynamically while achieving the better
performance of the SBF and CBF. However, there is a probability of mistaken
deletion for the Cuckoo Filter, and the size of the storage space must be an
exponent of 2, which increases the space overhead. For scalability, the Scalable
Bloom Filter [24] and the Dynamic Bloom Filter [11] used an additional empty
bloom filter at the end of the original structure for the new data. In addition,
the optimized dynamic bloom filter [12] used the CBF instead of the SBF to
support deletion.

In recent works, Kraska et al. [13] introduced a machine learning (ML) model
for bloom filter, called Learned Bloom Filter (LBF). It required less memory
than an SBF for a given FPR by using the machine learning model to learn
the correlation between items in the set. The LBF has been widely concerned
due to the less memory and new hope of reducing FPR beyond the theoretical.
Mitzenmacher [16] further presented a Sandwiching Learned Bloom Filter Model
(Sandwiching LBF), added a bloom filter before the learned oracle to reduce the
FPR. Rae et al. [21] proposed a Neural Bloom Filter to learn the approximate
set membership in one-shot via meta-learning, which achieved compression gains
over the classical BF. Zhenwei Dai et al. [6] further used the complete spectrum
of score regions to further generalized LBF. It reduces the FPR by adjusting
the number of hash functions differently and allocating variable memory BF in
different regions. These classical BF methods and generalize LBF methods above
were only for the one-dimensional data structure.

There are some works dedicated to multi-dimensional data filters. Adina
Crainiceanu et al. [4,5] designed the Bloofi for multi-dimensional data filter,
which arranged the bit vectors in the form of a B+tree and exploits bit-level
parallelism by packing the bloom filters. Ripon Patgiri et al. [20] proposed an
r-Dimensional Bloom Filter (rDBF) for different dimensional data, and achieved
better performance than Cuckoo Filter in every aspect. For LBF methods,
Stephen Macke et al. [15] introduced a learned multi-dimensional data bloom
filter method, which inferred the value combination connections. Then, using a
classification model for multi-dimensional data filter. Angjela Davitkova et al.
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[7] further optimized the LBF model for multi-dimensional data by using a com-
pressed LBF, reducing space significantly, saving training time, and improving
accuracy. However, these LBF can not fully consider the data deletable and the
impact of data access frequency.

To circumvent these issues, in this paper, we proposed a novel learned prefix
bloom filter (LPBF) for spatial data. It uses a learned bloom filter with a count-
ing bloom filter to check if the items exist in a set. The model can support both
deletable and expandable, and achieve lower FPR compared with the classical
BF. The main contributions of this paper are as follows:

1. We proposed LPBF, a novel learned prefix bloom filter for spatial data. To our
knowledge, this is the first LBF method for spatial data. To support deletion
and expansion, a CBF is used as a backup bloom filter of LPBF, which
achieved lower FPR and less memory usage compared with the classical BF.

2. We use a Z-order space-filling curve to map the spatial data into one dimen-
sion binary code. Then, the prefixes of the binary code are extracted to divide
all data points into k clusters, and we only need to learn the suffixes of the
same prefix for the corresponding sub-LBF, which can reduce the learning
complexity of LBF and the FPR.

3. We use the perfect hash table to get the prefix hash codes so that the corre-
sponding sub-LBF can be found as soon as possible. Furthermore, the nega-
tive data that its prefix code mismatch all prefixes can be filtered first when
querying further reducing the FPR.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduced
the architecture of Bloom Filter and Learned Bloom Filter. Then, we focused on
the LPBF design, introduced basic operations, and analyzed the false positive
rate of the proposed method in Sect. 3, respectively. Next, we performed a series
of experiments to verify the effectiveness of the LPBF method in Sect. 4. In the
end, we concluded about the LPBF and future works.

2 Related Work

2.1 Bloom Filter

Bloom Filter (BF) [3] is a random data structure with high space efficiency,
which uses bit arrays to express a set concisely and judge whether an item belongs
to the set. Given a set X = {x1, x2, ..., xn} of n items, and using k independent
hash functions to map each item in the set X to {1, 2, ..m}. Then, we can get an
array of m bits for all items. For an item xi, the location hi(x) of the ith hash
function mapping is set to 1 (1 ≤ i ≤ k). Note, once a position is set to 1, it will
be fixed as 1 no matter how many times the position is mapped.
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Query

Yes No

0 1 0 0 1 0 1 0 0 1 1 0

x1 x2 ……

y1 y2 y3

False positive

(a) Bloom Filter

Bit array

0 1 0 0 2 0 1 0 0 1 1 0

x1 x2 ……

(b) Counting Bloom Filter

Bit array

Fig. 1. Architectures of the bloom filter and counting bloom filter.

As shown in Fig. 1 (a), there is an array of bits m = 12, and hash functions
k = 3, x1 and x2 are inserted. The values of x1 and x2 three hash modulus are
shown in Fig. 1 (a), and the corresponding bit positions of two items are set to 1.
When querying an item, the same k hash functions in the insertion process are
used, then taking out the value corresponding to each bit by taking modulus.
In Fig. 1 (a), y1, y2 and y3 are the queried items. The results of y1 and y2 are
the items that may exist, and y3 does not exist in the set due to the existing 0
bit. However, the real results are that y1 is in the set, but y2 and y3 are not in
the set. The case that y2 is misjudged is called false positive. It is obvious that
there may be a false positive but no false negative in BF.

Let Fb be the false positive rate (FPR), that is, all k positions of an item in
a bit array hashed by k functions are all 1, but it does not belong to this set.
For an item i, the probability that any bit in BF is 0 after the execution of the
k hash functions of the item is (1 − 1

m )k. The probability that any bit in BF is
1 after all n items are inserted is 1 − (1 − 1

m )kn. Therefore, the FPR Fb can be
denoted as follows:

Fb = [1 − (1 − 1
m

)kn]k ≈ (1 − e
−kn
m )k (1)

To solve the problem that BF can not delete items, Counting Bloom Filter
(CBF) [10,19] is proposed. As shown in Fig. 1 (b), it expands each bit of the BF
bit array into a small counter. The corresponding k counters are added 1 when
inserting an item, and on the contrary, the corresponding k counters are deleted
when deleting an item. CBF implements a delete operation by taking up several
times more storage space. In this paper, CBF is used as a small backup BF to
eliminate the false negatives rate (FNR) and support the deletion function.
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2.2 Learned Bloom Filter

BF is usually used to determine whether an item belongs to a certain set, the
process of which is regarded as a binary probability classification task. That is,
we can learn a model f(x) to predict an item whether belongs to the set, such as
Gradient boosting [18], Recurrent Neural Network (RNN) [14] or Convolutional
Neural Network (CNN) [8], called Learned Bloom Filter (LBF). However, there
must be errors in the prediction results, that is fpr �= 0 and fnr �= 0. To
ensure the fnr = 0, use bloom filter as a backup filter combined with binary
classification.

Learning 
model

Input Bloom 
Filter

Positive

Negative

Fig. 2. Architecture of learned bloom filter.

As shown in Fig. 2, the input data first is classified by the learning model.
Then, use BF to judge the left items that the output value of the classification
results are less than the threshold τ . Finally, the value of the large than τ and
the positive value are input to the database for the query. The BF in the model
ensures the FPR is 0. Suppose the FPR of the learning model is Fp, and the
FPR of backup BF is Fb as shown in Eq. 1, then, the FPR of LBF as:

F = Fp + (1 − Fp) · Fb ≈ Fp + (1 − Fp) · (1 − e
−kn
m )k (2)

When Fp is small, the F of the Eq. 2 is approximately Fp + Fb.

3 The Proposed Method

3.1 Design Overview

Figure 3 shows the architecture of LPBF. The design of LPBF makes use of
four key insights. First, the z-order curve is used to map the spatial data into
one dimension in the data pretreatment phase. The binary value of each data
can be divided into prefix and suffix, and it can be divided into N different
categories according to the different prefixes, each prefix Pi contains multiple
suffixes (Sj , Sj+1, ..., St). Then, we use the perfect hash function to encode all
prefixes and get the corresponding categories according to the hash code when
looking for data. Third, N sub-LBFs are trained according to the corresponding
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Fig. 3. Architecture of LPBF.

suffixes of the N different categories, and we can use a sub-LBF to predict an
item whether belongs to the subset, as shown in the LBF part of Fig. 3. In the
end, a CBF is used as the final filter to detect all negative samples from all
categories that are classified by all sub-LBFs. The rest part will introduce the
detials of the LPBF.

3.2 Data Pretreatment

In this part, we introduce how to encode the spatial data and the way to separate
all data into different categories. We first introduce the Z-order space-filling
curve, named Morton curve. It is a classical and widely used space-filling curve
method that can map multi-dimensional data to one dimension due to the good
locality-preserving behavior [22]. For two dimensional space, it can be mapped
into one dimension by “string” all the rectangular areas of the two dimensional
space with a line [17]. That is what the z-order curve does.

As the Fig. 3 pretreatment part shows, a spatial data (x, y) can be repre-
sented as a binary value by interleaving the binary representations. Then all the
binary coordinate values can be expressed as a unique and non-repeated decimal
value, and arranged in linear order [25] so that it can produce the Z-order curve
recursively in the end. Therefore, in the data pretreatment phase, we can get
unique binary values of all data to perform subsequent operations.

It is not difficult to find that each spatial data is transformed into a binary
code by using the z-order curve, and each binary code can be divided into the
prefix part and the suffix part. Here, both positive and negative samples are
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used as input samples and are mixed up when used for training. Then, all data
points can be sorted into different categories according to the different prefixes.
It should be noted that the number of categories we need to divide is determined
by the length of the prefix code. The length of the prefix code should be set at the
beginning of the data pretreatment. Therefore, we design a set of experiments
in part 4.3 to test the effect of prefix lengths on FPR. Obviously, the longer
prefixes is, the more categories we can get.

3.3 Learned Prefix Bloom Filter

In this part, we introduce the details of the learned prefix bloom filter. As shown
in Fig. 3, we need to process the prefixes and suffixes obtained by data pretreat-
ment separately. The binary data is divided into N categories according to the
different prefixes, and each of them has its own sub-LBF.

To find the categories easier, perfect hash [2] is introduced to code the pre-
fixes. Perfect hash, a static hash function, maps each element of a set to a series of
collision-free integers. Since we know all binary prefixes that need to be hashed,
and all of the prefixes are unique and non-conflicting, the perfect hash code for
each category is unique. When testing a new data whether belongs to the set, it
first encodes by z-order curve and gets the prefix, then uses the perfect hash to
get the hash code, and further find the category it belongs to.

For the sub-LBF part, first, the data is vectorized and then gets the positive
or negative results of the outputs by using the classification method. Here, we
use the Gradient boosting method for classification. The loss function is L =∑n

i=1[f(xi) − yi]2. Where f(xi) denotes the output of the data xi in a sub-
LBF, yi is the truth value related to xi. Then, we can judge an item is positive
or negative according to the classification results. For N categories, there are N
different learning models. In particular, each model only needs to learn the suffix
binary encodings of each subset of the data, which is simpler than the original
LBF model to learn the entire encoding of all data.

As is mentioned above, CBF is a BF that can support data deletion. There-
fore, it is utilized as the final BF for data deletion. All negative samples identified
by all sub-LBFs need to be filtered by a final CBF. Here, we only need a small
CBF because of each sub-LBF filters out some positive samples. Theoretically,
the size of the CBF tends to be infinitesimal when the accuracy is close to 100%.

3.4 Operations

The operations for LPBF are creation, query, insertion and deletion. For query,
insertion and deletion, all of them need to convert the multi-dimensional data
into one dimension at first. Then, use the perfect hash table to find the sub-LBF
that each data belongs to. Next, use sub-LBFs and the CBF to finish the follow-
ing operations. Therefore, we will not go into details in the data pretreatment
and the choice of sub-LBF but focus on the subsequent operations.
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– Creation. First, transform the data using the z-order curve, and get the
prefixes and suffixes. Second, use the perfect hash to hash code all the prefixes,
and enter the suffixes of the different prefixes into the corresponding sub-
LBFs. Third, vectorize the data and train the classification model to get the
classification results. Finally, use the false negative data that is output by all
sub-LBFs as a positive sample to construct a CBF.

– Query. First, find the related sub-LBF according to the prefix. Then, use
the LBF model, as shown in the LBF part of Fig. 3, to predict whether the
checked data is positive. If it is determined as positive, it is considered to
be present in the set. If not, we then utilize the CBF to check it is positive
or negative and output the final result. Here, the LPBF focuses on judging
whether an item is in the set, thus the query operations such as range queries
are not within our consideration.

– Insertion. First, find the sub-LBF corresponding to the prefix. Then, get the
classification result using the sub-LBF model after selecting the corresponding
sub-LBF for the inserted data. If the predicted result is positive, we can insert
the data into the set. If not, add the data into the final CBF. In particular,
if no prefixes are matching the newly inserted data, add the prefix of data to
the prefix array and re-encode using perfect hash function. Here, we set α as
the number threshold of the new subset, and construct a new sub-LBF if the
number of the new subset is large than α. Otherwise, input the new subset
into final CBF directly.

– Deletion. We first use the corresponding sub-LBF model to get the classifi-
cation result after selecting the corresponding sub-LBF for the deleted data.
If the predicted result is positive, no action is required, and when looking up
the deleted data from the set, it does not need to be found. If not, delete the
data from the final CBF. In addition, a threshold θ is set for each sub-LBF.
When the number of deleted data predicted as positive by sub-LBF reaches
θ, the sub-LBF should be retrained to update the model.

3.5 Analyzing Learned Prefix Bloom Filter

We model the learned prefix bloom filter as follows. As previously intro-
duced, all learned functions f = {f1, f2, ...fN} are used for all data keys
X = {x1, x2, ...xN}, and |X| = n, each sub-LBF function has the number
of data |xi| = ti. The FPR of all learning models is represented as FP =
{F 1

p , F 2
p , ..., FN

p }. Note, the total number of the input negative data into the
learning model to calculate the FP contains the part of negative data whose
prefixes mismatch all existing prefixes, and are removed at the beginning before
they input into a sub-LBF. For each learning model fi, there are Fnti false
negatives for keys in fi. Therefore, for the number of N sub-LBF, the backup
CBF finally holds FNT keys, where FN = {F 1

n , F 2
n , ..., FN

n }, T = {t1, t2, ..., tN}.
Obviously, the better all learning models are trained, the smaller FNT than the
number of all data keys n.
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As shown in Eq. 1, the FPR of BF is calculated as Fb. For the backup CBF,
the FPR Fl is expressed as:

Fl = [1 − (1 − 1
m

)k·FNT ]k ≈ (1 − e
−k·FNT

m )k (3)

Then, the overall FPR F is

F =
N∑

i=1

F i
p + (1 −

N∑

i=1

F i
p) · Fl

≈
N∑

i=1

F i
p + (1 −

N∑

i=1

F i
p) · (1 − e

−k·FNT

m )k
(4)

According to the Eq. 4, if the number of the hash function k and the number
of bits m are fixed, the overall FPR F is related to FP and FN . When the FP is
small enough, the Eq. 4 is approximately

∑N
i=1 F i

p + Fl. Therefore, the smaller
FN , the smaller the F , which proves that as long as trains all learning models
well, we can get a lower FPR. Moreover, due to the number of input data for
CBF reducing significantly, the size of the bit array needed also decrease, which
reduces memory usage as well. In addition, a part of negative data, whose prefixes
mismatch all existing prefixes, is removed at the beginning also reduces the FPR.

4 Evaluation

4.1 Experimental Settings

In this part, four bloom filter methods are used as the comparison methods
to compare with the proposed LPBF method in three spatial data sets. The
comparison methods include two traditional bloom filter methods, is Standard
Bloom Filter (SBF) [1] and Counting Bloom Filter (CBF) [10], and two learned
bloom filter methods, is original Learned Bloom Filter (LBF) [13] and Sand-
wiched Bloom Filter (SandwichedBF) [16].

As for evaluation data sets, the real-world data sets Open Streets Maps
(OSM)1 are used for experiments. Specifically, the several areas of Greece, China,
and Mexico data sets of OSM are used, the details of which are shown in Table 1.
In addition, the synthetic 1000000 pieces of data are used as negative samples for
three data sets. The operating system for all experiments executed is Windows
10 Professional Edition, and the processor is Intel(R) Core(TM) i5-9500 CPU
@ 3.00 GHz 3.00 GHz, and the memory size is 24 GB. The python 3.8 is used to
implement the LPBF method and all the comparison methods.

1 https://download.geofabrik.de/.

https://download.geofabrik.de/
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Table 1. The details of data sets.

Area Data set Record Size

Greece Waterways 45640 1.28 MB

Landuse a 118382 3.37 MB

Places 12763 789 KB

Water a 7498 204 KB

China Landuse a 686572 20.4 MB

Natural 53692 890 KB

Places 367751 14.1 MB

Pois a 187140 66.65 MB

Mexico Landuse a 166652 4.58 MB

Natural 43939 204 KB

Places 54046 2.1 MB

Railways 10014 324 KB

4.2 Performance of Query

In this part, we evaluate the performance of the query by using the False Positive
Rate (FPR) on three OSM data sets. We compare the FPR with different bit
sizes of the bloom filter for all methods. In particular, the SandwichedBF has
an Initial Filter and a Backup Filter, thus each filter uses half of the bit size.
The prefix lengths of the LPBF method are fixed as 8. In addition, to ensure
the fairness of the experiment, the Gradient Boosting algorithm is used in all
learning models of the three learned bloom filter methods.

As shown in Fig. 4, the LPBF method shows great query performance. When
the bit size is 5 × 103 to 5 × 104 in Fig. 4 (a), and 103 to 5 × 104 in (b) and (c),
the four compared methods have high FPR, especially the two traditional BF
methods, the LPBF method has maintained a low FPR. It should be noticed
that the FPR of the LPBF method is slightly higher than two learned bloom
filter methods when the bit size between 5 × 104 and 5 × 105, 104 and 1 × 105,
and 104 and 1 × 105 in Fig. 4 (a)-(c), respectively.

The obvious advantages of LPBF on FPR may due to the following reasons.
First, the FPR only correlates with bit size for traditional bloom filter methods.
So, the FPR of the traditional methods are higher than the learning model
because of the huge bit size correlation. Second, since the data is filtered first
using the learning model, the learned bloom filter methods can use a smaller
bit size to get a low FPR than traditional methods. Third, each sub-LBF of
the LPBF only needs to learn the corresponding suffixes, and it uses the prefect
hash to filter some negative data when querying at the beginning. Therefore,
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the FPR of the LPBF is lower than other learned models even if the bit size is
small. However, the LPBF uses the CBF as the backup filter, which may have
a slightly high FPR than the other two learned filters that use the SBF as the
backup filter when the bit size is relatively small. In summary, LPBF shows the
best performance overall.

Fig. 4. Compare the query performance with different bit sizes on three data sets.

Fig. 5. The query performance of overall LPBF with different prefix lengths on three
data sets.

4.3 Performance of Different Prefix Lengths

To explore the impact of different prefix lengths on the learning model of LPBF,
we performed different prefix lengths experiments on three data sets. The bit
size is fixed at 5 × 105 in all data sets. We get the FPR results of overall LPBF.
The FPR results by the learning model predicted and after filtering by the entire
filter are shown in Fig. 5, the FPR decreases as the prefix length increases, which
means the more the prefix length, the lower the FPR. Therefore, it is obvious
that the prefix length has a positive influence on the learning model.
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The reason for the influence above is that in LPBF, each sub-LBF only needs
to learn the corresponding suffixes. The longer the prefix, the simpler the suffix,
which reduces the complicate of the learning model when the lengths of prefix
increase. Moreover, a part of data that mismatches all the prefixes is filtered at
the beginning of the query, which reduces the burden of the learning model.

4.4 Time Consumption

In this part, we compare the query time consumption of all methods, and the
train time consumption of all learned models on three areas. Here, the prefix
lengths of the LPBF method are fixed as 8. The bit size is fixed at 5 × 104.

Table 2. Compare query time of all methods on three areas. (time: s)

Area SBF [1] CBF [10] LBF [13] SandwichedBF [16] LPBF

Greece 0.065 0.145 14.190 14.274 0.889

China 0.065 0.144 14.335 14.349 1.096

Mexico 0.064 0.144 14.321 14.242 1.135

Table 3. Time comparison of training process on three learned models. (time: s)

Area LBF [13] SandwichedBF [16] LPBF

Greece 213.455 212.751 73.164

China 452.854 453.632 149.176

Mexico 225.720 225.894 77.644

As shown in Table 2, the query time of the traditional methods SBF and
CBF is the smallest, and the query time of the proposed LPBF is close to the
traditional methods, which is much smaller than the other two learned methods.
The traditional methods only need to use the bit array for query, but the learned
methods have the classification process when querying. However, the LPBF fil-
ters a part of keys by using prefix code before inputting into the sub-LBF, so it
can save a lot of query time than other learned models.

We further compare the training process time on three learned models due to
the traditional methods do not have the training process. As shown in Table 3,
the LPBF method shows the shortest time consumption compared with other
methods on three areas. This is because the LPBF method only needs to learn
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the suffixes, which decreases the learning complexity. Comprehensive the query
and training process time consumption, and combined with the results of FPR,
the proposed LPBF method shows the best performance.

5 Conclusion

In this paper, we presented a novel learned prefix bloom filter (LPBF). To our
knowledge, this is the first LBF method for spatial data. It uses a CBF as
a backup bloom filter of LPBF to achieve lower FPR and less memory usage
compared with the classical BF. In LPBF, the Z-order curve is utilized to map
the multi-dimensional spatial data into one dimension to get the binary codes of
data. Then, the data can be divided into k categories according to all prefixes. All
suffixes of the data are divided into different categories and input into different
sub-LBFs, which reduces the learning complexity of the LBF. Moreover, we use
the perfect hash table to get the prefix hash code so that the sub-LBF can be
found as soon as possible and filter the negative data first when querying. The
experimental results proved that the proposed LPBF method has great potential
on the bloom filter for spatial data.

For future work, there are two interesting directions that can be considered.
First, we can introduce the Neural Network for the learning of bloom filters and
adaptive selection of the number of networks. Second, the weight of data can be
considered for model learning to help reduce FPR.
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Abstract. Textual emotion classification is a task in affective AI that
branches from sentiment analysis and focuses on identifying emotions
expressed in a given text excerpt. It has a wide variety of applications
that improve human-computer interactions, particularly to empower
computers to understand subjective human language better. Significant
research has been done on this task, but very little of that research lever-
ages one of the most emotion-bearing symbols we have used in mod-
ern communication: Emojis. In this research, we propose ReferEmo, a
model that processes Emojis as textual inputs and leverages DeepMoji
to generate affective feature vectors used as reference when aggregating
different modalities of text encoding. To evaluate ReferEmo, we exper-
imented on two benchmark datasets: SemEval’18 and GoEmotions for
emotion classification, and achieved competitive performance compared
to state-of-the-art models tested on these datasets. Notably, our model
performs better on the underrepresented classes of each dataset. The
source code of ReferEmo is available on Github (https://github.com/
alvarosness/ReferEmo).

Keywords: Emotion classification · Multimodal model · Natural
language processing · AI

1 Introduction

Sentiment analysis is the branch of affective AI consisting of various method-
ologies for identifying emotional valence expressed in text. Over the past years,
there has been an increase in the prevalence of sentiment analysis in research and
industry. Use cases include identifying customer satisfaction by inferring the sen-
timent being expressed in product reviews and determining job satisfaction from
Voice of Employee surveys, and monitoring the emotional state of a large popu-
lation by inferring the sentiment expressed in public communication platforms,
particularly in the case of significant events such as political elections, and major
health crises. Identifying early signs of mental health conditions by identifying
the sentiment expressed in published online content. Due to the increasing pop-
ularity of Emojis, there is great interest in analyzing and studying their usage
in text content for sentiment analysis [18,20,22].
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The textual emotion or sentiment classification falls into two categories:
lexicon-based approaches and machine learning-based approaches. The lexicon-
based approaches utilize curated words and their associations to classify a
text, whereas the machine learning-based approaches train a model to clas-
sify text. The defined lexicons are either used in rule-based models that rely
on keyword frequency count [30] or keyword search [6] or as input features
to machine learning-based models [21]. The machine learning-based approaches
include those using either traditional or deep learning models. The traditional
machine learning approach is similar to text classification, which includes steps
such as first assigning Unicodes to the emojis, then applying feature selection,
and classification algorithms, such as multinomial Näıve Bayes [19] for emo-
tion classification or sentiment detection. With the advance of deep learning,
the recent literature on emotion classification investigates various deep language
models. NTUA-SLP [5] utilized the BiLSTM with a multi-layer self attention
mechanism to predict affective content in tweets. They converted the emojis
into word-level expressions to include emojis in the system. BERT based models
has been applied to emotion classification [3,9]. The autoencoder-based approach
has also been used to construct a latent variable representation from the latent
emotion module to guide the prediction [12].

We propose the ReferEmo, a referential emotion encoder with three main
components: a reference encoder, a BiLSTM and BERT text encoder, and an
attention-based feature aggregation Layer. The reference encoder generates affec-
tive feature vectors aimed to enrich the text encodings with more affect value.
The BiLSTM and BERT text encoders generate contextual token embeddings
from the input sequence, including emojis. The BERT encoder encapsulates
much knowledge given that it has been pretrained on a very large corpus allow-
ing for quick learning of the task. The BiLSTM encoder, however, supplements
the BERT encoder allowing the entire model to achieve higher sensitivity. The
attention-based feature aggregation combines the text encodings and the ref-
erence vector by having the text encodings attend to the feature vector, thus
giving more weight to tokens whose affective value is highest.

