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Huart Caroline, Philippe Eloy, and Philippe Rombaux

Core Message
• This chapter reviews the physiology and the 

pathology of the olfactory system. The aim is 
to provide adequate information to clinicians 
in order to improve their understanding about 
olfaction and its troubles and to promote ade-
quate management of patients with olfactory 
disorders.

30.1  Introduction

Olfaction is one of the most ancient senses. 
Nevertheless, the field of olfaction has received 
far less attention as compared to other sensory 
modalities. This is notably due to the technical 
challenge of working with odorous stimuli and 
the difficulties of measuring brain activity 
induced by a chemosensory stimulus.

Although a majority of people consider it as 
one of the less important senses, this sense plays 
a major role in our interaction with the environ-
ment. Not only olfactory system acts for the 
detection of potential danger in the environment, 
such as smoke or gas, but also it influences our 
nutrition, social behavior, well-being, and mem-
ory processes.

This chapter proposes a global view of human 
olfaction. First we will extend on physiology of 
olfaction, paying a particular interest to olfactory 
pathways. Then, we will study pathological situ-
ations associated with olfactory dysfunction. 
More particularly, we will see into detail post- 
infectious olfactory loss, post-traumatic olfactory 
loss, and sinonasal-related olfactory disorder.

30.2  Physiology

30.2.1  Embryology

The olfactory placode is induced at the end of the 
fourth week of pregnancy when the local ecto-
derm makes direct contact with the prosence-
phalic vesicle. Some cells of the olfactory placode 
will differentiate into primary neurosensory cells, 
further constituting the olfactory neuroepithe-
lium. At the end of the fifth week, these cells will 
develop axons, reaching the neurons from the 
anterior wall of the prosencephalon, which 
becomes the telencephalon. This will induce the 

H. Caroline (*) · P. Rombaux 
Department of Otorhinolaryngology, Cliniques 
universitaires Saint-Luc, Brussels, Belgium 

Institute of Neuroscience, Université catholique de 
Louvain, Brussels, Belgium
e-mail: caroline.huart@saintluc.uclouvain.be

P. Eloy 
Department of Otorhinolaryngology, Cliniques 
universitaires Saint-Luc, Brussels, Belgium 

Department of Otorhinolaryngology, CHU Dinant-
Godinne (Site Godinne), Yvoir, Belgium
e-mail: philippe.rombaux@uclouvain.be

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
Ö. Ö. Celebi, T. M. Önerci (eds.), Nasal Physiology and Pathophysiology of Nasal Disorders, 
https://doi.org/10.1007/978-3-031-12386-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12386-3_30&domain=pdf
mailto:caroline.huart@saintluc.uclouvain.be
mailto:philippe.rombaux@uclouvain.be
https://doi.org/10.1007/978-3-031-12386-3_30#DOI


382

development of the olfactory bulb which begins 
to differentiate from the telencephalon. At the 
seventh week, the olfactory bulb individualizes at 
the tip of each hemisphere. It will then lengthen 
and come to lie on the cribriform plate of the eth-
moid bone at the 12th week of pregnancy. 
Secondary neurosensory cells will differentiate 
inside the olfactory bulb and their dendrites syn-
apse with axons of the primary neurosensory 
cells. Axons of secondary neurosensory cells will 
group to form the olfactory tract and synapse 
with cortical olfactory areas of the entorhinal 
paleocortex and archicortex [1, 2].

30.2.2  Olfactory Pathways

The olfactory system detects odorant molecules 
dissolved in air and trapped in the airflow passing 
through the nasal cavity. Nasal turbinates will 
guide the airflow to the olfactory cleft, allowing 
the odorant molecules to reach the olfactory 
neuroepithelium.

30.2.2.1  The Olfactory 
Neuroepithelium

The olfactory neuroepithelium is located in the 
upper part of the nasal vaults. It covers the cribri-
form plate of the ethmoid bone, medially to the 

middle turbinate and can extend to the superior 
turbinate, the superior part of the septum, and the 
middle turbinate [3]. In adult humans, its surface 
area is 2.5 cm2 per nasal fossa. The location of the 
olfactory epithelium is dependent on individual 
factors and is thought to change with age, result-
ing from a conversion of olfactory neuroepithe-
lium to respiratory epithelium or due to loss of 
olfactory neurons with age or from damages 
(smoke, toxics, chemicals, chronic infection).

The olfactory neuroepithelium is a pseu-
dostratified columnar epithelium covering a lam-
ina propria. It is composed of (1) olfactory 
receptor neurons (ORNs), (2) supporting cells, 
(3) basal cells, some of which serve as ORN stem 
cells for the regeneration of new olfactory sen-
sory neurons throughout life, and (4) the duct of 
the Bowman’s glands (which are located in the 
lamina propia) (Fig. 30.1).

The ORNs are bipolar cells, with their den-
dritic extensions directed toward the olfactory 
cleft and carrying on its surface several cilia that 
project into the mucus. Odorants are carried 
through the mucus layer by olfactory binding 
proteins, and bind to olfactory receptors located 
on the ORNs. In 1991, Axel and Buck [4] dis-
covered a family of approximately 1000 genes 
that encode for an equivalent number of olfac-
tory receptors, corresponding to the largest fam-

Fig. 30.1 Schematic 
representation of 
olfactory 
neuroepithelium. The 
olfactory 
neuroepithelium is 
composed by olfactory 
receptor neurons, 
supporting cells, and 
basal cells. The dendritic 
extension of olfactory 
receptor neurons carries 
on its surface several 
cilia, where are located 
the olfactory receptors. 
The axons run through 
the cribriform plate of 
the ethmoid bone and 
reach the olfactory bulb 
where they synapse with 
mitral cells in spherical 
structures named 
glomerulus
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Fig. 30.2 Basic schematic representation of odor coding 
at the level of neuroepithelium and glomeruli. Odorant 
molecules bind with specific olfactory receptor neurons. 
Each olfactory receptor neuron possesses only one type of 

odorant receptor. Olfactory receptor neurons carrying the 
same type of receptor send their axon to the same glom-
erulus at the level of the olfactory bulb

ily of genes in the mammalian genome [5], 
highlighting their important role in physiology. 
In the majority of mammals most of these genes 
are functional, but in primate the number of 
functional genes decreases and is to about 
350  in humans [6]. Axel and Buck found that 
each ORN possesses only one type of odor 
receptor and each receptor is specialized for a 
small number of odors. Hence, a given odorant 
will bind a typical pattern of olfactory receptors. 
The binding results in the activation of G pro-
teins. The activation of G proteins stimulates the 
formation of cyclic AMP.  Increased levels of 
cAMP open cyclic nucleotide-gated channels. 
This causes the opening of the channels and 
Ca2+ influx. This influx activates chloride chan-
nels, opening them up, causing Cl−leaves, and 
finally depolarizing the ORN and generating the 
action potential.

ORNs axons converge into the olfactory 
nerves, passing through the cribriform plate of 
the ethmoid bone and projecting directly to the 

ipsilateral olfactory bulb where they synapse into 
spherical structures known as the glomerulus.

