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Abstract. In the light of the current research, we propose a more gen-
eral and realistic model based on approximative fractional Brownian
motion studies. This framework presents an option pricing model under
the double Heston Jump-Diffusion model, including approximative frac-
tional motion with stochastic interest rate and stochastic intensity. The
stochastic interest rate is determined using a two-factor Vasicek model.
The negative interest rate is allowed for this model. Therefore, we are
constructing a multi-factor model with a stochastic interest rate struc-
ture. We derive a closed-form pricing formula with an analytical solution
for European options. Finally, some numerical results are presented to
illustrate the value of a European call option comparing to other classical
models.

1 Introduction

In 1997 Black & Scholes [4] published a groundbreaking paper in which they pro-
posed an elegant model focused on Brownian motion to explain the complexities
of the underlying asset price and presented a closed-form formula for European
options. According to Duan and Wei [7], the Black-Scholes model cannot explain
the phenomena of the asymmetric leptokurtic and also the volatility smile that
is observed in the real market. Since That point, academic researchers have cre-
ated different models by joining in the Black-Scholes model the non-constant
volatility . The Scott [19] model, Hull and White [13] model, the Stein and Stein
[22] model and the Wiggins [26] model. However, the majority of these stochastic
volatility models are unsuitable for use. In 1993 Heston [11] describe the vari-
ance (the square of volatility) by Cox-Ingersoll-Ross process [5] and deriving a
closed-form formula for European options.

On the other side, a single factor model cannot describe the shapes of the
volatility smile with precision. Multi-factor stochastic volatility models are useful
for expressing return data in various ways, such as using a stylized effect or
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fitting the implied surface. We choose to investigate option pricing under two-
factor stochastic volatility in this study since it is more appropriate for practical
applications.

Otherwise, the financial market owns long-range persistence and self-
similarity traits, and fractional Brownian motion has these two essential prop-
erties. Moreover, fractional Brownian motion is not a Markov process or semi-
martingale; the classical Ito calculus cannot be used in this case. Wick products
have been created by Hu and Oksendal [12] for analyzing it. In addition, Xiao
and Al [27] used the Wick products to define a fractional stochastic integral.
Björk and Hult [3] demonstrated that the model lacks an economic interpreta-
tion. To solve this problem is appropriate to use the mixed fractional Brown-
ian motion [8,17,23,28]. Approximation Fractional Brownian motion [24] can
also be used instead of fractional Brownian motion. Thao [24] showed that
Approximation Fractional Brownian motion is a semi-martingale. Furthermore,
many researchers (see [6]) adopted Approximation Fractional Brownian motion
in building stochastic volatility models.

Many authors have worked on a hybrid model in recent years by incorporat-
ing the stochastic interest rate into stochastic models [9,10,14,21]. In addition,
empirical studies show that using stochastic interest rates into option pricing
models will contribute to improved model results [18].

Roughly speaking, permitting for changes in volatility and interest rate and
the presence of jumps and the jump intensity changing over time indicate realistic
asset return dynamics. In a parallel development, incorporating jump into models
for pricing option also proposes describing the discontinuous behavior of the
underlying asset (see [1,2,15,16,20]).

The rest of the paper is organized as follows. We adopt the double-Heston
jump-diffusion (DHJD) model with approximative fractional Brownian motion,
stochastic intensity, and interest rate follow a two-factor model in Sect. 2. In
Sect. 3, we derive analytical pricing formula for European call option. In Sect. 4,
we present some numerical illustrations. Finally, we conclude in Sect. 5.