The main contributions of this paper are summarized as follows: (1) We
proposed a novel emotion classification model - ReferEmo, (2) demonstrated
its competitive performance compared to state-of-the-art models in multilabel
emotion classification, and (3) showed that the ReferEmo performs better on
underrepresented classes.

2 Related Work

2.1 Lexicon Based Emotion Classification

Affective lexicons have been extensively used since the early stages of auto-
matic affect detection research and still provide useful linguistic features that
aid in more contemporary methodologies. These lexicons consist of curated sets
of words and their associated set of affect scores.
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Lexicons like the Liu Lexicon [14] consists of a set of words with either a
positive or a negative label. There are lexicons such as AFINN [25], and Senti-
WordNet [29] that do quantify how positive or how negative the word is, allowing
for better distinction of expressed effect. Emotion classification models have used
these lexicons, particularly TCS Research [21] and SeerNet [11], with some sig-
nificant results. EmoLex [24] is a lexicon that builds on top of the ones stated
prior and is better suited for the emotion classification task. Much like Liu
Lexicon, EmoLex does not quantify the association between a word and each
emotion. These lexicons have also been used in emotion classification models
such as NELEC [1], and SINAI [4]. Despite their prevalence, these lexicons can
present some limitations. Namely the fact that most of these lexicons are a form
of local representations of emotion.

2.2 Deep Learning Based Emotion Classification

NTUA-SLP [5] was the best performing model submitted to the SemEval’18
Task 1 [23]. The authors developed a recurrent neural network consisting of
BiLSTMs with deep attention where the input embeddings were word2vec word
vectors whose dimensions are augmented with hand-picked affective features.
The augmentation of the word vectors did not improve their performance on
the multilabel classification task though it did improve their performance on
regression tasks.

Seq2Emo [16] is another most recent relevant deep learning-based model for
emotion classification. Its architecture mimics a sequence to sequence model
where an encoder BiLSTM network transforms a sequence of tokens into a
sequence of encodings for each emotion class decoded by another BiLSTM net-
work. Their model does not use any other emotion or sentiment information
such as lexicons or pretrained affective embeddings. Their performance is akin
to that of NTUA-SLP despite the little additional information that it uses.

GoEmotions is the most recent benchmark dataset for emotion classification.
The authors of the GoEmotions [9] have applied BERT [10] on to the dataset
with some significant results. Notably, a standard pretrained BERT had already
embedded much affective information, leading to quick learning and improved
performance on other tasks when pretrained on the GoEmotions dataset.

2.3 Emojis in Emotion Classification

Emojis are a pictorial representation of various concepts, including emotions,
objects, and activities. Since their dawn in the early 2010s, emojis have become
increasingly commonplace in our modern forms of electronic communication.

Hu et al. [15] conducted a study on the usage of emojis while focusing on
the intent behind their widespread use [15] and found that emojis are used to
express positive or negative sentiment, further increase the amount of sentiment
expressed in a text excerpt, and adjust the tone of a message to convey sarcasm,
irony, humor, or closeness. Ai et al. [2] conducted a similar study with the focus
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on understanding what leads an emoji to be more popular than others by analyz-
ing the relationship between emojis and the context in which they are presented
[2]. They found that emoji usage is characterized into two distinct functions:
complementary and supplementary. The most popular emojis are also the ones
that convey the most sentiment. Delobelle et al. [8] argued that emojis were not
used enough in NLP models. They found that in most NLP research, emojis
have either been underutilized or not utilized at all. The proper use of emojis
can increase the performance of contextual models, with an observed increase of
5.85% in performance once emojis were used in their conversational model.

3 ReferEmo: Referential Emotion Encoder

The proposed model, as illustrated in Fig. 1, encodes a sequence of tokens, includ-
ing words and emojis, defined as x = (x1, x2, · · · , xT ), and generates a feature
vector ct used by a classification model to predict the target labels defined as
y = (y1, y2, · · · , yK) ∈ {0, 1}K , where yi = 1 indicates that the ith emotion is
being expressed in the input sequence. The architecture consists of three distinct
layers: encoding layer, feature aggregation layer, and classification layer, which
are preceded by a module-specific preprocessing step. The following sections
explain in detail the components of each of the layers.

3.1 Preprocessing

Each of the modules of the text encoding layer has different text preprocessing
requirements. The BERT Encoder requires the text to be processed as Senten-
cePiece tokens and uses BERT built-in embedding to generate the input token
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embeddings. The BiLSTM Encoder requires the text to be processed as word
tokens with the addition of some preprocessing steps that preserve hashtags (e.g.,
#blessed), mentions (e.g., @BarackObama), and emojis. These tokens are then
vectorized using GloVe [27] word vectors extended with emojis. The DeepMoji
[13] model requires the text to be processed as word tokens and transformed into
input embeddings using its own pretrained word vectors. These word vectors are
pretrained on an emoji prediction task.

3.2 Encoding Layer

The encoding layer is responsible for creating the various feature vectors from
the input sequence used by the upper layers. This layer consists of two types of
encoders.

Reference Encoder. The reference encoder is a model that generates an affec-
tive feature vector hr

t , shown as Eq. 1. As the name suggests, this affective feature
vector serves as a reference to enrich the word embeddings of the input sequence
with affect knowledge. We use a pretrained DeepMoji [13] model as the reference
encoder.

hr
t = DeepMoji(x) (1)

DeepMoji is a 2-layer BiLSTM with Attention. It has been pretrained on
the task of predicting the occurrence of emojis in an input text. This model
has been shown to perform well on tasks such as emoji prediction and sar-
casm detection achieving state-of-the-art performance. Furthermore, other mod-
els have leveraged the knowledge learned by DeepMoji in their models with
significant improvement to their performance. These facts suggest that Deep-
Moji generates good affective feature vectors and that our model can benefit
from using its feature vectors as reference. Note that the use of the pretrained
DeepMoji model is a deliberate design choice. Any model that can generate an
affective feature vector can be used.

Text Encoder. This encoder generates a set of contextual token embeddings
from the input sequence. These token embeddings are later enriched with the
affective knowledge from the reference vector generated by the reference encoder.
BiLSTM and BERT are two state-of-the-art network architectures that take
sequences of words or tokens to encode the text content. The recent research on
text classification shows that they work better than other architectures.

We use a 2-layer BiLSTM that encodes an input sequence x = (x1, · · · , xn)
into the contextual token embeddings hb

1, · · · , hb
t , shown as Eq. 2. These token

embeddings are the intermediate outputs of the BiLSTM at timestep i and are
defined as

hb
i = BiLSTMi(xi) (2)
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where hb
i is the hidden state of the BiLSTM at timestep i. It summarizes all of the

sequence information up to xi from both the forward and backward directions.
In addition to the BiLSTM, we also use BERT as an additional text encoder.

BERT is a transformer-based model that is pretrained on a large corpus for a
masked language modeling task. BERT has shown state-of-the-art performance
on many NLP tasks ranging from machine translation to sentiment analysis.
Particularly, its performance on sentiment-related tasks suggests that BERT
can assimilate how affectiveness is expressed in text. Preliminary experimental
results have shown that the BiLSTM encoder yielded a better precision while
the BERT encoder yielded a better recall. We use the two encoders to improve
the sensitivity of the model while still maintaining high specificity. We define
the token embeddings generated by BERT as the sequence ht

1, · · · , ht
t where ht

i

represents the embedding of the ith token in the sequence within the context of
the entire input sequence.

3.3 Attention-Based Feature Aggregation Layer

This layer receives as inputs the reference feature vector hr
t and the token embed-

dings [ht
1, · · · , ht

t] and [hb
1, · · · , hb

t ] from the previous layer and generates a con-
text vector that aggregates the values of the sequence embeddings and the affec-
tive value of the reference vector.

In our architecture, we use attention as the aggregation mechanism. Given
that there are two sets of token embeddings, two sets of attention scores are
computed. One set of attention scores is between the reference vector and the
BiLSTM token embeddings, and the other set is between the reference vector
and the BERT token embeddings. Using attention not only generates a feature
vector that better encodes longer sequences with long dependencies but also
allows us to visualize the alignment scores between the reference feature vector
and the token embeddings, thus providing information regarding which tokens
carry the most affect value that allows us to assess the relationship between
these input tokens and the classification label.

The attention scores with respect to the BiLSTM embeddings are defined as
Eqs. 3 and 4

sbr,i = V � tanh(Wqh
r
t + Wvh

b
i ) (3)

αb
r,i =

exp(sbr,i)
∑T

j=0 exp(sbr,j)
(4)

where V , Wq, and Wv are learned parameters, sbr,i is the attention score for the
ith token embedding, and αb

r,i is the normalized attention score. The attention
scores with respect to the BERT embeddings are defined in an identical manner.
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The context vector for each of the embeddings is computed as the attention-
weighted sum of the token embeddings, shown as Eqs. 5 and 6.

cbt =
T∑

i=0

αb
r,ih

b
i (5)

ctt =
T∑

i=0

αt
r,ih

t
i (6)

The final context vector is defined as the concatenation of cbt and ctt, shown
as Eq. 7.

ct = [cbt ; c
t
t] (7)

3.4 Classification Layer

The last layer consists of a two-layer fully connected neural network with a
tanh activation between the two layers and a sigmoid activation at the output
layer, shown as Eq. 8. Since the model architecture is designed for multilabel
classification tasks, using sigmoid as the activation of the output layer is the
most suitable option.

y = σ(W2 tanh(W1ct + b1) + b2) (8)

4 Experiments and Results

4.1 Experimental Settings

Datasets. To evaluate our proposed model, we trained it on two recent bench-
mark datasets for emotion classification: SemEval’18 Affect in Tweets [23] and
the GoEmotions [9] datasets. SemEval’18 consists of tweets, whereas GoEmo-
tions consists of Reddit posts and comments. The SemEval’18 corpus has more
emojis than the GoEmotions counterpart. However, GoEmotions is the most
recent dataset and the largest manually annotated dataset with the most exten-
sive set of emotion classes. Both of these datasets were provided with the splits
for training, validating, and testing. We also observe that the distribution of
labels in the datasets differs significantly. For instance, GoEmotions has many
more examples with only one label compared to SemEval’18. These details can
be observed in Table 1.

Baselines. We compare the performance of the ReferEmo model with the top-
performing model submitted to the SemEval’18 Task 1 and a most recent state-
of-the-art method.

– NTUA-SLP [5], the top-ranked model in the SemEval’18 Task 1 competi-
tion.
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Table 1. Summary statistics of the datasets

SemEval’18 GoEmotions

Train size 6,838 43,410

Valid size 886 5,426

Test size 3,259 5,427

Total size 10,983 54,263

Number of emotions 11 27 + Neutral

Labels per example

1 13.48% 83.75%

2 40.89% 14.97%

3 31.49% 1.21%

4+ 14.13% 0.07%

– Seq2Emo [16], the most current state-of-the-art model for the emotion clas-
sification task.

Both models are compared on the SemEval’18 and the GoEmotions datasets
through implementing the code published on GitHub. Since SemEval’18 is a pop-
ular benchmark dataset, we also included the published results of other methods.

Hyperparameter Tuning. In this research, we used the pretrained BERT
and DeepMoji models and tuned the hyperparameters for the BiLSTM encoder,
including the number of layers (n layers) and the number of hidden units (hdim)
per layer. In addition to those, the dropout probability (dropout p) and the
learning rate (lr) are also tuned. Table 2 reports the optimal hyperparameters
and the search space for each of them.

Table 2. Hyperparameters and search space.

SemEval’18 GoEmotions Range

hdim 833 938 [128, 1024]

n layers 3 1 [1, 3]

dropout p 0.42 0.47 [0.2, 0.7]

lr 2.02e−05 2.07e−05 [1e−5, 1e−1]

Evaluation Metrics. To evaluate the performance of our model, we use the
three metrics [23] used in the SemEval’18 competition. These metrics are Jac-
card Index [28], macro- and micro-averaged F1 scores [7]. The Jaccard Index is
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Table 3. Summarized performance on the SemEval’18

Jaccard Micro F1 Macro F1

Random 0.19 0.31 0.29

SVM-Unigrams 0.44 0.57 0.44

PlusEmo2Vec 0.58 0.69 0.50

TCS research 0.58 0.69 0.53

LEM – 0.67 0.56

BNet 0.59 0.69 0.56

NTUA-SLP 0.59 0.70 0.53

Seq2Emo 0.59 0.70 0.52

ReferEmo (AVG) 0.58 0.71 0.57

ReferEmo (STD) 0.01 0.01 0.01

Table 4. Summarized performance on the GoEmotions

Jaccard Micro F1 Macro F1

BERT 0.53 0.59 0.46

NTUA-SLP 0.48 0.54 0.44

Seq2Emo 0.54 0.60 0.47

ReferEmo (AVG) 0.53 0.56 0.48

ReferEmo (STD) 0.01 0.01 0.00

commonly used as a multilabel classification accuracy measure. It measures the
overlap between ground truth and predicted labels. It is defined as:

J(G,P ) =
|G ∩ P |
|G ∪ P |

where G is the ground truth label, and P is the predicted label. The final Jaccard
Index is computed by averaging the Jaccard indices of all the documents in the
dataset.

Jaccard =
1

|D|
∑

d∈D

J(Gd, Pd) (9)

We also report the precision, recall, and F1 scores at the class level to thor-
oughly exam the performance of our model and the baseline models.

4.2 Performance Comparison

Table 3 shows the performance of our proposed model on the SemEval’18 dataset.
In addition to the performance of Seq2Emo and NTUA-SLP, TCS Research [21],
PlusEmo2Vec [26], LEM [12], BNet [17], as well as the random and SVM-unigram
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baselines of the competition. Table 4 shows the performance of our proposed
model on the GoEmotions dataset in addition to the performance of BERT,
NTUA-SLP, and Seq2Emo.

Compared to NTUA-SLP and Seq2Emo, our Jaccard and Micro F1 scores are
very similar. Our Macro F1 score is slightly better than the baselines as shown
in Tables 3 and 4. Further inspection of the class level performance suggests we
have improved the macro measure while still performing the same on the other
measures.

On the SemEval’18 dataset, through further investigation, we found that our
performance on the precision metric is not much different from the other baselines,
and in some instances, some baseline performs slightly better (i.e., anticipation,
joy, love, and pessimism). However, in terms of recall, our model performs much
better, leading to more balanced F1 scores as shown in Table 5 in Appendix. The
improvement on the recall metric indicates that, despite not being as precise as
the other baseline models, our model makes up for it by being more sensitive to the
correct examples, particularly in the anticipation, fear, love, and pessimism classes
which are underrepresented in the training dataset. On the GoEmotions dataset,
our performance on the precision metric is better on the relief and remorse classes.
On the other hand, the recall is significantly better than the baselines, like the
SemEval’18 dataset. Again, the higher recall is due to the higher sensitivity of our
model to the correct classes. These results are shown in Table 6 in Appendix. Our
model tends to perform better on the underrepresented classes. The better perfor-
mance is more prevalent on the GoEmotions dataset as opposed to the SemEval’18
dataset. Grief and relief are the two least represented classes in the GoEmotions
dataset. Our model could not identify grief despite the other baselines having iden-
tified some of it, whereas our model was able to identify relief much better than the
other baseline models.

4.3 Ablation Study

We perform an ablation study to examine the effects of the different ReferEmo
modules on its performance. We trained three variants of our proposed model.
The first and second variants have the BERT and the BiLSTM Text Encoders
removed, respectively. These first two variants are similar in architecture, given
that the proposed model is designed to have swappable and removable encoders.
The third variant has the DeepMoji Reference Encoder removed, which requires
a change in the architecture. Specifically, the attention-based feature aggrega-
tion is replaced by averaging the feature vectors of the BERT and BiLSTM
encoders, and those averaged vectors are then concatenated to form the final
context vector.

These variants were all trained with the optimal hyperparameters described
prior and the same number of epochs, including the very shallow network for the
BiLSTM when training on the GoEmotions dataset. The results are summarized
in Figs. 2 and 3. As the results show, the model that has the BERT encoder
removed suffers significantly in performance. The contribution of DeepMoji is not
high as expected. Through investigating the performance of individual emotions
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Fig. 2. Ablation study on SemEval’18. Fig. 3. Ablation study on GoEmotions.

Fig. 4. Ablation study for individual emotions in the SemEval’18 dataset.

Fig. 5. Ablation study for individual emotions in the GoEmotions dataset.

on both datasets (shown in Figs. 4 and 5), we found that the BERT encoder has
the most impact on the system performance. The contribution of DeepMoji and
BiLSTM is similar. For some categories, such as ‘surprise’, ‘trust’ in SemEval’18,
and ‘grief’ and ‘relief’ in GoEmotions, using either DeepMoji or BiLSTM can
produce better results.

Label Ambiguity. Many examples were labeled ambiguously, making it dif-
ficult for a model to properly learn the relationships between the input tokens
and the emotion classes. This ambiguity is even more prevalent when not even
human annotators can agree with the gold standard label. The ambiguous label-
ing in Fig. 6 shows some examples of these cases. One example shows that our
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Fig. 6. Sample tweets shown the ambiguity inherent

model cannot identify ‘love’ and ‘surprise’, and the other example shows that
our model cannot identify ‘trust’. This ambiguity, in turn, hinders the model
performance, especially when it is a rather sensitive model like ReferEmo. These
ambiguous labels are more present in the ‘anticipation’ and ‘trust’ classes of
the SemEval’18 dataset than any other class. Part of the reason why the labels
are so ambiguous is that the raters were given relatively relaxed conditions for
attributing a label to an example [23]. In addition, examples are labeled with
one primary and multiple secondary emotions. Some of the ambiguous labels
might have secondary labels, though there is no way of confirming that.

Ambiguous Emoji Usage. Some of the examples in both datasets use emo-
jis that lead to ambiguity when the model attempts to classify them. Figure 6
provides two examples to demonstrate the cases of ambiguous emoji usage. The
first example in the Ambiguous Emoji Usage has a happy emoji, but it is labeled
as ‘anger’ emotion. In the GoEmotions dataset, the happy emojis are commonly
associated with more positive emotions such as love and joy. Similarly, some
examples of the anticipation emotion in the SemEval’18 dataset use more nega-
tive emotions, such as the ‘anger’ emoji.

5 Conclusion

In this research, we proposed and evaluated a referential quasi-multimodal model
for emotion classification, ReferEmo, which combines encodings from different
modalities of text encoding and enriches these encodings with an emotional refer-
ence vector. In addition to that, this model processes emojis as input tokens. We
evaluated our proposed model on two benchmark multilabel emotion classifica-
tion datasets and achieved competitive performance compared to state-of-the-art
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baselines. Notably, our proposed model is more sensitive to true labels and per-
forms significantly better on underrepresented classes. We concluded that the
BERT text encoder has a significant impact on the performance of our model.
The future work includes better utilization of the DeepMoji reference encoder
and BiLSTM text encoder to maximize the advantages of each when integrating
with the BERT text encoder.

Appendix

Table 5. Performance emotions of the SemEval’18 dataset. * and † denote p < .05

Example Count Precision Recall F1

Our model NTUA-SLP Seq2Emo Our model NTUA-SLP Seq2Emo Our model NTUA-SLP Seq2Emo

anger 2,544 0.79 ± 0.03 0.77 ± 0.04 0.76 ± 0.04 0.78 ± 0.04 0.77 ± 0.05 0.79 ± 0.05 0.79 ± 0.01†∗ 0.77 ± 0.00 0.77 ± 0.01

anticipation 978 0.37 ± 0.06 0.39 ± 0.05 0.38 ± 0.10 0.28 ± 0.15* 0.14 ± 0.02 0.12 ± 0.08 0.29 ± 0.07 †∗ 0.20 ± 0.03 0.17 ± 0.09

disgust 2,602 0.73 ± 0.02* 0.69 ± 0.02 0.68 ± 0.02 0.78 ± 0.05 0.77 ± 0.04 0.76 ± 0.04 0.75 ± 0.01†∗ 0.73 ± 0.01 0.72 ± 0.01

fear 1,242 0.72 ± 0.09 0.82 ± 0.03 0.78 ± 0.05 0.77 ± 0.05†∗ 0.67 ± 0.04 0.65 ± 0.06 0.74 ± 0.04 0.74 ± 0.02 0.71 ± 0.02

joy 2,477 0.81 ± 0.02 0.86 ± 0.01 0.85 ± 0.03 0.89 ± 0.03†∗ 0.83 ± 0.02 0.83 ± 0.04 0.85 ± 0.00 0.84 ± 0.01 0.84 ± 0.01

love 700 0.52 ± 0.06 0.71 ± 0.04 0.67 ± 0.07 0.76 ± 0.08†∗ 0.47 ± 0.07 0.50 ± 0.13 0.61 ± 0.02†∗ 0.56 ± 0.03 0.56 ± 0.05

optimism 1,984 0.67 ± 0.02 0.71 ± 0.02 0.70 ± 0.03 0.87 ± 0.03†∗ 0.67 ± 0.04 0.71 ± 0.07 0.75 ± 0.00†∗ 0.69 ± 0.01 0.70 ± 0.02

pessimism 795 0.41 ± 0.03 0.48 ± 0.05 0.48 ± 0.05 0.46 ± 0.06†∗ 0.20 ± 0.02 0.17 ± 0.07 0.43 ± 0.01†∗ 0.29 ± 0.02 0.25 ± 0.07

sadness 2,008 0.67 ± 0.05 0.77 ± 0.06 0.75 ± 0.04 0.75 ± 0.06†∗ 0.63 ± 0.05 0.63 ± 0.04 0.70 ± 0.01†∗ 0.68 ± 0.02 0.69 ± 0.01

surprise 361 0.59 ± 0.10† 0.43 ± 0.02 0.56 ± 0.25 0.11 ± 0.05* 0.11 ± 0.02 0.07 ± 0.04 0.18 ± 0.06* 0.17 ± 0.02 0.12 ± 0.07

trust 357 0.29 ± 0.05 0.24 ± 0.06 0.31 ± 0.39 0.09 ± 0.07* 0.07 ± 0.04 0.03 ± 0.03 0.13 ± 0.08 0.10 ± 0.06 0.04 ± 0.04