30.2.2.2  The First Olfactory Structure: 
The Olfactory Bulb

The olfactory bulb is ovoid in shape and located 
in the anterior cranial fossa, above the cribriform 
plate of the ethmoid bone, and under the frontal 
lobe. It contains a major structure that is consid-
ered as the first olfactory structure: the glomeru-
lus. The glomerulus is the only relay between the 
periphery and the cortex. Each glomerulus col-
lects ORN axons from the same type of odorant 
receptor (Fig. 30.2). ORNs axons and dendrites 
of mitral cells synapse in the glomerulus.

The olfactory bulb has a multilayered cellular 
architecture. It encompasses 6 different layers: 
(1) the external layer is composed of ORNs 
axons; (2) the glomerular layer is composed by 
glomeruli wherein axons of ORNs synapse with 
dendrites of mitral cells; (3) the external plexi-
form layer consists of dendrites of mitral and 
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tufted cells; (4) the mitral and tufted cells layer 
contains cell bodies of mitral and tufted cells 
(second-order olfactory neuron); (5) the internal 
plexiform layer; and (6) the granule cell layer 
contains rows of mitral and tufted axons and 
granule cells which are interneurons.

Axons of the mitral cells and tufted cells 
coalesce to form the olfactory tract, located at the 
base of the forebrain.

Centripetal information is secondary to neuro-
nal activation, with glutamate as the principal 
neurotransmitter.

30.2.2.3  The Second Olfactory 
Structure: The Primary 
Olfactory Cortex

As compared to all other senses, olfaction is 
particular in that second-order olfactory neu-
rons send information directly to primary olfac-
tory cortex. In humans, the olfactory bulb is 
connected to the primary olfactory cortex by 
the fibers of the lateral olfactory tract (LOT). 
The LOT conveys olfactory information to a 
wide number of brain areas within the frontal 

lobe and the dorsomedial surface of the tempo-
ral lobe, often referred to primary olfactory 
cortex.

The primary olfactory cortex comprises the piri-
form cortex, which covers the uncus, the entorhinal 
cortex, the anterior olfactory nucleus, the periam-
ygdaloid cortex, the olfactory tubercle, and nucleus. 
These projections are mainly ipsilateral, but there 
are also contralateral connections via the anterior 
commissure [7–9]. Some of the structures of the 
primary olfactory cortex then project to tertiary 
highest cognitive centers of the brain. The major 
projection of the piriform cortex is the thalamus, 
but it will also project to the insular cortex, the orbi-
tofrontal cortex (neocortex), and the hypothalamus. 
The entorhinal cortex supplies afferent input to the 
hippocampus, while the olfactory tubercle con-
nects to the thalamus. The amygdala is the major 
source of afferents to the hypothalamus (Fig. 30.3). 
Interestingly, there are many interactions between 
the secondary olfactory structures: between the 
anterior olfactory nucleus and the piriform cortex, 
the piriform cortex and the olfactory tubercle, the 
piriform cortex and the entorhinal cortex.

Fig. 30.3 Schematic diagram of major olfactory pathways

H. Caroline et al.
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30.2.2.4  The Tertiary Olfactory 
Structures

The tertiary olfactory structures are the thalamus, 
the hypothalamus, the amygdala, the hippocam-
pus, the orbitofrontal cortex, and the insular 
cortex.

The thalamus receives information from the 
piriform cortex and the olfactory tubercle. The 
hypothalamus, the orbitofrontal cortex, and the 
insular cortex also receive afferent input from the 
piriform cortex, while hippocampus is connected 
to entorhinal cortex. We should also note that 
there are also some interactions between these 
tertiary olfactory structures. In this way, the thal-
amus connects to the orbitofrontal cortex and the 
insular cortex. Therefore, the orbitofrontal cortex 
and the insular cortex receive direct input from 
the piriform cortex and indirect input via the 
thalamus.

30.2.2.5  Centrifugal Information
Most secondary and tertiary structures have 
numerous centrifugal fibers leading to the olfac-
tory bulb, with GABA and acetylcholine as prin-
cipal neurotransmitter. The supposed aim of this 
centrifugal information is to allow the brain to 
control the incoming flow of olfactory signals.

30.2.2.6  Properties of Olfactory 
Pathways

The olfactory pathways are distributed to differ-
ent brain structures that are involved in the deter-
mination of our personal and social behavior. For 
example, the connections with:

 1. Hippocampus and limbic system are thought 
to influence our memory system.

 2. Amygdala system could act on emotional, 
motivational and craving circuits.

 3. Hypothalamus, that mediates feeding regula-
tion, could influence our feeding behavior.

 4. Orbitofrontal cortex mediates our conscious 
perception of odors and could influence our 
preferences [10].

Hence, odor perception may affect our behav-
ior and plays a major role in our interaction with 
the environment.

The olfactory system present unique proper-
ties as compared to other sensory systems. They 
are (1) the predominance of ipsilaterality of the 
olfactory projections, (2) the conduction of odor- 
evoked signals without an obligatory thalamic 
relay, and (3) the intimate overlap with limbic 
regions of the brain [11].

 1. Odor processing remains principally ipsilat-
eral [7–9] all the way from the nasal periphery 
to the primary olfactory cortex. This feature is 
different for other sensory modalities, such as 
the visual or auditory systems which, early in 
the processing pathways, supply sensory 
information in both hemispheres. This may 
help the cortex better discriminate and make 
bilateral odor comparisons and perhaps pro-
vide differential access to odor memories.

 2. The absence of an obligatory thalamic relay is 
also in contrast with other sensory modalities 
in which an incoming signal undergoes 
 thalamic modulation prior to being delivered 
to the sensory-specific cortex [11]. The 
absence of thalamic sensory integration in the 
olfactory pathways would seem to have an 
evolutionary explanation [11].

 3. The connections between the olfactory sys-
tem and the limbic system appear to be 
involved in the emotional and memory back-
ground to odorant stimuli, our social behavior, 
and the formation of novel stimulus- reinforced 
associations [11].

30.2.3  Orthonasal and Retronasal 
Olfaction

Paul Rozin noted that smell is unique in having a 
“dual nature”—meaning that it can sense signals 
originating outside (orthonasal) or inside (retro-
nasal) the body [12].

Orthonasal olfaction refers to odorants origi-
nating outside and sniffed in through the nares to 
reach the olfactory neuroepithelium. This route is 
used to smell odors from the environment, such 
as perfumes, food aromas, smoke, predator smell, 
social odors, or pheromones. Orthonasal olfac-
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Fig. 30.4 Schematic representation of the central pro-
cessing of orthonasal and retronasal olfaction. Orthonasal 
olfaction is processed by the olfactory pathways. On con-
trast, retronasal olfaction is not only processed by olfac-

tory pathways but is also influenced by other sensory 
modalities, which are taste, sound, vision and propriocep-
tion. These multisensory information are integrated in the 
orbitofrontal cortex

tion is processed by olfactory pathways and is 
influenced by the visual pathway.