2 The Model

We present some basic information on approximative fractional Brownian
motion. At the first, we present an analysis of fractional Brownian motion
(BH

t )t≥0 with the Hurst index H ∈ (0, 1). It is a Gaussian process with zero
mean and the following covariance:

E[BH
t BH

s ] =
1
2

(
|t|2H + |s|2H − |Tt − s|2H

)
. (1)

The decomposition of a fractional Brownian motion B is as follows:

BH
t =

1
Γ(H + 1

2 )

[
Zt +

∫ t

0

(t − s)H− 1
2 dWs

]
(2)
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where

Zt =
∫ 0

−∞

(
(t − s)H− 1

2 − (−s)H− 1
2

)
dWs, (3)

Wt indicates standard Brownian motion, and Γ indicates the gamma function.
It is sufficient to focus exclusively on the term:

Bt =
∫ t

0

(t − s)H− 1
2 (4)

that has a long-range memory. Note that The approximation of Bt is B̃ε,H
t which

can be expressed as [26]

B̃ε,H
t =

∫ t

0

(t − s + ε)H− 1
2 dWs (5)

where H is a long-memory parameter, ε is non negative approximation factor.
Thao [24] proved that for ε → 0, (Bε,t

t )ε converges uniformly to a non-Markov
process. In addition, if ε > 0 then Bε,t

t is a semi-martingale [24]

dB̃ε,H
t = (H − 1

2
)ψtdt + εH− 1

2 dW v
t (6)

ψt is a stochastic processes expressed as

ψt =
∫ t

0

(t − s + ε)H− 3
2 dWψ

s , (7)

where(Wψ
t )t∈[0,T ] and (W v

t )t∈[0,T ], are independent standard Brownian motions.
Let(Ω,F , (Ft)t∈[0,T ],Q) be a complete probability space with a filtration and

Q presents a risk-neutral measure.The stock price St is expressed by the following
dynamic system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSt

St
= (r1 + r2 − λtμJ)dt+

√
vtdW s

t +
√

v̂dŴ s
t + (J − 1)dNt

dvt = kv(θ − vt)dt + σv
√

vtdB̃ε,H
t

dv̂t = k̂(θ̂ − v̂)dt + σv̂

√
v̂dW v̂

t

dλt = kλ(θλ − λ1)dt + σλdWλ
t

dr1 = α1(β1 − r1)dt + σ1dW r1
t

dr2 = α2(β2 − r1)dt + σ2dW r2
t

(8)

where W s
1 , Ŵ s

t ,W v
t ,W r1

t ,W r2
t and Wλ

t are the standard Brownian motions. We
assume that W s

t is correlated with W v
t , dW s

t .dW v
t = ρ1dt,Ŵ s

t correlated with
W v̂

t , dŴ s
t dW v̂

t = ρ2dt and W r1
t correlated with W r2

t , dW r1
t .dW r2

t = ρrdt. Any
other Brownian motions are pairwise independent.
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vt, v̂t are variances, and λt is the jump intensity. k, k̂ and kλ are mean rever-
sion rates, θ, θ̂ and θλ are mean reversion levels, σv, σv̂ and σλ are the volatilities
of the variances. and the short rate is follow two-factor Vasicek model where the
short rate is given as a sum of two factors r1 and r2, where β1, β2 are their mean-
reversion , α1, α2 are theire mean-reversion speed, σ1, σ2 are their volatilities, Nt

represents Poisson process with intensity λt and J represents the jump size, and
we suppose that lnJ has an asymmetric double exponential distribution with
density function pdfu(z) :

pdfu(z) = pη1e
η1z1≥0 + qη2e

η2z1z<0, (9)

where η1 > 1, η2 > 0, p, q > 0, and p + q = 1, where q and p represent the
probabilities for positive and negative jumps, respectively. As a result we can
obtain that μJ = E

Q(J − 1) = (pη1/η1 − 1) + (qη2/η2 + 1) − 1.
We set τ = T − t, Xt = lnSt, Y = lnJ, the interest rate r are determined

by the sum of the two factors r1 and r2 (r = r1 + r2) and k = lnK, where T is
the maturity date, and K is the strike price. In the risk-neutral world, the price
of a call option C(S, V 1, V 2, r, λ, t) at time t ∈ [0, T ] with strike price K and
maturity date T is given by