Table 6. Performance emotions of the GoEmotions dataset. * and † denote p < .05

Example count Precision Recall F1

ReferEmo NTUA-SLP Seq2Emo ReferEmo NTUA-SLP Seq2Emo ReferEmo NTUA-SLP Seq2Emo

admiration 4,130 0.62 ± 0.03 0.63 ± 0.01 0.66 ± 0.04 0.75 ± 0.02†∗ 0.67 ± 0.01 0.65 ± 0.03 0.68 ± 0.01 0.65 ± 0.00 0.65 ± 0.01

amusement 2,328 0.72 ± 0.04 0.75 ± 0.02 0.78 ± 0.01 0.87 ± 0.02† 0.82 ± 0.02 0.87 ± 0.02 0.79 ± 0.01 0.78 ± 0.02 0.83 ± 0.01

anger 1,567 0.46 ± 0.03 0.45 ± 0.04 0.61 ± 0.09 0.50 ± 0.02†∗ 0.36 ± 0.03 0.32 ± 0.02 0.48 ± 0.01 0.40 ± 0.02 0.41 ± 0.02

annoyance 2,470 0.31 ± 0.03 0.36 ± 0.04 0.49 ± 0.13 0.40 ± 0.07†∗ 0.21 ± 0.04 0.19 ± 0.08 0.34 ± 0.02 0.26 ± 0.03 0.26 ± 0.09

approval 2,939 0.32 ± 0.04 0.40 ± 0.02 0.46 ± 0.06 0.42 ± 0.05† 0.25 ± 0.02 0.24 ± 0.03 0.36 ± 0.01 0.31 ± 0.02 0.31 ± 0.02

caring 1,087 0.37 ± 0.04 0.34 ± 0.02 0.46 ± 0.08 0.44 ± 0.05 0.27 ± 0.04 0.27 ± 0.05 0.40 ± 0.02 0.30 ± 0.03 0.34 ± 0.03

confusion 1,368 0.32 ± 0.03 0.38 ± 0.06 0.52 ± 0.06 0.54 ± 0.07 0.36 ± 0.03 0.29 ± 0.06 0.40 ± 0.03 0.37 ± 0.03 0.37 ± 0.05

curiosity 2,191 0.46 ± 0.01 0.48 ± 0.02 0.50 ± 0.05 0.64 ± 0.06 0.41 ± 0.06 0.43 ± 0.10 0.54 ± 0.02 0.44 ± 0.02 0.46 ± 0.06

desire 641 0.53 ± 0.02 0.52 ± 0.07 0.61 ± 0.10 0.46 ± 0.05 0.34 ± 0.04 0.33 ± 0.10 0.49 ± 0.02 0.41 ± 0.03 0.42 ± 0.09

disappointment 1,269 0.30 ± 0.04 0.27 ± 0.05 0.42 ± 0.06 0.31 ± 0.06 0.16 ± 0.04 0.16 ± 0.04 0.30 ± 0.04 0.20 ± 0.04 0.23 ± 0.04

disapproval 2,022 0.33 ± 0.05 0.32 ± 0.03 0.43 ± 0.02 0.46 ± 0.08 0.26 ± 0.04 0.24 ± 0.03 0.38 ± 0.01 0.29 ± 0.03 0.31 ± 0.03

disgust 793 0.40 ± 0.06 0.51 ± 0.05 0.60 ± 0.02 0.56 ± 0.05 0.41 ± 0.04 0.38 ± 0.05 0.46 ± 0.03 0.45 ± 0.03 0.46 ± 0.04

embarrassment 303 0.42 ± 0.06 0.42 ± 0.07 0.60 ± 0.06 0.40 ± 0.02 0.32 ± 0.09 0.31 ± 0.09 0.41 ± 0.02 0.35 ± 0.07 0.41 ± 0.08

excitement 853 0.36 ± 0.05 0.43 ± 0.03 0.51 ± 0.10 0.51 ± 0.05 0.33 ± 0.02 0.31 ± 0.05 0.42 ± 0.03 0.37 ± 0.02 0.38 ± 0.03

fear 596 0.56 ± 0.05 0.60 ± 0.04 0.64 ± 0.05 0.76 ± 0.07 0.68 ± 0.04 0.63 ± 0.06 0.64 ± 0.01 0.64 ± 0.04 0.63 ± 0.01

gratitude 2,662 0.91 ± 0.03 0.93 ± 0.01 0.94 ± 0.02 0.89 ± 0.01 0.88 ± 0.01 0.89 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.01

grief 77 0.00 ± 0.00 0.32 ± 0.12 0.23 ± 0.33 0.00 ± 0.00 0.23 ± 0.09 0.10 ± 0.15 0.00 ± 0.00 0.26 ± 0.09 0.14 ± 0.20

joy 1,452 0.51 ± 0.04 0.55 ± 0.03 0.60 ± 0.08 0.63 ± 0.01 0.51 ± 0.05 0.52 ± 0.09 0.57 ± 0.02 0.53 ± 0.03 0.55 ± 0.04

love 2,086 0.72 ± 0.01 0.74 ± 0.01 0.77 ± 0.05 0.85 ± 0.01 0.80 ± 0.02 0.83 ± 0.05 0.78 ± 0.01 0.77 ± 0.01 0.80 ± 0.01

nervousness 164 0.32 ± 0.06 0.38 ± 0.11 0.63 ± 0.26 0.38 ± 0.08 0.23 ± 0.07 0.17 ± 0.08 0.35 ± 0.06 0.28 ± 0.08 0.25 ± 0.09

optimism 1,581 0.49 ± 0.04 0.59 ± 0.05 0.60 ± 0.05 0.58 ± 0.01 0.47 ± 0.03 0.45 ± 0.05 0.53 ± 0.02 0.52 ± 0.01 0.51 ± 0.03

pride 111 0.58 ± 0.10 0.46 ± 0.07 0.69 ± 0.11 0.34 ± 0.03 0.32 ± 0.07 0.30 ± 0.07 0.43 ± 0.05 0.36 ± 0.05 0.41 ± 0.07

realization 1,110 0.21 ± 0.02 0.36 ± 0.03 0.47 ± 0.14 0.21 ± 0.03 0.16 ± 0.03 0.15 ± 0.04 0.21 ± 0.02 0.22 ± 0.03 0.22 ± 0.05

relief 153 0.28 ± 0.19 0.15 ± 0.04 0.08 ± 0.17 0.25 ± 0.20 0.11 ± 0.04 0.05 ± 0.12 0.26 ± 0.19 0.12 ± 0.03 0.06 ± 0.14

remorse 545 0.58 ± 0.04 0.53 ± 0.04 0.57 ± 0.03 0.83 ± 0.03 0.64 ± 0.07 0.53 ± 0.22 0.68 ± 0.03 0.58 ± 0.05 0.52 ± 0.12

sadness 1,326 0.50 ± 0.08 0.54 ± 0.02 0.60 ± 0.05 0.59 ± 0.03 0.51 ± 0.04 0.46 ± 0.06 0.54 ± 0.04 0.52 ± 0.02 0.52 ± 0.04

surprise 1,060 0.50 ± 0.03 0.56 ± 0.04 0.62 ± 0.08 0.55 ± 0.06 0.46 ± 0.04 0.39 ± 0.12 0.52 ± 0.04 0.51 ± 0.03 0.46 ± 0.07

neutral 14,219 0.62 ± 0.01 0.65 ± 0.01 0.62 ± 0.02 0.64 ± 0.02 0.56 ± 0.02 0.69 ± 0.02 0.63 ± 0.01 0.60 ± 0.01 0.65 ± 0.00
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Abstract. In attributed graphs, community detection methods group
nodes by considering structural closeness and attribute similarity. In this
work, we investigate the simultaneous use of kernels on the adjacency
matrix of the graph and the node attribute similarity matrix. First,
we weight the input adjacency matrix of the graph with the effective
resistance between nodes, a Euclidean distance metric derived from the
field of electric circuits that takes into account all the alternative paths
between two nodes. Then we apply kernels for computing the similarity
between nodes both in terms of structure and attributes. Simulations on
synthetic networks show that kernels effectively improve the quality of
the obtained partitions that better fit with the ground-truth.

Keywords: Attributed networks · Community detection · Effective
resistance · Kernel on graphs

1 Introduction

Real-world complex networks such as social, telecommunication, biological,
medicine, or economy networks are usually characterized by a structure rep-
resenting the interconnections between the nodes, and attributes describing the
features the nodes or the edges have [5]. In a mobile social network, for example,
each mobile user is connected through Bluetooth or Wi-Fi links to other users,
and is characterized by a profile specifying attributes like user ID, hometown,
checkins, interests, and so on. Such kind of networks graphs where a structural
and a compositional dimension coexist are referred to as attributed networks [5].

For clustering these networks, both the structural and the compositional
dimensions are usually considered since the analysis of the two aspects provides
a deeper understanding of the underlying communities [5]. Two approaches are
mainly exploited to balance structure and attributes. The community detec-
tion algorithms belonging to the first category optimize a single objective that
combines the structural and the compositional quality functions, which usually
correspond to high intra-community (a) edge density and (b) attribute node sim-
ilarity, respectively. The other approach tries to jointly optimize the two func-
tions. This work focuses on node-attributed graphs, where attributes are only on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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nodes, and on the latter strategy in order to avoid one dimension would prevail
over the other one during the computation. In some datasets, for example, there
may be highly distant nodes with similar attributes where a single-objective
method would produce sparse and eventually unconnected communities. On the
contrary, the joint optimization of the two objectives would allow a simulta-
neous evaluation of both perspectives resulting in a proper weight of structure
and attributes. To this end, MultiObjective Evolutionary Algorithms (MOEAs)
can offer a valid solution to the community detection problem when competing
objectives are present [14].

Intra-community edge density and attribute homogeneity are typically com-
puted through similarity or dissimilarity (i.e. distance) measures able to quantify
the closeness between nodes both from a structural and a compositional point of
view. The effective resistance [11], for example, a measure derived from the elec-
trical network theory, has shown to be an effective distance measure to weight
the original graph by improving the solutions found by the community detection
methods [9,13]. The distance between two nodes in a graph has been classically
measured as the length of the shortest path between them. Differently from this
type of distance, however, the effective resistance includes more information since
it considers every path between any two nodes, even longer than the shortest
one, weighting them as parallel paths. Although the effective resistance distance
has been widely used for network analysis showing interesting graph aspects, its
use for community detection is still limited.

When measuring similarity on graphs, kernels functions [1] are often used
since they are able to transform the input data into a form facilitating data
analysis. Given a graph G, kernels produce a symmetric positive semidefinite
matrix K, which is a Gram matrix of some vectors in a Euclidean space quan-
tifying the closeness between vertices in a meaningful manner. It follows that
distance measures derived from a kernel are Euclidean. Different kernels have
been defined so far, the most used in clustering tasks include Communicability,
Heat, Personalized Page Rank, Free Energy. They differ in the input matrix
on which the kernel is applied, the adjacency matrix A, the Laplacian L, the
Markov matrix P , and the parameters used. Usually, the choice of a particular
kernel is application dependent.

Kernel-based clustering has been mainly applied to networks without
attributes showing its ability in obtaining better partitions [2,16]. More recently,
this strategy has been extended to attributed networks and evaluated in [3]. Here,
the adjacency matrix of the graph is updated by summing attribute similarity
to the existing edge weights. Hence, network structure and attribute similarity
are combined. Then, a set of top-performing kernels are applied to this matrix
and used to cluster nodes with two classic clustering algorithms. The two main
drawbacks of such methodology, however, are (1) how to weight structure and
attributes by choosing proper weight coefficients and (2) the supervised nature
of the clustering methods adopted where the resulting number of communities
needs to be specified in advance.
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In this work, we study the problem of community in attributed networks by
exploiting kernels as in [3], but in a way that overcomes the outlined drawbacks.
In particular, we consider an unsupervised community detection method for
attributed networks, namely MOGA@Net [15], a multi-objective optimization
method that jointly optimizes the structural quality of the communities as first
objective, and the attribute similarity as the second objective, and we investigate
two novel aspects. We study the effect of kernel similarity on MOGA@Net by
weighting the adjacency matrix A of the network with the effective resistance
between nodes and using kernels for measuring node similarity. In such a way,
we aim to combine the ability of effective resistance with that of kernels in
detecting better communities. More specifically, both objective functions, the
one dealing with the structure and based on effective resistance, and the one
dealing with attributes are evaluated on similarity matrices derived by applying
kernels. We call this approach KERGA-@Net, Kernel and Effective Resistance
based bi-objective Genetic Algorithm for @tributed Networks. Experimenting on
synthetically generated attributed networks, we demonstrate that by applying
the Free Energy kernel, which has been shown to be one the most effective kernels
[3], our unsupervised method is able to outperform other benchmark community
detection schemes.

2 KERGA-@Net

KERGA-@Net is built on our previous work MOGA-@Net [15], a MOEA able
to uncover communities over attributed networks by contemporarily optimizing
two functions: (1) the structural quality of the partition fS and (2) the intra-
community homogeneity of node attributes fT . MOGA-@Net works on two input
matrices: the adjacency matrix A of the graph G representing the network, con-
taining the edges between node couples (i,j), and the similarity matrix simT ,
containing for each element (i, j) the similarity in terms of attributes between
the nodes i and j according to a given metric. For each tested solution (i.e. a
particular partitioning), the method computes fS , by using the information on
edges contained in A, and fT by exploiting the similarity between nodes con-
tained in simT . More specifically, MOGA-@Net evolves a population of possible
solutions satisfying the two objectives fS and fT for a fixed number of gener-
ations and finally chooses a candidate solution using the framework of Pareto
optimality [7]. To represent the solutions, the locus-based adjacency representa-
tion [12] is used, while as genetic operators, the uniform crossover and random
mutation are adopted.

Differently from MOGA-@Net, KERGA-@Net weighs edges through effec-
tive resistance and improves both attribute and structural similarity computa-
tion through kernels. In particular, the method computes the effective resistance
matrix Ω from A, containing for each element (i,j) the effective resistance dis-
tance between the two nodes, and simT from the attribute data. Since Ω is a
distance matrix and basically, a dissimilarity matrix, it is turned into a similarity
matrix and each value is normalized in the range [0, 1]. Over these two resulting
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similarity matrices, a kernel kid is chosen and applied in order to obtain the
kernel-based matrices KS and KT . Until a termination condition is not satisfied
(i.e. the computed solution is not better than the previous one or the maxi-
mum number of generations is achieved), the method jointly evaluates the two
objective functions fS and fT computed on KS and KT , respectively, over an
individual and assigns a rank to the solution based on Pareto dominance. Once
the termination condition is satisfied, a solution is chosen from the Pareto front
by taking the one with the highest structural quality function.

3 Results

We performed a number of experiments on synthetic attributed networks.
KERGA-@Net has been written in MATLAB R2020a, by using the Global Opti-
mization Toolbox, which implements the NSGA-II framework of Deb et al. [6].

For generating the networks we used the LFR-EA benchmark proposed by
Elhadi and Agam [8]. The generator creates community networks by using the
mixing parameter μ and the noise parameter ν: the first determines the rate
of intra- and inter- communities edges while the second manages the noise of
attributes (i.e. the degree of common features between nodes). More specifically,
low values of the mixing parameter and of the attribute noise produce graphs
with a dense and clear community structure with similar attributes between
the nodes belonging to the same community. Viceversa, high values of μ and
ν generate networks with a confused community organization with not dense
communities and different features between nodes.

For our experiments, we generated a set of networks with 1000 nodes and
two numerical attributes with the same parameters used in [15], by varying the
mixing parameter in the range [0.1; 0.9] and the attribute noise in the range
[0; 0.9]. For each network type, we generated 10 network samples for a given
couple (μ, ν) for a total of 100 synthetic LFR-EA networks for each mixing
parameter value. Overall, we tested our method on 900 synthetic networks.

To assess the effectiveness of our approach, we selected the Free Energy
kernel, and then compared KERGA-@Net to 4 community detection methods:
the Louvain method [4] which works only on the network structure and does
not consider the attributes, the attribute-only method k-means [10], the multi-
objective community detection method for attributed networks MOGA-@Net
which integrates attributes and network structure, and the kernel-based spectral
community detection method by Aynulin and Chebotarev [3] also designed for
attributed networks. As performance metric, we computed the Cumulative NMI
(CNMI) [8], which allows the integration of the well-known Normalized Mutual
Information (NMI) over different settings of the structure mixing parameter μ
and attribute noise ν as

CNMI =

∑μ ∑ν NMI

S
(1)

where S is the number of samples of network graphs considered. According to
the definition of these quality indexes, the larger they are, the better the found
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communities match the ground truth. If the NMI or the CNMI value is 1, the
detected communities are equal to the real ones.

For KERGA-@Net and MOGA-@Net, the population size and the number
of generations have been set to 100 and 100, respectively, mutation rate to 0.4
and crossover fraction to 0.8. In addition, we considered weighted modularity
as structure fitness function fS , and similarity based on Euclidean distance for
the attribute fitness function fT since the attributes are numerical. For the
kernel-based algorithm by Aynulin and Chebotarev, we equally weighted struc-
ture and attributes by setting β = 0.5 and considered Free Energy as suggested
by their work [3]. Table 1 shows the results obtained by KERGA-@Net and the
other algorithms. Our method has the best performance on all the datasets.
The second best is the other multi-objective algorithm MOGA-@Net: this result
demonstrates our initial intuition that kernels together with the effective resis-
tance are useful for improving the clustering quality. The kernel-based method
by Aynulin and Chebotarev achieves lower CNMI thus showing the limit of com-
bining structure and attribute similarity metrics. Finally, the results achieved by
Louvain and k-means confirm that structure-only or attribute-only methods are
not enough for properly detecting communities in attributed networks, when
networks are synthetically generated.

Table 1. Methods comparison in terms of CNMI.

Community detection Dataset

Louvain 0.6993

k-means 0.3544

MOGA-@Net 0.8783

Aynulin & Chebotarev 0.8253

KERGA-@Net 0.9109

4 Conclusions

We studied the role of effective graph resistance and kernel functions on MOGA-
@Net, a multiobjective genetic community detection algorithm for attributed
networks that contemporarily optimizes two objectives: the structural quality
and the attribute homogeneity of the communities. The input network was ini-
tially weighted through the effective resistance. The first objective was hence
measured in terms of densely connected communities over the effective resis-
tance matrix where a kernel was also applied. The attribute homogeneity was
measured through a classic similarity metric and transformed with the same ker-
nel adopted for the structure. Over synthetically generated networks, we found
that the Free Energy kernel is able to improve the quality of the communities
compared to other state-of-the-art methods. In future work, we are planning
to apply mathematical functions (i.e. transformations) to each element of the
kernel matrices.
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Abstract. In the field of post-disaster assessment, for timely and accu-
rate rescue and localization after a disaster, people need to know the
location of damaged buildings. In deep learning, some scholars have pro-
posed methods to make automatic and highly accurate building damage
assessments by remote sensing images, which are proved to be more effi-
cient than assessment by domain experts. However, due to the lack of a
large amount of labeled data, these kinds of tasks can suffer from being
able to do an accurate assessment, as the efficiency of deep learning
models relies highly on labeled data. Although existing semi-supervised
and unsupervised studies have made breakthroughs in this area, none of
them has completely solved this problem. Therefore, we propose adopt-
ing a self-supervised comparative learning approach to address the task
without the requirement of labeled data. We constructed a novel asym-
metric twin network architecture and tested its performance on the xBD
dataset. Experiment results of our model show the improvement com-
pared to baseline and commonly used methods. We also demonstrated
the potential of self-supervised methods for building damage recognition
awareness.

Keywords: Self-supervised learning · Building damage assessment ·
Satellite imagery · xBD dataset

1 Introduction

When disasters, such as hurricanes, tsunamis, and earthquakes occur, people
need to know the locations of affected residents, which is crucial for rescue and
localization. Easily accessible remote sensing images enable us to identify build-
ing damage more accurately and to locate damaged buildings easier. However,
this method was based on comparing images before and after the disaster man-
ually by experts, which was time-consuming.
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The introduction of deep learning methods gives another direction for auto-
matic damage assessment, where models can classify building damage after train-
ing on labeled pre-and post-disaster remote sensing images [1–5]. Some scholars
take the difficulty of obtaining large amounts of labeled data of disaster into
consideration, and disaster types and datasets require different labeling meth-
ods. They adopted a semi-supervised or unsupervised approach, using only small
amounts of labeled or/and unlabeled data for research [6–10].

However, building an accurate model for new disasters is still far from enough.
First, existing semi-supervised learning requires a certain amount of labeled
data and does not fully address the problem of the complex labeling of disaster
datasets [6–8]. Second, current unsupervised learning generally relies on pre-
training on labeled data [9,10], which has not good enough for portability. Third,
the interpretability of deep learning is poor, so it cannot be reliably used in our
daily life.

To solve these problems, we generate supervision from entirely unlabeled
datasets to clarify the features in a self-supervised setting. Also, it turns out that
the new self-supervised learning using entirely unlabeled datasets can achieve
similar results as supervised learning [16,19]. In the pre-training stage, a dataset
containing images before and after the disaster is used, and both types of images
are passed through the model to show the implied features. The model has two
main parts, using contrast learning and image reconstruction which learn global
information as well as local information, respectively. In the second stage, we
use the weights of the pre-trained model to pass the images before and after the
disaster through our model, and then join them together and pass them through
a semantic segmentation head to compare with the labeled images. Finally, the
effect of our model is reflected by the F1-score. The main contributions of this
paper are as follows.

1 We propose a novel model for building damage assessment. The model utilizes
the transformer encoder structure internally, which has an excellent perfor-
mance in remote sensing images. This structure is applied to build damage
assessment and has achieved ideal results.

2 The proposed model does not require labeled data. It can learn the features
of images from unlabeled data only using a contrast learning self-supervised
approach. Without labeled data, our result is very close to labels.

2 Related Work

Deep Learning Achievements in Building Damage Recognition. Gupta
et al. [11] provided a labeled dataset including nineteen different events and more
than 20,000 images, which is one of the largest and highest-quality datasets.
Supervised methods have yielded excellent results with this boost [1–5].

Supervised methods require labeled images, but the disaster domain has less
labeled data than the traditional application domain of deep learning. In addi-
tion, supervised learning relies on manual labeling for training, which often leads
to costly models. Lee et al. [6] used two semi-supervised methods, MixMatch and
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FixMatch, to train models by fusing features from labeled and unlabeled data
(containing damaged and undamaged areas), obtaining good results. Later, Xia
et al. [7] used less labeled data and trained the model with only a tiny number
of positive examples (images of damaged areas) and the rest unlabeled, achiev-
ing results comparable to supervised learning by combining positive examples
and unlabeled data. Ghosh et al. [8] employed a novel two-part graph neural
network-based framework with only a small amount of labeled data.

However, semi-supervised methods do not fully address the problem of com-
plex labeling; moreover, most of them have demanding requirements on labeled
data. Therefore, some scholars have averted their eyes to unsupervised meth-
ods. Li et al. [9] used post-hurricane disaster data and transfer learning. They
first completed pre-training on the labeled source domain, aligning the features
in the source and target domains by maximum mean discrepancy (MMD), and
later transferred to two new types of hurricane data to complete the classifica-
tion. They [10] later proposed a new generative adversarial network to align the
source and target domains in an unsupervised approach to achieve better results
on both transferred tasks.

The unsupervised methods above require labeled data for pre-training and
later transfer to new tasks, making the model more complex and possibly requir-
ing repeated pre-training for different tasks, which is time-consuming and labor-
intensive. Akiva et al. [21] used a self-supervised approach to identify flood trajec-
tories, and their method outperformed current semantic segmentation methods
for the flood trajectory segmentation task, demonstrating that self-supervised
learning can perform well in disaster identification.

In addition, Chowdhury et al. [12] proposed a high-resolution UAV dataset
HRUD, incorporating images after Hurricane Michael, on which they wished to
evaluate the performance of semantic segmentation models. They [13] later gave
ReDNet, which used a self-attention mechanism to achieve high accuracy on
HRUD, unveiling the potential of the self-attention mechanism.

Development of Self-supervised Learning. Self-supervised learning is a
category of machine learning that requires no labeled data or any pre-training on
labeled data to learn features. An early self-supervised learning training model,
by making features as close as possible between positive samples and as far
as possible between negative samples [14,15], is known as contrastive learning.
However, such methods need to compare features between a large number of
images and often require a large batch size [14] or memory bank [15]. The BYOL
[16] model proposed later shows that self-supervised learning can work without
differentiating the classes of images, i.e., without negative samples, but the model
performance has decreased. The recently proposed DINO [17] model uses the
Transformer encoder and BYOL-based structure and solves the problem of model
instability.

Above research shows that self-supervised learning without any labeled data
or pre-training can perform no less well than supervised learning.
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Transformer Structure. The Transformer [18] structure used a self-attention
mechanism and was first proposed by the Google team in 2017, bringing signifi-
cant results and breakthroughs in NLP. Inspired by the Transformer structure,
the Google team proposed Vision Transformer [19] and achieved better results
on image datasets. The model of MoCo v3 [20] was the first to combine the ViT
structure with self-supervised contrast learning. However, the instability gener-
ated by the combination of the two affected the results to a certain extent. DINO
[17] applied a method to solve the instability problem.

The Transformer structure exceeds other methods in all areas and shows
promising results even when confronted with instability problems by combining
with contrast learning.

Inspired by the research mentioned, we conducted this study on a dataset con-
taining pre- and post-disaster images. For the first time in the field, we employed
a contrastive learning approach that combines a self-supervised method with a
Transformer structure, yielding positive results.

3 Data Description

Fig. 1. Examples of xBD dataset

Inspired by the literature mentioned above, we conducted our study on a dataset
containing pre-and post-disaster images. For the first time in the field, we employ
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a contrastive learning approach that combines a self-supervised method with
a Transformer structure. Combining these methods, our model yields positive
results.

We conduct experiments on the xBD dataset, the largest and highest-quality
satellite remote sensing image dataset for natural disasters. It contains 22,068
remote sensing images of 19 different disaster types, such as earthquakes, floods,
wildfires, volcanic eruptions, and car accidents. Since there are pre-and post-
disaster remote sensing images, they can be used to construct the tasks of local-
ization and damage classification. The dataset comes from a 5,000 km2 area in
15 countries with high-resolution images. Two annotations are provided for a
pair of images(pre and post), respectively, for localization problem and damage
classification, as shown in the Fig. 1.

4 Model

4.1 Overview

Fig. 2. Overview of the proposed model. The first stage utilizes pre-training architec-
ture, while the second stage utilizes downstream architecture. Localization problem
and damage classification are solved uniformly in the second stage.

Problem Definition: Building damage classification usually consists of two
subtasks: localization and damage classification. For the former one, we classified
each pixel in the pre-disaster image as “building” or “no building”. When it
comes to damage classification, for the corresponding pixels in the post-disaster
image, we assign values from 0 to 4 depending on the damage degree, where
0 means “no building”, 1 as “no damage”, 2 as “minor damage”, 3 as “major
damage”, and 4 as “being destroyed”.
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The whole process consists of two main stages. In the first stage or pre-
training stage, we pre-train encoder e(·) on a large amount of unlabeled data
using a self-supervised contrastive learning approach. Then we transfer the pre-
training encoder e(·) to the downstream task for building damage classification
(localization problem and damage classification) during the second stage.

The two stages are summarized in detail in the Fig. 2. Localization problem
and damage classification are solved uniformly in the second stage. We show the
architecture of the two stages below in detail.

4.2 Pre-training Architecture

A self-supervised contrastive learning framework was used to pre-train encoder
e(·) [17] a novel style with no negative samples (DINO), which achieved good
performance in transfer learning. However, DINO was designed based on image
classification and could not learn the location information of remote sensing
images well. With reference to [22], we improved Dino so that it can be suitable
for remote sensing images. Figure 3 shows an overview of our pre-training archi-
tecture. There are two parallel tasks, namely, contrastive learning and image
reconstruction, which are used to learn global and local semantics.