Retronasal olfaction refers to odorants origi-
nating from the back of the mouth and reaching 
the olfactory neuroepithelium via the nasophar-
ynx. This retronasal stimulation occurs during 
food ingestion. It is activated only when breath-
ing out through the nose, between mastication 
and swallowing [10, 13]. The retronasal olfac-
tion, also termed as “flavor,” account for an 
important part of food identification. This 
explains why a majority of patients suffering 
from smell disorder also complain of “taste” dis-
order, although their sense of taste is intact. On 
contrast to orthonasal olfaction, flavor perception 
is not only processed by olfactory pathways but is 
also influenced by almost all sensory modalities, 
which are taste, touch, sound, and proprioception 

(for a review see [10]). Indeed, the orbitofrontal 
cortex receives connections from other sensory 
neocortical areas (taste, hearing, touch, and 
vision) [14] (Fig. 30.4). Since it is receiving mul-
tisensory input and integrating these different 
sensory information, the orbitofrontal cortex is 
an important area to influence our food prefer-
ences and choices.

30.2.4  Olfactory and Trigeminal 
Interactions

The nasal fossa has double innervations from 
olfactory and trigeminal afferents. Although 
odorants are defined as volatile compounds hav-
ing the ability to activate the olfactory system, 
the vast majority of odorants will actually acti-

H. Caroline et al.
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vate both the olfactory and trigeminal system. 
Sensations resulting from the activation of the 
olfactory system are those of odors, while sensa-
tions induced by the stimulation of the trigeminal 
nerve are somatosensory (tactile, thermic, pain, 
humidity).

Olfactory and trigeminal systems closely 
interact with each other, and the stimulation of 
these two systems leads to important overlap 
in their activation pattern in the brain [15–19]. 
The interaction between both systems is com-
plex and takes place both at a peripheral or 
central level (for a review see [20, 21]). This 
interaction is difficult to predict, but it has a 
powerful influence on odor perception both at 
different concentrations of a single stimulus 
and between mixtures of chemosensory stim-
uli. According to the literature, the pattern of 
interaction seems to depend on stimulus qual-
ity, intensity, and relative intensity of olfac-
tory and trigeminal components of the mixture 
(for a review see [21]). Some reports have 
investigated the olfactory modulation of 
trigeminal- mediated sensations in patients 
with olfactory loss demonstrating that a close 
interaction and many compensatory mecha-
nisms exist [22].

30.2.5  Variability in Normal 
Olfactory Function

Among other senses the olfactory function 
decreases over time and it has been described in 
numerous previous studies that there is a strong 
decrease in olfactory function above the age of 
55 years [23, 24]. Several mechanisms have been 
proposed to explain this age-related olfactory 
dysfunction. At a peripheral level, changes in 
mucociliary movement, mucus composition, sub-
mucosal blood flow, and epithelia thickness 
might disturb the transport of the odorant to the 
receptor [25]. At the level of the neuroepithelium 
it is assumed that the regeneration of olfactory 
receptor neurons decreases over age [26, 27]. At 
a central level, brain damages due to chronic 

ischemia or systemic disturbance might also be 
proposed as a potential cause of age-related 
olfactory disorder.

Hummel et al. reported that there is a differen-
tial change of olfactory functions with aging. 
Indeed, olfactory thresholds decrease more 
strongly with age as compared to odor discrimi-
nation and odor identification [23, 28]. Since 
threshold measurements best reflect the function 
of the peripheral olfactory system than other 
olfactory tests [29–31], this finding might indi-
cate that age-related change of olfactory function 
is at least in part due to damage of the olfactory 
epithelium [23]. Nevertheless, we should also 
keep in mind that age-related decrease of olfac-
tory function might also be a consequence of side 
effects of drugs, onset of neurodegenerative dis-
eases, etc.

A sex-related difference in olfactory function 
has also been widely reported [23, 32–35], with 
women outperforming men. Several causes have 
been proposed to explain this phenomenon, such 
as hormonal effects and congenital factors. 
However, the origin of this sex-related difference 
is still unclear.

Finally, some healthy people might present a 
specific anosmia. That is a physiological condi-
tion where a person of otherwise normal olfac-
tory acuity is unable to detect a specific odorant. 
Specific anosmias have been described for series 
of odors [36]. It is admitted that specific anosmia 
has a genetic basis and the occurrence of specific 
anosmia indicates that specific receptors are nec-
essary for perceiving specific odors [37–41]. One 
of the most frequent and well-known specific 
anosmia is androstenone anosmia. The preva-
lence of this specific anosmia is still a matter of 
debate. It is usually admitted that about 30% of 
the population is unable to detect the odor of the 
androstenone. But there is a high variability in 
the prevalence reported in the literature, ranging 
from 1.8 to 75% [42] (for a review see [42]). This 
might be at least in part explained by the various 
stimulation methods, criterion for non-detection, 
and concentrations that were used in the different 
studies [42].

30 Olfaction
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30.3  Pathology

Although olfaction is often described as one of 
the less important sense, smell disorders have 
severe consequences, including impaired qual-
ity of life, daily life problems (cooking, detec-
tion of potentially dangerous odors) [43], 
altered food choices and consumption patterns 
than can negatively impact health (decreased 
body weight, overuse of salt inducing blood 
hypertension, overuse of sugar inducing diabe-
tes mellitus, impaired immunity, etc.), and even 
depression [44].

The incidence of olfactory dysfunction among 
the population is still a matter of debate. Authors 
report an incidence of 1–3% of dysfunction 
among population [24, 45]. Nevertheless a study 
by Landis et al. reported higher values of olfac-
tory dysfunction among population without sino-
nasal complaints, with a rate of 4.7% of anosmia 
and 16% of hyposmia. The frequency of paros-
mia and phantosmia was reported with a rate of 
2.1% and 0.8%, respectively [46]. Recently, the 
SARS-CoV-2 pandemic has been found to be fre-
quently associated with olfactory dysfunction, 
causing an anosmia pandemic across the world.

The evaluation of patients suffering from 
olfactory disorders requires a precise clinical 
work-up procedure in order to (1) determine the 
etiology of the olfactory dysfunction, (2) assess 
olfactory function and, hence, (3) provide an 
optional treatment, a prognosis, and appropriate 
counseling to patients. Assessment of olfactory 
function is reviewed in Chap. 33.

30.3.1  Classification of Olfactory 
Disorders

30.3.1.1  Quantitative Olfactory 
Disorders

Quantitative olfactory disorders are hyposmia, 
hyperosmia, and anosmia (Table 30.1). Hyposmia 
refers to a decreased ability to smell. This is a 
common condition. Indeed, Landis et al. reported 
that up to 16% of the general population is 
hyposmic [46].

Hyperosmia is a rare condition and refers to 
enhanced ability to smell. It can happen after 
exposure to toxic vapors [47] or during 
migraine [48].

Anosmia refers to the lack of ability to smell. 
It is assumed that about 5% of the general popu-
lation exhibit functional anosmia [46]. Functional 
anosmia refers to a significantly reduced ability 
to smell although some smell sensations can be 
present.