C(S, v, v̂, r1, r2, λ, t) = E
Q

(
e− ∫ t

0 rsdsmax(ST − K, 0)|Ft

)
(10)

we convert measure Q to the measure Q
S and the T forward measure Q

T . By
applying Radon-Nikodym derivatives,

dQ

dQS
=

eX

e− ∫ T
0 rsds+XT

(11)

dQ

dQT
=

P (t, T )

e− ∫ t
0 rsds

(12)

where

S = eX = E
Q

(
e− ∫ T

t
rsds+XT |Ft

)
, (13)

P (t, T ) := E
Q

(
e− ∫ T

t
rsds+|Ft

)
, is the price at time t of a zero-coupon bond

which matures at time T (see appendix). Then, we can have the following
expression:

C(S, v, v̂, r1, r2, λ, t) = SEQS

(1{XT >k}|Ft) − KP (t, T )EQT

(1{XT >k}|Ft) (14)

we define
ϕS(u) := E

QS

(eiuXT |Ft), (15)

ϕT (u) := E
QT

(eiuXT |Ft), (16)
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ϕ(u) := E
Q(e

∫ T
t

rsds+iuXT |Ft), (17)

where ϕS(u) denotes the characteristic function under Q
S , ϕT (u) denotes the

characteristic function under QT , and ϕ(u) denotes the discounted characteristic
function under Q. Furthermore, by using Radon-Nikodym derivatives we can
have the following expression:

C(S, v, v̂, r1, r2, λ, t) = S

(
1

2
+

1

π

∫ ∞

0
R

(
e−iukϕ(u − i)

iuϕ(−i)

)

du

)

−KP (t, T )

(
1

2
+

1

π

∫ ∞

0
R

(
e−iukϕ(u)

iuP (t, T )

)

du

)

(18)
all we need to do is to derive the formula of ϕ(u) to have the pricing formula.

Theorem 1. If the asset price is governed by the dynamic system (1), the dis-
counted characteristic function ϕ(u;X, v, v̂, r1, r2, λ, τ) takes the following form:

ϕ(u; X, v, v̂, r1, r2, λ, τ) = eC(u,τ)+Dv(u,τ)v+Dv̂(u,τ)v̂+E(u,τ)r1+F (u,τ)r2+G(u,τ)λ+iuX

(19)
where

C(u, τ) =
2kvθv

σ2
vε2H−1

[
(kv − iuρ1σvε

H− 1
2 − d)τ

2
+ ln

2d

2d + (kv − iuρ1σvε
H− 1

2 − d)(1 − e−dτ )

]

+
2k̂θ̂

σ2
v̂

[
(k̂ − iuρ2σv̂ − d̂)τ

2
+ ln

2d̂

2d + (k̂ − iuρ2σv̂ − d̂)(1 − e−d̂τ )

]

+ (iu − 1)

(

(
θ1

k1
(k1t − 1 − e

−k1t
) +

θ2

k2
(k2t − 1 − e

−k2t
)

)

− σ2
1

4k3
1
(iu − 1)

2
(

e
−2k1t − 4e

−k1t − 2k1t + 3

)

− σ2
2

4k3
2
(iu − 1)

2
(

e
−2k2t − 4e

−k2t − 2k2t + 3

)

+ ρrσ1σ2(iu − 1)
2 1

k1k2

(

t +
1

k2
e

−k2t
+

1

k1
e

−k1t − 1

k2+k1

e
−(k2+k1)t − 1

k1
− 1

k2

+
1

k1 + k2

)

+
2kλθλ

σ2
λ

[
(kλ − iuρ2σλ − ς)τ

2
+ ln

2ς

2ς + (kλ − iuρ2σλ − ς)(1 − e−d̂τ )

]

Dv(u, τ) = ((iu)2 − iu)
1 − e−dτ

2d + (kv − iuρ1σvεH− 1
2 − d)(1 − e−dτ )

Dv̂(u, τ) = ((iu)2 − iu)
1 − e−d̂τ

2dv̂ + (k̂ − iuρ2σv̂ − d̂)(1 − e−d̂τ )
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G(u, τ) = 2ω(u)
1 − e−ςτ

2ς + (kλ − ς)(1 − e−ςτ )