Algorithm 1. Pre-training Architecture
Require: A set of images D; student model gs(·), teacher model gt(·), reconstruction

decoder d(·); parameters τ , C , λ1, λ2

1: for sampled batch x ← D do
2: Draw augmentations: xs ← aug1(x), xt ← aug2(x)
3: Contrastive learning:
4: Get output: outs ← gs(xs ), outt ← gt(xt )
5: Sharpening and centering: ps ← softmax(outs/τ ), pt ← softmax(outt − C)
6: Reconstruction:
7: Get multi-hierarchy features:{f} ← es(xs )
8: Image reconstruction:xre ← d({f})
9: Compute contrastive learning loss and image reconstruction loss using Eq. 2 and

Eq. 3: L1 ← CE(ps , pt ), L2 ← L1(xre , xs )
10: Compute total loss: L ← λ1L1 + λ2L2

11: Update student model gs(·), λ1, λ2 to minimize L
12: Update teacher model gt(·) and C by EMA
13: end for

4.2.1 Contrastive Learning

Contrastive learning is used to learn the global semantics of images, which is
instrumental for coarse-grain task. Asymmetric twin network architecture was
used to learn two neural networks simultaneously, called the teacher network
gt(·) and the student network gs(·). The network architecture is shown in the
upper part of the Fig. 3. It is widely used in contrastive learning [16,17]. Both
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Fig. 3. Pre-training architecture. Contrastive learning is displayed in the upper part,
while image reconstruction is displayed in the lower part.

the teacher gt(·) and the student network gs(·) consists of transformer encoder
e(·) and projector, both of which are initialized with same given weights.

Suppose the set of images is labeled as D. An image x ∈ D is randomly
selected, with different image augmentation transforms aug1, aug2 to result in
vs and vt which are different views of x. We input vs and vt into the student
network gs(·) and teacher network gt(·) respectively, and the two outputs outs
and outt are returned via encoder e(·) and projector. The corresponding prob-
ability distributions ps and pt are obtained by applying a softmax function to
the outputs. The views of any randomly augmented version of a sample image
should have similar feature representations. The cross-entropy loss between ps

and pt is calculated for updating the parameters of the student network θs.
The asymmetry of twin networks is mainly presented in the following two

points.

– The two networks utilize different parameter updating methods.
The parameters of the student network θs were updated by minimizing the
loss function L, while those of the teacher network θt by exponential moving
average (EMA). Specifically, the teacher network parameter θt update rule is
θt ← λθt +(1−λ)θs, where the hyperparameter λ follows the cosine schedule.
Referring to [17], such a momentum encoder update can result in better
convergence of the model.

– Sharpening and centering. To prevent the model from collapsing, two
operations are added to the model output, sharpening and centering. How-
ever, only sharpening is applied to the student network gs(·) and both oper-
ations are applied to the teacher network gt(·). Both operations take place
for the softmax function. Sharpening is achieved by adding a temperature
parameter τ to the softmax function, as shown in Eq. 1.

P (x) =
exp (gθ(x)/τ)

∑K
k=1 exp

(
gθ(x)(k)/τ

) (1)
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Sharpening enhances the variance of the softmax output. As for centering, it
is only applied to the teacher network where the output is made more average
by subtracting the vector C ∈ R

out. By balancing centering with sharpening,
collapse can be avoided while ensuring model convergence. Figure 4 shows the
feature space after centering and sharpening.

Fig. 4. Example of sharpening and centering. A simulated feature space has been used
for an intuitive representation in low dimensions.

4.2.2 Image Reconstruction

Compared with natural images, remote sensing images variate in scale and are
small in geographical size. Image reconstruction is introduced to learn better
the local semantics in remote sensing images concerning [22]. As shown in the
lower part of Fig. 3, the reconstruction of the image is carried out by a lightweight
decoder d(·) using the multi-layer feature maps {f} output by encoder e(·). Since
the student network gs(·) retains the gradient backpropagation, the encoder of
the student network es(·) is used in this task. For details, the input 3-channel
RGB images x are fed to the encoder of the student network es(·), and the
output multi-level sequence features are fed to a lightweight decoder d(·). The
lightweight decoder d(·) learns to recover the original image x from the multi-
layer feature maps {f} by multi-stage feature fusion.

– Multi-layer feature maps {f}. The output of each stage of Swin Trans-
former is selected as multi-layer feature maps {f}. Swin Transformer[23] is
designed with reference to the layered feature representation of convolutional
neural networks, where the whole model is grouped into different layers, with
each downsampling the feature maps output from the previous layer, in which
the layer features are calculated by moving windows. Therefore, multi-layer
and multi-scale, the feature maps output by each stage of Swin Transformer
have different resolutions.

– Lightweight decoder d(·). A lightweight decoder d(·) is used to recover the
original image x from multi-layer feature maps {f}, inspired by [22]. It is
necessary to ensure that the decoder d(·) is lightweight, so that not only the
computation can be reduced, but also the encoder e(·) can be better trained.
The decoder d(·) we use consists of several fusion layers, each containing a
3 × 3 convolutional layer and a ReLU layer. The number of fusion layers
corresponds to the number of feature maps, and the final output is restored
to the same resolution as the original image x by a 1 × 1 convolutional layer.
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4.2.3 Loss Function L

Corresponding to contrastive learning and image reconstruction, our total loss
function L consists of two parts. For contrastive learning, the loss of the proba-
bility distribution of the student network output ps and of the teacher network
output pt is calculated by cross-entropy loss (Eq. 2).

L1(ps, pt) := −pt log ps (2)

As for the image reconstruction, L1 loss function is used to calculate the loss
of the original image x versus the decoder output xre, as shown as Eq. 3.

L2(x, xre) := |x − xre| (3)

Since our loss are applied to multiple tasks, we add learnable weights λ1, λ2

to the final loss function L, which could be described as L := λ1L1+λ2L2, where
λ1, λ2 are the learnable parameter and updated with gradient descent.

4.3 Architectures for Downstream Tasks

Fig. 5. Architectures for downstream tasks. This is an end-to-end model, using the
common encoder-decoder architecture. The internal structure of the encoder is shown
below the dotted line. Swin Transformer encoder is used.

In the second stage, our goal is to fine-tune the encoder, which has been pre-
trained in the first stage, to be applied for building damage classification. For the



382 Z. Xia et al.

downstream task, we use the Swin Transformer [23] pre-trained by contrastive
learning as an encoder, with a semantic segmentation head, to handle localization
and damage classification consistently, as shown in Fig. 5. Figure 5 also shows
feature maps output from inside of the encoder. Regarding the multi-temporal
characteristics of disaster images, our model is a siamese network. Pre- and post-
disaster images are fed into two Swin Transformers, which share the weights. The
output of each layer of the Swin Transformer is a 2D feature map. We concatenate
the 2D feature maps corresponding to the pre-and post-disaster images along the
feature dimension. These 2D feature maps are fed into the UPerNet [24] semantic
segmentation head, which undergoes multi-layer feature fusion and upsampling
to finally obtain a prediction map of the original image resolution size. There are
5 channels in the feature map, and the elements of different channels represent
the probability that the corresponding pixel point is predicted to be of that class.
For damage classification, the prediction map is applied to the argmax function
along the channel dimension to obtain a 1-channel mask. The value of each pixel
in the mask is the category with the highest probability in the prediction map.
For localization, referring to [11], we classify the points with predicted values
greater than or equal to 1 as buildings. In this way, we apply the model to both
the localization and damage classification.

5 Experiments

5.1 Evaluation Metrics

The effectiveness of self-supervised pre-training is evaluated by the performance
of the model in downstream tasks and the method used in the xView2 competi-
tion to evaluate disaster damage classification is also employed in this research. In
detail, F1-score values are calculated separately for localization and damage clas-
sification, and F1-score values for damage classification show the performance
in different categories of disasters. Due to the unevenness of the categories, the
F1-score can evaluate the model performance better than accuracy.

5.2 Experiment Results

In this section, we made comparisons with other methods to evaluate the perfor-
mance of the overall model on downstream segmentation tasks. With the results
of attention matrix visualization, we show the potential of the pre-training stage.

5.2.1 Comparison with Other Methods

To evaluate the effectiveness of self-supervised contrast learning pre-training, we
compared it with other pre-training methods (DINO [17], MoCo v3 [20]). Pre-
training with ImageNet is a currently widespread initialization method, which
was used for comparison. The entire training data is used for self-supervised
pre-training.



Self-supervised Learning for BDA from xBD Datasets 383

– F1-score under limited annotation. For fine-tuning on the downstream
task (the second stage), we controlled the amount of labeled data and fine-
tuned using 1% and 20% of the labeled data, respectively. We used different
initialization methods with the same downstream task architecture, controlled
learning rate of 1e−4, and loss function of Dice-loss with CE-loss. The results
are shown in Table 1. Our method has better performance in both cases.

– 10% amount of annotated data with training process. We explored
the performance of the pre-training model on limited labeled data by training
it longer. Using 1% labeled data with a learning rate of 1e−4, we trained more
epochs while fine-tuning (the second stage). Using our pre-training model, and
ImageNet pre-training model with random initialization method respectively,
500 epochs have been tested to compare the training process. The results are
shown in Fig. 6. It turns out that our model loss converges faster and has a
higher F1-score.

Table 1. F1-score under limited labeled data. Nan means that the model has no valid
output for that category, which is a result of insufficient samples.

Amount Method Localization Damage No damage Minor Major Destroyed

1% ImageNet 0.461 0.321 0.387 0.136 0.234 NaN

DINO 0.522 0.366 0.480 0.157 0.439 NaN

MoCo v3 0.550 0.379 0.425 0.124 0.337 NaN

Ours 0.539 0.390 0.486 0.261 0.345 NaN

20% ImageNet 0.661 0.587 0.604 0.278 0.471 0.456

DINO 0.714 0.601 0.667 0.229 0.384 0.447

MoCo v3 0.650 0.639 0.562 0.230 0.392 0.400

Ours 0.678 0.636 0.646 0.314 0.480 0.380

Fig. 6. 10% labeled data with training process. The line graph was eventually plotted
as we recorded every 5 epochs.
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5.2.2 Results of Attention Matrix Visualization

We visualized the attention matrix of encoder in the pre-training stage. Though
the pre-training does not have labeled data involved, the visualization results
of the attention matrix are rich in semantic information. Figure 7 shows the
visualization results of the attention matrix in the transformer, where our model
learns the approximation without any labeled information.

Fig. 7. Pre, post, mask, and attention matrix. The result is obtained from the first
stage(pre-training), and we don’t use any annotations in the first stage. Attention
matrix, which was trained without labeled data, is very close to the man-made mask.

6 Conclusion

In this paper, we design a new self-supervised deep learning method to assess
the damage level of buildings with satellite images before and after a disaster.
In the first stage, we use self-supervised learning to learn feature representations
from unlabeled data and achieve results close to mask manual labeled. As for
the second stage, we use the model of the first stage as an encoder to splice
the pre- and post-disaster features before and after a semantic segmentation
network to obtain the disaster-determined images for building identification as
well as disaster assessment.

An important contribution of this study is the use of a self-supervised app-
roach in building damage assessment, which enables the model to be trained with
less reliance on labeled data. We also solved the difficulties caused by inconsistent
satellite image labeling and disaster types in this field in the past. We can use
only the original remote sensing images before and after the disaster to generate
the disaster damage images of an area and assess the damage level of buildings.
The results show an accuracy rate with the contrast learning approach that is
significantly better than the existing baseline, and the visualization results in
the unlabeled case are close to the manual labeling. The self-supervised app-
roach has been proved to have outperforming results and considerable potential
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for building damage assessment. In the future, we plan to explore the combina-
tion of self-supervised models deeper with building damage identification using
multi-temporal information and improve the model architecture for better per-
formance.
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Abstract. The ability to query vast amount of historical data for sta-
tistical analysis and reporting is provided by Data Warehouses. They
facilitate Business Intelligence for effective decision-making significantly.
In recent years, great progress has been made in movement monitoring
devices, such as smart phones and GPSs. The storing and managing of
spatio-temporal data related to the trajectories of moving objects in a
data warehouse is called Trajectory Data Warehouse (TDW). The rela-
tional approach is adopted widely for the logical representation of TDWs,
since it is based on the classic database approach where data represen-
tation and processing are handled on structured data. In this paper, the
key idea is to consider different logical relational TDW models, i.e. flat,
segment and complex, which are compared and evaluated. The study is
based on a novel classification of OLAP queries, the cardinality of facts
and the resolution of each trajectory in segments. Real data provided by
agricultural autonomous robots is used, where experiments on size and
time performances are conducted and discussed.

Keywords: Data warehouse · Trajectory data · OLAP

1 Introduction

Data Warehouse (DW) and OLAP systems are first citizens of Business Intelli-
gence tools [9]. Warehoused data are stored according to the multidimensional
model, which organizes data into analysis subjects (i.e. facts), and analysis axes
(i.e. dimensions). These data are explored and analyzed by means of OLAP sys-
tems that allow to navigate into warehoused data. Despite of the proliferation of
new NoSQL Database Management Systems (DBMS), existing OLAP servers are

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Strauss et al. (Eds.): DEXA 2022, LNCS 13426, pp. 389–403, 2022.
https://doi.org/10.1007/978-3-031-12423-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12423-5_30&domain=pdf
http://orcid.org/0000-0001-6037-5718
https://doi.org/10.1007/978-3-031-12423-5_30


390 K. Oikonomou et al.

essentially based on the relational model, and more precisely on the classical star
schema logical representation of the multidimensional model. Nowadays, in the
Internet of Things era, DW and OLAP systems are confronted with trajectory
data. Indeed, more and more data representing the movement in time and space
of humans, animals, vehicles and objects are produced by means of new sensors,
smartphones, and other connected objects equipped with GPS systems. Trajec-
tory data is complex data. Commonly, a trajectory is defined as set of ordered
tuples (pi,ti,ai1,...,ain) where: pi is of the form (x;y) representing geographical
coordinates, ti is the timestamp, and ai1,...,ain are numerical attributes. The
introduction of these data into DW has lead to the concept of Trajectory DW
(TDW). Several works have been proposed in the last decade to study the con-
ceptual, logical and physical design of TDWs [1,2]. According to [1], two main
approaches have been proposed to store trajectory data: (i) cell, and (ii) segment.
The cell approach divides the space into a regular grid, associates all points of the
trajectory to a set of cells, and stores the numerical aggregated measures for each
cell into the fact table of star schema. The segment approach stores the trajec-
tory’s start and end points with their timestamps as measures. These approaches
provide an aggregated/approximated representation of the trajectory (i.e. by cell
and segment). Thus, they are not well suited when decision-makers need a com-
plete representation of the trajectory with all set of (pi,ti,ai1,...,ain) elements,
such as in the case of monitoring the mechanical data of vehicles [3]. Therefore,
two other approaches have been proposed that entirely store the trajectory as a
measure: the flat approach, which consists of storing each (pi,ti,ai1,...,ain) ele-
ment as a fact tuple [3], and the complex approach where one fact tuple contains
all the points (the set of (pi) sub-elements) of the trajectory [21]. However, the
complex approach proposed by [21] has limited potential for two main reasons.
Firstly, because numerical attributes of the trajectory are not used as measures,
and secondly, it is implemented in the PostgreSQL-based extension MobilityDB,
which cannot be therefore applied in other DBMSs. To conclude, there is not
a standard logical model for relational TDWs, and the complex approach has
not been yet fully implemented. Moreover, this issue implies also a lack of an
existing well-defined benchmark for relational TDWs. Indeed, all existing works
define a set of ad-hoc OLAP queries over their logical schemata.

Motivated by these issues, in this work we (i) provide a new classification
of trajectory OLAP queries (ii) present two new logical relational models for
the complex approach allowing to represent (pi,ti,ai1,...,ain) element as a single
measure (iii) compare the three approaches using a real case study concerning
the analysis of agricultural autonomous robots odometry data. The experiments
we conduct take into account the number of trajectories (i.e. cardinality of facts),
and the resolution of the trajectory (i.e. the number of (pi,ti,ai1,...,ain) elements
composing the trajectory).

The paper is organized in the following way: Sect. 2 presents related work,
the agricultural autonomous robots data analysis scenario is shown in Sect. 3;
Sect. 4 presents the three logical models. Experiments and results are described
in Sect. 5 and Sect. 6 concludes the paper.
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2 Related Work

Trajectory Data Warehouse has received a lot of attention in the last years, as
shown in [2] and [1]. As described in Sect. 1, [1] groups existing works in two
main classes: cell and segment approaches. Among cell based approaches, it is
worth reporting [10,11], which present a formal framework and a system for
visual analysis, and [5] that studies approximated aggregations.

The segment approach, which is more similar to our requirement for a com-
plete trajectory elements data representation, has been studied in several works,
as described in what follows. [4] presents a TDW for the analysis of animals’
movement. The fact table stores the paths (i.e. segments) of the animals’ move-
ments according to the star schema. Each path is associated with numerical
measures such as the speed, which are also preaggregated with min and max.
The spatial and temporal dimensions contain the start and end spatial and tem-
poral elements as most detailed levels, respectively. However, this work does
not present any OLAP queries and performance experiments. In the same line,
[17] describes a TDW for the analysis of hospital patients trajectories, where
only start and stop points are stored with their duration as measure. [16] pro-
poses a conceptual and logical model for TDWs using data collected by humans
about Point of Interests (POIs). The logical model is based on the snowflake
schema, where only the coordinates of the POIs are stored as dimensions. How-
ever, this work does not present performance experiments. [18] proposes the
usage of TDWs to analyze athletes’ measurements along their training states.
Observations about athletes are stored in an ad hoc dimension. Therefore, no
real measures have been associated with the fact table. Time and location for
each observation are stored as dimensions. Authors implement their model in
a MDX-based OLAP Server, and compare SQL and MDX queries’ time perfor-
mance. [6] shows a tool for the visualization and analysis of TDW. However, no
details about the logical model has been provided. Authors present the concep-
tual model where the episod is a measure. An episod is a relevant element of
a trajectory, and it is described by the location, the time and other numerical
attributes. [19] combines cell and segment approaches. In this work, authors pro-
pose a conceptual model to represent the semantics of the trajectory. Although
no logical model is shown, authors state that points, timestamps, and some
aggregated numerical measures associated with the segment are stored in the
fact table. The representation of the semantic features of the trajectories has
been also studied by means of the usage of ontologies [13]. Finally, [14] proposes
storing the distance among the points of the segment to allow answering ad hoc
OLAP queries and improve time and storage performance.

The flat approach has been proposed in few works. [3] presents an implemen-
tation of TDW for storing GPS and odometry data of vehicles. Authors use the
flat storage approach, where points, timestamps and other numerical attributes
of the vehicles’ trajectories are stored as measures in the fact table. By means
of some physical tuning methods of PostgreSQL, they are able to store and ana-
lyze some billions of data. However, performance of queries are not reported, and
their logical schema is not compared to others. The same approach is used by
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[20], which adds a supplementary fact table to provide decision-makers with an
aggregated view of the trajectory data. A flat approach using multiple fact tables
(constellation schema) for a TDW is proposed in [8], where the logical model
stores segments of trajectories in a fact table. A case study is presented where
a semantic TDW is applied to human resources management for organizational
analysis. Existing works that use the flat approach to store trajectory data are
not able to store numerical attributes associated with each point-timestamp as
measures. Moreover, no work exists that compare performance (storage and time
computation of OLAP queries) of the different logical models. Finally, OLAP
queries provided on those existing logical models are not generic, but guided
from the case study. This means that a generic set of OLAP queries over TDWs
has not been identified yet in order to be able to define a TDW benchmark,
contrary to the classical DW [15].

Table 1 reports main works related to logical models and compares them to
our proposal.

Table 1. Existing work study

Proposal Approach Performance study Trajectory OLAP
queries

[4] Segment No No

[19] Segment No No

[18] Flat No No

[20] Flat with no
measures

No No

Our proposal Flat, complex and
segment

Yes Yes

3 Case Study: Agricultural Autonomous Robots Case
Study

Agroecology is the new paradigm of agriculture production that aims to pro-
tect biodiversity, environment, and sustainable production. In this context, the
usage of autonomous robots, coupled with IoT devices, becomes mandatory
since: (i) they are lightweight, which implies less soil compaction, (ii) they are
autonomous, which permits to avoid long and tedious agricultural practices to
the farmers, and (iii) they are embedded with sensors, which allows precise agri-
cultural tasks. In order to effectively use autonomous agricultural robots, their
behaviour in the field must be precisely set, since in a uncontrolled environment
(such as field), different events (meteorological, mechanical, etc.) can disturb
the planned work of the robots. Real-time analysis of autonomous agricultural
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robots and their evolving environment is indeed a mandatory issue, but not suf-
ficient. Indeed, real-time analysis can be used to detect some possible anomalies,
but only the usage of historical data can allow decision-makers to find out the
right action to these anomalies.

To analyze these historical data, we propose a multidimensional model com-
posed of the following dimensions: Alert represents the mechanical faults iden-
tified by the robot, such as blocking wheel. It is organized in two levels: alert
and type of alert; Action defines the response action provided by the robot to a
mechanical fault, such as stop action. Actions are also grouped by their types;
Crop represents the crop present in the field (e.g. wheat); Campaign represents
the agronomic year associated with a particular crop, for example September
2019 - September 2020; Equipment is the tool associated with the robot for
a particular agricultural task such as spraying; Robot has two levels. The less
detailed represents the robot used for the task and the type of robot according to
its size; Scheduling designs a set of planned trajectories to achieve the agricul-
tural task, for example: first spray and then return to the warehouse; Location
is the spatial dimension that groups plots, where each robot evolves, in farm
and city; Time is the temporal dimension. The minimum granularity chosen by
the decision-makers is minute, where hour and day are also included. The fact
contains the measure that represents the trajectory made by a robot. The tra-
jectory is characterized by the point, the timestamp and the speed of the robot.
Using this multidimensional model it is possible to answer OLAP queries like
this: What is the max of the internal average speed of each trajectory, for each
robot, equipment, crop type, and plot? (Fig. 1d).

4 TDW OLAP Queries and Logical Multidimensional
Models

In this section, firstly we introduce a classification of TDW OLAP queries, and
then we present three logical models: the flat one, and our new complex and
segment models.

4.1 TDW OLAP Queries Classification

In what follows, we present a classification of the OLAP queries over trajectories
data, where the criteria are detailed. Queries’ examples are shown in Table 1.

Numerical Aggregation Type: Distributive (e.g. sum, min and max), Alge-
braic (such as average) and Holistic (for example distinct count and median).
This classification is important since it allows the usage of materialized views to
speed-up queries. As described next, it could be used for improving the complex
and segment models performance.
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Table 2. TDW OLAP queries examples

Granularities

Aggregation Point Trajectory Inter-Trajectories

Distributive Max speed for each
robot and plot

Min speed for each
trajectory

Min speed of the internal
max delay of each
trajectory, for each robot,
equipment, crop type, and
plot

Algebraic Average speed for
each robot and plot

Average speed for
each trajectory

Average speed of the
internal max delay of each
trajectory, for each robot,
equipment, crop type, and
plot

Holistic Median speed for
each robot and plot

Median speed for
each trajectory

Median speed of the
internal max delay of each
trajectory, for each robot,
equipment, crop type, and
plot

Granularity: Point, Trajectory and Inter-Trajectories. Trajectory queries
return an aggregated numerical value for each trajectory. Inter-Trajectories
queries compute an OLAP Trajectory query for each trajectory, and then aggre-
gate all these numerical aggregated values in a single one. Point queries consider
all elements of all trajectories involved in the query independently of the trajec-
tories they belong.

To better explain our classification, we propose an example with a carto-
graphic representation in Fig. 1. Figure 1a shows the points and the numerical
value (i.e. speed) for two trajectories provided by two different robots. We omit
the timestamp for readability sake. Figure 1b shows a Point Distributive query.
All points of the two trajectories are considered as a single input. Then, the
min is applied, and one numerical value (i.e. 8 km/h) is returned. Figure 1c
shows a Trajectory Distributive query, where each trajectory is considered as a
different input, and for each one the max speed is returned. Figure 1d is a Inter-
Trajectories Distributive query. In this query, at first the average is computed
for each trajectory: 19.5 Km/h for Robot A and 9.5 Km/h for Robot B. Then,
the max of these two numerical values is returned.



Logical Model for Relational Trajectory Data Warehouses 395

Fig. 1. Queries examples: a) input trajectories data, b) Point Distributive query - min,
c) Trajectory Distributive query - max, d) Inter-Trajectories Distributive query - max
of average

4.2 TDW Logical Models

Flat Model. The generic representation of this approach is shown in Fig. 2a. It
is based on the star schema, where dimensions are denormalized. For each non
spatial and temporal dimension (i.e. thematic dimension), there is a table with all
the hierarchy levels. For sake of readability, Fig. 2a presents only one thematic
dimension. The spatial dimension contains all spatial levels (SpatialLeveli)
and a particular most detailed level Point. This level represents one point of the
trajectory and it has a spatial type. Then, according to [12], a spatial topological
relationship of inclusion must be defined between the level Point and the level
SpatialLevel1. For example in our case study, a point of the robot’s trajectory
must be contained in a plot. The temporal dimension is defined in the same
way, where the Timestamp level is the temporal value of a trajectory point, and
the remaining levels are classical temporal levels. The fact table contains the
foreign keys to dimensions tables and all numerical attributes of the trajectory
as measures. This approach splits the data of the trajectory among fact and
dimensions Tables. For each element of the trajectory, a tuple of the fact table is
created. The spatial and temporal dimensions tables are forced to contain also
spatial and temporal data for each trajectory’s element. Therefore, a fact does
not correspond to the analysis subject representing the overall trajectory, but it
represents a single element of the trajectory. An example using our case study is
shown in Fig. 6a, where only the fact table, the spatial and temporal dimensions
are depicted for the sake of readability.