30.3.1.2  Qualitative Olfactory 
Disorders

Qualitative olfactory disorders are parosmia, 
phantosmia, and olfactory agnosia. Parosmia is 
sensation that a given odor is different than the 
typical odor for this substance. Parosmia is typi-
cally associated with reduced olfactory sensitiv-
ity and is particularly frequent in patients 
suffering from post-infectious olfactory loss (up 
to 50%) [49]. It is also associated with post- 
traumatic olfactory loss or sinonasal-related 
olfactory disorder. Studies found a prevalence of 
parosmia in 19% [50], 20% [51], and 28% [49] of 
patients presenting to « Smell and Taste » clinics, 
while the prevalence of parosmia in the general 
population is reported to be 2.1 [46] to 4% [52]. 
It is typically unpleasant. Euosmia is a rare form 
of parosmia with a pleasant parosmia to selected 
odorants [53]. The pathophysiology of parosmia 
is not clear. There are two hypotheses: the central 
and the peripheral hypotheses. In periphery, loss 
of olfactory receptor neurons changes the integ-
rity of the olfactory image, resulting in an incom-
plete and meaningless picture of the odorant. 
Centrally, it has been proposed that the integra-
tion and interpretation of odors are altered [54].

Phantosmia is the perception of an odor when 
none is present. It may be reed to a wide range of 

Table 30.1 Classification of smell disorders

Quantitative smell 
disorders

Qualitative smell 
disorders

• Hyposmia
• Anosmia
   – Functional anosmia
   – Specific anosmia
• Hyperosmia

• Parosmia
• Phantosmia
• Olfactory agnosia

H. Caroline et al.
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pathologies (post-infectious olfactory loss, post- 
traumatic olfactory loss, rhinosinusitis, neuro-
logic, etc.).

Finally, olfactory agnosia is defined as the 
inability to recognize odor sensation.

30.3.2  Etiology of Olfactory 
Disorders

There are several causes of olfactory dysfunc-
tion. The most frequent are chronic rhinosinus-
itis, post-infectious olfactory loss, and 
post-traumatic olfactory loss. These three etiolo-
gies account for up to two-thirds of the patients 
with olfactory disorder [55, 56]; therefore, we 
will largely extend on these 3 pathologies. 
However, several pathologies might also affect 
olfactory function, such as neurological disease, 
metabolic diseases, toxics, and tumoral disease 
of the sinonasal cavities or brain (Table 30.2). It 
is therefore essential to investigate about the eti-
ology of olfactory dysfunction. An algorithm for 
the management of olfactory dysfunction is pro-
posed in Fig. 30.5.

30.3.2.1  Chronic Rhinosinusitis
Chronic rhinosinusitis (CRS) with or without 
polyps is the most common cause of olfactory 
dysfunction, accounting for 14–30% of cases 
[57–60]. Inversely, olfactory impairment is 
acknowledged as a key symptom for the diagno-
sis of CRS [61]. Nevertheless up to one quarter 
of patients with CRS are unaware of their 
decreased olfactory abilities, probably because 
the olfactory dysfunction in CRS develops 
slowly, and in consequence, only a few patients 
note this disorder [62].

Olfactory dysfunction in CRS is explained by 
a combination of conductive olfactory loss (i.e., 
polyps, edema, nasal discharge, etc.) and neuro-
sensory disturbance due to mucus and neuroepi-
thelial alterations resulting from chronic 
inflammation [63].

In the context of CRS, olfactory dysfunction 
is mainly quantitative, appears gradually and 
fluctuates over time. Patients may also report 
qualitative dysfunction such as parosmia and 

Table 30.2 The different etiologies of olfactory disorders

Rhinologic disease
   –  Chronic rhinosinusitis (with or without nasal 

polyps)
   – Allergic rhinitis [164–166]
   – Atrophic rhinitis [167]
   – Post-surgical [167, 168]
   – Olfactory cleft syndrome
Post-infectious olfactory loss
COVID-19-related olfactory loss
Post-traumatic olfactory loss
Congenital anosmia
Neurologic disorder
   – Alzheimer’s disease
   – Idiopathic Parkinson’s disease, …
Tumor
   – Intranasal
    • Esthesioneuroblastoma
    • Adenocarcinoma

   – Intracranial
    • Gliomas
    • Olfactory meningiomas

Toxic [169–171]
   – Metals (cadmium, manganese, mercury, aluminum)
   –  Gases (formaldehyde, methyl bromide, styrene, 

chlorine)
   – Solvents (toluene, butyl acetate, benzene)
   – REF
   – Hairdressing chemicals
   – Intranasal zinc
Drug induced (for review, see [172, 173])
   – Chemotherapy drugs
   – Analgesic (antipyrine)
   –  Local anesthetics (cocaine HCL, procaine HCL, 

tetracaine HCL, lidocaine)
   – General anesthetics
   –  Antimicrobial (amoxicillin, aminoglycosides, 

macrolides, doxycycline, pyrazinamide)
   –  Antirheumatics (mercury/gold salts, 

d-penicillamine)
   – Antithyroids (propylthiouracil, thiouracil)
   –  Cardiovascular, hypertensives (angiotensin 

conversion enzyme inhibitors, nifedipine, 
amlodipine)

   – Gastric medication (cimetidine)
   –  Intranasal saline solutions (with acetylcholine, 

menthol, zinc sulfate)
   – Opiates
   – Sympathomimetics
Metabolic/endocrine (for a review, see [174])
   – Adrenocortical insufficiency
   – Cushing’s syndrome
   – Hypothyroidism
   – Pseudohypoparathyroidism
   – Hepatic [175] or renal failure [176]
Psychiatric [177]
Idiopathic

 Pathologies that are underlined are deeply commented in 
the text
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Olfactory dysfunction

MEDICAL HISTORY ENT EXAMINATION

Obvious sino-nasal originNo obvious sino-nasal origin

Psychaphysical testing with validated olfactory tests
Persisting olfactory dysfunction
or surgical indication

NoNo Yes

Yes

Consider MRI examination when
suspicion of intracranial pathology

Consider electrophysiological
assessment in medico-legal cases

GENERAL TREATMENT

Safety counselling
Olfactory training

Post-infectious Post-traumatic

Close temporal
relationship with URTI

Anosmia or hyposmia

Parosmia +++
Phantosmia+

Decreased OB volume

Decreased or absent
OERP

Close temporal
relationship with
trauma

Anosmia or hyposmia

Parosmia ++
Phantosmia+

Decreased OB volume
Fragmented OB
Basifrontal contusions

Decreased or absent
OERP

Idiopathic

No trighering event
Negative setup

Anosmia or hyposmia

Parosmia +
Phantosmia +

Decreased OB volume

Decreased or absent
OERP

Neurological

Neurodegenerative
disease, brain tumor...