E(u, τ) =
1
k1

(iu − 1)(1 − e−k1τ )

F (u, τ) =
1
k2

(iu − 1)(1 − e−k2τ )

d =
√

(kv − iuρ1σvεH− 1
2 )2 − σ2ε2H−1((iu)2 − iu),

d̂ =
√

(k̂ − iuρ2σv̂)2 − σ2
v̂((iu)2 − iu)

M(u) =
pη1

η1 − iu
+

qη2
η2 + iu

− 1

ω(u) = M(u) − iuμJ , ς =
√

k2
λ − 2σ2

λω(u)

Proof. ϕ(u;X, v, v̂, r1, r2, λ, τ) satisfies a PIDE by applying the Feynman-Kac
theorem:

− ∂ϕ

∂τ
+ (r1 + r2 − λμJ − 1

2
(v + v̂))

∂ϕ

∂x
+

1

2
(v + v̂)

∂2ϕ

∂x2
+ (kv(θv − v) + (H − 1

2
)σv

√
v)

∂ϕ

∂v

+
1

2
σ
2
vε

2H−1
v

∂2ϕ

∂v2
+ k̂(θ̂ − v̂)

∂ϕ

∂v̂
+

1

2
σ
2
v̂ v̂

∂2ϕ

∂v̂2
+ ρ1σvvε

H− 1
2

∂2

∂x∂v
+ ρ2σv̂ v̂

∂2ϕ

∂x∂v̂
+ k1(θ1 − r1)

∂ϕ

∂r1

+
1

2
σ
2
1

∂2ϕ

∂r2
1

+ k2(θ1 − r2)
∂ϕ

∂r2
+

1

2
σ
2
2

∂2ϕ

∂r2
2

+ σ1σ2ρr
∂2ϕ

∂r1∂r2
+ kλ(θλ − λ)

∂ϕ

∂λ
+

1

2
σ
2
λ

∂2ϕ

∂λ2

+ λ

∫ +∞

−∞
(ϕ(x + y) − ϕ(x))f(y)dy − rϕ = 0

(20)

If we assume that ϕ(u;X, v, v̂, r1, r2, λ, τ) takes the form of

ϕ(u; X, v, v̂, r1, r2, λ, τ) = eC(u,τ)+Dv(u,τ)v+Dv̂(u,τ)v̂+E(u,τ)r1+F (u,τ)r2+G(u,τ)λ+iuX

(21)
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and substitute into Eq. (20), we can obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂τ

= kvθvDv + k̂θ̂Dv̂ + k1θ1E + k2θ2F + 1
2
σ2
1E2 + 1

2
σ2
2F 2 + ρrσ1σ2EF + Gkλθλ

∂Dv
∂τ

= 1
2
σ2

vε2H−1D2
v + (ρ1σvεH− 1

2 iu − kv)Dv + 1
2
iu(iu − 1)

∂Dv̂
∂τ

= 1
2
σ2

v̂D2
v̂ + (ρ2σv̂iu − kv̂)Dv̂ + 1

2
iu(iu − 1)

∂G
∂τ

= 1
2
σ2

λG2 − kλG + M(u)− μJ iu

∂E
∂τ

= −k1E + iu − 1

∂F
∂τ

= −k1F + iu − 1

(22)
with boundary conditions C(u, 0) = Dv(u, 0) = Dv̂(u, 0) = E(u, 0) = F (u, 0) =
G(u, 0) = 0. by applying some algebraic calculations, we will obtain the result.

3 Numerical Discussion

We’ll analyze European option prices under DHJDF with two-factor stochastic
interest rate model parameters in this section. The parameters we use are listed
in Table 1.

Table 1. Values of parameters.

Parameter Value Parameter value

kv 9.9772k1 k̂ 2.3388

θv 0.0189 θ̂ 0.001

σv 0.8379 σv̂ 0.9957

ρ1 −0.9764 ρ2 −0.8178

v 0.0002 v̂ 0.0633

ε 0.00005 ρr 1

α1 0.3322 α2 0.26594

β1 0.1 β2 0.1

σ1 0.02 σ2 0.02

r1 0.001 r2 0.012

kλ 2 σλ 0.1

θλ 0.001 λ 0.001

kr1 0.02 kr2 0.02

η1 1.0333 η2 19.7482

S 100 K 100
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Fig. 1. The impact of kλ and θλ on call option prices for T = 1.