Complex Model. This model is shown in Fig. 2b. The main goal of this app-
roach is to provide a logical representation that is as close as possible to the
conceptual multidimensional representation. Therefore, the spatial, the tempo-
ral and the thematic dimensions present only their common levels. The fact
table comes with n vectors. A vector is used to represent all the points of the
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trajectory, one for all the timestamps, and the other ones for each numerical
attribute of the trajectory. Using this approach, the fact table presents a tuple
for each trajectory, and dimensions are not affected by the trajectory data.

Segment Model. The complex approach storing all trajectory data in a unique
measure presents some limitations when dimensions are used for describing
episodic facts. Episodic facts are facts that describe relationships among the
dimensions, and no measure is calculated. Examples are Alert and Action
dimensions of our case study. Indeed, alerts and actions characterize the tra-
jectory in the same way as its numerical attributes. In this case, a many to
many association (implemented with a bridge table) between the fact table and
each of these dimensions is needed, since several alerts and actions can occur in
one trajectory. However, this approach (i.e. bridge table) cannot be sufficient for
decision-makers when they want a less detailed spatio-temporal granularity to
identify the parts of the trajectory. For example, decision-makers want to analyze
alerts and actions per minute. Therefore, there is a need to split the trajectory
into segments when these particular dimensions are involved in the multidimen-
sional application. Splitting the trajectory into segments is also necessary when
the most detailed levels of the spatial and temporal dimensions are on scales
smaller than those of the trajectory. The segment model is shown in Fig. 2c. For
example, in our case study, if the trajectory evolves over 2 plots, then the tra-
jectory must be split into 2 segments. This constraint has been described in [12].
The same issue is valid for the temporal dimension, as we have described above.
Therefore, in some particular cases a particular version of the complex approach
is needed, which stores in the fact table a segment of the trajectory with all its
elements. An example of the segment approach using our case study is shown
in Fig. 6b1, where only the fact table, the spatial and temporal dimensions are
depicted, for the sake of readability. The fact table shown in Fig. 6b presents
3 vectors of 60 elements, which means that the trajectory is split in segments
containing 60 trajectory elements. We use this size since in this scenario robots
have been set to collect data each second. Therefore, the size of the segment
is compliant with a less detailed level of the temporal dimension which is the
minute. However, it is very important to note that for other kinds of analysis,
decision-makers could need robots’ data at high resolution (for example 1 datum
each 10 ms). Finally, it is essential to mention that the complex and segment
approaches have an important advantage compared to the flat one concerning the
materialization of preaggregated measures (i.e. materialized views) [9]. Indeed,
as we have described above aggregation functions can be distributive and alge-
braic, meaning that their result can be reused for the computation of queries
using coarser levels. Therefore, by adding a preaggregated measure in the fact
table, it is possible to improve query performance and storage size in respect to
the flat approach. This is because the materialization of the flat approach needs
to create a new fact table with all foreign keys and aggregated measures. For
example, it will be possible to answer the query shown in Fig. 1b with a simple
SELECT query, by simply adding a new measure to the fact table containing the
max speed. This tuning technique can be also applied to the segment approach.
1 Due to pages limit, this figure is presented in the Appendix.
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Fig. 2. Logical multidimensional models: a) flat, b) complex, c) segment

5 Experiments

In this section, we detail some experiments we conducted to evaluate the storage
and time performance of TDW OLAP queries defined in Sect. 4. In particular, for
time performance we analyze how the number of trajectories, and the resolution
of each trajectory varies according the flat, segment and complex models. We
use these queries since they are the most common in our case study.

The experiments were performed on a machine running Windows 10 64-bit,
using pgAdmin4, both installed on a NVMe SSD, 8 GB of RAM and an AMD
RYZEN 5 5600 H @3.3 GHz 64-bit Six core processor. The method used to
retrieve the time was to take the average time of 10 runs per query and each time
before the query was rerun the server restarted so that we could avoid potential
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cache related acceleration. The DW has been implemented using PostgreSQL
and its spatial extension PostGIS.

Figure 3 shows the size in Megabyte for the three models using 160 tra-
jectories, where each trajectory is composed of 6640 elements. Figure 3 shows
that the complex and the segment approaches are much less expensive than the
flat one, since its fact table, spatial and temporal dimension tables present less
tuples than the other two approaches. There is a not so big difference between
the segment and the complex models, 49 and 68 Mb, respectively.

Fig. 3. Size performance

In the rest of this section, we report the time performance of the OLAP
queries detailed in Sect. 4.1. We have defined 9 queries, by using for each group
3 queries where the aggregation function is: a distributive one (max), algebraic
one (average), and a holistic one (median). Let us note that we have implemented
the median aggregation function in PostgreSQL as a user-defined function, since
it is not nativelly supported by PostgreSQL.

Number of Trajectories. Let us consider that each trajectory is composed of
6640 elements. Table 3 2 reports the time computation of all the 9 queries, for 20,
60 and 100 trajectories. From Fig. 4, which shows the average time of queries
belonging to the same group, it is possible to conclude that: (i) the complex
and segment approaches perform better for Point queries, (ii) all approaches
are well suited for Trajectory queries (under 1 s), and (iii) complex approach
is the best solution for Inter-trajectories queries. From a more global point of
view, it obviously appears that by increasing the number of trajectories, the time
performance of queries also increases.

Resolution of Trajectories. In this subsection, we compare the performance
of the three approaches with 160 trajectories stored, and vary the number of
elements in each trajectory. The results are shown in Table 4 3 using 360, 900
and 6640 elements. The resolution 360 has been tested since it represents the
number of elements commonly used in moving objects benchmarks (i.e. [7]). The

2 Due to pages limit, this Table is presented in the Appendix.
3 Due to pages limit, this Table is presented in the Appendix.
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Fig. 4. Average time queries

other two resolutions have been tested to simulate the cases where ms frequency
is used for data acquisition.

Figure 5 shows the average time for each group of queries. Obviously, a high
resolution corresponds to high time results. All approaches have feasible results
with 360 resolution. The Flat approach is the worst for Point queries, and the
Complex one is the best when a high resolution is used.

To conclude, the complex and segment approaches perform well with all the
different types of tested queries and require less storage space than the flat app-
roach, when the resolution is not too much high (i.e. up to 900 elements). In the
case of high resolution (i.e. 6640 elements) the flat model is also interesting, but
the complex and segment approaches can radically improve their performance
by adding a preaggregated value as discussed in the previous section.

We have also evaluated the previous described queries using a WHERE state-
ment (i.e. OLAP Slice operator) on the thematic dimension Crop. The above
described results have not been significantly impacted.

Finally, it is important to note that in order to achieve generic conclusions
about the performance of the proposed logical models, a real benchmark for
TDW should be provided which should take into account selectivity and scale
factor, as well as spatial selection queries.
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Fig. 5. Average time queries

6 Conclusion and Future Work

TDWs are DWs used for mobility data analysis. Mobility data are defined on
the spatio-temporal domain considering that moving objects are changing their
locations as time progresses. The applications of such approaches are increased
significantly, particularly in the field of GIS. The main contribution of this work is
to compare different logical models and conclude which one is more preferable for
trajectory data querying. Therefore, in this paper the problem of performance is
addressed. For this reason, initially, relational OLAP queries have been classified
into two different groups. In particular, according to their numerical aggregation
type, the queries are distinguished as distributive, algebraic or holistic. In terms
of granularity, queries are identified as point, trajectory, and inter-trajectories.
Based on these taxonomies, three logical models, i.e. flat, complex and segment,
are presented and compared. The main feature of the complex model is a vector
which represents the points of a trajectory. In the segment model, trajectories are
partitioned into segments which facilitates the analysis in low hierarchical levels
for in-depth querying and analysis. One main advantage of complex and segment
approaches, is the materialization of preaggregated measures. The proposals of
this research are validated through an implementation for a case study dealing
with mobility and other semantical data provided by agricultural autonomous
robots. The results of the experiments conducted prove that overall, the complex
and segment approaches use less storage space and achieve better performance
than the flat one. In combination with the inclusion of a preaggregated value, the
results lean even further towards the complex and segment models. Future works
include to extend the experiments to other logical TDW models using new OLAP
queries’ classifications, different DBMSs and platforms for explaining better the
behavior of trajectory data.
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7 Appendix

Table 3. Time performance of queries according to number of trajectories; Traj.Distr.
- Trajectory Distributive, Traj.Alg. - Trajectory Algebraic, Trj.Hol. - Trajectory Holis-
tic, Pt.Distr. - Point Distributive, Pt.Alg. - Point Algebraic, Pt.Hol. - Point Holistic,
ITraj.Dist. - Inter-Trajectories Distributive, ITraj.Alg. - Inter-Trajectories Algebraic,
ITraj.Hol. - Inter-Trajectories Holistic

20 60 100

Group Query Flat Segment Complex Flat Segment Complex Flat Segment Complex

Traj.Distr. Q1 0,202 0,053 0,062 0,492 0,092 0,117 0,693 0,101 0,184

Traj.Alg. Q2 0,2 0,056 0,061 0,061 0,095 0,125 0,691 0,105 0,185

Traj.Hol. Q3 0,521 0,06 0,062 1,463 0,11 0,131 1,678 0,146 0,187

Pt.Distr. Q4 0,993 0,312 0,821 0,821 0,974 2,307 3,723 1,017 3,723

Pt.Alg. Q5 1,04 0,315 0,817 2,552 0,986 2,373 3,824 1,021 3,893

Pt.Hol. Q6 2,9 0,411 0,867 7,589 1,1 2,453 10,523 1,312 4,52

ITraj.Distr. Q7 0,201 0,593 0,215 0,42 1,772 0,502 0,686 1,787 0,689

ITraj.Alg. Q8 0,203 0,599 0,213 0,419 1,778 0,486 0,778 1,774 0,702

ITraj.Hol. Q9 0,457 0,603 0,319 1,218 1,873 0,602 0,875 1,779 0,781

Table 4. Time queries performance according to resolution of trajectories

360 900 6640

Group Query Flat Segment Complex Flat Segment Complex Flat Segment Complex

Traj.Distr Q1 0,168 0,044 0,047 0,22 0,067 0,066 1,23 0,218 0,27

Traj.Alg Q2 0,116 0,045 0,045 0,213 0,057 0,06 0,992 0,199 0,249

Traj.Hol Q3 0,24 0,048 0,047 0,609 0,062 0,062 2,098 0,209 0,286

Pt.Distr Q4 0,492 0,201 0,368 1,076 0,401 0,913 3,945 2,647 5,057

Pt.Alg Q5 0,491 0,206 0,38 1,089 0,412 0,88 3,938 2,658 5,037

Pt.Hol Q6 1,221 0,326 0,381 3,277 0,586 0,917 6,422 3,186 6,225

ITraj.Distr Q7 0,116 0,269 0,163 0,212 0,639 0,31 0,99 4,245 1,012

ITraj.Alg Q8 0,166 0,27 0,162 0,218 0,645 0,321 0,997 4,311 1,015

ITraj.Hol Q9 0,204 0,279 0,199 0,535 0,646 0,396 1,324 4,249 1,108
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Fig. 6. Logical multidimensional examples: a) flat, b) complex, c) segment
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Abstract. In a dataset, boundary points are located at the extremes of
the clusters. Detecting such boundary points may provide useful infor-
mation about the process and it can have many real-world applications.
Existing methods are sensitive to outliers, clusters of varying densities
and require tuning more than one parameter. This paper proposes a
boundary point detection method called Boundary Point Factor (BPF)
based on the outlier detection algorithm known as Local Outlier Factor
(LOF). BPF calculates Gravity values and BPF scores by combining
original LOF scores of all points in the dataset. Boundary points can be
effectively detected by using BPF scores of all points where boundary
points tend to have larger BPF scores than other points. BPF requires
tuning of one parameter and it can be used with LOF to output outliers
and boundary points separately. Experimental evaluation on synthetic
and real datasets showed the effectiveness of our method in comparison
with existing boundary points detection methods.

Keywords: Boundary points detection · Cluster boundary · Data
mining

1 Introduction

Data mining comprises a multitude of techniques to extract knowledge from the
data. Clustering is one such technique that focuses on dividing a dataset into
subsets such that data belonging to a subset are similar in some way [9]. In cluster
analysis, it is desirable to extract useful features about the data by clustering the
data objects as the grouping of data may represent a phenomenon. For example,
a cluster of data objects may represent a specific behavior of customers in a
customer dataset or, in an image dataset, a cluster of images may share similar
properties. On the other hand, outlier detection is a data mining task which is
related to clustering. An outlier is defined as a data object that deviates from the
majority of the data objects [6]. The majority of the data objects share common
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features and may form one or more clusters. Hence, an outlier is a data object
that is isolated and does not belong to any cluster. In the past, many techniques
have been proposed for detecting outliers based on distance [2,8], density [3,7]
and angle [10,14]. Importantly, we do not make any distinction between noisy
points and outliers and use the term outliers to refer to the points which do not
belong to any cluster.

Unlike clustering and outlier detection, a limited research has been dedicated
to the boundary points detection. In [13], border or boundary points are defined
as points which are located at the extremes of a class region or near free pattern
space. In other words, boundary points are located at the border of a cluster
i.e. boundary points are forming the boundary of the cluster. Hence, boundary
points detection can be defined as the task of detecting the points which are sit-
uated at the boundary of a cluster [17]. Consequently, detecting boundary points
may provide useful information. For example, in a disease detection system, the
normal data objects may represent healthy patients, the outliers may represent
patients who have contracted a certain disease and the boundary points may
represent normal patients with high likelihood of developing the disease where
they may show many symptoms but somehow have not yet developed the dis-
ease. As a result, such boundary cases should be monitored closely as they may
reveal interesting information about the disease. Similar motivating examples
are presented in the related papers [5,12,16,17].

Outlier detection is a well studied problem. Several techniques have been
proposed to solve outlier detection and one such technique is Local Outlier Factor
(LOF) [3]. It is one of the most popular and competitive density-based outlier
detection method [19] that detects the outliers based on the relative density of a
target object according to its local neighborhood. The points located in the inner
region of a cluster are referred to as the core points, while the outliers are isolated
points in the less dense regions. Moreover, the neighborhood of the core points
is in all directions, while the boundary points are in the dense region and they
may have their neighborhood in one direction. If LOF is applied on such dataset
and top-m data objects are considered as output, the list of top-m outliers may
contain outliers and boundary points. However, the problem of boundary points
detection requires the detection of boundary points only while ignoring the core
points and outliers. This paper proposes to use the average unit vector between
a target point and its k-nearest neighbors pointing towards the dense region. We
call the scalar value obtained by taking the norm of this average unit vector as
Gravity of the target point. The ratio of the Gravity and LOF values are used
for calculating the Boundary Point Factor (BPF) scores of all the data points.
The data points with larger BPF scores can be considered as boundary points
and they are ranked at higher ranks w.r.t. BPF scores than cores and outlier
points. We have shown experimentally that our proposed method is robust to
the presence of outliers and it can deal with datasets having multiple clusters of
various densities. Hence, following are the advantages of our proposed method:

– BPF can be used in conjunction with LOF. Hence, one can obtain outliers and
boundary points using LOF and BPF respectively as our method efficiently
shares the computation to calculate the k-nearest neighbor and LOF values.
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– BPF has one tune-able parameter k (number of nearest neighbors) which can
be tuned in the same way as tuning k for LOF.

– BPF is robust to the presence of outliers and clusters of different densities.

This paper makes the following key contributions: i) proposes a boundary
points detection method BPF based on the ratio of LOF and Gravity values, and
ii) experiments on synthetic and real datasets to demonstrate the effectiveness
of the proposed method.

2 Related Work

The boundary of a cluster is composed of points which are at the decision region
of the cluster. Different from outliers, boundary points have clear class labels
like core points but they can offer a different and interesting information about
the process which the data is representing (as explained in the examples in
the previous section). One of the initial works in this direction was [17]. Xia
et al. in [17] proposed BORDER algorithm which exploited the property that
boundary points have smaller number of reverse k-nearest neighbors (RkNN)
than core points and therefore, boundary points can be identified based on this
property. Since, the computation of RkNN is expensive, they proposed to use G-
ordering kNN join [18] method to speed up the computation of RkNN. BORDER
was found to be effective in identifying boundary points in the dataset without
outliers. In case of datasets with many outliers, BORDER cannot distinguish
between outliers and boundary points as both of them tend to have smaller
number of RkNN. In order to solve the problem in BORDER, Qiu et al. in [15]
proposed BRIM which was successful in detecting the boundary points in the
datasets with many outliers. Given a distance eps, BRIM uses the observation
that the eps-neighborhood of a boundary point can be distributed in either
positive or negative direction based on the diameter line which divides its eps-
neighborhood into two parts. Also, based on eps-neighborhood, the densities
of boundary points are greater than outliers. BRIM uses these observations to
detect boundary points effectively. The major drawback of BRIM is that it uses
eps-neighborhood to calculate boundary degree of each point, and therefore it
does not perform well in datasets with clusters of different densities and scales.

More recently, Li et al. in [12] proposed a method of detecting outliers and
boundary points based on the geometrical measures. The proposed algorithm
BPDAD combined the two observations that outliers and boundary points have
lower local densities and smaller variance of angles than their neighbors. How-
ever, this work does not directly solve the problem of detecting boundary points,
rather its output is outliers and boundary points together. In [5], BorderShift
algorithm was proposed that uses similar observations regarding the densities
of outliers, boundary and core points. BorderShift uses Parzen Window (kernel
density estimation) to estimate the local density of a point and MeanShift vec-
tor to determine the direction of the dense region. It requires tuning of three
parameters k, λ1 and λ2 to achieve good results, where tuning λ1 and λ2 are
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particularly difficult as they are highly dependent on the number of outliers in
the dataset.

Furthermore, methods proposed in [4] and [16] are for high-dimensional data
and they perform the projection of high-dimensional data points to lower dimen-
sions for boundary points detection. However, it is challenging to tune their
parameters as they require prior knowledge of the number of outliers in the
dataset. It is more appropriate that the boundary points detection algorithms
should have minimum number of tune-able parameters and the user should not
have to assume ratio of outliers in the dataset. The boundary points detection
algorithm should take a dataset with or without outliers as input and output
the top-m boundary points. This research proposes such an algorithm with only
one parameter and does not require any prior knowledge of the dataset.

3 Preliminaries

In this section, we briefly review the definitions related to Local Outlier Factor.
We recommend the readers to refer to [3] for further details.

Given a point p in the dataset D, let k represents the number of nearest neigh-
bors. The LOF score of p (LOF (p)) can be calculated using two key concepts:
Reachability Distance reach-distk(p, o) and Local Reachability Density lrdk(p).
The following definitions present these concepts followed by the definition of
LOF .

Definition 1. Reachability distance of a point p w.r.t. point o is defined as:

reach-distk(p, o) = max{k-distance(o), distk(p, o)},

where, k-distance(o) is the Euclidean distance of o with its kth neighbor and
distk(p, o) is the Euclidean distance between point p and o.

Definition 2. The Local Reachability Density of a point p denoted as lrdk(p) is
defined as:

lrdk(p) = 1/(

∑
o∈Nk(p)

reach-distk(p, o)

|Nk(p)| ),

where, Nk(p) is the set of k-nearest neighbors of the point p and |Nk(p)| repre-
sents the cardinality of Nk(p).

Intuitively, the local reachability density is the estimation of the density of
p w.r.t. its neighbors o ∈ Nk(p). More concretely, lrdk(p) is the reciprocal of
average reachability distance of p with its k-nearest neighbors. Therefore, larger
the reachability distances of p, smaller is lrdk(p). Based on Definitions 1 and 2,
we can define the local outlier factor (LOF).

Definition 3. The local outlier factor of p is defined as:

LOF (p) =

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)| .
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LOF (p) is the outlier factor of the point p which indicates its degree of
outlierness. If p is a core then LOF (p) is close to 1 and if p is a boundary point,
then LOF (p) is greater than core points but still close to 1. In case p is an
outlier, LOF (p) is greater than 1. The details about the range of LOF score are
explained in [3]. The next section explains the proposed method based on the
definition of LOF.

4 Proposed Method

4.1 Definitions and Observations

This section introduces the definitions related to the proposed method and
explains the basic observations. The following definition explains the Gravity
G(p) of a given point.

Definition 4. Given a point p ∈ D, the set of k-nearest neighbors of p Nk(p),
a point o ∈ Nk(p) and the norm ‖.‖, the unit vector of p to o denoted as p̂o can
be given as p̂o =

−→po
‖−→po‖ . Hence, the Gravity of p can be defined as:

G(p) =
1

|Nk(p)|

∥
∥
∥
∥
∥
∥

∑

o∈Nk(p)

−→po

‖−→po‖

∥
∥
∥
∥
∥
∥

.

Fig. 1. Observation.

Consider the boundary point p shown in Fig. 1. Taking the sum of the unit
vectors originating from p to its k-nearest neighbors will result in a single vector
(solid arrow). The value of G(p) will be larger for p than the core point q because
q is surrounded by many points in all directions resulting in a smaller G(q).
However, Gravity value of outlier depends on the data distribution. Hence, the
following may hold for boundary and core points:

G(q) < G(p).
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On the other hand, the LOF scores of data points w.r.t. their k-neighborhood
can be calculated using Definition 3. As shown in [3], the LOF values of core
and boundary points are close to 1 (LOF (q), LOF (p) ≈ 1.) and the LOF scores
of outliers are greater than 1. Consequently, for the points p, q and r shown in
Fig. 1, the following may hold:

LOF (q), LOF (p) < LOF (r).

Based on these observations, Boundary Point Factor (BPF) score can be
defined in the following definition.

Definition 5. Given a point p ∈ D, the LOF (p) and the Gravity G(p), the
Boundary Point Factor score of p BPF (p) can be calculated as follows:

BPF (p) =
G(p)

LOF (p)
.

From Definition 5, the following may hold:

BPF (q), BPF (r) < BPF (p).

By calculating the BPF scores of all data point in a dataset, boundary points
are more likely to have larger BPF scores than core points and outliers. In this
way, our proposed method can output top-m boundary points in the dataset.

4.2 Algorithm

The main idea of BPF algorithm is to calculate the BPF scores of all the points
in the dataset and sort them in descending order w.r.t. the scores. Given the
number of points to consider as boundary points m, BPF will output the list B

of top-m boundary points in the dataset. The steps are given in Algorithm 1.

4.3 Runtime Complexity

Let n represent number of points in a d-dimensional dataset. The most time
consuming operation for BPF and its competitors like BORDER [17], BRIM
[15], BPDAD [12] and BorderShift [5] is the k-nearest neighbors search for each
point which have the complexity of O(n2d). But the runtime complexity can
be improved to O(nlogn) by using a suitable indexing technique. Furthermore,
BPF score is calculated based on the Gravity values and LOF scores of n points.
The complexity of calculating Gravity values and LOF scores can be given as
O(nkd) and O(nk2) respectively. Hence, the overall runtime complexity of BPF
algorithm is O(n2d + nkd + nk2).
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Algorithm 1: BPF
Input : D, k
Output: B

1 for p ∈ D do
2 Nk(p) ← k-NN of p
3 for o ∈ Nk(p) do
4 calculate BPF (p) using Definition 5 store in C

5 end

6 end
7 B ← Sort C in descending order w.r.t. BPF scores and get top-m points.
8 return B

5 Experiments and Results

This section presents the experimental setup for evaluating the effectiveness of
the proposed method on synthetic and real datasets.

5.1 Synthetic Data

We compared BPF ’s accuracy on synthetic datasets with BorderShift [5],
BPDAD [12], BRIM [15] and BORDER [17]. The parameter of these methods
are tuned according to the suggested range in the respective papers. Particularly
for BPDAD, it uses fixed parameter values (details in [12]) and automatically
outputs the boundary points. Therefore, we use the default parameter values
given in the original paper for BPDAD and output detected boundary points.
For BPF, the value of k is tuned in the range [30,60]. The parameter values
are mentioned along with the results. Furthermore, the evaluation on synthetic
datasets are of two types: 1) demonstrating the accuracy by showing the bound-
ary points detected by all methods like [5,12,15–17], and 2) quantitatively show-
ing the accuracy of all the methods in terms of precision, recall and F1 score
like [5,16]. In addition to these metrics, we show Area Under ROC Curve (AUC
ROC) and Area Under Precision-Recall Curve (AUC PR).

Figures 2, 3, 4 and 5 show the results and their captions show the description
of the synthetic datasets (where n is the dataset size and m is top-m boundary
points detected) and the parameter values. The dark points indicate the top-m
boundary points detected by each method. Diamonds, Rings, Mix1 and Mix2
datasets are used to illustrate the boundaries detected by BPF while, Mix3 is
used to evaluate the accuracy quantitatively.

On diamonds [5,15,17] and rings [16] dataset, BPF performs well by detect-
ing the boundary points clearly in comparison with other methods. However,
a few outliers are detected but the results are still comparable or better than
other methods specially from BPDAD and BORDER which detected outliers
along with boundary points. BRIM does not perform well particularly on rings
dataset due to the different densities of the rings. Furthermore, its is hard to
tune an appropriate eps value for BRIM. In these experiments, the number of
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(a) BPF k = 50
(b) BorderShift k = 50,
λ1=600, λ2=900

(c) BPDAD

(d) BRIM eps = 0.15 (e) BORDER k = 35

Fig. 2. Diamonds dataset: n = 1000,#outliers = 100,m = 300.

outliers are known beforehand, and therefore the best results for BorderShift are
shown. However, the tuning of λ1 and λ2 is a difficult task if prior knowledge
about the number of outliers in the dataset is unknown.