Anosmia or hyposmia

Parosmia +
Phantosmia +

Brain tumor, multiple
scierosis

Decreased or absent
OERP

Toxic/drug

Exposition to toxic
agents or drugs

Anosmia or hyposmia

Parosmia +
Phantosmia +

-

Decreased or absent
OERP

Congenital

No smell since birth

Anosmia

No parosmia
No phantosmia

Aplastic or hypoplastic
OB
Decreased OS depth

No OERP

Sino-nasal disease

Clinical signs
Sinonasal complaints

Anosmia or hyposmia

Parosmia +
Phantosmia+

Normal or decreased 
OB volume
Sinusitis

Decreased or absent
OERP

Normal olfactory function? Parosmia/phantosmia?

Treatment according to current guidelines

Detailed patient’s medical and surgical history
History of the olfactory disorder (triggering event, characteristics...)
Sino-nasal complaints

Including careful sino-nasal endoscopic examination (olfactory
cleft, polyps, rhinorrhoea)

Fig. 30.5 Algorithm for the management of olfactory disorders and summary of the main features of the most frequent 
olfactory disorders. OB olfactory bulb, OS olfactory sulcus, OERP olfactory event-related potentials

phantosmia. However, these symptoms seem less 
frequent in sinonasal disease compared to other 
etiologies (i.e., post-infectious, post-traumatic). 
Reden et al. [49] reported incidence of parosmia 
and phantosmia in patients with CRS of 28% and 
7%, respectively.

Studies have described that the severity of 
quantitative olfactory dysfunction is related to 
the importance of the sinonasal disease, based on 
endoscopy and CT score [64]. Patients with nasal 
polyps show a higher incidence of olfactory dis-
turbances and a higher incidence of anosmia than 
patients with CRS without polyps. This more 
severe symptomatology may be explained not 
only by the conductive olfactory loss induced by 
polyps but also by degenerative changes associ-
ated with recurrent infections, scaring, chronic 
nasal medication, exotoxins, and enhanced secre-

tion of cytokines from Staphylococcus aureus 
infection and neurotoxic cytokines released by a 
huge eosinophilic population [65–69].

Treatment of CRS should follow current 
guidelines [61]. Medical treatment notably relies 
on corticosteroids, either topical or systemic 
[61]. Corticosteroids are able to improve CRS- 
related olfactory dysfunction, with usually a 
higher efficacy of systemic steroids (for a review 
see [63]). In the last years biological treatments 
have been developed. Dupilumab is now FDA 
approved for the treatment of CRS and has favor-
able olfactory outcome [61, 70]. Surgery can also 
be proposed to a subset of patients suffering from 
CRS. Several studies have investigated the effect 
of surgery on olfactory function and generally 
showed an improvement of olfactory function 
[71]. However, there is a large heterogeneity 
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regarding the methodology and only a few stud-
ies used validated psychophysical testing to 
assess olfaction [71].

30.3.2.2  Post-Infectious Olfactory 
Loss

Post-infectious olfactory loss is defined as a sud-
den loss of olfactory function following an upper 
respiratory tract infection (URTI) and was 
described for the first time more than 20 years 
ago [72]. The upper respiratory infection sub-
sides over time and leaves the patient with an 
olfactory dysfunction that persists over a long 
period. There is a close connection in time 
between the URTI and the onset of the olfactory 
disorder [73]. The exact pathogenic agent is 
rarely determined but is assumed to be viral, and 
so this disease is known as “post-viral” or “post- 
infectious” olfactory loss. The exact incidence of 
olfactory dysfunction following URTI is not 
known as many patients with URTI do not report 
their symptoms, so the exact incidence of com-
mon cold in the population is unknown. However, 
post-infectious olfactory loss is diagnosed in 
approximately one quarter of the patients in 
groups presenting to specialized centers, such as 
smell and taste clinics [44, 74–76]. Recently, a 
new pathogen, the SARS-CoV-2, is emerged. 
Besides classical respiratory symptoms initially 
described, it revealed to create smell disorders in 
a high rate of patients. COVID-19-related olfac-
tory dysfunction seems to differ from other post- 
infectious olfactory loss. Therefore, we will give 
a specific focus to it.

Patients with post-infectious olfactory loss are 
usually women and the disease typically occurs 
between the fourth and the sixth decades of life 
[73, 75, 77]. Onset of the URTI is often sudden 
and awareness of the olfactory dysfunction is 
present when major symptoms secondary to the 
infection subside. Many patients also have endo-
scopic or radiological evidence of rhinosinusitis. 
It is therefore mandatory to treat this condition 
and observe the impact of this treatment on the 
sensorineural disorder. Patients usually complain 
of moderate to severe olfactory loss but the 
degree of olfactory loss is usually less severe than 
in patients with head trauma [78]. Parosmia and 

phantosmia are also present and range to 10–50% 
[49, 72, 79]. Seasonal variation in the incidence 
of post-infectious olfactory loss has been demon-
strated with the highest incidences being in 
March and May [80]. This is probably due to the 
seasonal variation of viral particles, such as para-
influenza virus type 3 [75, 81, 82].

Diagnosis should be based on (1) history of an 
olfactory disorder following an URTI and a close 
temporal relationship between the two, (2) 
patency of the olfactory cleft at the endoscopic 
examination, and (3) absence of any other causes, 
such as toxic exposure (medication taken to treat 
the URTI and possibly causing an olfactory dis-
order themselves), an inflammatory process in 
the nasal fossa (diagnosed with an endoscopic 
evaluation), or neurological problems, such as 
neurodegenerative diseases.

The exact mechanism leading to post- 
infectious olfactory loss is not yet fully under-
stood. Viral particles may damage the olfactory 
receptor neuron and provoke immune response 
that also leads to damages in the olfactory neuro-
epithelium and damage the central olfactory 
pathways. Viruses are also capable of penetrating 
the brain via the fovea ethmoidalis. Many viruses 
may cause olfactory impairment, examples being 
the influenza virus, parainfluenza virus, respira-
tory syncytial virus, coxsackievirus, adenovirus, 
poliovirus, enterovirus, and herpes virus. The 
exact determination of the viral agent is not use-
ful in the clinic and viral serology is not manda-
tory. Experimental intranasal infection with 
influenza virus A leads to increased apoptosis 
and increased fibrosis in the olfactory neuroepi-
thelium [83, 84]. This mechanism is thought of as 
a protective one that limits the access of viral par-
ticles to the brain. Histopathological findings 
relating to the olfactory neuroepithelium of 
patients with post-infectious olfactory loss have 
revealed that severely affected patients have 
reduced numbers of ciliated olfactory receptor 
cells [85]. Moreover, dendrites of the olfactory 
receptor neurons usually fail to reach the epithe-
lial surface and therefore have no contact with 
odorant particles. Attempting to correlate the 
importance of the olfactory neuroepithelial dam-
age with the extent of the olfactory dysfunction 
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as well with the chances of recovery generated 
conflicting results [85, 86]. Overall, post- 
infectious olfactory loss is probably secondary to 
a viral attack both at a peripheral level (olfactory 
neuroepithelium) and at a central level (olfactory 
bulb) and these two sites interact both in the path-
ological condition and in the recovery phase.