Fig. 2. The impact of the existence of the jump intensity process on call option prices
for T = 1.

)b()a(

Fig. 3. The model price, the Heston price and double Heston price with respect to the
underlying asset price (a) and time to expiry (b).

Figure 1 shows that changes in the mean-reversion level θλ have a significant
effect on call option prices, while changes in the mean-reversion rate kλ have
little effect on call option prices. The obtained results show that an increase in
the value of θλ leads to an increase in the value of the call option price.
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Figure 2 illustrate the effect of the presence of the jump intensity process on
call option prices. It shows that the price of a call option with stochastic jump
intensity is greater than the price of a call option with a constant jump intensity.

On the other hand. By using theoretical results of pricing formula, we can
investigate the impact of incorporating a two-factor stochastic interest rate into
DHJD model with approximative fractional Brownian motion and stochastic
intensity under the chosen set of parameters. It can be distinctly observed that
our price model’s is high that the Heston’s price. Specifically, depicted in Fig. 3 is
the option prices with different time to expiry. Clearly, our price and the price of
Heston are about the same when the time of expiry increases, the gap between
our price and the Heston price increases. The reason that this phenomenon
happens is increasing time to expiry implies a longer period of time for the
interest rate changes which can thus definitely rate that can reflect the widened
divide.

4 Conclusion

This paper introduces the European option under double Heston jump-diffusion
hybrid model based on approximative fractional Brownian motion by adding
interest rate follow two-factor Vasicek model and jump intensity follow a stochas-
tic process. We derived a closed pricing formula for European option under this
model by used the Radon-Nikodym derivative. The numerical results show that
European call option prices under this model are higher than those under the
double Heston model and Heston model.

Appendix

If the risk-free interest rate follows the Two-Vasicek model, then P (r1, r2, t, T )
should satisfy the following PDE problem:

⎧
⎨

⎩

∂P
∂t

+ k1(θ2 − r1)
∂P
∂r1

+ k2(θ2 − r2)
∂P
∂r1

+ 1
2 σ2

1
∂2P
∂r21

+ 1
2 σ2

2
∂2P
∂r22

+ ρrσ1σ2
∂2P

∂r1∂r2
− (r2 + r2)P = 0

P (r1, r2, T, T ) = 1

(23)
If we assume that P (r1, r2, t, T ) takes the form of

P (r1, r2, t, T ) = e[A(τ)−B1(τ)r1−B1(τ)r2] (24)

and substitute it into PDE (23), we can obtain:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂B1
∂t = 1 − k1B1

∂B2
∂t = 1 − k2B2

∂A
∂t = −k1θ1B1 − k2θ2B2 + 1

2σ2
1B

2
1 + 1

2σ2
2B

2
2 + ρrσ1σ2B1B2

(25)



402 S. Bayad et al.

with the terminal condition B1(0) = B2(0) = A(0) = 0 Then we have :

B1(τ) =
1
k1

(1 − ek1τ ) (26)

B2(τ) =
1
k1

(1 − ek1τ ) (27)

A(τ) = − θ1(τ +
1

k1
e

−k1τ − 1

k1
) − θ2(τ +

2

k2
e

−k2τ − 1

k2
) +

σ2
1

k2
1
(t +

2

k1
e

−k1t − 1

2k1
e

−2k1t − 3

2k1
)

+ prσ2σ2
1

k1k2
(t +

1

k1
e

−k1t
+

1

k2
e

k2t − 1

k1 + k2
e

−(k1+k2)t
+

1

k1 + k2
− 1

k1
− 1

k2
)

+
σ2
2

k2
2
(t +

2

k2
e

−k2t − 1

2k2
e

−2k2t − 3

2k2
).

(28)
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