The robustness of our method is demonstrated on Mix1 and Mix2 datasets
that contain clusters of different shapes and densities. Mix2 is similar to the
dataset used in LOF paper [3] with clusters having points from uniform and
normal distribution. It can be seen that BPF performs well on both datasets.

Next, in Table 1, we quantitatively show the effectiveness of BPF on Mix3
dataset (n = 2400, #outliers = 200) by obtaining ground truth about the bound-
ary points. Mix3 dataset contains two clusters of uniformly distributed points
with different radii and number of points. The small and large clusters have
radius r1 = 1 and r2 = 2 with 1400 and 800 points respectively and 290
boundary points in the ground truth. To obtain the ground truth, points within
r1 − (r1 − 0.05) in the small cluster and r2 − (r2 − 0.2) in the large cluster are
considered as the boundary points. The precision, recall and F1 scores are given
in Table 1 at different parameters by considering top 350 points returned by
each method. The number of boundary points returned by BPDAD are in the
parenthesis. Overall, BPF outperformed all methods and showed almost consis-
tent performance on different parameter values. Similarly, BRIM and BORDER
did not show significant change in the accuracy, while BorderShift’s accuracy
changed with the change in λ1 and λ2 values at fixed k. λ1 and λ2 cover the top
350 points and their values are changed with the interval of 200 points. Hence,
the results suggest that tuning λ1 and λ2 is difficult when number of outliers are
not known. In addition, the outlier detection accuracy (precision, recall and F1)
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(a) BPF k = 60
(b) BorderShift k =
50, λ1 = 3000, λ2 = 4000

(c) BPDAD 915 pts

(d) BRIM eps = 0.085 (e) BORDER k = 35

Fig. 3. Rings dataset: n = 4200,#outliers = 200,m = 1000.

(a) BPF k = 50
(b) BorderShift k =50 ,

λ1 = 2350, λ2 = 3550 (c) BPDAD 716 pts

(d) BRIM eps = 0.2 (e) BORDER k = 35

Fig. 4. Mix1 dataset: n = 3800,#outliers = 150,m = 1200.



BPF: An Effective Cluster Boundary Points Detection Technique 413

of LOF is 0.94 for detecting top 200 outliers on k = 50,75,100. This shows that
LOF and BPF can work with the same k values.

(a) BPF k = 50
(b) BorderShift k =60,

λ1 = 1350, λ2 = 1700
(c) BPDAD 689 pts

(d) BRIM eps = 0.5 (e) BORDER k = 100

Fig. 5. Mix2 dataset n = 1710,#outliers = 10,m = 350.

Futhermore, we report the AUC ROC and AUC PR in Table 1. The AUC
ROC and AUC PR consider the ranking of ground truth. Therefore, we did
not include the results of BPDAD as the output is not based on the ranking.
For BorderShift, we sorted the output in ascending order w.r.t. the scores and
considered the ranking from λ2 until the start of the list (backwards) to calculate
AUC ROC and AUC PR. For BPF, BORDER and BRIM, we considered the
ranking of points according to the calculated scores. The results show that BPF
is more effective in detecting boundary points than other methods.

5.2 Real Data

Since, there are no benchmark real datasets available for verifying the perfor-
mance of boundary point detection, we use the same datasets used in the related
work for evaluation. Similar to [5], we used Olivetti Research Laboratory (ORL)
face dataset [1]. The dataset consists of 400 images of 92 × 112 pixels of frontal
faces of 40 people where each pixel represents the gray value in the range of
0–255. The images of frontal faces are considered as normal images, while the
images with left and right profile faces are considered as the boundary images.
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Table 1. Comparison of accuracy of BPF and other methods on Mix3 dataset

Methods Parameter Precision Recall F1 score AUC ROC AUC PR

BPF k = 50 0.71 0.85 0.77 0.97 0.8

k = 75 0.72 0.87 0.78 0.98 0.81

k = 100 0.69 0.83 0.76 0.97 0.8

BorderShift (k = 50) λ1 = 1950, λ2 = 2300 0.5 0.61 0.55 0.9 0.44

λ1 = 1750, λ2 = 2100 0.45 0.55 0.49 0.62 0.31

λ1 = 1550, λ2 = 1900 0.21 0.26 0.23 0.34 0.21

BRIM eps = 0.2 0.4 0.48 0.44 0.67 0.48

eps = 0.3 0.43 0.52 0.47 0.77 0.55

eps = 0.4 0.39 0.47 0.43 0.75 0.52

BORDER k = 100 0.39 0.47 0.425 0.81 0.29

k = 150 0.41 0.49 0.44 0.85 0.31

k = 200 0.39 0.47 0.43 0.86 0.31

BPDAD # boundary pts = 740 0.16 0.42 0.23 – –

Each image is transformed from 92× 112 to 1 × 10304 by concatenating each
subsequent row to the previous row of the image. Figure 6 shows top 40 images
with the largest BPF scores in Fig. 6a and bottom 40 images with the smallest
BPF scores in Fig. 6b. The majority of the top 40 faces are the non-frontal images
whereas, the bottom 40 images are shown for comparison between frontal and
non-frontal images. To further evaluate the effectiveness of our method, we used
MNIST [11] dataset of handwritten digits as used in [5] and [16]. The dataset
contains 60000 images in training and 10000 images in testing set of 28 × 28
pixels. We selected digit ‘3’ from testing set of MNIST dataset. It contains 1010
images of digit ‘3’ which are considered as core and boundary images. The eas-
ily recognizable 3s can be regarded as cores and distorted 3s can be boundary
images. We also selected 100 random images from digits 0,2,4,6,7 and 9 from
testing set which may be considered outliers. The preprocessing is performed

Fig. 6. Top (a) and bottom (b) 40 faces detected by BPF (k = 50)
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in the same way as done for ORL dataset. Figure 7a shows the top 50 bound-
ary points detected by BPF with the larger BPF scores. The boundary images
are distorted 3s and they are ranked higher, while core and outlier images are
ignored. Figure 7b shows core and outliers images with smaller and similar BPF
scores therefore, a mixture of cores and outliers can be seen. We further show
the LOF scores as labels of each digit to show that LOF scores of core points
are close to 1 and outliers have LOF scores > 1.

Fig. 7. Top (a) and bottom (b) 50 digits detected by BPF (k = 50). The LOF scores
are labeled at the top of each digit.

6 Conclusion

This paper proposes an effective boundary points detection technique called
BPF based on LOF and Gravity values. According to the proposed formulation,
boundary points tend to have larger BPF scores than cores and outliers. There-
fore, BPF can detect boundary points more effectively while ignoring the core
points and outliers. We experimentally demonstrated the effectiveness of BPF
where it showed comparable or better results compared with other methods on
the synthetic datasets with multiple clusters of different shapes and densities,
and outliers. Furthermore, our method has one parameter which can be tuned
in the same range as LOF. In addition, BPF can be used in conjunction with
LOF as they share k-nearest neighbor and LOF computation. Hence, BPF can
be integrated with LOF to output outliers and boundary points separately. In
the future, we intend to work on detecting boundary points in streaming data
where the boundaries of the clusters may change with time.

Acknowledgement. This work was partly supported by JSPS KAKENHI Grant
Number JP19H04114 and AMED Grant Number JP21zf0127005.
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Abstract. Hypergraphs provide a natural mathematical way to accom-
modate hierarchical, relational, navigational, semi-structured, complex
& higher-order relationships in real-world settings. Applications such
as social media (that have their data centers in different geographical
locations) and bibliographic paper publication portals (that deal with a
diverse group of authors and reviewers from a wide geographical area)
require data availability while coping with high network latencies. Repli-
cation is the commonly used approach for achieving a high degree of avail-
ability while facilitating local query processing, but it requires expensive
(and often infeasible) concurrency control to ensure consistency. More-
over, administrative and security policies may prohibit certain parts of
the database from being fully replicated at certain sites. This paper
proposes a solution to partially replicate hypergraphs in conformance
with distribution policies while ensuring data availability and network
latency. Our approach leverages the novelty of Conflict-free Replicated
Data Types (CRDTs) (that guarantee strong eventual consistency with-
out requiring complex concurrency control mechanisms) with hypergraph
structures and semantics to consistently update and propagate (fully
or partly) hypergraphical information across multiple replicas. We also
show how concurrent processes meet convergence conditions, proving the
soundness of our approach.

Keywords: Hypergraphs · Complex relationships · Higher-ordered
relationships · Graph database · Consistency · Data replication ·
CRDTs

1 Introduction

Hypergraphs are interesting data structures that can offer useful properties of var-
ious data models (such as schema of relational databases, and navigations of graph
databases) to cope with the semi-structured, hierarchical, navigational, complex,
higher-order relationships [2,9–11,19,20,25]. Complex relationships link and rep-
resent multiple entities (that exist independently of a relationship, and are self-
contained) and/or relations (for building higher-order relations), describing either
a collection or a structure. Hypergraphs depicting complex relationships are vis-
ible in a monotonically growing bibliographic dataset where a journal article is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Example showing a hypergraph structure to capture article relationship (part
a), and hypergraph objects storing an article record (part b).

represented as a structured higher-order relationship between its authors, a col-
lection of reviews, and a journal issue. A publisher publishes many journals, each
of which often has many issues. The italicized issue refers to a journal issue. An
issue is tied to its journal by its publication year and volume. Figure 1 depicts rel-
evant entities and relationships as structured vertices (i.e., Author, Reviewer,
IssueDate, and Publisher) and hyperedges (i.e., Article, JournalIssue, and
Journal) of a hypergraph, each with a set of attributes.

In real-world, publishing journal articles/conference papers involves paper
submission, review, and publication. These steps are often carried out at distant
domain sites, with each site notifying the other sites of the article’s revised status.
These sites may span a wide geographical area and have diverse network con-
nections. Thus, these systems need to be distributed with a high requirement of
information availability (for efficient local query processing), along with network
latencies. Since replication offers availability at the expense of strong consistency
between the copies, that further requires synchronization [12]. Here, a weaker
notion of consistency is required to ensure the consistency of replicated copies.
Conflict-free Replicated Data Types (CRDTs) is a reasonable choice for main-
taining consistency in highly dynamic environments [22,23]. CRDTs address the
twin requirements of availability of data and operation under network partition-
ing without requiring complicated concurrency control mechanisms.

Requirements for Partial Replication: Furthermore, due to several constraints,
including administrative policies (e.g., ownership of data), security and privacy
concerns, and lack of physical resources, the entire data may not be required to
distribute to all the domain replicas. A double-blind review, for instance, may
require a limited exchange of in-process article information, and reviewers may
be provided limited details about the journal issue. Sharding is a commonly used
approach for determining data replication. However, distribution and replication
of these partial chunks of data, called shards, needs attention.

Our Approach: In [3], we have leveraged the hypergraph semantics with CRDT
approach to provide consistent updating and propagation of hypergraphical infor-
mation across multiple replicas in the distributed environment. We introduced the
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first instance of a well-formed higher-order hypergraph CRDT called HgCRDT for
full replication [3]. Now, we propose a modified version of HgCRDT: Hypergraph
as Conflict-free Partially Replicated Data Types (HgCPRDTs), emphasizing
the distribution of shards of the well-formed higher-order hypergraphs to multiple
sites, ensuring the availability of data. The partial distribution of hypergraphi-
cal shards is performed according to distribution constraints/policies (hereafter
DP). The hypergraphs are well-formed built using schema and types, which fur-
ther brings acyclicity [9] into the structure. We exclude specifics about our ongo-
ing implementation to emphasize the suitability of our proposed hypergraphs to
be used with conventional CRDTs. However, the implementation introduces a
database paradigm for managing our envisioned hypergraphs in a distributed (cur-
rently in a multi-threaded) environment.

Our Contribution: The major contributions of this paper are as follows:

1. We introduce and define well-formed higher-order recursively-defined muta-
ble partially-replicated hypergraph termed as Hypergraph as Conflict-free
Partially Replicated Data Types (HgCPRDTs).

2. We formally specify HgCPRDTs to incorporate query, add, remove and mod-
ify operations on hypergraphical atoms.

3. We also give a proof-of-correctness showing how concurrent processes meet
convergence conditions (essential for eventual consistency) in HgCPRDT.

2 Conflict-Free Replicated Data Types (CRDTs)

CRDTs [22,23] are data structures that guarantee strong eventual consistency
[13] with minimal synchronization. The CRDT applies to data type representa-
tions in which the operations performed are conflict-free, allowing local modi-
fication to the data, replicating the data/operations asynchronously at the dis-
tributed locations, and then immediately returning to computation.

We are interested in a Set-based CRDT: 2P-Sets [22] that uses two sets
(say, A and R) as its payload (i.e., an internal data structure representation), for
adding and removing elements. The set elements are interrogated using query
operations. The update operations (that change the internal state of the data
object) include add and remove operations that act as two phases of a sequential
set. In the 2P-Set, once the elements are removed from A, and added to the
remove (or tombstone) set R, cannot be reintroduced. The 2P-set uses “remove-
wins” semantics, so remove(e) takes precedence over add(e). The 2P-set is a
good data structure for storing shared session data, such as shopping carts,
shared documents, or spreadsheets.
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3 Partially Replicated Hypergraphs as a CRDT

Definition 1 (Hypergraph). A hypergraph defined as: G: (V,H), where V =
{v1, v2, ..., vn} is a set of vertex objects, and H = {he1, he2, ..., hem} a set of hyper-
edge objects representing entities and relationships, respectively. n,m ≥ 0. Each
vi ∈ V is an instance of a vertex type, vT , and has a non-empty finite set of distinct
attributes F , each with one or more scalar values. Each he ∈ H is an instance of a
hyperedge type, heT , and includes A, a finite set of distinct intrinsic (i.e., A′ ∈ A)
and extrinsic attributes (i.e., A′′ ∈ A). |A′| ≥ 0, |A′′| > 0. An attribute a ∈ A′∪A′′

may be a collection.

Definition 2 (Intrinsic attribute). An intrinsic attribute a ∈ he.A′ defines
a property for storing a scalar (e.g., String, Int, Float, Boolean) or sub-structure
value.

Definition 3 (Sub-structure). A sub-structure value aS of a sub-structure
type aST

includes a set of attributes B, where each b ∈ B has either a scalar
value or an atom object x ∈ (V ∪ H). The attribute b may be a collection too.

Definition 4 (Extrinsic attribute). An extrinsic attribute b ∈ he.A′′ refer-
entially1 links one or a more atom objects y ∈ (V ∪ H) that exists outside he.

We use well-formed higher-order hypergraphs in HgCPRDT as a collection of
schematic & typed vertex and directed hyperedge objects, so are different than
the traditional hypergraphs as given in [9]. We use the term hypergraph atom to
abstractly refer to the schematic typed vertices and hyperedges. The atom types
are defined in an object-oriented framework, and are derived from user-defined
schema that provides domain-specific structures of different kinds of vertex and
hyperedges. Note, vertex is the basic unit of information. Also, in a hyperedge
he, an extrinsic attribute helps build the associated relationship.

Definition 5 (Well-formed hyperedge). A hyperedge he is well-formed
when added to H on satisfying the following constraints, avoiding any cycle and
self-loop for every ui ∈ U , where U ∈ (he.A′′ ∪ he.aS), and ui ∈ H:

1. ui �= he, and � no self-loops
2. ∀ he′ ∈ H : � no cyclic dependency

(a) ui /∈ he′.U ,
(b) ∀ he′′ ∈ he′.U : he′′ /∈ he

Definition 6 (Well-founded hypergraphs). A hypergraph G is well-founded
if for every new hyperedge he to be added in H, ∀u ∈ (he.A′′ ∪ he.aS), the atom
u must exist in (V ∪ H).

1 Referential linking means an object is linked via its implicit id.
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For our HgCPRDT approach, we ignore intrinsic properties and consider
hyperedges of the form he(mutable atom set U), which connects a set of atoms
U irrespective of being in a sub-structure of he. By insisting that the set of atoms
U already exist when creating a hyperedge he(U), we ensure that our hypergraphs
are well-founded. As a consequence, a hyperedge cannot appear within its own
set. Hyperedges are mutable, in that we permit the set of atoms to be modified.
Notably, we treat atoms as typed objects with a unique implicit identity, avoid-
ing the need to store the entire hyperedge where hyperedge members (particularly,
the referentially-linked atoms) are themselves (independent) objects. Such hyper-
edges are well-formed and acyclic. Every hyperedge built as per the definition
of 5 yields a well-formed hypergraph. Furthermore, two hyperedges with the same
set are not the same. The implicit object ids, the hyperedge type, and the internal
attributes make the hyperedges different.

The Article(paper, reviews, authors, journalIssue) in Fig. 1(b) is a
well-formed acyclic typed hyperedge built atop existing (relevant) reviewers,
authors, and journal issue objects. The paper (with title & pages attributes)
and reviews (with comments & reviewer attributes) are inherent and essen-
tial parts of a published article and are thus used as intrinsic sub-structure
attributes of the Article. The reviews is a collection, and its reviewer
attribute belongs to Reviewer vertex type. The journalIssue and authors con-
tain independent objects of JournalIssue hyperedge and Author vertex types,
respectively, and are thus considered extrinsic attributes of the Article. The
Article and JournalIssue are higher-ordered hyperedges due to the complex
relationships between hyperedges (i.e., Article → JournalIssue → Journal;
and JournalIssue → Journal). The Article(reviews.reviewer, authors,
journalIssue) is considered an illustration of the form he(mutable atom set U).

Traditional CRDTs use state-based and operation-based replication, yield-
ing in Convergent Replicated Data Types (CvRDTs) and Commutative Repli-
cated Data Types (CmRDTs), respectively [22,23]. A state captures the update
information and is transmitted to all the replicas in CvRDTs; whereas, only
the update operations are replicated to all the replicas in CmRDTs. Since the
eventual transmission of the entire state in CvRDTs may be costly in terms of
memory and computation for large data structures, we prefer operation-based
CmRDT replication in our work to make HgCPRDT suitable for large hyper-
graphs.2 The communication model of the HgCPRDT is similar to that of
the CRDTs [22], that works with an underlying causally-ordered broadcast com-
munication protocol [16] via a reliable delivery mechanism that helps to further

2 A conference may include sub-conferences, workshops, and journals; and a journal
or a conference may receive a large volume of submissions as shown in [1].
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reduce inconsistencies between replicas by restricting the operations seen in pos-
sibly different orders at the replicas to only concurrent operations. Therefore, the
same replica can simultaneously send and receive different or the same messages.
We assume that the communication infrastructure notifies the replicas about the
sender with update information.

To facilitate the adoption of our technique, we use the template provided
by the operation-based 2P2P-Graph specification [22,23] for hypergraphs. Our
proposed hypergraph specification uses two tombstone sets (V R,HR) to repre-
sent the 2P-Sets, which relaxes in some instances the requirement for a causal
order of delivery; an example includes multiple removals of the same atom in a
set; and thus permits some additional asynchrony. Other variants of CRDT Sets
are possible, such as OR-Sets, though the commutativity properties need to be
carefully verified for each such choice.

Note that, vertices are the base case for atoms (which also include hyper-
edges) and that hyperedges relate the atoms of a set to each other. The novelty
of this work lies in this treatment of such well-founded recursive hypergraphi-
cal structures. Another novelty is that the set incident on a hyperedge is itself
mutable 2P-Set. Hyperedges are built on object references to store the atom
set rather than the complete hyperedge itself (in the implementation). Conse-
quently, hyperedges are mutable, as we may add and remove atoms incident on
the hyperedge. The use of tombstone sets allows deletion of an atom from a set;
however, since the atoms are implemented as typed objects having their implicit
identity, the atoms persist across such modifications. The usage of implicit object
identities explains why traditional CRDT models like Key-Value pairs and maps
are not suitable for encoding hypergraphs, even after some transformation.

Hypergraphs are particularly well-suited for partial replication since a
hyperedge’s projection containing only some of its set’s atoms is still a hyperedge.
In other words, hyperedges are closed under projections to a subset of atoms.
The HgCPRDT specification is designed to support sharding with full or partial
replication of shards under specific user-defined DPs, considering the number of
active threads/systems in a domain according to the availability requirements.
Under the presumption of a static number of domain replicas, a DP (that may
be a string) must specify which atom type may be shared with which replica.

4 Specification of HgCPRDTs

The HgCPRDT specifies the payload as four sets: V A, V R,HA, and HR for
adding and removing vertices and hyperedges (initialized as empty); and com-
prises its three types of interface operations: auxiliary, query, and update opera-
tions (i.e., add, remove, and modify). The applicability of HgCPRDT operations
in distributing in-process article objects is shown in Fig. 2.
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Table 1. HgCPRDT: payload and auxiliary operations

� V A : vertex add set, V R : vertex remove set,

� HA : hyperedge add set, HR : hyperedge remove set

payload set V A, V R, HA, HR
� internal data structure of a replica

initial φ, φ, φ, φ � “initial” specifies initial values of payload sets at every replicas

query inShard (atom a, location l) : boolean b � “let” marks non − mutating statements

let b =

{
true if a is to be replicated to location l as per sharing policy

false otherwise

}

shardAtom (atom a): atom set array � atom set array A

if a is a vertex: A := shardV ertex(a)

otherwise: A := shardHyperedge(a)

return A

shardAtomset (atom set X): atom set array
� atom set array T, S; location set L

∀(l ∈ L) : T [l] := ∅
∀(x ∈ X) : S := shardAtom(x)

∀(l ∈ L) : T [l] := T [l] ∪ S[l]

return T

shardV ertex(vertex v): vertex set array � vertex set array S

∀(l ∈ L) : S[l] := {v | inShard(v, l)}
return S

shardHyperedge(hyperedge he(U)) : hyperedge set array � he(mutable atom set U)

U ′ := shardAtomset(U)

∀(l ∈ L) : S[l] := {he(U ′[l]) | inShard(he(U ′[l]), l)} � hyperedge set array S

return S

Auxiliary operations (Table 1) help in preparing shards to be used by
query and update operations. These are non-mutable operations that are per-
formed locally at each replica. inshard embodies the DP for each atom- given an
atom and a location, it returns true if and only if the atom is (to be) present at
that location. Given an atom a, shardAtom computes a location-indexed array
of atom sets, which are either the singleton {a} or the empty set ∅ according
to the DP. In our implementation, this is efficiently represented as a bit-vector.
shardAtom is defined in terms of shardVertex and shardHyperedge. shardAtomset
computes a location-indexed array of atom sets, each component of which is the
subset of the given atom set X that is to be replicated at that location. Since
hyperedges have a set of atoms, shardHyperedge uses shardAtomset to project
those atoms of the given hyperedge that are replicated at each location. Note
that if the hyperedge itself is not replicated at a particular location, we need not
worry about replicating the node’s incident on it. Here too, we use bit-vectors
for efficient representation of the location-indexed arrays.
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Table 2. HgCPRDT: query operations

query lookupAtom (atom a) : boolean b � “query” indicates a non − mutable operation

if a is a vertex: lookupV ertex (a)

otherwise: lookupHyperedge (a)

query lookupAtomset (atom set S) : boolean

let b =
( ∧

∀u∈ S

lookupAtom(u)
)

query lookupV ertex (vertex v) : boolean

let b = (v ∈ (V A \ V R))

query lookupHyperedge (hyperedge he(U)) : boolean

let b = (lookupAtomset(U) ∧ he(U) ∈ (HA \ HR))

query within (atom a, hyperedge he(U)) : boolean b � checking for acyclic hyperedges

let b =

⎧
⎪⎨
⎪⎩

true if a = he(U) ∨ a ∈ U ∨ ∃ he(U ′) s.t.

lookupHyperedge(he(U ′)) ∧ a ∈ U ′ ∧ within(he(U ′), he(U))

false otherwise

⎫
⎪⎬
⎪⎭

Query operations (Table 2) are immutable operations that interrogate the
state of the mutable object (hypergraphs in this case) locally. Unlike full repli-
cation, partial replication limits the queries and answers at a location to those
that are permitted to be asked and those that are permitted to be present in
that replica. Accordingly, the correctness criterion for the eventual consistency
of the partial replicas is that the answer to a permitted query at any location is
the projection, as per the DP, of the answer to the query asked on the (perhaps
hypothetical) complete hypergraph object.

The lookupAtom checks for the presence of an atom, whether a vertex (lookup-
Vertex ) or a hyperedge (lookupHyperedge), as the case may be, in the partial
replica of the hypergraph present at that location. The lookupAtom operation is
lifted to sets of atoms using a conjunction. The precondition of the lookupHy-
peredge query checks for the existence of all atoms in the set. Since we permit
the set to be mutable, the payload sets HA,HR only contain reference-based
structures for the hyperedges, and the set is accessed by dereferencing. within
operation checks that the given hyperedge should be acyclic. Therefore, it recur-
sively checks if a given atom a appears within a given hyperedge.