The spontaneous recovery of olfactory perfor-
mance is found, due to the plasticity of our olfac-
tory system, in about one-third of the 
post-infectious olfactory loss patients [87]. 
Olfactory function may decline (rare), not 
change, show some improvement, a major 
improvement, and improve into the absolute nor-
mal range or into the range adjusted for age [88]. 
Several prognosis factors have been described in 
the literature. Prognosis seems to be more favor-
able when the psychophysical tests reveal incom-
plete olfactory loss (i.e., hyposmia vs anosmia) 
[88–90]. Age and sex also seem to be important 
in the assessment of the prognosis since women 
and younger patients tend to recover more fre-
quently than men and older patients [89]. Another 
prognostic factor is the duration of the disease 
[88, 90]. Electrophysiological measures are also 
predictive of recovery since it was demonstrated 
that the presence of olfactory event-related 
 potentials at the time of diagnosis is linked to a 
better outcome in patients with post-infectious 
olfactory loss [91]. With regard to the meaning of 
qualitative olfactory disorders, reports have been 
mixed in relation to the likelihood of recovery 
[49, 90].

At present there is no medical therapy that has 
been proven effective. Many drugs have been 
tried in non-randomized and uncontrolled trials: 
topical or systemic corticosteroids [92], zinc sul-
fate [93, 94], quinoxaline derivatives [95], alpha 
lipoic acid [96], and pentoxifylline [97]. Although 
early promising results with some molecules 
have been demonstrated, these medications 
helped patients achieve partial or full recovery in 
unpredictable ways [87]. Recent systematic 
reviews about the usefulness of corticosteroids 
concluded that there is a paucity of high-quality 
studies demonstrating the efficacy of oral or topi-
cal steroids. Notably, topical steroids do not 
improve olfactory function, while weak evidence 

supports oral steroids, that could be considered as 
an option, in some selected patients after careful 
consideration of the potential side effects [98, 
99]. On contrast, olfactory training is acknowl-
edged as the gold-standard treatment of post- 
infectious olfactory loss [99]. This method 
consists in smelling four odorants, for 10 min, 
twice a day, during at least 12 weeks [100]. 
Finally, adequate counseling of the patient is of 
importance to help him cope with his deficit in 
his everyday life (for nutrition, hazard detection, 
hygiene, etc.).

30.3.2.3  COVID-19-Related Olfactory 
Dysfunction

Olfactory loss is a common symptom of 
COVID- 19, a disease caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS- 
CoV- 2). The SARS-CoV-2 pandemic was there-
fore associated to a pandemic of olfactory 
dysfunction. This raised media and public atten-
tion toward the, until there usually neglected, 
sense of smell.

The reported frequencies of olfactory loss 
vary a lot across the different studies, probably 
because of the large heterogeneity in method-
ological approaches. Meta-analyses have deter-
mined that the pool frequency olfactory 
dysfunction (either based on questionnaire or 
smell tests) was 56 [101]–61% [102]. Importantly, 
olfactory dysfunction can be reported as the first 
symptom of COVID-19  in 20% of cases [103]. 
Olfactory dysfunction can range from anosmia to 
hyposmia [104]. Patients usually recover within 
the first month [104]; however, it is estimated that 
5% patients will remain with persistent smell loss 
at 6  months after the onset [105]. Importantly, 
olfactory dysfunction does not seem to be associ-
ated with other nasal symptoms, such as nasal 
congestion or rhinorrhea [106]. Parosmia fre-
quently occurs a few months after the acute event 
and has been reported by 27.5% of patients at 
4-month follow-up. It usually resolves over time, 
but 12.5% of patients still report anosmia at 
1 year [107].

Several mechanisms have been proposed to 
explain COVID-19-related olfactory dysfunction 
[108]. First, it could result from the release of 

H. Caroline et al.



393

proinflammatory mediators at the level of the 
olfactory cleft. Indeed, high levels of TNF-α and 
IL-6 have been reported in COVID-19 patients 
with olfactory dysfunction. These mediators not 
only could induce edema of the olfactory mucosa 
and conductive smell loss but could also impair 
sensory transduction and induce apoptosis [108–
110]. Second, ACE2 and TMPRSS2, the entry 
proteins of SARS-COV-2, have been found in the 
olfactory supporting cells. Infection of olfactory 
supporting cells could lead to a disorganization 
and hence a dysfunction of the olfactory epithe-
lium [111, 112]. Third, although olfactory sen-
sory neurons do not express ACE2 and TMPRSS2, 
it is possible that these cells are infected through 
tight junctions with sustentacular cells [108]. 
Finally, it has been found that IgA produced 
against SARS-CoV-2 may block odorant recep-
tors carried at the surface of olfactory sensory 
neurons [113].

Until now, there is no specific treatment for 
COVID-19-related olfactory dysfunction and 
olfactory training is recommended considering 
its effectiveness in other causes of olfactory dys-
function and safety. Moreover, considering the 
high recovery rate after COVID-19 olfactory 
 dysfunction, it is also important to reassure the 
patient regarding its probable outcome.

30.3.2.4  Post-traumatic Olfactory 
Loss

Head trauma is, according to Nordin’s literature 
review published in 2008, the third most common 
cause of olfactory disorder [114]. The incidence 
of olfactory disorder following head injury is dif-
ficult to estimate because (1) patients admitted to 
emergency often fail to receive an assessment of 
their sense of smell due to the potentially life- 
threatening nature of head trauma and the fre-
quent occurrence of other injuries requiring 
immediate medical attention, (2) the time and the 
resources for such an examination are lacking in 
emergencies, (3) patients are not able to recog-
nize their loss of olfactory function, more espe-
cially when there is an associated neurological 
deficit, (4) there is no medical follow-up if the 
olfactory disorder has no subjective impact for 
the patient, and (5) there is a lack of reports about 

spontaneously resolving olfactory disorder. For 
these reasons, the reported incidence is probably 
underestimated and variable depending on 
recruitment: in patients seen at a Head Injury 
Clinic, incidence is estimated between 2 and 12% 
[115, 116] and between 8 and 20% in Smell and 
Taste Centers [44, 49, 50, 60, 117, 118].

The patients at most risk of post-traumatic 
olfactory loss are young male adults. This is 
thought to be related to increased severity of 
trauma in this population. In both sexes gener-
ally, patients aged over 70 are most at risk [115, 
119]. The most common type of trauma is a fall 
in 61% of patients, followed by car accidents in 
20% and assault in 13% [115]. Several risk fac-
tors for the development of post-traumatic olfac-
tory loss have been described: (1) the severity of 
the injury with more severe trauma being at 
higher risk of olfactory dysfunction [115, 120, 
121], (2) the impact location and direction with a 
higher prevalence of post-traumatic olfactory 
loss when the front of the back of the head is 
stuck rather than the side [115, 122], and (3) the 
age of the patient, with a higher risk in the elderly 
patients [119]. In addition, it is important to note 
that in a traumatic context, olfaction might also 
be affected by the treatment of the injury, possi-
bly complicating the etiological diagnosis (i.e., 
neurosurgical procedures, facial fracture reduc-
tions, usage of drugs, such as opioids and antimi-
crobial agents).