Update Operations are mutable global operations executed by source
replicas (the site that send their update information to other replicas), and
downstream replicas (i.e., a recipient site) in two phases- prepare at source, and
effect at downstream. A source replica initiates an update operation and tailors
an argument (i.e., location-specific update shards) locally in prepare at source
phase according to a DP. The location-specific shards are prepared so that all
necessary data are sent to the downstream replicas so that any query operation
permitted by the DP at any particular location can be performed strictly locally.
After receiving the argument, each downstream replica processes it in the later
phase atomically and asynchronously using a causal delivery order. The causal



Hypergraphs as Conflict-Free Partially Replicated Data Types 425

Table 3. HgCPRDT: add operations

update addAtom (atom a) � “update” indicates a mutable operations

if a is a vertex: addV ertex(a)

otherwise: addHyperedge(a)

update addV ertex (vertex v)

� A source replica prepares location-specific shards for downstreams in this phase.

prepare at source

parameter v � “parameter” explicitly describes the arguments used by a replica

let S = shardV ertex(v)

� Each downstream uses “effect at downstream” phase to process the received shards.

effect at downstream l s.t. S[l] �= ∅ � l is the location of a downstream

parameter S[l]

� “pre” specifies preconditions that must be satisfied for an operation to be invoked

pre S[l] = {v}
V A := V A ∪ {v}

update addV ertexSet (vertex set X)

prepare at source

parameter X

let S = shardAtomset(X)

effect at downstream l s.t. S[l] �= ∅
parameter S[l]

∀(v ∈ S[l]) : V A := V A ∪ {v}

update addHyperedge (hyperedge he(U)) � he(atom set U)

prepare at source

parameter he(U)

pre lookupAtomset(U)

let S = shardHyperedge(he(U))

effect at downstream l s.t. S[l] �= ∅
parameter S[l]

pre (S[l] = {he(U ′)}) ∧ lookupAtomset(U ′)
HA := HA ∪ S[l]

delivery order of asynchronous update messages from the source to downstream
sites ensures that any local query will result in a legitimate answer. Note that the
notion of sources and downstream sites is not statically fixed. Nor do we assume
that any single site has a copy of the complete hypergraph in our framework.

Add Operations (Table 3): The addAtom operation adds a vertex or a
hyperedge, depending on the kind of atom specified. In these update operations,
the arguments are prepared at the source location, then the partial replicas (or
shards) for each location is computed. The operation is then effected immedi-
ately at the source, and if the parameter is non-trivial, also sent asynchronously
but reliably to the downstream locations, where it is affected atomically. If the
shard for a downstream location is empty, then we do not send it any message:
this is not only for efficiency but also to prevent information leakage. Adding a
set of hyperedges can be realized by iterating the addHyperedge operation. Note
that when adding a hyperedge, all atoms in its set must exist, and thus the cor-
responding add operations for all these atoms must have been delivered earlier.
The sharding operations take care to ensure the necessary invariant properties.
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Table 4. HgCPRDT: remove operations

update removeAtom (atom a)

if a is a vertex: removeV ertex(a)

otherwise: removeHyperedge(a)

update removeV ertex (vertex v)

prepare at source

parameter v

pre lookupV ertex(v) ∧ ∀(he{U} ∈ (HA \ HR)) : ¬U.lookupV ertex(v)

let S = shardV ertex(v)

effect at downstream l s.t. S[l] �= ∅
parameter S[l]

pre (S[l] = {v}) ∧ addV ertex(v) delivered

V R := V R ∪ {v}

update removeHyperedge (hyperedge he(U))

prepare at source

parameter he(U)

pre lookupAtom(he(U)) ∧ ∀(he{U ′} ∈ (HA \ HR)) : ¬U ′.lookupAtom(he(U))

let S = shardHyperedge(he(U))

effect at downstream l s.t. S[l] �= ∅
parameter S[l]

pre (S[l] = {he′}) ∧ addHyperedge(he′) delivered

∧ ∀(he{U ′} ∈ (HA \ HR)) : ¬he.U ′.lookupAtom(he′)
HR := HR ∪ {he′}

Table 5. HgCPRDT: modify operation

update changeHyperedge (hyperedge he(U), S+, S−) � he(mutable atom set U)

prepare at source � S+ = atoms to be added, S− = atoms to be removed at source

parameter he(U), atom set S+, S−

pre lookupAtomset(S+) ∧ U.lookupAtomset(S−) ∧ lookupHyperedge(he(U)

∧ ∀(x ∈ S+) : ¬ within( x, he(U))

let D = shardHyperedge(he(U))

let DS+ = shardAtomset(S+) � DS+ = atoms to be added at a downstream

let DS− = shardAtomset(S−) � DS− = atoms to be removed at a downstream

effect at downstream l s.t. D[l] �= ∅
parameter D[l], DS+[l], DS−[l]

pre (D[l] = {he′}) ∧ addHyperedge(he′) delivered ∧ lookupAtomset(DS+[l])

∧ ∀(x ∈ DS+) : ¬ within( x, he′)
∀(x ∈ DS−[l]) : U.removeAtom(x);

∀(x ∈ DS+[l]) : U.addAtom(x);

Remove Operations (Table 4): Again, the source location prepares the
shards to be removed from each location, sending the parameter asynchronously
to only those downstreams where some non-trivial action needs to be performed.
An atom incident on a hyperedge can only be deleted after the hyperedge itself
has been removed. Note that deleting an atom requires that it should not be
incident on any hyperedge (should not be in the set of any hyperedge). Thus
the precondition ensures that it cannot possibly appear within any higher-order
hyperedge. We do not present here the remove operations lifted to a set of atoms.
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Modify Operations (Table 5): It is always possible to modify a hyperedge
in a hypergraph by deleting the existing edge and replacing it with the modified
edge. It entails ensuring that any atoms present (recursively) within the new
set of the new hyperedge must already exist (and must not be the hyperedge
itself). However, since hyperedges are complex structures, their modification is
expensive. Instead, we specify the modification of a hyperedge by the addition
or removal of atoms in a set via changeHyperedge operation. Note that we now
require a set to itself be mutable 2P2P-Set: the vertices and hyperedges in the
sets U.V, U.H are respectively subsets of the two 2P-Sets V,H of the global hyper-
graph object, represented by payload V A, V R and HA,HR in the tombstone
implementation. By global hypergraph, we mean the replica’s state consisting of
payload sets, irrespective of any particular hyperedges.

The changeHyperedge operation takes an existing hyperedge he(U), and the
atom sets S+, S− that are to be added to and removed from the set U . For
simplicity, assume that S+ ∩ S− = ∅, S+ ∩ U = ∅ and S− ⊆ U . For readability,
we use the set operations of intersection and subset. These conditions can be
expressed in terms of the query operations. Note that in the precondition of
changeHyperedge, we need to check that the set S+ being added should exist in
the (global) hypergraph, whereas the set being deleted S− should already be in
the mutable source and target sets of the given hyperedge. Note also that in the
effect phase, the atoms from the various sets are removed/added to the set of
the hypergraph. Observe that the atoms are only removed from the set of the
hyperedge, but not from the (global) hypergraph because hyperedges are formed
using references of existing other atoms. Vertex modify is a trivial operation, and
therefore we ignore it in this paper.

4.1 Example with HgCPRDT Operations

Figure 2 demonstrates the partial distribution of an in-process article record in
the HgCPRDT framework on the three sites- S1, S2, and S3, each with initial
empty payload sets. Vertices and hyperedges are added to the system in case of no
earlier existence. Initially, S1 acts as a source and adds two vertices A and B for
authors, and a hyperedge Ar for an article. Meanwhile, S2 initiates add vertices
for reviewers X,Y, and Z. Note that a source site prepares shards for every down-
stream but transmits only the non-empty shards. Thus, ensuring a double-blind
review, neither the authors nor the reviewers are shared with S2, S1, respectively.
However, the source sites broadcast the shards of the updated articles with null
objects for the non-shared objects. Since each review has two fields: comments
and reviewers, the updated article at S1 only includes the comments, whereas
S3 contains the both. Now, S3 initiates add operations for a publisher, P and a
journal, J . Due to the causal sequence, the arrival of the add P and add J opera-
tions at S1 does not result in a conflict, although both operations came from the
same source. This is followed by the inclusion of an issue, JI2 (having volume 3)
at S3, which requires a revision to the article. In case there is a need to change
the issue (having another vol.) of the article, the deletion of JI2 is required;
however, the removeHyperedge(JI2) operation fails due to the hyperedge Ar
being dependent on it. Thus, the article is updated with a newly added issue
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Fig. 2. The partial distribution of an in-process article using HgCPRDT operations.

hyperedge JI1 (having vol. 4), which may follow the deletion of JI2 to add JI2
in the tombstone set (HR). Due to a delay in the network, concurrent operations
may reach downstream. Some concurrent operations on the same object do not or
minimally affect the payload sets. On the other hand, the concurrent operations
on different objects that affect the payload sets are handled via the causal deliv-
ery order of operations. Examples include: addV ertex(P ) || addHyperedge(J)
at S1, and changeHyperedge(Ar) || changeHyperedge(Ar) at S2.

4.2 Proof of Correctness

Most of the arguments related to 2P-Sets and 2P2P-Graphs [22] carry over in
the proof that this specification implements a CRDT. It is easy to show that add
operations or remove operations on unrelated atoms naturally commute. If, how-
ever, an atom appears (recursively) within the set of another atom, then adding
the second atom must causally follow the addition of the first atom. The delivery
order ensures it. The reverse holds for remove operations. Concurrent add and
remove operations on the same atom are resolved by the 2P-Set condition [22].
The cases of concurrent remove(u) and add(w) [or add(u) and remove(w)] oper-
ations where there is a some relationship between u,w, are dealt with using the
2P-Set conditions, the conditions on adding or removing atoms, and transitivity.

Operations other than the remove are independent of the changeHyperedge.
The tombstone set will ensure that removal prevails over modifications. Modifi-
cations to different hyperedges commute. Consider two concurrent modifications
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to the same hyperedge with changes S+
1 , S−

1 and S+
2 , S−

2 respectively. We claim
that the operations can safely commute (refer to the Lemma 1), resulting in set
(U ∪ S+

1 ∪ S+
2 ) \ (S−

1 ∪ S−
2 ). Atoms appearing in the corresponding add set (or

removal set) pose no problem. The assumptions about the sets of atoms being
added or removed from a given set within each operation allow the commutation.

Lemma 1. Concurrent changeHyperedge(he, S+
1 , S−

1 ) and changeHyper
edge(he, S+

2 , S−
2 ) commute. (For the proof, see the Appendix A.)

5 Related Work

The basic CRDTs include counters, registers, sets, and ordered lists [21,23,24].
A complex CRDT includes Graph [22,23] that uses two 2P-Sets for adding
and removing vertices and edges. Existing work on higher-order CRDT includes
JSON data structure [17] (composes lists, maps, and registers to embed JSON
types); Riak [5] (defines maps as a CvRDT); Causal trees [14] (represents ordered
trees into graphs); Logoot [24] (uses a sparse non-mutable n-ary tree to nest
ordered lists); higher-order patterns [18]. The CRDT-based partial replication
includes [?]- uses delta mutations over CvRDTs; [8]- computes digests for par-
tial replication; [4]- defines a partial order over operations; [?]- performs sharding
on a set of particle; [6]- introduces a non-uniform replication on top-K without
removals and histograms, and top-Sum; and [7]- clubs replica sharding with a
delta-based CRDT approach. An instance of CRDTs employed in databases
includes SU Sets [15] for RDF graphs and the SPARQL update operations. Our
work differs in that it deals with hypergraphs, a more complex, higher-order
data type, and contains modifiable mutable structures. We use hyperedges of
well-formed schematic hypergraphs to represent complex relationships, allowing
the nesting of hyperedges built on references that make their members indepen-
dent. Additionally, sharding in HgCPRDT is performed at source, as dictated
by schema according to administrative policies.

6 Conclusion

We have introduced a framework for partial replication of the commutative
conflict-free hypergraphs. We have proposed and specified a new CRDT- a well-
formed higher-order recursively-defined mutable partially-replicated hypergraph
named HgCPRDT as an operation-based specification of 2P2P that works with
tombstone sets. In HgCPRDT, hyperedges are modifiable and closed under pro-
jections to a subset of atoms. We have proved its correctness by showing how
concurrent processes meet convergence conditions and guarantee strong eventual
consistency in HgCPRDT. Future work involves studying the performance and
scalability of partially replicated hypergraphs and developing systems dealing
with various large hypergraphs on real data. Changes in the properties of ver-
tices and hyperedges must also be accounted for in addition to changes in the
structure.
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A Proof of Lemma 1

Proof. According to the changeHyperedge operation, a set of atoms S+ are
added to, and a set of atoms S− are removed from a hyperedge. Therefore:

changeHyperedge (he, S+
1 , S−

1 ) = U ∪ S+
1 and U \ S−

1 = (U ∪ S+
1 ) \ S−

1

Similarly,

changeHyperedge (he, S+
2 , S−

2 ) = U ∪ S+
2 and U \ S−

2 = (U ∪ S+
2 ) \ S−

2

The concurrent execution of both the change operations on the same hyper-
edge results on each of the replicas:

changeHyperedge (he, S+
1 , S−

1 ) || changeHyperedge (he, S+
2 , S−

2 )
= (U ∪ S+

1 ∪ S+
2 ) \ (S−

1 ∪ S−
2 ) || (U ∪ S+

2 ∪ S+
1 ) \ (S−

2 ∪ S−
1 )

Further, the commutative set-union operation makes the results equivalent:

(U ∪ S+
1 ∪ S+

2 ) \ (S−
1 ∪ S−

2 ) ≡ (U ∪ S+
2 ∪ S+

1 ) \ (S−
2 ∪ S−

1 )

Therefore, modification of concurrent operations to the same hyperedge com-
mute.
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Abstract. Trajectory data mining and analysis have been largely stud-
ied in the past years. These tasks are complex and non-trivial due to
the data volume and heterogeneity. One solution for these problems is
data summarization in order to generate representative data. Few works
in the literature address this solution, and none of them consider space,
time, and unlimited semantic dimensions and their data type details.
This paper proposes a grid-based method for multiple aspects trajectory
data summarization named MAT-SG. It brings several contributions:
(i) trajectory segmentation into a spatial grid according to data point
dispersion; (ii) it expresses a set of trajectory data by a sequence of
representative points with representative values for each dimension, con-
sidering their data type particularities. We evaluate MAT-SG over two
datasets to assess volume reduction and accuracy.

Keywords: Trajectory summarization · Multiple aspects trajectory ·
Representative trajectory

1 Introduction

With the explosion of the Internet of Things, many technologies have emerged,
such as portable devices, embedded computing and location-based social net-
works, which provide data about the movement of objects. These collected data
are called moving object trajectories, and they are often used in data analysis
activities by many application domains, such as traffic control [1,8,17], animals
migration [4,8], hurricane prediction [10,16,17] and vessel monitoring [6].

Trajectory data have quickly evolved over time. A raw trajectory is a sequence
of trajectory points over the geographic space in the time (x, y, t) [5]. When a raw
trajectory is enriched with semantic information, such as a point of interest (PoI)
the object had visited, this trajectory is known as semantic trajectory. At last,
when an entire trajectory, or some of its points, is associated with many semantic
contexts, we have the recent concept of multiple aspects trajectory (MAT) [12].
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Fig. 1. An example of MAT [12]

Figure 1 shows a MAT of an individual during a day. In this example, the raw
trajectory (spatial and temporal dimensions) is enriched with semantic informa-
tion such as PoIs, means of transportation, weather and health information.

Understanding patterns in trajectories can help data analysts make better
decisions. Recommendation systems, for example, deal with the analysis of users’
behaviors to find products of interest or suggest actions that will let he/she more
healthy/satisfied. Figure 2 (left) shows the MATs of a woman. On the right side,
her MATs are summarized in a representative MAT that presents the actions
that she frequently does. From that, we see that she goes to work on weekdays
and lunch at a vegetarian restaurant between 0:30 pm and 1:30 pm.

Fig. 2. Example of MATs (left) and a representative MAT for them (right)

Based on the knowledge provided by the representative MAT of Fig. 2 (right),
a recommendation system can learn about her habits and make recommenda-
tions. Suppose the same woman is in a different location and she decides to move
around at 1 pm. Suppose also that the system identifies a vegetarian restaurant
on her trajectory. Given this context, it recommends this restaurant to her as 1
pm is the time that she usually has lunch and she prefers vegetarian restaurants.

From this example, we see that trajectory data summarization is helpful to
reduce the complexity of the data to be processed for further analysis. Some
surveys point out that semantic trajectory data summarization is an open
issue [7,18]. This lack of works is probably due to the complexity of these data,
as different semantic contexts may coexist and be related to parts of a trajectory,
which makes data summarization tasks more challenging.



A Method for Summarizing Trajectories with Multiple Aspects 435

This paper proposes a novel method for summarizing MAT data: MAT-SG
(Multiple Aspect Trajectory Summarization based on a spatial Grid). It is based
on a spatial grid that covers a set of input MATs. For all points in a same
grid cell we generate a representative point. In turn, a representative MAT is
generated from the sequence of representative points. Our data summarization
aims to reduce the volume of MATs data with low accuracy loss.

The main contribution of this paper is the detailed treatment of all MAT
dimensions (spatial, temporal and semantic) for summarization purposes. Regard-
ing spatial summarization, we segment the input MATs in a grid of cells by dimen-
sioning the cell size according to the dispersion of the MATs points. Regarding
temporal summarization, we discover and rank the most significant time intervals
in a cell. Regarding semantic summarization, we rank the semantic values that
best represent the behaviour of the cell points. We evaluate our method over two
datasets (Foursquare and a synthetic one), with promising results.

The rest of this paper is organized as follows. Section 2 presents the basic con-
cepts associated with MAT-SG. Section 3 is dedicated to related work. Section 4
describes the proposed method. Section 5 presents an evaluation and Sect. 6 con-
cludes the paper and outlines future works.

2 Fundamentals

This section defines basic concepts that are relevant to this paper [12,13,15].

Definition 1 Aspect (asp). Let asp = (desc, asp type, ATT) a relevant real-
world fact, where desc is its description, asp type is the aspect type that charac-
terizes it, and ATT is a set of attribute-value pairs that describe its properties.

An aspect type is a categorization of a real-world fact. It is essentially any
information that can be annotated on a trajectory. For instance, it is possible
to define aspect types such as social media post, weather condition, PoI, and
mean of transportation. Each one can contain attributes with different types of
categorical and numerical data. A hotel, for example, can be described by a
name, address and stars. A MAT can hold several aspects, as specified next.

Definition 2 Multiple Aspect Trajectory (MAT). A MAT is a sequence of
points (p1, p2, ..., pn), with pi = (x, y, t, A) being the i-th point of the trajectory
generated in the location (x,y) at timestamp t, and described by the set A =
{a1 : v1, a2 : v2, ..., ar : vr} of r attributes of the related aspects.

A MAT holds a set of points, and a MAT point is a complex element with
many aspects’ attributes (attribute-value pairs) besides space and time data.

This work is also related to data summarization. It aims to reduce the size of
data to obtain approximate data in comparison with the original contents in a
larger dataset so most of them satisfy the user requirements [9]. It can be defined
in different ways, according to the considered focus, like interest, density, fre-
quency, and pairwise distance [14]. We understand trajectory summarization as
a process that abstracts data from a set of MATs and generates a representative
MAT without necessarily hold a 100% similarity with all the individual MATs.
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3 Related Work

Most of works that generates representative trajectories are limited to raw tra-
jectories [3,4,6,8,10]. Table 1 shows the related work.

Table 1. Related work comparison

Study Summarized dimensions Activities Mapping data

specificationSpace Time Semantic

Lee et al. (2007) [10] X – Partitioning & cluster (subtrajectory)

– Fusion of each group of points

Buchin et al.

(2013) [3]

X – Partitioning into subtrajectories

– Median trajectory computation

Ayhan and

Samet (2015) [2]

X X – Partitioning & Fusion (subtrajectory)

– Clustering & Fusion (points)

Etienne et al. (2016)

[6]

X X – Median trajectory computation

Agarwal et al.

(2018) [1]

X X – Partitioning & cluster (subtrajectory)

Buchin et al. (2019)

[4]

X X – Partitioning & cluster (subtrajectory)

– Minimal GD computation

Gao et al. (2019) [8] X X - Clustering points — ROIs

Seep and

Vahrenhold

(2019) [17]

X X X – Finite State Machine

Rodriguez and

Ortiz (2020) [16]

X X – Partitioning & cluster (subtrajectory)

– Fusion of each group of points

MAT-SG X X X – Partitioning in cell grid

– Clustering points

– Representative Point Computation

X

Partitioning and clustering are the main activities performed by the related
work. They usually partition the trajectories into subtrajectories or points and
cluster the partitioned data. Then, data summarization occurs at each cluster.

Only one method considers the semantic dimension like MAT-SG [17]. How-
ever, all attributes of the points are treated as spatial or non-spatial data, i.e.,
semantic data are not analyzed individually as categorical or numeric data. The
work adopts an approach that identifies a sequence of transitions common to
most of the movements using a finite state machine. Each state denotes a com-
mon point, and a sequence of states generates the representative trajectory. A
strong limitation of this work is the lack of method details, as it is a short paper.

Different from related work, MAT-SG is a detailed data summarization
method that generates a representative MAT for a set of MATs, i.e., a tra-
jectory enriched with unlimited semantic information treated as categorical or
numerical data. Our approach treats semantic data individually, allowing us to
understand the patterns and influence of each data in the representative trajec-
tory. It also holds mapping data between the input MATs and the representative
MAT.
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4 The MAT-SG Method

MAT-SG is inspired by the literature gap regarding MAT summarization. We
assume the input MATs was already filtered by some criterion, so the represen-
tative MAT denotes the main behavior of these input MATs considering spatial
density and frequency of each aspect attribute value.

Figure 3 gives an overview of MAT-SG. The trajectory data previously fil-
tered is given as input. The method holds two internal steps: (i) spatial seg-
mentation; and (ii) data summarization. In order to identify patterns by spatial
density, we chose to segment MAT points into a grid in the first step. Clusters
of nearby points in the same cell are then generated. The second step, in turn,
generates the representative trajectory (rt). It computes a representative point
(pr) for each relevant cell summarizing each dimension. Then, the rt is given as
output.

Fig. 3. MAT-SG overview.

The data considered by MAT-SG is based on the data model shown in Fig. 4.
It standardizes the input data representation, and maintains the representative
MAT points as well as their mappings to the input MAT points. As shown in
the data model, a MAT can contain many points. Each point, in turn, holds
information about all dimensions: space (x and y coordinates), time (a times-
tamp), and semantic (a set of the attributes with their corresponding values).
Each attribute belongs to a categorical or numerical data type.

Fig. 4. The conceptual model for MAT-SG

Another concept is the representative point pr. It is a point generated by
MAT-SG, and a sequence of pr’s composes the representative MAT. A pr is
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generated from many MAT points, and a relationship between pr and the corre-
sponding MAT points is modeled for maintaining mapping data. We also consider
pr as a MAT point specialization, so it can also hold attributes.

MAT-SG takes as input a set of parameters besides the input MATs,
as detailed in Table 2. Only rc and τrv can be optionally set by the ana-
lyst, otherwise default values are considered. MAT-SG starts by calculating
τrc = |T.points| ∗ rc, which is based on a proportion rc. For example, given
rc = 1% and |T.points| = 200, then τrc = 2, i.e., only cells with at least 2
points are considered relevant to hold a pr. Next, MAT-SG performs its steps,
as detailed in the following.

Table 2. Parameters of MAT-SG

Parameter Explanation Default

T Set of previously filtered input MATs –

rc Minimum proportion of all MAT input points |T.points|,
defining when a cell is considered a relevant cell to
compute rt

τrc = 2

z A constant for calculating the cell size of the spatial grid ≥2

τrv Rate of representativeness in the temporal ranking of rt 10%

4.1 Spatial Segmentation

The first MAT-SG step segments the points of the input MATs over a grid of
squared cells. Figure 5 shows a spatial grid with a highlighted cell. The cell size
is based on a threshold (τs) that specifies the maximum spatial distance between
two points in the cell, i.e., the diagonal length of the cell.

Fig. 5. Cell size computation

We automatically compute τs (Equation in Fig. 5) based on the average of
the minimum spatial distance of the input MATs points to provide dynamic
space segmentation for clustering these input points. Given T with n points, we
compute the Euclidean distance d() for each point pi ∈ T with the nearest point
pk ∈ T . Then, τs is computed as z times the average value, where z is based
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on preliminary experiments over a training MAT dataset to identify the better
value for spatial segmentation. More details are given in Sect. 5.

Algorithm 1 details the spatial segmentation step. Its advantage is that only
cells with points are generated. It allocates T points on a spatial grid, which is
implemented as an inverted index (or inverted list), where the key is the identity
of the cell position and the value is a list of the T points allocated in the interval.

Algorithm 1: segmentIntoSpatialGrid
input : T , z
output: spatialCellGrid /* inverted list */

1 spatialCellGrid ← ∅;
2 τs ← computeτs(z);
3 cellSize ← computeCellSize(τs);
4 foreach t ∈ T do
5 foreach p ∈ t do
6 key ← getCellPosition(px, py, cellSize);
7 if spatialCellGrid.get(key) = ∅ then
8 spatialCellGrid.new(key);
9 spatialCellGrid.get(key).put(p)

10 else
11 spatialCellGrid.get(key).append(p);
12 end

13 end

14 end
15 return spatialCellGrid

First, the cell size of the spatial grid is computed (lines 2–3). In order to
define the cell where each point p ∈ T will be allocated, we obtain the grid
position key of p (line 6), considering the cell size given by the getCellPosition
function: ( px

cellSize , py

cellSize ). Then, p is allocated into the grid cell of this position
(lines 6–12), if it exists. Otherwise, a new key is created to insert it (lines 8–9).

4.2 Data Summarization

The second MAT-SG step receives spatialCellGrid as input and summarizes
points in the same cell to generate a pr. Cells with less than τrc points are
discarded, as they are assumed as weak representative. The pr generation takes
into account the analysis of the three MAT dimensions for all points in the cell
(cell.P). The summarization of each dimension is added to pr.

For spatial dimension, the centroid point is computed [19], i.e., the average
of the (x,y) coordinates in cell.P. For the temporal dimension, we compute the
significant temporal intervals in which all timestamps in cell.P fit, as follows.

Definition 3 Significant Temporal Intervals (STI). An STI is a set of
time intervals {[tsf − tsi], ..., [tsk − tsm]} that contains all ts ∈ cell.P .

MAT-SG defines an STI rank that refers to all intervals ti ∈ STI and their
tendency. We use the predefined threshold τrv to define which ti are considered
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Algorithm 2: computeTemporalDimension
input : cell.P , τrv /* cell.P is a set of points in a cell */
output: rankSTI /* ranking of representative STIs for cell.P */

1 foreach p ∈ cell.P do
2 Time.add(p.time);
3 end
4 Time.sort();
5 ΔT ime ← computeT imesDifference(Time);
6 VΔT ime

← computeV alidV alues(ΔT ime);

7 τt ← computeT imeThreshold(VΔT ime
);

8 STIaux ← ∅;
9 rankSTI ← ∅;

10 foreach tsi ∈ Time do
11 STIaux.append(tsi);
12 if δi > τt and (|STIaux|/|Time|) ≥ τrv then
13 rankSTI.new(STIaux);
14 rankSTI.get(STIaux).put(|STIaux|/|Time|);
15 STIaux ← ∅;
16 end
17 return rankSTI

Fig. 6. An example of temporal dimension summarization in a grid cell

representative for pr, i.e., the ti’s with a frequency rate ≥ τrv. Algorithm 2
computes the ranking of representative STIs and Fig. 6 exemplifies this process.

First, a Time list is generated to hold all ts ∈ cell.P . It is sorted for better
analyzing the time intervals (lines 1 to 4), as shown in Fig. 6 (a). Then, we
consider a computed threshold (τt) to define when a ts ∈ Time is close to
another, and aggregate ts’s to generate an STI, as explained in the following.

Consider δi a time difference of two consecutive timestamps (δi = tsi+1−tsi),
and ΔTime = {δ1; δ2; ...; δn−1} a set of δi’s for all ts ∈ Time (line 5). In line 6, we
set the valid time interval set VΔT ime

as all δi ∈ ΔTime that fit into the average
ΔTime plus or minus the standard deviation σΔTime, as defined by Eq. 1.

VΔT ime
= {δi ∈ ΔT ime, 1 ≤ i ≤ (n − 1) | (ΔT ime − σΔT ime) ≤ δi ≤ (ΔT ime + σΔT ime)} (1)
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In line 7, we define τt as the average of VΔT ime
(VΔT ime

). Its purpose is to
eliminate all δi ∈ ΔTime that represent outliers. Figure 6 (b) shows all δi ∈ ΔTime

and VΔT ime
. In this case, 07:05 is an outlier. Figure 6 (c) computes τt.

The STI is built based on τt (lines 10 to 16). We initially append to STIaux

the next tsi ∈ Time (line 11), and while δi is less than τt, we consider tsi part of
an STI and continue to append subsequent timestamps. When δi becomes higher
than τt and its frequency is considered representative (line 12), we assume that
an sti ∈ STI is discovered, and we insert STIaux as a new key into a rankSTI
inverted list (line 13), and its frequency as the value of this key (line 14). An sti
may also be a punctual tsi when it is very distant from its neighbors, i.e., when δi

to its neighbors are higher than τt. Figure 6 (d) shows the STI generation. Each
ts ∈ Time is analyzed to verify whether ts is an isolated timestamp or part of
a time interval. In the example, we have a first sti1 = {08:00, 08:30, 08:55} as
all their δi <= τt. An sti2 = {16:00} holds a single ts as the time differences to
its neighbors exceed τt. This process is repeated to all the remaining ts ∈ Time.
According Fig. 6 (e) and τrv = 25%, STI = {[08:00–08:55], [19:30–20:10]}.

At last, we summarize the semantic dimension. As it can be composed of
multiple aspects, we divide it into two types: (i) categorical (e.g., mean of trans-
portation and weather condition) and (ii) numerical (e.g., temperature and air
humidity). For categorical types, as well as the temporal dimension, we rank the
representative mode values, i.e., the most commonly observed values for each
aspect in the cell. For numerical types, we compute the median value1.

Our summarization approach is based on spatial segmentation, i.e., this
dimension has priority. So, if all points in the same cell are semantically different,
at least one representative point considering the spatial dimension is computed.
That shows the representativeness of this location in input MATs.

4.3 Running Example

We now exemplify the application of MAT-SG. Let T = 〈q, r, s〉, where q =
〈pq1 , pq2 , ..., pqn

〉, r = 〈pr1 , pr2 , ..., prm
〉 and s = 〈ps1 , ps2 , ..., pst

〉 are the input
MATs of some individuals. Figure 7 presents them and some related aspects:
price they spend in a PoI, the PoI itself, weather condition and rain precipitation.

We consider rc = 10%, z = 6 and τrv = 30% as input values. As
|T.points| = 15, a relevant cell must contain at least 2 points. Figure 8 (a)
shows T segmentation into a grid of cells, and Fig. 8 (b) shows the resulting
rt = 〈prt1 , prt2 , ..., prtk

〉 (yellow line - spatial dimension summarization). Detailed
output is illustrated in Fig. 8 (c). Data summarization occurs at cells containing
more than one point.

For the temporal dimension, we find some relevant sti ∈ STI. This is the case
of prt1 , where only one sti is identified, considering τt = 15 min. It represents 75%
of the cell points. For the cases we have two or three points in a cell, the analyst
set τt = 100 min. For prt2 , for example, we have two punctual occurrences, since

1 We prefer the median value instead of the mean value when the data are not sym-
metrically distributed since it is less sensitive to the influence of outliers [11].
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Fig. 7. Sample data with point aspects information for trajectories q, r and s.

Fig. 8. A spatial segmentation (a) and the resulting representative trajectory (b, c)).

the time difference between pq3 and pr3 is higher than 100 min. These ts’s do
not generate an STI.

For the semantic dimension, we compute the median of rain precipitation,
which is a numeric data. For the categorical data, we define a frequency rank-
ing considering representativeness values. This is the case for price, POI, and
weather. These rankings can be useful to the analyst. For prt1 , for example, we
see that, in most of the cases, the location refers to Home, so we can strongly
suppose that this is a residential area. We also set categorical data as Unknown
when the aspect has no value, as this information can also be relevant. We real-
ize, for example, that prt1 has no evaluated price. It occurs because the most
common PoI is Home, and an individual does not spend money at home. It also
highlights a relationship between these aspects.
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5 Experimental Evaluation

This section presents a first MAT-SG evaluation. Our method is implemented
in Java, and all experiments ran on a Dell Inspiron laptop, with an Intel Core
i5 processor and 16 GB memory.

We evaluate our method on two datasets: (i) Running Example (Sect. 4.3),
with rc = 10% and τrv = 30%; and (ii) Foursquare, a publicly real-world dataset
with MATs from anonymous users in New York City [20]. It contains the follow-
ing aspects: (i) latitude and longitude; (ii) time of the day ; (iii) day of the week,
(iv) PoI description, (v) PoI category, (vi) PoI subcategory, (vii) rating level of
the PoI (a numeric classification), (viii) price level of the PoI (a numeric clas-
sification), and (ix) weather condition. All aspects are categorical. We focus on
User 6 that has 13 MATs with 225 points, and we set rc = 1% and τrv = 20%.

In this experiment, we evaluate data reduction and the accuracy compared
to the input data. We use this information to analyze and define the best cell
size to segment input MATs and generate rt. We analyze |rt| for evaluating rate
reduction, i.e., the number of rt points. In terms of accuracy, we analyze how
much rt represents the input MATs by evaluating two criteria: (i) covered MAT
points (T c); and (ii) information on the covered MATs (RM ).

We define a proximity metric for evaluating the accuracy that informs how
much each t ∈ T is close to rt in all dimensions. We base this metric on the match
function for MATs called MUITAS [15]. MUITAS is the state-of-the-art w.r.t.
MAT similarity measure. MUITAS measures the similarity between two MATs
quantifying the distance between their points, and it only considers complete
attribute matching. However, as rt follows a different structure, given by simple
or rank values, we consider partial matches and compute a score based on the
number of matching attributes. For each pt ∈ t, we compute the closest point
in rt and the sum of the scores of the best matches (the parity(t, rt) function).
From this parity, it is possible to know how much t data are captured by rt. For
computing the proximity of each t ∈ T to rt, we define the function described in
Eq. 2. Finally, we compute our RM metric as a median of proximity scores for
t ∈ T . The results for each dataset are presented in Table 3.

proximity(t, rt) =
parity(t, rt)

|t| (2)

Regarding the gain value of RM for each z value parameter, the highest
values are associated with z = 6 (65%) for the Running Example and z =
9 for Foursquare (47,38%). As RM compares rt against all input MATs, our
first conclusion is that MAT-SG shows promising results since RM depicts how
much information rt captures from the input MATs at a point granularity. This
is the finest granularity for trajectory comparison purposes, so we may have
heterogeneous similarity scores when the input MATs and the MAT lengths are
large, i.e., the scores tend not to be very high for all point-level comparisons
and, consequently, the final RM value tends to be directly proportional.
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Table 3. RM results for different cell sizes according to z value.

Dataset × Z value Running example Foursquare - User 6

RM Gain |rt| T c %T c RM Gain |rt| T c %T c

2 47,50% 3 8 53% 32,93% 15 138 61%

3 51,17% 8% 3 9 60% 35,23% 7% 15 149 66%

4 51,17% 0% 4 11 73% 35,95% 2% 17 155 69%

5 56,17% 10% 4 11 73% 39,28% 9% 19 169 75%

6 65,00% 16% 4 14 93% 39,67% 1% 19 175 78%

7 68,00% 5% 4 14 93% 42,66% 8% 18 183 81%

8 66,00% −3% 4 14 93% 41,85% −2% 19 180 80%

9 68,70% 4% 4 14 93% 47,38% 13% 22 198 88%

10 58,67% −15% 3 14 93% 43,48% −8% 19 193 86%

We also realize that, for both datasets, as the value of z increases, the cov-
ered MAT points also increase. However, the covered information given by RM

tends to increase to a maximum point after decreasing or having a weak increase.
From this trend, we see that, although the covered MAT points increase, these
points could not be semantically similar. Then, the z value given by this maxi-
mal point of RM can be considered to generate rt with the maximum possible
coverage of both MAT points and information. Nevertheless, we must execute
more experiments with different MAT datasets to prove this hypothesis better.

From this reasoning, we consider rt generated by the highest RM value. For
the Running Example, rt covers 93% of all input MAT points (T c = 14). W.r.t.
covered information, rt captures 65% of all input MATs considering all aspects.
In terms of volume, rt represents a reduction of 73, 33% of all input MATs
(|rt| = 4 and |T.points| = 15). As the average size of all t ∈ T is 5, |rt| is close
to the size of each t ∈ T . For Foursquare, rt covers 88% of the MAT points (T c

= 198). rt achieves a score of 47, 38% covered information, and reduces 90, 22%
of all input MATs. The average size of all t ∈ T is 17, 31, close to |rt|.

Regarding Foursquare, an rt analysis indicate several user patterns: (i) usage
of train as transport on Tuesdays; (ii) travels by train on Thursday and Friday
mornings before 6 am, and on those same days, travels between 5:35 pm and
5:52 pm by bus and/or plane; and (iii) goes out to eat on Sundays.

6 Conclusion

This paper presents a pioneer method to summarize MATs named MAT-SG2.
MAT-SG considers spatial, temporal and different semantic attributes that char-
acterize MATs, abstracting each one of these dimensions according to their sin-
gularities. Another differential is the mapping between input MATs and the

2 Avalaible in https://github.com/vanessalagomachado/MAT-SG/tree/master.

https://github.com/vanessalagomachado/MAT-SG/tree/master
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representative MAT through a data model. It allows persistence and querying of
representative MATs, as well as their origins, and it also allows the analyst to
identify patterns on the data, and the representativeness of some MAT points.

W.r.t. evaluation, we propose an evaluation metric based on the state-of-art
on MATs similarity that can be considered to improve MAT-SG by finding the
best z parameter and also be used to compare the summarization quality of
related work proposals. From the results, we see that MAT-SG is a promising
method. It was not possible to compare MAT-SG against the unique close base-
line [17] as its source code was not available and the presented evaluation did
not show the output data to allow us a comparison with our output.

As future works, we aim to reduce the complexity of our method. MAT-SG
currently has a quadratic complexity O(n2) w.r.t. the number n of points of all
input MATs, which is dominated by the computeCellSize function in Algorithm
1. We also intend to improve MAT-SG by considering dependencies between
aspects, like price depending on PoI in our running example. Experiments
involving the baseline and larger MAT datasets are also expected.
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Abstract. Effective heat energy demand prediction is essential in com-
bined heat power systems. The algorithms considered so far do not suf-
ficiently take into account the computational costs and ease of imple-
mentation in industrial systems. However, computational cost is of key
importance in edge and IoT systems, where prediction algorithms are
constantly updated with new arriving data. In this paper, we propose
two types of algorithms for heat demands prediction: (1) novel exten-
sions to the algorithm originally proposed by E. Dotzauer and (2) based
on a kind of autoregressive predictor. They were developed within an
R&D project for a company operating a cogeneration system and for
their real dataset. We evaluate the algorithms experimentally focusing
on prediction quality and computational cost. The algorithms are com-
pared against two state-of-the art artificial neural networks.

Keywords: Time-series analysis · Energy demand forecasting ·
Artificial neural networks · Time-quality trade-off

1 Introduction

District heating systems (DHS) are widely used in North-Western Europe to
deliver heat and hot water to households. A DHS is often a cogeneration system
or combined heat power (CHP), if heat is also used to generate electric energy.
The amount of produced electric energy is directly related to the amount of
produced heat. Hence, for CHP systems, prediction of heat demand is
essential to submit bids for electric energy in the priciest hours in an energy
market. Constructing computationally efficient intelligent systems faces a num-
ber of challenges in industrial applications where data is collected in extensive
sensor networks. Often, such raw data is incomplete and of low quality. In this
paper, we report on our experience from an R&D project in designing algorithms
for heat demand prediction for Kogeneracja Zachód, a company running a cogen-
eration system in Poland. We evaluate the algorithms w.r.t. prediction quality
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and computational cost, both in the training and testing phases. The trade-off
between prediction error and computational cost is essential in the edge/fog
systems, if IoT devices (e.g. energy counters) with low computational resources
were supposed to not only measure but also predict energy consumption and
incrementally train models with new arriving data.

This paper is organized as follows. In Sect. 2 the goals in energy prediction
of the R&D project are formulated. The prediction algorithms we contribute are
presented in Sect. 3. The test dataset is outlined and the prediction algorithms
are evaluated in Sect. 4. Section 5 concludes the paper. Further details on the
research described here and the context of related works can be found in [1].

2 Problem Formulation

The studied DHS has a tree structure. In selected nodes, energy counters are
installed. There are two types of energy counters: (1) hot water energy (HW)
and (2) heat energy (HE) counters. Past energy readings, exogenous variables:
atmospheric temperature, humidity, wind speed, sky overcast and a three-day
weather forecast are known with 1 h resolution. It is required to forecast any
counter readings in the next three days. Prediction of the energy for the next
72 h, especially for the “sum” in the tree root, is required to plan selling electricity
on day-ahead markets. Formally, given past energy readings of a certain counter
Y = (Y1, . . . , Yt) (where Yi are scalars), past values of exogenous variable values
W = (W1, . . . ,Wt) (Wi are vectors), and their forecast W ′ = (Wt+1, . . . ,Wt+72)
it is required to forecast energy demands F = (Yt+1, . . . , Yt+72).

3 Examined Algorithms

3.1 Dotzauer Method and Extensions

In [2] heat demand Yi for hour i is modeled as a sum of two components:

Yi = f(Ti) + g(i), (1)

where f(Ti) is a function of the atmospheric temperature Ti, gi is an array of
corrections calculated for hours in a week i. f(Ti) is a piecewise linear function
with five segments. A shorthand notation DPLW will be used to refer to this
algorithm.

Extensions. The following versions of this Dotzauer method were examined in
our studies:

• Linear temperature model Weekly/Yearly corrections (denoted DLW/DLY),
• Piecewise Linear temperature Weekly/Yearly corrections (DPLW/DPLY),
• Spline temperature model Weekly/Yearly corrections (DSW/DSY),
• Isotonic regression temperature model Weekly/Yearly corrections

(DIW/DIY),
• Multivariate temperature model Weekly/Yearly corrections (DMW/DMY).
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Table 1. Exogenous variables. Notation: T - atmospheric temperature, DL - day length
in hours, DT - day type (1: Monday–Thursday, 2: Friday, 3: Saturday, 4: Sunday), V
- wind speed in m/s,

√
V - square root of wind speed, TV - product of temperature T

and wind speed V , T
√
V - product of temperature T and

√
V , pY - season of the year

(spring,. . . ,winter), Oc - overcast in oktas, H - humidity.

Algorithm version T DL DT V
√
V TV T

√
V pY Oc H

DMW/DMY * * * * * * * * * *

WRNH0/WRWH0 * *

WRNH1/WRWH1 * * * *

WRNH2/WRWH2 * * * * * * *

WRNH3/WRWH3 * * * * * * * * * *

WRNH4/WRWH4

3.2 W-Regressors

WRNH builds independent prediction models for each hour of the week. For
each hour i of the week a moving average of the last week energy consumption is
calculated (168 samples). In order to construct a linear regression fit for hour i
tuples (aj ,Wj , Yj) are used as input data points, where: aj is energy consumption
168-h moving average at hour j, Wj are weather conditions at hour j, Yj is
the actual energy consumption at hour j, for hours j : j mod 168 = i in the
past. We applied various combinations of atmospheric conditions in vector Wj

resulting in five versions WRNH0,. . . ,WRNH4 of this algorithm (cf. Table 1).
Tuples (aj ,Wj , Yj) are used to fit linear regression Yi = ki × [a,W ]T + li, where
a is a moving average, W is a vector of weather conditions, [a,W ] is a vector
of independent variables, ki is a vector of directional coefficients, and Yi is the
modeled energy consumption. When predicting energy consumption for future
hour t + p, for p = 1, . . . , 72, at the current hour t, the energy prediction is
calculated as Yt+p = k(t+p) mod 168 × [at,Wt+p]T + l(t+p) mod 168, where at is
the moving average of energy consumption at prediction moment t, Wt+p is a
forecast of weather conditions for hour t+ p.

WRWH. The WRWH regressors build 168×72 = 12096 linear models. In order
to develop a model for future hour i + p, where i = t mod 168 were the hours
of the week of the current moment t, tuples (aj ,Wj , Yq) for j : j mod 168 = i
and q : q = j+ p, were used. Future hour t+ p energy consumption is calculated
as Yt+p = k(t mod 168),p × [at,Wt+p]T + l(t mod 168),p, where ki,p is a vector of
directional coefficients for the current hour of the week i and energy consumption
shifted p hours into the future. There are five versions WRWH0, . . ., WRWH4
of this method (cf. Table 1).
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3.3 Neural Networks

Feed-Forward Neural Network (FFNN). We used an FFNN implemented
in PyTorch. Its best topology consisted of 99 inputs, two hidden layers with 10
and 46 neurons, and 72 outputs to forecast for the 72 h (with ReLU functions).
Beyond the past energy readings all weather attributes mentioned in Table 1 for
the current time twere the FFNN inputs. Optuna, a hyperparameter optimization
framework, was applied to tune hyperparameters of this model. Separate neural
networks with the same architecture were trained for each counter in DHS.

Radial Basis Function Neural Network (RBFNN). We used a single
hidden layer consisting solely of RBF neurons with Gaussian functions. To decide
on the number of hidden, output neurons and the input features we used Optuna,
and arrived at 16 hidden RBF neurons and 72 linear output neurons. Further
details on arriving at our neural network architectures, training them can be
found in [1].

Furthermore, the moving average of the last 100 h was used as a reference
prediction algorithm. It is denoted as algorithm C-100.

4 Experimental Analysis of Prediction Algorithms

The test dataset comprises heat measurements from 28 HW and 83 HE counters
in the DHS serving a town with about 30000 inhabitants. The records cover the
period since the 1st of September 2015 until 28th of February 2019. The dataset
includes: measurement timestamp, measured energy consumption, weather con-
ditions, type of day, season. The measurements were collected for billing pur-
poses, rather than for heat demand prediction and optimization, so they have
several drawbacks from the datamining perspective. Information on the arti-
facts found in the test data and on the procedures applied to clean the data are
presented in [1]. This test dataset has been shared for research purposes, see [3].

Data from interval 2016-01-01 until 2017-12-31 was used as the training
dataset. Interval from 2019-01-02 until 2019-02-25 was used for testing. Each
of the algorithms calculated for each energy counter a 72-h energy consump-
tion forecast starting at each hour of the testing interval (1320 × 72 prediction
points). All the codes were written in Python 3.7.4 and tested on a PC with
Windows 10 and Intel i7-8550U CPU @ 1.80 GHz (no GPU acceleration).

4.1 Basic Evaluation

Quality of the predictions of 8 best algorithms aggregated over all 1320 × 72 pre-
diction points are presented quantitatively in Table 2 for the “sum” counter with
respect to Mean Absolute Percentage Error (MAPE) and Mean Squared Error
(MSE) measures. It can be seen that RBFNN and simple Dotzauer model variants
with weekly corrections provided the best predictions of the “sum” of consumed
energy for MAPE. For MSE quality measure RBFNN, FFNN are the best algo-
rithm whereas C-100 and DLW (which is the best Dotzauer-like algorithm) have
MSE three times worse than FFNN (not shown in Table 2). Thus, RBFNN, FFNN
are the best for “sum” counter. More details are given in [1].
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Table 2. 8 best algorithms on “Sum” counter

MAPE

Method RBFNN DLW DMW DPLW DIW WRWH0 FFNN DSW

MAPE [%] 16.45 16.49 16.49 16.96 17.1 17.7 18.43 18.45

MSE

Algo. FFNN RBFNN WRWH0 WRWH1 WRNH0 WRNH1 WRNH2 WRWH2

MSE 217884 237987 437482 452190 463599 477858 568191 575916
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Fig. 1. Prediction quality (MAPE) vs computational cost. a) Prediction quality vs
training time. b) Prediction quality vs predicting time.

4.2 Time-Quality Trade-Off

Time performance of the prediction algorithms is important when these algo-
rithms are supposed to be used in low-power IoT or embedded devices. In Fig. 1
run-time vs quality trade-off is shown (run time on the horizontal axis while
prediction quality (MAPE) on the vertical axis). Results for each algorithm are
presented as interquartile boxes aggregated over all counters. That is, a box for
each algorithm spans between Q1 and Q3 in time and prediction quality. Median
of quality and run-time is also marked. This way of visualizing mutual algorithm
performance has three-fold advantages: 1) it is possible to recognize algorithm
differences with respect to prediction quality, 2) differences in time efficiency
are visible, 3) it is possible to analyze how these algorithms trade run-time for
prediction error. In Fig. 1a training time is shown, in Fig. 1b time of calculating
a single 72-h forecast is shown.

As far as training these algorithms in low-power computers is considered,
Dotzauer-like and WRNH algorithms are feasible choices, whereas using RBFNN
or WRWH algorithms seems to be less convenient. Conversely, calculating one
72-h prediction is far less costly computationally and all the considered algo-
rithms managed it in less than 1ms. Considering prediction quality, most of the
interquartile ranges overlap, so it is rather hard to draw sharp conclusions on
algorithm superiority, but still, some tendencies can be observed. Algorithms
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WRNH0, WRWH0 using only atmospheric temperature and day length are
the best among WRNH/WRWH methods. Thus, an extensive set of weather
attributes, impedes rather than helps obtaining good energy predictions.

Figure 1 allows also to identify algorithms that are nondominated. We used
median run-time and median accuracy as indicators of algorithm position on the
run-time vs quality space. The set of nondominated methods comprises the algo-
rithms for which no other algorithm has both better accuracy and run-time. For
better exposition, the nondominated algorithms are collected in Table 3. Depend-
ing on the setting, C-100, various versions of Dotzauer method and WRWH0 are
nondominated and they can be recommended for low-power computer systems.

Table 3. Nondominated algorithms

MAPE - training
Algorithm C-100 DIY DLY DSY DIW DSW DLW WRWH0
MAPE [%] 20.5 18.4 18.1 17.9 15.3 15.2 15.0 14.5
Time [s] 0 0.344 0.375 0.422 0.438 0.516 1.11 251.2
MAPE - predicting
Time [µs] 11.8 – 94.7 107 130 – 142 379

5 Conclusions

In this paper several algorithms for DHS energy consumption prediction were
analyzed in order to verify their utility in predicting energy consumption every
hour, for 72-h intervals, both in total and for each energy counter separately.
Another aspect, important in the use on low-power devices, was the computa-
tional complexity of the algorithms. It turned out that the simple methods offer
the best run-time quality trade-off. More advanced neural networks have low
potential for training on low-power devices. However, a more detailed inspection
revealed that accuracy of energy consumption prediction depends very much on
the energy counter and accuracy measure. For example, RBFNN, FFNN net-
works are the best for the total energy prediction.
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