Typically, patients experience a sudden onset 
of olfactory symptoms [44], occurring some days 
after the trauma. Head trauma produces, on aver-
age a greater degree of olfactory decrement as 
compared with other etiologies of olfactory dys-
function [44, 119]. Post-traumatic olfactory dis-
order patients have anosmia ranging from 48 to 
78% and hyposmia ranging from 5 to 27.4% [54, 
115, 116, 122]. Qualitative disorders are com-
monly found in patients with head trauma. 
Parosmia is reported in 14–35% of cases [49, 60, 
117] and phantosmia in 10–41% of the patients 
[49, 50, 117]. The prevalence of parosmia tends 
to decrease over time.

Three possibly co-existent lesions are likely to 
cause post-traumatic olfactory loss [116]. First, 
injuries to the sinonasal tract with obstruction of 
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the passage to the olfactory cleft can lead to an 
obstructive post-traumatic olfactory loss. Second, 
shearing of the olfactory nerves at the cribriform 
plate might induce an olfactory loss. Notably, 
olfactory nerves can be injured after: (1) a trans-
lational shift of the encephala secondary to pos-
tero-anterior coup and contrecoup forces in the 
case of occipital impact; or (2) fractures is the 
naso-orbito- ethmoid region involving the cribri-
form plate. Third, contusions and brain hemor-
rhage involving olfactory bulbs and/or the 
olfactory cortex might also produce an olfactory 
disorder.

The prognosis seems to be reserved: some 
improvement may be expected in about one-third 
of the patients, although complete recovery is 
only achieved in 10–15% [44, 49, 88, 89]. 
Recovery is most likely to occur within the first 
6  months to 1  year after the initial insult [88]. 
However, late recovery has been described, 
occurring until 9  years after the trauma 
[123–125].

No medical treatment has yet been proven to 
be effective. Olfactory training is currently rec-
ommended as gold-standard treatment [100, 126] 
and appropriate counseling is also mandatory.

30.3.2.5  Congenital Anosmia
Congenital anosmia is defined as the absence of 
olfactory sensation since birth or early childhood. 
This condition can be divided in (1) syndromic 
anosmias (e.g., Kallmann’s syndrome [127] and 
Klinefelter’s syndrome [128, 129], congenital 
insensitivity to pain [130, 131], and ciliary dys-
function [132, 133]) or (2) anosmias without evi-
dence of other defects (isolated anosmia since 
birth or early childhood), which seems to be more 
frequent than syndromic anosmia [134–137]. 
Although 5% of the general population is anos-
mic [46], congenital anosmia remains a rare 
cause of olfactory disorder and isolated congeni-
tal anosmia account for about 1% of anosmias.

Diagnosis of congenital anosmia is based on 
anamnesis (patients have no recollection of ever 
being able to smell), psychophysical and electro-
physiological assessment of olfactory function, 
and imagery. Magnetic resonance imaging is the 
imaging modality of choice for the assessment of 

olfactory apparatus in cases of suspected congen-
ital anosmia. Indeed, we know from the literature 
that in isolated anosmia and in Kallmann’s syn-
drome, the olfactory bulb and olfactory tract can 
be aplastic or hypoplastic [138–140]. The depth 
of the olfactory sulcus is also a useful indicator of 
congenital anosmia since we know that the depth 
of the olfactory sulcus at the level of the “plane of 
the posterior tangent through the eyeballs” 
reflects the presence of olfactory bulbs and tracts 
[140] and clearly indicates isolated anosmia if it 
is smaller than 8 mm [141].

When diagnosing a congenital anosmia, it 
should be discussed to realize a genetic and 
endocrinological evaluation. Also, since this 
disease cannot be treated, it is mandatory to give 
the patient or his/her parents the best informa-
tion about this disease and to give counseling 
about everyday life (i.e., gas and smoke alarms, 
particular attention when cooking, hygiene, 
etc.).

30.3.2.6  Neurological Disorders
It is well known that some neurodegenerative dis-
eases, such as idiopathic Parkinson’s disease and 
Alzheimer’s disease are associated with early 
olfactory dysfunction [142]. Because of the high 
prevalence of these neurodegenerative diseases in 
elderly subjects, the early diagnosis of these dis-
eases constitutes a major public health issue for 
our aging societies. At present, the early differen-
tial diagnosis between idiopathic Parkinson’s dis-
ease and Parkinsonism associated, for example, 
to multiple system atrophy, Lewy body disease, 
or corticobasal degeneration remains difficult, 
such as the differential diagnosis of mild cogni-
tive impairment that may be the early expression 
of Alzheimer’s disease, but also other forms of 
neurodegenerative diseases, and late-life depres-
sion. Many studies have suggested that the evalu-
ation of the olfactory function can contribute 
significantly to the early diagnosis of these 
pathologies.

In idiopathic Parkinson’s disease (IPD), olfac-
tory dysfunction was first described by Ansari 
and Johnson in 1975 [143]. Olfactory disorders 
are often considered as an early and reliable sign 
of idiopathic Parkinson’s disease (IPD), since 
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they are present in more than 90% of all IPD 
patients [144, 145]. In accordance with the stag-
ing of Braak [146] it has been hypothesized that 
the early development of olfactory dysfunction is 
due to the early involvement of olfactory regions 
in the course of the disease. Several recent stud-
ies have shown that people suffering from idio-
pathic hyposmia or anosmia have an increased 
risk of developing IPD [147, 148], and that che-
mosensory event-related potentials are delayed 
or absent in IPD patients [149]. While IPD is 
associated with marked olfactory dysfunction 
leading to anosmia, other causes of Parkinsonism 
are not associated with strong olfactory dys-
function. For example, olfactory disorders 
would be moderate in multiple system atrophy, 
and absent in Parkinson’s disease and in vascu-
lar Parkinsonism [150].

Olfactory disorders can also constitute one of 
the first signs of Alzheimer’s disease (AD) [151]. 
The time course of histopathological changes in 
AD also indicates that olfactory dysfunction 
should precede cognitive dysfunction. Indeed, it 
has been shown that the formation of neurofibril-
lary tangles occurs first in the entorhinal cortex, 
while cognitive symptoms appear only once neu-
ropathological changes have spread to the hippo-
campus and temporal neocortex [151]. Olfactory 
discrimination of AD patients is significantly 
lower than olfactory discrimination of patients 
suffering from mild cognitive impairment, which 
itself is lower than that of age-matched control 
subjects [152]. In addition, a recent clinical study 
has shown that the olfactory bulb and olfactory 
tract volume is decreased in AD patients, and that 
this atrophy is already present at an early stage of 
the disease [153]. Since early diagnosis of AD 
remains problematic, assessment of olfactory 
function should be useful for the early differen-
tial diagnosis of AD.  This should be further 
investigated.

30.3.2.7  Olfactory Cleft Disease
Olfactory cleft disease is defined as an olfactory 
dysfunction due to a pathologic process limited 
to the olfactory cleft that can be visualized on 
clinical or radiological examination. Only few 
authors have reported this entity [154–156]. 

Biacabe et  al. showed that olfactory disability 
was the major symptom of olfactory cleft disease 
and they identified three possible pathologic pro-
cesses inducing olfactory cleft disease – malfor-
mative, inflammatory, and inflammatory 
associated with anatomical deformities of olfac-
tory cleft boundaries  – and hence suggest that 
computed tomography scanning is useful for the 
diagnosis of this disease. Finally, they showed 
that medical therapy was effective in lowering 
olfactory thresholds in 25% of the cases. 
Nevertheless, until now, indications of functional 
endoscopic surgery remain to be defined after 
failure of medical therapy.

30.3.2.8  Miscellaneous
Several other pathologies that might affect the 
olfactory function, such as tumors, toxics, drugs, 
and endocrine disorders, have been described. 
They are reported in Table 30.1.

30.3.2.9  Idiopathic Olfactory Loss
For a large number of patients, no obvious etiol-
ogy to the olfactory disorder can be found. These 
people are thus considered as suffering from idio-
pathic olfactory loss. The reported prevalence of 
idiopathic olfactory loss in the literature range 
from about 20% [44, 49] to one-third [117] of 
patients suffering from olfactory disorder. These 
patients not only complain of quantitative olfac-
tory disorder but may also complain of qualita-
tive olfactory dysfunction [49, 157].

Previous work has indicated that idiopathic 
olfactory loss may be related to sinonasal dis-
ease. In fact in a study of 55 patients, almost 1/3 
of patients with idiopathic olfactory loss 
responded to systemic treatment with corticoste-
roids [92], possibly indicating the presence of 
inflammation-related dysfunction. Hence, sys-
temic steroid trial could be considered in patients 
suffering from idiopathic olfactory loss, after 
careful consideration of possible side effects. 
Olfactory training seems to be effective and 
should thus be proposed to patients suffering 
from idiopathic olfactory loss [126].

Finally, it is important to keep in mind that some 
patients with idiopathic olfactory loss may develop 
idiopathic Parkinson’s disease or Alzheimer’s 
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disease [158]. A recent retrospective study from 
Haehener et al. on a cohort of 474 patients found 
that 9.9% of patients with idiopathic smell loss 
developed Parkinson’s disease after an 8-year mean 
follow-up. This rate increased to 28.6% for patients 
with combined smell and taste loss [159].

30.3.2.10  Olfaction and Quality 
of Life

We must note that olfactory dysfunction severely 
impairs the quality of life of patients, including 
detection of hazardous events, eating habits and 
cooking, nutritional intake, and interpersonal 
relations [43]. Furthermore, it has been demon-
strated that patients suffering from olfactory 
disorders have a higher prevalence of mild to 
severe depression as compared to the general 
population [44]. Importantly, the impact on the 
quality of life is more severe when patients have 
an associated qualitative olfactory dysfunction 
[160, 161]. Indeed, parosmia leads to higher 
rate of mild depression than quantitative olfac-
tory disorders. Finally, since patients reporting 
an improvement of their olfactory abilities have 
a better quality of life than patients reporting no 
 improvement [162]; it is essential to investigate 
about the etiology of olfactory dysfunction in 
instance to provide an optimal treatment to the 
patients.

Several studies have also highlighted the link 
between age-related olfactory loss and nutritional 
disorders in older people. As reported above, 
there is a physiological decrease of olfactory 
function with advancing age. This age-related 
olfactory disorder negatively impacts the food 
intake of older people. Indeed, not only older 
people might have a reduced interest in food and 
hence reduced food intake, but also they tend to 
have less varied diet and consequently might 
develop deficiencies. This is problematic since 
inadequate diet and malnutrition are associated 
with a decline in functional status, impaired mus-
cle function, decreased bone mass, immune dys-
function, anemia, reduced cognitive function, 
poor wound healing, and delay in recovering 
[163]. This may constitute a major public health 
issue in our aging population.

30.3.2.11  Counseling of the Patient
Consequences for daily life and coping strategy 
should be integrated in clinical management of 
patients, focusing on instructional information 
about fire alarms, domestic gas, hygiene, etc.

Nutritional recommendations should also be 
proposed to the patients in order to avoid altered 
food choices and consumption patterns than can 
negatively impact health (decreased body weight, 
overuse of salt inducing blood hypertension, 
overuse of sugar inducing diabetes mellitus, 
impaired immunity, etc.).

Finally, as reported above, olfactory training 
seems to be effective and should thus be recom-
mended to patients [126].

30.4  Conclusion

Describing the olfactory pathways, we have 
shown that olfactory system has connections with 
brain areas associated with memory processes, 
feeding circuits, emotional, motivational, and 
craving circuits. Hence, it is easy to understand 
that, although often neglected, the olfactory sys-
tem plays a preponderant role in our everyday’s 
life and strongly influence consciously or non- 
consciously on emotions, social behavior, nutri-
tion, memory, etc. Therefore, we can easily 
understand that olfactory disorders severely 
impact our quality of life and that patients suffer-
ing from olfactory disorders need a particular 
support. Indeed, physicians taking care of 
patients suffering from olfactory disorders must 
pay a particular attention to the quality of life of 
patients and to the potential negative impact of 
olfactory dysfunction on the patient’s health 
(nutrition, detection of danger, depression, etc.).

Olfactory dysfunction due to sinonasal dis-
ease can be treated either medically or surgically, 
according to available guidelines. Unfortunately, 
medical treatments are still missing today for 
non-sinonasal causes and olfactory training 
remains the mainstay of the treatment. Besides 
this, considering the impact of olfactory dysfunc-
tion on everyday life, it is mandatory to provide 
patients complete information about the nature of 
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their olfactory disorder and their prognosis, as 
well as advices about occupations, safety at 
home, and how to make food more palatable and 
safe to eat.

Nowadays, about 20% of the population is 
hyposmic. But this number could increase in the 
future years due to our aging population and 
COVID-19 pandemic. This might constitute a 
major public health issue in the future years con-
sidering the close relationship between olfactory 
dysfunction and nutritional disorders in elderly 
people. Further researches are thus mandatory in 
order to propose new treatments to recover or to 
compensate for the olfactory loss.

Take-Home Messages
• Olfaction plays an important role in our daily 

life and olfactory impairment negatively 
affects quality of life and well-being.

• Besides physiological age-related decline of 
olfaction, olfaction can be affected by a wide 
range of pathologies. Identifying these 
 possible causes is mandatory for the appropri-
ate management and counseling of the patient.

• Sinonasal-related olfactory dysfunction 
should be treated according to current guide-
lines available.

• Unfortunately, no medical treatment as yet 
been proven to significantly impact the out-
comes of non-sinonasal olfactory 
dysfunction.

• Olfactory training remains the gold-standard 
treatment for olfactory disorders.

• Counseling, psychological, and nutritional 
support are also mainstay of the treatment.
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